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Foreword

Multiple hypothesis testing is concerned with maintaining low the number of false posi-

tives when testing several hypotheses simultaneously, while achieving a number of false

negatives as small as possible. It will become clear that a multiple testing situation

presents many substantial differences with the single hypothesis setting.

As noted in Bayarri and Berger (2004), there are quite a few distinct and competing

methodologies to deal with multiple tests. We will not attempt to unify them here, but

rather argue that this diversity is a tool to the researcher, who should know the properties

and behavior of the procedures in the different situations that go under the wide multiple

hypotheses framework. It is intuitive that the problems posed by simultaneously testing

a hundred thousand hypotheses under independence are different than the problems

posed by testing only ten hypotheses under dependence.

In general, anyway, it is critical that procedures for testing many hypotheses simul-

taneously be distribution free and robust with respect to known or possibly unknown

dependency among the test statistics.

The procedures available in the literature can work very well with an unknown

distribution of the data, but the problem of robustness with respect to dependence has

not been completely solved up to now, apart for the classical error measures. Moreover it

is not yet clear which error measure to control in certain cases (Bickel (2004)). Finally,

the multiple testing procedures devised to control the most recent Type I error rate,

called tFDP (c), are not efficient in certain cases (in particular when the number of tests

is very large), as we will see in Chapter 1. tFDP (c) is defined as the probability that

the proportion of false positives on the number of rejections exceeds a fixed threshold

c. Among other open problems, which will not be addressed in this dissertation, there

is the derivation of a framework for power analysis; and a closely related problem, that

is, a method to choose the sample size for each test.

The present dissertation mainly deals with dependence in multiple testing. The

primary goal is to provide sufficient conditions on the dependency between the test

statistics in order to use the procedures under dependence without any correction. As

additional results, and when the primary goal will not be met, extension to dependence

will be given with suitable modifications.

Main contributions of this dissertation are reported below.

• A new procedure to control the tFDP (c) is provided. Innovations with respect to

existing methods are shown.

ix



• Dependency among the test statistics is considered. We show what kind of con-

siderations are to be made on the dependence, which procedure to use in light of

the considerations, and what modifications may be needed.

We will mainly impose “weak dependence” conditions (like mixing conditions) or

conditions on the “direction” of the dependence, i.e., that it is either all positive or

all negative (association conditions). More general conditions are also discussed.

• A family of estimators of the number of the false null hypotheses is proposed.

These estimators are shown to be robust with respect to dependence. Power of

the procedures is increased via such estimators.

• Application to DNA microarrays, a common motivating example, is discussed.

• An application of multiple testing procedures to wavelet thresholding is discussed,

with suggestions of when they prove more efficient than classical thresholding

methods.

• Some inequalities of interest, like Hoeffding and Vapnik-Cervonenkis inequality,

are derived under dependence.

The dissertation is organized as follows: In Chapter 1 we will review the existing

literature on multiple testing, together with a critical comparison of the results. Sub-

sequent chapters will describe our contributions: in Chapter 2 we will propose a new

multiple testing procedure and show how it solves part of the open problems related

to tFDP (c) control. Asymptotic results for multiple testing under dependence will be

given in Chapter 3, together with extensive simulations. Some results for multiple test-

ing under dependence for fixed number of tests will be given in Chapter 5. In Chapter 4

we will introduce a family of estimators of the number of false nulls among the hypothe-

ses, and illustrate how to use these estimators to increase the power of multiple testing

procedures. Effects of dependency on such a family is discussed. Finally, Chapter 6 will

show some applications.

There are many possibilities of further work, which will be usually pointed out

through the exposition.



Chapter 1

Introduction

1.1 Notation

The following summarizes the most recurring notation.

Symbol Description

| · | cardinality of a set

1{A} indicator function, 1 if condition A is true, 0 otherwise

pj j-th p-value

p(j) j-th ordered p-value

Hj indicator of the j-th null hypothesis to be false

m number of tests

M0 number of true null hypotheses

M1 number of false null hypotheses

a M1/m

S0 set of indexes of true null hypotheses

TPr threshold (reject if pj < TPr) under procedure Pr or controlling error rate Pr

Er(TPr) value of the error rate using threshold TPr

RPr number of rejected hypotheses under procedure Pr or controlling error rate Er

F distribution of pj|Hj = 1, j = 1, . . . , m

G marginal distribution of pj, j = 1, . . . , m

U uniform CDF

Γ number of false rejections divided by RPr, FDP process

1.2 Motivation and Outline

In many new areas of statistics, in particular in bioinformatics, conclusions are drawn

by testing hundreds, often thousands, of hypotheses simultaneously. This can be the

case of identifying the spots of the brain where there is neuronal activity after a stimulus

(Worsley et al. (1996), Ellis et al. (2000), Merriam et al. (2003)) or the identification

of differentially expressed genes in DNA microarray experiments (Drigalenko and El-

1



2 Introduction

ston (1997), Weller et al. (1998), Heyen et al. (1999), Bovenhuis and Spelman (2000),

Mosig et al. (2001))). For a review of multiple testing methods in the context of mi-

croarray data analysis see Dudoit et al. (2003a). Among the other possible applications,

there are medicine (Khatri et al. (2001)), pharmacology (Schlaeppi et al. (1996)), epi-

demiology (Ottenbacher (1998)), marketing (Schaffer and Green (1998)), psychometrics

(Vedantham et al. (2001)).

Moreover, multiple tests are often used as a key part of another statistical procedure,

like variable selection (George (2000), George and Foster (2000)), item-response model-

ing (Ip (2001)), structural equation modeling (Green and Babyak (1997)), decision trees

(Benjamini and Yekutieli (2002)), etc.

The procedures we review here, and the new ones we will propose, are useful and valid

for any of these applications, and some of them we will consider throughout. Among

them, a particularly motivanting example is given by the kind of problems faced in

bioinformatics, in particular DNA microarray experiments. Bioinformatics and genetics

applications are usually characterized by a number of variables (or occasions) much

larger than the sample size, with a complex correlation pattern and possibly unknown

(joint) distributions. Most recent DNA microarray experiments measure the expression

levels of around 30000 genes, with a sample size (number of individuals) that is almost

always lower than a hundred. One usually tests one hypothesis per gene, to verify if it

is differentially (over or under) expressed between two groups (case-control studies).

Multiple hypothesis methods are concerned with the problem of simultaneously test-

ing all those hypotheses, controlling a suitably defined Type I error rate; and maximizing

the number of correct rejections at the same time. The best methods are the ones that

take advantage of the large number of hypotheses by efficiently using the information

given by one test to make the others. This will be usually done by estimating the

marginal distribution of the test statistics. It is well known that the procedures must

be distribution free, since the distribution of the test statistics under the alternative

hypothesis is usually unknown (and possibly different among tests). Fortunately, they

usually are. It is all the same desired that the procedures be robust under known or

unknown dependence structure. Variables, and hence test statistics, are often depen-

dent; and usually there is no design of the experiment that can yield independent test

statistics. For instance in neurology, different neurons are dependent by their intrinsic

nature. For this reason, it is crucial to have also procedures that are robust under flexible

(or even arbitrary) dependence structures. In this dissertation, we will sometimes give

sufficient conditions on the dependency for a certain procedure to work; other times

we will introduce procedures that work under arbitrary dependence. The researcher

should choose the procedure that works best under the conditions he/she can prove to

be true. It is obvious that, in general, more general hypotheses lead to more conservative

procedures.

Many attempts have been made to tackle the problem of robustness of multiple tests

under dependence, or to extend the available ones. Among the others see Benjamini and

Yekutieli (2001), van der Laan et al. (2003b), Storey and Tibshirani (2001), Pollard and
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H0 not rejected H0 rejected Total

H0 True N0|0 N1|0 M0

H0 False N0|1 N1|1 M1

Total m− R R m

Table 1.1: Categorization of the outcome

van der Laan (2003b), Yekutieli and Benjamini (1999), Sarkar (2002). We will briefly

review these works below.

This dissertation, in particular, is dedicated to a recent and, at the moment, most

used error measure: the false discovery proportion (FDP), loosely defined as the propor-

tion of false positives with respect to the number of rejections. Next section introduces

a framework for multiple hypothesis testing, with a review of the methods under de-

pendence and independence assumptions, and few new results. Chapter 2 presents a

procedure to control the tail of the FDP under independence which proves better in

terms of power, and more flexible, than others available in the literature. Chapter 3

shows asymptotic results on the control under dependence of the expected value of the

FDP, the FDR. Chapter 4 proposes a generalized iterative estimation method for the

true number of false nulls, which can improve significantly the power of the procedures.

Chapter 5 shows results on the control under dependence of the quantiles of the FDP

and of the FDR for any finite number of tests. Finally, Chapter 6 presents applications

of the procedures.

1.3 The Multiple Hypotheses Framework

Consider a multiple testing situation in which m tests are being performed. Suppose

M0 of the m hypotheses are true, and M1 are false. Table 1.1 shows a categorization

of the outcome of the tests. R is the number of rejections. Ni|j, with i, j ∈ {0, 1}, is

the number of Hi accepted when Hj is true. Note that N0|1 and N1|0 denote the exact

(unknown) number of errors made after testing. All quantities in capital letters are

random, or at least not observable. To observe the realization of all these quantities,

apart from R, one would need the knowledge of which hypotheses are actually true and

which are actually false.

In the usual (single) test setting, one controls the probability of false rejection (Type I

error) while looking for a procedure that possibly minimizes the probability of observing

a false negative (Type II error). In the multiple case, there are a variety of possible

generalizations for the Type I error rate, all involving the counts of false positives N1|0.

In the same way, one can generalize the concept of Type II error. From a frequentist

point of view, one still wants to get a sufficiently small N1|0 while rejecting the maximum

number of hypotheses, i.e. minimizing the number of false negatives. All classical

multiple Type I error measures are based only on the distribution of N1|0, i.e., on what
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happens for the tests corresponding to the true null hypotheses :

• Family-wise error rate (FWER), the probability of a least one Type I error:

FWER = Pr(N1|0 ≥ 1) (1.1)

• Generalized family-wise error rate (FWER), the probability of a least k + 1 Type

I errors1, k = 0, . . . , m− 1:

gFWER(k) = Pr(N1|0 ≥ k + 1) (1.2)

Up to few years ago, FWER was by far the most used error measure. Define now

the False Discovery Proportion (FDP) to be the proportion of erroneously rejected

hypotheses:

FDP =

{
N1|0
R

if R > 0

0 if R == 0
(1.3)

Benjamini and Hochberg (1995) propose a new error measure, the FDR, based on the

FDP, that hence depends also on the distribution of R, i.e., on what happens for the

hypotheses for which H0 is false. Perone Pacifico et al. (2003) and van der Laan et al.

(2003b) propose another similar error measure:

• FDR, expected proportion of Type I errors:

FDR = E(FDP ) (1.4)

• Exact control of the FDP, tail probability of the FDP:

tFDP (c) = Pr(FDP > c). (1.5)

This is a slight contamination of concepts: failing to reject an hypothesis increases the

Type I error measure. The justification of this stems from classification theory and

a simple reasoning: the researcher is prepared to accept an higher number of Type I

errors when many rejections are made; since the false positives will likely not bias the

conclusion of the analysis.

It is easy to see (Benjamini and Hochberg (1995), Genovese and Wasserman (2002))

that FDR control is also a loose control on the FWER, and it is FWER control when

R = 1.

1Note that gFWER(k) = gFWER(k′) for k ≥ m0 − 1 and k′ ≥ m0 − 1.
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Relationship between FDR and tFDP control

As noted by Genovese and Wasserman (2004a) any tFDP controlling procedure can

be easily modified to control the FDR: in fact, if c ∈ (0, α) and tFDP (c) ≤ α−c
1−c

, then

FDR ≤ α. It is easily seen that, in general, if tFDP (c) ≤ α,

FDR < c+ (1 − c)α (1.6)

A partial converse is given by an application of Markov inequality, which yields: FDR <

α ⇒ tFDP (c) < α/c. Another partial converse follows from next Lemma, which is a

simple extension of the mean value theorem:

Lemma 1.3.1. Let f(·) be a function f : R → R, continuous, integrable, and monotone

on an interval [a, b]. If f(·) is concave in [a, b], then there exists ξ ∈ [a, (a + b)/2] such

that f(ξ)(b−a) =
∫ b

a
f(x) dx. If f(·) is convex in [a, b], there there exists ξ ∈ [(a+b)/2, b]

such that f(ξ)(b− a) =
∫ b

a
f(x) dx.

Proof. The well known mean value theorem of calculus states that if f(·) is continuous

and integrable in the interval [a, b], then there exists ξ ∈ [a, b] such that f(ξ)(b− a) =∫ b

a
f(x) dx. First, it is straightforward to prove, by contradiction, that if f(·) is strictly

monotone then ξ is unique. If f(·) is only monotone, there there exists at most an

interval [ξ1, ξ2] such that the equality holds for all points in the interval. If moreover

f(·) is concave, we have an easy application of Jensen inequality for integrals to its

(convex) inverse:

ξ = f−1

(
1

b− a

∫ b

a

f(x) dx

)

≤ 1

b− a

∫ b

a

f−1 · f(x) dx

=
1

b− a

∫ b

a

x dx =
b+ a

2
,

i.e., the point(s) ξ are all in the first half of the interval. If f(·) is convex, it is straight-

forward to see the reverse inequality.

Now we are able to prove that, for some c, tFDP (c) is controlled at the same level

as the FDR:

Theorem 1.3.2. If Pr(FDP < c) is convex2 as a function of c, then if FDR ≤ α we

have that tFDP (c) ≤ α for any c > 0.5.

Proof. If Pr(FDP < c) is convex, then Pr(FDP > c) = tFDP (c) will be concave.

Since E[FDP ] =
∫ 1

0
tFDP (c) dc, we have that ∃ ξ such that tFDP (ξ) = E[FDP ]. By

Lemma 1.3.1, hence, if FDR ≤ α then tFDP (0.5) ≤ α. It is obvious that tFDP (0.5) ≥
tFDP (c) for any c > 0.5.

2This is a safe assumption if one takes the stochastic dominance assumption defined at page 10.
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As final remarks, note that FDR = E[FDP ] =
∫ 1

0
tFDP (c) dc; which implies that

FDR control is a control on the expected tFDP (c) with respect to Lebesgue measure.

Moreover, it is straightforward to see that tFDP (0) = FWER.

1.3.1 The Statistical Model

Let X1, . . . , Xn be n random vectors in X ⊆ Rm: Xi = (Xij : j = 1, . . . , m). Suppose

Xi ∼ P, where the (multivariate) data generating distribution P is an element of a family

of distributions M. M depends on a finite or infinite vector of unknown parameters.

Thus, we refer to a statistical model {X n, σX ,P},P ∈ M; where σX is an opportune

σ-field on the subsets of the sample space X .

In usual applications, the sample size n is typically much smaller than m. For

instance, one can measure the gene expression of thousands of genes for less than one

hundred patients, together with biological covariates and risk factors. This obviously

complicates the shape and definition of P.

We define a parameter to be a function of the unknown distribution P. Parameters

of interest typically include means, differences in means, variances, ratios of variances,

regression coefficients, etc.

We define m null hypotheses as the indicator functions of m possible submodels:

1 − Hj = 1{P∈Mj}, with Mj ⊆ M. The m alternatives will just be defined as the

complements: Hj = 1{P /∈Mj}, so that Hj = 0 if the null hypothesis is true and Hj = 1

otherwise. Let S0 be the set of all true null hypotheses: S0 = {j : Hj = 0}. The goal

of a multiple testing procedure is the accurate estimation of Sc
0, while probabilistically

controlling a pre-specified function of N1|0 = {S0 ∩ Ŝc
0}, i.e., a Type I error rate.

When m = 1, we have a classical statistical test, a procedure which partitions the

sample space in two: a subset X1 ⊆ X n such that observing a realization of X1, . . . , Xn

in X1 leads to rejection of the single null hypothesis; and the complementary subset,

leading to failure of rejection. This idea is easily generalized to the m > 1 case: a

multiple test is a procedure which partitions the sample space in 2m subsets, some of

which can be empty. Each subset corresponds to one of the possible 2m estimates of Sc
0,

i.e., to a subset of the set of indexes {1, . . . , m}. For obvious reasons, in practice one

never directly refers to these 2m subsets of X n.

The partitioning is made through an m-vector of test statistics, Tn = (Tn(j) : j =

1, . . . , m), that are functions of the data X1, . . . , Xn. We define the j-th p-value to be

pj = Pr(|Tn(j)| > |tn(j)||Hj = 0)

where tn(j) is the observed value of the test statistic Tn(j). Throughout the dissertation,

we adopt the notation p(j) to denote the j-th ordered statistic of the vector of pjs, with

p(0) = 0 and p(m+1) = 1. The p-value pj is again a random variable. It is well known

that, if the null hypothesis is simple, it is uniformly distributed on [0, 1] under the null;

which we will assume throughout. Until now, the literature on FDR and multiple testing

in general does not seem to be interested in extensions to composite null hypotheses. As
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an aside, we refer the reader to Bayarri and Berger (2000), where an objective Bayesian

approach is used to derive significance levels (i.e., alternative p-values) that are always

uniformly distributed under the null. If one makes use of their partial posterior predictive

p-value, U-conditional predictive p-value, or similar alternative p-values; the procedures

are immediately and directly extended to the case of composite null hypotheses. See

references therein for the problem of calibration of p-values, which is also partly solved

with the use of alternative significance levels.

Let pj|(Hj = 1) ∼ Fj, where Fj is any distribution on [0, 1]. It is easy to see that, in

the single test setting, rejection of the hypothesis when pj < α controls automatically

the probability of Type I error at a pre-specified level α.

We will denote the true proportion of false nulls for fixed m, M1/m, by a. When m

changes, namely for asymptotic results, we will always assume M1/m
P→ a. Here M1 is

considered random since it is not known (nor even observable). We will moreover say

that Pr(Hj = 1) = a, since if the j-th hypothesis is declared at random to be false3, the

chance that it is actually false is M1/m.

Then, the marginal distribution of pj is the mixture Gj(t) = Pr(Hj = 0) Pr(pj <

t|Hj = 0) + Pr(Hj = 1) Pr(pj < t|Hj = 1) = (1 − a)t + aFj(t). We often will write

F instead of Fj, and G(t) instead of Gj(t), to simplify the notation. Unless stated

otherwise the procedures will not require the distribution of the pj under the alternative

to be equal (in general, they never are). For a discussion of this and more details of

the definition of the “marginal model” Gj(t), see for instance Genovese and Wasserman

(2002). The empirical distribution of the p-values will be denoted by Ĝ(t) and is defined

as Ĝ(t) = 1
m

∑
1{pi<t}.

In this dissertation, we will always use multiple testing procedures based on the

vector of p-values.

1.3.2 Multiple Testing Procedures

As stated before, a multiple testing procedure (MTP) produces a set SMTP of rejected

hypotheses, which is an estimation of the set Sc
0 of false null hypotheses. For a fixed

MTP, the set SMTP depends on:

• The data, often only through the vector of p-values p1, . . . , pm

• A level α, that is, an upper bound for an appropriate Type I error rate,

and it will usually be defined as SMTP = {j : pj ≤ T} for the (random) cut-off T . The

only problem, then, is to specify a way to determine a (data dependent) cut-off T .

Some authors, e.g. Dudoit et al. (2003b) and Westfall and Young (1993), prefer to

leave the cut-off T fixed to α and introduce the concept of adjusted p-value, i.e., a level

of significance related to the entire MTP (instead of a relationship with the single j-th

3By “declared at random” we mean that an hypothesis is sampled with a simple random sampling

scheme and it is then declared to be false.
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test). In practice, this involves defining a new p-value p̃j, which will be a function (often,

a scale transformation) of the old pj. Then, these authors define S ′
m = {j : p̃j < α}.

It can be shown that, for each MTP procedure, it is perfectly equivalent to consider

adjustment of threshold or of p-values.

We prefer, like other authors (e.g., Genovese and Wasserman (2004b)), not to refer

to the concept of adjusted p-values for two reasons: first of all, working on a data

dependent cut-off seems more intuitive and direct; secondly, we will make extensive use

of the marginal distribution of the p-values, which is not easily tractable in the case of

adjustment of the vector of p-values.

MTPs are usually categorized as:

• One-Step: In one-step procedures, the p-values are compared to a predetermined

cut-off that is only a function of α and m, with no dependence on the data.

• Step-down: In step-down procedures, each p-value is compared with a cut-off

dependent on its rank. The p-values are examined in order, from smallest to

largest. Once one is found to be greater than its cut-off, the threshold T is set

equal to the previous p-value. Hence, all hypotheses corresponding to the first

p-value greater than its cut-off and to larger ones are not rejected.

• Step-up: Step-up procedures are similar to step-down procedures. p-values are

examined from the largest to the smallest. Once one is found to be smaller than

its cut-off, the hypotheses corresponding to that one and to smaller p-values are

rejected, and the threshold T is set equal to that p-value.

Hochberg and Tamhane (1987) note that step-up procedures are less powerful than

step-down ones, if controlling the same error rate at the same level.

Let ERm(P ) be one of the error rates defined at page 4 for a fixed m and under

distribution P for the data. We introduce now two definitions of Type I error rate

control:

A multiple testing procedure SMTP provides finite sample control of a pre-specified

Type I error rate at a level α ∈ (0, 1) if ERm(P ) ≤ α for any m. A multiple testing

procedure SMTP provides asymptotic control of a pre-specified Type I error rate at level

α if lim supmERm(P ) ≤ α.

Note that the actual error rate is the one determined under the true distribution of

the data P , and the asymptotics is defined as the number of tests increases, no matter

the actual sample size. In Chapter 3 we propose ways to provide asymptotic control

of the FDR under dependence, while in Chapter 5 we propose procedures to get finite

sample control of the FDR and of the quantiles of the FDP under various hypotheses

on the dependence.

It is the case to comment on the concept of asymptotic control. While it is natural in

the statistical literature to think of a growing number of subjects, it is far less common

to think about the number of variables as possibly growing to infinity. Historically,
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statisticians work very well with cases in which the number of subjects is larger than the

number of variables. Many recent applications have a number of variables much higher

than the number of observations. For this reason, it may not be sensible to retain the

common notion of asymptotics, in which the number of subjects is increasing. In multiple

testing it is natural to think about asymptotics in m. See for instance Finner and Roters

(2002), and references therein. There are two interpretations to that: in the first case,

m can in principle grow to infinity. It is the case of many applications in epidemiology,

medicine, environmental statistics, psychometrics, non parametric estimation through

wavelets. The second interpretation of asymptopia with m is as an approximation for

“big” m. This may be the case of DNA microarrays, neurology, etc. There are cases,

moreover, in which the number of possible tests is actually infinite, for instance when

testing all possible linear combinations of parameters in an ANOVA model (cfr. Westfall

and Young (1993), pag. 199).

The control of the error rate can be categorized as:

• Weak control: there is weak control of the Type I error rate ERm(P ) if there

is finite sample control of ERm(P0), where P0 is the distribution that would have

generated the data if all the null hypotheses were true (the so called “complete

null”).

• Strong control: there is strong control of the Type I error rate ERm(P ) if there

is finite sample control of max
I⊆{1,...,m}

ERm(PI), where PI is the distribution that

would have generated the data if the null hypotheses indexed in I were true and

the other false.

• Exact control: The direct control of ERm(P ), i.e., having ERm(P ) ≤ α is

defined as exact control.

Obviously, strong control implies weak control, and the ultimate goal is exact con-

trol. Weak and strong control are introduced since it may not be doable to work with

ERm(P ), with unknown P . If attaining weak control, one hopes that ERm(P ) ≤
ERm(P0). This is often true. The same idea applies to strong control, since it is intu-

itive that it should happen that ERm(P ) ≤ max
I⊆{1,...,m}

ERm(PI). Nevertheless, Pollard

and van der Laan (2003b) note that in certain cases strong control may not imply exact

control of the Type I error rate, and propose a way to overcome this problem.

We introduce also the idea of subset pivotality, as defined in Condition 2.1 of Westfall

and Young (1993). The vector p = {pj, j = 1, . . . , m} has the subset pivotality property

if, for any k ∈ 1, . . . , m, it happens that {pj1, . . . , pjk
} d

= {pj′1
, . . . , pj′

k
}. If subset piv-

otality holds, strong control is implied by weak control of the Type I error rate.

Another crucial hypothesis, in this setting, is what is usually called Close World As-

sumption (Reiter (2001)): the tests we do are all and the only one we need to do. If

this was not true, we would be estimating the “wrong” distribution of the test statistics.

This is far from being a mere philosophical issue: it is in fact not difficult to cheat.
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Many MTPs can be easily tricked to reject the hypotheses we are interested in rejecting

by artificially adding enough tests for which H0 is false, or to fail to reject by artificially

adding enough tests for which H0 is clearly true. For the same reason, if in an experi-

ment there are hypotheses that are known to be true or false by design, these should be

left out of the MTP.

The role of F (·)

As we will see, all MTPs are fully distribution free, i.e., they control the chosen Type I

error rate under any distribution for pi|Hi = 1, which we denote by F (·). It is important

to keep in mind that, even if the error control is independent of F (·), many other features

of the MTPs will not. Power, performance of estimators of M1, and how much the MTP

is conservative will always depend on F (·). Moreover, many results get trivial if we

let F (·) vary among all the possible distributions on [0, 1]. Hence, finest approaches

will take into account an estimator of F (·) and/or include some assumptions on F (·).
Among the most common assumptions, there are:

• Identifiability: F 6= U [0, 1]

• Stochastic Dominance: F (t) ≥ t for any t ∈ [0, 1], and ∃ t0 such that F (t0) > t0.

• Parametric Model: F (t) = Fv(t) ≥ 1 − e−vc(t), with c(t) > 0 and v > 0.

• Adaptive

Parametric Model
: F (t) = Fv(m)(t) ≥ 1 − e−v(m)c(t) , with c(t) > 0 and v(m)

such that v(m)
log(m)

m→ +∞.

Note that the last assumption implies that the p-values, under the alternative, get more

and more concentrated towards zero as the number of tests increases. As noted also

by Genovese and Wasserman (2004b), this is a particularly good situation, in the sense

that asymptotically no false negative will be made for any threshold t; and it happens

for instance if the test statistics satisfy the standard large deviation principle (Van der

Vaart (1998), pag. 209) and there is a common sample size n and/or a common sampling

distribution; or if each test is based on measurements from a counting process, where v

represents exposure time.

1.3.3 Bayesian Multiple Testing

As noted by Berry and Hochberg (1999), in the case of multiple testing

“In the simplest Bayesian view, there is no need for adjustments and the

Bayesian perspective is similar to that of the frequentist who makes infer-

ences on a per-comparison basis.”
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Scott and Berger (2003) and Bayarri and Berger (2004) strengthen this view, by claim-

ing that “a correct adjustment is automatic within the Bayesian paradigm”. Bayesian

testing of many hypotheses does not pose problems different than testing a single hy-

pothesis, no adjustment is needed.

Nevertheless, Berry and Hochberg (1999) make a review of available Bayesian pro-

cedures to control frequentist error measures, and propose a hierarchical model based

on a Dirichlet process prior distribution to allow for exchangeability of the tests. If

independent priors are used, they formally conclude that from a Bayesian point of view

no modification is needed to the standard single setting procedure.

Scott and Berger (2003) propose a way to choose suitable prior distributions on the

quantities of interest, and develop efficient sampling methods to deal with multiplicity,

i.e., they provide a way to speed up computations via importance sampling (see Robert

and Casella (1999)).

Efron et al. (2001) put FDR controlling procedures under an empirical Bayes frame-

work, and Storey (2003), when proposing the positive false discovery rate, discusses an

interesting Bayesian interpretation.

1.3.4 General ideas behind a Multiple Testing Procedure

Before reviewing the procedures to control each Type I error rate, we state some general

ideas:

• We want to fix a cut-off T such that the error rate is at most equal to a pre-specified

α ∈ [0, 1].

• We want this cut-off to be as high as possible, provided the specified error rate

is controlled. The higher T , more tests are rejected and the more powerful the

procedure.

• If two procedures control the same error rate, we prefer the one which is better

in terms of power, i.e., achieves a smaller Type II error rate we fix. We will use

two Type II error rates: one is the FNR, which we define in (1.8), and the other

is the average count of Type II errors N0|1, which is usually called per family Type

II error rate in literature.

Multiple testing procedures aim to balance between false positives (given by larger T s)

and false negatives (given by smaller T s). We follow here the principle that, as long

as the Type I error rate is controlled at the desired level, we prefer to make more false

positives in order to have less false negatives. We defer to Section 1.4 a discussion of

why it is not advisable to perform uncorrected testing, i.e., to simply reject all p-values

smaller than T = α. With a simplification of notation, we will say “reject p(j) such

that...” to indicate “reject the hypotheses for which p(j) is such that”.
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1.3.5 Procedures Controlling the FWER

In this subsection we briefly review procedures to control the Family-Wise Error Rate,

as defined in (1.1). More details can be found in Hochberg and Tamhane (1987) or

Westfall and Young (1993).

Bonferroni Correction

The most famous and used procedure to control the FWER is the Bonferroni correction,

which is a one-step procedure fixing T = α/m. Hence, one would reject only the

hypotheses for which pj ≤ α/m. It is easily seen that this controls the FWER under

arbitrary dependence:

P (N1|0 ≥ 1) = P (minj∈S0pj < α/m)

≤ P (p(1) < α/m)

≤ m ∗ P (pj < α/m) = α

Step-down Holm

Holm (1979) proposed a step-down procedure to control the FWER, which consists in

rejecting p(j) ≤ α/(m− j + 1). This is a direct improvement in terms of power on the

Bonferroni correction.

Step-down minP

Let qbetaα(a, b) indicate the α percentile of a beta(a, b). The “Step-down minP” proce-

dure is as follows:

1. If p(1) > qbetaα(1, m), don’t reject any hypothesis (i.e., set TminP := 0).

2. While p(i) ≤ qbetaα(1, m− i + 1), set i := i+ 1.

3. As soon as p(i) > qbetaα(1, m− i + 1), set TminP := p(i−1).

4. If p(m) ≤ qbetaα(1, 1), reject all hypotheses.

Quantiles are computed from the distribution of the minima of the last k p-values,

which under the complete null hypothesis is well known to be a beta(1, m−k+1). It can

be proved, hence, that the “minP” procedure provides weak control of the FWER. See

also van der Laan et al. (2003a) for comments on this procedure, which proves in many

cases better than the other ones controlling FWER, as the number of tests increases.
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Other Procedures Controlling the FWER

Among the many other procedures that provide control of the FWER, there are:

• One-step Sidak: The one-step Sidak procedure consists in controlling each test

at a level 1 − m
√

1 − α.

• Step-down Sidak: A step-down version of Sidak correction consists in rejecting

p(j) ≤ 1 − m−j+1
√

1 − α.

• Step-up Hochberg: Proposed in Hochberg and Benjamini (1990), it consists in

a step-up version of step-down Holm.

For the Sidak procedures, see Sidak (1967) and Sidak (1971).

1.3.6 Procedures Controlling the FDR

The FDR, as defined in (1.4), was introduced by Benjamini and Hochberg (1995) to

fulfill the need of an error measure that would provide less strict control on the number

of false rejections, in particular with large m. It is easy to see that in many cases FWER

controlling procedures are such that the number of rejections is oP (1), and in general

all have very low power (see Table 1.2).

We will describe FDR control referring mainly to articles by Genovese and Wasser-

man (Genovese and Wasserman (2002), Genovese and Wasserman (2004b)), who put the

problem under a stochastic process framework; rather than to Benjamini and Hochberg

(1995), who introduced the FDR.

First, note that the FDP can be seen as a stochastic process indexed by the threshold

t:

Γ(t) =

∑
(1 −Hi)1{pi<t}∑

1{pi<t} +
∏

(1 − 1{pi<t})
,

note in fact that (1 −Hi)1{pi<t} is one if and only if Hi = 0 and pi < t, i.e., if the i-th

hypothesis has been rejected while being true. Γ(t) is a stochastic process since, for

each t ∈ [0, 1], Γ(t) is a random variable. If t is a fixed cut-off (i.e., we actually reject

pj < t), then Γ(t) is the realized FDP, the proportion of false rejections.

As also Genovese and Wasserman (2004b) note, the cut-offs T are usually random,

which implies the non trivial problem of evaluating a stochastic process at a random

point:

“One of the essential difficulties in studying a procedure T is that Γ(T ) is

the evaluation of the stochastic process Γ(·) at a random variable T . Both

depend on the observed data, and in general they are correlated. In partic-

ular, if Q̂(t) estimates FDR(t) for each fixed t, it does not follow that Q̂(T )

estimates well FDR(T ) at a random T . The stochastic process point of view

provides a suitable framework for addressing this problem.”
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There are two procedures to control the FDR:

BH Reject pj < TBH , where TBH as sup{t : Ĝ(t) = t
α
}, where α is the desired upper

bound for the FDR and Ĝ(t) is the empirical distribution of the p-values.

plug-in Reject pj < TBH , where TBH as sup{t : Ĝ(t) = (1−ba)t
α

}, where â is any estimator

of a.

The BH procedure was originally proposed in Simes (1986), but it didn’t receive much

attention at that time since it didn’t control the FWER in the strong sense (while it did

in the weak sense). It can be seen that it controls the FDR: FDR(TBH) ≤ (1−a)α ≤ α

(see Benjamini and Hochberg (1995) or Storey et al. (2004)).

The plug-in procedure was first proposed in Genovese and Wasserman (2002). It

exploits information given by the sequence of p-values through a suitable estimator of a.

The plug-in procedure controls the FDR and is more powerful than the BH procedure.

Uncertainty brought about by the estimation is not usually incorporated. We will see

in Chapter 4 how to do this.

The most common estimator used is Storey’s estimator, proposed in Storey (2002),

and defined as:

â =
Ĝ(t0) − t0

1 − t0
(1.7)

for some t0 ∈ (0, 1). Among the other possibilities, there are estimators proposed in

a completely different context: see Swanepoel (1999), or Woodroofe and Sun (1999).

All these estimators are seen to break down under dependence (see Chapter 3). For

this reason, we will propose in Chapter 4 a class of estimators robust with respect to

dependence.

Genovese and Wasserman (2002) also introduce the FNR, the dual of the FDR, a

measure of power defined as

E

[
N0|1

m−R + 1(m−R)=0

]
. (1.8)

We will use this Type II error measure when comparing procedures in terms of power

(the other possibility will be to count the average Type II errors).

Storey (2003) introduced the positive False Discovery Rate, which proves even more

powerful than the original BH method, and provided interesting extensions and insights

of the methods. He also provides a way to estimate the FDR for fixed number of

rejections.

Storey et al. (2004) propose a unified estimation approach for the FDR, showing

methods to estimate the FDR fixing the threshold or the rejection region, or asymptot-

ically over all rejection regions simultaneously. They suggest a way to control the FDR

through their estimates. In particular, they present several theorems that all require

almost sure pointwise convergence of the empirical distributions of the subsequence of p-

values for which the null is true and the subsequence of p-values for which the alternative

hypothesis is true.
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Genovese and Wasserman (2004b) introduce estimators for a and F (·), suggest ways

to build confidence thresholds for the FDP and prove asymptotic results, providing some

limiting distributions. In Chapter 3 we provide some extensions of their results under

dependence.

1.3.7 Exact control of the FDP

tFDP (c), as defined in (1.5), is a much more recent error rate, first proposed by Per-

one Pacifico et al. (2003) and then by van der Laan et al. (2003b). Basically, control of

the tail of the distribution of the FDP is performed, while the FDR controls the mean.

An intuition of why and when this should be preferred is shortly given.

Quantile control is more protective against extremes4: interest is taken in the tails

of the distribution of the FDP rather than in its central part. This is useful in cases in

which the expected value in not a suitable representative of the random variable, and

extreme realizations should be avoided, controlled or forecasted.

The case of FDP is an excellent example of such a problem: it can obviously happen

that FDR = E[FDP ] < α but the realized FDP is very close to 1. tFDP (c) requests

that the tail of the distribution of the FDP is light enough, i.e. that large FDP is

realized with small probability. In some sense, tFDP (c) is a more finer error measure

than FDR. In general, anyway, tFDP (c) and FDR control respond differently to the

distribution of the p-values under the alternative, F (·); and tFDP (c) control may lead

to more or less rejections than FDR control on a case by case basis.

We will moreover note that, in general, V ar[FDP ] is increased by dependence among

the test statistics. As the variance increases, the FDP is less and less concentrated

around its expected value, so it becomes less and less meaningful to control the FDR.

A similar remark is made in Bickel (2004) and Owen (2004).

A simple example of problems posed by dependence is provided below:

Example 1.3.1. Let p1 ∼ Unif(0, 1). Let p2 = · · · , pm = p1. Suppose the FDR = α.

The number of false rejections is m with probability α. Here, Γ(T ) has a distribution

with mass 1 − α at 0 and α at 1.

This suggests that aiming for confidence thresholds on the FDP, i.e., quantile control,

is even more desirable in the presence of dependence.

We will give some results under dependence and propose some improvements to

the available procedures in Chapters 4 and 5. We will propose a procedure to control

tFDP (c) in Chapter 2, that proves more powerful than the other available ones; and

also extend it to dependence in Chapter 5.

4Note that the idea is similar to the one of “quantile regression” (Koenker and Bassett (1978)), where

attention is shifted from the (conditional) mean to the entire distribution of the response variable.
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Augmentation

van der Laan et al. (2003b) propose a very clever way of controlling at level α both

the tFDP and the gFWER(k) as defined in (1.2). They start from the idea that

any procedure requiring something less stringent than FWER control will result in the

rejection of at least the same hypotheses. For this reason, they start by controlling the

FWER (any procedure will be fine). Then, they augment by rejecting the previously

selected hypotheses and an opportune additional number. I.e., they propose a universal

method to identify additional rejections among the null hypotheses which were not

rejected with a procedure controlling the FWER (asymptotically or exactly). This idea is

easily understood by examining their augmentation method to control the gFWER(k).

It is straightforward to see that the set SgFWER(k) = SFWER +{j1, . . . , jk} for any choice

of j1, . . . , jk /∈ SFWER will be suitable. For power considerations, one obviously adds

the k most significant non rejected p-values. Here, SFWER stands for the set of rejected

hypotheses using a FWER controlling procedure.

The augmentation procedure for control of tFDP (c) is as follows:

1. Control the FWER with any procedure, and reject |SFWER| hypotheses.

2. If |SFWER| > 0, let

kn(c, α) = max{j ∈ {0, . . .m− |SFWER|} :
j

j + |SFWER|
≤ c}

and

c∗ =
kn(c, α)

kn(c, α) + |SFWER|
≤ c.

3. Any choice of kn(c, α) additional hypotheses will control tFDP (c∗) at the desired

level. Again, for obvious power considerations, the kn(c, α) most significant p-

values not previously rejected will be selected.

Understanding of this augmentation procedure is less straightforward. The idea is

that the target of the FWER procedure is to avoid false rejections. This happens with

probability at least 1 − α. Hence, after augmentation, with probability 1 − α the FDP

is at most c∗ (which happens if all the kn(c, α) added null hypotheses are true).

The great advantage of this augmentation procedure is that it is valid under arbitrary

joint distributions of the test statistics, i.e., under any form of dependence; if the FWER

is controlled under dependence.

As we will show later via simulations, the drawback is that the power may be unac-

ceptably low for large number of tests. In fact, the number of rejections in oP (1) in many

cases. The reason is easily understood: a first insight is the fact that augmentation is

strongly linked to FWER procedures. The smaller |SFWER|, the smaller kn(c, α). Just

by looking at the definition of kn(c, α), one can see that when no test is rejected at the

first stage, none will be at the second stage for any c < 1.
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Moreover, in the choice of the number of additional hypotheses to be rejected the

observed p-values are not considered. In the proof, the number of errors produced by

augmentation is roughly approximated by kn(c, α); while it will be much smaller when

the most significant p-values are selected.

Inversion

The inversion method was first proposed in Genovese and Wasserman (2004b) and then

more extensively examined in Genovese and Wasserman (2004a).

This method involves inverting a set of uniformity tests. The steps are as follows:

1. For every I ⊆ {1, . . . , m}, test at level α the hypothesis that the random variables

{pj : j ∈ I} are identically distributed like a U(0, 1). I.e., let {ψI : I ∈ {1, . . . , m}}
be a set of non-randomized level α tests of uniformity.

2. Let U = {I : ψI(pI) = 0}, the collection of all subsets not rejected in the previous

step.

3. For any C 6= ∅ let Γ̄(C) = maxB∈U
|C∩B|
|C| . Let R be the biggest set such that

Γ̄(R) ≤ c. R is a rejection set that yields tFDP (c) ≤ α.

Note that Γ̄(C) can always be rewritten in terms of threshold T , so we loosely indicate

this mapping with Γ̄(t). This is a 1− α confidence upper envelope for the Γ(t) process,

in the sense that Pr(Γ̄(t) > Γ(t)) > 1 − α. The rejection set is determined through

inversion of the confidence envelope, i.e., T = supt{t : Γ̄(t) ≤ c}. Under independence,

it is easily seen that the 2m tests at Step 1 reduce to m tests. We will prove that this is

true also under arbitrary dependence in Chapter 5. For more insights on the inversion

procedure, refer to Genovese and Wasserman (2004a). They note that one can choose

any uniformity test at Step 1, and suggest a few possibilities; among which theminP test

of van der Laan et al. (2003a). Genovese and Wasserman (2004a) prove that, with this

choice, the augmentation and inversion procedures lead to the same rejection regions.

For this reason, we call the two methods the p(1)-approach, which we will extend to the

dependent case in Chapter 5. As stated, the p(1)-approach can lead to very small power

for tFDP (c) and FDR control (see also Table 1.2).

DKW-approach

A very close idea to the inversion is the DKW-approach of Perone Pacifico et al. (2003):

1. Let εm =
√

1
2m

log(2/α).

2. Define now

R(t) =





t(1−ba)
bG(t)−εm

if Ĝ(t) > t(1 − â) + εm

1 otherwise
(1.9)
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3. Let TDKW = sup{t : R(t) ≤ c} and reject pj ≤ TDKW .

This approach is based on the DKW -inequality (Dvoretzky et al. (1956), Massart

(1990)):

Pr(
√
n sup

x
|F̂ (x) − F (x)| > ε) ≤ 2e−2ε2

, (1.10)

where F (·) is any CDF and F̂ (·) is the corresponding empirical distribution function

based on an i.i.d. sample of size n from F . Let then εm =
√

1
2m

log(2/α). By DKW -

inequality,

Pr(||G− Ĝ||∞ > εm) ≤ α,

where G(·) is the marginal distribution of the p-values and Ĝ(·) is the empirical distri-

bution. A lower confidence bound can then be obtained for the empirical distribution,

which implies that if â ≤ a, by DKW inequality, Γ(t) ≤ R(t) with probability at least

1 − α. Hence TDKW = sup{t : R(t) ≤ c} controls tFDP (c) at level α. Unfortunately,

this procedure can have very low power for small m and weak signal (M0
∼= m and/or

F ∼= U [0, 1]), resulting in no rejections as will be seen in simulations. It is a good proce-

dure, anyway, for big m or if the signal is strong (it will prove very good in applications

of wavelet thresholding, as discussed to Chapter 6).

In Chapter 5 we generalize this approach under dependence, proving a form ofDKW -

inequality under dependence.

1.4 Simulation of the procedures

In this section we will briefly compare the procedures on the basis of the counts of errors

N1|0 and N0|1. This provides an immediate comparison in power on what is usually done

in applications. Table 1.2 shows the average counts for a thousand of simulated normal

data sets, under independence, with m = 5000 andM0 = 4500. The alternative expected

values were sampled from a uniform random variable in (0, 5). The word Storey indicates

that the estimator defined in (1.7) was used, to estimate the proportion of false nulls a.

Among the procedures controlling the tail of the FDP , with c = 0.1, at level α;

p(1)-approach and augmentation with Bonferroni correction at first step proved to be

unsatisfactory, as we expected.

Remark 1.4.1. A good framework for understanding MTPs is that, in our setting, all

are nothing but a “uniformity” check on each single p-value, possibly using information

from the other tests.

1.5 Type I Error Rates Control Under Dependence

FWER Control

Control of FWER under dependence has never been an issue. It is easily seen that the

Bonferroni correction is valid under arbitrary dependence. The extension of “Step-down
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Method E[N1|0] E[N0|1]

Control of Single Type I Error

Uncorrected 225.57 166.63

Control of FWER

Bonferroni 0.040 412.58

Step-Down Holm 0.055 411.84

One-Step Sidak 0.050 412.71

Step-Down Sidak 0.057 411.43

Step-Up Hochberg 0.051 412.42

Control of FDR

BH 10.27 282.85

Plug-in (Storey) 11.81 276.99

Control of tFDP(0.1)

DKW (Storey) 10.588 284.52

p(1)-approach 0.091 401.774

Augmentation with

Bonferroni at first step
0.082 403.488

Table 1.2: Average error counts for m = 5000 tests, M0 = 4500 for different methods

controlling different error measures at level α = 0.05

minP” procedure to arbitrary dependence has been recently devised in van der Laan

et al. (2003a), who propose a way to estimate the distribution of the minima of the last

k p-values under dependence, and to substitute the quantiles of the beta distribution

with the opportune quantiles in the algorithm at page 12. Genovese and Wasserman

(2004a) note that estimation of this distribution in general is not a good path to follow,

usually being very unstable, since the number of observations n is usually much smaller

than the number of p-values m. In the setting of DNA microarrays, van der Laan and

Bryan (2000) argue that one needs n
log(m)

→ ∞ as n,m→ ∞ for consistent estimates of

the correlation matrix of the test statistics. In Chapter 6, anyway, we will provide a real

data example with n
log(m)

∼= 8, n = 62, where we will argue that the variance/covariance

matrix is not efficiently estimated. We will propose in Chapter 5 two procedures, based

on minima of p-values, that do not need the estimation part and thus work very well

under different dependence situations.

FDR and tFDP (c) Control

When they introduced the FDR, Benjamini and Hochberg (1995) proved that the Simes

(1986) procedure controlled the FDR under independence of the M0 test statistics cor-

responding to the true nulls. Providing results under dependence of the whole sequence

of p-values has been an open problem since then.
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The best results in our opinion are achieved in Benjamini and Yekutieli (2001),

who prove with that the BH procedure can never control the FDR at level higher than

α
∑m

i=1 1/i. Hence, taking into account a factor of
∑m

i=1 1/i will allow to control the FDR

under general dependence. We will call this the BY approach throughout. Note that

this is unacceptably conservative. They also prove that, under conditions of Positive

Regression Dependency on S0, the BH procedure is still valid, controlling the FDR at

level α. The condition of PRDS introduced in Benjamini and Yekutieli (2001) is as

follows: for any increasing set D and for each i ∈ S0, let Pr(X ∈ D|Xi = x) be non

decreasing in x. This is a relaxed version of Positive Regression Dependency, a slightly

more general form of association (see Esary et al. (1967), and Chapter 5). Recall that a

set is said to be increasing if for any x ∈ D and y ≥ x, y ∈ D. They note, together with

Sarkar (2002), that distributions satisfying this property include multivariate normal

distributions with positive correlations and few other cases. Sarkar (2002) also extend

the results of Benjamini and Yekutieli (2001) by generalizing their results to a whole

class of step-up/step-down procedures to control the FDR. As we will see in the next

chapter, simulations show that strong positive dependence, including PRDS, is likely to

make the procedure more conservative. For this reason in Chapter 3 we will introduce

completely different conditions on the dependence which will lead the procedure under

dependence to asymptotically behave like in the independent case.

Storey et al. (2004), as said, provide several theorems that all require almost sure

pointwise convergence of the empirical distributions of the null p-values and alternative

p-values. They argue that this may be true also under dependence; and in fact Bickel

(2004) shows a process with long-range correlations that satisfies the conditions of Storey

et al. (2004).

Storey and Tibshirani (2001) show how to estimate the pFDR, positive false dis-

covery rate of Storey (2003), under general dependence between the test statistics and

apply the methodology to estimate the FDR under dependence for pre-fixed rejection

region.

Yekutieli and Benjamini (1999), Pollard and van der Laan (2003b) propose resam-

pling based procedures to control the FDR when the test statistics are correlated.



Chapter 2

Generalized Augmentation

Procedure

In the previous chapter we provided a review of many multiple testing procedures. We

argued that the procedures controlling tFDP (c) as defined in (1.5) have some draw-

backs, in the sense that augmentation (and p(1)-approach) can lead to no rejections as

the number of tests increases, and likewise for the DKW approach when the signal is

weak (M0
∼= m, F ∼= U [0, 1]) and/or for small m. We propose here a simple generaliza-

tion, under independence, of the augmentation approach of van der Laan et al. (2003b)

(as described at page 16). For this reason, we call this “Generalized augmentation pro-

cedure”. In the next section we propose the algorithm and prove it controls tFDP (c) at

the desired level. Section 2.2 will provide some comments and simulations. Section 2.3

will provide some insights on how to choose the parameter c when using the proposed

procedure in order to control FDR instead of tFDP (c). This insights are generalized

to use of any tFDP (c) controlling procedure for FDR control.

2.1 The Procedure

As we already noted, the augmentation approach of van der Laan et al. (2003b) can

lead to no rejections as the number of tests increases. It is not difficult to realize

that this happens because this approach is strongly linked to the FWER controlling

procedure used at the first step. When the FWER controlling procedure does not lead

to rejection of any hypothesis (a common situation for big number of tests) then also the

augmentation approach will not lead to rejections. Generalized augmentation procedure

is based on the idea that FWER control at the first step can be replaced by uncorrected

testing. This will lead to (almost always) reject a certain number of hypotheses at the

first step.

Then, if uncorrected testing at a certain level q rejects fewer hypotheses than it is

needed to get control tFDP (c), a suitable augmentation can be applied. If too many

hypotheses are rejected, so that control of the error measure is not achieved, a negative

21
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augmentation is to be applied.

The algorithm is as follows:

1. Reject the S = |Sq| p-values smaller than a certain q ∈ (0, 1).

2. Let i∗ be

min{i :
S∑

k=i

(
m

k

)
qk(1 − q)m−k ≤ α}. (2.1)

Note that i∗ is easily found for fixed m and α, consisting in the evaluation of the

binomial distribution with parameters m and q.

3. If (i∗−1)
|Sq | ≤ c, let kn(c, α) = max{j ∈ {0, . . . , m− |Sq|} : j+i∗−1

j+|Sq| ≤ c}.

If kn(c, α) exists and is positive, any choice of that number of additional hypotheses will

control tFDP (c∗) at level α. If (i∗−1)
|Sq | > c or i∗ does not exist, then at the first step we

rejected too many hypotheses. One can pick any of this three choices:

1. Choose a smaller q (for instance, divide by 2 the previous one), and repeat the

procedure.

2. Note that the tail of the FDP will be controlled at level α+
i∗−1∑
k=i∗∗

(
m
k

)
qk(1−q)m−k >

α, where i∗∗ = min{i : i/|Sq| > c}. This, depending on q and m, may be way too

far from α or acceptably close to the desired level α.

3. Do a negative augmentation in this way: Let

k′n(c, α) = min{k ∈ {0, . . . , |Sq|} : (2.2)

1{|Sq |−k>0}




|Sq |−k∑

i=0

min(k,i)∑

j=0

1{(i−j)/(|Sq |−k)>c}

(
m

i

)
qi(1 − q)m−i

(
i
j

)(|Sq|−i
k−j

)
(|Sq |

k

)
)
< α}.

Then reject only the |Sq| − k′n(c, α) most significant p-values.

We will now provide a proof of the generalization, and a simulation showing how

much this actually improves the approach of van der Laan et al. (2003b). A formal

proof of the fact that choosing a fixed q instead of one going to zero with m brings

about better results in terms of power is straightforward and thus omitted. Further

work may provide a general statement on how to choose an optimal q (in terms of

power), and better negative augmentation approaches. We will propose one based on

estimation of M0 in Chapter 4. Next theorem proves that this method controls the

tFDP (c) at the desired level:
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Theorem 2.1.1. The Generalized augmentation procedure controls tFDP (c) at level α.

Proof. From an immediate extension of the results of Finner and Roters (2002) we know

that N1|0 (the number of false positives) in a single-step method is Binomial(M0, q),

where M0 is as in Table 1.1 and q is such that we reject pj < q. Then1:

Pr(FDP > c) ≤
S∑

i=0

Pr

(
kn(c, α) + i

|Sq| + kn(c, α)
> c

)(
M0

i

)
qi(1 − q)M0−i

=

S∑

i=0

1{ kn(c,α)+i

|Sq |+kn(c,α)
>c}

(
M0

i

)
qi(1 − q)M0−i

=

S∑

i=i∗

(
M0

i

)
qi(1 − q)M0−i

≤
S∑

i=i∗

(
m

i

)
qi(1 − q)m−i ≤ α,

which proves the positive augmentation step.

Let Vn be the number of false rejections at Step 1 and Wn be the number of hypothe-

ses not rejected after negative augmentation that were in fact true nulls. The effect of

negative augmentation is seen by:

Pr(FDP > c) =
∑

i

∑

j

Pr(FDP > c|Vn = i,Wn = j)

Pr(Wn = j|Vn = i) Pr(Vn = i)

≤ 1{|Sq |−k′
n(c,α)>0}(

S−k′
n(c,α)∑

i=0

min(i,k′
n(c,α))∑

j=0

1{(i−j)/(|Sq |−k′
n(c,α))>c}

(
m

i

)
qi(1 − q)m−i

(
i
j

)(
S−i

k′
n(c,α)−j

)
(

S
k′

n(c,α)

) )

≤ α,

since it is obvious that Wn|Vn follows an Hypergeometric distribution with parameters

(S, i, k), and where the majorization for the tail of the distribution of Vn used in the

previous proof was applied again.

2.2 Comments and Simulations

Note that the proposed procedure is an actual generalization of the augmentation of

van der Laan et al. (2003b), in the sense that if q = α/m then i∗ = 1, which gives back

the van der Laan et al. (2003b) procedure with Bonferroni at the first step. The purpose

1Note that Pr(FDP > c) is actually Pr(FDP > c|S).
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q = α/m (van der Laan et al. (2003b)) q = α, then q := q/2 q = α, neg. aug.

m = 10
0.0517

(0.043)

0.0553

(0.029)

0.0801

(0.016)

m = 100
0.0674

(0.036)

0.0686

(0.033)

0.0829

(0.019)

m = 200
0.0710

(0.030)

0.0677

(0.036)

0.0776

(0.039)

m = 500
0.0737

(0.003)

0.0635

(0.032)

0.0707

(0.030)

m = 700
0.0753

(0.002)

0.0632

(0.025)

0.0673

(0.021)

m = 800
0.0756

(0.000)

0.0620

(0.026)

0.0669

(0.031)

m = 1000
0.0764

(0.000)

0.0622

(0.012)

0.0653

(0.028)

m = 5000
0.0823

(0.000)

0.0574

(0.006)

0.0598

(0.001)

Table 2.1: FNR and tFDP (c) (in parentheses) for Generalized Augmentation Proce-

dure at level α = 0.05, c = 0.1

behind the generalization is to avoid FWER control at the first step. This avoids all the

problems connected with FWER control when m is large (namely, R
P→ 0).

An open problem is the choice of q. Any q ∈ (0, 1) brings about tFDP (c) control,

the optimal is obviously the one that yields the highest cut-off. This, anyway, implies

repeating the procedure many times. We will always set q = α (i.e., do uncorrected

testing at the first step) in this dissertation.

Table 2.1 compares, in simulation, the augmentation procedure with the generalized

augmentation with q = α, i.e., augmentation of uncorrected multiple testing. The

comparison is done in terms of power (expressed as average observed FNR as defined in

(1.8)). The average observed tFDP (c) is reported in parentheses. It is apparent that

our methods are better in terms of power than van der Laan et al. (2003b) augmentation

method (recall that the lower the FNR, the higher the power), especially for large values

of m. It is intuitive that any choice of q that is not infinitesimal with m in general will

not result in R
P→ 0. Note that, for small m, a choice of q lower than α may lead to

more rejections.

Finally, we simulated the procedure and counted the average number of errors for

m = 5000 tests, with M0 = 4500, as in Table 1.2. The average number of false positives

(E[N1|0]) for the generalized augmentation procedure, setting q := q/2 when negative

augmentation is needed, is 14.65, while the average number of false negatives (E[N0|1])

is 271.96. If negative augmentation is actually performed, then E[N1|0] = 9.94 and
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E[N0|1] = 285.94.

2.3 FDR control via tFDP (c) control: Choice of c

Recall that any tFDP (c) procedure controls the FDR at level c + (1 − c)α. Hence, if

tFDP (c) < α−c
1−c

, FDR ≤ α. If one wants to use the generalized augmentation procedure

to control the FDR at level α, then, a choice of c ∈ (0, α) must be done. Similarly if

the p(1)-approach, or any other method to control tFDP (c), is used. The purpose of

this subsection is to give insights on how to choose a value for c.

It is obvious that, since any c ∈ (0, α) is fine, the optimal is the one that yields

the highest cut-off. This, anyway, implies running the procedure many times since the

cut-off is data dependent, and no general statement can be made.

We will now get a sense, via simulation, of what happens for different values of c,

and see that the optimal c is usually very close to zero. We will declare the optimal c

as the one which yields the highest FDR, or the lowest FNR (as defined in (1.8)).

At each iteration a different data set was generated, B = 1000 times for each value

of c. As usual, normal random variables were taken, and the expected value under the

alternative was generated as a random uniform in (0, 5). Note that we are not looking

for the highest cut-off for a single given data set.
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Figure 2.1: Generalized Augmentation Approach, m = 100, mo = 90
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Figure 2.2: Generalized Augmentation Approach, m = 100, mo = 50

Figure 2.1 shows the results of the simulations for m = 100 and m0 = 90. Similar

results are observed in Figure 2.2, where simulations are done for m0 = 50 and Figure

2.3, where m0 = 10. The dots are the simulated FDR and FNR, while the line is a

fitted cubic smoothing spline, with amount of smoothness estimated by cross validation

(see for instance Green and Silverman (1994) for these non-parametric methods). We

can see that, unless the number of true nulls is very small, the optimal c is always very

close to zero. Moreover, the procedure is always conservative. This is the price we pay

for using a tFDP (c) controlling procedure to control the FDR.
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Figure 2.3: Generalized Augmentation Approach, m = 100, mo = 10
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Chapter 3

Asymptotic Control of the FDR

Under Dependence

In the previous chapters we made a brief review of the problem of multiple testing

in a frequentist setting, with particular attention to methods of control of the mean,

or quantiles, of FDP. We also proposed a new method, the “generalized augmentation

procedure”, to control the tFDP (c) under independence of the test statistics, which

proved more powerful than currently available procedures. A general comparison was

made through simulations. In this chapter we will focus on the case of dependent tests

(i.e., dependence among the p-values). We will prove that, under very broad hypotheses

on the dependence among the test statistics, the BH and Plug-in procedure, with an

appropriate estimator of a, asymptotically control the FDR at the desired level; with

no need for any correction. We will provide moreover asymptotic distributional results

under dependence for the threshold TPI and the entire FDP stochastic process. In the

light of this results, one can make use of these two procedures without even knowing

if the test statistics are independent, but just assuming weak dependence among them.

The dependence will be measured by mixing coefficients. For an extensive discussion

on mixing, see for instance Doukan (1994). For the main concepts on asymptotics used

in this chapter, refer for instance to Van der Vaart (1998), Shorack and Wellner (1986)

and van der Vaart and Wellner (1996).

For a comment on the sense of asymptotic results in multiple testing, refer to pag. 8.

Applications we will mainly have in mind in this chapter are wavelet thresholding, follow-

up studies, case control studies, etc. We furthermore provide extensive simulations under

dependence, and argue that even wider hypotheses should be sufficient; in the sense that

when our main result does not hold, then the procedures become conservative, thus still

controlling the FDR under a pre-fixed threshold.

The setting is as follows: Section 3.1 will present our main theoretical results, Section

3.2 will describe the outcomes of simulations of the BH and plug-in methods applied to

correlated data. Section 3.3 will show how the common estimator for a breaks down

under dependence, and will propose a much more robust estimator for this quantity.
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This new estimator will have a good performance for all m, not only asymptotically.

For an extensive discussion on how to estimate a, refer to Chapter 4 where many iterative

procedures are proposed.

3.1 Theoretical Considerations

3.1.1 Asymptotic Validity of the Plug-in Method Under De-

pendence

We show that under conditions of weak dependence for the p-value and Hi sequences,

the plug-in procedure (with a good estimator of a) is able to control the FDR at the

desired level α. This is a generalization of the results from Genovese and Wasserman

(2004b). We consider here Hi as a random variable, with a commonly used mixture

model. The results obviously remain valid if Hi is considered as fixed, just by assuming

that M1/m
P→ a.

We will need the following two definitions:

Definition 3.1.1 (α-Mixing). The k-th α-mixing coefficient is defined as:

α(k) = sup
j
{|P (E1)P (E2) − P (E1 ∩ E2)| : (3.1)

E1 ∈ Mj
1, E2 ∈ M+∞

j+k};

where Mj
i is the σ−algebra generated by {pi, . . . , pj}.

Definition 3.1.2 (Association). A vector of random variables X1, . . . , Xn is associated

if, for all monotonically coordinate-wise non-decreasing functions g1 and g2,

Cov[g1(X1, . . . , Xn), g2(X1, . . . , Xn)] ≥ 0, when it exists.

For more details on association and examples of associated random variables refer

to Appendix C.

We will prove our main results under any of the following conditions:

1. If the p-values are independent (Genovese and Wasserman (2004b)).

2. If α(k) are the mixing coefficients of the p-values, there exists δ > 0 such that

α(k) ≤ Ck−3−δ

for some constant C, and the vector (pj)j≥1 is stationary.

3. If (pj)j≥1 is stationary, associated and

∑

k

k13/2+δCov(p1, pk) < +∞

for some δ > 0.
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4. If (pj)j≥1 is stationary and ∑

k

α(k) < +∞

5. If (pj)j≥1 is stationary, associated and

+∞∑

k=2

[P (X1 ≤ s,Xk ≤ t) −G(s)G(t)] < +∞.

If m0 = m, Yu (1993) proves in a different setting that this is equivalent to

∑
Cov1/3(p1, pk) < +∞

Analogous conditions will be assumed on (Hj)j≥1. As a (not negligible) aside, note that

in the first three cases the convergence of the processes will be in D[0, 1], otherwise in

L2[0, 1]. Note also that Condition 4 is more general than Condition 2.

We will make use of the following three lemmas, which are proved in the Appendix

A. Let Λ0(t) =
∑

(1 − Hi)1{pi<t} and Λ1(t) =
∑
Hi1{pi<t}; let Hi be a Bernoulli such

that Pr(Hi = 1) = a.

Lemma 3.1.3. Let Ĝ(t) = 1
m

∑
1{pi<t} be asymptotically equicontinuous. Then Λj(t), j =

0, 1 will be too.

Lemma 3.1.4. Let Λj(t), j = 0, 1 be asymptotically equicontinouos. Then the vector

Λ = (Λ0(t),Λ1(t)) will be too.

Lemma 3.1.5. Assume any of the proposed conditions holds. The vector (W0(t),W1(t))

will be convergent in distribution for any t; where W0(t) =
√
m(Λ0(t) − (1 − a)t) and

W1(t) =
√
m(Λ1(t) − aF (t)).

Note that the condition on the mixing coefficients only requires that the dependence

between a fixed p-value in the sequence and the following others decreases fast enough.

This will be implied by other (more strict) conditions, like m-dependence, Gaussian

processes with covariance tending to 0, strictly stationary ARIMA models, block depen-

dence with bounded block dimension, etc. In practice, one usually proves m-dependence,

which is more intuitive than mixing (see Chapter 6 and Appendix C for other comments

and references on mixing). Mixing conditions will be true in many applications where

tests are on points in the space or time getting further and further. Many times series

and environmental/spatial statistics applications will fall under the conditions on the

mixing coefficients. They can be thought to be true also in many applications of thresh-

olding of wavelet coefficients, in the case of testing of points in an image (like fMRI or

else) when the tests start from a spot and then are moved away from the starting point.

The following theorem states our main result: if the dependence decreases fast

enough, then there is no need to modify the BH and plug-in procedures used under

independence, because they remain valid.
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Theorem 3.1.6. Let {pi}i∈N be a random sequence of p-values from tests. Let Hi be the

indicator of the i-th hypothesis to be false. Let Pr(pi < t|Hi = 1) ∼ F (t), where F 6= U

and Pr(Hi = 1) = a. Assume any of the specified conditions (1-5) holds. Assume the

quantity a is known.

Then, E[Γ(TPI)] = α + o(1), where Γ(t) is the FDP for threshold t and TPI is the

plug-in threshold.

For a proof and distributional results, refer to the Appendix A.

Corollary 3.1.7. Let â be a consistent estimator of the quantity a0 ≤ a. Let the

hypotheses from Theorem 3.1.6 hold. Then the plug-in method will asymptotically control

the FDR at α level.

Proof. The thesis will follow from Theorem 3.1.6 and same reasoning as Theorem 5.2 in

Genovese and Wasserman (2004b).

Remark 3.1.8. As stated in Benjamini and Yekutieli (2002), PRDS condition is very

similar but not completely overlapping with association. For a review of these general

conditions on dependence, see Lehmann (1966).

General Weak Dependence Assumptions

Doukhan and Louhichi (1999) and then Nze et al. (2002) define a more general framework

for weak dependence, which includes processes that satisfy mixing and association condi-

tions, together with cases in which these two properties fail to hold, like Bernoulli shifts

driven by discrete innovations. They define the set L1 = {h : h is Lipschitz, ||h||∞ ≤ 1},
and they define a weak dependent sequence {Xn}n∈N to satisfy

|Cov(h(Xi1, . . . , Xiu), k(Xj1, . . . , Xjv
)| ≤ θrψi(h, k, u, v), i = 1, 2.

where k and h are in L1, θr is a sequence of numbers decreasing to zero, r = j1− iu, and

ψ1(h, k, u, v) = max(Lip(h), Lip(k))(u + v) , ψ2(h, k, u, v) = Lip(h)Lip(k) min(u, v);

where Lip(h) is the Lipschitz dimension of h. It is apparent that this is a definition

similar to the one of mixing processes.

Conditions on weak dependence can be given for the same results of Theorem 3.1.6

to hold: if ψ1 function is used and θr = O(r−5−v) or ψ2 function is used and θr =

O(r−15/2−v), then it is possible to prove weak convergence of the processes in D[0, 1] to

a centered Gaussian process indexed by [0, 1], and the key lemmas 3.1.3, 3.1.4, 3.1.5.

The covariance kernel of
√
n(Ĝ(t) −G(t)) is 2

∑+∞
k=0Cov(1p1≤s, 1pk≤t), which reduces to

the covariance kernels defined in Appendix A in case of mixing or association. Proofs

and generalization of the covariance kernels is straightforward and omitted for brevity.

3.1.2 Mean and Variance of the FDP

We argue in this section that the expected value of the FDP is unchanged by dependence

between the test statistics; while its variance will be. Suppose that the variables on the
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field are not independent, so that the p values will not be independent. Let Im =

(I1, . . . , Im), where Ij = 1{pj≤t}. Let moreover Q(t) = (1 − a)t/G(t).

Genovese and Wasserman (2002) prove that EΓ(t) = Q(t)(1− (1−G(t))m). As long

as Ii is independent of Hj given Ij, it’s easy to see that1 E(Γ(t)|Im) = Q(t)1{some pi≤t}.

Taking expectations, we have E(Γ(t)) = Q(t)(1 − (1 − G(t))m), which is the same

expression as above.

Lemma 3.1.9. The variance of the FDP process V (Γ(t)) is equal under dependence to

Q(t)2(1 − (1 −G(t))m)(1 −G(t))m + E[
P

i6=j IiIj [Pr(Hi=0,Hj=0|Im)−Q(t)2 ]

(
P

Ii+
Q

(1−Ii))2
].

Proof. To compute the variance, we will just apply the well known formula:

V (Γ(t)) = V (E(Γ(t)|Im)) + E(V (Γ(t)|Im)).

Note that Pr(Hi = 0|Ii = 1) = Q(t).

Then, independently of the correlation structure,

E(Γ(t)|Im) = Q(t)1{some pi≤t}

and2

V (Q(t)1{some pi≤t}) = Q2(t)(1 − (1 −G(t))m)(1 −G(t))m.

On the other hand,

V (Γ(t)|Im) = E(Γ2(t)|Im) −Q2(t)1{some pi≤t},

and

E(Γ2(t)|Im) = E(

∑
ij IiIj(1 −Hi)(1 −Hj)

(
∑
Ii +

∏
(1 − Ii))2

|Im)

=

∑
i Ii Pr(Hi = 0|Ii)2 +

∑
i6=j IiIj Pr(Hi = 0, Hj = 0|Im)

(
∑
Ii +

∏
(1 − Ii))2

= Q(t)21{some pi<t} +

∑
i6=j IiIj[Pr(Hi = 0, Hj = 0|Im) −Q(t)2]

(
∑
Ii +

∏
(1 − Ii))2

.

In the end,

V (Γ(t)) = Q(t)2(1−(1−G(t))m)(1−G(t))m+E[

∑
i6=j IiIj[Pr(Hi = 0, Hj = 0|Im) −Q(t)2]

(
∑
Ii +

∏
(1 − Ii))2

].

1If the p-values are dependent, it is not reasonable to assume independence between Hj and pi,

i 6= j, tout court. It is usually reasonable, by the way, to assume conditional independence between Hj

and pi, i 6= j.
2Note that Ii ∼ Bernoulli < G(t) >.
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It is apparent that, if all the p values are independent; then the second term in the

expression of V (Γ(t)) as derived in Lemma 3.1.9 will be zero. This reasoning suggests

that in general it is not sensible to control the FDR under strong dependence: since the

variance of the FDP may be increased by dependence, control of the quantiles of the

distribution of the FDP is in general more desirable. Refer to the following chapter for

methods to control the tFDP under dependence for any value of m. A similar argument

is made in Bickel (2004).

3.2 The Simulations

3.2.1 Gaussian Data

We applied the BH and the plug-in method to correlated spatial data; to illustrate

the effects of dependence on the outcomes of standard i.i.d. methods for controlling

the FDR. The case of stationary and isotropic spatial data is particularly interesting;

since data are usually correlated when close to each other, but as distance increases the

correlations fade to zero. Good references on spatial statistics are Smith (2001) and

Banerjee et al. (2004).

We will simulate data on a regular quadratic grid of r by r pixels, with m = r2. We

want to test the mean on each pixel, to discover if it is different than zero. Note that this

can be a very common setting, for instance, in neuroimaging; where some variables in m

spots of the brain are measured to see if there is neuronal activity, or in environmental

statistics where the presence of a certain pollutant is verified in different points of a

city. We will randomly assign M1 pixels to a non-zero mean (uniform in (0, 5)); and the

variance/covariance matrix will remain the same throughout the iterations. For each

set of parameters, we will do 1000 iterations.

The Covariance Structures

We will use two covariance structures. The first is a simplified version of an exponential

covariance structure commonly used in spatial statistics: the covariance between two

different pixels will always be non-negative, and determined by e−
1
τ

d(x,y), where x and

y are the coordinates on the plane of the two pixels, d(·, ·) is the euclidean distance

function and τ is just a tuning parameter. The higher τ , the more slowly decaying the

correlation. The second covariance structure will allow for both positive and negative

covariances, and a suitable structure will be given by the “damped cosine” function:

e−
1
τ

d(x,y) cos(
1

τ
d(x, y)).

Of course, we will need to make sure that the variance/covariance matrix is positive

definite. Abrahmsen (1997) proves that the lower bound for the correlation value, in

order to maintain positive definiteness, is −0.4 in two dimensions. The “damped cosine”
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Figure 3.1: Covariance structure, “simplified exponential” covariance function

structure will allow us to have correlations as low as -.39; thus being almost as extreme

as possible.

Figure 3.1 shows a plot of the values of the covariance computed as e−
1
τ

d(x0,x) for a

point x0 in the middle of the grid and different values of τ . Figure 3.2 shows shapes of

the “damped cosine” structure for a point x0 in the middle of the grid and other values

of τ .

The following analyses are done for r = 10 by 10, 40x40 and 100x100 grids. Note that

with this two functions, cov(x0, x0) = 1, so that the covariances will also be correlation

values.

Results, All Positive Correlations

Tables 3.1, 3.2, 3.3 show the range of the covariances on each grid for the tuning pa-

rameters chosen, with the “simplified exponential” covariance function3.

Figure 3.3 shows the results for the FDR using the standard BH method. Figure 3.4

shows the results for the FDR using the plug-in method.

It is evident that, as long as the relationship between the variables fades to inde-

pendence fast enough, the methods are still working; and the plug-in is sensibly less

conservative than the BH. When the correlation becomes too strong, the BH is valid

3All the simulations were programmed in C language.
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Figure 3.2: Covariance structure, “damped cosine” covariance function

1/τ .02 .05 .1 .3 .5 .6 .7 .8 1 1.2

min 0.77 0.53 0.28 .02 0.00 0.00 0.00 0.00 0.00 0.00

max 0.98 0.95 .90 .74 0.61 .54 .50 .45 .37 .30

Table 3.1: Correlation Ranges, 10 by 10 grid, exponential model

τ 50 20 10 3.33 2 1.66 1.43 1.25 1 0.833

min 0.33 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

max 0.98 0.95 0.90 0.74 0.61 0.54 .50 0.45 0.37 0.30

Table 3.2: Correlation Ranges, 40 by 40 grid, exponential model

τ 50 20 10 3.33 2 1.66 1.43 1.25 1 0.833

min 0.06 0.00 0.00 .00 0.00 0.00 0.00 0.00 0.00 0.00

max 0.98 0.95 .90 .74 0.61 .54 .50 .45 .37 .30

Table 3.3: Correlation Ranges, 100 by 100 grid, exponential model
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Figure 3.3: FDR, BH, positive case, Normal Data
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Figure 3.4: FDR, Plug-in, positive case, Normal Data
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τ 0.2 0.33 0.73 0.77 0.83 0.98 14.29 16.67 20

min .00 -.05 -.10 -.16 -.24 -.36 -.39 -.34 -.22

max .00 .01 .14 .14 .11 .13 .91 .92 .94

Table 3.4: Correlation Ranges, “damped cosine”

but becomes even more conservative, while the plug-in violates the threshold and gets

bigger than α = .05. We will show later that this problem is determined by the estima-

tor of a.

A comment should be given in relationship with the results of Benjamini and Yekutieli

(2001): in the examples in this subsection, their assumption of PRDS is always satisfied.

Nevertheless, the BH procedure becomes overly conservative, in some cases, under their

assumptions. Note that under the assumptions of our Theorem 3.1.6 the BH procedures

behave just like under independence, starting from reasonably small values of m.

Results, Negative Correlations

Table 3.4 shows the range of the covariances for the “damped cosine” covariance function,

for all the grids (it is so because the highest and smallest covariance values are attained

between close pixels, and then the covariance gets closer and closer to zero as the distance

increases). During the simulation of the bigger grids, certain cases were dropped because

the variance covariance matrix lost the positive definiteness property due to machine

error in approximation.

Figure 3.5 shows the results for the FDR using the standard BH method. Figure 3.6

shows the results for the FDR using the plug-in method.

The negative case gives almost same, when not better, results as the positive one.

Note that there were problems when the correlation became too high (bigger than 0.9),

and nothing wrong was observed in the cases in which the correlation was low.

3.2.2 Pearson Type VII Data

The same random fields were simulated with Pearson Type VII random variables. See

Johnson (1987) for a review of multivariate statistical simulation when data are not nor-

mal. The degrees of freedom were chosen to be 3, because these random variables are

the most dissimilar from normality in the Pearson Type VII family, but still with finite

mean and variance. Using three degrees of freedom makes also straightforward the com-

parison with the normal case, since the covariance matrix, using the same parameters,

will be unchanged.

Figure 3.7 shows the results for the FDR using the standard BH method. Highest

correlations made the procedure be conservative also in this case. There is also more

instability in the observed FDRs (and even a couple of FDRs just over the threshold),

most likely due to higher simulation variability. Figure 3.8 shows the results for the
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Figure 3.5: FDR, BH, negative case, Normal Data
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Figure 3.6: FDR, Plug-in, negative case, Normal Data
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FDR using the plug-in method. The break down for high correlation is slightly worse

than the normal case. Note that previously τ = 3.33 didn’t show any violation of the

threshold.

Remark 3.2.1. It seems like strong positive correlations can lead the standard BH

method to be more conservative than it already is; but it will not lead it violation of

the threshold for the FDR. On the other hand, the simulations show that the plug-in

method is not robust under dependence; since many violations of the threshold are seen.

Note moreover that the simulations show that the hypotheses of Theorem 3.1.6 are only

sufficient.

In the previous section we proved that under wide hypotheses on the dependence

of the test statistics the BH method remains valid. This section gives an illustration

of this behavior through extensive simulations. On the other hand, the same results

were proved for the Plug-in procedure with a suitable estimator for a. The simulations

show that the common estimator used for a is not robust under dependence. An explicit

proposal for a suitable estimator is given in the next section.

3.3 Estimating a with Dependent Data

A key thing in the plug-in method is the choice of the estimator for a. It is obvious that,

as long as 0 ≤ â ≤ a the power is increased with respect to the BH procedure; while the

FDR is still below the desired threshold. So, if anything, a statistic that underestimates

a is desirable because it improves on BH while being at least conservative.

3.3.1 Oracle Simulations

In an attempt to understand why the plug-in method failed when the correlation between

close variables was very high, we implemented a simulation in which the proportion of

true nulls, 1 − a, was considered known and used in the procedure. Figure 3.9 shows

the results: the estimator used for a was the thing that broke down when using strong

correlations, while now the plug-in method works just as it should. The case of strong

correlations, when parameter is close to 0, brings about just an increase in the variance

(less stability)4.

It is easy to see how Storey’s estimator breaks down by strongly overestimating a.

Figure 3.10 shows ba
a
, where â is Storey’s estimator, in the usual 10x10 Gaussian random

fields. We observed values as much as 3.5 times the real a.

4Note that in real cases it is reasonable to assume sparseness, i.e., 1 − a > .5 or even much more.

Then, as we can see, it is reasonable not to expect problems even from Storey’s estimator.
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Figure 3.7: FDR, BH, positive case, T3 Data
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Figure 3.8: FDR, Plug-in, positive case, T3 data
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Figure 3.9: FDR, oracle simulation, 1000 iterations
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Figure 3.10: Storey Estimator relative to a, 1000 iterations
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3.3.2 Iterative Simulation of a

The “iterative plug-in method”, which we will describe in this section, proves much

more robust with respect to dependence than Storey’s estimator. The other classical

estimators, like the one in Swanepoel (1999) or the one in Woodroofe and Sun (1999),

are also seen to break down under dependence5. Since we need to estimate M1, the

number of false nulls, we thought the most natural estimator was the number of rejected

hypotheses. The proportion a is then estimated iteratively as the proportion of rejected

nulls in the previous plug-in step; till a does not change in two subsequent iterations, with

a BH method at the first iteration (i.e., the first estimator is always set to 0). A similar

single-stage estimator (i.e., always doing a single iteration) was independently derived in

Benjamini et al. (2004). They prove, under independence, that the single-stage estimator

is in fact conservative. They also suggest an iterative estimator similar to our proposal,

and note that, as in our case, this kind of estimators possess an interesting internal

coherence property: the final number of rejected hypotheses is used as an estimator of

the number of false nulls.

For the usual Gaussian simulations with positive correlation structure, Figure 3.11

shows the results of the plug-in procedure with the iterative estimator, with a0 = 0. The

average number of steps was always between 2 and 7. Note that this procedure manages

to control the FDR at level 5% when the correlation is very strong (robustness), while it

behaves just like the old one-step procedure when the correlation is weak (it just seems

to be a little bit more conservative).

On the estimator level, Figure 3.12 shows the ratio between the iterative estimator

and the real a. In all cases we succeeded in being conservative.

It is straightforward to prove that the number of iterations is finite: there are only

m+ 1 possible values for â. Then, the random variable given by the difference between

the current and the previous estimate is discrete and puts a non null probability mass

at 0, which is our stopping rule.

3.3.3 Iteration in theory

We will first investigate the iterative estimator at a population level. Let R(t) = t/G(t).

Let an be the estimate for a at the n-th iteration, and tn the corresponding deciding

point. We have: an = G(tn−1) and tn = R−1( α
1−an

), with a0 = 0.

It is straightforward to see that G(R−1(s)) = R−1(s)
s

. With this, one can prove that:




an = 1

αn

n−1∑
i=0

(
n−1∏

k=n−i

tk)α
n−i−1(−1)i−1

tn = R−1( α
1−an

).

One could easily obtain an expression for an independent of tk, just by substituting tk

5Simulations of the other estimators not shown for reasons of space.
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Figure 3.11: FDR, iterative simulation, 1000 iterations
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Figure 3.13: Iterative â in the Beta Example

with R−1( α
1−ak

). The iterative estimator at sample level is just the one obtained by

substituting G(t) with the empirical distribution.

An example

In a completely different context, Sellke et al. (2001) propose an example in which

F is a beta(ξ, 1) with ξ ∈ (0, 1). In that case we get a closed form expression for

G(t) = (1 − a)t+ atξ and R−1(y) =
(

1−y−ay
ay

) 1
ξ−1

.

It is easy to see that:

{
a0 = 0

an =
(

1−an−1−α+aα
aα

) 1
ξ−1 1−an−1

α
.

Figure 3.13 shows the estimator as a function of ξ, after 10 iterations, for various

values of the true a. The estimator converges to a certain value after very few iterations,

and 10 were enough in all cases.

So as we get closer to the unidentifiable case, â gets closer and closer to 0. In general,

one could expect this strong dependence on the alternative distribution F . Moreover,

it is possible, even if hard, to overestimate a, thus being anti-conservative. As we see,

this happens only for ξ close to 0. In this sense, one could think about the iterative
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estimator for a as a conservative estimator which outperforms taking â = 0 like in

the BH procedure; and that it is robust with respect to the dependence structure. In

Chapter 4, we will generalize the iterative approach and provide different estimators

that are conservative under dependence.
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Chapter 4

Estimating the number of False Null

Hypotheses

In this Chapter we will briefly give some results and explicit proposals for estimating

the number of false null hypotheses. Such estimates, as seen, can greatly improve the

power of many MTPs, for instance in passing from the BH to the plug-in method. Many

other procedures can benefit from a good estimator of M1.

Not surprisingly, there is not a tFDP (c) controlling procedure which can make use

of an estimator of M1 available yet. We propose one at the end of the chapter, based

on the generalized augmentation procedure proposed in Chapter 2.

The usual estimators are seen to break down under dependence (see Chapter 3). We

will propose here a class of estimators robust with respect to dependence.

Many of the ideas that will be proposed are grounds for further work.

First, recall that a suitable estimator for M1 is a conservative one. I.e., we want

m̂1 ≤ M1, but as close as possible to the upper bound. This will increase the power

without violating the condition on the Type I error rate. This is equivalent to looking

for confidence intervals for M1, which will be in the form [m̂1, m].

The basic idea is as follows: first of all, note that, in the notation of Table 1.1 of

page 3,

M1 = R−N1|0 +N0|1.

We usually don’t know much directly on M1, while the random variables on the right

hand side are dealt with in MTPs.

In the previous chapter we proposed a multi-step procedure that took m̂1 = R, where

R is the number of rejections at the previous stage. We will give here some insights of

when this is a conservative choice, and propose a family of procedures to estimate M1

in this fashion. We will follow two tracks: we will conservatively approximate N0|1 to

0 and require that with high probability m̂1 < R − N1|0, on which we have bounds. A

more complex path is to include N0|1 in the considerations.

Note that whenever N0|1 ≥ N1|0, R is a good conservative estimator of M1. All

depends on the controlled error measure, α, m and F . In general, anyway, experience

53
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and simulations suggest that this is often true, especially for big m.

In what follows, we will always take into account the uncertainty brought about by

the estimation of M1 when controlling the desired error measure. This will be done by

controlling the error measure at a certain level α2 ≤ α, which will be exactly determined.

It is common in literature not to incorporate this uncertainty. Obviously, in what follows,

this corresponds to using α2 = α. We will make some comparisons at the end of the

chapter.

4.1 Two-step Procedures

We define a k-step procedure as a procedure that estimates M1 through k−1 MTP steps,

and then controls a pre-specified error rate using the estimate found in the previous

steps. Note that the iterative procedure in the previous chapter is a k-step procedure

with unknown, random, k. A particular case is given by two step procedures. In our

calculations, we will always condition on R, since we will know it from the previous step.

4.1.1 Two-step procedures based on FWER control

Many FWER controlling procedures work under arbitrary dependence (like Bonferroni).

Let RBonf , in the usual notation, denote the number of rejected hypotheses controlling

the FWER at level α1.

It is easily seen than, under arbitrary dependence, m̂1 = RBonf is conservative with

high probability: Pr(RBonf < RBonf −N1|0 +N0|1) ≥ Pr(N1|0 = 0) > 1 − α1. Note that

the second inequality in practice is always strict, and that typically Pr(N0|1 > 0) >> 0,

so that the bound is far from being sharp.

Two-step control of FWER under arbitrary dependence

At the second step, one can reject all the p-values smaller than α2/(m − RBonf ) and

control FWER at level α = 1−(1−α1)(1−α2) in this way, under arbitrary dependence.

Note in fact that if m1 is known, rejecting if pj < α/(m−m1) controls FWER at level

α. Hence,

Pr(FWER = 0) = Pr(FWER = 0|RBonf < M1) Pr(RBonf < M1)

+ Pr(FWER = 0|RBonf > M1) Pr(RBonf > M1)

≥ (1 − α2)(1 − α1) + Pr(FWER = 0|RBonf > M1) Pr(RBonf > M1)

≥ (1 − α2)(1 − α1)

Two-step control of FDR under PRDS

Now we can improve on the results of Benjamini and Yekutieli (2001). If at the second

step a Plug-in procedure at level α2 is done, FDR is controlled at level α = α2(1 +
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(RBonf/(m− RBonf ))α1) for any m under PRDS assumptions. In fact:

E[FDP ] = E[FDP |RBonf < M1] Pr(RBonf < M1)

+E[FDP |RBonf > M1] Pr(RBonf > M1)

≤ α2 Pr(RBonf < M1) +
(m−M1)α2

m− RBonf

α1

≤ α2(1 − α1) +
m

m− RBonf
α2α1.

Note that the we can explicitly use RBonf in the bound since it is known, i.e., the

randomness of the event RBonf Q M1 is given only by M1. So, taking any α1 ∈ (0, 1)

and α2 = α/(1 + (RBonf/(m− RBonf ))α1) controls the FDR at the desired level α for

any finite m under PRDS assumptions. This is a slight generalization of the results of

Benjamini and Yekutieli (2001): they proved the result only for α1 = 0. Moreover, it is

now possible to achieve better power using a sort of plug-in procedure under dependence.

Note moreover that taking no correction and using α2 = α is sensible since in many cases

FDR will be controlled with high probability at the desired level (see below). It is so

because (RBonf/(m − RBonf ))α1 is always very close to zero, and ignoring it is just a

weak counter part of the conservativeness of the entire procedure.

Table 4.1 compares the choice of α1 = 0 (BH procedure) with the choice of α1 = α.

Simulation shows that there is improvement in choosing α1 = α. Recall that the higher

the FDR (still below α), the better the procedure in terms of power. This improvement

is more and more evident as M1 increases, for smaller m. Note that a very small increase

in the FDR, especially for big m, can result in a much higher number of rejections, and

hence in a much higher power.

4.1.2 Two-step procedures based on tFDP (c) control

It is easily seen that, if at the first step a tFDP (c) controlling procedure is used then a

good estimator is bRtFDP (1 − c)c:

Pr(RtFDP (1 − c) > RtFDP −N1|0) = Pr(N1|0/RtFDP > 1 − (1 − c)) < α1.

Recall that, among the tFDP (c) controlling procedures, there are many working under

arbitrary dependence (augmentation, for instance). Refer to next chapter for other

tFDP (c) controlling procedures working under dependence for any finite m.

The second steps are the same as the ones used in the previous subsection.

Table 4.2 compare the BH procedure (α1 = 0) with α1 = α, with and without cor-

rection. The tFDP (c) controlling procedure chosen was the generalized augmentation

procedure, proposed in Chapter 2, with level q divided by two in case of need of negative

augmentation. The parameter c was taken to be 0.1. It is seen that the Bonferroni at

the first step is better for small m, while using a good tFDP (c) controlling procedure

brings about an improvement for big m. This can be appreciated in Table 4.3, where

estimators of M1 are compared.
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α1 = 0 (BH) α1 = 0.05, no correction α1 = 0.05, corrected

M1 = 0.1 ∗m
m=10 0.0418 0.0471 0.0468

m=30 0.0448 0.0467 0.0465

m=100 0.0408 0.0424 0.0423

m=500 0.0445 0.0459 0.0459

m=1000 0.0449 0.0465 0.0464

m=5000 0.0451 0.0465 0.0464

M1 = 0.5 ∗m
m=10 0.0266 0.0349 0.0343

m=30 0.0241 0.0311 0.0305

m=100 0.0254 0.0310 0.0307

m=500 0.0249 0.0287 0.0285

m=1000 0.0251 0.0285 0.0283

m=5000 0.0248 0.0287 0.0286

M1 = 0.9 ∗m
m=10 0.0053 0.0099 0.0094

m=30 0.0047 0.0081 0.0078

m=100 0.0050 0.0072 0.0070

m=500 0.0050 0.0067 0.0065

m=1000 0.0048 0.0064 0.0064

m=5000 0.0048 0.0061 0.0060

Table 4.1: Observed FDR for two-step control, using Bonferroni at first step
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α1 = 0 (BH) α1 = 0.05, no correction α1 = 0.05, corrected

M1 = 0.1 ∗m
m=10 0.0418 0.0481 0.0480

m=30 0.0448 0.0467 0.0465

m=100 0.0408 0.0419 0.0419

m=500 0.0445 0.0463 0.0463

m=1000 0.0449 0.0472 0.0472

m=5000 0.0451 0.0476 0.0475

M1 = 0.5 ∗m
m=10 0.0266 0.0327 0.0324

m=30 0.0241 0.0308 0.0304

m=100 0.0254 0.0337 0.0332

m=500 0.0249 0.0338 0.0332

m=1000 0.0251 0.0343 0.0337

m=5000 0.0248 0.0349 0.0342

M1 = 0.9 ∗m
m=10 0.0053 0.0088 0.0085

m=30 0.0047 0.0087 0.0084

m=100 0.0050 0.0098 0.0093

m=500 0.0050 0.0103 0.0098

m=1000 0.0048 0.0102 0.0097

m=5000 0.0048 0.0103 0.0099

Table 4.2: Observed FDR for two-step control, using the Generalized Augmentation

Procedure at the first step
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Two-step procedure based on DKW approach

We propose here a two-step procedure based on a completely different reasoning, which

is a simple refinement of Storey’s estimator. Let εm =
√

1
2m

log(2/α1). Define

(1 − a) = min(inf
s

1 − Ĝ(s) + εm

1 − s
, 1); (4.1)

and let M̂1 = m(1 − (1 − a)).

This estimator, that cannot be generalized to more than two steps, is based on the

fact that

a ≥ G(s) − s

1 − s
(4.2)

for any s ∈ (0, 1), as easily seen by looking at the definition of G(·). By DKW inequality

as defined in (1.10), Pr(1 − a ≤ (1 − a)) ≥ 1 − α1. This directly provides a 1 − α1

confidence interval for 1−a: [0, (1 − a)], and another forM1: Pr(M1 > (1−(1 − a))m) ≥
1 − α1.

It is easily seen that this is a refinement of Storey’s estimator, which is also based

on (4.2). Storey’s estimator estimates the empirical distribution, since a ≥ bG(s)−s
1−s

for

any s ∈ (0, 1) as m gets bigger. Here we take a lower confidence bound for the empirical

distribution, substituting G(s) with Ĝ(s) − εm in (4.2), and take the infimum on [0, 1]

instead of fixing an arbitrary s. This leads to a conservative estimator, with high

probability, also for small m. Moreover, in Chapter 5 we will generalize DKW inequality

under dependence, which will make possible to use this estimator also under certain

hypotheses on the dependence among the test statistics.

4.1.3 Two-step procedures based on FDR control

Suppose BH procedure is used at the first step. It is easy to extend our approach to

estimation of M1 by taking an estimator that is good “on average”. It is straightforward

to see, in fact, that bR(1−α1)c is on average smaller than M1 if the FDR is controlled

at level α1 at the first step.

Alternatively, recall that any FDR controlling procedure is a tFDP (c) controlling

procedure at level α1/c, so that RBH(1 − c) is conservative with probability α1/c. If a

correction for this uncertainty is used (like the ones proposed in the previous sections),

the chosen error measure will be controlled at the desired level even if α1/c is not close

to zero. Otherwise, if convexity assumption on the CDF of the FDP is taken, the FDR

controlling procedure is tFDP (0.5) controlling procedure at the same level α1, as proved

at page 5.

4.2 Multi-step procedures

A generalization of the iterative estimator proposed in the previous chapter is as follows:
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1. Pick any procedure to estimate M1.

2. Update the estimator of M1 by repeating Step 1 with the previous estimate m̂1.

3. Iterate k-times or till Step 1 and Step 2 give the same estimator.

4. Control the desired error measure making use of the more recent value of m̂1.

It is intuitive that multi-step procedures are less conservative than two-step proce-

dures, and that iterating till the estimator does not change in two subsequent steps

is the least conservative method of all. In practice, the change in the estimate m̂1

will be smaller and smaller as the number of iterations increase. An appreciation of

the improvement in passing from one-step to multi-step estimation of M1 is given in a

comparison of the first two columns of Table 4.3.

To fix the ideas, we describe the algorithm for a particular choice of Step 1 and Step

2:

1. Let RB := 0.

2. Let RB := |{j : pj < α1/(m− RB)}|.

3. Iterate k-times or till Step 1 and Step 2 give the same estimator.

4. Let m̂1 be the number of rejected hypotheses at the previous step. Do a plug-in

method to control the FDR, taking â = m̂1/m.

Table 4.4 compares the BH procedure (α1 = 0) with the multi step just described,

with and without correction (note that, as said, no correction is usually taken on the

level α2).

4.3 Generalized Augmentation Procedure estimat-

ing M1

To our knowledge there is not a tFDP (c) controlling procedure that can make use of

a suitable estimator of M1. We propose here one. It is easily seen that, in a single

step method at threshold q, N1|0 is a binomial with parameters M0 and q. Hence, if

m̂0 = m−m̂1 is an anti-conservative estimator of M0, one can substitute m̂0 tom in (2.1)

and (2.2), and the generalized augmentation procedure is still valid. The improvement in

power is obvious, since for any k ∈ N , if X1 ∼ Bin < m1, q > and X2 ∼ Bin < m2, q >

with m1 ≤ m2, it happens that Pr(X1 ≥ k) ≤ Pr(X2 ≥ k).
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m M1 E[m̂1] Bonferroni E[m̂1] multistep Bonferroni E[m̂1] Gen. Aug.

5 1 0.581 0.589 0.477

10 1 0.526 0.529 0.430

30 3 1.309 1.316 1.165

100 10 3.48 3.506 3.036

200 20 6.184 6.211 6.311

500 50 13.47 13.53 18.29

1000 100 23.58 23.67 37.68

5000 500 86.95 87.25 218.172

5 3 1.621 1.694 1.364

10 5 2.438 2.531 2.034

30 15 6.272 6.495 5.918

100 50 17.317 17.855 23.903

200 100 31.010 31.866 50.400

500 250 66.261 67.941 129.236

1000 500 118.257 120.957 264.429

5000 2500 483.219 486.191 1629.731

5 4 2.133 2.306 1.802

10 9 4.394 4.772 3.696

30 27 11.187 12.007 12.471

100 95 32.930 35.160 52.000

200 190 58.760 62.333 106.034

500 475 126.606 133.376 272.398

1000 950 222.750 233.520 568.560

5000 4750 826.700 857.420 2903.570

Table 4.3: Comparison of estimators of M1
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α1 = 0 (BH) α1 = 0.05, no correction α1 = 0.05, corrected

M1 = 0.1 ∗m
m=10 0.0418 0.0471 0.0468

m=30 0.0448 0.0467 0.0465

m=100 0.0408 0.0424 0.0423

m=500 0.0445 0.0459 0.0459

m=1000 0.0449 0.0465 0.0464

m=5000 0.0451 0.0465 0.0464

M1 = 0.5 ∗m
m=10 0.0266 0.0354 0.0347

m=30 0.0241 0.0315 0.0309

m=100 0.0254 0.0312 0.0309

m=500 0.0249 0.0288 0.0286

m=1000 0.0251 0.0286 0.0284

m=5000 0.0248 0.0289 0.0288

M1 = 0.9 ∗m
m=10 0.0053 0.0112 0.0104

m=30 0.0047 0.0084 0.0078

m=100 0.0050 0.0074 0.0073

m=500 0.0050 0.0067 0.0063

m=1000 0.0048 0.0064 0.0064

m=5000 0.0048 0.0061 0.0060

Table 4.4: Observed FDR for multi-step control, using Bonferroni at estimation steps
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Chapter 5

Finite Sample Control of FDR and

tFDP(c) Under Dependence

In Chapter 3 we provided broad conditions on the dependence of a sequence of p-values

for the usual methods for FDR control to work asymptotically. We also argued that, if

the conditions do not hold or the number of tests m is too small, dependence can increase

unacceptably V ar[FDP ], so that FDR control may be no longer advisable. In this

chapter we will provide many results on FDR and tFDP (c) control under dependence

for finite m. The chapter is organized as follows: Section 5.1 will generalize the p(1)-

approach. Section 5.2 will generalize the DKW approach, Section 5.3 will extend the

generalized augmentation approach to the dependent case. For a description of p(1) and

DKW approach see Chapter 1, for the generalized augmentation approach see Chapter 2.

Section 5.4 will focus on a particular case of dependence structure, known in literature

as clumpy, or block, dependence (for istance in Storey et al. (2004)). Discussion and

simulations will be given in Section 5.5. Many of the results in this chapter are open to

further developments, which we will also point out through the exposition.

First of all note that the results in Benjamini and Yekutieli (2001) can be immediately

extended to the plug-in procedure, though noone has still noticed this fact. Benjamini

and Yekutieli (2001) prove that, under PRDS assumptions on the vector of p-values (as

discussed the end of Chapter 1), the BH procedure controls the FDR at level M0

m
α. It is

straightforward to see that, if â is a conservative estimator of the quantity a, under any

dependence assumption that includes PRDS (even arbitrary dependence), the Plug-in

method with that estimator is valid for any finite m under PRDS assumptions. In the

previous chapter we devised a whole family of such suitable estimators.

5.1 p(1)-approach under dependence

Recall that the p(1)-approach as described by Genovese and Wasserman (2004a) (i.e.,

inversion) consists in testing uniformity of all the possible subsets of (p1, . . . , pm), and

taking the union of indexes of all the accepted tests as an estimate of S0. Then, inversion

63
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can be applied to control tFDP (c). The test statistic more often considered is the

minimal p-value in the selected subset, from which stems the name of the approach.

Under independence, this test statistic follows a Beta distribution. Under dependence,

van der Laan et al. (2003b) propose to estimate this distribution. This is doable in

certain cases, but in many other cases the estimates are going to be inefficient (see

van der Laan and Bryan (2000),Genovese and Wasserman (2004a) and Chapter 6). We

thus need to avoid estimation. We will provide here conditions on the dependence

(namely, association) which let us avoid the estimation of the joint distribution of the

test statistics, and proceed to apply the p(1)-approach without any modification. We

will moreover prove that, if the test statistics are normally distributed, the p(1)-approach

is valid under arbitrary dependence among the tests from m > 3 tests, together with

further results. This is an important result, since normal or approximately normal test

statistics are often used in practice.

A is an increasing set

Call A the union of indexes of all subsets of (p1, . . . , pm) not rejected after testing for

uniformity. First of all, we will prove that under arbitrary dependence, A is an increasing

set. This is a key result to avoid estimation of the distribution of the minimum of a

given set of p-values. Note that for different uniformity tests it can happen that A is not

increasing; i.e., p(k) is not rejected, while p(k+1) is, for some k. This can never happen

under independence (Genovese and Wasserman (2004a)).

Lemma 5.1.1. Suppose A1 and A2 are subsets of the set of indexes (1, . . . , m), that

A1 ⊆ A2 and that pmin = min{pi|i ∈ A1} = min{pi|i ∈ A2}. If A1 ∈ A, then A2 ∈ A.

Proof. We have that A1 ∈ A iff Pr(min{pi|i ∈ A1} > pmin) > α. Since A1 ⊆ A2,

min{pi|i ∈ A1} ≥ min{pi|i ∈ A2}. Hence, Pr(min{pi|i ∈ A2} > t) ≥ Pr({pi|i ∈ A1} > t)

for any t ∈ [0, 1]. This implies Pr(min{pi|i ∈ A2} > pmin) > α, hence A2 ∈ A.

The previous Lemma implies that, no matter the dependence structure, A will always

be of the kind [J, . . . , m] for a certain J :

Corollary 5.1.2. The set A is increasing, i.e., in the form [J, J+1, . . . , m] for a certain

J ⊆ (1, . . . , m), or the empty set.

Proof. Suppose by contradiction that A is not in this form. Call J = min{i ∈ A}.
Consider the set [J, J + 1, . . . , m]. We clearly have that A ⊂ [J, J + 1, . . . , m], and they

have the same minimum, that is, p(J). Hence, by Lemma 5.1.1, the set [J, J+1, . . . , m] ⊆
A, leading to contradiction.

Known Joint Distribution of the p-values

Call Fk,A the CDF of the minimum of the set A ⊆ {1, . . . , m} of k = |A| p-values. In

general, it will not be a beta < 1, k + 1 > as in the independent case. The subscript A
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indicates the specific dependence structure of the chosen set of k variables. I.e., different

sets of the same number of p-values will have different CDFs, and this is indicated by

A. Suppose we can determine Fk,A for any k and A. This will be easy in case of normal

random variables (see below, where we examine the case of b ≥ 1 blocks of dependent

normal random variables). The next theorem shows that in this case the reduction of

the number of uniformity tests is, like in the independent case, from 2m to m, i.e., we

get to a step-down method; and shows how to do the p(1)-approach.

Theorem 5.1.3. Let p = (p1, . . . , pm) be a set of dependent p-values. Suppose we can

determine Fk,A(·), the CDF of the minimum of a set A of k p-values. Call p(j) the j-th

ordered p-value. Let J = min{j : Fm−j,Am−j
(p(j)) ≥ α}. Here Am−j stands for the set of

biggest m− j p-values. Then

1. the set A∗
J = [J, J + 1, . . . , m] ∈ A

2. for any A ∈ A, A ⊆ A∗
J .

Proof. The first assertion is true by construction. To prove the second, proceed by

contradiction. Suppose A ∈ A but V = min{j : j ∈ A} < J . Consider the set

A∗
V = [V, V + 1, . . . , m]. We have A ⊆ A∗

V . So, by Lemma 5.1.1, A∗
V ∈ A, which

contradicts the definition of A∗
J .

This is a very close approach to van der Laan et al. (2003a) minP procedure, the only

practical difference being in the fact that Fk,A is considered known and not estimated,

and no normality assumption is made. This is also a more general test: minP procedure

is a FWER controlling procedure, while we proved here it also can be considered as a

uniformity test on each and every subset of (p1, . . . , pm).

Unknown Joint Distribution of the p-values

If the CDF of the minimum of a set of k ≤ m p-values cannot be determined, then

we need to make assumptions on the dependence. Recall that the random variables

X1, . . . , Xn are said to be associated if Cov[g1(X1, . . . , Xn), g2(X1, . . . , Xn)] ≥ 0, when it

exists, for all monotonically coordinate-wise non-decreasing functions g1 and g2. Refer to

Esary et al. (1967) and Tong (1980) for further details and the properties of association.

In Appendix C we will give some examples of vectors of associated random variables.

We will now prove that if the test statistics are associated, then the p(1)-approach is

still valid:

Theorem 5.1.4. If the test statistics are associated random variables, then the p(1)-

approach as defined in Section 1.3.7 controls the tFDP (c) at the desired level α.

Proof. If X1, . . . , Xn are associated random variables, then

P (

n⋂

i=1

{Xi ≤ zi}) ≥
∏

P (Xi ≤ zi) (5.1)
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(and similarly

P (
n⋂

i=1

{Xi > zi}) ≥
∏

P (Xi > zi), ) (5.2)

for zi ∈ R, i = 1, . . . , n. Moreover, non decreasing functions of associated random

variables are still associated. I.e., if the test statistics are associated then also the p-

values are associated. In our case, this means that Beta < 1, k + 1 > stochastically

dominates Fk,A for any A, if the vector of p-values is associated1:

Fk,A(t) = Pr(min
j∈A

pj ≤ t)

= 1 − Pr(pj ≤ t, ∀j ∈ A)

≤ 1 −
∏

j∈A

P (pj ≤ t)

= Pr(Beta < 1, |A| + 1 >≤ t), (5.3)

where we used (5.1) at the third step. It is easy to prove that there exists a monotonicity

also among dependency structures, which will not be reported here for shortness.

Call now J1 = min{j : 1 − (1 − p(j))
m−j ≥ α}. This will be a “worst case” scenario:

in the case of association of the random variables, A∗
J1

= [J1, J1 + 1, . . . , m] /∈ A; but

for any A ∈ A, A ⊆ A∗
J1

. I.e., by Corollary 5.1.2 and (5.3), there exists J ≥ J1 such

that A∗
J ∈ A and for any A ∈ A, A ⊆ A∗

J . Hence, under association, one can reject

p(1), . . . , p(J) and then apply augmentation; or do inversion on the set {1, . . . , J}, i.e.,

use U = {1, . . . , J} in Step 2 at pag. 17. This extends the p(1)-approach to the case of

association.

There are cases in which also an upper bound for J can be obtained:

Example 5.1.1. Suppose the p-values from tests are dependent in blocks, but the number

and size of the blocks are unknown. Suppose it is possible to determine Fk,A if all the p-

values come from the same block. This is the strongest dependence possible for a set of k

p-values. As a realistic example, which will be developed below, consider normal random

variables dependent in blocks; with unknown blocks. It obviously is easy to compute all the

possible CDFs but not to determine the CDF of the minimum of a given set (pi1 , . . . , pik).

Let J2 = min{j : Fm−j,Am−j
≥ α}. Here Am−j indicates conditioning on the event that

all the m − j p-values come from the same block. Under any dependence assumption,

J2 ≥ J . Under association, it can be computed also J1 such that J2 ≥ J ≥ J1, as in

Theorem 5.1.4. Moreover, if J2 = J1, then J = J1 and the set A∗
J1

is exactly the union

of indexes of all subsets of (p1, . . . , pm) not rejected after testing for uniformity at level

α.

1Recall also that any subset of a set of associated random variables is associated.
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Positive Dependence by mixture representation

Tong (1980) proves the same main properties of association for a particular class of mix-

tures of distributions. If a vector of random variables (X1, . . . , Xn) has CDF F (X) =∫ ∏n
i=1G

i
u(xi) dH(u), and the family Gi = {Gi

u(t(xi)) : u ∈ U} is stochastically in-

creasing for any i; then (5.1) and (5.2) hold. Note that this is equivalent to asking

that Xi is positively regression dependent on an opportune latent variable U for each i.

Hence, p(1)-approach is still valid in case of mixture representation via a stochastically

increasing G.

5.1.1 The case of Normal Random Variables

If the original test statistics are normal random variables, it is possible to give conditions

for the p(1)-approach to remain valid even if association does not hold. We will actually

prove that the p(1)-approach can be applied without changes under arbitrary dependence,

when m > 3, and otherwise we will make use of the following definition:

Definition 5.1.5 (Structure l). A k by k positive definite covariance matrix V = (vij) is

said to have the structure l if there exist real numbers λ1, . . . , λk in (−1, 1) and σ1, . . . , σk

in R+ such that vii = σ2
i for all i and vij = σiσjλiλj for all i 6= j.

A multivariate normal random variable is said to have structure l when its covariance

matrix has the structure l.

Theorem 5.1.6. If the test statistics are normal random variables and m > 3, then

the p(1)-approach as defined in Section 1.3.7 controls the tFDP (c) at the desired level

α. If m ≤ 3, then this is true only if the test statistics are structure l normal random

variables.

Proof. We are interested in inequalities:

Pr(
⋂

|Xi| ≤ ai) ≥
∏

Pr(|Xi| ≤ ai) (5.4)

and

Pr(
⋂

|Xi| ≥ ai) ≥
∏

Pr(|Xi| ≥ ai) (5.5)

Inequality (5.4) is proved in Dunn (1958) for a structure l multivariate normal with

k ≤ 3, and in Khatri (1967) for k > 3 and arbitrary positive definite correlation matrix.

Inequality (5.5) is proved again by Khatri (1967) for a structure l multivariate normal,

for any2 k.

If ai = Φ−1(α) is taken, inequalities of the form of (5.1) and (5.2) for the p-values

follow from (5.4) and (5.5); when the alternative hypothesis is two-sided.

2A conjecture, still not proving but without any counterexample, is made that (5.5) holds for arbi-

trary correlation matrix.
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In particular, using (5.4), it is possible to prove (5.3). Since Corollary 5.1.2 is valid

for arbitrary dependence, this proves that, when the test statistics are normal, the p(1)-

approach is valid for arbitrary dependence when m > 3 and for structure l multivariate

normals when m ≤ 3.

Since usually m >> 3, Theorem 5.1.6 is a particularly strong result, essentially prov-

ing that what is true under independence, in this case, extends to arbitrary dependence.

5.2 DKW approach under dependence

We will here extend to the dependent case the DKW procedure described at pag. 17.

We use the property of negative association (see Kumar and Proschan (1983), Block

et al. (1982) and Appendix C for further details and examples of negatively associated

random variables), which is a sort of dual of association:

Definition 5.2.1 (Negative association). A vector of random variables X1, . . . , Xn is

negatively associated if, for all monotonically coordinate-wise non-decreasing functions

g1 and g2, Cov[g1(X1, . . . , Xn), g2(X1, . . . , Xn)] ≤ 0, when it exists.

Some examples of negatively associated random variables are given in Appendix C.

We will now propose procedures, making use of two different DKW-Type inequalities

which are proved in Appendix B, together with Hoeffding inequality (which we don’t use

in this dissertation) and other technical results. We will use the assumption of negative

association between the test statistics. In this case it hasn’t been possible to extend the

approach without any modification.

5.2.1 Type I DKW approach under dependence

For our first extension, we will make use of this extension of DKW inequality:

Lemma 5.2.2 (DKW-Type Inequality). Let X1, . . . , Xn be a sequence of identically

distributed negatively associated random variables. Let F (z) be the CDF of X1, and

F̂ (z) the empirical distribution of the sequence X1, . . . , Xn. Then,

Pr{sup
z∈R

|F (z) − F̂ (z)| > ε} ≤ 4(2n+ 1)e−nε2/8.

Lemma 5.2.2 is Lemma B.2.4 in Appendix B, at page 111. Proof is given in the

Appendix.

The DKW approach can now be used just at the price of taking a bigger confidence

set for G(t), under the assumptions of Lemma 5.2.2:

1. Let

εm =

√
8

m
log

(
4(2m+ 1)

α

)
.
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2. Plug-in εm and a suitable estimator of a, â, in R(t) as defined in (1.9).

3. Fix TDKW = sup{t : R(t) ≤ c} and reject pj < TDKW .

It is easily seen that this controls tFDP (c) at level α.

5.2.2 Type II DKW approach under dependence

Another possibility is to use a different DKW-Type Inequality

Lemma 5.2.3 (DKW-Type Inequality 2). Let X1, . . . , Xn be a sequence of identically

distributed negatively associated random variables. Let F (z) be the CDF of X1, and

F̂ (z) the empirical distribution of the sequence X1, . . . , Xn. Then,

Pr{sup
z∈R

|F (z) − F̂ (z)| > ε+
24
√

2π√
n

} ≤ e−2nε2

.

Lemma 5.2.3 is Lemma B.3.4 in Appendix B, at page 114. Proof is given in the

Appendix.

Type II extension of the DKW approach can now be performed via a different def-

inition of the function R(t), which we call R̃(t). Under the assumptions of Lemma

5.2.2:

1. Let

εm =

√
1

2m
log

(
1

α

)
.

2. Define now

R̃(t) =





t(1−ba)

bG(t)−εm− 24
√

2π√
m

if Ĝ(t) > t(1 − â) + εm + 24
√

2π√
m

1 otherwise
(5.6)

for a suitable estimator of a, â.

3. Fix TDKW = sup{t : R̃(t) ≤ c} and reject pj < TDKW .

It is easily seen that this controls tFDP (c) at level α.

The two extensions are based on two different exponential tail inequalities, but as

will be seen in simulations they usually give very close results. Usual problems linked

with the DKW approach (very small number of rejections, or no rejection at all, when

m is small and/or the signal is weak) are carried over from the independent to the

dependent case. We already noted that the DKW approach may work well when the

number of tests is very big and should be avoided in the other cases.
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5.3 Generalized Augmentation Procedure under de-

pendence

Extension to dependence of the Generalized Augmentation Procedure for any m ∈ N is

not straightforward; since evaluation of the distribution of N1|0 for the one step method

at level q is needed, which needs the knowledge of the joint distribution of (pj, j ∈ S0),

and an evaluation of 2M0 slices of it.

Now, in a given one-step method at level q, N1|0 =
∑

j∈S0
1pj<q. Each indicator

function in the sum is distributed like a Bernoulli, with mean q.

A sufficient condition can be given: in the usual notation, if it holds that Pr(
∑

1{pi<q}(1−
Hi) ≤ k) ≥ ∑k

j=0

(
M0

k

)
qj(1 − q)M0−j for k > 0, then it is straightforward to see that

the generalized augmentation approach is valid without any correction. We are request-

ing that a sum of dependent Bernoullies has a lighter tail than a sum of independent

Bernoullies (i.e., a Binomial), each with the same parameter q. Unfortunately, at the

moment no more general condition on the dependence is known that can imply this suf-

ficient condition. Note that (negative) association causes the condition to fail for some

k. Note moreover that the condition on the sum of the Bernoullies is the only technical

condition needed. The Hypergeometric distribution in the negative augmentation part is

the same under arbitrary dependence, since it arises from pure combinatorial reasoning.

We need to turn here to the wide literature of binomial and Poisson approximation,

a problem which has received attention starting from the 50s, in order to give a survey

of possible modifications of the procedure under different dependence situations. The

researcher should then choose the best one for his/her application (usually, it will just be

a matter of how big is m). A milestone in Poisson approximation is the well known result

of Le Cam (1960), stating that the total variation distance between aBinomial < m, q >

and a Poisson < mq > is bounded above by mq2. Chen (1975) prove that, if the mixing

coefficients of the sequence of random indicators {Xi}i∈N are O(e−ηk) for some η > 0

then the total variation between the distribution of
∑m

i=1Xi and a Poisson < λ =∑
i Pr(Xi = 1) > is bounded above by

C(η) min (λ−1/2, 1)[V ar(
∑

Xi) − λ+ (λ+ 1)2m−1 logm],

for a certain C(η). If the statistics are m-dependent of order h, then the bound is

6 min (λ−1/2, 1)[|
∑

i6=j

Cov(Xi, Xj)| + 4(h+ 1)(λ2)/m].

This results can be used to extend the generalized augmentation procedure to mixing

sequences for any finite number of tests. One needs only substitute the binomial distri-

butions in (2.1) and (2.2) with the distribution of a Poisson with parameter m∗ q. Since

q is typically small, the approximation is good when the covariance between the pis is

small in absolute value.

Binomial approximation of sums of dependent random variables can also be used.

Boutsikas and Koutras (2000) prove that, if the random indicators are either associated
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or negatively associated3, then

sup
k

|P (
∑

i

Xi ≤ k) − P (Bin < m, q >≤ k)| ≤ |
∑

i<j

Cov(Xi, Xj)|,

where q = Pr(Xi = 1). Note that, obviously, |∑i<j Cov(Xi, Xj)| = |∑i<j(Pr(Xi =

1, Xj = 1) − q2)|. This is a useful result: one can estimate either Cov(Xi, Xj) or

Pr(Xi = 1, Xj = 1) and add ̂|∑i<j Cov(Xi, Xj)| to the binomial distribution expressions

in (2.1) and (2.2). This is particularly easy in the case of block dependence, in which

Cov(Xi, Xj) = 0 for many combinations of i and j. If the constant covariance is assumed

between the test statistics (which is reasonable in many real applications, see below),

then Pr(Xi = 1, Xj = 1) is easily and efficiently estimated.

Shao (2000) proves that, if the vector of indicators is negatively associated, then

E[
∑m

i=1Xi] ≤ mq. By an immediate application of Markov inequality, it is seen that

one can bound Pr(
∑

iXi ≥ k) ≤ mq
k

. Once again, substitute the bound in (2.1) and

(2.2). Note that this is a very clean substitution, since no estimation is needed; though

it may prove conservative for certain m and q.

Soon (1996) proposes a different approach, using the Chen-Stein approximation

method (Stein (1971, 1986),Chen (1974, 1975)), to the same problem. He proposes

approximating the distribution of a sum of m dependent random indicators with a bi-

nomial with parameters m′ =
⌈

2m2q2

2mq2+1

⌉
and q′ = q + 1/2np. He proves that the total

variation distance between the distribution of the sum of indicators and the binomial

so defined is bounded above by Cmq(0.5 + |∑i6=j Cov(Xi, Xj)|) in case of positive or

negative association. The constant Cmq is equal to 1−q′m
′+1−(1−q′)m′+1

(m′+1)q′(1−q′) , which is seen to

be small for small q. Since the Kolmogorov distance is obviously bounded by the to-

tal variation distance, this result can be used to approximate the distributions in (2.1)

and (2.2) in the usual fashion. Note that this proves also asymptotic validity of the

generalized augmentation method without any modification since q ′
m→ q and m′

m

m→ 1.

Gabriel (1959) derives the distribution of a sum of M0 dependent indicators in case

of Markovian dependence (which requires also ordering of the tests). Let q0 = Pr(Xk =

1|Xk−1 = 0) and q1 = Pr(Xk = 1|Xk−1 = 0). Call q the probability of success on the

initial trial, then Pr(
∑
Xi = k) = q Pr(

∑
Xi = k|X0 = 1)+(1−q) Pr

∑
Xi = k|X0 = 0).

Call C1 = M0 + 0.5 − |2k − 0.5 +M0|, C0 = M0 + 0.5 − |2k − 0.5 −M0| and let ai and

bi be the least integers not smaller than 1/2Ci − 1 and 1/2Ci respectively. Then,

Pr(
∑

Xi = k|X0 = 1) = qk
1(1 − q0)

M0−k

C1∑

C=1

(
k

a1

)(
M0 − k − 1

b1 − 1

) (
1 − q1
1 − q0

)b1 (
q0
q1

)a1

and

Pr(
∑

Xi = k|X0 = 0) = qk
1(1 − q0)

M0−k
C0∑

C=1

(
k − 1

b0 − 1

)(
M0 − k

a0

) (
1 − q1
1 − q0

)a0
(
q0
q1

)b0

.

3Actually, they need only (Xi,
∑

j<i Xj) to be positively (negatively) quadrant dependent, as defined

in Lehmann (1966). This is implied by (negative) association, and usually defined as positive (negative)

cumulant dependence.
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So if the tests form a Markov chain, the exact distribution of the number of errors

by rejecting all p-values smaller than a certain q can be exactly derived, and again

substituted in (2.1) and (2.2). Ladd (1975) describes a fast algorithm for computing

these probabilities.

As a last useful result for applying the binomial/Poisson approximation approach,

note that (Doukan (1994)):

|Cov(Xi, Xi+k)| ≤ 8α(k)1/r(E|Xi|p)1/p(E|Xi+k|q)1/q,

for any p, q, r ≥ 1 and 1/p+1/q+1/r = 1, where α(k) are the alpha mixing coefficients

defined in (3.1).

Finally, asymptotic results can easily be given by applying any form of CLT under

dependence. Many sufficient conditions on dependence for CLT results are given in

Chapter 3, at page 30. More general conditions for the standard CLT are established

in Ibragimov (1962, 1975), on the α-mixing coefficients: if α(k) is infinitesimal and

E|X1|2+δ < ∞ for some δ > 0, then CLT holds for identically distributed random

variables. Refer also to Billingsley (1999) for conditions on different mixing coefficients.

If any of the conditions hold, N1|0 is asymptotically distributed like a normal random

variable. One can now substitute the CDF of the opportune normal in (2.1) and (2.2),

or simply use the well known asymptotic binomial approximation to the normal, and

keep the binomial PMF in the same formulas.

This essentially proves same results of Chapter 3 for tFDP (c) control via Generalized

Augmentation Procedure.

5.4 The case of block dependence with known blocks

We provide in this section specific results on a common case of dependent random

variables, the so called block/clumpy dependence. This is a kind of dependence arising in

many real applications, such as DNA microarrays, environmental surveys, multi-center

studies. This kind of dependence arises also in case of spatially dependent random

variables for which Xij ⊥ Xi′j′ = 0 whenever d(Xij −Xi′j′) > dmin, for some dmin.

Formally, let p = {pi,b}, i = 1, . . . , rb; b = 1, . . . , k be a sequence of p-values such

that pi,b is independent of pj,b1 for b 6= b1 and for any i and j; with m =
∑

b rb. This

is the case of p values dependent in blocks and independent otherwise. Unless stated

otherwise, we will assume rb ≥ 1, k ≥ 1, and that the dependence between pi,b and pj,b

(within blocks) is arbitrary.

Obviously, a rough first approach to block dependence is to ignore it, and consider

the experiment as a whole dependent sequence of tests, essentially applying results prove

so far. Note that if the size of each block is not allowed to grow arbitrarily (while their

number is), we automatically fall under the m-dependence assumption, which implies

mixing at any rate, i.e., one of the hypotheses used in Chapter 3 to prove Theorem 3.1.6.

See Appendix C for a discussion of this.
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Another good approach is to apply an intuitive generalization of the so called BY

technique. BY (Benjamini and Yekutieli (2001)) consists in applying a correction factor

of
∑m

i=1 1/i to the level α. This is a worst case scenario if there is a single block of m

dependent test statistics. It is reasonable to expect that, if the random variables are

dependent in blocks, the FDR in each block will be bounded by α ∗ ∑rb

i=1 1/i. Hence,

a correction factor of
∑maxbrb

i=1 1/i should be used. Note that this reduces to
∑m

i=1 1/i

in case of a single block, and to 1 in case of independent random variables (i.e., m

blocks).Note that only the size of the biggest block, and not the composition, is to

be known. This is a great advantage. For instance, genes in microarray experiments

are commonly believed to be dependent in blocks of at most 50 genes, but the blocks

are unknown. A correction factor of
∑50

i=1 1/i = 4.499 is to be applied, instead of a

correction factor of around
∑51000

i=1 1/i = 11.417 for a full human genome scan. Increase

in power is substantial.

We will show now other possibilities to control the FDR with block dependent tests,

assuming blocks are known. Extension to unknown blocks will be partly discussed at

the end of the section.

Note that, when b = 1, as stated, we are working with a whole vector of dependent

random variables. In this case, the methods we are going to propose are still valid

(though, like the one in the next subsection, may become trivial).

5.4.1 Aggregating after FDR control in each block

We begin by considering the possibility of controlling the FDR in each block, and then

aggregating the indexes of the rejected tests to estimate Sc
0. Storey (2003) uses a nice

approximation for the FDR. He assumes FDR(t) ∼= E[
P

Ii(1−Hi)]
E[

P
Ii+

Q
(1−Ii)]

, where Ii = 1{pi<T}
and T is the cut-off. Using this approximation, it is easy to prove a general result, which

anyway we don’t use further:

Theorem 5.4.1. Consider the case of block dependent test statistics. If the FDR is

controlled in each block, then it is controlled on the whole sequence.

Proof. Call FDRi(Ti) the FDR in the i-th block, where Ti is the threshold in the i-th

block. Let pij be the j-th p-value of the i-th block. Let Iij = 1{pij<Ti}. Using the

approximation, we have

FDRi(Ti) ∼= E[
∑
Iij(1 −Hij)]

E[
∑
Iij +

∏
(1 − Iij)]

≤ α,
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which implies E[
∑
Iij(1 −Hij)] ≤ α ∗ E[

∑
Iij +

∏
(1 − Iij)]. Then:

FDR ∼= E[
∑ ∑

Iij(1 −Hij)]

E[
∑ ∑

Iij +
∏ ∏

(1 − Iij)]

=

∑
iE[

∑
j Iij(1 −Hij)]

E[
∑ ∑

Iij +
∏ ∏

(1 − Iij)]

≤ α
∑

i

E[
∑

j Iij(1 −Hij)]

E[
∑∑

Iij +
∏ ∏

(1 − Iij)]

Note that E[
∑ ∑

Iij +
∏ ∏

(1− Iij)] ≥
∑

iE[
∑
Iij +

∏
(1− Iij)]. Hence, it is straight-

forward to see that the last expression will be smaller than or equal to α.

Remark 5.4.2. This means that different experiments can be put together without hav-

ing to compute a common threshold, and without getting an FDR over the desired level.

Aggregation of experiments can be thought of being aggregation of blocks.

Remark 5.4.3. The theorem will work no matter how each Ti is derived. It is obvious

that applying BY to each block will greatly increase the power than doing BY on the

whole sequence.

5.4.2 Sampling independent vectors from each block

The basic idea of this subsection is that any vector, of size k, of p-values coming from

each and every block, is a vector of independent p-values. If the blocks are known, we

can derive such vectors, apply methods which are known to work under independence,

and then aggregate. For simplicity, assume we are in the balanced case, i.e., rb = rb1 = r

for all b, b1 ∈ (1, . . . , k).

Theorem 5.4.4. For the p-value sequence given, let p̃ = {p̃1, . . . , p̃k} be a vector in

which p̃i is sampled from the i-th block. p̃ is then a vector of independent p-values. If T̃

is the BH threshold for this vector, we have that the FDR for the sequence p̃ is controlled

at desired level α. Let T ∗ be the minimal cut-off over all rk possible sampled p̃s. Then,

the FDR for the sequence p, using cut-off T ∗, will be controlled at level α.
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Proof. The FDP for the original sequence p is:

k∑
b=1

r∑
i=1

1{pi,b<T ∗}(1 −Hi,b)

k∑
b=1

r∑
i=1

1{pi,b<T ∗} +
k∏

b=1

r∏
i=1

(1 − 1{pi,b<T ∗})

=

r∑
i=1

k∑
b=1

1{pi,b<T ∗}(1 −Hi,b)

r∑
i=1

k∑
b=1

1{pi,b<T ∗} +
r∏

i=1

k∏
b=1

(1 − 1{pi,b<T ∗})
≤

r∑
i=1

(
k∑

b=1

1{pi,b<T ∗}(1 −Hi,b))

r∑
i=1

(
k∑

b=1

1{pi,b<T ∗} +
k∏

b=1

(1 − 1{pi,b<T ∗}))
≤

r
max
i=1

k∑
b=1

1{pi,b<T ∗}(1 −Hi,b)

k∑
b=1

1{pi,b<T ∗} +
k∏

b=1

(1 − 1{pi,b<T ∗})

The last inequality follows from the fact that, if x1, . . . xn and y1, . . . , yn are two se-

quences of real numbers, if for all i it happens that yi ≥ xi ≥ 0; then it is easy to see

that
P

i xiP
i yi

≤ max xi

yi
. It is obvious that the expectation of the right hand side of the last

inequality is less than or equal of the expectation of the left hand side. We will now

prove that E[
r

max
i=1

kP
b=1

1{pi,b<T∗}(1−Hi,b)

kP
b=1

1{pi,b<T∗}+
kQ

b=1
(1−1{pi,b<T∗})

] ≤ α. Thesis will follow from that. Note

that, for any p from the joint distribution (for fixed r and k);

E[
r

max
i=1

k∑
b=1

1{pi,b<T ∗}(1 −Hi,b)

k∑
b=1

1{pi,b<T ∗} +
k∏

b=1

(1 − 1{pi,b<T ∗})
|p] ≤ α;

since T ∗ is chosen accordingly. Hence, the unconditional expected value is also below α.

The thesis follows.

A possible extension is to include the possibility of not knowing the size and com-

position of the blocks. The blocks will be known in case of controlled, experimental

situations, while in many other cases they may be not known. A good approach should

be to estimate the blocks, and then proceed as if they were known; possibly incorporating

the uncertainty brought about by estimation.

Note that this approach is very conservative, since the cut-off is defined as the

minimum over a set of possibly conservative cut-offs. Moreover if there are very few

blocks the “sampled” vectors will be small and cut offs will have a greater variance. The
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ideal situation is to have a large number of small blocks, inside which the dependence

among the p values is high: this will lead to a fast algorithm (few combinations are

possible) and to an efficient procedure (the thresholds will be close to each other, so

that the minimal will not be too close to zero).

Remark 5.4.5. In the same fashion, DKW and p(1)-approach can be generalized to

block dependence with arbitrary dependence within the blocks, at the price, for instance,

of substituting m with k in DKW inequality. This, in practice, extends all the procedures

to the case of block dependence with arbitrary dependence within blocks. Nevertheless,

one cannot avoid being overly conservative with this approach.

5.4.3 p(1)-approach for normal block dependent random vari-

ables

Let us now restrict to a particularly relevant case. We will suppose that the p-values

come from normal test statistics, with known variance equal to 1. We will suppose that

the test statistics are all independent between blocks, while Cov(Xi, Xj) = ρ whenever

Xi and Xj come from the same block; −1 < ρ < 1. Of course, to ensure positive

definiteness of the matrix, we’ll have the condition ρ > − 1
maxb rb−1

, where maxb rb is the

size of the biggest block. Let’s assume there are k blocks. Let Σi be the i x i matrix with

diagonal elements all equal to 1 and off-diagonal elements equal to ρ. Let Φ(·) denote

the standard normal CDF, and Φb(·, µ,Σ) denote the a multivariate normal CDF in Rb,

with mean vector µ and variance-covariance matrix Σ. We will now determine Fk,A,

the CDF of the minimal p-value in a given subset. This will be sufficient to apply the

p(1)-approach, as described in Section 5.1.

Note that, when m > 3, this computation can be avoided since the p(1)-approach is

valid in its independent form for arbitrary dependence (if the alternative is two-sided).

Nevertheless, using exact results yields a less conservative and more powerful procedure.

It is intuitive that exact results are always to be preferred, when available.

Theorem 5.4.6. Suppose we pick a subset of r p-values from the m. There will be r1

from the first block, r2 from the second, and so on. Of course,
∑b

j=1 rj = r. We have:

Pr(min
i
{pi1, . . . , pir} < t) = 1 − (1 − t)

P
j 1{rj=1}

S∏

i=2

Φi(Φ
−1(1 − t), 0,Σi)

P
j 1{rj=i}
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Proof. Let pj
i denote the i-th p-value of the j-th block, i.e. pj

i = Pr(Xj
i > xobsj

i ).

Pr(min
i
{pi1, . . . , pir} < t) = 1 −

b∏

i=1

Pr(pi
1 > t, · · · , pi

ri
> t)

= 1 −
b∏

i=1

Pr(Xobsi
1 < Φ−1(1 − t), · · · , Xobsi

ri
< Φ−1(1 − t))

= 1 −
b∏

i=1

Φi(Φ
−1(1 − t), 0,Σri

)

= 1 −
S∏

i=1

Φi(Φ
−1(1 − t), 0,Σi)

P
j 1{rj=i}

Remark 5.4.7. Note that the expression is invariant to permutations of the ri.

Refer to next section for simulation results.

5.5 Discussion and Simulations

blocks = 2 5 10 20 25 50

ρ = −0.02000 −0.05200 −0.11100 −0.25000 −0.33300 −0.99900

BH
0.0592

(0.0455)

0.0584

(0.0421)

0.0583

(0.0440)

0.0583

(0.0468)

0.0580

(0.0463)

0.0587

(0.0418)

Iterative
0.0589

(0.0477)

0.0581

(0.0451)

0.0579

(0.0467)

0.0579

(0.0496)

0.0577

(0.0488)

0.0586

(0.0447)

BY
0.0695

(0.0078)

0.0691

(0.0068)

0.0688

(0.0084)

0.0687

(0.0104)

0.0689

(0.0102)

0.0696

(0.0080)

Block
0.0622

(0.0322)

0.0638

(0.0194)

0.0656

(0.0142)

0.0668

(0.0141)

0.0673

(0.0117)

0.0681

(0.0073)

P(1)
0.0607

(0.0380)

0.0599

(0.0391)

0.0594

(0.0382)

0.0600

(0.0402)

0.0589

(0.0384)

0.0601

(0.0386)

Storey
0.0584

(0.0501)

0.0576

(0.0449)

0.0576

(0.0483)

0.0577

(0.0496)

0.0573

(0.0511)

0.0581

(0.0466)

Table 5.1: FNR (FDR) for different methods, block dependence

Table 5.1 shows the FNR (as defined in (1.8)) and FDR in parentheses for an array

of m = 100 normal random variables divided in different numbers of independent blocks,

with m0 = 90, for different methods. The correlation inside each block was taken to be
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τ = 50 20 10 2

BH
0.0575

(0.0204)

0.0563

(0.0239)

0.0583

(0.0253)

0.0570

(0.0378)

Iter.
0.0572

(0.0254)

0.0557

(0.0346)

0.0577

(0.0324)

0.0567

(0.0402)

BY
0.0683

(0.0016)

0.0667

(0.0062)

0.0690

(0.0043)

0.0680

(0.0078)

P(1)
0.0662

(0.0081)

0.0664

(0.0047)

0.0669

(0.0050)

0.0664

(0.0086)

Stor.
0.0453

(0.2825)

0.0473

(0.2227)

0.0524

(0.1666)

0.0550

(0.0706)

Table 5.2: FNR (FDR) for different methods, simplified exponential dependence

constant, equal to a certain parameter ρ. This parameter was taken to be negative, as

small as possible. BH stands for the classical method, Iterative for the plug-in method

applied with the iterative estimator, BY for the classical method in which the level α is

divided by
∑m

i=1 1/i, as suggested in Benjamini and Yekutieli (2001). We proposed here

a more fine tuned correction, dividing instead by
∑maxb rb

i=1 1/i, where rb is the size of b-th

block. It is apparent that this method (Block) is much less conservative. P(1) stands

for the p(1) approach with known blocks, as derived in Section 5.4.3, used to control

the FDR, with c = 0.0002. Finally, Storey stands for the Plug-in method with Storey

estimator.

Tables 5.2 and 5.3 show the FNR (FDR) for the same methods, applied to a grid of

dependent normals with simplified exponential covariance structure of pag. 34. In this

case it is seen that Plug-in with Storey’s estimator brings unacceptably high FDRs, and

this is the only procedure observed to fail.

Finally, Tables 5.4 and 5.5 show the tFDP (0.1) for different methods, with the usual

simplified exponential covariance structure. The Generalized Augmentation procedure,

as we said, works in virtue of the normal approximation to the binomial. Augmentation

of minP procedure, which we call the p(1)-approach, was proved to work under normality

of the test statistics. Note instead that the simulated random variables are not negatively

associated, hence the DKW method, even using the iterative estimator to estimate

1 − a, may not work. This is an example of how things can go wrong. It is the case for

extremely strong dependence (actually, τ ≥ 300 is sufficient). Note that our extensions

(Type I and Type II DKW) under dependence give very close results and behave in the

same way. Moreover, as we said, the DKW approach can have very low power if m

is not big and the signal is weak. This is the case: in almost independent cases, this

approach results in rejection of no hypothesis. Refer to Chapter 6 for cases in which the

DKW approach works well.
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τ = 1.67 1.25 1 0.83

BH
0.0590

(0.0432)

0.0582

(0.0435)

0.0584

(0.0432)

0.0577

(0.0438)

Iter.
0.0587

(0.0460)

0.0579

(0.0483)

0.0581

(0.0479)

0.0574

(0.0486)

BY
0.0695

(0.0074)

0.0692

(0.0104)

0.0691

(0.0094)

0.0688

(0.0101)

P(1)
0.0671

(0.0078)

0.0671

(0.0105)

0.662

(0.0135)

0.0675

(0.0143)

Stor.
0.0572

(0.0678)

0.0568

(0.0631)

0.0574

(0.0599)

0.0568

(0.0496)

Table 5.3: FNR (FDR) for different methods, simplified exponential dependence

As final comments, note that (negative) association of the vector of p-values follows

directly from (negative) association of the vector of test statistics; which in general

may be easier to work with. It is particularly interesting that mainly we are impos-

ing conditions of “coherence” on the dependence, i.e., that it is “all positive” or “all

negative”.

τ = 2000 50 20 10 3.33

Gen. Aug., q := q/2
0.066

(0.049)

0.067

(0.034)

0.068

(0.033)

0.066

(0.034)

0.069

(0.036)

p(1)-approach
0.066

(0.048)

0.067

(0.012)

0.067

(0.007)

0.066

(0.013)

0.069

(0.035)

Type I DKW (Iterative)
0.045

(0.095)

0.097

(0.028)

0.097

(0.029)

0.097

(0.022)

0.099

(0.001)

Type II DKW (Iterative)
0.038

(0.096)

0.097

(0.026)

0.096

(0.034)

0.097

(0.024)

0.099

(0.004)

Table 5.4: FNR (tFDP (0.1)) for different methods, simplified exponential dependence
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τ = 2 1.67 1.25 1 0.83

Gen. Aug., q := q/2
0.068

(0.042)

0.068

(0.039)

0.069

(0.043)

0.068

(0.042)

0.069

(0.041)

p(1)-approach
0.067

(0.041)

0.066

(0.042)

0.067

(0.044)

0.066

(0.045)

0.067

(0.048)

Type I DKW (Iterative)
0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

Type II DKW (Iterative)
0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

0.1

(0.000)

Table 5.5: FNR (tFDP (0.1)) for different methods, simplified exponential dependence



Chapter 6

Applications

In this chapter we will provide some applications and real data examples. Among the

many other possible applications, refer to Ip (2001) for an explanation of the use and

benefits of MTP procedures for dependent data in testing for local dependency in item

response data. Refer to Yekutieli and Benjamini (1999) for the use of MTP procedures

in testing for significant correlations in correlation maps.

Example 6.0.1. First, we will revisit the multiple problem described in Benjamini and

Hochberg (1995), with a complete description in Neuhaus et al. (1992). Multiple end-

points analysis in clinical trials is one of the most encountered multiplicity problem in

medical research. In a randomized multicentre trial in 421 patients with acute myocardial

infarction, a new front-loaded administration of rt-PA (thrombolysis with recombinant

tissue-type plasminogen activator) has been compared with APSAC (anisoylated plas-

minogen streptokinase activator). The treatments are both known to reduce mortality in

myocardial infarction. In this example, the difference between the treatments is measured

on each of 15 endpoints, measuring cardiac and other events (like bleeding complications)

after the start of thrombolitic treatment, yielding the ordered p-values: 0.0001, 0.0004,

0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240, 0.4262, 0.5719, 0.6528,

0.7590, 1.000. The most important hypothesis, which we want to reject, is the one refer-

ring to p(4) = 0.0095, and it refers to reduced in-hospital mortality rate. Note that there

is a big jump from 0.0459, the highest p-value smaller than 0.05, and 0.3240. Table 6.1

shows how many hypotheses (corresponding to the smaller p-values) are rejected at level

α = 0.05, for different procedures. Note that many procedures end up rejecting as many

hypotheses as the uncorrected testing. Note that the DKW approach, in this case, is very

powerful even if m is small; while the other procedures for tFDP (0.1) control are not

as powerful. In particular, FWER controlling procedures, BY procedure and generalized

augmentation procedure with negative augmentation don’t lead us to declare significant

difference in mortality rate between the treatments.

81
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Uncorrected 9

Bonferroni 3

Step-down Holm 3

BH 4

BY 3

Plug-in (Storey) 9

Plug-in (DKW) 6

Plug-in Iterative 9

Gen. Aug., q := q/2 4

Gen. Aug., neg. aug. 3

p(1)-approach 4

DKW (Iterative) 9

DKW (Storey) 9

Table 6.1: Multiple Endpoint Analysis: number of rejections

6.1 DNA Microarrays

6.1.1 The setting of DNA Microarrays

We will not attempt here a complete review of the analysis of DNA Microarrays, a

field of biostatistics which is receiving more and more attention. We will point the

reader to detailed reviews (Amaratunga and Cabrera (2004), Parmigiani et al. (2003),

Brown and Botstein (1999), and Duggan et al. (1999) also for a survey of the impressive

spectrum of biological applications) and only sketch a very simplified explanation of the

problem. Refer to Bolsover et al. (1997) and Garret and Grisham (2002) for background

on biochemistry and genetics. For a survey on microarray literature, refer also to web

sites http://genomicshome.com and http://www.nslij-genetics.org/microarray,

and to http://www.bioconductor.org for software support.

Advances of the technology have made it possible to obtain the expression levels

of tens of thousands of genes from a single biological sample. For a review of such

technologies, refer to Schena et al. (1995), Velculescu et al. (1995) and Lockhart et al.

(1996)1, and also to Cabras (2004) for a detailed review of the statistical issues related

to the use of different technologies and relationships with multiple testing. The general

idea is as follows: more or less every cell contains a copy of its entire genome. Genes

are encoded in the DNA of the genome, whose task is to “make” proteins. Proteins are

very different from each other, and perform a whole variety of tasks, from regulation to

structural or catalytic functions. When a protein is to be generated, DNA is transcribed

1By the way, the two most important techniques are cDNA arrays (Schena (2000),

http://www.microarrays.org) and oligonucleotide arrays (the suggested Lockhart et al. (1996) and

Affymetrix (1999)).
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into RNA (by splitting), which is then translated into a protein. The idea behind the

process is similar to the idea behind the generation of an executable from a program in

informatics. RNA is the code of the program, the protein is the executable. The essential

feature of microarray analysis is to measure mRNA (i.e., the messenger RNA) abundance

in some sampled cells. These experiments can be performed with many purposes in

mind2. We list here at least four: first, compare this abundance (the expression of a

single gene) with the expression of genes from samples of other individuals in different

biological conditions, and identify genes that are less expressed (down-regulated) or

over expressed (up-regulated) in the biological condition of interest. For instance, if a

particular gene is significantly up-regulated in a sample from a group of ill people, it

is reasonable to view it as correlated with the disease, if not even a genetic cause of

the disease. The second purpose can be to identify genes that are not expressed. It is

well known that a great part of our genome is constituted by junk DNA, i.e., DNA that

never activates. Again, it is particularly interesting to find genes that that are somehow

“turned off” or “turned on” by the disease. The third purpose can be identifying

pathways, i.e., groups of genes that activate in sequence, structured ordering, or interact.

Common clustering techniques are applied, like Partitioning Around Medoids (PAM).

Clustering is used also to identify groups of active genes without formal testing. Among

the other references, see for instance Pollard and van der Laan (2003a) or Tibshirani and

Bair (2004) who propose innovative procedures to cluster genes. Rocci and Vichi (2004)

propose the “double k-means”, a clever procedure to simultaneously cluster genes and

samples, i.e., rows and columns of the data matrix. A fourth purpose is classification, i.e.,

prediction of the biological condition through measuring of the genes. If a good predictor

can be formed, then the genes in the classifier are related to the disease; and moreover

the disease can be diagnosed by measuring the expression levels of some particular genes.

For the purpose of our dissertation, the first two tasks are more relevant: usually, a test

is done on each gene to determine if it is differentially expressed between the biological

conditions, and a test is done under each biological condition to determine if the gene

is not expressed in that case. The third and fourth task (clustering and classification)

are also relevant, in the sense that significance testing is usually performed before, in

order to select a subset of relevant genes. Using not relevant genes for class prediction

or clustering may lead to inconsistent results due to gene’s expression uncertainty. For

a review of multiple testing methods in the context of microarray data analysis, among

the many possibilities, see also Dudoit et al. (2003a).

Description of a Microarray Experiment

A typical (oligonucleotide) microarray experiment is as follows: 3000 to 50000 genes are

measured on one slide, and two biological samples are put on the same slide. One of

them can be a reference sample, to standardize the results. A green fluorescent dye is

2Assuming for the time being no covariates are measured with the genes expression, otherwise we

fall into (mainly logistic) modeling.
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attached to the mRNA from one sample, and red to the other. Hence, a slide is made of

thousands of spots, each with a particular probe of a single mRNA sequence. In general,

there are also other kind of spots, like the so called “Negative Checks”, i.e., strains of

DNA which should not be hybridized by any mRNA sample (and are precious in esti-

mating the distribution of not expressed genes); and “Positive Checks”, the dual. The

two samples in each spot hybridize to their complementary strand, in a competitive set-

ting. This can be thought of as thousands of experiments going on simultaneously. The

measure of the green and red signal is a noisy (relative) measurement of the abundance

of mRNA for that particular gene. The result of the experiment is thus a data matrix of

n rows (n cDNA samples, in general from the same tissue of individuals in two or more

biological conditions) with m columns (one for each gene) with the (log2) of the expres-

sion of the gene, measured on the red or green channel. The sample size n typically

ranges from 4 to 100 individuals. It is apparent that a data set in which the number

of rows is much smaller than the number of columns presents statistical challenges not

traditionally dealt with. Among the immediate statistical issues, not linked in general

to inference, there is the quantification of the fluorescence signals from each spot (Yang

et al. (2002a)), filtering of bad spots, normalization within and between slides, forming

a test statistic for each gene (usually, a t or F statistic). The filtering phase consists in

getting rid of badly measured genes. It is important to keep in mind that the microarray

experiment is subject to a lot of experimental artifacts. A tiny grain of dust in a spot

can of course invalidate the expression measure for that gene, and so on. Usually, genes

with expression too close to the saturation level (the maximum expression recordable by

the machine) are not considered in the analysis, together with genes corresponding to

spots not passing a whole lot of quality tests (signal to noise ratio, spot uniformity, di-

mension of hybridized area, background noise, etc.). Then, normalization is performed

to get rid of part of the experimental variability and systematic bias inside a single

slide and between the slides (for a discussion of the problem, see Tseng et al. (2001) or

Durbin and Rocke (2004)). Again, the conditions under which the experiment is done

are crucial to the results: the heat in the room where the experiment is performed, tiny

differences in the duration of exposure, etc. introduce bias and increase the variability of

the recorded expression levels. Usually, first of all a measure of the background intensity

of expression is subtracted to the expression intensity3. Then, a normalization method

is applied. Among the most used there are: the global normalization, in which the ex-

pression for the genes is divided by the observed mean in the whole slide, and RI-lowess

normalization (Yang et al. (2001)). Recently, Wang et al. (2001), Yang et al. (2002b),

and Wang et al. (2003) propose the qcom, an index of the overall quality of each spot.

They merge in this way filtering and normalization, eliminating the genes corresponding

to qcom too low, and then using the index to perform a lowess based normalization.

Note that microarrays are in general only the first step before a further investigation,

3Though some authors, like Yang et al. (2002a), suggest that background should be ignored in order

not to introduce additional variability in the low intensity range.
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the validation phase, takes place. The task of the researcher is to restrict the number

of suspect genes from the whole genome to some tens4, which will then be biologically

validated (for instance with RT-PCR, RNA blotting, or other techniques: see for in-

stance Zweiger (2001)). Hence, a small proportion of false positives are allowed; while

too many false positives would make the validation phase impossible from an economical

point of view. As we pointed out in the first chapter, aiming at no false positives, with

thousands of tests going on, means no rejections and no candidate genes for validation.

Hence, control of FDR or tFDP (c) is naturally desirable in the microarray setting.

Dependence is intuitively present in DNA microarrays, and often ignored in the lit-

erature. Genes measured with the same technology in the same laboratory are subject

to common sources of noise. While normalization is performed to remove part of the

systematic bias, it is reasonable to expect that the random noise is not acting inde-

pendently on each spot of the slide. There is a form of spatial dependence. Secondly,

there is dependence also in the “signal”: changes in expression are part of the same

biological mechanism, and hence the expression of each gene is not unrelated to the

expression of the other genes. In other words, while the individuals can be thought of

being independent (i.e., the rows of the data matrix are independent), the genes in a

single tissue are dependent. Likely, they present at least a form of block dependence,

with blocks identified by the pathways and/or by groups of similar mRNA codes. This

is the well known cross-hybridization problem. By cross-hybridization, we mean that

a probe in a particular spot can be hybridized not only by its complementary mRNA

strand, but also by similar mRNA which correspond to a different gene. The likelihood

of cross-hybridization, by the way, varies from technology to technology; and is almost

zero in certain cases. Since blocks of dependent genes are reasonably expected to be

small (literature investigates pathways of two to five genes, while a maximum of 50 is

thought of being possible), block dependence in microarray data can be thought of as

m-dependence (i.e., no block can be of arbitrary size); and thus microarray data fall

under the hypotheses of Theorem 3.1.6.

6.1.2 Genetic patterns of colon cancer

Alon et al. (1999) analyze data on colon cancer. The expression of around 6500 genes

is recorded in 40 tumor and 22 normal samples from the colon of 62 patients. After

filtering, 2000 genes were normalized using global normalization, and a two-sample t-

statistic was computed on each gene to verify if there was a significant difference between

the biological conditions. Figure 6.1 shows an histogram of the 2000 t-statistics. p-

values are computed from the statistics. Colon cancer is well known to be associated

with variations in the expression of many genes, and in fact the histogram itself suggest

the presence of a few significant genes.

There are hints of possible dependence in this data. Using an immediate extension of

4For this reason, the process is also sometimes called gene shaving or gene screening.
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Figure 6.1: Histogram of 2000 two-sample t-statistics for Alon et al. (1999) data

the results of van der Laan and Bryan (2000), it is possible to give an idea of how much

it is inefficient to estimate the dependence in a microarray experiment. This stems from

the fact that the number of subjects/samples n is such that n << m, where m is the

number of genes. We obtain now confidence intervals for the
(
2000

2

)
correlations between

the genes. Let Yi be the i-th gene expression, which will be assumed to be N(µi, σ
2
i ). It

is straightforward to invert the formulas in Theorem 3.2, pag. 10, of van der Laan and

Bryan (2000), to obtain

Pr(max
ij

|Σ̂i,j − Σi,j| > ε) < δ(ε), (6.1)

where δ(ε) = min(2 exp [2 logm− 3ε2n
6σ2

Σ+2W 2ε
], 1); Σi,j is the covariance (i 6= j) between

two genes, or the variance of the i = j-th gene. σ2
Σ is an upper bound for the variance

of YiYj, W an upper bound for Yi − µi, m is the number of genes and n the number

of samples. We will let W = 5 and σ2
Σ be twice the estimated maximum on a random

subset of 5000 of the
(
2000

2

)
samples, i.e., 36528.93. This leads to ε = 139.21 if one wants

to obtain a confidence interval at level δ(ε) = 0.95. Hence, a 95% confidence interval
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for each estimated covariance coefficient is given by [Σij − 139.21,Σij + 139.21]. This

leads all but eight of the confidence intervals to contain the zero, counting also the 2000

confidence intervals for the variances. The sample variance/covariance matrix is not a

good estimate of Σ due to high variance of the estimator. Nevertheless, the positive

estimates for the correlations outnumber the negative estimates by a factor of 16.2 to 1.

This is a (mild) hint of positive dependence (association under normality assumption)

in the data. This, and the fact that the dependence cannot be efficiently estimated,

should lead us to consider and use MTPs valid under dependence in dealing with this

data.

Now, p-values are computed from the test statistics. Uncorrected testing leads us

to 488 rejections, Bonferroni correction to 11, BH method to 180, Plug-in with Storey

estimator to 217, Plug-in with iterative estimator to 197. Generalized augmentation

procedure to 198, p(1)-approach to 13. Of this methods, we know Bonferroni, BH (by

m-dependence), Plug-in with iterative estimator, p(1)-approach and generalized augmen-

tation procedure were proved to be valid under the assumed dependence structure on

this data.

6.1.3 Classification of Lymphoblastic and Myeloid Leukemia

Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML) are two

variants of Leukemia, which are treated differently. The goal of this experiment is

to build a classifier in order to distinguish between the two variants, through gene

expression profiling. Data come from Golub et al. (1999). 7129 different genes remained

after filtering, with some positive controls and replicates for quality control. This leads

to 6817 different genes, normalized using global normalization. We will use 56 of the

original 72 samples.

A training set of 22 samples was selected, 11 chosen at random from the ALL samples

and 11 chosen at random from the AML samples. A test set of 34 samples, of which 20

ALL and 14 AML, was used to estimate the classification error.

As stated, the first problem is to select a subset of genes which are significantly

differentially expressed between the two Leukemia conditions. To do so, a t-test was

performed on each gene, obtaining a vector of m = 6817 p-values. Uncorrected testing

would reject 1552 hypotheses, classical BH 28, Plug-in with iterative estimator 30 and

Plug-in with Storey estimator 124. FWER control with Bonferroni correction would

reject only 1 p-value. If the goal of this experiment was just to determine a subset of

candidate genes for validation, only the set provided by Plug-in with iterative estimator

or BH method would be considered.

A further confirmation of the fact that FDR controlling procedures are to be preferred

over uncorrected testing and FWER control is given by the estimates of classification

error. Classification was performed using k-Nearest Neighbor Classifier (Cover and Hart

(1967)), with k = 3. Using all the genes would lead to 16 misclassified cases in the test

set, 10 would be given using the set of genes selected with uncorrected testing, 8 with
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the set of genes selected with Plug-in with Storey estimator, 6 by BH and Plug-in with

iterative estimator. Note that, in the light of the simulations in Chapter 3, the fact

that Plug-in with Storey estimator is so much different from the other Plug-in method

suggests presence of dependence in the data (like in the previous example).

6.2 Wavelet Thresholding

We will now show that our multiple testing procedures can be used as a flexible, au-

tomatic and adaptive method for wavelet thresholding. Again, we will not attempt a

full review of the complex and large world of non-parametric curve estimation here, but

just sketch a general idea. Suppose we observe data yi, i = 1, . . . , n = 2J+1, where it is

known that

yi = g(ti) + εi, (6.2)

with εi ∼ N(0, σ2), σ known. We will assume g : Rd → R and that the observation

points ti are equally scattered on a compact cube in Rd. If d = 1, this is a very common

non parametric regression problem; while when d = 2 this is for instance an image

reconstruction problem. There exists a variety of methods to estimate g(·), including

kernel estimation, spline smoothing, etc. However, these methods are sub-optimal in

case the function f is spatially inhomogeneous. An advantageous possibility is to use

an orthonormal wavelet basis ψjk(t), and estimate the wavelet coefficients djk in the

expansion g(t) =
∑

j

∑
k djkψjk(t). ψjk(t) is a translation and dilation of a single fixed

function ψ(t), the so called mother wavelet:

ψjk(t) = 2j/2ψ(2jt− k), j, k ∈ Z.

For many possible mother wavelets, see Daubechies (1992), who introduced also a general

family of smooth wavelets, indexed by the number of vanishing moments of the mother

wavelet, N (including the 0th moment). In our examples, we will use N = 2. Note that

many mother wavelets don’t even have a closed form expression. It is well known that

the coefficients djk, with respect to any basis ψjk, j, k ∈ Z, are computed as

djk =< g, ψjk >=

∫
g(t)ψjk(t) dt.

For an essential and clear introduction to wavelets, refer to Ogden (1997), to Härdle

et al. (1998) for a more detailed discussion, and to Donoho et al. (1995) for applica-

tions in statistics. A wavelet basis works just like any other possible basis for function

spaces, but unlike many other bases (like the sine and cosine basis), it is localized both

in frequency and time scale. This is the biggest advantage of wavelet bases, together

with the speediness of the computations. For this reason, functions with variable degree

of smoothness through the support (i.e., spatially inhomogeneous) are well estimated.

Wavelets can efficiently estimate both peaks and constant parts of a function. Wavelets

estimate functions in Besov, Sobolev and/or Hölder spaces of smooth functions, and
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are adaptive in the sense that they achieve minimax risk “close” to the risk that would

achieve the optimal estimator with known function space. Other main properties of

wavelet bases are: multiresolution, i.e. the fact that the function is analyzed through a

nested set of scales; and compression, i.e. the fact that wavelet transforms of real world

signals tend to be sparse. Wavelet estimators are commonly used for signal denoising,

image compression, non-parametric regression, etc. The procedure for wavelet estima-

tion is as follows: through a discrete wavelet transform algorithm (DWT) estimate the

wavelet coefficients from the data yi. For a description of a fast DWT algorithm, which

will also be used here, refer to Mallat (1989). There will be m = n − 1 = 2J+1 − 1

coefficients. White noise obviously contaminates all the estimated d̂jk, j = 0, . . . , J ,

k = 0, . . . , 2j − 1. However, due to parsimonious representation by wavelets, it is rea-

sonable to expect that only few d̂jk contain information about the signal g(·); while

all the rest are very close to zero. Hence, the goal is to identify the non zero coeffi-

cients and set to zero the other estimates, through a procedure called thresholding: set

d̂jk := d̂jk1|bdjk|≥λ, for a certain λ. This is hard thresholding. Another possibility is soft

thresholding, which sets d̂jk := sign(d̂jk)(|d̂jk|−λ)1|bdjk|≥λ. This is done to filter the noise

also from the estimates of the non zero coefficients. After the thresholding step, the final

estimator of the signal is then ĝ(t) =
∑

j

∑
k d̂jkψjk(t), constructed via a fast algorithm

called inverse wavelet transform (IWT). See also Strang (1989) for detailed exposition

of possible DWT and IWT algorithms. Among the many possible choices of λ, the most

used is the universal threshold proposed in Donoho and Johnstone (1994), which is

λ = σ
√

2 logn for j ≥ j0 and 0 for j ≤ j0, for a certain j0. j0 is typically 5 (Donoho and

Johnstone (1994)) or 3 (Nason and Silverman (1994)). If σ is unknown, a robust estima-

tor is taken, in general using the coefficients from the highest level, which intuitively are

almost completely determined by random noise: σ̂ = median(|bdJk−median( bdJk)|:k=0,...,2J−1−1)
0.6745

.

Among other possible thresholding methods there is SureShrink, proposed in Donoho

and Johnstone (1995), which combines an adaptive threshold chosen to minimize the

risk, estimated with Stein Unbiased Risk Estimator (SURE), with the universal thresh-

old. Nason (1996) uses a cross validation criterion to minimize the predicted MSE.

While asymptotically any choice of j0 is equivalent in the SureShrink method, for small

sample sizes it is crucial, as for the universal method. The same Donoho and Johnstone

(1994) and Fan (1994) point out that thresholding is nothing but hypothesis testing on

each wavelet coefficient. For this reason, Abramovich and Benjamini (1996) propose to

use the BH procedure to test the set of hypotheses Hi : djk = 0, set λ equal to the

highest absolute value of the rejected djk, and then do either hard or soft thresholding.

They show that this provides a much more automatic procedure of thresholding, which

works very well with the sparseness of wavelet representations. They argue that FDR

control can improve the MSE in some cases, and most of all it adapts very well to dif-

ferent smoothness situations and enjoys robustness of MSE-efficiency. They do this by

comparing the MSE of thresholding via of testing with BH procedure with the MSE of

universal thresholding in simulation.
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Here MSE is defined as n−1||g − ĝ||2. Their computations and applications are

all in one dimension, for Gaussian independent noise. We will apply in this section

more powerful FDR controlling procedures, and procedures to control the tFDP (c), to

thresholding in one and two dimensions, with dependence in the noise. We will show

that the improvement in using multiple testing thresholding is much more evident in

more than one dimension, and impressive when the signal-to-noise ratio is high. Among

the possibilities for further work, there are formal optimality results of MTP procedures

for thresholding.

Extension of the wavelet model (6.2) to non-Gaussian (Chipman et al. (1997), Si-

moncelli and Adelson (1996)) and/or to dependent situations (Lee et al. (1996), Chou

and Heck (1994), Crouse et al. (1998), Vannucci and Corradi (1999)) is a wide part of

literature on wavelets. Usually, a Bayesian framework is adopted. Crouse et al. (1998)

note that in the non-Gaussian situation, assumption of independence between wavelet

coefficients is not realistic, since coefficients are usually clustered and persistent: they

tend to be large/small in groups and the magnitude propagates across scales. In the

Gaussian situation, dependence between the coefficients can also come from two sources:

correlation in the noise, a typical situation in two dimensions; and correlation in the

signal, in the sense that g(t) is a realization of a certain stochastic process X(t). In

this last case, Vannucci and Corradi (1999) prove important results on dependence in

wavelets: first of all, the recursion

cov(djk, dj′k′) =
∑

h

∑

i

(−1)i+h−2(k+k′)l1−i+2kl1−h+2k′cov(c(j+1)h, c(j′+1)i), (6.3)

where lk are known positive coefficients completely determined by the chosen basis,

satisfying
∑+∞

k=−∞ l2k < ∞; and cjk are the so called scaling coefficients (see Ogden

(1997)) satisfying the recursion

cov(cjk, cj′k′) =
∑

h

∑

i

lh−2kli−2icov(cj+1,h, cj′+1,i) (6.4)

and with

djk =
∑

h

(−1)h−2kl1−h+2kcj+1,h. (6.5)

The recursions in (6.3) and (6.4), and the relationship in (6.5) can be used, in a so called

decomposition algorithm, to make statements on the dependence between the djk. In

many cases, depending on the basis used and considerations on the covariance between

the scale coefficients at the coarser levels, it will be possible to prove constant sign

of cov(djk, dj′k′). This, together with the normality assumption, will imply (negative)

association of the wavelet coefficients.

Another result of Vannucci and Corradi (1999) that can be extended to our setting

is this: if the mother wavelet comes from the Daubechies minimum phase family with

N vanishing moments, then the coefficients djk and dj′k′ are uncorrelated for integers

k and k′ such that k′ − 2lk > 2l(2N − 1) or k′ − 2lk < 1 − 2N , with l = |j ′ − j|.
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I.e., wavelet coefficients are dependent in blocks; and the blocks are known. Note

that the size of the blocks is not bounded, hence m-dependence is not proved on the

wavelet coefficients. Mixing assumptions, if needed, should be supported by different

considerations. Nevertheless, wavelets under dependence show a whole lot of properties

which allow us to use multiple testing methods for thresholding.

6.2.1 Non Parametric Regression

We will apply our methods, in this subsection, to a test function commonly used

in this setting (Donoho and Johnstone (1994, 1995)), the Doppler function: g(x) =√
x(1 − x) sin

(
2,1π

x+0.05

)
, sampled in n = 512 points; and to a public available data set.

Table 6.2 shows the MSE for thresholding with different methods, calculated as

the average MSE in B = 1000 Doppler signals, with independent noise and different

variance. In bold, the worst and best MSE for each signal. It is evident that FDR and

tFDP (0.1) control is better than universal thresholding for small noise levels, while it

outperforms our methods in case of high noise, when the signal is hard to reconstruct.

Figure 6.2 shows the Doppler function, and one Doppler signal for each of the three

noise levels. Figure 6.3 shows the estimated functions, with best thresholding method

on the first column for the three noise levels, and the worst on the second column of

graphs. It is evident that multiple testing methods do a much weaker denoising than

universal thresholding, thus not losing information about the signal when the noise is

not strong.

σ = 0.05 0.1 0.25

Hard universal, j0 = 3 0.009174 0.01033 0.0176

Hard universal, j0 = 5 0.001612 0.00525 0.0128

Soft universal, j0 = 3 0.019078 0.02027 0.0283

Soft universal, j0 = 5 0.006469 0.00756 0.0647

BH 0.001610 0.00471 0.0323

Plug-in (Storey) 0.001614 0.00473 0.0324

Plug-in (Iterative) 0.001611 0.00472 0.0323

DKW (Storey) 0.0016165 0.00458 0.0318

p(1)-approach 0.0016432 0.00458 0.0321

Gen. Aug., q := q/2 0.001609 0.00466 0.0319

Table 6.2: MSE for thresholding Doppler signal with independent noise

Table 6.3 shows the MSE for thresholding with different methods, with dependent

noise. The usual simplified exponential dependency structure was used5, with parameter

τ = 20. In bold, the worst and best MSE for each signal. Note that BH and Plug-in with

5Note anyway that the mapping between distance of the points and covariance is partly lost, since

the function is in one (and not two) dimensions. In next section, this link will not be lost.
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Figure 6.2: Doppler function and signals

iterative estimator approaches, work in light of the results of Chapter 3 (the association

hypotheses), while p(1) and gen. aug. approach work in light of the results of Chapter

5. Figure 6.4 shows the Doppler function, and one Doppler signal for each of the three

noise levels. Figure 6.5 shows the estimated functions, with best thresholding method

on the first column for the three noise levels, and the worst on the second column of

graphs.

Same results are observed using the other infamous test functions: Blocks, Bumps,

Heavisine, Jumpsine; with Blocks function showing a preference for multiple testing

methods till much larger values of σ. This is so because universal thresholding is seen to

be preferred when the signal-to-noise ratio is small and the signal is not distinguishable

any more. Blocks signal is particularly robust to noise.

We will now apply the methods that proved best to thresholding wavelet coefficients

on a real data set. The data were obtained from Silverman (1985) and describe the

recorded head acceleration of a motorcycle after an accident, as a function of time in

milliseconds since impact. A few tricks are needed to fit this data: we will first dilate
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Figure 6.3: Best and worst estimated signals

the data on an equally spaced x-axis, and add zeros at the beginning and end of the

data set to make the length of the acceleration vector a power of 2. These zeros will not

be counted in the estimate of the standard deviation, calculated with the usual robust

estimator, and in thresholding with multiple testing approaches. Then, we will get rid

of the initial and final zeros, and dilate back the data and estimated function on the

original scale. Figure 6.6 shows the data and the estimates.

6.2.2 Image Reconstruction

We will apply our methods, in this subsection, to a test image downloaded from the

Internet, used also by Allen Gersho’s lab at the University of California, Santa Bar-

bara, and digitalized to 256*256 pixels, shown in Figure 6.7. Figure 6.8 shows the noisy

image, with independent Gaussian noise added, and the denoised image with univer-

sal hard thresholding, j0 = 5; Plug-in thresholding with iterative estimator and DKW

thresholding. Figure 6.9 shows the same, for dependent noise. The noise was sampled in

64 blocks of 32*32=1024 dependent Gaussian random variables, with usual simplified-
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σ = 0.05 0.1 0.25

Hard universal, j0 = 3 0.009349 0.01074 0.0195

Hard universal, j0 = 5 0.004353 0.00567 0.0164

Soft universal, j0 = 3 0.019106 0.02036 0.0289

Soft universal, j0 = 5 0.006570 0.00790 0.0167

BH 0.002035 0.00619 0.0444

Plug-in (Storey) 0.002028 0.00620 0.0444

Plug-in (Iterative) 0.002018 0.00618 0.0444

Type I DKW (Iterative) 0.002248 0.006192 0.0444

Type II DKW (Iterative) 0.002016 0.006184 0.0444

p(1)-approach 0.002413 0.006193 0.0444

Gen. Aug., q := q/2 0.002037 0.006195 0.0444

Table 6.3: MSE for thresholding Doppler signal with dependent noise

Universal, j0 = 5 Plug-in (iterative) (Type II) DKW (iterative)

Independent Noise 0.218 0.150 0.145

Dependent Noise 0.217 0.161 0.159

Table 6.4: Mean Square Errors for Image Reconstruction Example

exponential covariance structure, with τ = 20. It is apparent that in this case the

universal thresholding proves too severe, resulting in bad quality of the image after de-

noising. Mean square errors are shown in Table 6.4. The lowest MSE in the independent

case is achieved by DKW approach with iterative estimator. In the dependent case, the

lowest MSE is achieved by Type II DKW approach as derived at page 69. Note that in

image compression problems no noise, or very high signal-to-noise ratio, is assumed. In

this case, MTP thresholding is strongly advisable for high quality results.

6.3 Multivariate Linear Regression

Multivariate linear regression is a basic tool in data analysis, and a basic textbook topic.

The number of purposes and applications in which this kind of tool is used is very large.

A linear model is fitted to predict a response variable from many covariates. For each

covariate, a test is done on the estimated coefficient in order to determine whether

it is significantly different from zero, thus indicating a linear relationship between the

corresponding covariate and the response. It is well acknowledged that, in general,

the covariates are dependent, which leads often to problems of multi-collinearity. It is

all the same well acknowledged that, if the covariates in the model are only “almost”

significant, this is not a big problem in the model fitting. It is not uncommon to see

linear models in which covariates that have been declared not significant are kept in the
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Figure 6.4: Doppler function and dependent signals

model, for various reasons.

The problem of model selection is historically dealt with, and there is also very re-

cent research on the choice of which variables to include in a model (Efron et al. (2004),

Barbieri and Berger (2004); and references therein). We focus here on a much easier

problem: starting from a given model, determine if a single particular covariate of in-

terest is in a significant relationship with the response. There are many applications,

especially in biology, in which the researcher is more interested in the relationship be-

tween the response and a particular covariate than in a good fit. It is intuitive that, in

that case, an MTP is to be applied to get more confidence in the significance statement.

Note that in all cases the intercept is to be left out of the MTP, since it is clearly sig-

nificant, or clearly not significant if the data are standardized. An example is given in

the next subsection to clarify the idea.
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Figure 6.5: Best and worst estimated signals, under dependence

6.3.1 Determinants of Retinol levels in plasma

In Nierenberg et al. (1989) a large study is conducted on the determinants of plasma

levels of beta-carotene and Retinol, which are known to reduce the risk of developing

certain types of cancer. Hence, if a covariate is found to be in significant relationship

with plasma levels of Retinol or beta-carotene, it contributes to reduce the risk of certain

types of cancer. A linear regression is conducted with a large number of biological

covariates. A question of interest is whether smoking can reduce the concentration of

plasma levels of beta-carotene and Retinol.

In cases like this, it is intuitive that an MTP is to be preferred over uncorrected

testing, to have a more reliable statement on the significance of the particular covariate of

interest. In particular, for the Nierenberg et al. (1989) data, smoke (together with other

five covariates) is found significant at level 0.05, while using a Bonferroni correction only

age and dietary intake of beta-carotene are found to be significant on plasma levels of

Retinol. BH and Plug-in (Iterative and Storey) methods find four significant covariates,

but smoke (which is the fifth in p-value ordering) is not declared significant. DKW,
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generalized augmentation and p(1) approaches find two significant covariates. Hence,

from these data it is not sensible to conclude that smoking is related to decreased

plasma levels of Retinol.
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Appendix A

Proofs from Chapter 3

A.1 Proof of Lemma 3.1.3

∀ (s, t) ∈ R2 we have that

|Λj(t) − Λj(s)| ≤ |Ĝ(t) − Ĝ(s)|.

This is easily seen. For instance, let WLOG t > s and j = 1. We have that

1

m

∑
Hi[1{pi<t} − 1{pi<s}] ≤

1

m

∑
[1{pi<t} − 1{pi<s}],

since Hi can either be 0 or 1.

Hence we can prove the asymptotic equicontinuity of Λj(t) by applying the definition:

lim sup
n

Pr∗(sup
i

sup
s,t∈Ti

|Λj(t) − Λj(s)| ≥ ε) ≤ lim sup
n

Pr∗(sup
i

sup
s,t∈Ti

|Ĝ(t) − Ĝ(s)| ≥ ε) ≤ η

where Ti is an opportune partition of [0, 1].

A.2 Proof of Lemma 3.1.4

WLOG let ||Λ|| = |Λ0(t)| + |Λ1(t)|. Let Ti be an opportune partition of [0, 1]

We have that

sup
i

sup
s,t∈Ti

||Λ(t) − Λ(s)|| =

sup
i

sup
s,t∈Ti

|Λ0(t) − Λ0(s)| + |Λ1(t) − Λ1(s)| ≤

sup
i

sup
s,t∈Ti

|Λ0(t) − Λ0(s)| + sup
i

sup
s,t∈Ti

|Λ1(t) − Λ1(s)|;

hence

lim sup
n

Pr(sup
i

sup
s,t∈Ti

||Λ(t) − Λ(s)|| ≥ ε) ≤ lim sup
n

Pr(sup
i

sup
s,t∈Ti

|Λ0(t) − Λ0(s)| ≥ ε/2)

+ Pr(sup
i

sup
s,t∈Ti

|Λ1(t) − Λ1(s)| ≥ ε/2) ≤ 2η.
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A.3 Proof of Lemma 3.1.5

We will use the Cramer-Wold device (see Van der Vaart (1998)) to prove the convergence

of the vector. We will assume any of the mixing conditions holds. If association holds,

it is straightforward to prove the results are the same. Let (c0, c1) ∈ R2. It is easy to

see that c0Λ0(t) + c1Λ1(t) is equal to

1

m

∑
(c0 +Hi(c1 − c0))1{pi<t}.

Define the sequence {ξi}i∈N to be:

ξi =

{
Hi if {i mod 2} = 0

pi if {i mod 2} = 1.

By definition, the sequence will be {p1, H1, p2, H2, p3, . . .}.
We have then that (c0 +Hi(c1 − c0))1{pi<t} = (c0 + ξ2i(c1 − c0))1{ξ2i−1<t}.

It is easy to see that the ξ sequence is still mixing, and the same conditions will

be true. In particular, called α′(n) the mixing coefficients for the ξis at lag n, under

Assumption 2 we have that
∑√

α′(n) ≤
√
C ′ ∑n

−3−δ′
2 < +∞. Hence, the series of the

partial sums
∑
ξi will be weakly convergent (see for instance Billingsley (1999)). Same

results are immediately proved under the other conditions.

Since (c0 + ξ2i(c1 − c0))1{ξ2i−1<t} is a measurable function which depends only on

finitely many coordinates of the vector {ξi}, the same results on the mixing coefficients

will hold for it (again, see Billingsley (1999)).

Hence 1
m

∑
(c0 + Hi(c1 − c0))1{pi<t}, opportunely rescaled, will converge in distri-

bution. By Cramer Wold device, also the two dimensional vector (W0(t),W1(t)) will

converge in distribution.

A.4 Proof of Theorem 3.1.6

By Condition 1 (Van der Vaart (1998)), Condition 2 (Yoshihara (1975)), Condition

3 (Yu (1993)), Condition 4 or 5 (Oliveira and Suquet (1995)), the empirical process√
m(Ĝ(t) − G(t)) will be convergent to a centered Gaussian random process1, with

covariance kernel given by:

K(s, t) = G(s ∧ t) −G(s)G(t) + 2
+∞∑

k=2

[P (p1 < s, pk < t) −G(s)G(t)].

Since the empirical process is convergent, Ĝ(t) is asymptotically equicontinouos and

∀ t1, . . . , tk the vector (Ĝ(t1), . . . , Ĝ(tk)) will converge in distribution.

1The convergence is to something very close to a Brownian bridge on the scale of G. The only

difference will be given by the covariance kernel, which will be the usual kernel to which is added a

convergent series.
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For Lemma 1, then also Λj(t), j = 0, 1 will be asymptotically equicontinuous and

by Lemma 2 (Λ0(t),Λ1(t)) will be asymptotically equicontinouos.

Moreover, by Lemma 3, ∀ t1, . . . , tk the vector [(Λ0(t1),Λ1(t1)), . . . , (Λ0(tk),Λ1(tk))]

will converge in distribution2.

Then, it happens that (W0,W1) will converge to a centered two-dimensional Gaussian

process. The covariance Kernel is obtained by direct calculation of E[Wi(s)Wj(t)],

i = 0, 1, j = 0, 1, and is given by

K2(s, t) =

[
K0,0(s, t) K0,1(s, t)

K1,0(s, t) K1,1(s, t)

]
,

where

K0,0(s, t) = (1−a)(s∧t)−(1−a)2st+2

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 0, Hk = 0)−(1−a)2st],

K0,1(s, t) = −(1 − a)saF (t) + 2

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 0, Hk = 1) − (1 − a)saF (t)],

K1,0(s, t) = −(1 − a)taF (s) + 2

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 1, Hk = 0) − (1 − a)taF (s)]

and

K1,1(s, t) = aF (s∧t)−a2F (s)F (t)+2
+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 1, Hk = 1)−a2F (s)F (t)].

The computations are tedious, not very complex and omitted for brevity.

Note now that Γ(t) = Λ0(t)
Λ0(t)+Λ1(t)

= r(Λ0(t),Λ1(t)); where

r(·, ·) : l∞ x l∞ → l∞.

For technical reasons, we restrict the Γ(t) process in [δ, 1], for any δ > 0. The

variance of Γ(t) is in fact infinite at t = 0. Let Q(t) = (1 − a)t/G(t) (refer to Section

3.1.2 for more details).

The function r(·, ·) is such that r((1 − a)U, aF ) = Q, and it is also Fréchet differen-

tiable at that point, with derivative:

r′(1−a)U,aF (V0, V1) =
aFV0 − (1 − a)UV1

G2
.

Hence, by functional δ-method,

√
m(Γ(t) −Q(t))

2It is straightforward, in fact, to extend the result of Lemma 3 to the vector case.
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will converge to the process defined by the evaluation of r′(1−a)U,aF (V0, V1) at the limit

of (W0,W1). Since this is nothing but a linear combination of the two elements of the

vector, with coefficients aF/G2 and −(1 − a)U/G2, it will be a Gaussian process on

(0, 1], with mean 0 and covariance kernel K3(s, t) given by:

a(1 − a)

G2(s)G2(t)
[(1 − a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)] +

2

G2(s)G2(t)
[a2F (s)F (t)

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 0, Hk = 0) − (1 − a)2st] +

− a(1 − a)sF (t)

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 0, Hk = 1) − (1 − a)saF (t)] +

− a(1 − a)tF (s)

+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 1, Hk = 0) − (1 − a)taF (s)] +

(1 − a)2st
+∞∑

k=2

[Pr(p1 < s, pk < t|H1 = 1, Hk = 1) − a2F (s)F (t)].

Again, the long computations are omitted. Hence, the FDR process centered at Q(t)

has a centered Gaussian limiting distribution with covariance kernel K3(s, t).

Applying again the functional δ-method we see that

√
m(Q̂(t) −Q(t)),

where Q̂(t) = (1 − a)t/Ĝ(t), will be convergent to a Gaussian process on (0, 1] with

covariance kernel

K4(s, t) =
Q(s)Q(t)

G(s)G(t)
(G(s ∧ t) −G(s)G(t) + 2

+∞∑

k=2

(P (p1 < s, pk < t) −G(s)G(t))),

and then also √
m(Q̂−1(u) −Q−1(u)) (A.1)

is convergent to a Gaussian process with covariance kernel

K5(s, t) =
K4(Q

−1(s), Q−1(t))

Q′(Q−1(s))Q′(Q−1(t))
.

Since TPI = Q̂−1(α), by applying the δ-method to (A.1) it can be seen that

√
m(TPI −Q−1(α))

will converge in distribution to a N(0, V ), with V = K5(Q
−1(α), Q−1(α)); and finally

that √
m(Q(TPI) − α)
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will converge in distribution to a N(0, (Q′(Q−1(α)))2V ). We cannot conclude now that

FDR→ α, since FDR is the expected value of the stochastic process Γ(t) evaluated at

the random point TPI . We need to make some further considerations: let now 0 < δ <

Q−1(α), and note that

|Γ(TPI) − α| ≤ |Γ(TPI) −Q(TPI)| + |Q(TPI) − α|
≤ sup

t
|Γ(t) −Q(t)|1{TPI<δ} + sup

t
|Γ(t) −Q(t)|1{TPI≥δ} + |Q(TPI) − α|

≤ 1{TPI<δ} +
1√
m

sup
t>δ

|√m(Γ(t) −Q(t))| + |Q(TPI) − α|

= OP (m−1/2)

Since 0 < Γ(t) < 1 for any m, the sequence is uniformly integrable.

Hence, E[Γ(TPI)] = α + o(1).
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Appendix B

Proofs from Chapter 5
(Some Famous Inequalities Under Dependence)

B.1 Hoeffding Inequality Under Dependence

The key part in the proof of Hoeffding Inequality under dependence is to see the thesis

of Lemma B.1.1, i.e., that E(et
P

Xi) ≤ ∏
E(etXi) for any t > 0. Note that under

association the reverse inequality is proved. A possible path is to request negative

association, as in Definition 5.2.1.

Lemma B.1.1. SupposeX1, . . .Xn is negatively associated. Then E(et
P

Xi) ≤ ∏
E(etXi)

for any t > 0.

Proof. Any non decreasing function of a vector of negatively associated random variables

is negatively associated. Hence, Cov(etX1 ,
n∏

i=2

etXi) ≤ 0, which implies E(et
P

Xi)) ≤

E(etX1)E(
n∏

i=2

etXi). Iteration of the argument yields the thesis.

Theorem B.1.2 (Hoeffding Inequality). Let X1, . . . , Xn be a negatively associated se-

quence of random variables. Let ai < Xi < bi, E(Xi) = 0. Let ε > 0. Then, for any

t > 0,

P (
∑

Xi ≥ ε) ≤ e−tε
∏

et2(bi−ai)
2/8

Proof. By Markov Theorem and by Lemma B.1.1,

P (
∑

Xi ≥ ε) = P (t
∑

Xi ≥ tε)

= P (et
P

Xi ≥ etε)

≤ e−tεE(et
P

Xi)

≤ e−tε
∏

E(etXi)

The rest of the proof is analogue to the proof of Hoeffding inequality for independent

random variables.
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Proofs from Chapter 5

(Some Famous Inequalities Under Dependence)

B.2 Vapnik-Cervonenkis Inequality Under Depen-

dence

We begin by proving an extension of the symmetrization lemma under dependence:

Definition B.2.1 (Separability). Let (Y (u), u ∈ U) be a family of random variables on

a probability space (Ω,F , P ). The family is called separable if there exists a countable

set U0 ⊆ U and a set E ∈ F such that

1. P (E) = 1,

2. for any ω ∈ E and for any u ∈ U there exists a sequence (uj, j ≥ 1) in U0 such

that Y (uj, w) → Y (u, w) for j → ∞.

Lemma B.2.2 (Simmetrization Lemma). Let (Y (u), u ∈ U) be a family of separable

random variables, and (Y ′(u), u ∈ U) an independent copy of (Y (u), u ∈ U) with the

same joint distribution for any u1, . . . , un (i.e., with the same dependency structure).

Let P (|Y ′(u)| > ε/2) ≤ 1/2 for any u ≥ U . Then:

P (sup
u

|Y (u)| > ε) ≤ 2P (sup
u

|Y (u) − Y ′(u)| > ε/2),

for any ε > 0.

Proof. If (Y (u), u ∈ U) is separable, then also (Y ′(u), u ∈ U) is. Moreover, there exists

a countable set U0 ⊆ U such that supu∈U |Y (u)| = supu∈U0
|Y (u)|. Let ui be the i-

th element of U0. Let A1 = {|Y (u1)| > ε}, and Ai = {Y (u1)| ≤ ε, . . . , |Y (ui−1)| ≤
ε, |Y (ui)| > ε} for i ≥ 2. Note that if |Y (ui)| > ε and |Y ′(ui)| ≤ ε/2 then |Y (ui) −
Y ′(ui)| > ε/2. We have:

1/2P (sup
u∈U

|Y (u)| > ε) = 1/2
∑

i∈U0

P (Ai)

≤
∑

P (Ai)P (|Y ′(ui)| ≤ ε/2)

=
∑

P (Ai, |Y ′(ui)| ≤ ε/2)

≤
∑

P (Ai, |Y (ui) − Y ′(ui)| > ε/2)

≤
∑

P (Ai, sup
u∈U0

|Y (u) − Y ′(u)| > ε/2)

≤ P (sup
u∈U

|Y (u) − Y ′(u)| > ε/2).

We will now prove a special case of Vapnik-Cervonenkis inequality under dependence.

We will restrict to a class of sets such that P (Xi ∈ A,Xj ∈ A) ≤ P (Xi ∈ A)P (Xj ∈ A)

for any A in the class. A class of this kind will be for instance the class of sets of the

form (−∞, z], for z real, under negative dependence for the random variables. This

class we will consider to derive our DKW-Type inequality.
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Lemma B.2.3 (Special Case of Vapnik-Cervonenkis Inequality). Let µ(A) = Pr(Xi ∈
A) and µn(A) = 1/n

∑
1xi∈A. Let A be a class of sets such that P (Xi ∈ A,Xj ∈ A) ≤

P (Xi ∈ A)P (Xj ∈ A) for A ∈ A, and that (µn(A), A ∈ A) is separable. We have that

Pr{sup
A∈A

|µn(A) − µ(A)| > ε} ≤ 4SA(2n)e−nε2/8

for any ε > 0, where SA(2n) is the shatter coefficient, i.e.,

SA(n) = maxx1,...,xn∈A |{{x1, . . . , xn}
⋂
A;A ∈ A}|.

Proof. Let X ′
1, . . . , X

′
n be an independent copy of X1, . . . , Xn, i.e. a vector of random

variables independent from the first one but with the same dependence structure. Let

σ1, . . . , σn be n sign variables. Let µ′
n(A) = 1/n

∑
1X′

i∈A. Main steps of the proof are

as follows:

1. Symmetrization. It is easy to see that under the assumptions

V [µn(A) − µ(A)] ≤ µ(A)(1 − µ(A))

n
. (B.1)

We have now that E[µn(A) − µ(A)] = 0, which implies V [µn(A) − µ(A)] =

E[(µn(A) − µ(A))2]. We have:

E[(µn(A) − µ(A))2] = E[1/n2
∑

ij

1Xi∈A1Xj∈A] − µ2(A)

= 1/n2
∑

ij

E[1Xi∈A1Xj∈A] − µ2(A)

= 1/n2
∑

ij

P (Xi ∈ A,Xj ∈ A) − µ2(A)

≤ 1/n2
∑

ij

P (Xi ∈ A)P (Xj ∈ A) − µ2(A),

where we used inequality (B.3) in the last step. Last expression is easily seen to

be equal to µ(A)(1 − µ(A))/n, as desired.

We can now apply Chebyshev inequality to random variable (µn(A) − µ(A)), to-

gether with inequality (B.1), to see:

P (|µn(A) − µ(A)| > ε

2
) ≤ 4

ε2
V [(µn(A) − µ(A))]

≤ 4

ε2

µ(A)(1 − µ(A)

n

≤ 1

nε2

≤ 1/2 ∀ n ≥ 2

ε2
.

We can then apply Lemma B.2.2, since we have separability. Hence, for n ≥ 2/ε2,

P (sup
A∈A

|µn(A) − µ(A)| > ε) ≤ 2P (sup
A∈A

|µn(A) − µ′
n(A)| > ε/2). (B.2)
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2. Randomization by sign variables. We have now that

P (sup
A∈A

|µn(A) − µ′
n(A)| > ε/2) = P (1/n sup

A
|
∑

σi(1Xi∈A − 1X′
i∈A)| > ε/2);

since (Xi ⊥ X ′
i, Xi

d
= X ′

i); which is the key in proving the fact that

[(1X1∈A−1X′
1∈A), . . . , (1Xn∈A−1X′

n∈A)]
d
= [σ1(1X1∈A−1X′

1∈A), . . . , σn(1Xn∈A−1X′
n∈A)],

since the symmetry is not altered by dependence.

More in detail, suppose n = 2. Let ki = {−1, 0, 1}. Let Yi = 1Xi∈A − 1X′
i∈A. We

have

Pr(σ1Y1 = k1, σ2Y2 = k2) = 1/4
∑

i1=−1,1

∑

i2=−1,1

Pr(i1Y1 = k1, i2Y2 = k2|σ1 = i1, σ2 = i2).

We have equality in distribution if Pr(Y2 = 1, Y1 = 1) = Pr(Y2 = −1, Y1 =

1) = Pr(Y2 = −1, Y1 = −1), Pr(Y2 = 0, Y1 = 1) = Pr(Y2 = 0, Y1 = −1) and

Pr(Y2 = 1, Y1 = 0) = Pr(Y2 = −1, Y1 = 0).

We will prove only that Pr(Y2 = 1, Y1 = 1) = Pr(Y2 = −1, Y1 = −1). The other

equalities follow from the same kind of calculations.

Pr(Y2 = 1, Y1 = 1) = Pr(Y2 = −1, Y1 = −1) ⇐⇒
Pr(Y2 = 1|Y1 = 1) = Pr(Y2 = −1|Y1 = −1) ⇐⇒

Pr(X2 ∈ A,X ′
2 /∈ A|X1 ∈ A,X ′

1 /∈ A) = Pr(X2 /∈ A,X ′
2 ∈ A|X1 /∈ A,X ′

1 ∈ A) ⇐⇒
Pr(X2 ∈ A|X1 ∈ A) Pr(X ′

2 /∈ A|X ′
1 /∈ A) = Pr(X2 /∈ A|X1 /∈ A) Pr(X ′

2 ∈ A|X ′
1 ∈ A),

And the last equality is true since we took X ′
1, . . . , X

′
n to be a copy of X1, . . . , Xn

with the same dependency structure.

Now, by induction, this can be extended to arbitrary n.

3. Conditioning. We will now condition on Xi and X ′
i: fix Xi = xi, X

′
i = x′i,

i = 1, . . . , n; and note that the random variable
∑
σi(1Xi∈A − 1X′

i∈A) is constant

on the sets A ∈ A having same intersection with {x1, . . . , xn, x
′
1, . . . , xn} (i.e., it

is now a discrete random variable with a finite number of possible values). Let

A∗ ⊆ A be a finite subclass of A such that

{A ∩ {x1, . . . , xn, x
′
1, . . . , xn};A ∈ A} = {A ∩ {x1, . . . , xn, x

′
1, . . . , xn};A ∈ A∗},

and that as A varies in A∗ the elements {A∩{x1, . . . , xn, x
′
1, . . . , xn}} are distinct.

We clearly have |A∗| ≤ SA(2n) and

sup
A∈A

∑
σi(1Xi∈A − 1X′

i∈A) = max
A∈A∗

∑
σi(1Xi∈A − 1X′

i∈A).
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We can now apply Hoeffding inequality to σi(1Xi∈A − 1X′
i∈A), i = 1, . . . , n, since,

conditionally on Xi and X ′
i, these are independent random variables with mean

zero and taking values in [−1, 1]:

P (|1/n
∑

i

σi(1Xi∈A − 1X′
i∈A)| > ε/2|Xi = xi, X

′
i = x′i, i = 1, . . . , n) ≤ 2e−n ε2

8 ∀ A ∈ A∗.

We can then note that:

P (max
A∈A∗

|1/n
∑

σi(1Xi∈A − 1X′
i∈A)| > ε/2|Xi = xi, X

′
i = x′i, i = 1, . . . , n) =

P (
⋃

A∈A∗

|1/n
∑

σi(1Xi∈A − 1X′
i
∈A)| > ε/2|Xi = xi, X

′
i = x′i, i = 1, . . . , n) ≤

∑

A∈A∗

P (|1/n
∑

σi(1Xi∈A − 1X′
i∈A)| > ε/2|Xi = xi, X

′
i = x′i, i = 1, . . . , n) ≤

2SA(2n)e−n ε2

8 .

4. Marginalization. Since the last inequality is true for any xi and x′i, it is true also

unconditionally. It is immediate to combine this result with result (B.2) to get

the thesis for n ≥ 2/ε2. If n < 2/ε2 it happens that 4e−nε2/8 ≥ 4e−1/4 > 1, so the

thesis is proved for any ε.

Theorem B.2.4 (DKW-Type Inequality). Let X1, . . . , Xn be a sequence of identically

distributed negatively associated random variables. Let F (z) be the CDF of X1, and

F̂ (z) the empirical distribution of the sequence X1, . . . , Xn. Then,

Pr{sup
z∈R

|F (z) − F̂ (z)| > ε} ≤ 4(2n+ 1)e−nε2/8.

Proof. Let A be the class of sets of the form (−∞, z] for z real. Remember in fact that

under negative association

P (Xi ≤ xi ∩Xj ≤ xj) ≤ P (Xi ≤ xi)P (Xj ≤ xj). (B.3)

For this reason, we can can simply apply Lemma B.2.3, since moreover the resulting

class is separable.

A good upper bound for SA(2n) is easily seen to be 2n+1, from which the thesis.

Note that the result is far from being optimal. Both the exponent nε2/8 and more

importantly the rate can probably be improved under the same assumptions.



112
Proofs from Chapter 5

(Some Famous Inequalities Under Dependence)

B.3 Vapnik-Cervonenkis Theorem Under Dependence

In this section we will derive another DKW-Type Inequality, by extension of Vapnik-

Cervonenkis theorem under dependence.

Lemma B.3.1 (Vapnik-Cervonenkis Theorem). Suppose X1, . . .Xn is a vector of neg-

atively associated identically distributed random variables. Let µ(A) = Pr(Xi ∈ A) and

µn(A) = 1/n
∑

1xi∈A. Let A be a class of subsets of Rd. We have that

E{sup
A∈A

|µn(A) − µ(A)|} ≤ 24/
√
n max

x1,...,xn∈Rd

∫ 1

0

√
log2 ∗N(r, A(xn

1 )) dr,

where A(xn
1 ) = {b = (b1, . . . , bn) ∈ {0, 1}n : ∃A ∈ A : bi = 1[xi∈A]} and N(r, B) is the

covering number.

Proof. Let X ′
1, . . . , X

′
n be an independent copy of X1, . . . , Xn, i.e. a vector of random

variables independent from the first one but with the same dependence structure. Let

σ1, . . . , σn be n sign variables. Let µ′
n(A) = 1/n

∑
1X′

i∈A.

E[sup
A∈A

|µn(A) − µ(A)|] ≤

(Jensen inequality plus law of iterated expectation)

E[supE[|µn(A) − µ′
n(A)||X1, . . . , Xn]] ≤

E[sup |µn(A) − µ′
n(A)|] =

(see below)

1/nE[sup |
∑

σi(1Xi∈A − 1X′
i∈A)|] ≤

1/nE[sup |
∑

σi1Xi∈A|] + 1/nE[sup |
∑

σi1X′
i
∈A|] =

2/nE[sup |
∑

σi1Xi∈A|] =

2/nE[E[sup |
∑

σi1Xi∈A||X1, . . . , Xn]]

The fourth step is true because

[(1X1∈A − 1X′
1∈A), . . . , (1Xn∈A − 1X′

n∈A)]
d
= [σ1(1X1∈A − 1X′

1∈A), . . . , σn(1Xn∈A − 1X′
n∈A)],

since the symmetry is not altered by dependence, as we saw in the proof of Lemma

B.2.3.

Now fix Xi = xi and study E[supA∈A |∑σi1xi∈A|] = E[ max
b∈A(xn

1 )
|∑σibi|].

The rest of the proof is analogue to the proof in Devroye and Lugosi (2001), pag.

21. Lemma 2.2 in Devroye and Lugosi (2001) is directly extendable to any kind of

dependent random variables since it relies only on Jensen inequality and basic algebra

inequalities.



B.3 Vapnik-Cervonenkis Theorem Under Dependence 113

Theorem B.3.2 (DKW Theorem). Let X1, . . . , Xn be a sequence of identically dis-

tributed negatively associated random variables. Let F (z) be the CDF of X1, and F̂ (z)

the empirical distribution of the sequence X1, . . . , Xn. Then,

E{sup
z∈R

|F (z) − F̂ (z)|} ≤ C√
n
,

where C is a universal constant less than or equal to 24
√

2π.

Proof. Let A be the class of sets of the form (−∞, z] for z real.

We will simply apply Lemma B.3.1.

A good upper bound for N(r,A(xn
1 )) is easily seen to be 1 + 1/r2 for any r ∈ (0, 1).

Finally, with direct calculation it is seen that
∫ +∞
0

√
log2N(r,A(xn

1)) dr ≤
√

2π;

which proves, by an application of Lemma B.3.1, that E[supz∈R |F (z)− F̂ (z)|] < C/
√
n,

with C ≤ 24 ∗
√

2π.

We now have an inequality for the expected supremum of the distance between the

empirical distribution and the marginal. We want to give an inequality for the tail of

this random variable.

A good way to convert inequalities for the expected value to exponential tail inequal-

ities is the following theorem, which we prove under our assumptions for dependence1:

Theorem B.3.3 (Bounded Difference Inequality). Suppose g(·) satisfies the bounded

difference assumption:

sup
x1,...,xn;x′

i∈A

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, (B.4)

for 1 ≤ i ≤ n, and any set A. Suppose the assumptions of Theorem B.1.2 are satisfied.

Then, for all t > 0,

Pr{|g(X1, . . . , Xn) − E[g(X1, . . . , Xn)]| ≥ t} ≤ 2e2t2/
Pn

i=1 c2i .

Proof. We will prove that

Pr{g(X1, . . . , Xn) − E[g(X1, . . . , Xn)] ≥ t} ≤ e2t2/
Pn

i=1 c2i . (B.5)

Similarly it can be proved that

Pr{E[g(X1, . . . , Xn)] − g(X1, . . . , Xn) ≥ t} ≤ e2t2/
Pn

i=1 c2i .

Combination of these two results yields the thesis.

We will use Theorem B.1.2 in this straightforward extension: let V and Z be such

that E[V |Z] = 0, and for some h(·) and c > 0,

h(Z) ≤ V ≤ h(Z) + c.

1The proof for independent random variables was derived in McDiarmid (1989).
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Then, for all s > 0,

E[esV |Z] ≤ es2c2/8. (B.6)

Call now V = g(X1, . . . , Xn) − E[g(X1, . . . , Xn)].

Call Hi(X1, . . . , Xi) = E[g(X1, . . . , Xn)|X1, . . . , Xi], and for any i define

Vi = Hi(X1, . . . , Xi) −Hi−1(X1, . . . , Xi−1).

Clearly, V =
∑
Vi and Hi−1(X1, . . . , Xi−1) =

∫
Hi(X1, . . . , Xi−1, x) Fi(dx). Define

moreover

Wi = sup
u
H(X1, . . . , Xi−1, u) −Hi−1(X1, . . . , Xi−1),

and

Zi = inf
u
H(X1, . . . , Xi−1, u) −Hi−1(X1, . . . , Xi−1).

Clearly, Zi ≤ Vi ≤ Wi with probability one, and

Wi − Zi = sup
u

sup
v

(H(X1, . . . , Xi−1, u) −H(X1, . . . , Xi−1, v)) ≤ ci,

by the bounded difference assumption. Therefore, by (B.6), for any i:

E[esVi |X1, . . . , Xi−1] ≤ es2c2i /8.

Finally, by Chernoff bound, for any s > 0:

Pr{g(X1, . . . , Xn) − E[g(X1, . . . , Xn)] ≥ t} ≤ E[e
s

nP
i=1

Vi

]

est

=
E[e

s
n−1P
i=1

Vi

E[esVn|X1, . . . , Xn−1]]

est

≤ es2c2n/8E[e
s

n−1P
i=1

Vi

]

est

≤ e−stes2
P

c2i /8,

by repeating the same argument n times. Choosing s = 4t/
∑
c2i yields inequality

(B.5).

We are now ready to prove our DKW-Type Inequality:

Theorem B.3.4 (DKW-Type Inequality). Suppose the assumptions of Theorem B.1.2

are satisfied. Then,

Pr{sup
z∈R

|F (z) − F̂ (z)| > ε+
24
√

2π√
n

} ≤ e−2nε2

.
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Proof. Let g(X1, . . . , Xn) = supz∈R |F (z)− F̂ (z)|. This function is easily seen to satisfy

the bounded difference assumption (B.4): by changing one Xi, g(·) can change by at

most 1/n. This implies ci = 1/n, and
n∑

i=1

c2i =
n∑

i=1

1/n2 = 1/n.

Therefore, by Theorem B.3.3,

Pr{g(X1, . . . , Xn) − E[g(X1, . . . , Xn)] ≥ ε} ≤ e−2nε2

.

By Theorem B.3.2,

E[g(X1, . . . , Xn)] ≤ 24
√

2π√
n

.

These two results are easily combined to see the thesis.
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Appendix C

Some Concepts of Dependence

In this Appendix we will very briefly summarize three concepts of dependence used in

the thesis.

C.1 Mixing

Main references on mixing are: Doukan (1994) and Billingsley (1999). Many different

notions of mixing (α, β, ρ - mixing) are reviewed in Doukan (1994). We used in this thesis

conditions on the α-mixing coefficients, defined in (3.1) as α(k) = supj{|P (E1)P (E2)−
P (E1 ∩ E2)| : E1 ∈ Mj

1, E2 ∈ M+∞
j+k}; for a sequence (Xi)i∈N , where Mj

i is the

σ−algebra generated by the random variables {Xi, . . . , Xj}.
Mixing coefficients measure how fast the dependence between the random variables

decreases to zero as the lag between them increases. Conditions are in the form α(k) → 0,

usually at a specific rate, and are mainly used to prove limit theorems (see Arcones and

Yu (2000)).

Mixing is a general condition on dependence, often used in time series analysis,

which is by the way implied by less general and more easily proved conditions, like

m-dependence. A sequence of random variables is m-dependent of order h when Xi is

independent of Xi+h for any i. For other equivalent conditions, see Bradley (1993).

C.2 Positive/ Negative Association

A sequence of random variables is said to be positively (negatively) associated if for all

monotonically coordinate-wise non-decreasing functions g1 and g2,

Cov[g1(X1, . . . , Xn), g2(X1, . . . , Xn)] ≥ (≤) 0,

when it exists. Positive association is introduced in Esary et al. (1967) and negative

association in Kumar and Proschan (1983). Another good reference is Tong (1980),

and Block et al. (1982) for negative dependence. Main properties of a sequence of

117
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(negatively) associated random variables are: P (
n⋂

i=1

{Xi ≤ zi}) ≥ (≤)
∏
P (Xi ≤ zi) and

similarly P (
n⋂

i=1

{Xi > zi}) ≥ (≤)
∏
P (Xi > zi), for zi ∈ R, i = 1, . . . , n. Moreover, it is

straightforward to prove that E[
∏
Xi] ≥ (≤)

∏
E[Xi].

Multivariate normal random variables with all positive (negative) correlations are

(negatively) associated. Independent random variables are both positively and nega-

tively associated.

Examples of associated random variables

Multivariate exponential random variables, as defined in Marshall and Olkin (1967), are

always associated. A set of random variables X1, . . . , Xm is multivariate exponential if

F (x1, . . . , xm) = 1 − exp[−
m∑

1

λixi −
∑

i<j

λij max(xi, xj) +

−
∑

i<j<k

λijk max(xi, xj, xk) − . . .− λ12...m max(x1, x2, . . . , xm),

where λI , I ⊆ {1, . . . , m} is an opportune parameter. As noted also by Benjamini and

Yekutieli (2001), products of independent χ2 random variables are associated. The most

important example in our case is probably the one stating that t statistics arising from

two-sided testing are associated if the covariances of the normal random variables in the

numerator of the t statistic are all positive (again, see Benjamini and Yekutieli (2001)).

Examples of negatively associated random variables

Multinomial, Multivariate Hypergeometric, Dirichlet random variables are always neg-

atively associated. t statistics are negatively associated when they arise from two-sided

testing and the covariances of the normal random variables in the numerator are all

negative. For other examples, refer to Kumar and Proschan (1983).

C.3 Block Dependence

In many applications, variables are dependent in blocks; i.e., they are dependent of at

most a pre-specified number of rb random variables, while independent of all the others.

Formally, let X = {Xi,b}, i = 1, . . . , rb; b = 1, . . . , k be a sequence of random variables

such that Xi,b is independent of Xj,b1 for b 6= b1 and for any i and j.

If, as k goes to infinity, rb is bounded, then m-dependence is implied.



Bibliography

P. Abrahmsen (1997). A review of gaussian random fields and correlation functions.

Tech. Rep. 917 , Norwegian Computing Center.

F. Abramovich and Y. Benjamini (1996). Adaptive thresholding of wavelet coeffi-

cients. Computational Statistics and Data Analysis, 22, 351–361.

Affymetrix (1999). Affymetrix Microarray Suite User Guide. Affymetrix, Santa

Clara, CA.

U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and

A.J. Levine (1999). Broad patterns of gene expression revealed by clustering analysis

of tumor and normal colon tissue probed by oligonucleotide arrays. Proc. Natl. Acad.

Sci. USA, 96, 6745–6750.

D. Amaratunga and J. Cabrera (2004). Exploration and Analysis of DNA Mi-

croarray and Protein Array Data. Wiley.

M.A. Arcones and B. Yu (2000). Limit theorems for empirical processes under

dependence. In: Christian Houdre, ed., Chaos Expansions, Multiple Wiener-Itô
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Jona-Lasinio, la Prof. Salinetti, Marco Alfó, Marco Perone Pacifico, il Prof. Vichi e il

Prof. Dell’Olmo. Ringrazio i colleghi dottorandi, in particolare l’onorevole Sara Antig-

nani, e gli assegnisti, che non hanno mai fatto mancare un pronto aiuto, appassionanti

discussioni di Statistica, e una piacevole compagnia per staccare e farsi due risate. Un
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