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Introduction

”...re-entry...is perhaps one of the most difficult problems one can imagine...It is
certainly a problem that constitutes a challenge to the bestbrains working in these
domains of modern aerophysics...possible means [include]mass transfer cooling,
consisting of a coating that sublimates or chemically dissociates...”

-Theodore von Karman

Hypersonic aerodynamic heating

The matter of aerodynamic heating is an extremely importantaspect of hypersonic
vehicle design and the understanding and accurate prediction of surface heat flux
is a vital part of the study and design of a hypersonic vehicle. The kinetic energy
of a high-speed, hypersonic flow is dissipated by friction inside the boundary-
layer. The viscous dissipation that occurs within hypersonic boundary-layers can
produce very high heat-transfer rates to the surface. The surface itself must be
designed in order to sustain the heat flux without collapsingand to prevent the
heat load from damaging the underlying structure. Therefore surface heat transfer
is usually one of the dominant aspect that drives the design of hypersonic vehicles
and also of rocket nozzles. To understand why the aerodynamic heating becomes
so large at hypersonic speeds, we can derive some useful relations from the flat
plate theory.

The local heat-transfer coefficient can be expressed by any one of the several
defined parameters, such as theStantonnumberCh defined as follows:

Ch =
qw

ρeue(haw − hw)
(1)

whereqw is the heat transfer (energy per second per unit area) into the wall,haw

andhw are the adiabatic wall enthalpy and the wall enthalpy, respectively, and the
subscripte denotes local properties at the outer edge of the boundary layer. If
we consider the case of a flat plate parallel to the flow, these local properties are

1
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simply freestream values, namelyρ∞ andu∞. The wall heat flux is therefore:

qw = ρ∞u∞Ch(haw − hw) (2)

Assuming for simplicity a recovery factor of unity, the adiabatic wall enthalpy has
the following expression:

haw = h0 = h∞ +
u2
∞

2
(3)

whereh0 is the total enthalpy of the flow. Since at hypersonic speedsu∞
2/2 is

much larger thanh∞, from (3) we obtain:

haw ≈ u2
∞

2
(4)

Moreover, even if the surface temperature can be high in thiskind of application,
it is still limited by the material itself, i.e. it cannot exceed the melting or failing
temperature of the protection material. Hence, the surfaceenthalpyh0 is usually
much smaller thanh0 at hypersonic speeds. That is, using also (4):

(haw − hw) ≈ haw ≈ u2
∞

2
(5)

Substituting Eq. (5) into (2) we obtain the approximate relation:

qw ≈ 1

2
ρ∞u3

∞
Ch (6)

The main purpose of Eq. (6) is to demonstrate that aerodynamic heating increases
with the cube of flight velocity and hence increases very rapidly in the hyper-
sonic flight regime, such is the case of an atmospheric reentry. By comparison,
aerodynamic drag is given by:

D =
1

2
ρ∞u2

∞
SCD (7)

Hence, at hypersonic speeds, aerodynamic heating increasing much more rapidly
with velocity than drag, and this is the primary reason why aerodynamic heating
is a dominant aspect of hypersonic vehicle design.

Early Reentry Vehicles: Blunt Bodies and Ablatives

Although various people, including Wernher von Braun and other experts, had
studied spaceflight during the1940’s nobody began thinking about how a vehicle
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would actually return from space until the early1950’s. The few who did, like
von Braun, realized that probably the best way to do it was to build a very big
vehicle and circulate a fluid through its skin to soak up the heat of reentry. Clearly
the problem of reentry to Earth’s atmosphere was a significant challenge for the
early spaceflight researchers, as they considered how best to overcome the heat
generated by friction. However, not all reentry vehicles were spacecraft such as
the atomic warheads launched atop ballistic missiles. Theywould fly up in a
cannonball arc above most of the atmosphere and then come back through it at
around20 times the speed of sound, heating up tremendously.

Early research on missile reentry vehicles during the1950’s focused upon
long, needle-like designs. When tested in wind tunnels, so much heat was trans-
ferred to these vehicles that they burned up. Scientist H. Julian Allen at the Ames
Aeronautical Laboratory made a rather counter-intuitive discovery in1952: he
found that by increasing the drag of the vehicle, he could reduce the heat it gen-
erated. Much of the heat of reentry was actually deflected away from the vehicle.
The best designs were what Allen and another scientist, Alfred J. Eggers, called
”blunt-body” designs. Instead of needle-noses, they had blunt noses that formed
a thick shock wave ahead of the vehicle that both deflected theheat and slowed it
more quickly, thereby protecting the vehicle.

Figure 1: Prototype version of the Mk-2 reentry vehicle (RV).

Based upon this research, in1955 General Electric (GE) engineers began work
on the Mark 2 reentry vehicle (see Figure 1) for the Thor, Jupiter and Atlas mis-
siles. The Mark 2 was a blunt body design. Much of the heat was deflected
away from the vehicle via the shock wave. But some heat still reached the surface
through the superheated air that formed in front of the vehicle. Getting rid of this
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excess heat was a problem. GE decided to use the heat-sink concept, whereby the
heat of reentry was conducted from the surface of the vehicleto a mass of mate-
rial that could soak it up quickly. The key was to conduct the heat away from the
surface fast enough so that the surface material itself did not melt. GE’s engineers
tested several materials as heat-sinks, including beryllium, cast iron, and steel.
But the best proved to be copper. By putting a big mass of copper just below the
outer shell of the vehicle they could prevent the craft from burning up. Figure 2
shows the copper heat sink of the intercontinental ballistic missile. A1000 pound,
copper-clad 316 stainless steel shell was manufactured by electroforming, pos-
sessing an outer skin of nickel and a reflective platinum finalsurface. The design
was the precursor for the manned Mercury flights with beryllium heat sinks and
the subsequent Gemini and Apollo flights, which had head shields instead of heat
sinks, but the same blunt shapes.

Figure 2: The copper heat sink of the intercontinental ballistic missile (ICBM).

The Mark 2 had what was called a low ballistic coefficient, orbeta. The ballis-
tic coefficient was a calculation of weight, drag and cross-section. Vehicles with a
high beta, usually slender and smoother and with less drag, travelled through the
upper atmosphere without decelerating much and did most of their slowing down
in the thick-lower atmosphere. They took longer to slow downand generated less
heat, but experienced this heat over a longer period of time.GE’s Mark 2 had
a low beta. It was a flattened cone on its leading edge. It spenta lot of time in
the upper atmosphere, trailing a stream of ionized gas that showed up on radar,
which was not good for a warhead. Although this design was adequate, it was not
ideal. What ballistic missile designers wanted was a vehicle that travelled as fast
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as possible through the atmosphere so that it could not be intercepted. A high-
beta vehicle was the best choice. GE engineers doubted that heat-sink technology
would work for a high-beta vehicle. In addition, the heat-sink concept was heavy
and the copper took up valuable payload weight.

The heat-sink’s drawbacks became even more apparent when itwas consid-
ered for a space vehicle. First, a space vehicle would reenter at a faster velocity
than a ballistic missile and so it would get much hotter that the missile, requiring
more copper, and perhaps other means of transferring the heat away from the sur-
face. In addition, all that weight was prohibitive. Even worse, the extra-weight
had cascading effects. Not only would all that copper require more fuel to get it
into orbit, but it would require more fuel to get it out of orbit. An even bigger
problem was the high-temperature reached by the heat-sink itself, which could be
sustained by a warhead but not by a human being. A reentry at much higher ve-
locities was needed for a lunar mission, but the metal composite heat-sink would
vaporize like a meteor. The aerodynamicist’s answer from experiments with gas
guns and theoretical calculations was the concept of ablation by vaporizing a pro-
tection material as the thermal barrier. This was the heat shield concept in oppo-
sition to the heat-sink concept.

By the mid-1950’s, GE engineers were designing lightweight, medium-beta,
reentry vehicles for missile warheads. GE engineers evaluated several different
concepts. One was transpirational cooling, which essentially boiled off a liq-
uid, using the change from liquid to gas to take away the heat.Another was
re-radiation, whereby the heat would be radiated away from the vehicle. Another
proposal was liquid metal cooling, whereby a liquid metal, such as mercury, was
circulated through the heat shield and conducted the heat away very efficiently.
But the most promising proposal was a technique called ablation. By 1956, some
researchers were noting that reinforced plastics had proven more resistant to heat-
ing than most other materials. They proposed using these plastics in the inlets of
supersonic cruise missiles. GE engineers realized that they could use this same
technique for reentry. They could coat the vehicle with a material that absorbed
heat, charred, and either flaked off or vaporized. As it did so, it took away the
absorbed heat.

The ablation technique worked for both spacecraft and ballistic missile re-
quirements, for low and high-beta reentry vehicles. Ablation reduced tempera-
tures. A blunt body, low-beta reentry vehicle returning from space could keep the
external temperature relatively low. Ablative material onthe vehicle would lower
this temperature even further. A streamlined, high-beta missile warhead, however,
would experience much higher heating for shorter periods oftime. But ablation
could also reduce this temperature as well, so that a missilewarhead could reen-
ter very fast and minimize its chance of interception, keeping cool by burning off
layers a special plastic. The key was selecting the right material. Ultimately, they
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decided upon a phenolic resin plastic. They decided to use a nylon cloth impreg-
nated with the phenolic resin and molded into the needed shape. Eventually, this
and similar materials were used to coat the surfaces of nuclear missiles warheads.

Figure 3: Mercury spacecraft ablative heat shield after recovery.

Figure 4: Charred ablative heat shield from the first KH-4 Corona mission.

The first Mercury spacecraft used a blunt body design and a heat sink, but later
versions used the blunt body design and an ablative surface (see Figure 3). GE
built an ablative semi-blunt (slightly rounded) reentry vehicle for Air Force and
CIA Discoverer/CORONA spacecraft (see Figure 4), which returned film from
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spy satellites. Other companies, such as AVCO, also developed ablative reentry
vehicles for missiles. Blunt body designs and improved ablative materials were
also used on the Gemini and Apollo spacecraft, advancing rapidly during1960’s.
By the end of the decade, other technologies and techniques for surviving the
tremendous heating of atmospheric reentry were developed.

Figure 5: SRM nozzle structure.

Figure 6: Ablative materials in SRM nozzles.

Ablation is affected by the freestream conditions, the geometry of the reentry
body, and the surface material. Ablation occurs during the reentry of planetary
expeditions or of ballistic projectiles and it occurs inside the nozzles of solid pro-
pellant rocket motors. Reentry vehicles range from blunt configurations, such as
the Apollo spacecraft, to slender sphere-cone projectiles. For low heating levels,
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low-temperature ablators such as teflon are used and for moredemanding reentry
conditions, graphites and carbon-based materials are often used.

Graphitic materials have received much attention in the last decades for ap-
plication to both planetary entry probe heat shields and ballistic missile nose tip
and heat shields. Ablation of graphite on atmospheric reentry continues to be ac-
tively studied, both to achieve greater fidelity of simulation and to support new
concepts. Moreover carbon/carbon composites and other graphitic materials have
found increasing use in the manufacture of nozzles for solid-propellant rocket mo-
tors (see Figures 5 and 6) because of their high-temperatureresistance, excellent
thermal and physical properties as well as low densities. Inthis work, graphite
was selected as the ablative material.

Ablative materials

Upon exposure to ballistic reentry and rocket nozzle environments, heat-protection
materials are subjected to severe thermal and mechanical conditions. Various ther-
mal protection systems (heat sink, transpiration cooling,ablation) have been pro-
posed and investigated quite extensively, especially fromthe experimental view-
point. Among them, ablative thermal protection systems (TPS), which are char-
acterized by the sacrificial removal of the surface materialfor the protection of
the underlying structure, have been widely applied to reentry vehicles and solid
rocket nozzles. Ablative TPS must be designed to keep the excessive heat from
damaging the vehicle or its contents with a minimum weight penalty.

The thermochemical response of ablation materials to high-temperature chem-
ically active flows has been the subject of numerous theoretical and experimental
investigations. A principal goal of most of these studies has been the formula-
tion of a rational material selection process for particular imposed (or proposed)
missions. In general, investigations have been characterized by the type of ab-
lation material and the environment to which exposure is considered. The four
principal material categories are (1) high-temperature, chemically homogeneous
materials which are consumed as a combined result of chemical attack and sub-
limation at the exposed surface (e.g., graphite), (2) composite ablation materials
which decompose in depth to form a high-temperature char layer, (3) inorganic
glassy materials, such as quartz and silica, which ablate due to the combined effect
of vaporization, chemical reactions, and liquid removal, and (4) low-temperature
organic ablators such as teflon. The environments considered include those re-
sulting from ballistic or manned entry into the earth or other planet’s atmosphere
and solid (typically) or liquid rocket propellant combustion. Chemical reactions
play a significant, if not dominant, role in establishing theablation and energy
transfer rates at the heated surface of most of the resultantmaterial-environment
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combinations. Principal emphasis is usually directed toward the first two ma-
terial types, which are often referred to asnon-charringandcharring ablators,
because of their relatively greater role in space exploration and space propulsive
applications. TheCharring materials are made of a filler (usually a resin) and a
reinforcing material (usually carbon). When heated, the resin experiences a se-
ries of chemical reactions that release gaseous by products(pyrolysis) leaving a
layer ofchar or residue. Gas pressure in the pyrolysis zone forces the pyrolysis
gas to flow through thechar into the boundary layer. Thechar itself can recede
due to chemical or mechanical action by the boundary layer. For anon-charring
ablator (such as carbon-carbon), instead, mass loss occursonly by surface abla-
tion and mechanical erosion. Pyrolysis is an internal decomposition of the solid
which releases gaseous species, whereas ablation is a combination of processes
(thermo-chemical and/or mechanical) which consume the heat-shield surface ma-
terial. Both thecharring andnon-charringablators sacrifice some TPS material
to divert the energy that would otherwise enter the vehicle.

Figure 7: Energy fluxes over an ablating surface.

Figure 7 illustrates the general physico-chemical interactions between an ab-
lating wall and the boundary-layer. The boundary-layer canheat up the surface
due to convection and radiation from the hot-gases. Moreover, due to the pres-
ence of chemical reactions at wall, there are gradients of concentrations inside
the boundary-layer. These concentration gradients generate a net heat flux due
to species diffusion. The heat flux toward the surface is partly convected inside
the material and partly re-radiated from the hot surface1. The chemical reactions
between the solid TPS wall and the boundary-layer generate gaseous products
which are injected in the boundary-layer. The chemical reactions are typically
endothermic and absorb part of the incident heat; moreover,the injection of abla-
tion product (the so-called “blowing”) produces a cooling of the boundary-layer

1which can reach temperatures over3000 K.
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and therefore reduce the convective heat flux to the wall. Forstrong blowing, the
reduction of convective heat flux (the so-called “blockage effect”) is the primary
mean to reduce the energy transmitted to the underlying structure. The friction
forces at wall can also produce a mechanical erosion of the surface (called “spal-
lation”). In this case, fragments of material are ejected from the TPS due to impact
or stress. Since this phenomena is highly inefficient, TPS materials are usually re-
inforced in order to withstand the high thermo-mechanical stresses caused by the
external environment.

The analysis of this work is directed toward the general characterization of
thermo-chemical interaction between a non-charring ablation material (carbon-
carbon or graphite) and its environment of arbitrary chemical composition. The
ablation model considered is based on thermo-chemical ablation. Thermo me-
chanical ablation or spallation is neglected in this work because many researchers
[11, 21, 31, 37, 45, 63] have concluded that the thermo-chemical erosion of graphite
is the primary reason for the TPS recession.

CFD methods for ablating systems

Heatshields of spacecraft for planetary missions typically use thermal protection
system (TPS) materials which ablate at high temperature formass-efficient rejec-
tion of aerothermal heat load. A reliable numerical procedure that can compute
surface recession rate, mass loss, surface heat flux, and internal temperature time-
histories under general heating conditions is essential for the design and sizing of
ablating spacecraft TPS materials.

An accurate prediction of the thermal response of TPS materials is essential
to successfully carry out the design of an optimum TPS. In recent years, compu-
tational fluid dynamics (CFD) technology has continued to develop in the areas
of non-equilibrium flow, multispecies kinetics, and multidimensional full Navier-
Stokes capabilities. However, most codes uses primitive surface boundary con-
ditions and cannot be realistically used to predict the aerothermal heating for the
design of TPS [51]. In fact, CFD codes typically treat fluid/solid boundary con-
ditions in a simplified manner and mass transfer is often not considered. Current
methods focus their attention on some aspects of the problemat the expense of
others [39, 18]. Thus aerodynamic methods concentrate on the flowfield, and rely
on other methods to provide material-response characteristics; on the other hand,
material-response methods concentrate on surface ablation and heat conduction
in the material, using simplified models to provide the aerothermodynamic heat-
ing. However, in reality all these phenomena are highly coupled. Moreover, the
heat flux to the ablating surface is often computed based on the input non-ablating
heat-transfer coefficients and empirical blowing-reduction parameters to account
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for the blockage effect from ablation products [32]. The uncertainty in this esti-
mated ablating surface heat flux is high, and the predictionsof surface blowing
rate and temperature can be inaccurate and consequently less reliable. Thus, in
order to improve estimating of the heat flux over an ablating surface, a flow solver
coupled with ablating surface conditions becomes a requirement. This goal can be
achieved by considering that the surface energy and mass balances, coupled with
an ablation model, provide complete thermochemical boundary conditions for a
solution of the fully coupled fluid-dynamics/solid-mechanics problem [15].

In this study, a general surface boundary condition with mass and energy
balance coupled with a surface thermochemistry ablation model is developed
for equilibrium gas states adjacent to anon-charring(graphite) ablating surface.
Based on this formulation, a surface thermochemistry procedure is developed and
integrated with a Navier-Stokes solver.

Structure of the work

The work presented in this doctorate thesis represents the synthesis of the re-
search activities carried out by the author, during last years, at the Department of
Mechanics and Aeronautics of the University of Rome “La Sapienza”; results and
proceedings of these activities have also been presented ininternational meetings
and conferences [7, 8, 9].

The aim of this work is to present the formulation of a detailed physical-
mathematical model, and its numerical solution, for the analysis of the high-
temperature flow over anon-charring(graphite) ablating surface. As previously
mentioned, most flow solvers use simple surface boundary conditions and cannot
be realistically used to simulate the flowfield over ablatingsurfaces. The general
boundary conditions should include appropriate energy andmulti-species mass
balances together with a surface ablation model. However, rarely the available
Navier-Stokes solvers include complete boundary conditions to realistically de-
termine aerothermal heating and surface ablation rates. For aerothermal heating
predictions over ablating TPS, some CFD codes have been developed [63] with
surface mass and energy balances. Even when full Navier-Stokes approaches are
used, a film-transfer theory (based on bulk boundary-layer transfer-coefficients)
is often adopted to couple flow and material solutions via thesurface mass and
energy balances [15, 16, 63, 39]. In this work, efforts have been made in order to
completely remove the thin-film theory assumption thus avoiding all of the prob-
lems and inaccuracies associated with the approximation oftransfer coefficients.

The main objective is therefore to develop an accurate theoretical/mathematical
model to describe the complex fluid-surface interactions and to numerically inte-
grate it with a Navier-Stokes flow solver. The presentation of the work is orga-
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nized in two parts:

1. The first part deals with the analysis of the transient thermal response of
a graphitic TPS material exposed to a high temperature environment. The
basic problem is to predict the temperature history inside the material ex-
posed to some defined environment which supplies heat and which may
chemically erode the material surface. The transient material response is
dependent on the chemically reacting boundary-layer flow adjacent to the
surface, and vice versa. In this part, heat and mass transfer-coefficients are
employed to represent boundary-layer mass/energy transfer phenomena at
the ablating surface. The transfer coefficient approaches have proven to be
very useful for correlating theoretical as well as experimental results and
have been used extensively in the reentry aerothermodynamics community.
This simplified method has the advantage to have a reduced computational
cost and is the most widely used engineering approach for predicting abla-
tion.

• Chapter 1is dedicated to the description of the physical and mathe-
matical model developed to simulate the transient thermal response of
the TPS material. A one dimensional model is assumed.

• Chapter 2deals with the numerical technique adopted for the in-depth
computation as well as the computational strategy for obtaining the
coupled solution. Numerical results are also presented.

2. The second partdeals with the full Navier-Stokes computation of surface
ablation; such a computation requires detailed knowledge of complex inter-
actions between the solid surface and the ambient gas. This is expected to
be computationally intensive because a large number of chemical species
and reactions must be simulated. However, because CPU technologies are
significantly improved on an ongoing basis, hardware limitations may no
longer be a concern. The purpose of this part, which represents the core of
this work, is to obtain the full Navier-Stokes solutions with surface abla-
tion conditions for carbon-carbon materials, to perform parametric studies
to understand their performance, and to compare the resultswith simpler ap-
proaches. Because the entire flowfield is to be solved, the thin-film theory
assumption made in the first part is no longer needed, and all of the prob-
lems associated with the approximation of transfer-coefficients are avoided.

• Chapter 3is dedicated to the description of the thermodynamic model
adopted in the flow solver.

• Chapter 4deals with the description of the mathematical model and
numerical method for the Navier-Stokes solver.
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• Chapter 5is dedicated to the description of the ablation model and the
surface boundary conditions based on mass and energy balances at the
ablating wall.

• Chapter 6 is dedicated to the presentation and the discussion of the
results obtained by means of the developed tool. Supersoniclami-
nar solutions over flat plates with different environmentalgases and
boundary conditions are presented. Results are also compared with
the most widely used CFD approaches for this type of flows.

• Chapter 7describes the study of the erosion of carbon/carbon nozzle
material in solid rocket motor (SRM) environments. The tooldevel-
oped is used to numerically simulate the hot-gas flow inside the nozzle
taking into account the ablation process taking place at thenozzle wall.

• Chapter 8presents the conclusions of the work.





Part I

One-dimensional transient ablation
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Chapter 1

Physical approach to the ablation
problem

The transient thermal response of protective materials exposed to high-energy en-
vironments is a key issue to the design of internal thermal ofrocket combustion
chambers and nozzles or heat shield for reentry vehicles. The basic topic to in-
vestigate is the temperature history and distribution inside the protection material
when submitted to heat transfer. The solid material is ablating, i.e. it absorbs heat
by increasing its temperature and changing its chemical andphysical state. The
changes are usually accompanied by loss of surface material. This chapter deals
with the analysis of the transient thermal response of a graphitic thermal protec-
tion material exposed to a high temperature environment. The basic problem is
to predict the temperature history of a non-charring thermal protection material
exposed to some defined environment which supplies heat and which may chem-
ically erode the material surface. The general prediction problem may be divided
into two parts:

• in-depth behaviour computation

• heated surface boundary condition specification

In order to compute the in-depth response of the protection material, a transient
heat conduction calculation has to be performed; obviouslythe effect of surface
recession and ablation has to be taken into account and a proper surface boundary
condition has to be used.

1.1 Governing equations

Analysis of a complete transient non-charring material ablation problem neces-
sarily involves a computation of the internal thermal response of the protection

17



18 CHAPTER 1. PHYSICAL APPROACH TO THE ABLATION PROBLEM

material. This section presents the fundamental assumptions and equations in-
volved in the in-depth solution.

The theoretical model is based on the fundamental equation that governs the
physical events inside the protection material, i.e. the conservation of energy (es-
sentially the Fourier equation with a source term coming from surface recession
due to ablation). For the basic in-depth solution, it is assumed that thermal con-
duction is one-dimensional; however, the cross section area (perpendicular to the
heat flux) is allowed to vary with depth in an arbitrary manner. This correspond to
a thermal stream tube. Recent studies [20] have shown that one-dimensional treat-
ments of the in-depth response of the ablative material are generally appropriate.
The one-dimensional energy differential equation is readily formulated as:

ρ

(
∂hA

∂t

)

y

=
∂

∂y

(

kA
∂T

∂y

)

(1.1)

where they-frame is fixed to the initial solid surface (before recession starts) and
thus time independent. In Eq. (1.1)ρ is the solid density,h the solid enthalpy,k
the solid conductivity,T the solid temperature, andA the cross-section area.(.)x

indicates derivatives taken in the fixed frame. The first termin Eq. (1.1) is the
transientterm and the second is thediffusionterm.

1.2 Boundary conditions

Suitable boundary and initial conditions for the energy equation 1.1 may be read-
ily formulated. The boundary conditions at the front and back faces of the TPS
are usually surface energy balances. Of these, the front or ”active” surface is the
most complex. Basically, the surface energy balance may be pictured as:

Figure 1.1: Heat fluxes over an ablating surface.
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where the indicated control volume is fixed to the receding surface. Energy
fluxes leaving the control volume include conduction into the material [qcond], ra-
diation away from the surface [qradout

], energy in any flow of condensed phase
material such as liquid run-off and spallation [q∗], and gross blowing at the sur-
face [(ρv)whw]. Energy inputs to the control volume include radiation in from the
boundary layer [qradin

] and enthalpy fluxes due to solid material mass flow rates
[(ṁ)hs]. The final input in the sketch is denoted [qdiff ]. It includes all diffusive
energy fluxes from the gas boundary layer. If the in-depth response computa-
tion is being coupled to an exact boundary layer solution, the term [qdiff ] will
be available directly as a single term (which is, of course, acomplex function of
many boundary layer properties). If, on the other hand, the in-depth response is
being coupled to a simplified boundary layer scheme, such as aconvective film
coefficient model, then the term [qdiff ] has a rather complicated appearance. The
following sections contain a further discussion of this aspect of the total compu-
tation.

For the present, it suffices to note that computation of the surface energy bal-
ance requires the following information from the in-depth solution:

• a relation between the surface temperature and the rate of energy conducted
into the material,qcond

With this information the surface energy balance then determines the material con-
sumption rateṁ and the surface temperatureTw. It will be useful to keep in mind
that, from this point of view, the purpose of the in-depth solution at any instant is
to provide information aboutqcond(Tw). In some circumstances, of course, it is of
interest merely to specify the heated surface temperatureTw and surface recession
rateṡ = ṁ/ρ. In this case no surface energy balance is required.

It is usually of interest to have only one ablating surface. The back-wall or
non-ablating wall boundary condition may be modelled with afilm coefficient
heat transfer equation.

1.3 Conservation of energy in moving coordinate sys-
tem

Several approaches have been applied to simulate coupled ablation and conduction
problems. Some efforts involve allowing the surface nodes to move, while hold-
ing the interior nodes fixed, and removing the surface nodes when they come near
a neighbouring interior node [12]. Another one-dimensional approach, known as
the Landau transformation [41], transforms the spatial coordinate over the thick-
ness of the domain so that the transformed coordinate remains between zero and
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one [10]. Other approaches utilize the concept of attachinga grid to the ablating
surface [57], so that the nodal network is tied to the receding surface. The latter
approach is adopted in this work which involves a transformation of the energy
differential equation to a moving coordinate system and somewhat complicates
the algebra of the difference equation modelled on this differential equation. Dis-
posing of nodes from the front surface, however, often leadsto undesirable oscil-
lations. It is therefore convenient to base the difference formulation on a nodal
network fixed to the heated surface. Since the surface will bereceding, material
will appear to flow into and out of the nodes. The energy differential equation
presented in Eq. (1.1) thus requires a transformation to a moving coordinate sys-
tem to include this aspect of the problem and to provide the proper model for
differencing (described in the next chapter).

The energy equation is written first with respect to a spatially fixed coordinate
system (y), for this purpose, the following functional relationships holds:

h = h(T )

T = T (y, t)

A = A(y)

s = s(t)

wheres is the amount of surface recession. The moving coordinate system (x)
and the fixed coordinate system (y) are related tos by the following relation:

y = s + x (1.2)

from which:

∂y

∂t

∣
∣
∣
∣
x

=
∂s

∂t
= ṡ (1.3)

The differential equation governing the conservation of energy within the solid
was cited as Eq. (1.1):

ρ

(
∂hA

∂t

)

y
︸ ︷︷ ︸

storage

=
∂

∂y

(

kA
∂T

∂y

)

t
︸ ︷︷ ︸

conduction

(1.4)

To transform the above differential equation, which is written for a pointy =
constant, to an equation written for the moving coordinate system,x = constant,
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the storage term in the above equation may be related to its counterpart in the
moving coordinate system by expanding the energy change employing the chain
rule:

hA = hA(y, t)

d(hA) =
∂

∂y
(hA)tdy +

∂

∂t
(hA)ydt

Differentiating partially with respect to time at constantx yields:

∂

∂t
(hA)x =

∂

∂y
(hA)t

∂y

∂t

∣
∣
∣
∣
x

+
∂

∂t
(hA)y

Introducing Eq. (1.3) and rearranging obtains:

∂

∂t
(hA)y =

∂

∂t
(hA)x − ṡ

∂

∂y
(hA)t (1.5)

Substitution of Eq. (1.5) into Eq. (1.4) with the observation that partial differenti-
ation with respect tox or y at constant time is equivalent, result in the transformed
energy equation:

ρ
∂

∂t
(hA)x

︸ ︷︷ ︸

Term I

=
∂

∂x

(

kA
∂T

∂x

)

t
︸ ︷︷ ︸

Term II

+ ρṡ
∂

∂x
(hA)t

︸ ︷︷ ︸

Term III

(1.6)

The above terms will be considered separately below.

Term I

∂

∂t
(hA)x = h

(
∂A

∂t

)

x

+ A

(
∂h

∂t

)

x

(1.7)

It is convenient to express the enthalpy change rate in termsof temperature change
rate so that the above equation may be written as follows:

∂

∂t
(hA)x = h

(
∂A

∂t

)

x

+ Acp

(
∂T

∂t

)

x

(1.8)

Term II

Term II in Eq. (1.6) will not require any modification.
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Term III

For term III we have:

ρṡ
∂

∂x
(hA)t = ρṡh

(
∂A

∂x

)

t

+ ρṡA

(
∂h

∂x

)

t

(1.9)

Now A = A(y) alone, buty = x + s, ands = s(t) alone, so we may write
A = A(x, t):

dA =

(
∂A

∂x

)

t

dx +

(
∂A

∂t

)

x

dt

Differentiating partially with respect to time at constanty obtains:
(

∂A

∂t

)

y

=

(
∂A

∂x

)

t

(
∂x

∂t

)

y

+

(
∂A

∂t

)

x

But, sinceA = A(y) alone,∂A/∂t|y = 0. Also, sincey = x + s:
(

∂x

∂t

)

y

= −ds

dt
= −ṡ

Combining the above results in:

ṡ

(
∂A

∂x

)

t

=

(
∂A

∂t

)

x

(1.10)

Substituting Eq. (1.10) into (1.9) yields a new expression for Term III:

ρṡ
∂

∂x
(hA)t = ρh

(
∂A

∂t

)

x

+ ρṡA

(
∂h

∂x

)

t

(1.11)

Substitution of Eqs. 1.8 and 1.11 into the energy differential equation 1.6 yields:

ρcp

(
∂T

∂t

)

x

=
1

A

∂

∂x

(

kA
∂T

∂x

)

t

+ ρcp

(
∂T

∂x

)

t

ṡ (1.12)

The terms in equation Eqs. 1.12 represent, from left to right, the sensible energy
accumulation, the net conduction, and the net energy convected as a consequence
of coordinate motion. All terms are evaluated per unit volume. If the solid con-
ductivity is constant with temperature then Eq. (1.12) simplifies to the following
form:

(
∂T

∂t

)

x

=
1

A
α

∂

∂x

(

A
∂T

∂x

)

t

+ ṡ

(
∂T

∂x

)

t

(1.13)
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whereα = k/ρcp is the solid thermal diffusivity. If the cross section areaA is
also constant (planar surface), Eq. (1.12) assumes a still simpler form:

(
∂T

∂t

)

x

= α

(
∂2T

∂x2

)

t

+ ṡ

(
∂T

∂x

)

t

(1.14)

The finite difference formulation of the above derived differential equation is pre-
sented in the next chapter.

1.4 Conservation equations for the chemically re-
acting boundary-layer

The purpose of this section is to present the relations governing the conservation
of energy, mass, and chemical elements at the surface of an ablation material sub-
jected to the thermochemical erosion of an external highly energetic environment.
To consider the totality of the ablation process requires knowledge of:

1. The nature of the boundary-layer.

2. The in-depth response of the protection material.

3. The various surface balances which characterize the interface between the
material and its environment.

In the developments presented here, the emphasis will be placed upon the surface
balances. Because of the importance of the convective nature of the boundary-
layer upon these balances, some initial discussion of the boundary-layer relations
are presented. The boundary-layer equations are presentedfirst, approximate cor-
relation equations are then discussed and utilized to establish the equations for a
coupled solution of a charring ablator to the boundary layer, and finally, in the
next chapter, some results of the coupled solution are presented.

The boundary layer which envelops an ablating heat shield during super-orbital
reentry is intimately coupled with the transient ablation processes. In addition:

• it may be laminar, transitional, or turbulent on different parts of the body
and at various flight conditions.

• it may be highly non-similar, especially if there are changes of ablation
materials.

• the surface material may react chemically with the environmental gas, change
phase, and/or be removed mechanically by spallation or liquid-layer run-off.
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• Chemical reactions will generally also occur throughout the boundary-layer.

• The homogeneous and heterogeneous reactions may be kinetically con-
trolled.

• Incident radiant energy may be absorbed and emitted at different wave
lengths.

To obtain a better basis for the consideration of mass and energy transfer to a
wall, it is pertinent to consider the basic boundary-layer relations. In the present
section, only the laminar boundary-layer is considered in detail. The laminar
steady boundary-layer equations for two-dimensional flow can be expressed as:

• Continuity

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (1.15)

• Momentum

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂pe

∂x
+

∂

∂y

(

µ
∂u

∂y

)

(1.16)

• Species

ρu
∂yi

∂x
+ ρv

∂yi

∂y
= −∂ji

∂y
+ ẇi (1.17)

• Energy

ρu
∂h0

∂x
+ ρv

∂h0

∂y
=

∂

∂y

[

µ
∂(u2/2)

∂y
+

k

cp

∂h

∂y
−
∑

i

(

ji +
k

cp

∂yi

∂y

)

hi

]

(1.18)

• Equation of state

p = ρ
R
MT (1.19)

whereh0 =
∑

yihi +u2/2 is the total enthalpy of the mixture,ji is the diffusional
mass flux of speciesi, andẇi is the mass generation of speciesi per unit volume
as a result of chemical reaction. The diffusional mass flux ofthe ith species can
be expressed using the approximation of Fick’s law:

ji = −ρDim∇yi (1.20)

whereDim is the multicomponent diffusion coefficient.
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By the very nature of a chemical reaction, the mass fractionsof the individual
species are altered in such a reaction, and this fact is indicated by the inhomoge-
neous chemical production terṁwi appearing in the continuity equation for each
species. However, the mass fractions of the individual chemical elements (inde-
pendently of the chemical form in which they are found) are preserved in any
chemical reaction1, and these quantities are the natural counterparts of the total
enthalpy in the energy equation (1.18). Let us consider the species conservation
equation for chemical elements. This results directly fromEq. (1.17) upon ap-
plication of the Shvab-Zeldovich transformation (multiplication by the mass of
elementk in speciesi, αki, and summation over all species) [43]:

ρu
∂yk

∂x
+ ρv

∂yk

∂y
= − ∂

∂y

∑

i

αkiji (1.21)

Note that the chemical source terṁwi vanishes in the elemental approach. If the
diffusion coefficient are equal, the continuity of each element Eq. (1.21) becomes:

ρu
∂yk

∂x
+ ρv

∂yk

∂y
=

∂

∂y

(

ρD∂yk

∂y

)

(1.22)

Theyk are often referred to as pseudo-mass fractions.
The number of independent conservational equations (Eqs. (1.16), (1.17), and

(1.18)) isN + 2 whereN is the number of molecular or ionic species present.
The number of such species can be significant when chemicallyactive ablating
surfaces are involved. When diffusion coefficients are equal, the Shab-Zeldovich
transformation will reduce the number of equations toK + 2, whereK is the
number of elements present in the system. In addition, the species production
term is eliminated under this transformation.

The energy equation (1.18) can be expressed in a different form using the
PrandtlandLewisnumbers:

ρu
∂h0

∂x
+ ρv

∂h0

∂y
=

∂

∂y

(
µ

Pr

∂h0

∂y

)

+
∂

∂y

[

µ

(

1 − 1

Pr

)
∂

∂y

u2

2

]

+
∂

∂y

[

ρD
(

1 − 1

Le

)
∑

i

hi
∂yi

∂y

]

(1.23)

where2

Pr =
µcp

k
=

ν

α
Le =

ρDcp

k
=

D
α

1excluding nuclear transformations.
2note that theLewisnumber is also referred to asLe = k/ρDcp.
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Looking at Eqs. (1.22) and (1.23), it is interesting to note that whenLe = 1 and
Pr = 1 the total enthalpy and the mass fractions of the individual chemical el-
ements satisfy identical differential equations. The boundary-layer conservation
equations (momentum, Eq. (1.16), and energy, Eq. (1.23)), together with elements
conservation equations (1.22), constitutes a set ofK + 2 differential equations
which characterize the chemically reacting, multicomponent boundary-layer. In
the following section, simplified correlation equations are proposed to charac-
terize solutions of the above equations in terms of bulk boundary-layer transfer-
coefficients. These approximation relationships are utilized to develop a set of
equations requisite to obtaining a solution of ablation material response coupled
to boundary-layer material interactions at the ablating surface.

1.5 Transfer-coefficient correlation equations

The transient response of an ablative material is dependenton the chemically re-
acting boundary-layer flow adjacent to the surface, and viceversa. This mutual
dependence results in direct coupling between the ablationmaterial response and
the adjacent chemically reacting flow. Solution of this coupled problem has typ-
ically taken two avenues of approach, intimate coupling andtransfer coefficient.
While the first procedure yields the best solutions, the computer time required
to obtain a solution for routine design problems can be very high. The film or
transfer-coefficient approach attempts to simplify the problem by separating the
transient heat conduction procedure from a chemically reacting boundary-layer
procedure. In this method, heat and mass transfer-coefficients are employed to
represent the convective heat and mass transfer rates at theablating material sur-
face. Heat and mass transfer coefficient approaches have proven to be very useful
for correlating theoretical as well as experimental heat and mass transfer results
for chemically reacting boundary-layer flows.

In this section, simplified equations are described to correlate solutions of the
boundary-layer equations developed above. The form chosenfor correlation equa-
tions of the multicomponent boundary-layer is such that they should be valid for
a wide range of boundary conditions; that is, they include parameters appropriate
to transient ablation of thermal protection materials, both for arbitrary chemical
composition of the ablation material and boundary-layer edge gas.

1.5.1 Transfer-coefficient approaches

The transfer coefficient approach for representing boundary-layer heat and mass
transfer characteristics has been used extensively in the reentry aerothermodynam-
ics community. Basically, the approach is to relate wall fluxes to driving potentials
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by means of transfer-coefficients. Given specific definitions of the driving poten-
tials, the problem of representing surface heat and mass fluxes reduces to that of
evaluating the transfer-coefficients for a given situation. The usual approach has
been to start with a non-ablating heat transfer coefficient obtained by whatever
means available, to correct this coefficient for mass addition by use of a blowing
correction equation (obtained from simple boundary-layersolutions or from a cor-
relation of experimental data), and to calculate a mass transfer coefficient through
use of a relation between heat and mass transfer-coefficients.

1.5.2 Element conservation equation

Let us rewrite the element conservation equation (1.22) fora reacting boundary-
layer:

ρu
∂yk

∂x
+ ρv

∂yk

∂y
=

∂

∂y

(

ρD∂yk

∂y

)

(1.24)

For simple Couette flow (with constant properties and no pressure gradient), the
terms on the left-hand side vanish and the equation may be integrated directly to
yield the elemental mass flux at the wall,jw,k, in terms of the channel heightδ:

jw,k = ρeueCm(yw,k − ye,k) (1.25)

where the simple Couette flow mass-transfer coefficient isρeueCm = ρD/δ. The
subscriptw ande refer to properties evaluated at the wall and at edge of boundary-
layer, respectively. Thus, for simple Couette flow, the mass-transfer coefficient is
related directly to the diffusion coefficient,D. When the convective terms on the
left-hand side of the element conservation equation (1.24)cannot be ignored, the
transfer-coefficient driving-potential Eq. (1.25) is still appropriate for calculating
the elemental mass flux. The ”driving potential” is clearly represented by the mass
fraction difference across the boundary-layer(yw,k − ye,k), but the mass-transfer
coefficient must now include the effects of mass transfer by both convective and
diffusive mechanisms. Therefore, solution of equation (1.24) is often correlated
by an expression like (1.25) relating the diffusion mass fluxof elementk to the
product of a mass-transfer coefficient and mass fraction difference. The mass-
transfer coefficient is expressed as the product of the boundary-layer edge mass
velocity,ρeue, and a Stanton number for mass-transfer,Cm.

Equation (1.25) is the desired form for a transfer-coefficient approach to mass
transfer in the chemically reacting, multicomponent boundary-layer.

The mass-transfer coefficientCm is related approximately to the heat-transfer
coefficientCh (Stanton number) by:

Cm = Ch(Le)
2

3 (1.26)
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which is called the Chilton-Colburn relation. When the Lewis number is unity the
mass and energy transfer coefficients are equal and this corresponds to the fact that
the element and energy conservation equations (1.22) and (1.23) are identical with
the further assumption thatPr = 1 (in the following section we will show that
the effect of nonunity Prandtl number in the energy equationlies in the use of the
recovery enthalpy instead of the total enthalpy in the driving potential expression).

1.5.3 Surface mass balance

Consider the fluxes of chemical elementsk entering and leaving a control surface
fixed to the ablating surface. The graphite surface materialmay be visualized
as moving into the surface at a rateṡ. If it is assumed that no material is being
removed in a condensed phase (solid or liquid), then the surface and the fluxes of
thekth chemical element may be illustrated as:

Figure 1.2: Element mass fluxes over an ablating surface.

Terms subscripted byk represent the total mass fraction or flux of elementk,
independent of molecular configuration. Thus:

yw,k =

N∑

i=1

αkiyi,w jw,k =

N∑

i=1

αkiji,w

wherek pertains to elementk, i pertains to speciesi, andαki is the mass fraction
of elementk in speciesi. The subscripts denotes the surface material. Fluxes
of elementk away from the surface consist of boundary layer diffusion and gross
motion of the fluid adjacent to the surface due to the injection flux ṁ (rate of
consumption of surface material:̇m = ρsṡ). Note that for graphite surfaces the
quantityys,k is unity for k = C and zero fork 6= C (whereC represents the
element carbon). From the above sketch, requiring that chemical elements be
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conserved at the ablating surface, yields:

jw,k + (ρv)wyw,k = ṁys,k (1.27)

Summing Eq. (1.27) over all elementsk yields the total mass continuity equation
(for the case where there is no condensed phase material removal):

(ρv)w = ṁ (1.28)

The elemental mass balance at the surface of the ablation material is obtained
employing Eq. (1.25) to express the diffusional flux of element k in Eq. (1.27),
yielding:

ρeueCm(yw,k − ye,k) + ṁyw,k = ṁys,k (1.29)

1.5.4 Energy equation

When a gas contains more than one chemical species, heat energy is transported
not only by heat conduction but also by diffusion currents carrying chemical en-
thalpy. In two-dimensional or axially-symmetric flows of boundary-layer type the
rate of energy transport at wall is given by:

qw = −k
∂T

∂y
+
∑

ρyiuihi (1.30)

wherehi =
∫ T

0
cpi

dT + h0
i andh0

i is the heat of formation of theith species.ui

is the diffusion velocity of speciesi. In the important special case of a binary
mixture, Fick’s law states that:

ρyiui = −ρD∂yi

∂y
(1.31)

therefore:

qw = k
∂T

∂y
+ ρD

∑

hi
∂yi

∂y
(1.32)

Now the complete static enthalpy, which includes both the thermal and chemical
enthalpies, is defined by the relationh =

∑
yihi, so thatdh = cpdT +

∑
hidyi,

wherecp =
∑

yicpi
, and the expression forqw is rewritten as follows:

qw =
k

cp

[(
∂h

∂y
−
∑

hi
∂yi

∂y

)

+
ρDcp

k

∑

hi
∂yi

∂y

]

(1.33)

In other words, the relative magnitude of the heat energy transported by the two
processes depends on the ratio of chemical to thermal enthalpy, and also on the
parameterρDcp/k, which is the Lewis number. WhenLe = 1:

qw =
k

cp

∂h

∂y
(1.34)
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independently of the mechanism of heat transfer, or of the magnitude of the chem-
ical reaction rates in the mixture. Thus the heat transfer rate at the wall depends
principally on the enthalpy difference across the flow, and therefore, on the dif-
ferences in temperature and mass fractions. WhenLe = 1 the detailed chemical
reaction rates influence this heat transfer rate only through their effect on the trans-
port properties and on the mass fractions of the individual species at the surface.

An approximate correlation equation for the boundary-layer energy equation
can also be rationalized. If thePr = Le = 1 the energy equation (1.23) can be
written in the following form:

ρu
∂h0

∂x
+ ρv

∂h0

∂y
=

∂

∂y

(

µ
∂h0

∂y

)

(1.35)

By analogy to Eq. (1.24), solutions to (1.35) are conveniently expressed in terms
of a dimensionless heat-transfer coefficientCh where, remembering Eq. (1.40)3:

qw =

(
k

cp

∂h0

∂y

)

w

= ρeueCh(h0,e − hw) (1.36)

whereh0,e is the total enthalpy at the edge of the boundary-layer:

h0,e = he +
u2

e

2
(1.37)

For nonunity Prandtl and Lewis numbers, the transfer-coefficient formulation for
the boundary-layer energy flux is not straightforward as that discussed for the
mass transfer Eq. (1.25) in the previous section. This is because the boundary-
layer energy equation is no longer of the similar form as Eq. (1.24) and (1.35) and
thus a transfer-coefficient formulation cannot be justifiedpurely by analogy.

When thePrandtlnumber is not unity, the viscous dissipation and heat con-
duction terms in the boundary-layer energy equation (1.23)cannot be combined
(leading to Eq. (1.35)), thus rendering the equation inhomogeneous. Solutions to
this equation indicate that the driving potential in the transfer-coefficient expres-
sion for the surface heat flux should be defined in terms of a recovery enthalpy in
place of the actual boundary-layer edge total enthalpy of Eq. (1.36), leading to:

qw = ρeueCh(hr,e − hw) (1.38)

wherehr,e is the recovery enthalpy:

hr,e = he + rc
u2

e

2
(1.39)

3note that, at wall,∂h0

∂y

∣
∣
∣
w

= ∂h
∂y

∣
∣
∣
w

.
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whererc is the so-calledrecovery factorwhich is:






rc ≈
√

Pr for laminar boundary-layer

rc ≈ Pr
1

3 for turbulent boundary-layer

Note that forPr = 1, rc = 1, and Eq. (1.39) reduces to Eq. (1.36).
When theLewisnumber is not unity, the terms in the boundary-layer energy

equation (1.23) representing energy transfer by heat conduction and chemical
species diffusion cannot be combined, again rendering the equation inhomoge-
neous. The energy flux to the surface is given by Eq. (1.39) where the first term
characterizes the heat conducted to the surface as a result of the temperature gra-
dient in the gas adjacent to the surface, and the second term represents the effect
of endothermic and exothermic chemical reactions at the surface. The appropriate
transfer coefficient form of Eq. (1.39) is suggested in [35, 43, 69]:

qw = ρeueCh(hr − hw)e + ρeueCm

N∑

i=1

(ye,i − yw,i)hw,i (1.40)

In Eq. (1.40) the driving potential in the first term is the recovery enthalpy at the
boundary-layer edge minus the enthalpy of the boundary-layer edge gases frozen
at the edge composition and at the surface temperature, andhw,i represents the
enthalpy of chemical speciesi evaluated at the surface temperature. It can be
shown that forLe = 1 andCm = Ch, (1.40) collapses to (1.38) as expected4.
However whenLe 1, the heat and mass transfer coefficients are generally unequal
and a correlation frequently employed is represented by Eq.(1.26).

1.5.5 Surface energy balance

Consider the fluxes of energy entering and leaving a control surface fixed to the
ablating surface. For the no condensed phase removal ablation case being consid-
ered, these fluxes may be illustrated as in Figure 1.3.

At the surface heat energy is transported from the gas to the solid by conduc-

tion and diffusion at the rateqdiff =

(

k
∂T

∂y
+ ρD

∑

hi
∂yi

∂y

)

. At the same time

enthalpy is transported away from the interface by the normal current at the rate
(ρv)whw in the gas, and toward the interface at the rateṁhs in the solid. Energy
is also transported to the solid interior by thermal conduction (qcond). The energy
balance at the surface of an ablating material may be writtenutilizing Eq. (1.40)
to express the boundary-layer heat transfer by conduction and diffusion (qdiff ).

4Note that, in Eq. (1.40),
∑

i(ye,i − yw,i)hw,i = hw,e − hw.
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Figure 1.3: Heat fluxes over an ablating surface.

Referring to the above sketch, which depicts the primary energy transfer terms
appropriate to an ablating surface and requiring that energy be conserved at the
ablating surface, yields:

ρeueCh(hr − hw)e + ρeueCm

N∑

i=1

(ye,i − yw,i)hw,i

︸ ︷︷ ︸

qdiff

+ṁhs + qradin
=

= (ρv)whw + σǫTw
4 + qcond (1.41)

whereσǫTw
4 represents the surface re-radiation fluxqradout

.

1.5.6 Blowing correction of heat-transfer coefficient

The transfer-coefficient model has provided simple expressions for the diffusive
transport rates of mass and energy through the boundary-layer to the wall. To
employ the film coefficient formulation just described, firstly the heat-transfer
coefficientCh needs to be evaluated. Two practical problems must be settled in
this respect:

• How isCm related toCh?

• Can be bothCm andCh be specified as functions of edge conditions (i.e.
of time) independent of the subsequent problem solution (i.e. mass transfer
rates and body shape)?

In answer to the first question it may be stated that within thepresent formulation
it is adequate to take the ratioCm/Ch constant. The value of this constant is
a measure of the ratio of the mean mass transfer aspects of theboundary-layer
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to the mean heat-transfer aspects. For equal mass diffusioncoefficients, a vast
amount of experimental data suggest the correlationCm/Ch = Leγ just like in
Eq. (1.26).

The answer to the second question, changes ofCh with body shape (which
changes due to surface recession) are occasionally of interest and may be easily
accounted for. A more important problem concerns the dependence ofCh on the
actual rate of mass transfer. The value ofCh depends fairly strongly oṅm and the
heat transfer rate is reduced in this case by the well-known ”blocking effect” of
mass addition at the surface. If we denote theCh with ṁ asCh0

, this dependence
can be represented by the following blowing reduction equation:

Ch = Ch0

[
φ

eφ − 1

]

(1.42)

or

Ch = Ch0

[
ln[1 + 2λṁ/(ρeueCh)]

2λṁ/(ρeueCh)

]

(1.43)

where

φ = 2λṁ/(ρeueCh0
)

ṁ = amount of material injected into the boundary-layer

λ = blowing-rate parameter (empirical)

ρeueCh0
= nonablating (unblown) heat-transfer coefficient

ρeueCh = heat-transfer coefficient corrected for blowing

with λ = 0.5 both equations (1.42) and (1.43) reduces to the classical blowing
correction often expressed as [69, 32]:

Ch

Ch0

=
ln[1 + ṁ/(ρeueCh)]

ṁ/(ρeueCh)
(1.44)

which is useful for a wide range of problems.
Other values ofλ allows to fit blowing correction curves ofCh/Ch0

versus
ṁ/(ρeueCh) or ṁ/(ρeueCh0

) to account for special effects. In view of the un-
certainties it is usually recommended thatλ = 0.5 be used for laminar flow. For
turbulent flow aλ = 0.4 appears to be slightly better.

1.6 Ablation thermochemistry

In a hypersonic heating environment, non-charring TPS materials, such as carbon-
carbon and silica, lose mass only by ablation and melt/fail mechanisms. Detailed
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analysis of the performance of such TPS materials must consider the in-depth
energy equation, the surface mass and energy balances, and ablation modeling.
The latter aspect will be described in this section.

For non-charring TPS materials, several ablation models are available with
varying degrees of sophistication [51]. The least-generalablation model is aṅs vs
Tw model which specifies the recession rate as a function of surface temperature.
This empirical model relies on experimental data for ablation in the pressure range
of interest.

TheQ∗ model is the most common engineering-level model for ablation. In
this model,Q∗ is the effective heat of ablation:

ṁ = ṡρs = qw/Q∗ for Tw ≥ Tabl (1.45)

whereṁ is the ablation mass flux,ρs is the material density, andqw is the net
aerothermal heat flux. TheQ∗ model is most useful for hig-heating conditions
and for low-conductivity materials where steady-state recession is a good approx-
imation. This model cannot predict accurately the surface temperature history and
heat soak for a TPS material.

Thermochemical ablationis the most general and widely applicable TPS ab-
lation model [33, 34]. Thermochemical ablation models are obtained from a solu-
tion of the equations for thermodynamic equilibrium (typically) or non-equilibrium
between the TPS material and the atmosphere of interest, coupled with surface
mass and energy balances and boundary-layer transfer-coefficients. The net result
of the calculations is a set of thermochemical tables relating surface temperature
and pressure to the dimensionless surface mass flux owing to ablation. These
tables numerically represent a general ablation functionF(T, p, B

′

) = 0 for a
specific TPS material, such as carbon, and a specific boundary-layer edge gas,
such as air. In the thermochemical tables, the surface mass fluxes are nondimen-
sionalized with the mass transfer coefficient to define the dimensionless variable
B

′

= ṁ/ρeueCm. The shape ofB
′

curves depends on the material composition,
the choice of allowable surface and gas-phase species, the atmospheric composi-
tion, and whether or not kinetically limited reactions occur. Experience, insight,
and experimental data are all important ingredients in the development of accurate
thermochemical tables for a selected TPS material and environment. However,
once such tables have been generated, they are applicable over a wide range of
aerothermal heating conditions. The next section describes the thermochemical
ablation model for thermodynamic equilibrium at the surface.

1.6.1 ablation rate

In order to employ the surface mass balance (1.29) and surface energy balance
(1.41) to assess the material ablation rate, it is necessaryto consider the degree of
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chemical equilibrium at the surface, since the termsyw,i andhw depend strongly
on the molecular composition of the gases at the surface. Theresults presented
thus far are valid independent of the degree of chemical equilibrium achieved
in the boundary-layer and at the ablating surface. In this section, this degree of
generality will be abandoned in order to indicate how solutions to the equations
may be obtained for the limiting case of chemical equilibrium. Employing the
definition of a blowing parameter:

B
′

=
(ρv)w

ρeueCm
(1.46)

the surface mass balance (1.29) can be expressed as:

(1 + B
′

)yw,k = B
′

ys,k + ye,k (1.47)

and solving (1.47) for the total mass fractions of elementk at the wall yields:

yw,k =
B

′

ys,k + ye,k

1 + B′
(1.48)

The element flux balance (1.47) ensures that the correct elemental composition is
obtained in the gas phase at the surface. Given the relative amount of chemical
elements specified by (1.48), the chemical and thermodynamic state of the gases
adjacent to the ablating surface may be calculated from equilibrium relations.

Chemical equilibrium relations may be written consideringformation reac-
tions of each gaseous species from the elemental gaseous species. We consider
here an accounting of equations and unknowns for the case of equilibrium chem-
istry in the control volume across the ablative surface. Thecontrol volume con-
tains a mixture ofK elements includingN gaseous species andL condensed
species (solid or liquid), i.e. the surface species5. Some species may have negligi-
ble concentrations, but there must be at least one gaseous species containing each
element. To begin,K gaseous species are selected (denoted asNk) to represent
base speciesfor the elements in the system. Non-base gaseous speciesNi can be
represented by formation reactions of the base species:

∑

k

νkiNk → Ni (1.49)

whereνki is the number of atoms of elementk in a molecule of speciesi. Simi-
larly, for the formation of condensed phase species from thegaseous elements:

∑

k

νklNk → Nl (1.50)

5For a carbon-carbon (graphite) material there is only one condensed species which is solid
carbon.
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The equations of chemical equilibrium corresponding to Eq.(1.49) and (1.50)
may be written in terms of the equilibrium constantKp(T ) for each reaction. For
each gas-phase formation reaction [Eq. (1.49)], the following equilibrium relation
applies:

Kpi(T ) = pi

∏

k

pk
−νki ⇒ ln pi −

∑

k

νki ln pk = ln Kpi(T ) (1.51)

If chemical equilibrium is achieved between the gas phase and the surface material
(considered made of a single solid species), the following equilibrium relation
may be written introducing the temperature dependent equilibrium constants for
the condensed phase formation reactions:

Kpl(T ) =
∏

k

pk
−νkl ⇒ −

∑

k

νkl ln pk ≤ ln Kpl(T ) (1.52)

The equality in Eq. (1.52) implies the existence of condensed speciesl; if the con-
densed species is not present, the inequality applies. Whenconsidering systems
such the ablation of graphite in air, the surface is most certainly carbon.
Other easily defined quantities are the total pressure:

p =
∑

i

pi (1.53)

and the elemental gaseous mass fraction at the wall:

yw,k =
1

pM
∑

i

αkipiMi =
Mk

pM
∑

i

νkipi (1.54)

where the unscriptedM is the gas-phase average molecular weight.
In the absence of material failure, the unknown quantities in Eqs. (1.48),(1.51-

1.54) are theN gaseous partial pressurespi, theK mass fractionsyw,k, the tem-
peratureT , and the molecular weightM, for a total ofN + K + 2 unknowns.
The equations areN − K equilibrium expressions Eq. (1.51),K wall mass frac-
tions definitions Eq. (1.54),K elements flux balances Eq. (1.48), the pressure sum
Eq. (1.53), and one equilibrium expression for the condensed phase Eq. (1.52), for
a total ofN + K + 2 equations for closure of the equation set.

The simultaneous solution of Eqs. (1.48),(1.51-1.54) yields the surface tem-
perature and molecular composition of the gases adjacent tothe surface for a spec-
ified ablation rateB

′

and surface pressurep. By specifying a parametric array of
pressures and ofB

′

, a map of boundary conditions satisfying the mass balances
and equilibrium constraints is obtained. Figure 1.4 showsB

′

(T, p) for pure ther-
mochemical ablation (no material failure) of carbon in air.As the pressure is
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Figure 1.4: Dimensionless ablation rate for carbon in air.

increased, a higher surface temperature is needed to reach the same dimensionless
ablation rate. For any pressure, at the highest ablation rates, carbon sublimation is
the primary mass loss mechanism, andC3(g) is the predominant ablative species.
However, belowB

′

= 0.2, surface oxidation reactions dominate, andCO is the
major species leaving the surface. Figure 1.5 shows the predicted gas-phase mass
fractions at the surface6. C3 is the major ablative species only at the highest tem-
peratures and ablation rates. Whichever the surface temperature, the oxygen mass
fraction at the surface is always zero because it completelyreacts with solid car-
bon to form carbon monoxide.

The thermochemical tables may be employed in conjunction with the surface
energy equation (1.41) and relations describing the in-depth response of the abla-
tion material to obtain coupled solutions of the ablation problem.

1.7 Boundary-layer and material response coupling

The analysis of ablative-material thermal protection systems for highly energetic,
chemically active environments requires theoretical techniques to characterize the

6only the major ablating species are showed:CO andC3
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Figure 1.5: Surface chemical species for carbon ablation inair.

material thermal response and to represent the heated-surface boundary condi-
tion. In the previous sections, mathematical models have been described for rep-
resenting the transient thermal response of a non-charringablative material type
and for representing boundary-layer transport phenomena necessary for evaluat-
ing the heated-surface boundary conditions. Because an intimate coupling exists
between boundary-layer transport phenomena and ablative material thermal re-
sponse, the need for a coupled solution is apparent. The procedure described
herein employs correlation equations that relate surface conditions directly to
boundary-layer-edge conditions through the use of over-all convective transfer-
coefficients. A film coefficient model for boundary-layer heat and mass transfer
with chemical reactions has been derived for the governing differential equations
of the boundary-layer. Of the resulting transfer-coefficient expressions, those for
mass transport has been coupled to a chemistry routine to provide boundary con-
ditions for an in-depth response calculation. The boundaryinformation and the
in-depth calculation are coupled through the transfer-coefficient energy balance,
providing a complete link between the boundary-layer and the solid material.

The finite difference equations for the in-depth solution are developed and
presented in the next chapter, as well as the computational strategy for obtaining
the coupled solution.



Chapter 2

Numerical approach to the ablation
problem

Since the phenomenon presented in the previous chapter involves transient one-
dimensional heat conduction, the following sections will explain how to numeri-
cally model the heat transfer problem with ablation and how to couple the transient
solution to the transfer-coefficient boundary-layer model.

2.1 Finite-difference method for the in-depth solu-
tion

Let us consider the in-depth energy balance in the moving coordinate system ex-
pressed by Eq. (1.14):

∂T

∂t
= α

∂2T

∂x2
+ ṡ

∂T

∂x
(2.1)

which holds for a planar surface and constant thermal conductivity. The finite
difference expression for the simplified energy equation (2.1) will be described
for the sake of comprehension. The added complexity due to the variable area
and variable properties somewhat complicates the algebra of the difference form
of the equation (see Appendix C) but the solution philosophyremains the same.

2.2 Nodal coordinate layout

The basic solution procedure is of thefinite differencetype. Nodal position are
specified by defining the total number of node and their thickness (it is common
practice to concentrate the number of nodes near the ablating wall where the tem-
perature gradients are higher). In harmony with the shifting x-coordinate system

39
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introduced in section1.3, nodal coordinates are tied to the heated surface. The
following principles of nodal sizing have been followed:

• The nodes have a fixed size. This avoids the slight additionalcomputa-
tion complexity of shrinking nodes, and more importantly, makes the next
principle easier to satisfy, in addition to preserving a useful nodal spacing
throughout the history of a given problem.

• Since the nodes are fixed in size, not all of them can be retained if the sur-
face of the material is receding due to chemical erosion. From time to time
a node must be dropped, and experience shows that it is much more prefer-
able to drop node from the back (non-ablating) face of the material rather
than from the front ablating face in order to avoid numericalinstabilities.
This means that the nodal network is tied to the receding surface, and that
material appears to be flowing through the nodes. That is the reason why
the energy equation has been transformed to a moving coordinate system.

To this end, suppose the domain we will work on is rectangularwith x ranging
from xmin to xmax andt ranging from0 to T . Divide [0, T ] into I equally spaced
intervals att values indexed byi = 0, 1, ..., I, and[xmin, xmax] into N intervals
at x values indexed byn = 1, ..., N + 1. The length of these intervals is∆t in
the time direction and∆x in the spatial direction. In general the quantity∆x can
vary from node to node.

We seek an approximation to the true values of temperatureT at the(I +
1) × (N + 1) gridpoints. LetT i

n denote our approximation at the gridpoint where
x = xmin +n∆x andt = i∆t andT i+1

n denote our approximation at the gridpoint
wherex = xmin + n∆x andt = (i + 1)∆t. From now on, without the risk of
confusion, the quantitiesT i

n andT i+1
n will be referred to asTn andT

′

n, respec-
tively. The following sections will explain the numerical algorithm for solving the
energy equation for the case of planar surface, constant properties and constant
nodal size (∆x). This will help the reader in understanding the solving algorithm
structure and its coupling to the ablating surface mass/energy balances. The gen-
eral algorithm for the case of variable properties, variable cross-section area and
variable nodal size is reported in Appendix C.

2.3 Crank-Nicholson algorithm

The implicit finite difference scheme is based on the Crank-Nicholson algorithm,
which has the virtue of being unconditionally stable and also is second order accu-
rate in bothx andt directions. The first step is to approximate the partial deriva-
tives ofT at each gridpoint by finite difference expressions. The expression for
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Tt, Tx, andTxx are the following:

Tt =
T

′

n − Tn

∆t

Tx =
(T

′

n+1 − T
′

n−1) + (Tn+1 − Tn−1)

4∆x

Txx =
(T

′

n+1 − 2T
′

n + T
′

n−1) + (Tn+1 − 2Tn + Tn−1)

2∆x2

2.3.1 Interior nodes

Substituting the above into the Eq. (2.1), results in:

T
′

n − Tn

∆t
=

α

2∆x2

(

T
′

n+1 − 2T
′

n + T
′

n−1 + Tn+1 − 2Tn + Tn−1

)

+

+
ṡ

4∆x

(

T
′

n+1 − T
′

n−1 + Tn+1 − Tn−1

)

(2.2)

multiplying (2.2) through by4∆x2∆t to eliminate the denominators, and collect-
ing all the terms involving the unknownsT

′

n on the left hand side results in:

−(2α∆t − ṡ∆x∆t)T
′

n−1 + (4∆x2 + 4α∆t)T
′

n − (2α∆t + ṡ∆x∆t)T
′

n+1 =

(2α∆t − ṡ∆x∆t)Tn−1 + (4∆x2 − 4α∆t)Tn + (2α∆t + ṡ∆x∆t)Tn+1 (2.3)

for each interior noden = 2, N . It is apparent that theT
′

n cannot individually be
written as simple linear combinations of theTn, but are simultaneously determined
as the solution to this system of linear equations. Since equation (2.3) applies only
to the interior gridpoints, at each time step appropriate boundary conditions (e.g.
atxmin andxmax) have to be used to calculate all theT

′

n.

2.3.2 The surface node

We almost have a procedure for recursively determining the entire grid ofT
′

n start-
ing from the given initial values. Substitution of the difference expressions into
the differential equation only gave us a linear equation foreach interior point in
the grid. That givesN − 1 equation at each time step, which is not sufficient to
determine theN + 1 unknowns. The missing two equations must be provided by
boundary conditions applied at each time step. It would be desirable for these to
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be representable in a form that preserves the tri-diagonal form of the system and
thus the efficiency of the solution.

It will be recalled from the introductory section1.2 on boundary conditions
that one of the key purpose of the in-depth response solutionis to provide a func-
tion qcond(Tw). How this is finally accomplished will become clear in the next
section, but it is clear enough that the quantityqcond, which ultimately will be cal-
culated as a part of the surface energy balance, will play thecentral role in linking
the in-depth solution to the surface energy balance.

Therefore the energy input to the first node (n = 1) will be left simply asqcond,
which will replace the terms of the form:

(Tn+1 − Tn−1)

2∆x
= −qcond

k

(T
′

n+1 − T
′

n−1)

2∆x
= −q

′

cond

k

wherek is the material thermal conductivity. Thus we have the energy difference
equation for the first node as:

T
′

1 − T1

∆t
=

α

2∆x2

(

2T
′

2 − 2T
′

1 +
2∆x

k
q
′

cond + 2T2 − 2T1 +
2∆x

k
qcond

)

+

+
ṡ

4∆x

(

−2∆x

k
q
′

cond −
2∆x

k
qcond

)

(2.4)

multiplying (2.4) through by4∆x2∆t to eliminate the denominators, and collect-
ing all the terms involving the unknownsT

′

n andq
′

cond on the left hand side results
in:

(4∆x2 + 4α∆t)T
′

1 − (4α∆t)T
′

2 − 2
∆x∆t

k
(2α − ṡ∆x)q

′

cond =

(4∆x2 − 4α∆t)T1 + (4α∆t)T2 + 2
∆x∆t

k
(2α − ṡ∆x)qcond (2.5)

2.3.3 The last node

The energy equation for the last node (n = N + 1) must also be considered sepa-
rately. The last node does not of course conduct energy to an adjacent node. Hence
the conduction term is replaced by a temperature-potentialconvective transfer
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communicating with a ”reservoir” at temperatureTres:

(Tn+1 − Tn−1)

2∆x
= −hres

k
(Tn − Tres)

(T
′

n+1 − T
′

n−1)

2∆x
= −hres

k
(T

′

n − Tres)

wherehres is the heat-transfer coefficient with the external ambient.Thus we have
the energy difference equation for the last node as:

T
′

N+1 − TN+1

∆t
=

=
α

2∆x2

(

2T
′

N − 2T
′

N+1 − 2∆x
hres

k
T

′

N+1 + 2TN − 2TN+1 − 2∆x
hres

k
TN+1 + 4∆x

hres

k
Tres

)

+

+
ṡ

4∆x

(

−2∆x
hres

k
T

′

N+1 − 2∆x
hres

k
TN+1 + 4∆x

hres

k
Tres

)

(2.6)

multiplying (2.6) through by4∆x2∆t to eliminate the denominators, and collect-
ing all the terms involving the unknownsT

′

n andq
′

cond on the left hand side results
in:

− (4α∆t)T
′

N +

[

4∆x2 + 4α∆t + 2∆x∆t
hres

k
(2α + ṡ∆x)

]

T
′

N+1 =

(4α∆t)TN +

[

4∆x2 − 4α∆t − 2∆x∆t
hres

k
(2α + ṡ∆x)

]

TN+1 +

4∆x∆t
hres

k
(2α + ṡ∆x)Tres (2.7)

2.3.4 Tri-diagonal matrix form

The system made up of Eq. (2.3) fort the interior nodes and (2.5) and (2.7) for the
two boundary nodes has a very convenient structure. Writtenin a matrix form:














B1 C1 0 0 0 0 ... 0
A2 B2 C2 0 0 0 ... 0
0 A3 B3 C3 0 0 ... 0
0 ... ... ... 0
0 ... ... ... 0
0 ... 0 0 AN−1 BN−1 CN−1 0
0 ... 0 0 0 AN BN CN

0 ... 0 0 0 0 AN+1 BN+1





























T
′

1

T
′

2

T
′

3

...

...
T

′

N−1

T
′

N

T
′

N+1















=















D1

D2

D3

...

...
DN−1

DN

DN+1















(2.8)



44CHAPTER 2. NUMERICAL APPROACH TO THE ABLATION PROBLEM

The expressions for the coefficientsAn, Bn, Cn andDn are readily apparent from
the finite difference energy equations (2.3), (2.5) and (2.7). For the interior nodes:







An = −(2α∆t − ṡ∆x∆t)

Bn = (4∆x2 + 4α∆t)
n = 2, ..., N

Cn = −(2α∆t + ṡ∆x∆t)

Dn = −AnTn−1 + (4∆x2 − 4α∆t)Tn − CnTn+1

(2.9)

while for the first node:






B1 = (4∆x2 + 4α∆t)

C1 = −(4α∆t)

D1 = F(q
′

cond)

(2.10)

with

D1 = (4∆x2 − 4α∆t)T1 − C1T2 + 2
∆x∆t

k
(2α − ṡ∆x)(q

′

cond + qcond)

and for the last node:






AN+1 = −(4α∆t)

BN+1 =

[

4∆x2 + 4α∆t + 2∆x∆t
hres

k
(2α + ṡ∆x)

]

DN+1 = F(hres, Tres)

(2.11)

with

DN+1 = − AN+1TN +

[

4∆x2 − 4α∆t − 2∆x∆t
hres

k
(2α + ṡ∆x)

]

TN+1 +

+ 4∆x∆t
hres

k
(2α + ṡ∆x)Tres

For a given noden, except the first or last, the finite difference energy relation
involves three unknown temperatures,T

′

n−1, T
′

n, andT
′

n+1. For the last nodeN+1,
there are only two unknown temperatures,T

′

N and T
′

N+1, while the first node
equation involves onlyT

′

1 andT
′

2, in addition to the unknown heat fluxq
′

cond.
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2.4 Computational strategy for the coupled solution

It is now possible to see clearly what needs to be done for eachtime step∆t of
the solution in order to prepare for coupling to the surface energy balance. First,
using the current values ofṡ andTn, the coefficients of the tri-diagonal energy
equation matrix can be computed. Once this matrix is set up, the required surface
energy relationqcond = qcond(Tw) may be obtained directly, as described in the
next section.

2.4.1 Reduction of the Tri-diagonal matrix

Referring to the array of in-depth energy equations set downsymbolically in Set
(2.8), it may be seen that, beginning with the last node, the highest-indexed un-
known temperature may be eliminated from each equation of Set (2.8) in turn
(this is the standard first step in the routine reduction of a tri-diagonal matrix).
The resulting simpler set of equations is the following:















B∗

1 0 0 0 0 0 ... 0
A∗

2 B∗

2 0 0 0 0 ... 0
0 A∗

3 B∗

3 0 0 0 ... 0
0 ... ... ... 0
0 ... ... ... 0
0 ... 0 0 A∗

N−1 B∗

N−1 0 0
0 ... 0 0 0 A∗

N B∗

N 0
0 ... 0 0 0 0 A∗

N+1 B∗

N+1





























T
′

1

T
′

2

T
′

3

...

...
T

′

N−1

T
′

N

T
′

N+1















=















D∗

1

D∗

2

D∗

3

...

...
D∗

N−1

D∗

N

D∗

N+1















(2.12)

It will be noted that this reduction implies that theA, B, C, andD terms involve
only known quantities evaluated at the beginning of the timestep. In particular,
the surface recession rateṡ is treated in this explicit manner. This cause little error
since the energy term involvinġs are small compared to the other energy terms.
The expressions for the coefficientsA∗

n, B∗

n, C∗

n andD∗

n are easily expressed. For
the last node (n = N + 1):







A∗

N+1 = AN+1

B∗

N+1 = BN+1

D∗

N+1 = DN+1

(2.13)
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for the interior nodes (n = 2, ..., N):






A∗

n = An

B∗

n = Bn − Cn

A∗

n+1

B∗

n+1

D∗

n = Dn − Cn

D∗

n+1

B∗

n+1

(2.14)

for the first node (n = 1):






B∗

1 = B1 − C1
A∗

2

B∗

2

D∗

1 = D1 − C1
D∗

2

B∗

2

(2.15)

Of the reduced set of equations (2.12), only the top-most equation is of immediate
interest. It may be arranged as:

qcond = Fs(Tw) (2.16)

whereFs is a simple linear relation andTw is the unknown surface temperature.
In fact, from Set (2.12):

B∗

1T
′

1 = D∗

1

now from the expression ofB∗

1 andD∗

1 it can be easily found that:

q
′

cond =
B∗

1

C2
T

′

1 −
C1

C2
+

C1

C2

D∗

2

B∗

2

− qcond (2.17)

with 





C1 = (4∆x2 − 4α∆t)T1 + (4α∆t)T2

C2 = 2
∆x∆t

k
(2α − ṡ∆x)

Eq. (2.17) is a simple linear relation of the form:

q
′

cond = AsT
′

1 + Bs (2.18)

SinceT
′

1 = Tw, Equation (2.18) is the desired relation betweenqcond and Tw

implied by the in-depth solution.
It is now necessary to harmonize this in-depth relation withthe surface energy

balance (SEB). This will be discussed in the following section.
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2.4.2 Coupling in-depth response to SEB

If the surface boundary condition involves an energy balance with convective en-
ergy input, the final in-depth relation Eq. (2.18) must now becoupled to the sur-
face energy balance illustrated in Figure 1.3. In this most general case, events at
the heated surface are determined by convective heating andby surface thermo-
chemical interactions with the boundary-layer gases. The surface energy balance
equation employed is of the convective transfer coefficienttype expressed in sec-
tion 1.5.5:

ρeueCh(hr − hw)e
︸ ︷︷ ︸

qsen

+ ρeueCm

N∑

i=1

(ye,i − yw,i)hw,i − ṁhw + ṁhs

︸ ︷︷ ︸

qchem

+

+qradin
− σǫTw

4

︸ ︷︷ ︸

qradout

−qcond = 0 (2.19)

The surface energy balance Eq. (2.19) may be rewritten with the use of the dimen-
sionless blowing parameterB

′

= ṁ/ρeueCm defined in section1.6:

ρeueCh(hr − hw)e + ρeueCm

[

hwe
− (1 + B

′

)hw

]

+ ṁhs+

qradin
− σǫTw

4 − qcond = 0 (2.20)

where we remember thathwe
is the enthalpy of the boundary-layer edge gases

frozen at the edge composition and at the surface temperature. Note that if the
mass and energy transfer coefficients are equal, the SEB simplifies to the follow-
ing form:

ρeueCh

[

hr − (1 + B
′

)hw

]

+ ṁhs + qradin
− σǫTw

4 − qcond = 0 (2.21)

where the termhwe
is no longer present.

In Eq. (2.19), the termqsen represents thesensibleconvective heat flux, it
excludes allchemicalenergy contributions. It has the advantage that the driving
force involves only edge gas states. The energy transfer-coefficientρeueCh and the
recovery enthalpyhr are function of boundary-layer solution and must be known
for the solution of the surface energy balance. The quantityhew

is part of the input
thermochemical data discussed below.

The termqchem represents the net of a number of fluxes of chemical energies
at the surface. They difference term represents transport of chemical energy as-
sociated with chemical reactions at the wall; it is the chemical energy parallel to
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the sensible convective heat flux term. Theṁhs term represents energy fluxes
arriving at the surface from within the solid material andṁhw term represents
energy leaving the surface in the gross motion (blowing) of the gas adjacent to
the surface. Of the quantities in theqchem expression, the convective mass transfer
coefficientρeueCm is obtained from the input values ofρeueCh using relations
such as Eq. (1.26). The enthalpyhs is obtained from the material thermody-
namic propertieshs = hs0

+
∫ T0

T
cps

dT . Remaining quantities to discuss areB
′

,
∑

ye,ihw,i = hwe
,
∑

yw,ihw,i = hw, andTw (which does not compare explicitly
but is necessary to evaluatehs). The quantityhwe

is known form the edge input
compositionye,i and the surface temperature. The quantityB

′

can be obtained
from the thermochemical tables shown in section1.6, given the edge pressurep
and the surface temperatureTw. Finally, the wall enthalpyhw is obtained from
the wall temperature and composition, the latter obtained by the thermochemical
tables.

The radiative energy flux to the surfaceqradin
, when present, must be supplied

by the user as all the others boundary-layer input terms. There-radiative energy
term,ǫTw

4, is a function of temperature only. The conduction energy term, qcond,
is delivered by the in-depth solution as described in the previous sections.

Finally we have shown that, coupling the procedure with a thermochemical
ablation model (thermochemical tables), all the unknown terms in the surface en-
ergy balance Eq. (2.20) are function ofTw which is therefore the only unknown.
The energy balance solution procedure is now described. An initial guess of the
surface temperatureTw is obtained in some manner. The quantities in the SEB
Eq. (2.20) are evaluated from the boundary-layer solutions, the thermochemical
tables, and the initial guess surface temperature. Then thesurface energy balance
can be computed. In general, however, the sum of the terms will not equal zero but
some non-zero quantityE called the error. Some appropriate iterative procedure
must be devised to select successively better estimates ofTw which drive the error
ǫ to zero. Experience shows that Newton’s procedure, in whichthe derivative of
the error with respect toTw is used to compute the next guess (k+1) for Tw, gives
good results:

Twk+1
= Twk

− ǫ

(∂E/∂T )k

This scheme converges rapidly to the solution. The above-described procedure to
solve the surface energy balance may be summarized as follows:

1. Evaluatehr, ρeueCh0
, p, andqradin

from a previous solution of the boundary-
layer. The edge compositionye,i must also be determined.

2. Obtain values ofAs andBs in the expressionq
′

cond = AsTw + Bs from
in-depth nodal energy balance solution.
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3. Guess an initial value for the surface temperatureTw

4. EvaluateB
′

from surface thermochemical tableB
′

= F(p, Tw).

5. Use blowing correction equation (1.43) to evaluate
Ch

Ch0

and calculateρeueCh.

6. ComputeρeueCm from Ch and the ratioCm/Ch, the latter evaluated using
Eq. (1.26).

7. Usep andTw to obtain values forB
′

, hw, andhwe
from the thermochemical

tables.

8. with Tw evaluateǫ andhs from material properties.

9. Construct Eq. (2.20).

10. AdjustTw to reduce the errorE using Newton-Raphson iteration technique.

11. Go back to step4 and continue until a convergence criterion is satisfied.

2.4.3 Completing the in-depth solution

Once the surface energy balance has been satisfied, the new surface temperature
T

′

1 may be substituted in the reduced array of temperature (2.12). SinceT
′

1 is now
known, the second equation of Set (2.12) yieldsT

′

2 directly, then the third equation
yieldsT

′

3, and so on until the new temperature setT
′

n is complete:

T
′

n =
D

′

n

B′

n

− A
′

n

B′

n

T
′

n−1, n = 2, N + 1 (2.22)

With the surface temperatureTw and the dimensionless mass blowing rateB
′

coming from the SEB solution, the mass blowing rateṁ can be evaluated. The
surface recession term is then updated to its new valueṡ = ṁ/ρs. As a final step,
new values for temperature dependent properties can be selected for each node
and the entire system is then ready for a new time step.

2.4.4 Solution without energy balance

The surface boundary condition need not, of course, be an energy balance. Sur-
face temperatureTw and recession ratės might be specified as time-dependent
input parameters. In that caseT

′

1 is known, and the solution of Set (2.12) can be
completed at once as shown in the previous section. The quantity qcond being only
of cultural interest in that case. This option can be useful for parametric studies



50CHAPTER 2. NUMERICAL APPROACH TO THE ABLATION PROBLEM

matching internal temperature response predictions to themeasured thermocouple
responses, using measured surface temperature and recession data as input, in or-
der to obtain thermal conductivity data via an inverse procedure. This option can
be also used to compare the numerical solution with known analytical solutions.

2.5 Results

This section reports the results of a number of computational simulations aimed
at studying the transient response of graphite TPS for typical reentry and rocket
nozzle applications. The obtained results will give usefulinformation for the un-
derstanding of the behaviour of such TPS materials exposed to a realistic thermo-
chemical environment typical of the applications of interest.

2.5.1 Solution check-out

This section presents the results of a series of check-out computations testing the
heat conduction aspects of the developed numerical code.

As a first check out, a constant properties semi-infinite slabwas simulated
with a thickness large enough to ensure that the final node showed no temperature
response during the computation. Property values were taken as:

k = 30 W/m2 K

cp = 2000 J/kg K

ρ = 1850 kg/m3

The exact solution to the semi-infinite solid problem with uniform initial temper-
atureT0 and step surface temperatureTs at timet = 0 is a similarity solution:

T − T0

Ts − T0

= 1 − erf(x∗)

where
x∗ =

x

2
√

αt

whereα is the solid thermal diffusivity:α = k/ρcp. The surface and initial
temperature,Ts andT0, are taken equal to4000 K and300 K, respectively. The
material thermal response is simulated over a period of30 seconds with a material
thickness of20 cm which ensures satisfactorily the condition of no temperature
rise of the last node. The time step selected is equal to0.1 s and the nodal size is
equal to1 mm for each node with a total number of200 nodes.
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Figure 2.1: Temperature profiles of a constant properties semi-infinite solid ex-
posed to a step in surface temperature.
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Figure 2.2: Transient response after1 s of a constant properties semi-infinite solid
exposed to a step in surface temperature.
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Figure 2.3: Steady-state temperature profile of semi-infinite solid exposed to a
step in surface temperature and to a step in surface recession rate.
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Figure 2.1 shows the exact transient temperature profiles and the computed
ones. The agreement between the exact and computed solutionis excellent even
at the early times. To better check this agreement Figure 2.2shows the exact
similarity profile compared to the computed profile after1 second. The numerical
solution is performed with different nodal sizes corresponding to 200, 50, and
25 nodes. Even at this early time the computed profile is very close to the exact
profile. For the case of200 and50 nodes the agreement is excellent.

Check-out of the convection aspects of the computation requires a problem
with surface recession. An analytical solution is available for the transient re-
sponse of a semi-infinite solid initially at uniform temperature exposed to a step
in surface temperature and to a step in surface recession rate ṡ. For the constant
properties problem it can be readily shown that the temperature profile approaches
a quasi-steady form:

T − T0

Ts − T0

= e
− ṡx

α

where thex coordinate origin is tied to the receding surface. A useful measure of
the approach to steady-state is provided by the variable:

ρcpṡ(Ts − T0)

qcond

comparing the amount of solid convection pick-up to the amount of energy con-
ducted into the solid. This term is initially zero and approaches unity in the steady-
state.

Figure 2.3 shows the exact steady-state temperature profilecompared to the
computed profile after100 seconds. This time is long enough to reach the steady-
state for the present conditions and the agreement between computed and exact
profile is excellent. Figure 2.4 shows the exact transient response compared to
computed results for a problem with the same nodal size distribution as the semi-
infinite slab problem previously described. The specified surface recession ratės
is set to1 mm/s. The agreement between computed results and the exact solution
is again excellent.

The most widely used numerical approach in the U.S. aerospace industry for
predicting ablation was developed by the Aerotherm Corporation in the late1960
[33, 1]. Since then, the CMA code has been widely used in the aerospace indus-
try for analysis of ablating TPS materials on re-entry vehicles and SRM nozzles.
This technique solved the one-dimensional internal energybalance coupled with
the ablating surface energy balance condition to simulate the response of ablative
heat shields in hypersonic flows. This approach has been widely used for many
engineering applications [19], and the predictions provide satisfactory accuracy
with minimum computational cost.
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Table 2.1: Surface boundary conditions

B.L. edge conditions

edge pressure: 1 [bar]

edge temperature: 4000 [K]

edge total enthalpy: 8500 [kJ/kg]

heat-transfer coefficient: 3.5 [kg/m2s]

edge composition: equilibrium air

Prandtl number: 0.7

Lewis number: 1.0

surface emissivity: 0.9

blowing-rate parameterλ: 0.5

A suitable test case has been defined in order to verify the consistency and
accuracy of the developed code in comparison with the CMA code. This test case
calculates the transient thermal response of a carbon-carbon TPS with thermo-
chemical tables for carbon ablation in air. The thermochemical tables were gener-
ated with an equilibrium routine based on the NASA Chemical Equilibrium with
Application (CEA) open source code [28]. The material is exposed to a convec-
tive heat flux over a period of100 seconds in air environment. The material has a
total thickness of10 cm; the time step selected is equal to0.1 s and the nodal size
is equal to1 mm for each node. The material properties are the same used in the
previous solutions and the “heated surface” boundary conditions are expressed in
table 2.1. The material initial temperature is set to300 K. The recovery enthalpy
is evaluated from the edge conditions assuming a laminar flow:

hr − h

h0 − h
= r with r =

√
Pr

The heat-transfer coefficient is corrected using the classical blowing correction
equation (1.44) withλ = 0.5. In this test case, sinceLe = 1.0, the mass-transfer
coefficient is equal to the heat-transfer coefficient.

Figure 2.5 shows the comparison of the surface recession variation with time
evaluated with the developed code and the CMA code. The same comparison is
made over the surface temperature in Figure 2.6. Finally, Figure 2.7 shows the
comparison of the temperature profiles at different times. The agreement between
the developed code and the CMA code is excellent.
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2.5.2 Blunt body analysis

The developed numerical procedure has been used to simulatethe thermal re-
sponse of the TPS in the stagnation point of an Earth re-entryvehicle. The exam-
ple problem is a hypersonic test vehicle with a small nose radius (1.75 cm) and
graphite TPS which travels near Mach16 and at an altitude of30.5 km. This test
case has been taken from [51]. The problem data and “edge” boundary conditions
are reported in table 2.2. The surface heat flux is evaluated with the approximation
formula from [71]:

qw = ρN
∞

V M
∞

C (2.23)

where the units forqw, V∞, andρ∞ areW/cm2, m/s, andkg/m3, respectively.
For the stagnation point case the following values hold:

M = 3, N = 0.5, N = 1.83 · 10−8R−1/2

(

1 − hw

hr

)

(2.24)
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Table 2.2: Blunt body test case parameters

Problem data

nose radius (cm) 1.75

material graphite

thickness (cm) 8.0

duration (seconds) 60.0

Boundary layer “edge” conditions

height (km) 30.5

Mach ≈ 16

Prandtl number: 0.72

Lewis number: 1.0

h0 (kJ/kg) 11.5 · 103

p∞ (Pa) 1.197 · 103

T∞ (K) 226.5

ρ∞ (kg/m3) 1.841 · 10−2

blowing-rate parameterλ: 0.5

whereR is the nose radius in meters andhw andhr are as usual the wall enthalpy
and the recovery enthalpy, respectively. The non-ablatingheat-transfer coefficient
can be easily evaluated from Eqs. (2.23), (2.24) and from itsdefinition:

ρeueCh0
=

qw

(hr − hw)

The surface pressure at the stagnation point is evaluated from the Newtonian flow
theory:

p = p∞ +
1

2
ρ∞V 2

∞
sin2θ (2.25)

where sinθ is equal to1 at the stagnation point. The chemical equilibrium CEA
code is used to evaluate the “edge” chemical composition after the normal shock.
The chemical composition at the edge of the boundary-layer,in fact, is a major
parameter which must be provided in order to solve the surface energy balance
Eq. (2.19). Since the physical properties (thermal conductivity and specific heat)
of graphitic TPS strongly vary with temperature, a variableproperties material
has been considered. The properties used for graphite are taken from NIST TRC
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Thermodynamic Tables and from experimental results and arereported in Figure
2.8.
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Figure 2.8: Graphite properties variation with temperature.

Figure 2.9 shows the temperature profile inside the TPS at various times. Note
that the temperature profiles are fixed to the receding surface so that recession of
the material can be seen from the back surface. It is worth noting that the heat-
ing of the TPS in this environment (Earth reentry) is pretty fast, with the surface
temperature reaching almost2000 K in the first second of exposure. Figure 2.10
shows the surface temperature variation with time and the surface total recession
(cm) variation with time. The computed solution is also compared with the results
presented in [51]. The agreement is very good both for the surface recession and
the surface temperature.

The reentry velocity is now varied to see its effect on the TPSthermal re-
sponse. The velocity is increased1.25 and1.5 times the initial value, keeping
untouched the other parameters. Figures 2.11 and 2.12 show the erosion rate and
wall temperature variation with time for the three velocities. Obviously both the
erosion rate and the surface temperature increase with increasing reentry velocity
but some differences in their behaviours can be noted. It canbe seen that the ero-
sion rate is almost flat for the smallest velocity and shows a more marked variation
at early times for the higher velocities. The opposite behaviour can be observed
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for the surface temperature. This kind of TPS materials (such as graphite and
carbon-carbon) have the distinctive feature to show a limitin the temperature
reached by the exposed wall. This is due to the fact that, whenthe surface is
exposed to a higher heat flux, the blowing becomes more and more intense with
the increase of surface temperature (see Figure 1.4) and theheat absorption due
to the surface chemical reactions becomes dominant as well as the blockage ef-
fect due to ablation products injection. When the surface isclose to the subli-
mation temperature1, an increase of the incident wall heat flux produces a strong
increase of the mass blowing rate and a slight increase of surface temperature.
This behaviour is clear from Figures 2.11 and 2.12. The wall temperature shown
in Figure 2.12 rises rapidly from the initial value (300 K) to the steady-state value
and this rise is quicker with increasing reentry velocity (which affects directly the
convective heat flux). The erosion rate, instead, is almost uniform at the lowest
velocity because surface oxidation is dominant. As seen in Figure 2.13, in the
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oxidation regime (withCO formation) surface composition is not varying with
surface temperature; on the contrary, in the sublimation regime (C3 formation)

1the sublimation temperature of graphite is about4000 K at1 bar and4400 K at10 bar.
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there is a strong variation of the wall composition with temperature. The transi-
tion between the oxidation regime and the sublimation regime depends on pres-
sure as Figure 2.13 clearly shows (the three pressures represented in this figure
correspond to the stagnation pressures for the three reentry velocities). Looking
at figure 2.11 at the lowest reentry velocity the TPS is in the oxidation regime and
the erosion rate is almost constant; at the higher velocities, instead, the sublima-
tion regime is dominant due to the higher wall temperature and this causes a more
pronounced variation of the erosion rate in the early times (first 10 seconds).

Finally, Figure 2.14 shows the temperature distribution after60 s of exposure.
The three profiles are similar with the higher-velocity profiles showing a higher
wall temperature and a lower internal temperature. Obviously the total recession
is greater for the higher-velocity cases. The three profilesshow a tendency of the
temperature to experience higher gradients inside the material. This is a conse-
quence of the higher heat flux and consequently of the higher recession rate: the
steady-state condition is reached quickly and the temperature profile inside the
material is steeper at the higher reentry velocities. Figure 2.15 shows the variation
with time of the heat flux conducted in the solid. The heat flux shows a strong
variation with time during the first seconds and then rapidlytends to be uniform
showing the approaching of the steady-state condition. At the higher velocities
the time period over which the heat flux is strongly varying isreduced and the
steady-state condition is approached earlier.

2.5.3 SRM nozzle throat analysis

The developed numerical procedure has been used to simulatetransient thermal
response at the throat location of a carbon-carbon nozzle exposed to the solid
propellant combustion gases. The example problem is a typical SRM nozzle ap-
plication with a chamber pressure of55 bar, a chamber pressure of3500 K, and
a throat radius of8.2 cm. The problem data and “edge” boundary conditions
are reported in table 2.3. Graphite is usually used to protect the throat region
of SRM nozzle. However, an insulation material (such as carbon-phenolic or
silica-phenolic) is usually inserted between the carbon-carbon and the aluminium
structure to limit the temperature rise of the structure itself. Carbon-carbon is an
extremely effective ablator for SRM nozzle application butit has a relatively high
thermal conductivity if compared to other insulator materials. Carbon-carbon has
a thermal conductivity of about80 W/m2K at500 K which is rather high if com-
pared to about1 W/m2K of carbon-phenolic at the same temperature. A complete
nozzle TPS has been analysed in this test, with a main ablatormaterial, an insula-
tor back-up, and finally the structural material (relative thickness are expressed in
table 2.3).
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Table 2.3: SRM nozzle throat test case parameters

Problem data

chamber pressure (bar) 55

chamber temperature (K) 3500

throat radius (cm) 8.2

main TPS material (cm) graphite (6.0)

insulation material (cm) carbon-phenolic (1.5)

structural material (cm) aluminium (1.5)

fire duration (seconds) 110.0

Nozzle conditions

specific heat ratio 1.13

Prandtl number: 0.5

Lewis number: 1.8

combustion gases viscosity (Pa · s) 1.0 · 10−4

characteristic velocity (m/s) 1600

total enthalpy (kJ/kg) 1.69 · 103

throat velocity (m/s) 1000

throat temperature (K) 3300

throat pressure (bar) 32

blowing-rate parameterλ: 0.4

Gas-phase mass fractions

CO: 0.3485

CO2: 0.0303

HCl: 0.3030

H2: 0.0152

H2O: 0.1364

N2: 0.1514

OH: 0.0152
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The mass fraction of the combustion species at the nozzle inlet, shown in
table 2.3, are based on chemical equilibrium calculations at the chamber pressure
for an AP/HTPB composite propellant. All the relevant chamber parameters are
evaluated with an equilibrium routine as well as the throat conditions assuming a
one-dimensional equilibrium expansion. The surface heat flux is evaluated with
the approximation formula from Bartz [4]:

ρeueCh0
=

[
0.026

D0.2
t

(
µ0.2

Pr0.6

)

0

(pc

c∗

)0.8
]

·
(

At

A

)0.9

· σ (2.26)

wherec∗ is the characteristic velocity andDt andAt are the throat diameter and
area, respectively. The termσ is a dimensionless factor accounting for property
variations across the boundary-layer [4]. The recovery enthalpy is evaluated from
the edge conditions assuming a turbulent flow:

hr = h0 − (1 − r)
U2

2
with r =

3
√

Pr

Since the nozzle surface is not planar, a variable cross-sectional area (linear with
the radius) has been considered in the energy equation.

Figure 2.16 shows the temperature profile inside the TPS at various times. The
TPS transient response in this environment shows a similar behaviour to that of the
reentry application: the heating of the TPS is very quick, with the surface tempera-
ture reaching almost2000 K in the first second of exposure and then approaching
rapidly a steady-state value (below3000 K). An abrupt change in the slope of
the temperature profiles is clearly visible and this is due tothe change of thermal
conductivity passing from the main to the insulating back-up material. There is
another change in the slope passing from the back-up to the structural (aluminium)
material. The temperature distribution is constant insidethe aluminium due to its
high thermal conductivity. Figure 2.17 shows the surface temperature variation
with time and the surface erosion rate (mm/s) variation withtime. The surface
erosion rate is completely flat during the whole firing time. This is due to the fact
that the carbon-carbon TPS is always operating in the oxidation regime where the
B

′

curve is flat and the surface composition shows no variation with temperature
as Figure 2.18 clearly shows. For the present throat pressure, carbon-carbon sub-
limation starts above3500 K and a so-high temperature is never reached at wall
during the motor operation time. In Figure 2.18 the three oxidizing species (CO2,
H2O, andOH) are not represented because they react completely with thesolid
carbon to formCO species. Finally Figure 2.19 shows the variation with time of
the heat flux conducted in the solid. As for the reentry case, the heat flux shows
a large variation during an initial transient and then tendsto be uniform showing
the approaching of the steady-state condition.
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It is worth noting that the erosion rate depends strongly on the local pressure.
The results presented herein assume that the chamber pressure remains constant
during the firing duration; in SRM nozzle the chamber pressure depends on pro-
pellant, burning surface, and throat area. Assuming a constant throat area (neg-
ligible area-variation due to throat erosion) and a given propellant, the chamber
pressure time-history is a direct result of the burning surface time-history and
therefore of propellant grain geometry. The effect of variable chamber pressure
due to grain geometry has not been considered in this test case but it could be
easily done assigning the pressure time-variation as boundary condition. How-
ever, this is outside the scope of this part, whose main goal is the analysis of
carbon-carbon TPS transient thermal response under realistic environments to ob-
tain useful information for the following part of this work.

Pressure has a strong influence on erosion rate because it affects the heat flux
convected from the hot-gases to the wall (see Eq. (2.26)). Pressure also affects
the mass transfer across the boundary-layer: higher pressures, in fact, increase
the mass-transfer coefficient and consequently the erosionmass rate. The same
test case has been repeated considering the effect of throaterosion on chamber
pressure. While throat is eroding, in fact, the throat area is increased and this
causes the chamber pressure to drop and consequently altersthe erosion rate. The
effect of pressure drop due to erosion is shown in Figures 2.20 and 2.21 for the
erosion rate and the eroded thickness, respectively. For a solid rocket motor the
chamber pressure is obtained by the following relation:

pc =

(

ρp · a · c∗ · Sb

At

) 1

1−n

(2.27)

whereρp is the propellant density,Sb is the burning surface, anda andn are the
burning rate constant and exponent, respectively. The burning rateṙ is represented
by ṙ = a · pn

c . Form Eq. (2.27) the following relation holds:

pc ∝
(

1

rt

) 2

1−n

(2.28)

wherert is the throat radius. From the Bartz equation (2.26):

Ch ∝ p0.8
c

r0.2
t

(2.29)

combining Eqs. (2.28) and (2.29) gives:

Ch ∝
(

1

rt

) 1.8−0.2n
1−n

(2.30)
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Figure 2.20: Erosion rate time-variation with and without radius correction.
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Eq. (2.30) is used to correct the heat-transfer coefficient during the transient
computation to take into account the effect of throat erosion with the increase of
rt. At the same time Eq. (2.28) is used to vary the chamber pressure due to throat
erosion. Chamber pressure, in fact, affects the thermochemical tables modifying
the equilibrium composition: this effect, however, is onlyseen in the sublimation
regime (nozzle environment is not sufficiently energetic totrigger sublimation).

Figures 2.20 and 2.21 show the effect of throat erosion during the firing on the
erosion rate and the eroded surface, respectively. The erosion rate (Fig. 2.20) is
decreasing with time due to chamber pressure drop and consequently the erosion
(Fig. 2.21) is no more linear with time. This effect is obviously more important
for small nozzles (such as the one used in this example) wherethe throat area
variation due to erosion is not negligible. For the present case (rt = 8.2 cm) the
final throat area is about55% bigger than the initial area. For a bigger nozzle
(booster), with a nozzle radius of40 cm, this increase would be of only10% and
the effect of throat erosion on chamber pressure could be neglected.

2.6 Conclusions

An unsteady quasi-one-dimensional ablation thermal response code for carbon-
carbon materials based on a nodal network tied to the receding surface has been
developed and verified. An ablation model based on thermochemical tables have
been also proposed and coupled with the thermal response code. Special atten-
tion is devoted to simulate the effect of ablation on the surface mass and energy
balance, using a transfer-coefficient boundary-layer model. The model has shown
excellent agreement with known analytical solutions and with the widely used
CMA code. In particular this model is finalized to be used as a time-efficient en-
gineering tool for the TPS analysis, prediction and design.Numerical results have
been presented for different environmental conditions with different environmen-
tal gases: i) stagnation point of an Earth re-entry vehicle ii) nozzle throat section
of a solid rocket motor. The major result of these computations is that, despite the
different kind of application ranging from rocket nozzle toEarth reentry environ-
ment, these kind of materials show a similar behaviour characterized by a quick
heating and a short transient period in which surface conditions strongly vary with
time. When steady-state condition is reached the temperature profile and the sur-
face conditions do not change with time provided that the boundary condition are
not changing. Results have shown that the temperature profile inside the mate-
rial experiences a noticeable variation with time particularly in the inner part of
the solid. However, the presented results have also shown that the surface pa-
rameters (temperature, erosion rate, heat conduction intosolid) are much faster in
reaching the steady conditions than the in-depth temperature profile. This permits
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to conclude that, for what concern the surface conditions, asteady-state assump-
tion is acceptable to study the complex interaction betweenhot-gas flow and TPS
material. On the contrary, if one is interested in the temperature rise inside the
material and in particular at the interface with the structure, a transient solution is
mandatory.

In the next part of this work, where the author concentrated much of his efforts,
the interaction between the hot-gas layer and the TPS will bestudied assuming
steady-state condition but completely removing the transfer-coefficient approach
using a full Navier-Stokes solver to model with more accuracy the heat and mass
transfer mechanisms.
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CFD method for ablating surfaces
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Chapter 3

Thermodinamic model

Computational fluid dynamics (CFD) and computational solidmechanics (CSM)
codes typically treat fluid/solid boundary conditions in a very simplified manner
such as constant prescribed temperature or heat flux and withzero mass transfer.
However, in energetic hypersonic environments, TPS materials interact with the
flow through diverse thermochemical and thermophysical mechanisms including
ablation, shape change, pyrolysis, melt flow, spallation, solid thermal conduction.
The specific application of this part is the modeling and analysis of the interaction
between carbon-carbon TPS and highly energetic hypersonicflowfields. Solution
of the coupled material flowfield problem is of critical importance for the TPS de-
sign, sizing, and optimization for hypersonic vehicles androcket nozzles. TPS are
traditionally designed with one and two-dimensional engineering codes similar to
the tool described in the previous chapter. Occasionally, adetailed computational
solution is obtained, but these solutions rarely contain the correct surface bound-
ary conditions. To compensate for uncertainties in the analyses, a safety margin of
extra TPS material is added to the final design, and the structure weight must also
be increased. The TPS/structural weight is typically significantly larger [3] than
the payload weight and therefore a reduction in the TPS weight has a cascade ef-
fect: the structural weight is also reduced, resulting in a direct increase in payload
and scientific capability. Clearly there is a need for more accurate, multidimen-
sional computational tools which can be used to reduce the uncertainties in TPS
analysis and to optimize the TPS design. Nowadays, CFD technology continues to
develop in the areas of non-equilibrium flow, multispecies kinetics and transport
properties, radiation transport, and three dimensional capabilities. However, most
codes use primitive surface boundary conditions and cannotrealistically be used
for TPS analysis and design. To obtain a suitable tool for theanalysis of flowfield
with ablation, CFD codes must take into account spatially varying surface temper-
ature and heat flux, a realistic surface energy and mass balance, thermal soak into
the TPS material, and thermochemical ablation modeling. Itmust be noted, how-

75
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ever, that the computational expense of these advanced CFD methods can limit
their utility. This and the next chapters will deal with the modeling of these sur-
face and near-surface thermochemical phenomena and their interface with a CFD
code.

In order to study the complex flowfield over an ablating surface, a Navier-
Stokes approach is used in this work. The physics of the hot-gases over a solid
surface is modeled by the chemically reacting Navier-Stokes governing equations,
which are solved by a 2-D axisymmetric solver based on the approach described
by Nasuti & Onofri [61, 60] and Martelli [47]. The main features of this method
are to discretize the convective terms according to thelambda scheme[54]. Be-
cause of the chemically active surface, further physical modeling is necessary for
the fluid-surface interaction. The latter aspect, which will be described in chapter
5, requires the addition of a mathematical model of the hot-gas-flow boundary
condition which describes the physics of the surface phenomena. In this chapter
the thermodynamic model is described, while in the next chapter the flow govern-
ing equations and the numerical method used will be discussed.

3.1 High-temperature gas dynamics

During an atmospheric entry as well as in rocket engine applications the high-
temperature effects are important and must be accounted for. The thermodynamic
and transport properties are varying with temperature and mixture composition
which, in turn, changes due to chemical reactions. Moreover, the additional trans-
port mechanism of diffusion becomes important. These kind of flows are char-
acterized by strong variations of temperatures and velocities. Consequently, the
hypothesis of ideal gas cannot be made due to chemical reactions. Moreover, the
vibrational levels of molecules are exited by the high temperatures, causing the
variation of specific heats.

The kinetic energy of a high-speed, hypersonic flow is dissipated by the in-
fluence of friction within the boundary layer. The viscous dissipation that occurs
within hypersonic boundary layers can create very high temperatures, high enough
to excite vibrational energy internally within molecules and to cause dissociation
and even ionization within the gas. If the surface of a hypersonic vehicle is pro-
tected by an ablative heat shield, the product of ablation are also present in the
boundary layer, giving rise to complex chemical reaction with the atmosphere.
Therefore the surface of a hypersonic vehicle can be wetted by a chemically re-
acting boundary layer. For a hypersonic flow, the boundary layer and also the
shock layer can be dominated by high-temperature chemically reacting flow. In
introductory studies of thermodynamics and compressible flow, the gas is assumed
to have constant specific heats; hence, the ratioγ = cp/cv is also constant. This
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leads to some results for pressure, density, temperature and Mach number varia-
tions in a flow. However, when the gas temperature is increased to high values,
the gas behaves in anon-idealway, specifically as follows:

• The vibrational energy of the molecules becomes excited, and this causes
the specific heatscv andcp to become functions of temperature. It turn, the
ratio of specific heats,γ = cp/cv, also becomes a function of temperature.

• As the gas temperature is further increased, chemical reactions can occur.
For a chemically reacting gas,cv andcp are function of both temperature
and pressure, and henceγ.

All of these phenomena are calledhigh-temperature effects. High-temperature
chemically reacting flows can have an influence on lift, drag,ad moments on
a hypersonic vehicle. For example, such effects have been found to be impor-
tant for estimating the amount of body-flap deflection necessary to trim the space
shuttle during high-speed reentry. However, by far the mostdominant aspect of
high temperatures in hypersonics is the resultant high heat-transfer rates to the
surface. Aerodynamic heating dominates the design of all hypersonic machinery,
whether it be a flight vehicle, a rocket engine to power such a vehicle, or a wind
tunnel to test the vehicle. This aerodynamic heating takes the form of heat trans-
fer from the hot boundary layer to the cooler surface, which consequently must
be protected to sustain the heat flux and keep the excessive heat from damaging
the vehicle. Clearly, high-temperature effects are a dominant aspect of hypersonic
aerodynamics.

In the subsequent sections important physical and thermodynamic variables
and relations (equation of state) are discussed which will be useful in the following
description of the governing equations given in Chapter4.

3.2 Internal energy

The internal energy per unit mass of a single gaseous speciesin a mixture of
thermally perfect gases can be expressed as a function of temperature only:

ei =

∫ T

Tref

cvi
(T )dT + hfi

(3.1)

wherecvi
= dei/dT is the specific heat at constant volume, function of tempera-

ture only according to the thermally perfect gas hypothesis, andhfi
is the heat of

formation of theith species at the temperatureT = Tref . The internal energy per
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unit mass of the mixture can be written as:

e =
N∑

i=1

ρi

ρ
ei =

N∑

i=1

yiei (3.2)

where N is the total number of species,ρi is the density of theith species,ρ =
∑

ρi is the density of the mixture, andyi is the mass fraction. For eachindivid-
ual chemical species present in the mixture (assuming a perfectgas) the internal
energy will be function of temperature only. However, the internal energy for a
chemically reacting mixture depends not only onei, but also on how much of each
species is present. Therefore for a chemically reacting mixture of perfect gases,
in the general non-equilibrium case, we write:

e = e (T, y1, y2, y3, ..., yN) (3.3)

Dealing with chemically reacting mixtures it is convenientto introduce the frozen
specific heats (at constant pressure and volume), obtained assuming the flow to be
frozen [2]:

cv =
N∑

i=1

yicvi
, cp =

N∑

i=1

yicpi
(3.4)

It is also possible to define a mixture specific gas constant, that is:

R =
N∑

i=1

yiRi = cp − cv (3.5)

whereRi = Ru/Mi, with Ru being theuniversal gas constantandMi the ith

species molecular weight. Finally the frozen specific heatsratio can be introduced:

γ =
cp

cv
(3.6)

In the adopted model only mixtures in thermal equilibrium are considered and ev-
ery contribution to the internal energy (such as the vibrational energy) is included
into thecvi

expression.

3.3 Equation of state

In the previous section a chemically reacting mixture made of (thermally) per-
fect gases has been assumed. For a perfect gas the internal energy is function
of temperature only. Aperfect gasis a gas where intermolecular forces are neg-
ligible while a real gas is a gas where intermolecular forces are important and
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must be accounted for. At distances approximately 10 molecular diameters away
from the molecule, the magnitude of the intermolecular force is negligible. Be-
cause the molecules are in constant motion, and this motion is what generates
the macroscopic thermodynamic properties of the system, then the intermolecu-
lar force might affect these properties. For most problems in aerodynamics, the
assumption of a perfect gas is very reasonable. Conditions that require the as-
sumption of a real gas are very high pressures (p = 1000 atm) and/or low tem-
peratures (T = 30 K); under these conditions the molecules are packed closely
together and move slowly with low inertia. Thus, the intermolecular force can act
on the molecules modifying the macroscopic properties of the system. In contrast,
at lower pressures and higher temperatures, the molecules are widely spaced and
move more rapidly with higher inertia. Thus, the intermolecular force has little
effect on the particle motion and therefore on the macroscopic properties of the
system. Again, we can assume such a gas to be aperfect gas, where the inter-
molecular forces can be ignored. A perfect gas is assumed in this work, and this is
a reasonably assumption given the conditions of pressure and temperature in the
applications of interest.

Consequently, a relationship between pressure and temperature (equation of
state) of this kind can be written:

p =
N∑

i=1

pi =
N∑

i=1

ρiRiT (3.7)

which is called theperfect-gas equation of state. For a mixture of perfect gases
the Dalton’s law holds, which express the fact that the pressure of the gas mixture
is made up of the individual partial pressurespi of the ith species. By definition,
the partial pressure of speciesi, pi, is the pressure that would exist in the system
if all of the other species were removed, and the particles ofthe ith species were
the only ones occupying the whole system at the volumeV and temperatureT .

3.4 Frozen speed of sound

The appropriate speed of sound in a thermally equilibrated reacting mixture of
gases is thefrozen speed of soundgiven by:

a2 =

(
∂p

∂ρ

)

s,yi

(3.8)

where not only the process through the sound wave is isentropic (s = const) but it
is also frozen (yi = const). From the definition of pressure, Eq. (3.7), and internal
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energy, Eq. (3.2), it is clear thatp = p(ρ, e, yi), from which it is possible to obtain:

a2 =

(
∂p

∂ρ

)

e,yi

+

(
∂p

∂e

)

ρ,yi

(
∂e

∂ρ

)

s,yi

(3.9)

where the last derivative can be obtained from the first law ofthermodynamics:

(
∂e

∂ρ

)

s,yi

=
p

ρ2
(3.10)

and the other two derivatives can be expressed as:

(
∂p

∂ρ

)

e,yi

= RT (3.11)

(
∂p

∂e

)

ρ,yi

= ρR

(
∂T

∂e

)

yi

(3.12)

where the temperature derivative can be obtained from the definition of internal
energy, Eq. (3.1) and Eq. (3.2):

(
∂T

∂e

)

yi

=
1

cv

(3.13)

Substituting we find the interesting result:

a2 = γRT = γ
p

ρ
(3.14)

which is not an approximation, but it is the frozen speed of sound for reacting
mixtures.

3.5 Thermodynamic data

The thermodynamic properties of the chemical species are evaluated with the ther-
modynamic database used in the chemical equilibrium composition computer pro-
gram developed by Gordon and McBride [28].

The data are selected from a number of sources, but the principal current
sources are Chase et al. [14], Cox et al. [22], Gurvich et al. [30], and Marsh
et al. [46]. McBride et al. [48] documented the sources and the data for 50 refer-
ence elements. The thermodynamic data are provided in the form of least-square
coefficients.
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3.5.1 Data for individual species

For each chemical species the thermodynamic functions specific heat, enthalpy,
and entropy as functions of temperature are given in the formof least-square co-
efficients. The general form of these equations is as follows:

C0
p

R
=

∑

aiT
qi (3.15)

H0

RT
=

∫
C0

pdT

RT

S0

R
=

∫
C0

p

RT
dT

WhereR is the gas constant equal to8314.51 [ J
kmole·K

], C0
p is the molar heat

capacity at constant pressure for standard-state[ J
kmole·K

], H0 is the standard-state
molar enthalpy[ J

kmole
], andS0 is the standard-state molar entropy[ J

kmole·K
] for the

generic species. The set of least-square coefficients consists of seven terms for
C0

p/R and corresponding terms for enthalpy and entropy as well as the integration
constantsa8 anda9 as follows:

C0
p

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4

H0

RT
= −a1T

−2 + a2T
−1 ln T + a3 + a4

T

2
+ a5

T 2

3
+ a6

T 3

4
+ a7

T 4

5
+

a8

T

S0

R
= −a1

T−2

2
− a2T

−1 + a3 ln T + a4T + a5
T 2

2
+ a6

T 3

3
+ a7

T 4

4
+ a9

The temperature intervals are fixed. These intervals are200 to 1000K, 1000 to
6000K, and, for some gases,6000 to 20000K.

Generally, the three functions are fit simultaneously. The fit is constrained to
match the functions exactly atT = 298.15K. Thus, the least-square coefficients
reproduce heats of formation atT = 298.15K exactly.

3.5.2 Mixture properties

Once the thermodynamic data for each speciesi are known, the mixture properties
can be evaluated as follows:

H =
∑

i

XiH
0
i
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S =
∑

i

XiSi

Si = S0
i − R ln Xi − R ln P

Cpfrozen
=

∑

i

XiC
0
p,i

whereXi is the mole fraction of theith species and all properties are molar proper-
ties (upper-case letters). The specific properties (lower-case letters) can be easily
obtained from the molar properties:

h =
1

M
· H

s =
1

M
· S

cpfrozen
=

1

M
· Cpfrozen

whereM is the molecular weight of the mixture.



Chapter 4

Mathematical model and numerical
method

4.1 Governing equations

The flow of a compressible chemically reacting mixture of thermally perfect gases
is governed by the conservation principles of mass, momentum, and energy. From
these conservation principles the Navier-Stokes equations can be derived. How-
ever, Navier-Stokes equations can be expressed in a different fashion depending
on the numerical method used for their solution. In particular, the mathematical
method used in this work is based on thelambda schemewhich takes advantage
from the hyperbolic nature of the Euler equations, decoupling between the convec-
tive operator and the diffusive operator (treated as a source term). The equations
are written in quasi-linear form, in terms ofb = a/δ1, v, s, yi.

The nondimensional reacting Navier-Stokes equations written in terms ofyi,
b, v, s are as follows (details on their derivation are given in Appendix A):







Dyi

Dt
= Vyi

i = 1, ..., N − 1

1

c1

Db

Dt
+ a∇ · v − a

γR

Ds

Dt
= Vb + A

Dv

Dt
+

a

c1
∇b − a2

γR
∇s +

a2

γR

∑

Qi∇yi = Vm

Ds

Dt
= Vs

(4.1)

1a =
√

γRT andδ = γ−1

2
.

83



84 CHAPTER 4. MATHEMATICAL MODEL AND NUMERICAL METHOD

where the source terms, grouped on the right-end side of Eqs.(4.1), have the
following expression:

Vyi
=

ẇi

ρ
− 1

ρ
∇ · ji

Vb =
1

c1
β +

a

γR
(γ − 1)Vs

Vm =
1

ρ
∇ · T (4.2)

Vs = − 1

T

∑

µiVyi
+

R

p
(−∇ · q + ∇v : T)

The reacting inviscid equations can be obtained neglectingthe viscous terms (T =
0, q = 0 and ji = 0) from Eqs. (4.2). TheEuler equations (inviscid and non-
reacting) can be obtained simply putting the source terms (Vyi

, Vb, Vm, andVs)
equal to zero.

4.2 Numerical technique

The Navier-Stokes equations (4.1) hold independently fromthe dimension of
the space or from the adopted reference frame. Here the equations for two-
dimensional problems (planar or axisymmetric) are numerically solved following
the lambda schemeusing a curvilinear orthogonal frame, in order to have a grid
well adapted to the geometry of the body, which is transformed to a Cartesian grid
(called the computational plane) by conformal mapping. Thelambda schemeis
a technique developed for the Euler equations and extended to the Navier-Stokes
equations decoupling between the convective operator and the diffusive operator
(treated as a source term), according to their different physical nature. This tech-
nique is second-order accurate in both space and time and is described in details
in Appendix B.
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The equations in the computational plane are:






bt = c1

(

fx
1 + fx

2 + f y
1 + f y

2 + V
′

b +
a

γR
st −

a

γR

∑

Qiyi,t + A

)

ut = fx
1 − fx

2 + f y
3 + Vu

vt = f y
1 − f y

2 + fx
3 + Vv

st = fx
4 + f y

4 + Vs

yi,t = fx
i + f y

i + Vyi
i = 1, ..., N − 1

(4.3)

The termsf q
p represent the convective part and are discretized withupwinddiffer-

encing while the termsV
′

b , Vu, Vv, Vs, andVyi
represent the chemical and diffusive

source terms which are discretized with central differencing. The termsQi andc1

represent partial derivatives ofγ andR with respect to temperature and species
mass fractions.

The technique is second-order accurate, and no errors are introduced at the
boundaries: theboundary conditions, according to the chosen model of the ”out-
side world”, can be enforced with utmost simplicity and without using arbitrary
elements. Among the advantages of this method over other techniques, one is sim-
plicity, which is also responsible for reducing computational time, and another is
easiness in handling boundary points and boundary conditions. This simplicity
and accuracy in treating the boundaries is obviously usefulfor the treatment of
complex boundary conditions, as in the case of ablation. Equations like (B.13)
and (B.14), in addition to local terms, contain terms, thef q

p , which express phys-
ical contributions from one side or the other. Terms with express contributions
from outside are not computed from inside the computationalregion. They must
be determined using some appropriate, physical boundary condition. The calcu-
lation at boundary points, therefore, is not affected by arbitrariness.

4.3 Boundary conditions

An appealing technique for specifying boundary conditionsfor hyperbolic sys-
tems is to use relations based on characteristic lines, i.e., on the analysis of the
different waves crossing the boundary. It is well known thatthe Navier-Stokes
equations are not hyperbolic as the addition of viscous terms changes the math-
ematical nature of the system by increasing its order. However, Navier-Stokes
equations certainly propagate waves like Euler equations do and, from a physi-
cal point of view, Euler boundary conditions appear as first-order candidates to
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treat Navier-Stokes boundary conditions. However, Navier-Stokes equations re-
quire more boundary conditions than Euler equations do. To build Navier-Stokes
boundary conditions, the approach used here is to take conditions corresponding
to Euler conditions (theinviscid conditions) and to supply additional relations (the
viscous conditions) which refer to viscous effects. The termviscousis used here
to describe all processes which are specific to Navier-Stokes, i.e., viscous dissi-
pation, thermal diffusion, species diffusion, etc. These additional conditions must
have a negligible effect when the viscosity goes to zero and their implementation
is not done at the same level as the inviscid conditions. The viscous conditions
are used only to compute the viscous terms in the conservation equations at the
boundary and, therefore, are not strictly enforced.

Boundary conditions must be applied at four boundaries: 1. lower wall, 2.
upper wall, 3. entrance and 4. exit. The main types of boundary conditions are:
inflow and outflow of the gas, viscous wall, and inviscid wall (axis of symmetry).
In the computational plane, which is a box[0, 1]×[0, 1] (see Appendix B), the four
boundaries are identified by the linesx̂ = 0 (left), x̂ = 1 (right), ŷ = 0 (down)
andŷ = 1 (up).

4.3.1 Inflow and outflow conditions

The inflow or outflow conditions are usually assigned to the left and right bound-
aries (̂x = 0 andx̂ = 1). To assign inflow (or outflow) boundary conditions the
first step is to identify which terms (corresponding to spacederivatives in thêx
direction) express contributions from outside, either at the left boundary, or at the
right boundary. The unknownfx

p are clearly the ones corresponding to the posi-
tive λx

i for the left boundary, and to the negativeλx
i for the right boundary. These

terms from the ”outside world” cannot be computed from inside the computational
region and therefore they must be determined by some physical boundary condi-
tions. We will hereby derive the boundary conditions for theleft boundary, being
the conditions for the other boundaries based on the same logic. On the entry (or
exit) boundary the flow may be supersonic or subsonic:

• Supersonic inflow. In this case the conditionu > a holds. The threeλx
i are

all positive and therefore4+(N −1) boundary conditions must be assigned
for the corresponding unknown terms:fx

1 , fx
2 , fx

3 , fx
4 , and the(N − 1) fx

i .
This equals to assigning the inflow conditions.

1. Steady flow and equal to the initial condition.
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The unknownfx
p can be obtained from:






bt = 0
ut = 0
vt = 0
st = 0
yi,t = 0, , i = 1, N − 1

(4.4)

If a planar flow and uniform in thêy direction is assigned, the simple
conditionfx

1 = fx
2 = fx

3 = fx
4 = fx

i = 0 is obtained from (4.4)
and (4.3). If this is not the case, the unknown terms can be neverthe-
less obtained from (4.4) and (4.3), after the space derivatives in theŷ
direction have been evaluated.

• Subsonic inflow. In this case the conditiona > u > 0 holds.3 + (N − 1)
signals come from outside the computational region:fx

1 , fx
3 , fx

4 , andfx
i are

unknown whilefx
2 can be correctly evaluated from inside the computational

region, beingλx
2 < 0.

1. The impinging flow has clearly defined total temperature, total pres-
sure, and species mass fractions. Moreover the flow is considered di-
rected along thêy = cost lines. The conditions can be expressed in
terms of time derivatives, that is:(T0)t = F(t), (p0)t = G(t), (yi)t =
Yi(t) andVt = 0. With the equation of state these relations can be
transformed in terms ofb,u,v and s. The condition of defined total
temperature and total pressure can be expressed in terms of total en-
thalpy(h0)t and entropy, respectively.






(T0)t = F(t)
(p0)t = G(t)
yi,t = Yi(t)
Vt = 0

⇒







(h0)t = Fbbt + uut = F̂(t)

st = Ĝ(t)
yi,t = Yi(t)
vt = 0

(4.5)

where

F =
(γ − 1)/2

[

1 − γ+1
γ−1

T
γ

∂γ
∂T

]

The assumption thatα = 0 has been also made for the entry bound-
ary so that the relationv = V holds. Eqs. (4.5) allow to evaluate
the unknown signals (fx

1 , fx
3 , fx

4 , fx
i ) from known quantities, i.e. the

derivatives in thêy direction. Note that if the inflow conditions do not
vary with time (which is the usual condition), thenF(t), G(t), and
Yi(t) are set to zero.
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• Supersonic outflow. In this caseu < −a holds. Theλx
i are all negative

and all the signals come from inside the computational region. No boundary
conditions are needed because all the space derivatives arecorrectly evalu-
ated inside the computational region.

• Subsonic outflow. In this case−a < u < 0 holds.3+ (N − 1) signals (fx
2 ,

fx
3 , fx

4 , fx
i ) come from inside the computational region. A single condition

is needed to evaluated the only unknown signalfx
1 .

1. Assigned pressure
The condition for this case ispt = F(t), expressed in terms of a time
derivative. With the expression of entropy and the equationof state
the pressure condition can be expressed in terms ofbt, st, andyi,t:

F(bt, st, yi,t) = F̂(t) (4.6)

the above condition allowsfx
1 to be evaluated from known quantities.

If the pressure do not vary with time (usual condition), thenF(t) is set
to zero.

2. Non-reflecting (radiative) condition
With this condition [73] the signals coming from the outsideare as-
sumed to be zero. In this case the boundary condition becomessim-
ply:

fx
1 = 0 (4.7)

3. Extrapolation
In this case the unknown values of all the variables (b, u, v, s, andyi)
are extrapolated from the corresponding values from insidethe com-
putational region. This condition is not mathematically correct but can
be useful for problems where no appropriate physical conditions are
known at the boundary. A typical case is the exit condition for the
subsonic boundary-layer of a supersonic flow.

4.3.2 Wall conditions

To assign wall conditions, as for the case of inflow or outflow,the first step is
to identify which terms (corresponding to space derivatives in the ŷ direction)
express contributions from outside, either at the upper boundaryŷ = 1, or at the
lower boundarŷy = 0. The unknownfx

p correspond to the positiveλy
i for the

lower wall, and to the negativeλy
i for the upper wall. We will hereby derive the

boundary conditions for the lower wall, being the conditions for the other wall
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based on the same logic. Two kind of walls can be defined: inviscid wall, viscous
wall and axis of symmetry. The special case of an ablating wall will be discussed
in the following chapter. If the lower (or upper) boundary isnot a wall or an axis
of symmetry then inflow or outflow conditions can be enforced exactly in the same
way shown for thêx = cost boundaries.

• Inviscid wall . The boundary conditions on inviscid walls are easily treated.
In this case the conditionv = vt = 0 holds. For a rigid wall, in fact,v
must vanish at all of its points; this is called theflow tangencycondition
and it is the only condition which has to be specified for an inviscid flow.
Consequentlyλy

1 > 0, λy
2 < 0, andλy

3 = 0 and3 + (N − 1) boundary
conditions must be assigned for the corresponding unknown terms:f y

1 , f y
3 ,

f y
4 , and the(N − 1) f y

i . The termf y
1 can be derived from the third of (4.3),

imposingvt = 0:

f y
1 = f y

2 − fx
3 − Vv (4.8)

The other unknown signals, are easily derived:

f y
3 = f y

4 = f y
i = 0 (4.9)

the above condition is obtained from (B.14) imposingλy
3 = 0.

• Viscous wall (non-reacting). Theλ-scheme specifies the boundary condi-
tions using relations based on characteristic lines, i.e.,on the analysis of the
different waves crossing the boundary. To build Navier-Stokes boundary
conditions, the approach used here is to take conditions corresponding to
Euler conditions (inviscid) and to supply additional relations, i.e. thevis-
cousconditions. According to signal propagation, the viscous and inviscid
conditions are exactly the same. The difference lies in the added conditions
which must be assigned on space derivatives for a viscous flow[65]. This
can be made directly specifying the flow parameters at wall. The usual flow
tangency condition for an inviscid flow changes drasticallyfor a viscous
flow. Because of the existence of friction, the flow can no longer slip at
the wall and we have theno-slipcondition at the wall, namely the velocity
vector is zero at the wall:

u = v = 0 (4.10)

The zero-pressure gradient at the wall is also enforced:
(

∂p

∂y

)

w

= 0 (4.11)
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In addition, because of energy transport by thermal conduction, we require
an additional boundary condition at the wall involving temperature. Differ-
ent cases can be considered [2]:

1. Isothermal wall:

T = Tw (4.12)

whereTw denotes the specified wall temperature. Usually the wall will
not be at constant temperature. If we know a priori the distribution of
temperature along the surface (for example from an experiment) then
the above condition is modified withTw(x̂) instead ofTw, whereTw(x̂)
is the specified wall temperature variation as a function of distance
along the surface (thêy = 0 line in the computational plane). Unfor-
tunately, in a high-speed flow problem, the wall temperatureis usually
one of the unknowns and the isothermal wall condition is, therefore,
not usable in this case.

2. Heat-transfer wall boundary condition:

qw = −k

(
∂T

∂y

)

w

(4.13)

whereqw is the heat transfer (energy per second per unit area) into
or out of the wall, and(∂T/∂y)w is the normal temperature gradi-
ent existing in the gas immediately at the wall. In general, the wall
heat transfer (and hence the wall-temperature gradient) are unknowns
of the problem, and, therefore, in the most general case thisbound-
ary condition must be matched to a separate heat-conductionanalysis
describing the heat distribution within the surface material itself, and
both the flow problem and the surface material problem must besolved
in a coupled fashion. A special case of the above condition istheadia-
batic wallcondition, wherein by definition the heat transfer to the wall
is zero.

3. Adiabatic wall:

(
∂T

∂y

)

w

= 0 (4.14)

Note that here the boundary condition is not on the wall temperature
itself, but rather on the temperaturegradient. The resulting wall tem-
perature, which comes out as part of the solution, is defined as the
adiabatic wall temperatureTaw.
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Although the choice of an appropriate boundary condition for temperature
at the wall appears somewhat open ended from the preceding discussion,
the majority of high-speed viscous flow calculations assumeone of the two
extremes, that is, they either treat a uniform, constant-temperature wall or
an adiabatic wall. However, for a detailed and accurate solution of many
practical problems, such is the case of an ablative surface,a heat-transfer
wall boundary condition must be employed along with a coupled solution
of the heat-conduction problem in the surface material itself.

• Viscous wall (reacting). As for the non-reacting viscous wall, the standard,
no-slip boundary conditions on velocity at the wall Eq. (4.10) hold for a
chemically reacting viscous flow as well. For a constant-temperature wall
with known temperatureTw, the (4.12) holds as well. In contrast, for an
adiabatic wall, the boundary condition becomes:

(

∂T

∂y
+ ρ

N∑

i

Dimhi
∂yi

∂y

)

w

= 0 (4.15)

whereDim is the multicomponent diffusion coefficient. For a chemically re-
acting mixture, in fact, there is also an energy transport caused by diffusion.
That is, as speciesi diffuses through the gas, it carries with it the enthalpy
of speciesi, hi, which is a form of energy transport. Hence, in a chemically
reacting flow for an adiabatic wall the normal temperature gradient is not
necessarily zero.

In a chemically reacting flow, the mass fraction of speciesi is one of the de-
pendent variables. Therefore boundary conditions foryi are needed as well
as foru, v, andT already discussed. At the wall, the boundary condition on
yi deserves some discussion because it involves, in general, asurface chem-
istry interaction with the gas at the wall. The wall can be made of a material
that tends to catalyze chemical reactions at the surface or it can ablate or
melt due to the incoming heat flux. To get familiar with wall-flow chemical
interactions, thecatalytic wallconditions will be discussed:

1. Fully catalytic wall:
A fully catalytic wall is one where all atoms are recombined,irre-
spective of the mass fraction of atoms that would be allowed to exist
at local chemical equilibrium conditions (pressure and temperature at
the wall). The boundary condition is simply the following:

(yA)w = 0 (4.16)

where(yA)w is the mass fraction of atomic species at the surface.
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2. Equilibrium catalytic wall:
An equilibrium catalytic wall is one at which chemical reactions are
catalyzed at aninfinite rate, that is, the mass fractions at the wall are
their local equilibrium values at the local pressure and temperature at
the wall. The boundary condition is simply as follows:

(yi)w = (yi)eq (4.17)

where(yi)eq is the equilibrium composition at the wall pressure and
temperature. Note that, if the wall temperature is sufficiently low,
the equilibrium value ofyA is essentially zero. In this case the fully
catalytic and the equilibrium catalytic wall conditions are exactly the
same.

3. Partially catalytic wall:
A partially catalytic wall is one at which chemical reactions are cat-
alyzed at a finite rate. Leṫwc denote the catalytic rate at the surface
(mass of speciesi per second per unit area).ẇc is positive for species
i consumed at the surface and negative for speciesi produced at the
surface. At the surface the amount of speciesi produced or destroyed
as a result of the catalytic rate must be balanced by the rate at which
speciesi is diffused to the surface. Hence:

(ẇc)i = ρDim

(
∂yi

∂y

)

w

(4.18)

Equation (4.18) is the boundary condition for a surface withfinite cat-
alyticity. It dictates the gradient of the mass fraction at the surface.

4. Noncatalytic wall:
A noncatalytic wall is one where no recombination occurs at the wall,
that is,(ẇc)i = 0. For this case, from (4.18):

(
∂yi

∂y

)

w

= 0 (4.19)

The subjects of surface chemical reactions with the flow and the associated
boundary conditions just discussed for a catalytic surfaceare serious mat-
ters for the analysis of chemically reacting viscous flows, because they can
strongly affect the aerodynamic heating. The more complex case of an ab-
lating surface and the associated boundary conditions willbe discussed in
chapter5.

• Axis of symmetry. This condition corresponds to the inviscid wall condi-
tion, both for the Euler and Navier-Stokes equations. The symmetry condi-
tion, in fact, dictates thatv = −v and thereforev = vt = 0.
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4.3.3 Error accumulation on the boundaries

For each of the described cases (inflow, outflow, rigid wall),the problem of trunca-
tion errors accumulation in time can arise [54]. To avoid this problem, the bound-
ary conditions must be enforced not only on space derivatives but also on variables
themselves. Terms, such asf y

1 in (4.8), re-evaluated at the boundaries, are used
in (4.3) to udate the boundary points themselves. In principle, v originally equal
to zero on the wall, should remain equal to zero because (4.8)assures the van-
ishing ofvt. Similarly, T0 andp0 should remain constant because of (4.5), andp
should remain constant because of (4.6). In practice, it maynot be so because the
updating ofv, T0, p0, andp is affected by almost imperceptible truncation errors
in time. After a number of steps, one can observe a departure from the original
values, producing an increase or decrease in total energy and/or a non-vanishing
v (expressing an addition or loss of mass through the wall). Itis necessary, there-
fore, to reset certain quantities to maintainT0, p0, p, andv constant at the entry,
exit, and wall boundary, respectively. This can be done easily at the wall because
v is one of the variables of the system while it can be a little more complicated
for outflow or inflow conditions, where the conserved parameters (T0, p0, p) are a
combination of the dependent variables. For example the task is accomplished, at
the entrance, by computing:

(h0)
k+1 = h0

(Rx
2)

k+1 = (b)k+1 − (u)k+1

(4.20)

Sinceh0 is a function ofT0, the system (4.20) can be used to obtain the corrected
values of(b)k+1 and (u)k+1. From these values and the knowledge ofp0, the
corrected value of(s)k+1 can be obtained.

4.3.4 Multi-block technique

In many practical problems the computational region is complex to discretize us-
ing a single grid obtained with conformal mapping. A common solution consists
in considering multiple computational regions, which haveone or more bound-
aries in common and where the flowfield continuity must be enforced (Multi-block
technique). In this work the multi-block technique described in [60, 59, 47] is
adopted for multicomponent reacting flows.





Chapter 5

Ablation model and boundary
conditions

In a hypersonic heating environment, non-charring TPS materials, such as carbon-
carbon, lose mass only by ablation and melt/fail mechanisms. Detailed analysis of
the performance of such TPS materials must consider the in-depth energy equa-
tion, the surface mass and energy balances, and ablation modeling. However, to
predict the aerothermal heating over an ablating surface, the CFD code has to
be integrated with a computational surface thermochemistry technique. The sur-
face mass and energy balances, in fact, include terms which involve gradients and
which are consequently expressed differently depending onthe solver’s structure;
thus the mass and energy balances must be considered part andparcel of the CFD
code’s boundary conditions. An accurate evaluation of the boundary-layer mass
and energy transfer mechanism is a key issue to predict the correct mass blowing
rate and consequently the heat flux over an ablating surface.To obtain a better
evaluation of the ablating flowfield, the mass and energy exchange mechanisms
must be accurately modeled using the information from the full Navier-Stokes
solver; this is performed including the ablating surface conditions inside the flow
solver.

Approaches based on boundary-layer transfer-coefficients(see Chapter2) per-
mit to express the gradients across the boundary-layer as a function of values at
wall and at the boundary-layer edge with the use of suitable nondimensional num-
bers (Stantonnumbers for mass and energy transfer). Approaches based on these
simplified boundary-layer models require less CFD code modifications but rely on
a less accurate modeling which can limit the accuracy in the estimation of surface
blowing rate and surface temperature. Thus, in order to improve the estimation of
the heat flux over an ablating surface, a flow solver with ablating surface condi-
tions becomes a requirement.

The inclusion of mass and energy balance in the equation solver’s boundary
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conditions and the coupling with the ablation model will be explained in details
in the next sections.

5.1 Surface mass and energy balance

The physics of the hot-gases over a solid surface is modeled by the chemically
reacting Navier-Stokes governing equations, which are solved by the code based
on the lambda scheme [54] described in Appendix A and B. Because of the chem-
ically active surface, further physical modeling is necessary for the fluid-surface
interaction. The latter aspect requires the addition of a mathematical model of
the hot-gas-flow boundary condition which describes the physics of the surface
phenomena.

Consider the fluxes of energy entering and leaving a control surface fixed to the
ablating surface. The graphite surface material may be visualized as moving into
the surface at a ratės = ṁ/ρs. If it is assumed that no material is being removed
in a condensed phase (solid or liquid), then the general boundary conditions for a
chemically reacting,non-charringablating surface can be written as [51, 15]:

k
∂T

∂y

∣
∣
∣
∣
w

+
Nc∑

i

hiρDi
∂yi

∂y

∣
∣
∣
∣
w

+ qrad + ṁhs = (ρv)hw + ǫσT 4 + qcond (5.1)

which is the surface energy balance (SEB), and:

ρDi
∂yi

∂y

∣
∣
∣
∣
w

+ ṁys,i = (ρv)yw,i +
Nr∑

r

ωr
i i = 1, ..., Nc (5.2)

which is the surface mass balance (SMB) for theith species.Nc is the number of
chemical species of the system and the subscriptsw ands denote gas and solid
properties at the wall, respectively.

The terms on the left-end side of Eq. (5.1) are the heat fluxes entering the
surface due to conduction, diffusion, radiation from the gas to the surface, and
solid material mass flow rate, while the terms of the right-end side are the heat
fluxes leaving the surface due to blowing, re-radiation, andconduction in the ma-
terial. The conduction termqcond is an input for the CFD analysis, which has to be
provided by numerical or semi-analytic CSM (ComputationalSolid Mechanics)
computation.

The terms on the left-end side of Eq. (5.2) are the mass flux entering the sur-
face due to diffusion and solid material injection flux, while the terms on the
right-end side are the mass fluxes leaving the surface due to blowing and sur-
face reactions (different from ablation, i.e. catalysis).The termωr

i is the mass
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flux of speciesi due to surface reactionr, andys,i is the mass of speciesi pro-
duced or consumed in the ablation process per mass of TPS material ablated, i.e.
ys,i = ṁi/ṁ. The ys,i are positive for ablation products, negative for species
which are consumed in the ablation process and sum to unity. Eq. (5.1) and (5.2)
can also be applied to a non-ablating surface, withṁ = 0. A summation of
Eq. (5.2) over all the species, considering that the summation made over the dif-
fusive and chemical terms is zero because of mass conservation, yields:

(ρv) = ṁ (5.3)

Whereρ andv are the density of the gaseous mixture at the wall and the gas-phase
injection velocity, respectively. With the use of Eq. (5.3), Eq. (5.1) and (5.2) can
be cast into a more appealing form:

k
∂T

∂y

∣
∣
∣
∣
w

+
Nc∑

i

hiρDi
∂yi

∂y

∣
∣
∣
∣
w

+ qrad = ṁ(hw − hs) + ǫσT 4 + qcond (5.4)

ρDi
∂yi

∂y

∣
∣
∣
∣
w

= ṁ(yw,i − ys,i) +
Nr∑

r

ωr
i (5.5)

With the energy and mass balances in this form, each term has amore perceivable
physical significance.

It is interesting to note that a suitable combination of Eq. (5.4) and (5.5) allows
to express the so-calledheat of ablationterm. This can be obtained by multiplying
Eq. (5.5) forhi and summing over all the species:

Nc∑

i

hiρDi
∂yi

∂y

∣
∣
∣
∣
w

= ṁ

(
Nc∑

i

hiyw,i −
Nc∑

i

hiys,i

)

+

Nc∑

i

Nr∑

r

hiω
r
i (5.6)

The term
∑

i

∑

r hiω
r
i is the chemical energy flux due to surface reactions differ-

ent from ablation. Substituting Eq. (5.6) into Eq. (5.4) andnoting that the term
∑

i hiyw,i is the enthalpy of the mixture of gases at wallhw, yields:

k
∂T

∂y
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∣
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∣
w

+ṁ

(

hw −
Nc∑

i

hiys,i

)

+

Nc∑

i

Nr∑

r

hiω
r
i +qrad = ṁ(hw−hs)+ǫσT 4+qcond

(5.7)
Defining the termHabl =

∑

i hiys,i − hs and rearranging, Eq. (5.7) becomes:
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∣
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w

+

Nc∑

i

Nr∑

r

hiω
r
i − ṁHabl

︸ ︷︷ ︸

chemical heat flux

+qrad = ǫσT 4 + qcond (5.8)
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The termHabl is the so-called heat of ablation, which is the difference between the
enthalpies of the species created or consumed by the ablation mechanism and the
enthalpy of the solid material at the surface temperature; therefore it represents
the energy absorbed (or released) by the thermochemical ablation process. The
term

∑

i

∑

r hiω
r
i − ṁ ·Habl is therefore the heat flux due to the surface chemical

reactions which will be referred to aschemical heat flux. If the heat of ablation
Habl is positive and the surface reactions are only due to ablation (ωr

i = 0), then
the chemical heat flux is negative and heat is absorbed by the ablation process.
The opposite happens when the heat of ablation is negative. The chemical heat
flux has the following equivalent expressions:

qchem =
Nc∑

i

Nr∑

r

hiω
r
i − ṁHabl (5.9)

and

qchem =

Nc∑

i

hiρDi
∂yi

∂y

∣
∣
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∣
w

− ṁ(hw − hs) (5.10)

5.1.1 Steady-state surface energy balance

The conduction termqcond in the surface energy balance Eq. (5.4) is an input for
the CFD analysis, which has to be provided by a numerical or semi-analytical
CSM (Computational Solid Mechanics) computation. However, when a cou-
pling with a material response code is not available, further hypothesis have to
be made in order to compute the conduction term. Aradiative equilibriumSEB
solution [15] can be achieved by settingqcond = 0 while retaining all the other
terms in Eq. (5.4). However, this is rarely a reasonable assumption for an ablat-
ing surface because the energy conduction in the material cannot be neglected.
A better approximation is represented by thesteady-stateablation [29, 6]. For
low-conductivity materials or at high ablation rates, the conduction termqcond is
approximately equal to the steady-state value [66]:

qcond
ss = ṁ(hs − hsi

) (5.11)

wherehs is the enthalpy of the solid material at the wall temperature, while hsi
is

the enthalpy of the material at the initial (in-depth) temperature. With the steady-
state assumption, relative to the ablating (moving) surface, things do not change
with time. Thus, it is possible to define a control volume suchthat it moves along
with the receding surface and includes the entire temperature layer. The lower
surface of this control volume is aligned with the start of the in-depth material
at the initial temperatureTi and enthalpyhsi

. The upper surface of this control
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volume is aligned with the gas-phase interface that is adjacent to the receding
surface. It should be noted that the lower surface of this control volume is taken
sufficiently in-depth such that, at any instant,T = Ti and ∂T/∂y = 0. The
integration of the energy balance Eq. (1.12) across the control volume gives the
result of Eq. (5.11) assuming steady-state (∂T/∂t = 0).

Substituting the steady-state conduction term Eq. (5.11) in the SEB Eq. (5.4)
leads to the ”steady-state” energy balance (called SSEB):
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− ṁ(hw − hs)

︸ ︷︷ ︸

chemical

+ qrad
︸︷︷︸

radiative

= ǫσT 4
︸ ︷︷ ︸

re−radiative

+ ṁ(hs − hsi
)

︸ ︷︷ ︸

solid conduction

(5.12)
Thesteady-stateSEB is a better assumption than theradiative equilibriumSEB
because the conduction heat flux is, in general, larger than the steady-state value
and tends to it asymptotically with time (provided that the external conditions are
not varying). When the CFD solution is not coupled with a material response
code, the steady-state ablation is a common assumption [6, 29]. Moreover, the
results presented in Chapter2 have shown that the steady-state assumption is a
reasonable approximation for carbon-carbon composite material.

5.1.2 Surface equilibrium assumption

For an ablating surface, the SMB takes different forms depending on whether or
not the flow is in chemical equilibrium with the solid phase. For equilibrium flow,
it is convenient to use elemental mass fractionyk, which are known for the TPS
material and which are variables in the CFD solutions. The term yk represent
the total mass fraction of elementk independent of molecular configuration, i.e.
yk =

∑

i αkiyi.
A summation of Eq.(5.5) over all the species yields a balanceequation for

each elementk, and consequently eliminates the surface reaction term:
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= ṁ
Nc∑

i

αki(yw,i − ys,i) (5.13)

which, introducingyw,k =
∑

i αkiyw,i andys,k =
∑

i αkiys,i, can be expressed as:
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w

= ṁ(yw,k − ys,k) k = 1, ..., Nel (5.14)

Nel represents the total number of chemical elements in the system. The term
yw,k is the elemental mass fraction of the gaseous mixture at the wall while ys,k is
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the mass of elementk produced in the ablation process per mass of TPS material
ablated, i.e.ys,k = ṁk/ṁ. Clearly theys,k must be equal to the elemental compo-
sition of the TPS material. If the diffusion coefficientsDi are all equal, Eq. (5.10)
becomes:

ρD
∂yk

∂y

∣
∣
∣
∣
w

= ṁ(yw,k − ys,k) (5.15)

The use of Eq. (5.10) or (5.13) together with the assumption of chemical equi-
librium at wall permits to bypass the entire discussion about governing processes
and intermediate steps concerning the number of species, reaction mechanisms,
and the associated reaction rates, especially for the complex flowfields with ab-
lation. The advantage of using Eq. (5.10) instead of Equation (5.5) lies in the
fact that the source term due to chemical reactions vanishesin the elemental ap-
proach. Moreover, the termys,k only depends on the material composition while
its species’ counterpart, the termys,i, also depends on the reaction mechanism
with the atmosphere.

The surface equilibrium approach provides satisfactory accuracy with reduced
computational cost, although ablating surface non-equilibrium should be taken
into account. However, only few data are available to validate gas-surface kinetic
models which strongly affect the prediction of mass blowingrate [75, 31, 19].
For these reasons the surface equilibrium approach has beenused here: this is
equivalent to assume that the regime is always diffusion controlled.

5.2 Thermochemical ablation model

Solving the energy and mass surface balances, Eqs. (5.4) and(5.14), is only pos-
sible if the ablation term is suitably modeled. Thus it occurs to prescribe some
relationships among the blowing mass flow rateṁ and the surface thermody-
namic state (wall pressure and temperature). Two differentablation models have
been considered in the present study: a classicalthermochemical table modeland
a fully-coupled ablation model. Both models rely on the assumption of surface
equilibrium.

5.2.1 Thermochemical table model

The thermochemical tableablation models [51, 34], which are the most widely
used for TPS materials, are obtained from a solution of the equations for thermo-
dynamic equilibrium between the TPS material and the atmosphere of interest,
coupled with surface mass balance and simplified boundary-layer transfer poten-
tial methodology. Thethermochemical tableablation model has been described
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in Chapter1 and only the major framework of the model is repeated here. With
the transfer coefficient approach the elemental mass balance Eq. (5.15) becomes:

ye,k + B
′

ys,k = (1 + B
′

)yw,k (5.16)

whereB
′

= ṁ/ρeueCm is the dimensionless mass flux due to ablation and()e

refers to the edge of the boundary layer. For each value ofB
′

, Eq. (5.16) per-
mits to find the wall elemental composition (ye,k andys,k are known). Once the
yw,k are known, the wall temperature can be determined by the wallpressure and
the assumption of chemical equilibrium using a free energy minimization proce-
dure [28]. The net result of the calculations is a set of thermochemical tables
F(p, T, B

′

) = 0 relating surface temperature and pressure to a dimensionless ab-
lation mass flux. Figure 1.4 showsB

′

(T, p) for thermochemical ablation of carbon
in air. At each pressure and temperature corresponds a dimensionless mass flux
and a mixture composition in equilibrium with the solid phase.

The advantage of using these tables is that, once they have been generated,
they are applicable over a wide range of aerothermal heatingconditions. The dis-
advantage is that they are obtained with a very simplified boundary layer approach
based on transfer coefficients to model species diffusion across the boundary-
layer. From the definition ofB

′

it is clear that the diffusion coefficientCm plays a
dominant role in determining the surface ablation rateṁ, and thus the uncertainty
in this estimated mass blowing rate can be high. The mass-transfer coefficient
Cm is usually obtained via the convective heat transfer coefficient Ch and semi-
empirical relations such as Eq. (1.26). Sometimes they are even taken as simply
being equal as in [38]. The uncertainty in this estimated mass transfer coeffi-
cient is high, and consequently the predictions of mass blowing rates (̇m), surface
temperatures, and heat fluxes can be inaccurate. An error on the mass transfer
coefficientCm, in fact, has a great influence not only on the mass blowing rate but
also on surface temperature and heat fluxes, since the termṁ affects the surface
energy balance as well through injection and blowing terms.

In a typical computation usingB
′

tables, the surface temperature, mass blow-
ing rate, and composition are computed from the material response code and then
used as input conditions for the CFD code which then computesthe wall pressure
and heat flux. The final temperature is thus determined through coupled iterations
between the flow solver and the material code. However, the surface mass and en-
ergy balance are solved by the material response code using asimplified transfer
potential methodology. Even modern approaches [16, 63, 18,38] rely on the use
of transfer coefficient approaches because of the difficultyof imposing directly
the mass and energy balance as boundary condition for the CFDcode. The sim-
plified surface energy balance assumes typically the form expressed in Chapter1
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(see, for example, [17]):

ρeueCh(hr − hw)e + ρeueCm

N∑

i=1

(ye,i − yw,i)hw,i + ρeueCmB
′

(hs − hw)+

+qradin
− σǫTw

4 − qcond (5.17)

where the first two terms are the transfer-coefficient expressions for the convective
and diffusive heat flux. During the iterations, the heat transfer coefficientCh is
determined from the CFD solution so that the convective heatflux is exactly equal
to that computed from the Navier-Stokes solver. However, the simplified mass
transfer model remains both in the diffusive heat flux and in the B

′

term. In
case of steady-state ablation the expression of Eq. (5.11) can be substituted into
Eq. (5.18) to obtain the steady-state transfer-coefficientexpression for the SEB.

5.2.2 Fully-coupled ablation model

Thermochemical tables are based on a simplified boundary-layer diffusion model
which is a very limiting assumption. An accurate evaluationof the mass/energy
transfer mechanism is a key issue to predict the correct massblowing rate and
temperature and consequently the heat flux over an ablating surface; thus, a full
Navier-Stokes approach is needed to solve the coupled material/flow problem:
the advantage of using pre-generatedB

′

(T, P ) tables and transfer potential mass
and energy balances is lost but the simplified boundary-layer approach can be
completely removed.

Assuming chemical equilibrium, the surface chemical composition can be
computed basing on equilibrium relations between the wall mixture of gases and
the solid material (details are given in the next section). Tables are created rep-
resenting the wall chemical composition at different pressures and temperatures.
These tables are then used by the main code as boundary conditions to solve the
mass balance equation and to determine the correct mass blowing rate of each
wall node. With the pressure coming from the flowfield (assuming zero-pressure
gradient at wall) and with the wall temperature assigned, the chemical composi-
tion at wall (yw,i) can be obtained from pre-generated tables. The wall elemental
composition (yw,k) is then easily obtained as well as the wall diffusive mass flux
of elementk:

yw,k =
∑

i

αkiyw,i

jw,k =
∑

i

αkiρDi
∂yi

∂y

∣
∣
∣
∣
w
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where the species mass fraction gradient at wall∂yi/∂y|w can be evaluated from
the surface and flowfield solution. Finally, with the elemental composition and the
elemental diffusive mass flux at wall, the mass blowing rateṁ can be evaluated
with the use of the surface mass balance Eq. (5.14). Among theNel equations of
this type there areNel−1 relations due to the fact that the elemental compositions
of the atmosphere and of the surface material are known; the only unknown is
their relative amount at the wall. Therefore the mass blowing rate can be obtained
from Eq. (5.14) using any of the elements of the system. During the computation,
the mass blowing rate boundary condition and the wall chemical composition are
continuously updated until the steady-state condition is reached. Mass blowing
rate must be updated continuously because it depends on the boundary layer solu-
tion (via the diffusive mass fluxes) and at the same time it affects its development.
When steady-state is reached, the mass blowing rate is everywhere consistent with
the mass balance Eq. (5.14) and the wall composition is in chemical equilibrium
with the wall material at the wall pressure and temperature.Unlike the thermo-
chemical tablemodel, the mass balance equation is not inserted in the chemical
tables but is part of the solver’s boundary conditions, through Eq. (5.14), and thus
no simplified mass transfer model has to be introduced.

If the surface temperature is not assigned, it must be derived from the sur-
face energy balance. Assuming steady-state ablation, the unknown wall temper-
ature can be obtained solving the steady-state energy balance (SSEB) reported in
Eq. (5.12). An initial value for the temperature is assumed for each wall node;
from this value all terms of the SSEB can be computed but, in general, the SSEB
will not be satisfied. Therefore the Newton’s procedure is adopted to select suc-
cessively better estimates of the wall temperature until the SSEB is verified. It is
clear that, when the wall temperature is changed, all the temperature-dependent
parameters must be consequently updated. At each CFD iteration, the wall tem-
perature and consequently the composition and mass blowingrate are computed
according to the above procedure. It is important to stress that the mass and en-
ergy balances are inserted as boundary conditions in the flowsolver and then
solved during the CFD computation without introducing any simplification in the
mass/energy transport mechanism.

5.2.3 Evaluation of wall chemical composition

Consider a system made up ofNel chemical elements. In general, these elements
will interact to form a number of chemical species1 Nc (gas phase) andNl (con-
densed phase). If enough time has elapsed so that thermodynamic and chemical
equilibrium is established, the thermodynamic state of thesystem, including the

1”Chemical species” includes both molecular and atomic species.
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relative amount of chemical species present, is completelydetermined if two inde-
pendent thermodynamic variables are known (for example temperature and pres-
sure). Thus, assigning the elemental composition (regardless of molecular config-
uration) of the environmental gas (such as air) and of the wall material (such as
carbon) together with pressure and temperature, the equilibrium chemical compo-
sition can be determined. Obviously, among the chemical species present, there
is also a condensed phase (solid carbon). Knowing the relative amount of each
species (solid and gaseous) the chemical composition of thesole gaseous mixture
can be easily determined:

yigas =
yi

1 − yisolid

When a chemical equilibrium calculation is made, the relative amount of each
component (the environmental gas and the TPS material) mustbe specified, either
in mole or in mass fractions. In this case, since we are only interested in the
composition of the gaseous mixture at wall, the relative amount of the solid phase
is irrelevant. However, it is a base requirement to have the presence of solid phase
in the equilibrium composition. According to this, calculations are made with
excess of solid component (carbon). The elemental compositions are assigned and
fixed once the environmental gas and TPS material have been selected. Tables can
be created representing the wall chemical composition at different pressures and
temperatures. These tables are then used as boundary conditions to solve the mass
balance equation (5.14) and to determine the correct mass blowing rate. Unlike
thermochemical ablationmodel (see Figure 1.4), the mass balance equation is not
inserted in the chemical tables but is part of the solver’s boundary conditions, as
shown in the previous section. In this way, no simplified boundary-layer transfer
coefficient model has to be introduced.

Tables with surface composition at different pressures andtemperatures are
created by an equilibrium routine once for all prior to the CFD run. The equilib-
rium program is a version of the NASA Chemical Equilibrium with Application
(CEA) open source code2 [28]. The CEA code is organized in modules to facili-
tate adding or deleting applications of the program. Only the needed modules of
CEA have been retained in the equilibrium routine and the equilibrium module
has been modified to compute the composition of the gaseous mixture in equi-
librium with the solid phase. The output is a file containing the mass fractions of
each species of the system as a function of temperature and pressure. The range of
pressure (Pmin, Pmax) and temperature (Tmin, Tmax) as well as their increment
(deltaP, deltaT) can be assigned to the equilibrium routine.

2Web site:
http://www.grc.nasa.gov/WWW/CEAWeb/ or
http://www.openchannelfoundation.org/projects/CEA/.
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Figure 5.1: Carbon ablation in air at1 bar: equilibrium composition.
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Figure 5.2: Carbon ablation in air at10 bar: equilibrium composition.
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Figure 5.3: Carbon ablation in air at100 bar: equilibrium composition.
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The species mass fractions are ordered in columns; each record of the tabu-
lar file represents one wall pressure and one wall temperature. The equilibrium
routine generates separate groups for each pressure; thesegroups are ordered on
pressure (ascending). Within each pressure group the temperature is is ascending
order. Figures 5.1-5.3 show the wall composition for pure carbon ablation in air
at three different pressures. The surface composition can be evaluated for temper-
atures below the sublimation temperature, above which graphite is not present in
solid phase. The sublimation temperature depends on pressure: around4000 K
at 1 bar, 4400 K at 10 bar and4900 K at 100 bar. Figures 5.1-5.3 show that the
major sublimation product is the speciesC3, with C5 playing an important role
only at very high pressures.

The chemical composition database file (graphically represented in Figures
5.1-5.3) is read once for all by the main code and stored into an array. During
each time step the surface composition at the local wall temperature and pressure
is evaluated using a bi-linear interpolation function. Reading (and interpolating)
the composition from a pre-build database permits to save computational time.

5.3 Implementing the ablative boundary conditions

As shown in the previous sections, the surface mass and energy balances, cou-
pled with a surface thermochemical ablation model, providecomplete boundary
conditions for the solution of a flowfield with surface ablation. The surface mass
and energy balances Eqs. (5.14) and (5.12) are connected with the Navier-Stokes
solver because of the presence of gradients which involve the knowledge of vari-
ables both at wall and inside the flow. The way these gradientsare expressed is
highly dependent on the numerical scheme adopted for the solver (they can in-
volve multiple nodes, metric terms, etc.); thus, for the ablation problem, the SMB
and SEB have to be considered part and parcel of the CFD code’sboundary con-
ditions and cannot be put as an external routine. The thermochemical ablation
model, instead, can be an external module which provides surface composition
for a given wall thermodynamic state (pressure and temperature). The ablation
model provides the chemical composition at the surface given its thermodynamic
state. With the wall composition and the solution inside theflowfield (to compute
all the relevant gradients), the mass balance boundary condition provides the mass
blowing rate. Finally, with the mass blowing rate, the wall composition, and the
solution inside the flowfield, the energy balance boundary condition provides the
wall temperature.
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5.4 Inviscid conditions

As described in Chapter4 (see also Appendix B), theλ-scheme specifies the
boundary conditions using relations based on characteristic lines, i.e., on the anal-
ysis of the different waves crossing the boundary. To build Navier-Stokes bound-
ary conditions, the approach used here is to take conditionscorresponding to Euler
conditions (inviscid) and to supply additional relations, i.e. theviscousconditions,
which refer to viscous effects. To assign wall conditions, as discussed in Chapter
4, the first step is to identify which terms express contributions from outside, ei-
ther at the upper boundarŷy = 1, or at the lower boundarŷy = 0. We will hereby
derive the boundary conditions for the lower wall, being theconditions for the
upper wall based on the same logic. The unknownfx

p correspond to the positive
λy

i for the lower wall. Assuming a positive subsonic injection (blowing) velocity
the conditiona > v > 0 holds. Consequentlyλy

1 > 0, λy
2 < 0, andλy

3 > 0 and
3+(N−1) boundary conditions must be assigned for the correspondingunknown
terms:f y

1 , f y
3 , f y

4 , and the(N − 1) f y
i .

As previously mentioned, theλ-scheme permits to enforce the boundary con-
ditions with utmost simplicity and without using arbitraryelements. For the case
of an ablating surface the following”steady-state”conditions are used:







ut = u = 0

ṁt = 0

Tt = 0

yi,t = 0, i = 1, .., N − 1

(5.18)

Since ”steady-state” solutions are computed, surface massblowing, surface tem-
perature, and surface composition are constant when convergence is reached.
”Steady-state” conditions are imposed at wall. The condition on the mass blowing
rate can be expressed as a function of the integration variables, that isb = a/δ,

v, s, andyi. Sinceṁ = ρv andst = −R

ρ
ρt

3, the equations expressed in (5.18)

3whenyi,t = 0 andTt = 0.
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become:






ut = u = 0

ρvt =
ρv

R
st

bt = 0

yi,t = 0, i = 1, .., N − 1

(5.19)

Substituting equations (4.3) into (5.19) we obtain:






fx
1 − fx

2 + f y
3 + Vu = 0

ρ (f y
1 − f y

2 + fx
3 + Vv) −

ρv

R
st = 0

fx
1 + fx

2 + f y
1 + f y

2 + V
′

b +
a

γR
st + A = 0

fx
i + f y

i + Vyi
= 0, i = 1, .., N − 1

(5.20)

Rearranging the2nd and3rd equation of (5.20) with the use of the expression of
st from (4.3), we obtain the final expression for the unknownf q

p terms:






f y
3 = fx

2 − fx
1 − Vu

f y
1 =

a

a + γv

[

f y
2 − fx

3 − Vv −
γv

a

(

fx
1 + fx

2 + f y
2 + V

′

b + A
)]

f y
4 =

γR

a + γv

(

−fx
1 − fx

2 + fx
3 − 2f y

2 + Vv − V
′

b − A
)

− fx
4 − Vs

f y
i = −fx

i − Vyi
, i = 1, .., N − 1

(5.21)

If the ablative surface is on the upper wall, the unknown signals are:f y
2 , f y

3 , f y
4 ,

andf y
i . Their expression is the following:






f y
3 = fx

2 − fx
1 − Vu

f y
2 =

a

γv − a

[

−f y
1 − fx

3 − Vv −
γv

a

(

fx
1 + fx

2 + f y
1 + V

′

b + A
)]

f y
4 =

γR

γv − a

(

fx
1 + fx

2 + fx
3 + 2f y

1 + Vv + V
′

b + A
)

− fx
4 − Vs

f y
i = −fx

i − Vyi
, i = 1, .., N − 1

(5.22)
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These conditions are implemented into the main code’s boundary conditions.

5.5 Viscous conditions

Apart from the above conditions, which come from theeulerianpart of the equa-
tions, there are the conditions related to the”viscous” terms, which are:

1. No slip condition for axial velocity component[u = 0]

2. Specified surface ablation rate[ṁ] coming from theelementalSMB Eq. (5.14)

3. Isothermal wall condition or variable surface temperature [Tw] coming from
the iterative solution of the steady-state SEB Eq. (5.12)

4. Zero-pressure derivative in the normal direction[∂p/∂y = 0]

5. Wall mixture of gases[yi] in equilibrium with the solid material at the wall
pressure and temperature

The isothermal ablation viscous conditions will be described first, followed by the
more complex case of variable surface temperature according to the steady-state
surface energy balance.

5.5.1 Isothermal ablation

The wall derivatives are evaluated using a three-nodes (second-order) expression,
that is:

∂A

∂y

∣
∣
∣
∣
w

= Gŷη
−A4 + 4 · A3 − 3 · A2

2 · ∆ŷ
(5.23)

whereA is a generic variable andG and ŷη are the metric terms to transform
derivatives expressed in the computational plane (x̂, ŷ) into derivatives expressed
in the physical plane (x, y)4. Thesubscripts2, 3, and4 represent the wall node
and the two nodes above it, respectively.

For each time step firstly the wall pressure is evaluated fromthe zero-pressure
derivative condition. With the expression (5.23) for derivatives, the wall pressure
is:

p2 =
4 · p3 − p4

3

4see Appendix B.
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Since the pressure is not part of the integration variables,it is derived from en-
tropy, temperature and chemical composition using the following expression:

p

p0
=

exp
[
− s

R
+
∑

i xiMi

(
s0i

+
∫

cpi

dT
T

)]

∏
xi

xi

With the wall pressure known and with the assigned wall temperature, the com-
position5 of the wall mixture of gases is obtained using the routine described in
section5.2.3. Once the wall chemical composition and surface temperature are
known, all the mixture properties (specific heats, ratio of specific heats, mixture
gas constant) are updated. The wall density is obtained via the equation of state:

ρ =
p

RT

The mass blowing rate is evaluated from the elemental SMB:

ṁ =
−jw,k

(yw,k − ys,k)
(5.24)

yk is the wall chemical elemental composition and can be easilyobtained from
the wall composition whileys,k is the elemental composition of the TPS material
and is known once the material has been selected. The termjw,k is the elemental
diffusive mass flux at the surface, which can be expressed with a summation of
the species diffusive mass fluxes:

jw,k = −
Nc∑

i

αkiρDi
∂yi

∂y

∣
∣
∣
∣
w

∂yi

∂y

∣
∣
∣
∣
w

is the wall normal derivative of the species mass fraction and can be ex-

pressed using expression (5.23) (note that the wall chemical composition has been
previously calculated):

∂yi

∂y

∣
∣
∣
∣
w

= Gŷη
−yi4 + 4 · yi3 − 3 · yi2

2 · ∆ŷ

The mass blowing rate can be evaluated with the expression (5.24) written for any
of the elements of the system. Once the mass blowing rate has been calculated,
the blowing velocity can be obtained from the relation:

v =
ṁ

ρ

5in terms of species mass fractions.



5.5. VISCOUS CONDITIONS 111

The wall axial velocity is assigned equal to zero according to the no-slip condition
at wall:

u = 0

The wall condition (v, ρ, p, T, yi) is thus completely known. Since the integration
variables areb = a/δ, v, s, yi, wall entropy is evaluated through wall temperature,
pressure, and composition:

s =
∑

i

yisi

with

si = s0i
+

∫ T

T0

cpi

dT

T
− Ri ln

xip

p0

Finally, the speed of sounda and the integration variableb = a/δ are evaluated
with the following expressions:

a =
√

γRT

b =
a

δ
, δ =

γ − 1

2

5.5.2 Steady-state ablation

If the wall condition is not isothermal, the SSEB Eq. (5.12) must be used to select
successively better estimates of the wall temperature until the sum of the terms of
the SSEB will equal zero.

Firstly with the initial value for surface temperature, both wall composition
and mass blowing are evaluated with the previously described procedure. With
pressure, temperature, composition, and mass blowing rate, all the wall heat fluxes
can be evaluated and the SSEB can be computed. In general, however, the sum
of the terms of the SSEB will not equal zero but some non-zero quantityE . At
each time step the SSEB is computed and the errorE is calculated; then the wall
temperature is slightly perturbed and all the temperature-dependent parameters
are updated, together with the SSEB. With a new value ofE , its derivative with
respect to temperature can be numerically evaluated. The new temperature is then
obtained with the following expression (Newton’s method):

Tw
′

= Tw − E
∂E/∂T

(5.25)

Once the ”new” wall temperature is known, wall composition and mass blowing
rate are consequently updated as in the case of fixed temperature. The SSEB is
evaluated once again with the ”new” temperature and the procedure is repeated
until the error goes below a defined tolerance or after a maximum number of
cycles is reached.



112 CHAPTER 5. ABLATION MODEL AND BOUNDARY CONDITIONS

5.6 Computational Requirements

Beside its simplicity and availability, a chemical equilibrium routine can be very
time-consuming. For this reason, the gas chemical composition in equilibrium
with the solid phase for a given pressure and temperature is obtained from a pre-
generated table and then stored into an array by the main program. This permits
to save computational time without loosing accuracy since tables can be created
with many temperature and pressure intervals with no increase in computational
time. Once stored into an array, in fact, the time required tointerpolate among
tabulated values is the same regardless of the dimension of the array.

Once the wall composition has been evaluated, the procedurefor obtaining the
mass blowing rate through the SMB is straightforward and fast. If the wall tem-
perature is evaluated through the SSEB, each time step the Newton’s iterative pro-
cedure must be accomplished. However, this procedure converges rapidly so that
few iterations are needed. The best results have been obtained solving the SSEB
every time step with a maximum of 2 iterations at a time. Updating the wall tem-
perature through the SSEB after a finite number of time steps is not a good choice
since the time required for convergence is increased and often convergence prob-
lems are encountered. As previously described, during the iterative solution of
the SSEB, when a new wall temperature is reached all the temperature-dependent
parameters must be consequently updated. Updating the composition and conse-
quently the mass blowing ratėm is a key issue to obtain SSEB convergence during
each time step since the response of the material to the new temperature is mainly
due to the change of the blowing mass flow rate. Without the useof a chemical
equilibrium database table, the Newton’s iterative procedure to solve the SSEB
would be very time-consuming because it requires a call to anequilibrium routine
for each iteration performed. The use of pre-generated tables permits to reduce
drastically the computational time to perform a steady-state solution.

The general boundary conditions, including mass and energybalances, of
chemically equilibrated gas adjacent to an ablating surface have been derived. An
efficient computational procedure based on these conditions has been developed
and integrated with a Navier Stokes solver. The surface massand energy balances,
coupled with a surface thermochemical ablation model, provide complete bound-
ary conditions for the solution of a flowfield with surface ablation. The following
chapters will show the results obtained.



Chapter 6

2-D planar results

The procedure described above is applied to a flat plate made up of pure car-
bon (graphite). Supersonic laminar solutions with different environmental gases
and boundary conditions are presented in this study to examine their effects on
the predictions of flow structure and surface conditions. Chemical reactions be-
tween the wall material and the environmental gas are considered to determine the
composition of the mixture of gases at wall. The effect of kinetically controlled
chemical reactions in the boundary-layer and their effect on surface ablation is
also investigated.

6.1 Existing approaches

The important fact which is explained by the thermochemicalablation model, as
shown in Figure 1.4, is that there is a unique relation between temperature and
mass blowing rate. Even modern approaches rely on the use of such tables be-
cause of the difficulty of imposing directly the mass balanceequation as boundary
condition for the CFD code. The design and analysis of a TPS involves transient
CSM (Computational Solid Mechanics) analyses of the material and a sequence
of steady-state CFD analyses to determine the time-historyof the aerothermal
heating and coupled mass and energy balance boundary conditions, as reported
in [16] and [63]. When a coupling with a transient CSM code is not included in
the analysis the steady-state ablation is commonly assumed[5, 29]. In all of these
approaches the flowfield boundary conditions at the wall consist of a specified
surface ablation ratėm and a specified wall temperatureTw. When the procedure
is coupled with a transient CSM analysis, wall temperature and mass blowing
rate come from the material code (which makes use of thermochemical tables);
when the procedure is based on the steady-state assumption,the mass blowing
rate comes from the energy equation written in the steady-state form Eq. (5.12),

113
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while temperature can be the sublimation temperature [29] or is simply assigned
to an arbitrary value [5].

Assigning both temperature and mass blowing rate as boundary conditions can
be misleading especially when the steady-state assumptionis made; in this case, in
fact, the steady-state wall temperature depends on the flowfield and it can be diffi-
cult to assign it beforehand [6]. When the wall temperature is specified, and with
the wall pressure coming from the flowfield solution, the thermochemical ablation
model dictates that there is a unique mass blowing rate coming from mass balance
and from thermochemical equilibrium or non-equilibrium reactions between the
gas mixture adjacent to the wall and the wall material. Therefore, assuming a
fixed wall temperature, the mass blowing rate should be an output instead of an
input. When temperatures and blowing rates come from a CSM code, the relation
between blowing rate and temperature is guaranteed by the use of thermochemical
tables. As we have seen, however, these tables rely on a very simplified boundary
layer model and the error in the estimation of the mass transfer coefficientCm to
calculate the dimensional mass blowingṁ can compromise the accuracy of the
following full Navier-Stokes solution (which has the calculated mass blowing rate
as boundary condition).

In this work, efforts have been made in order to bring the process at the base of
the thermochemical ablation model inside the CFD code. The advantage of using
pre-generated tables is lost but the simplified boundary layer transfer-coefficient
approach has been totally removed.

6.2 Isothermal ablation results

The fully-coupled procedure described in the previous chapter is applied to a flat
plate made of pure carbon (graphite). Isothermal solutionswith different surface
temperatures are presented to examine their effects on flow predictions. Chemical
reactions between the wall material and the environmental gas are considered only
at the surface using an equilibrium approach. Once the wall composition has been
calculated, the species are not allowed to react as they are diffusing across the
boundary layer. The effect of finite rate chemical reactionsinside the boundary-
layer is studied in section6.2.5. The diffusion model used is based on binary
diffusion coefficients using a constant Lewis number. In this section the isother-
mal ablation results are presented while the steady-state ablation results will be
presented in section6.3.
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Table 6.1: Freestream conditions for Test Case 1

Freestream Conditions

pressure: 1 [bar]

temperature: 4500 [K]

Mach number: 1.8

Composition: 100% He

6.2.1 Test case 1: Helium environment

First, an inert environmental gas (helium) is analysed. Twokind of wall boundary
conditions are investigated. The first with assigned temperature and mass blowing
rate and the second with assigned temperature and chemical composition. In the
last case the composition at wall is the one in chemical equilibrium with the solid
material (graphite) at the temperature and pressure of the wall. Since pressure is
varying during the computational transitory, the wall composition is constantly
updated. The respect of the elemental mass balance Eq. (5.14) is invoked in both
cases. In the first case the mass balance is used to compute theelemental com-
position, while in the second case it is used to compute the corresponding mass
blowing rate. The freestream conditions are expressed in table 6.1. The wall
temperature is kept constant and equal to3500 K. At this temperature and for
pressures near1 bar the primary ablation product is gaseousC3 ( 85%)1. The
equilibrium assumption is acceptable because the wall temperature is sufficiently
high [34]. Figure 6.1 shows theC3 mass fraction at wall along thex direction,
with mass blowing rate imposed as boundary condition. As in the work of [6],
the ablation species (C3) shows a gradual buildup in the streamwise direction and
then asymptote to some value which is less than 1. Figure 6.2 instead, is obtained
imposing the composition at wall to be in chemical equilibrium with the solid ma-
terial (graphite) at the temperature and pressure of the wall. Wall composition is
almost constant because the wall pressure is weakly varying. Mass blowing rate
instead is strongly varying in the streamwise direction according to the growing
of the boundary layer. Higher mass blowing rates are experienced near the lead-
ing edge of the flat plate where the diffusional mass fluxes arehigher as shown
in Figure 6.3. Imposing the wall composition is surely a moreadequate boundary
condition because it ensures a physical relation between the wall mixture of gases
at wall and the solid material.

1for higher temperatures also the production ofC5 becomes important.
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Figure 6.1: Mass blowing rate (imposed) andC3 mass fraction at wall.
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Figure 6.2: Mass blowing rate and species mass fraction (equilibrium) at wall.
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Figure 6.6: Velocity boundary-layer profile with and without ablation.
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Since the wall temperature is assigned, the SEB is not imposed in this test case;
however, it is interesting to evaluate the heat fluxes due to conduction (from the
gas), diffusion, and convection. Figure 6.4 shows the wall heat fluxes computed
according to SEB:

k
∂T

∂y

∣
∣
∣
∣
w

︸ ︷︷ ︸

convective

+

Nc∑

i

hiρDi
∂yi

∂y

∣
∣
∣
∣
w

︸ ︷︷ ︸

diffusive

−ṁ(hw − hs)
︸ ︷︷ ︸

blowing

−ǫσT 4 − qcond = 0

The diffusive and blowing heat fluxes are negative in accordance to the fact that
the mechanism of ablation reduces the total wall heat load. As shown in Eqs. (5.9)
and (5.10) the sum of the diffusive and blowing heat fluxes is the chemical heat
flux which represents the heat absorption due to theheat-of-ablation2. Heat is ab-
sorbed because of the sublimation reaction of graphite withformation of gaseous
C3. The heat-of-ablation is therefore positive.

Figures 6.5 and 6.6 show the temperature and velocity boundary-layer profiles
at the end of the flat plate with and without ablation. The blowing of the ablation
species generates a cooling of the boundary-layer with a reduction in the temper-
ature gradient at the wall and consequently a reduction in the convective heat flux
to the surface. This effect is usually referred to asblockage effect. The surface
blowing also produces a reduction in the velocity gradient at the wall as shown in
Figure 6.6. The blockage effect will be more evident in the next test case.

2In the absence of catalytic reactions.
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6.2.2 Test case 2: Nitrogen environment

Table 6.2: Freestream conditions for Test Case 2

Freestream Conditions

pressure: 1 [bar]

temperature: 5000 [K]

Mach number: 3.5

Composition: 100%N2

In this case the environmental gas is molecular nitrogen andthe ablation prod-
ucts considered areC3, C5, andCN . With the use of a non-inert environmental
gas there are also reactions between the solid material and the gas itself (e.g. nitri-
dation of carbon). The freestream conditions are expressedin table 6.2. The wall
temperature is kept constant and equal to3800 K. In this case freestream condi-
tions and wall temperature are more severe in order to produce a higher ablation
rate. The equilibrium composition between gas phase and solid phase is imposed
at wall. The four species considered (C3, C5, CN , andN2) make up more than
95% of the equilibrium mixture for the actual condition of pressure and temper-
ature. Species with minor concentrations have been neglected. Figure 6.7 shows
the composition at wall and the mass blowing rate. In this case the blowing rate is
more intense because of the higher wall temperature and freestream Mach num-
ber. The higher wall temperature increases the ablation products’ mass fraction at
wall and, together with the higher freestream velocity, increases the species’ gra-
dients inside the boundary layer and consequently the diffusional mass fluxes as
shown in Figure 6.8. Figure 6.9 shows the species mass fractions profiles across
the boundary-layer at the end of the flat plate. Created species are diffused from
the surface to the edge of the boundary-layer. The environmental gas (nitrogen) is
diffusing toward the surface. It’s important to stress thatat the surface there is a
non-zero normal velocity, so that species diffusing to the wall are also transported
away from the wall due to convection. Figure 6.10 shows the wall heat fluxes. In
this case the heat absorption due to the ablation process is much more evident and
the total incoming heat flux (convective + chemical) is highly reduced.
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Figures 6.11 and 6.12 show the temperature and velocity boundary-layer pro-
files at the end of the flat plate with and without ablation. In this case due to
more severe condition, the blockage effect and the consequent reduction of wall
temperature and velocity gradients is evident. The peak temperature inside the
boundary-layer away from the wall is also reduced by blowing.
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The same test case has been repeated with the same freestreamconditions and
a lower wall temperature of3600 K. Figures 6.13 and 6.14 show the effect of a
reduction in wall temperature on the mass blowing rate and total heat flux, respec-
tively. A 5% reduction in wall temperature produces an average mass blowing
reduction of approx.75% and an average total heat load increase of approx.85%.
This is because wall temperature is close to the sublimationtemperature. Looking
at the thermochemical table of Figure 1.4 it can be seen that,in the knee region of
the curve, a slight temperature variation causes a great mass blowing variation.



124 CHAPTER 6. 2-D PLANAR RESULTS

6.2.3 Test case 1 and Case 2: comparison with blowing correc-
tion equation

In many cases, CSM and CFD codes are loosely coupled, and the heat flux to
the ablating surface is usually computed based on the input non-ablating heat
transfer coefficients corrected with empirical blowing reduction equations. This
procedure provides reduced computational cost at the expense of accuracy. In fact,
the uncertainty in the estimated ablating heat flux can be high, and consequently
the predictions of mass blowing rate and temperature are somewhat inaccurate. As
seen in Chapter1, using a convective transfer coefficient approach the convective
heat flux from the gas to the surface can be expressed as [17, 18]:

qconv = k
∂T

∂y

∣
∣
∣
∣
w

= ρeueCh(hr − hw)e (6.1)

wherehw,e is the enthalpy of edge gases evaluated at wall temperature and hr is
the recovery enthalpy of the edge gases. As discussed in Chapter1, the termCh is
the transfer coefficient (Stanton number) for heat transfer. A blowing correction
allows for the reduction in transfer coefficient due to the transpiration or blowing
effect of gases being injected into the boundary layer. The most commonly used
blowing rate correction equation is represented by Eq. (1.42) [17, 18]:

C
′

h = Ch0

[
φ

eφ − 1

]

(6.2)

whereλ is a blowing reduction parameter (equal to0.5 in the laminar case) and
φ = 2λṁ/(ρeueCh0

). Eq. (6.1) can be used to evaluate the unblownStanton
numberCh0

from the convective heat flux computed via a non-ablating CFDcom-
putation, Eq. (6.2) is then used to evaluate the corrected heat transfer coefficient
C

′

h provided that the mass blowing ratėm is known. With the corrected heat
transfer coefficient the ablative surface heat flux can be evaluated via Eq. (6.1).

Figures 6.15 and 6.16 show the computed conductive heat fluxes for Test case
1 and 2 with and without ablation. Results are compared with the corrected non-
ablating heat flux using the methodology above mentioned. The mass blowing rate
ṁ used in the blowing correction equation is the one previously evaluated with the
fully coupled ablation model so that the only blowing correction equation is tested
here. For Test case 1 the conductive heat flux is reduced approximately by10%
and the corrected curve shows a perfect agreement with the computed one. For
Test case 2, with a more intense blowing, the reduction is approximately of15%
and the agreement between computed and corrected heat flux isslightly worse.
The blowing reduction equation seems to work better in case of lower ablation
rates, as one would easily expect.
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Figure 6.15: Test case 1: comparison with blowing correction equation.
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6.2.4 Effect of surface temperature

The supersonic (M = 4) flow of air over a graphite flat plate is analysed. Three
different surface temperatures are considered: a)Tw = 2500 K; b) Tw = 3800 K;
and c)Tw = 3900 K. The environmental gas is frozen air with equilibrium
composition at the freestream thermodynamic state (p = 1 bar, T = 4000 K,
yN2

= 0.767, yO = 0.233). The equilibrium composition between gas phase and
solid phase is imposed; two ablation species are considered(CO andC3) which
make up more than 85% of the equilibrium mixture for the actual conditions of
pressure and temperature. Species with minor concentrations have been neglected.
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Figure 6.17: Species diffusive mass fluxes and mass blowing rate for Tw =
2500 K.

Figures 6.17 and 6.18 show the wall diffusive mass flux of eachspecies (CO,
C3, N2, O) together with the mass blowing rate for two different wall tempera-
tures. As shown in previous results the mass blowing rate is strongly varying in
the streamwise direction according to the growth of the boundary layer: higher
mass blowing rates are experienced near the leading edge of the plate where the
diffusional mass fluxes are higher. The diffusional mass fluxes are positive for the
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atmospheric species and negative for the ablation productscreated at the surface.
The surface temperature of2500 K is too low to trigger surface sublimation (with
formation ofC3) and the only ablation mechanism is the oxidation of carbon.
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Figure 6.18: Species diffusive mass fluxes and mass blowing rate for Tw =
3800 K.

Figure 6.19 shows the mass blowing rate which is strongly varying with the
surface temperature. The mass blowing rate increases with temperature, especially
in the sublimation regime (Tw = 3800 K andTw = 3900 K). In this regime,
a slight increase of the surface temperature causes a large increase of the mass
blowing rate. This behaviour has been previously shown by the sudden increase
of B

′

with temperature in the thermochemical table model (see Fig. 1.4). The
surface convective heat flux (k · ∂T/∂η) shown in Figure 6.20 is reduced in part
due to the increase of wall temperature and mainly due to the so calledblockage
effectcaused by the blowing of ablation product. The dashed lines in Figure 6.20
represent the same solution without ablation. The effect ofblockageis evident in
the sublimation regime where the heat flux is highly reduced if compared to the
non-ablating case. The blowing of ablation products thus generates a cooling of
the boundary layer which consequently reduces the wall heatflux. This can be
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seen looking at the temperature profiles shown in Figure 6.21. For strong blowing
the blockage effect is one of the major mechanism to limit thetemperature rise
inside the material. Finally, Figure 6.22 shows thechemical heat fluxfor the three
cases. It can be seen that in the oxidation regime (Tw = 2500 K) the chemical flux
is positive, while in the sublimation regime it is negative.Therefore in the former
regime the chemical reactions at wall are releasing heat, whereas in the latter they
are absorbing it. This is due to the fact that the oxidation reaction of graphite (with
formation of CO) is and exothermic process whereas the vaporization process
(with formation ofC3) is endothermic.



6.2. ISOTHERMAL ABLATION RESULTS 131

6.2.5 Effect of boundary-layer finite-rate chemistry

The temperature rise inside the boundary layer can be considerable due to the vis-
cous dissipation which converts kinetic energy into heat. In the previous solutions
the temperature rises above5500 K inside the boundary layer away from the sur-
face (see Figure 6.21). A new computation is performed atM = 6 to reach a
peak temperature of nearly8000 K inside the boundary-layer. Such a high tem-
perature can trigger thermal decomposition of ablation species which is another
mechanism to divert energy which otherwise would reach the wall.
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Figure 6.23:C2 mass fraction spatial distribution (not in scale).

In the previous solutions ablation species were not allowedto react with each
other as they were diffusing across the boundary layer. In order to study the effect
of these chemical reactions, a finite-rate kinetic model based on the work of Park
[64] has been adopted to model the thermal decomposition of the two ablating
speciesCO andC3 created at wall:

CO = C + O, C3 = C2 + C, C2 = C + C

Figure 6.23 shows theC2 mass fraction spatial distribution which can be consid-
ered as an index of the thermal decomposition ofC3.
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The creation of the speciesC andC2 inside the boundary-layer and away from the
wall (where the temperature is higher) is shown in Figure 6.24 which shows the
species mass fractions profiles at the end of the flat plate. Itis clear that a certain
amount ofC3 andCO are thermally decomposed and these reactions produce a
cooling of the boundary layer as Figure 6.25 clearly shows. However, the effect
of these decomposition reactions can be seen on the mass blowing rate and wall
convective heat flux. The effect, even if weak, is a reductionboth in mass blowing
rate and convective heat flux as shown in Figure 6.26.
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Figure 6.26: Mass blowing rate and convective heat flux.
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6.2.6 Comparison with thermochemical table approaches

With the procedure developed in this work, the mass balance equation is solved
inside the CFD code, through the boundary condition. However, in many cases
CFD codes are loosely coupled with the material and often theflowfield solutions
are obtained using ablating boundary conditions withB

′

tables [16, 63, 18, 38]
or even non-ablating boundary conditions corrected with blowing reduction equa-
tions [17, 15, 21].

When athermochemical tableapproach is used coupled with ablative CFD so-
lutions, the mass blowing rate at the surface is obtained by the use thermochemical
tables such as those in Figure 1.4. To obtain the mass blowingrateṁ from the
tables, surface pressure and temperature must be known together with the mass
transfer coefficientCm. In the isothermal case, surface temperature is assigned
while surface pressure can be obtained from the flowfield solution and the zero-
pressure gradient condition. Finally, the diffusion coefficientCm is derived from
semi-empirical relations such as [69]:

Cm = Ch · Le−2/3 (6.3)

and the heat transfer coefficientCh is evaluated from the ablative CFD solution
by its definition:

Ch =

k
∂T

∂η

∣
∣
∣
∣
∣
w

ρeue(hr − hw)e

(6.4)

In this case the heat-transfer coefficient needs not to be corrected for blowing
because it is obtained from an ablative CFD solution. Eq. (6.4) is used to evalu-
ate the heat transfer coefficient from the CFD solution andCh is then used with
Eq. (6.3) to computeCm. With Cm and theB

′

value coming from the table, the
mass blowing rate can be finally evaluated. The procedure must be iterated until
convergence because the mass blowing rateṁ affects the CFD solution changing
the heat transfer coefficientCh which, in turns, alters the mass blowing rate. This
procedure is typically used when coupling the CFD code to a material thermal
response code [16, 63, 17, 18, 38]. However, even if ablativeCFD computations
are performed, the simplified mass transfer model at the baseof thermochemical
tables together with Eq. (6.3) can affect the accuracy of theCFD solution.

When non-ablating boundary conditionsare used in the CFD solution (no
mass injection and no chemical reactions at the surface), a blowing correction is
typically adopted to reduce the computed heat flux to take into account of the
blockage effect due to the ablation gases injected into the boundary layer. The
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blowing-correction equation is the usual:

Ch = Ch0

[
ln (1 + 2λṁ/ (ρeueCh))

2λṁ/ (ρeueCh)

]

= Ch0

[

ln
(
1 + 2λB

′

Cm/Ch

)

2λB′Cm/Ch

]

(6.5)

When a non-ablating CFD solution is performed, Eq.(6.4) is used to compute the
non-ablative heat transfer coefficientCh0

which is then reduced with the use of
Eq.(6.5). The correctedCh is finally used to evaluate the mass blowing rate as
in the case of thermochemical table approach with ablating boundary conditions.
In this case there is no iterative coupling between TPS and CFD solution, since
thermochemical tables and blowing correction equations are used to obtain TPS
properties (such as the mass blowing rateṁ in this case) without updating the
CFD solution (which is non-ablating). The computational cost is reduced when
non-ablating boundary conditions are adopted, both because a simpler solution
(with no species injected and no surface reactions) is performed, and also because
no iteration are needed to couple the CFD solution with the thermochemical table
model. Obviously all this at the expense of accuracy.
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Figure 6.27: Mass blowing rate for different wall temperatures with three different
boundary conditions.
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Figure 6.28: Convective heat flux for different wall temperatures with three dif-
ferent boundary conditions.
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Figure 6.30: Differences on the mass blowing rate between the present method
and the simplified approaches.

x [cm]

E
rro

r[
%

]

0.5 1 1.5 2 2.5 3 3.5 4
-30

-20

-10

0

10

20

30

T = 2500 K
T = 3800 K
T = 3900 K

ablating b.c. with B’ table
corrected non-ablating b.c.

Figure 6.31: Differences on the convective heat flux betweenthe present method
and the simplified approaches.



138 CHAPTER 6. 2-D PLANAR RESULTS

Figures 6.27, 6.28, and 6.29 show the mass blowing rate, convective heat flux,
and chemical heat flux (respectively) for the three wall temperatures, computed
with three different boundary conditions: fully-coupled ablating boundary con-
ditions, ablating boundary conditions coupled withF (T, p, B

′

) thermochemical
tables, and non-ablating boundary conditions coupled withthermochemical tables
and blowing correction equation. Both the blowing rate and the heat flux clearly
show the error introduced by the simplified boundary conditions. The agreement
between the table approach and the fully-coupled approach is very good at the
lowest temperature but gets worse as the temperature and consequently the mass
blowing rate are increased. Figures 6.30 and 6.31 show the percentage errors be-
tween the fully coupled approach and the two simplified approaches for the mass
blowing rate and convective heat flux, respectively. Obviously the non-ablating
approach is the one leading to major errors. Figures 6.30 and6.31 clearly show
that the agreement between the fully-coupled and the simplified approaches get
worse as the temperature and therefore the mass blowing rateis increased.

The comparison between the cases with ablating boundary conditions shows
that at the higher surface temperatures the table-predicted mass blowing rate and
heat flux are affected by a certain degree of inaccuracy. These results show the
limitations of thethermochemical-tableapproaches due to the simplified boundary-
layer diffusion model expressed by Eq. (1.25), which was developed from the
laminar boundary-layer theory over flat plates [34]; thus the present comparisons
between the two approaches are made in the most favourable condition.
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Table 6.3: Freestream conditions for Test Case 3

Freestream Conditions

pressure: 1 [bar]

temperature: 5000 [K]

Mach number: 1.8

Composition (equil. air): 77.787%N2 22.213%O

6.3 Steady-state ablation results

The fully-coupled procedure described in Chapter5 for steady-state ablation is
applied to a flat plate made of pure carbon (graphite). Chemical reactions be-
tween the material and the environmental gas at the surface are accounted for
using an equilibrium approach. The effect of finite rate chemical reactions inside
the boundary-layer is studied in section6.3.3.

6.3.1 Test case 3: Air environment

In this case the environmental gas is air and the ”steady-state” energy balance
Eq. (5.12) is used to compute the correct wall temperature distribution across the
axial direction. The freestream conditions are expressed in table 6.3. The ablation
products considered areCN , CO, andC3. Wall temperature distribution across
the axial direction is set initially at3000K, then the code makes use of the SSEB
to find the correct steady-state value.

Figure 6.32 shows the mass blowing rate and the wall temperature. It is ev-
ident the strong variation in the streamwise direction of both temperature and
mass blowing rate. Higher wall temperatures are experienced near the leading
edge of the flat plate where the incoming heat fluxes are higher. Mass blowing
rate is strongly varying in the streamwise direction (if compared to the previous
isothermal solutions) both because of the growth of the boundary layer and also
because of the decrease of surface temperature. Since the wall temperature is not
constant, the wall chemical composition is consequently varying, as shown in fig-
ure 6.33. Near the leading edge wall temperature is sufficiently high to produce
graphite sublimation (with formation ofC3) and carbon nitridation (with forma-
tion of CN). Away from the leading edge these species tend to vanish because
the surface is getting colder andCO production dominates. Therefore, for an air
environment and in this range of wall temperatures, surfaceoxidation reactions
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Figure 6.32: Wall temperature and mass blowing rate.
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Figure 6.34:-Air- Wall heat fluxes

dominate andCO is the major species leaving the surface. The carbon oxidation
reaction (C + 1

2
O = CO) is an exothermic reaction and this affects strongly the

surface energy balance. Looking at figure 6.34, in fact, the chemical heat flux is
positive (so theheat-of-ablationis negative); this means that in this condition the
process of ablation is generating heat. The only mechanismsto cool the wall are
surface radiation (which is strong since wall temperature is high) and heat soak
into the solid. When the surface temperature reaches valuesclose to4000K3,
however, carbon sublimation (which is endothermic) becomes dominant andCO
formation falls off rapidly as shown in the next section.

3for wall pressures in the range of1 bar.
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6.3.2 Effect of Mach number

The supersonic laminar flow of air over a graphite flat plate isanalysed. Three
different Mach numbers are considered: a)M = 2; b) M = 4; and c)M = 6. The
environmental gas is frozen air with equilibrium composition at the freestream
thermodynamic state (p = 1 bar, T = 4000 K, yN2

= 0.767, yO = 0.233).
The equilibrium composition between gas and solid phase is imposed at wall; two
ablation species are considered (CO andC3) which make up more than 85% of the
equilibrium mixture for the actual conditions of pressure and temperature. Species
with minor concentrations have been neglected. Chemical reactions between the
wall material and the environmental gas are considered onlyat the surface; once
the wall composition has been calculated, the species are not allowed to react with
each other as they are diffusing across the boundary layer. Mass blowing rate
and surface temperature are computed solving the mass and steady-state energy
balance Eqs. (5.14) and (5.12), respectively. The radiative heat flux from the gas
to the surface in the surface energy balance has been neglected.
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Figure 6.35: Mass blowing rate at different Mach numbers.

Figures 6.35 and 6.36 shows the mass blowing rate and wall temperature pro-
files for the three different Mach numbers. Both the blowing rate and wall tem-
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perature are increasing withM due to the increase of the convective heat flux to
the wall. The mass blowing rate, as shown in the previous solutions, is rapidly de-
creasing because of the combined effect of boundary layer growth and decreasing
wall temperature. Moreover it can be seen that, at the highest Mach number, the
wall temperature tends to be uniform. This is due to the fact that, for each pres-
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Figure 6.36: Surface temperature at different Mach numbers.

sure, there is a limit temperature (i.e. the sublimation temperature) which cannot
be exceeded. When the temperature is close to the sublimation temperature, the
effect of increasing the heat flux is a large increase of mass blowing rate and only a
minor increase of surface temperature. This behaviour has been previously shown
by the sudden increase ofB

′

with temperature in the thermochemical table model
(see Figure 1.4). Figure 6.36 clearly shows this behaviour:passing fromM = 4
to M = 6, the temperature near the leading edge of the plate is only increased by
3.5% while the mass blowing rate is increased by more than150%.

Figures 6.37 and 6.38 show the wall convective heat flux (withand without ab-
lation) and the wall chemical heat flux according to Eq. (5.12). The non-ablative
solutions have been obtained with the commonly assumed [15]radiative equilib-
rium energy balance and with frozen surface chemistry. Figure 6.37 clearly shows
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Figure 6.37: Convective heat fluxes with and without ablation at different Mach
numbers.
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the reduction of the surface heat flux due to theblockage effect. The effect of
blockageis more evident in the sublimation regime where the heat flux is highly
reduced if compared to the non-ablating case. Figure 6.38 shows thechemical
heat fluxfor the three cases. ForM = 2 the chemical heat flux is always positive,
for M = 4 it is negative in the leading edge zone, and forM = 6 it is negative in
the first half of the plate. This behaviour is due to the transition between the oxida-
tion and the sublimation regime caused by the variable surface temperature. In the
former regime the graphite oxidation (with formation ofCO) is the primary mass
loss mechanism while in the latter the sublimation of graphite dominates andC3

is the major species leaving the surface. Since graphite oxidation is an exother-
mic process the chemical reactions at wall are releasing heat, causing the wall
chemical heat flux to be positive; graphite sublimation, instead, is an endothermic
process causing the wall chemical heat flux to be negative.
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Figure 6.39:C3 mass fraction spatial distribution atM = 2 (not in scale).

Figures 6.39, 6.40, and 6.41 show theC3 mass fraction spatial distribution in
the flowfield at the three Mach numbers. The sublimation of carbon is almost ab-
sent forM = 2 (graphite oxidation dominates) because of a too-low wall temper-
ature, while it is dominant forM = 6. These results help explaining the behaviour
of Figure 6.38 and show the transition between the two regimes.
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Figure 6.40:C3 mass fraction spatial distribution atM = 4 (not in scale).
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Figures 6.42, 6.43, and 6.44 show the wall heat fluxes for the three different
Mach numbers. The heat fluxes are computed according to the SSEB Eq. (5.12)
where the radiative heat flux from the gas to the surface (qrad) has been neglected.
For M = 2, since the chemical heat flux is always positive due to carbonoxida-
tion, the only mechanism of cooling the surface is re-radiation from the wall. For
M = 6, instead, the surface temperature is sufficiently high to produce carbon
sublimation almost everywhere. In the first half of the platethe heat flux absorp-
tion is mainly due to graphite ablation (chemical heat flux) with the re-radiation
from the surface playing a minor role in cooling the surface.The results of Fig-
ures 6.42-6.44 also show the strong variation of the (steady-state) solid conduction
heat flux due to the varying flowfield conditions.
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Figure 6.42: Wall heat fluxes atM = 2.
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Figure 6.43: Wall heat fluxes atM = 4.
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Figure 6.44: Wall heat fluxes atM = 6.
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6.3.3 Effect of boundary-layer finite-rate chemistry

The temperature rise inside the boundary layer can be considerable, especially
for the higherM cases. High temperature inside the boundary-layer can trigger
thermal decomposition (endothermic reactions) of ablation species which in turn
can alter the mass and energy balances at the surface. In order to study the effect
of these chemical reactions, the same finite-rate kinetic model shown in section
6.2.5 and based on the work of Park [64] has been adopted to model thethermal
decomposition of the two ablating speciesCO andC3 created at wall.
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Figure 6.45:C2 mass fraction spatial distribution (not in scale).

Figure 6.45 shows theC2 mass fraction spatial distribution for the highest
Mach case. A certain amount ofC2 andC are produced from the decomposition
reaction of the ablation speciesC3 andCO. Figure 6.47 shows the species mass
fractions profiles at the end of the flat plate. Comparing Figure 6.47 and 6.46 it is
clear that the species produced by the thermal decomposition reach a maximum
mass fraction where the temperature reaches the peak value.These decompo-
sition reactions produce a cooling of the boundary layer as Figure 6.46 clearly
shows. The peak temperature in the boundary-layer (at the end of the flat plate) is
decreased by nearly1000 K. However, the effect of the decomposition reactions
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is barely seen on the surface temperature and mass blowing rate. The effect, even
if weak, is a reduction both in surface temperature and mass blowing rate as shown
in Figure 6.48.
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6.3.4 Comparison with thermochemical table approaches

As discussed in section6.2.6, in many cases CFD codes are loosely coupled with
the material and often the flowfield solutions are obtained using ablating boundary
conditions coupled withB

′

thermochemical tables and transfer-coefficient energy
balance (see Eq. (2.20)) or even non-ablating boundary conditions corrected with
blowing reduction equations.

When athermochemical tableapproach is used, the mass blowing rate is ob-
tained by thermochemical tables and by the heat transfer coefficient Ch evaluated
from the ablative CFD computation as described in section6.2.6 for the isother-
mal case. The difference in this case is that, since the surface temperature is not
assigned, it must be derived from the surface energy balance. In this simplified
model, the surface energy balance is solved outside the CFD code (usually by the
thermal response code) using a transfer-coefficient energybalance such as that
expressed by Eq. (2.20). The transfer-coefficient SEB (in the steady-state form
for the present comparison) is used to compute the surface temperature through
coupled iterations with the CFD code: when temperature changes, a new CFD
solution is evaluated (with the new temperature and mass blowing rate) to update
the heat transfer coefficientCh until convergence is reached. The use of simplified
transfer-coefficient mass balance (which is part of the thermochemical table) and
transfer-coefficient energy balance can reduce the accuracy of the material-flow
coupled computation.

Whennon-ablatingboundary conditions are used the ”unblown” CFD solution
is computed assuming a radiative-equilibrium wall condition (no mass injection
and no gas/solid chemical reactions) [21]; as usual, a blowing correction is then
adopted to reduce the wall heat flux. After computing a non-ablating CFD solu-
tion, Eq. (6.5) is used to reduce the non-ablative heat transfer coefficientCh0

ob-
tained from the CFD solution. The mass transfer coefficientCm is evaluated from
the corrected heat-transfer coefficientCh using semi-empirical relations such as
(6.3). The transfer-coefficient surface energy balance Eq.(2.20) in the steady-state
form is then used to compute the surface temperature with a simple iterative tech-
nique (usually the Newton’s method) without performing newCFD computations.
In this simpler case there is no iterative coupling between material and CFD solu-
tion, since transfer-coefficient balances and blowing correction equations are used
to obtain TPS properties (mass blowing rateṁ and surface temperatureTw) with-
out updating the CFD solution (which is non-ablating). The computational cost
is reduced in this simpler case because a single CFD computation is performed
without chemical interaction with the TPS material. The accuracy of this method
is obviously reduced.
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Figure 6.49: Mass blowing rate.
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Figure 6.50: Surface temperature.
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Figure 6.51: Convective heat flux.
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Figure 6.52: Chemical heat flux.



6.3. STEADY-STATE ABLATION RESULTS 155

Figures 6.49-6.52 shows the comparison of the steady-stateablation solu-
tions (mass blowing rate, surface temperature, wall convective and chemical heat
fluxes) for different Mach numbers computed with three different boundary con-
ditions: i) fully-coupled ablating boundary conditions with SMB and SSEB com-
puted and solved as boundary conditions in the CFD code, ii) ablating boundary
conditions coupled with thermochemical tables and transfer-coefficient SEB (in
the steady-state form), Eq. (2.20), and iii) non-ablating boundary conditions cou-
pled with thermochemical tables, transfer-coefficient SEB, and blowing correction
equation (6.5).

As was noted for the isothermal case, the non-ablating approach is the one
leading to major differences and the agreement between the fully-coupled and
the simplified approaches gets worse as the blowing rate is increased (increasing
the Mach number). However, in the present case (non-isothermal) the differences
are definitely larger. Figures 6.53, 6.54, and 6.55 show the percentage error be-
tween the fully coupled approach and the two simplified approaches for the mass
blowing rate, surface temperature, and convective heat flux, respectively. Figure
6.53 shows that even for the lowest Mach case the percentage error is not neg-
ligible and at the higher Mach number the error becomes very large. A similar
behaviour, but with smaller percentage differences, is observed in Figure 6.54 for
the convective heat flux. The comparison shows that at the highest Mach num-
ber the table-predicted mass blowing rates and heat fluxes are affected by a high
degree of inaccuracy due to the increasing effect of mass blowing on boundary
layer properties. In the isothermal case the differences were smaller because sur-
face temperature was fixed and the surface energy balance wasnot solved. In the
more realistic non-isothermal case a strong non-linear coupling exists between
the surface mass and energy balances which causes the approximate solutions to
produce less accurate solutions. The present comparisons have shown that this
inaccuracy can be high in case of intense blowing. Looking atFigure 6.55, it is
interesting to note that at the highest Mach numbers the surface temperature com-
puted with the non-ablating boundary conditions shows the best agreement with
the fully-coupled solution, while for the other parameters(mass blowing rate and
heat fluxes) this happens with the ablating solution. This isdue to the complex in-
teraction between the mass and energy balances which can cause a simpler model
to give better results for a specific parameter.



156 CHAPTER 6. 2-D PLANAR RESULTS

x [cm]

E
rro

r[
%

]

2 4 6 8
-40

-20

0

20

40

60

80

100

Mach = 2
Mach = 4
Mach = 6

ablating b.c. with B’ table
corrected non-ablating b.c.

Figure 6.53: Differences on the mass blowing rate between the present method
and the simplified approaches.
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Chapter 7

Rocket nozzle applications

With the development and use of high-energy solid-propellant and harder firing
conditions in large advanced solid rocket motors, graphites have found increas-
ing application as nozzle materials because of their high-temperature thermal and
physical properties, and low densities. But in spite of the advantages of these
composites materials, because of the attack of carbon-carbon nozzle surface by
the products of the propellant combustion during motor operation, the nozzle sur-
face regresses by loss of material, and the nozzle throat area increases. Hence
the nominal performance of the rocket motors decrease, and the resulting per-
formance reduction must be evaluated and taken into accountby the designer of
motors.

The classic way to measure performance reduction is to test full-scale motors,
but this takes a long time and is very expensive because testsmust be repeated for
every new motor. A complementary method is to establish regression models that
can accurately predict the regression rates of nozzle throats, but these models re-
quire a fundamental knowledge of the major mechanisms that drive the regression
rate. This chapter describes the results obtained from applying the thermochemi-
cal ablation model developed herein to describe carbon-carbon regression of large
advanced solid-rocket nozzles.

7.1 Introduction

Graphite and carbon-carbon composites, which have excellent thermal and phys-
ical properties as well as low densities, are widely used as materials for rocket
nozzles. However, the hostile thermochemical environmentresulting from the
high-performance solid propellants creates many problemsto such materials. One
of the serious problems is the erosion/recession of the rocket nozzle material. As
the propellant of the rocket motor burns, the nozzle is exposed to the hot propel-

159
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lant combustion products which form a turbulent boundary-layer over the nozzle
surface. The hot products transfer energy to the nozzle wall, causing the surface
temperature to rise and thereby increase the reactivity of the nozzle material. At
high surface temperatures, heterogeneous chemical reactions occur between the
nozzle material and oxidizing species such asH2O, CO2, andOH, present in
the combustion stream. The heterogeneous reactions produce carbon monoxide
CO, resulting in the thermochemical erosion of the nozzle. Such erosion is most
severe at the throat due to the maximum heat-transfer rate inthat region. The
resulting increase in the nozzle throat area decreases the thrust and reduces the
motor performance significantly in long-duration firings.

The overall rate of these reactions depends on their kinetics as well as on the
rate at which the oxidizing species can diffuse across the boundary-layer to the
nozzle surface. If the kinetic rates are much higher than thediffusion rates, the
recession rate is determined primarily by the diffusion mechanism of oxidizing
species (diffusion-controlled). The other extreme situation is that of high diffu-
sion rates and low kinetic rates, in which case the recessionis predominantly de-
termined by the chemical kinetics (rate-controlled). The diffusional recession rate
depends on such parameters as flow properties in the nozzle, chamber pressure,
and concentrations of reactants. The chemical kinetics rate depends on the kinet-
ics of the heterogeneous reactions, the concentrations of the various reactants, and
especially the surface temperature of the nozzle. The surface temperature is deter-
mined by the surface energy balance which involves the heat conduction response
of the C/C nozzle, the heat transfer from the hot gases to the nozzle, and the heat
flux absorbed by the ablation mechanism.

The overall nozzle erosion process is extremely complex with the interplay
of numerous factors including the solid-propellant composition, motor operating
conditions, duration of firing, nozzle geometry and material properties, rates of
diffusion of the species toward the surface through the boundary-layer, and chem-
ical reactions at the surface and in the gas phase. In addition to the aerothermo-
chemical processes, the erosion may have contributions from the mechanical pro-
cesses caused by impact of condensed metal-oxide particles(e.g. Al2O3) on the
nozzle surface or by the structural failure because of high thermal stresses. How-
ever, most researchers [37, 24, 50, 49] have concluded that the chemical erosion is
the primary reason for the nozzle recession. Experimental studies [37, 70] on the
graphite nozzle erosion using aluminized composite solid-propellant formulation
indicated that the graphite removal depended primarily on the chamber pressure
and the chemical attack by the combustion speciesH2O andCO2, present in the
hot exhaust. A strong correlation between the surface recession rate and the mass
fraction ofH2O andCO2 was noted. The recession rate decreased with increas-
ing aluminium content present in the composite propellants[37]. If mechanical
processes (impingement of solid alumina on the nozzle surface) were significant
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then the erosion should have increased with the increase inAl2O3 particles in the
combustion stream, but on the contrary the erosion decreases. The phenomenon
was attributed to the decrease in the concentrations ofH2O andCO2 in the com-
bustion stream for aluminized propellants.

7.2 Background

The identification and description of the major significant mechanisms happening
in the nozzle regression constitute a relatively recent field of study in solid rocket
technology. It has been the subject of many investigations [70, 24, 49, 50, 44,
74, 37, 40, 36], first, because of the numerous parameters to take into account:
chemical propellant composition, chamber pressure, duration of firing, type, ge-
ometric form and properties (density, specific heat, thermal conductivity) of the
nozzle material, among others; and, second, because of the complexity of the de-
scription of the driving phenomena, such as geometric and temperature history
of the nozzle, rates of diffusion of the species through the boundary-layer, and
the heterogeneous chemical reactions with the surface material. In 1960s and
1970s, with limited computational resources, many investigators developed sim-
plistic models to predict the nozzle recession rate.
Swope and Berard [70] found a direct correlation between thetotal concentration
of the oxidizers capable of forming aCO with the material and the rate of graphite
erosion.H2O appeared to be the major contributor to graphite erosion.
Delaney et al. [24] developed a simple model for the erosion of graphite throat
nozzles. The results showed that graphite nozzle erosion was limited by both
process of diffusion and chemical surface reactions and that pressure was an im-
portant parameter involved in erosion.
McDonald and Hedman [50], on the basis of the results of an analytical study and
analysis of short-duration test data with graphite nozzles, found that the erosion of
graphite is primarily the result of a chemical surface reaction that is rate-controlled
during the transiently heated period, and diffusion-controlled when surface tem-
perature exceeds about2000 K. They also found that the erosion decreased with
an increase in the aluminium content in the propellants and that the hydrogen-
carbon reaction was not significant with the studied propellants.
Klager [37] found, on the basis of data obtained by experimental firings on small
aluminized solid rocket with graphite nozzles and of thermodynamic analysis, that
graphite removal in solid rocket nozzles depended principally on pressure and on
chemical attack byH2O andCO2, which react with the surface to giveCO. The
chamber flame temperature was found not to affect the graphite removal directly,
and the recession rates were found, as in McDonald and Hedman, to decrease
when the aluminium content in the propellant increased. A good correlation was
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observed between the recession rates and the mole fraction of H2O.
Keswani [36] conducted theoretical studies to predict recession of graphitic noz-
zles in different rocket motors, with different nozzle geometries and materials, at
different operating pressures and temperatures, and in a wide range of propellant
formulations. Recession was found to be strongly influencedby propellant com-
position, chamber pressure, and motor geometry, and the analysis showed that
recession is due primarily to the oxidation of carbon to carbon monoxide byH2O
andCO2. The analysis also showed that the influence of chemical kinetics is
predominant only when the surface temperature is low and that the recession rate
is largely determined by the diffusion rate of oxidizing species when the nozzle
surface temperature has reached about2500 K. The papers of Keswani and co-
workers [40, 36] have completed the thesis of Keswani. Another conclusion of
these works was that the total recession increases as material density decreases.
It was also shown that the graphite recession process is relatively independent of
gas phase reactions. The same conclusions were recently obtained by Thakre and
Yang [72].
One of the most recent and more detailed model for nozzle surface recession was
developed by Kuo and Keswani [40, 36]. Although their model was a significant
improvement over the earlier models, it still involves several assumptions which
may be removed. One of the major assumptions is that the gas-phase is modeled
as being composed of a quasi-steady, compressible, isentropic, one-dimensional
core-flow region and a two-dimensional, axisymmetric, quasi-steady, turbulent
boundary-layer flow region. Considering the computationalspeed and resources
available today, many of the approximations employed in previous studies can
be removed. This work takes into account propellant chemistry, detailed thermo-
dynamic and fluid-dynamic analyses, chemical kinetics in the gas phase, hetero-
geneous chemical reactions at the nozzle surface, rate of diffusion of the species
through the boundary-layer and accurate multi-species thermophysical properties
using a full Navier-Stokes approach.

7.3 Chamber equilibrium calculations

Because all previous studies have confirmed that propellantcomposition greatly
influences nozzle regression, it is vital to identify the major products that con-
stitute the propellant exhaust gases. Hence, the first calculations of the analy-
sis have been made to provide the characteristics of typicalpropellant exhaust-
gases in the combustion chamber. The hot exhaust flow stream in the nozzle
consists of the combustion products of metallized AP/HTPB composite propel-
lants. The mass fractions of the combustion species at the nozzle inlet, shown in
Table 7.1, were based on chemical equilibrium calculationsat a chamber pressure



7.4. RESULTS AND DISCUSSION 163

Table 7.1: Nozzle inlet flow conditions:p0 = 70 bar, T0 = 3500 K

Species Mass fractions Gas-phase mass fractions

CO: 0.23 0.3485

CO2: 0.02 0.0303

HCl: 0.20 0.3030

H2: 0.01 0.0152

H2O: 0.09 0.1364

N2: 0.10 0.1514

OH: 0.01 0.0152

Al2O3: 0.34 -

of 70 bar. The mass fractions of all the species remain almost constant with in-
creasing/decreasing chamber pressures with the exceptionof OH mass fraction
which shows some variation. The stagnation temperature,T0, and the stagna-
tion pressure,p0, are specified at the nozzle inlet. Five sets of chamber pressures
(50, 60, 70, 80, 90 bar) and the corresponding chamber temperatures were used to
study the effect of motor operating parameters. However, since the chamber tem-
perature shows only slight variation with chamber pressureit has been assumed
constant. As can be seen, a certain amount of liquid alumina is formed in the
combustion chamber. A single phase treatment is used in the model so that only
the gaseous composition is taken into account.

7.4 Results and discussion

The governing equations with the SMB and SSEB boundary conditions have been
solved numerically to predict the recession rates of C/C nozzles for various oper-
ating conditions and propellant formulations. The chemical composition used as
input in the computations is listed in Table 7.1. The thermochemical properties
(specific heat and enthalpy of formation) of the carbon/carbon material as a func-
tion of temperature used in the steady-state heat conduction term were obtained
from Gordon and McBride database [28]. In the adopted numerical scheme the
one-equation Spalart-Allmaras [68] turbulence model has been used [47].

For studying the effect of parametric variations of motor operating conditions
on the nozzle erosion, the configuration used is the nozzle shown in Figure 7.1.
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Since the main objective is to predict the material erosion at the nozzle throat and
its vicinity, it was deemed unnecessary to simulate the entire flowfield in the rocket
motor. Moreover, it is common practice to use carbon-carbonmaterial only in the
throat region where the heat flux are maximum and consequently the erosion rate
reaches its peak. Five sets of chamber pressures were used and the outside nozzle
wall temperature was taken at300 K in all cases. The computational domain is
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Figure 7.1: Rocket nozzle configuration under study.

subdivided into60× 150 grid points in thex andr directions, respectively. In the
r direction, the grid was stretched and clustered near the nozzle surface so that the
first grid point was located aty+ less than1 all along the nozzle length. All the
results presented are in the steady-state condition.

Figures 7.2, 7.3, 7.4, and 7.5 show the entire flowfield distribution in the nozzle
interior in terms of temperature, pressure, Mach number, and axial velocity using
adiabatic wall boundary conditions and no surface reactions.
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Figure 7.2: Temperature distribution in the nozzle interior (T0 = 3500 K, p0 =
70 bar, no surface reactions, adiabatic wall).
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Figure 7.3: Pressure distribution in the nozzle interior (T0 = 3500 K, p0 = 70 bar,
no surface reactions, adiabatic wall).
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Figure 7.4: Mach distribution in the nozzle interior (T0 = 3500 K, p0 = 70 bar,
no surface reactions, adiabatic wall).

x [m]

y
[m

]

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25 U: 50 350 650 950 1250 1550 1850

Figure 7.5: Axial velocity distribution in the nozzle interior (T0 = 3500 K, p0 =
70 bar, no surface reactions, adiabatic wall).
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To simulate material erosion, the SMB and SSEB are employed with equi-
librium wall condition. Researchers [50, 40, 36, 72] have found that the erosion
is rate-controlled when surface temperature is below2000 − 2500 K. Calcula-
tions presented in Chapter2 have shown that, in SRM nozzle environments, the
surface temperature in the throat region exceeds2000 − 2500 K after a second
or less from ignition so that the nozzle erosion is essentially diffusion-controlled
during the operational duration. For this reason, a surfaceequilibrium assump-
tion is appropriate. As a result of heterogeneous reactionsbetween the solid wall
and the exhaust gases,CO2, OH, andH2O are consumed at the nozzle surface to
form CO andH2. Consequently, a concentration gradient is formed in the vicinity
of the nozzle wall, whereinCO2, OH, andH2O diffuse towards the nozzle sur-
face andCO andH2 diffuse away from the surface. These surface reactions are
endothermic in nature and they help reduce the nozzle surface temperature. Re-
sults obtained with the ablative boundary conditions show almost no differences
in the core-flow region with the adiabatic non-ablating computations previously
presented. The main differences are experienced in the boundary-layer and at the
nozzle surface. Therefore our attention will be directed toward the boundary-layer
structure with ablation.
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Figure 7.6: Wall temperature distribution.
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Figure 7.6 shows the surface temperature distribution for the adiabatic and ab-
lative wall condition. In the case of ablation, the surface temperature is noticeably
reduced by the ablation process. Moreover, the ablative surface temperature dis-
tribution is rather different than the adiabatic profile showing a clear peak in the
throat vicinity.

Figure 7.7 and 7.8 show the species mass fraction profiles in the boundary-
layer at the throat section: the oxidizing species (H2O, OH, andCO) profiles
are reported in Figure 7.7 while the non-oxidizing species (CO, H2, HCl, and
N2) profiles are reported in Figure 7.8. The mass fractions of the oxidizing
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Figure 7.7: Oxidizing species profiles at throat.

species decrease from the edge of the boundary layer to nozzle surface due to
their consumption in the heterogeneous reactions at the carbon-carbon surface.
The gradients of the concentrations are largest near the wall since the turbulent
mass diffusivity drops to zero as the viscous sublayer is approached near the wall.
Since the nozzle erosion is diffusion-controlled, the concentration of these oxi-
dizing species is vanishingly small at the nozzle surface. The species created at
the surface areCO andH2 and they are diffused away from the surface. Since
these species are produced in the heterogeneous reactions at the surface, their
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Figure 7.8: Non-oxidizing species profiles at throat.

mass fractions are maximum there. The equilibrium wall calculations show no
production at all ofC3 at the surface due to the relatively high pressure and too
low surface temperature. The only ablation product is thereforeCO. Keswani and
Kuo [36] and Thakre and Yang [72] concluded that the oxidation of carbon toCO
is the principal cause of nozzle recession for nozzle surface temperatures below
3000 K, which are hardly exceeded in SRM nozzle. Looking at Figure 7.8, it is
clear thatN2 andHCl do not participate in heterogeneous reactions, and hence
their mass fractions are relatively constant across the boundary-layer. These mass
fractions decrease slightly near the surface because of mass blowing at the nozzle
wall. Gas-phase reactions have not been taken into account in these computa-
tions. Keswani and Kuo [36] showed that the equilibrium and frozen boundary
layer profiles for the most important oxidizing species are very close one another
with just slight differences. Therefore they concluded that, in general, the gas-
phase reactions do not significantly influence the profiles ofthe major oxidizing
species and hence do not affect the erosion rate. Thus, the assumption of a frozen
boundary-layer is acceptable for computation of heat-transfer and recession pro-
cesses in SRM nozzle applications. More recently Thakre andYang [72] came to
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the same conclusions, showing that finite-rate gas-phase reactions do not perturb
the chemical composition or the temperature distribution considerably and have a
very negligible effect on the erosion rate. This also justifies the use of a frozen
boundary-layer assumption for nozzle recession predictions.
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Figure 7.9: Nozzle erosion rate and wall heat flux.

For the same input conditions, Figure 7.9 shows the distribution of the ther-
mochemical erosion rate[kg/m2s] and the surface convective heat flux[MW/m2]
along the length of the nozzle. It can be noted that the erosion rate is highest a bit
ahead of the throat due to maximum heat-transfer rate at thatlocation. Researchers
[40, 11] have attributed the maximum erosion at the throat tothe maximum heat-
transfer rate at the throat. Figure 7.9 clearly shows that the variation of erosion
rate mimics the variation of heat-transfer rate all along the nozzle wall indicat-
ing a direct correlation between the two: recession and heatflux increase in the
converging section of the nozzle, reach a maximum close to the throat, and de-
crease in the supersonic diverging section. This variationis governed by the mass
flux of the flow of propellant products in the nozzle and consequently recession
decreases significantly with increasing Mach number beyondunity as the mass
flux decreases. Comparing Figure 7.9 with Figure 7.6 it can beseen that the peak
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Figure 7.10: Erosion contribution from the various graphite-oxidizing species.

wall temperature is a bit after the throat section while the peak erosion rate is a bit
ahead of the throat section.

Figure 7.10 shows the contributions towards the net erosionrate by the three
oxidizing species which can be obtained simply by mass conservation equations:

C(s) + H2O ⇋ CO + H2

C(s) + OH ⇋ CO + H (7.1)

C(s) + CO2 ⇋ 2CO

From Eq. (7.1) it can be seen that a single mole of solid carbonC(s) can be con-
sumed either with a mole ofCO2 or H2O or OH. Moreover, since the mass frac-
tion of the oxidizing species is zero at wall, the mass flux of these species diffusing
to the nozzle wall reacts completely with the surface to formCO. Thus, multi-
plying the diffusional mass flux of the generic oxidizing species by the molecular
weight of carbon and dividing by the molecular weight of the species, one obtains
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the erosion mass flux contribution of that species. Figure 7.10 shows thatH2O is
by far the most devastating oxidizing species followed byOH andCO2 in that or-
der. This results is confirmed by both theoretical [40, 36, 11, 72] and experimental
studies [37, 27, 26].
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Figure 7.11: Various heat fluxes at the nozzle wall.

Figure 7.11 shows the various wall heat fluxes along the nozzle length. Since
the oxidation of carbon in SRM environment is endothermic, the chemical heat
flux is negative all along the nozzle length. Figure 7.11 shows that roughly50% of
the incoming convective heat flux is absorbed by the endothermic ablation process
and the other50% is partly conducted into the material and partly re-radiated
from the hot surface. The energy radiated away from the surface is thus of the
same order of magnitude of the energy conducted inside the material. The energy
conducted into the solid shows a sharp decrease after the nozzle throat due to the
sudden decrease of the convective heat flux and consequentlyof the erosion mass
rate.

Figure 7.12 shows the influence of chamber pressure on the recession rate
along the nozzle wall. The plotted results show that chamberpressure has a very
strong influence on the recession rate. A change in the chamber pressure from
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Figure 7.12: Effect of chamber pressure on erosion rate along the nozzle length.

50 bar to90 bar causes an increase in the recession rate of about60%. An increase
in pressure causes an increase in the density of the gas phase. Since the convec-
tive heat-transfer rate, and hence the mass-transfer rate,is directly proportional to
density, there should be a corresponding increase in the erosion rate. Figure 7.12
substantiates this behaviour. Increase in pressure results in higher density leading
to higher Reynolds, which in turn enhances the mass transport of oxidizing species
across the turbulent boundary-layer. With other parameters remaining nearly con-
stant, the linearity in the erosion rate and the motor operating pressure is clearly
seen in Figure 7.13. Klager [37] conducted experimental firings on graphite SRM
nozzles. He reported that the combustion product gas temperature showed no cor-
relation with the recession rate while the chamber pressurestrongly influenced the
recession rate. This behaviour is confirmed by the presentednumerical results.

Figure 7.14 shows the influence of chamber pressure on the surface tempera-
ture along the nozzle wall. Chamber pressure has a slight effect on surface temper-
ature. There is, however, the tendency to shift the temperature profile downstream
with increasing chamber pressure: higher pressures tend todecrease the surface
temperature upstream of the throat and to increase it downstream of the throat.
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Figure 7.13: Effect of chamber pressure on erosion rate at the nozzle throat.
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Figure 7.15 shows the influence of chamber pressure on the surface chemical
heat flux along the nozzle wall. A comparison with Figure 7.12shows that the
variation of chemical heat flux mimics the variation of erosion rate all along the
nozzle wall indicating a direct correlation between the two. As shown in section
5.1 the chemical heat flux represents the heat absorbed (if negative) or released
(if positive) due to the surface heterogeneous reactions. It can be also expressed
(see Eq. (5.9)) as the product of the mass blowing rate and theheat-of-ablation. Fi-
nally, Figure 7.16 shows the influence of chamber pressure onthe heat-of-ablation
which is the heat absorbed in the process of ablation per massof TPS consumed
[MJ/kg]. It is clear that the chamber pressure has just a slight influence on the
heat-of-ablation. This explains the direct correlation between the erosion rate and
the chemical heat flux. Looking at Figure 7.16 and comparing the profiles with
those of Figure 7.14 it can be observed that the heat-of-ablation is influenced
by surface temperature. Higher surface temperatures tend to reduce the heat-of-
ablation even if its profile is almost uniform showing only a variation by a few
percent along the nozzle length.

Many authors in the past [23] have correlated the recession rate with the den-
sity of the C/C composite material or bulk graphite showing higher erosion rates
[mm/s] with lower material densities. The model developed in this study predicts
that the recession rate will be inversely proportional to the density of the noz-
zle material. This is evident from examining the expressionfor ṡ, which has the
density of the nozzle material in the denominator:

ṁ = ρs · ṡ ⇒ ṡ =
ṁ

ρs

whereṁ is the mass erosion rate[kg/m2s], ṡ is the erosion rate[m/s], andρs is
the material density[kg/m3]. Consistent with the experimental observations [23],
the model predicts that the recession rate is inversely proportional to the density
of the nozzle material. Looking at Figure 7.13, the erosion rate in terms of[m/s]
can be obtained simply dividing the mass erosion rate[kg/m2s] by the material
density. Since the diffusion process is not influenced by thethermophysical prop-
erties of the solid, C/C composite materials and various bulk graphite should have
equal recession rates after the short kemical kinetics controlled time interval1, if
their densities are equal. This finding is in agreement with Geisler’s experimen-
tal observation [27] that C/C and bulk graphite have equivalent thermochemical
recession rates at equivalent densities.

1As we have seen, the chemical kinetics influences the recession rate only during a short time
interval at the beginning of the recession event. After the initial phase of surface temperature rise,
the recession rate is controlled mainly by the diffusion process.



Chapter 8

Conclusions

In this study, a general method is developed to examine thermo-chemical abla-
tion of graphite and Carbon/Carbon composite material. This model includes all
the relevant physics of thermo-chemical non-equilibrium flowfield and the inter-
nal heat conduction into the ablator material. The two regions, gas and solid, are
fully coupled at the surface by appropriate energy and mass balances. This allows
the surface conditions to be solved as part of the over-all solution. The specific
application of this work is the analysis of thermal protection systems (TPS) and
their complex interaction with the surrounding hot-gas flow. This problem is of
critical importance for optimization of the TPS for hypersonic vehicles and SRM
nozzles. TPS, in fact, are traditionally designed with one-dimensional engineer-
ing codes. Occasionally, a detailed computational solution is obtained but these
solutions rarely contain the correct surface boundary conditions. To compensate
for uncertainties in the analyses, a safety margin of extra TPS material is added
to the final design, and the structural weight must also be increased. Clearly there
is a need for more accurate, multidimensional computational tools which can be
used to reduce the uncertainties in TPS analysis and to optimize the TPS distri-
bution around the vital structures. The objective of this work is the development
of an innovative material/fluid interaction tool and its integration with a CFD tool
which can provide detailed modeling of these surface and near-surface physical
and thermochemical phenomena. The activity leading to thisfinal goal can be
summarized into two main steps described as follows.

In the first part, a proper one-dimensional model has been selected to describe
the thermal transient response of the TPS under realistic heating conditions rang-
ing from re-entry to SRM nozzle applications. The proposed model generates a
1-D in-depth solution, but the cross sectional area of the material analysed may
vary with depth (thermal stream tube). The developed code employs an implicit
finite difference solution technique, which shifts its coordinate system to account
for surface ablation. An important feature of this tool is the heated surface bound-

177
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ary condition. The general solution case employs a film coefficient model which
couples the external heating environment to the surface thermochemistry solution.
Approximate correlation equations for the multi-component boundary-layer over
an ablating material have been proposed to characterize thetransfer of heat and
mass across the surface. Employing the proposed boundary-layer correlations,
equations are presented to characterize heat and mass transfer at the surface of an
arbitrary non-charring material in an environment of arbitrary chemical composi-
tion. A numerical solution of the equations for the in-depthtransient response of
TPS material has been programmed with the surface boundary condition coupled
to a thermochemical ablation model which accounts for heterogeneous chemical
equilibrium at the ablating surface. A general theory is presented for ablation
thermochemistry of TPS materials which is then implementedin a CEA-based
chemical equilibrium code for generating dimensionless ablation tables. The 1-D
transient model has shown excellent agreement with known analytical solutions
and with the widely used CMA code. In particular this model isfinalized to be
used as a time-efficient engineering tool for the TPS analysis, prediction and de-
sign. Results of transient coupled solution are presented for carbon-carbon com-
posite material in various high-temperature environments. The major result of
these computations is that, despite the different kind of application ranging from
rocket nozzle to Earth reentry environment, Carbon/Carbonshows a similar be-
haviour characterized by a quick heating and a short transient period in which
surface conditions strongly vary with time. Results have shown that the surface
parameters (temperature, erosion rate, heat conduction into solid) are much faster
in reaching the steady conditions than the in-depth temperature profile. This per-
mits to conclude that, for what concern the surface conditions, a steady-state as-
sumption is acceptable to study the complex interaction between hot-gas flow and
TPS material. On the contrary, if one is interested in the temperature rise inside
the material and in particular at the interface with the structure, a transient solution
is mandatory.

In the second part of this work, where the author concentrated much of his ef-
forts, the interaction between the hot-gas layer and a Carbon/Carbon TPS has been
studied in details assuming steady-state ablation, which has been demonstrated
to be a reasonable assumption for this kind of materials. A full Navier-Stokes
solver is used to model with more accuracy the heat and mass transfer mech-
anisms removing completely the transfer-coefficient approach (thin-film model)
used in the previous coupling. To reach this goal, a general surface boundary con-
dition with mass and energy balance for an ablating surface has been derived. A
procedure based on these surface conditions has been developed and integrated
with a two-dimensional axisymmetric full Navier-Stokes equation solver coupled
with an equilibrium ablation model which permits both oxidation and sublimation
reactions to occur on a C/C surface. Particular efforts havebeen made toward the
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integration of the mass/energy balances and ablation modelwith the flow solver.
The most interesting and original property of the developednumerical tool lies in
the fact that it is fully coupled with the ablating boundary conditions thus permit-
ting to remove all the commonly used mass/energy-transfer coefficients and the
resulting inaccuracies. As a matter of fact, even if nowadays Computational Fluid
Dynamics is common practice for re-entry and SRM nozzle applications, CFD
codes rarely contain the correct surface boundary conditions to cope with abla-
tion. Most codes, in fact, use simplistic boundary conditions (constant prescribed
temperature or heat flux and with zero mass transfer) and cannot be realistically
used for TPS design and analysis.

Solutions with different flowfield conditions and boundary conditions (isother-
mal, steady-state) have been obtained to study the effects on surface composition
and ablation rate and the transition between oxidation and sublimation regimes.
The effect of gas injection in the boundary layer has been studied focusing the
attention on the wall heat flux and its reduction due to the ablation phenomenon.
The effect of finite-rate chemistry for the ablation products has been analysed
to study its effect on surface ablation. Finally, the obtained results have been
compared with the most commonly used simplified approaches for coupling CFD
code and surface ablation. These approaches are based on theuse of thermochem-
ical tables, heat and mass-transfer coefficients and blowing correction equations,
with different degrees of simplification. The comparison ofthe results obtained
with these simpler approaches has shown a good agreement of the solutions for
the test cases analysed at the lowest blowing rates and thus validates the fully-
coupled approach developed in this work. The comparison hasalso shown the
inaccuracies introduced by the simpler methodologies which are more and more
evident with increasing blowing rates and when using more complex boundary-
conditions (variable surface temperature), thus demonstrating the need for more
accurate CFD tools which can be used to reduce the uncertainties in TPS analysis.

As a final step, the developed tool has been applied to describe Carbon/Carbon
regression of advanced solid-rocket nozzles. The hot-gas flow inside the nozzle
has been simulated taking into account propellant chemistry, detailed thermo-
dynamic and fluid-dynamic analyses, heterogeneous chemical reactions at the
nozzle surface, rate of diffusion of the species through theboundary-layer and
accurate multi-species thermophysical properties. The model so developed is
free from many restrictive assumptions and approximationsmade by several re-
searchers over the past. The results show that the erosion rate follows the trend
exhibited by the heat-flux variation: recession and heat fluxincrease in the con-
verging section of the nozzle, reach a maximum close to the throat, and decrease
in the supersonic diverging section. This variation is governed by the mass flux of
the flow of propellant products in the nozzle. The most important factors that dic-
tate the erosion process are concentrations of the oxidizing species at the nozzle
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inlet, rate of diffusion of oxidizing species toward the nozzle surface, and motor
operating conditions. The results of Part I illustrated that the surface temperature
of C/C nozzles increases very quickly to an elevated temperature (≈ 2500 K) in
few seconds. Hence, chemical kinetics, which are dominant at low surface tem-
peratures, control the recession process only for a very short initial period of the
recession event. Thereafter, the recession process is limited by the diffusion of
oxidizing species to the nozzle surface. Calculated results showed that oxidation
of carbon toCO is the principal cause of nozzle recession.H2O is the domi-
nant oxidizing species, withCO2 andOH being of secondary importance since
their concentrations are about one order of magnitude lowerthan that ofH2O.
Consistent with experimental results, the recession rate shows an increase with
increasing chamber pressure, exhibiting almost a linear correlation. This is due to
the enhanced mass transport of oxidizing species across theturbulent boundary-
layer. Consistent with the experimental observations, themodel predicts that the
recession rate is inversely proportional to the density of the nozzle material.

In conclusion, the general boundary conditions, includingmass and energy
balances, of chemically equilibrated gas adjacent to an ablating surface have been
derived. An efficient computational procedure based on these conditions has been
developed and integrated with a Navier Stokes solver. The presented model has
shown a great potential and thus it is a promising tool to obtain a more accurate
characterization of the coupled interaction between a hot-gas flow and an ablating
surface if compared to standard approaches.



Appendix A

Governing equations

The flow of a compressible chemically reacting mixture of gases is governed by
the conservation principles of mass, momentum, and energy from which a com-
plete system of differential equations, namely the Navier-Stokes equations, can
be derived. When the viscous effects can be neglected, the system reduces to the
Euler equations.

A.1 Navier-Stokes equations

The complete Navier-Stokes equations for a chemically reacting viscous flow are1

[2, 42]:






∂ρi

∂t
+ ∇ · (ρivi) = ẇi i = 1, ..., N − 1

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρvv) −∇ · S = 0

∂(ρe0)

∂t
+ ∇ · (ρe0v) = ∇ · (v · S) −∇ · q

(A.1)

wherevi is the mass motion of speciesi which can be expressed as:

vi = v + ui (A.2)

wherev is the mass motion of themixture andui is the diffusion velocity of
speciesi. Note that for a mixture of N species only N-1 species continuity equa-
tions are needed: theN th equation is given by

∑N
i=1 ρi = ρ.

1The volumetric forces and the volumetric heating have not been considered.
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The termS is the stress tensor, split into the contribution of pressure forces
and viscous stresses, the termq is the heat flux vector, and the terṁwi is the
source term due to chemical reaction (explained later):

S = −pI + T

q = −k∇T +
N∑

i=1

ρihiui (A.3)

where, assumingnewtonianflows and zerobulk viscosity(according to Stokes
hypothesis), the viscous stress tensor can be expressed as:

T = −2

3
µ(∇ · v)I + µ

[
∇v + (∇v)T

]
(A.4)

Finally, the diffusional mass flux of theith species can be expressed using the
approximation of Fick’s law:

ji = ρiui = ρyiui = −ρDim∇yi (A.5)

The transport coefficientµ, k, andDim in the Eqs. (A.3), (A.4), and (A.5) are the
viscosity coefficient, the thermal conductivity, and the multicomponent diffusion
coefficient, respectively.

The Navier-Stokes equations (A.1) can be also written innon-conservation
form:







ρ
Dyi

Dt
+ ∇ · (ρyiui) = ẇi i = 1, ..., N − 1

Dρ

Dt
+ ρ∇ · v = 0

ρ
Dv

Dt
+ ∇p = ∇ ·T

ρ
De0

Dt
+ ∇ · (pv) = ∇ · (v ·T) −∇ · q

(A.6)

wher the substantial derivative notation has been used:

D

Dt
=

∂

∂t
+ v · ∇
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A.1.1 Transport properties

A.1.1.1 Viscosity and thermal conductivity

For each chemical species the viscosity and thermal conductivity as functions of
temperature are given in the form of least-square coefficients. The data for each
species are fitted to the following form:

ln α = A ln T +
B

T
+

C

T 2
+ D

whereα can be either the viscosityµi or the thermal conductivityki of the ith

species. For a multicomponent gas, such as a chemically reacting mixture, the
mixturevalues ofµ andk must be found from the values ofµi andki of each of
the chemical speciesi by means of themixture rules. A common rule for viscosity
is Wilke’s rule, which states that:

µ =

N∑

i=1

Xiµi
∑

j Xjφij
, φij =

1√
8

(

1 +
Mi

Mj

)−1/2
[

1 +

√
µi

µj

(Mi

Mj

)1/4
]2

(A.7)
whereXi andMi are the molar fraction and the molecular weight of speciesi,
respectively. For the thermal conductivity of a mixture, Eq. (A.7) can be used
again, replacingµ andµi with k andki, respectively.

A.1.1.2 Diffusion coefficient

One of the simplest model to obtain the diffusion coefficientis that of considering
a constantLewisnumber. From its definition:

Le =
k

ρDcp
, Dim = D =

k

ρcpLe
(A.8)

In this way a single global diffusion coefficient is used for every species. It is
worth remembering thatµ andk for a pure species depend only on temperature
whereasD depends on both the temperature and the density of the gas.

A.1.2 Chemical source term

The termẇi in Eqs. (A.1) is the local rate of change ofρi as a result ofchemi-
cal reactionsinside the volume. The chemical source term is positive for species
which are created and it is negative for species which are consumed. The dimen-
sions ofẇi are mass per unit volume per unit time.
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An expression forẇi comes from the chemical rate equation (whose dimen-
sions are moles per unit volume per unit time), couched in suitable dimensions:

ẇi = Mi

R∑

r=1

dCir

dt
(A.9)

where
dCir

dt
represent the net time rate of formation of theith species (in terms of

concentrations2) due to therth chemical reaction andMi is the molecular weight
of speciesi. The summation is made over all theR chemical reactions involving
the speciesi. For the generalrth chemical reaction of the form:

N∑

i=1

ν
′

irCir ⇋

N∑

i=1

ν
′′

irCir (A.10)

the generalizednet rate equationis:

dCir

dt
= (ν

′′

ir − ν
′

ir)

[

kfr

N∏

i=1

(Cir)
ν
′

ir − kbr

N∏

i=1

(Cir)
ν
′′

ir

]

(A.11)

wherekfr
andkbr

are the forward and backward reaction rate constants for therth

chemical reaction and are function of temperature only. A relation between the
forward and backward reaction rate constants holds:

kf

kb
= Kc(T ) (A.12)

whereKc is the equilibrium constant based onconcentrationswhich is related to
the equilibrium constant based onpartial pressures:

Kc(T ) = Kp(T )

(
1

RT

)P

i(ν
′′

i −ν
′

i)

Kp(T ) = e−∆G0/RT

∆G0 =
∑

i

(ν
′′

i − ν
′

i)G
0
i

whereG0
i is thestandard stateGibbs free energy per mole of mixture.

The chemical rate constants are generally measured experimentally. The em-
pirical results for many reactions can be correlated using theArrhenius equation
form:

kf = AT be−EA/RT

whereA, b, andEa (theactivation energy) are all found from experimental data.

2Ci is the number of moles of theith species per unit volume of mixture.
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A.2 Euler equations

TheEulerequations can be obtained neglecting theviscousterms due to viscosity,
thermal conductivity, and mass diffusion from theNavier-Stokesequations (A.1):







∂ρi

∂t
+ ∇ · (ρiv) = ẇi i = 1, ..., N − 1

∂ρ

∂t
+ ∇ · (ρv) = 0

∂(ρv)

∂t
+ ∇ · (ρvv) + ∇p = 0

∂(ρe0)

∂t
+ ∇ · (ρe0v) + ∇ · (pv) = 0

(A.13)

It is well known that the Navier-Stokes equations are not hyperbolic as the addi-
tion of viscous terms changes the mathematical nature of thesystem by increasing
its order. However, Navier-Stokes equations certainly propagate waves like Euler
equations do: the viscous effects, in fact, are important only in a limited part of the
flowfied, such such near walls, shock waves, and contact discontinuities. There-
fore the numerical methods used to solve the Navier-Stokes equations can be an
extension of those used for the Euler equations, taking advantage from their hy-
perbolic nature and decoupling between the convective operator and the diffusive
operator.

Taking this into account, it is important to study some properties of the Euler
equations before going to the Navier-Stokes equations. TheEuler equations can
be written in different ways and using different variables.Firstly we can distin-
guish between theconservation formand thenon-conservation form. Eqs. (A.13)
are written inconservation form, while thenon- conservation formis written in
substantial derivative notation:







ρ
Dyi

Dt
= ẇi i = 1, ..., N − 1

Dρ

Dt
+ ρ∇ · v = 0

ρ
Dv

Dt
+ ∇p = 0

ρ
De0

Dt
+ ∇ · (pv) = 0

(A.14)
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The non-conservation formdo dot admit discontinuous solutions; from now on,
we will refer to the system (A.14) which is also calledquasi-linearform.

A.3 Equations in terms ofa/δ, v, s, yi

Following thelambdascheme proposed in [54] and extended in [47] for reacting
flows, the Euler equations expressed by (A.14) are written interms ofa/δ, v, s,
yi:







Dyi

Dt
=

ẇi

ρ
i = 1, ..., N − 1

1

c1

Db

Dt
+ a∇ · v − a

R

Ds

Dt
=

1

c1
β

Dv

Dt
+

a

c1
∇b − a2

γR
∇s +

a2

γR

∑

Qi∇yi = 0

Ds

Dt
= − 1

T

∑

µi
Dyi

Dt

(A.15)

whereb = a/δ, a =
√

γRT is the frozen speed of sound,δ = (γ − 1)/2 andµi

is the Gibbs free energy per unit mass (chemical potential) of the ith species. The
derivation of Eqs. (A.15) from Eqs. (A.14) is quite tedious and is reported in [47].

The termsc1, β, andQi express the variation ofγ andR due to variation of
temperatureT and compositionyi. Their expression is the following:

c1 = d1δa1

β = ac1

∑
[

− ei

RT
+

µi

RT
+

1

c1

∂(1/δ)

∂yi

−
(

a2

c1

− 1

d1(γ − 1)

)
∂ ln(γR)

∂yi

]
Dyi

Dt

Qi = si −
∂ ln(γR)

∂yi
cp

(
1

d1
− 2a2

d1a1

)

− 2
cp

d1a1

∂(1/δ)

∂yi

where:

d1 = 1 + T
∂(γR)

∂T

a1 =
1

δ
+

2T

d1

∂(1/δ)

∂T

a2 =
T

d1

∂(1/δ)

∂T
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The Navier-Stokes equations in terms ofb, v, s, yi can be obtained adding the
viscous terms to the Euler equations (A.15):







Dyi

Dt
=

ẇi

ρ
+

1

ρ
∇ · (ρDim∇yi) i = 1, ..., N − 1

1

c1

Db

Dt
+ a∇ · v − a

R

Ds

Dt
=

1

c1
β

Dv

Dt
+

a

c1
∇b − a2

γR
∇s +

a2

γR

∑

Qi∇yi =
1

ρ
∇ · T

Ds

Dt
= − 1

T

∑

µi
Dyi

Dt
+

R

p
(−∇ · q + ∇v : T)

(A.16)

Summing and subtracting
a

γR

Ds

Dt
from the continuity equation, with

Ds

Dt
coming

from the energy equation, we obtain:

1

c1

Db

Dt
+ a∇ · v − a

γR

Ds

Dt
=

1

c1
β +

a

γR
(γ − 1)Vs (A.17)

The system can be finally written in the following form:






Dyi

Dt
= Vyi i = 1, ..., N − 1

1

c1

Db

Dt
+ a∇ · v − a

γR

Ds

Dt
= Vb

Dv

Dt
+

a

c1

∇b − a2

γR
∇s +

a2

γR

∑

Qi∇yi = Vm

Ds

Dt
= Vs

(A.18)

where the source terms are defined as follows:

Vyi
=

ẇi

ρ
− 1

ρ
∇ · ji

Vb =
1

c1
β +

a

γR
(γ − 1)Vs

Vm =
1

ρ
∇ · T (A.19)

Vs = − 1

T

∑

µiVyi
+

R

p
(−∇ · q + ∇v : T)



188 APPENDIX A. GOVERNING EQUATIONS

A.4 Nondimensional form of the Navier-Stokes equa-
tions

The Navier-Stokes equations (A.18) can be nondimensionalized as follows. The
nondimensional variables are defined as the ratio between the dimensional value
and its reference value (expressed with the subscriptr), typical of the flow con-
sidered. The reference values for nondimensioning are:

density ρr

pressure pr

length lr
molecular weight Mr = MN2

gas constant Rr = Ru/MN2

temperature Tr = pr/(Rrρr)

velocity vr =
√

pr/ρr

time tr = lr/vr

entropy sr = Rr

sound speed ar = vr

shear stress tensor Sr = pr

viscous stress tensor Tr = pr

viscosity µr

enthalpy hr = pr/ρr

internal energy er = pr/ρr

heat flux (per unit area) qr = prvr

mass flux (per unit area)ṁr = ρrvr

gamma γr

specific heats cpr = cvr = γr

γr−1
Rr

chemical source ωr = ρr/tr

The following dimensionless parameters are defined:

Reynolds number: Rer =
ρrvrlr

µr

Prandtl number: Prr =
µrcpr

kr

Lewis number: Ler =
kr

ρrcprDr

Using the Prandtl and Lewis number the reference thermal conductivity and dif-



A.4. NONDIMENSIONAL FORM OF THE NAVIER-STOKES EQUATIONS189

fusion coefficient can be defined as:

kr = µr
cpr

Prr

Dr =
µr

LerPrrρr

Using the same notation for dimensional and nondimensionalvariables, the nondi-
mensional Navier-Stokes equations are identical to their dimensional form, ex-
pressed by Eqs. (A.18). The system can be written expressingexplicitly the sub-
stantial derivative, with the subscript()t expressing partial derivative with respect
to time:







yi,t + v · ∇yi = Vyi i = 1, ..., N
′

= N − 1

1

c1

bt +
1

c1

v · ∇b + a∇ · v − a

γR
st −

a

γR
v · ∇s = Vb

vt + (v · ∇)v +
a

c1
∇b − a2

γR
∇s +

a2

γR

∑

Qi∇yi = Vm

st + v · ∇s = Vs

(A.20)

The nondimensional source terms have the following expression:

Vyi
=

ẇi

ρ
− 1

ρ
∇ · ji

Vb =
1

c1
β +

a

γR
(γ − 1)Vs

Vm =
1

ρ
∇ · T (A.21)

Vs = − 1

T

∑

µiVyi
+

R

p
(−∇ · q + ∇v : T)

with:

T =
1

Rer

µ

[

−2

3
(∇ · v)I + ∇v + (∇v)T

]

q = − γr

γr − 1

1

RerPr

k∇T − 1

LerRerPrr

∑

ρDhi∇yi

ji = − 1

PrrLerRer

ρDim∇yi





Appendix B

Lambda scheme and solving
technique

The adopted technique for the numerical analysis of two-dimensional, viscous,
reacting, unsteady flows is described here. To integrate thegoverning equations
a finite differenceapproach is used. The first step to be taken is the choice of
a computational grid. Obviously, the grid has to be well adapted to the geom-
etry of the rigid bodies in the problem: grids must be so chosen that any rigid
body contour is described by a grid line. Experience dictates that more accurate
results are obtained if the computational grid is orthogonal so that only orthog-
onal grids are used here. Moreover, the finite differencing is easier and more
accurate if an equally-spaced cartesian frame is adopted. Therefore, a curvilin-
ear orthogonal grid in the physical space (obtained with conformal mapping) is
transformed to a rectangular grid in the transformed space.Because the finite
difference calculations are performed on this rectangulargrid, it is also called
the computational space. Grid created in this fashion are called structuredgrids.
Since it is often useful to have more nodes in some region of the flowfield (near
walls), a first transformation (stretching) of the computational plane is performed:
the computational grid is transformed to a new grid which is still cartesian but
no more equally-spaced (stretched). This intermediate grid is finally transformed
to the curvilinear grid in the physical space. To summarize three planes have
been defined: the physical plane (x, y) discretized with a curvilinear orthogonal
grid, the intermediate plane (ξ, η) discretized with a stretched cartesian grid, and
the computational plane (x̂, ŷ) discretized with an equally-spaced cartesian grid.
Two-dimensional problems are considered in this technique.

191
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B.1 Theλ-scheme

The governing equations derived in Appendix A and written inquasi-linearform
in terms ofb, v, s, andyi are now reformulated using ideas based on the concept
of characteristics. Following the technique presented in [54] for two-dimensional
inviscid flows and extended in [59] and [47] for viscous and reacting flows, re-
spectively, the Navier-Stokes Eqs. (A.20) can be reformulated as follows.

Let n andτ be a pair of unit vectors along the coordinate lines of a given
curvilinear orthogonal grid in the physical plane (x,y) and leti andj be a pair of
unit vectors of a cartesian grid in the same plane. Therefore:

v = un + vτ

Now let beα = α(x, y) the angle between the two orthogonal frames. Therefore:

n = cos α i + sin α j, τ = − sin α i + cos α j

and
dn = τdα, dτ = −dnα (B.1)

We also consider a unit vectir,k, perpendicular to the plane of motion so that
k = i × j = n × τ . The following identities are easily proven:

∇ · v = n · ∇u + τ · ∇v + k × v · ∇α (B.2)

(v · ∇)v = (v · ∇u)n + (v · ∇v)τ + (v · ∇α)(uτ − vn) (B.3)

Finally, let w be an arbitraryunit vector. If the third of (A.20) is dot-multiplied
by w, and the result is added to the second of (A.20) and to the sum of the first i
equations multiplied bya/(γR)Qi, a single scalar equation is obtained:

1

c1

bt + w · vt −
a

γR
st +

a

γR

∑

Qiyi,t +

+(v + aw) · ∇b

c1
− a

γR
(v + aw) · ∇s +

a

γR
(v + aw) ·

∑

Qi∇yi + (B.4)

+w · [(v · ∇)v] + a∇ · v = Vb + w · Vm +
a

γR

∑

QiVyi

By using (B.2) and (B.3), (B.4) can be written in the form:

1

c1

bt + w · vt −
a

γR
st +

a

γR

∑

Qiyi,t +

+(v + aw)

(∇b

c1
− a

γR
∇s +

a

γR

∑

Qi∇yi

)

+ (B.5)

+w · [(v · ∇u)n + (v · ∇v)τ + (v · ∇α)(uτ − vn)] +

+a(n · ∇u + τ · ∇v + k × v · ∇α) = Vb + w · Vm +
a

γR

∑

QiVyi
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Now let w = n, −n, τ and−τ successively. Four equation are obtained from
(B.5), which can be written in a simpler and symmetric form byletting:

ρ1 = b + u, Λ1 = v + an

ρ2 = b − u, Λ2 = v − an

ρ3 = b + v, Λ3 = v + aτ

ρ4 = b − v, Λ4 = v − aτ

and
F = ak × v · ∇α, β = v · ∇α, c12 = (1 − c1)/c1

The four equations are:
(

1

c1

bt + ut −
a

γR
st +

a

γR

∑

Qiyi,t

)

+

+Λ1

(

∇ρ1 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+

+aτ∇v − βv + F = Vb + Vm · n +
a

γR

∑

QiVyi

(
1

c1
bt − ut −

a

γR
st +

a

γR

∑

Qiyi,t

)

+

+Λ2

(

∇ρ2 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+

+aτ∇v + βv + F = Vb −Vm · n +
a

γR

∑

QiVyi

(
1

c1
bt + vt −

a

γR
st +

a

γR

∑

Qiyi,t

)

+

+Λ3

(

∇ρ3 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+

+an∇u + βu + F = Vb + Vm · τ +
a

γR

∑

QiVyi

(
1

c1
bt − vt −

a

γR
st +

a

γR

∑

Qiyi,t

)

+

+Λ4

(

∇ρ4 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+

+an∇u − βu + F = Vb −Vm · τ +
a

γR

∑

QiVyi
(B.6)
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Note that if the orthogonal frame is also cartesian, then thetermsF andβ van-
ish because∇α = 0 everywhere in the flowfield. At this stage we may observe
that the vectorsΛi (i = 1, 4) are two-dimensional generalizations of the charac-
teristic slopes,λi, defined for one-dimensional flows [54]. Similarly, the scalars
ρi are generalizations of theRiemannvariables. Some additional manipulation,
however, is necessary to bring the equations to a form closerto the one obtained
for one-dimensional flows. We see, indeed, that (B.6) is a redundant system since
the mass fractionsyi and the entropys are provided by the firsti equations and
the fourth equation of (A.20), respectively, and three independent unknowns only
remains: the variableb and the two velocity componentsu andv. Following an
idea of Butler [13], the four equations (B.6) can be recombined into three, taking
advantage of the orthogonality ofn andτ .

By summing together the four equations (B.6) and subtracting the second of
(A.20) multiplied by 2 and the sum of the firsti equations of (A.20) multiplied by
2a/(γR)Qi, we obtain:

(
1

c1

bt −
a

γR
st +

a

γR

∑

Qiyi,t

)

+

+
1

2

4∑

i=1

Λi ·
(

∇ρi −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+

−v ·
(∇b

c1

− a

γR
∇s +

a

γR

∑

Qi∇yi

)

+ F = Vb +
a

γR

∑

QiVyi
(B.7)

By subtracting the second of (B.6) from the first, we obtain:

ut +
1

2
Λ1 ·

(

∇ρ1 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+ (B.8)

−1

2
Λ2 ·

(

∇ρ2 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

− βv = Vm · n

and, similarly, by subtracting the fourth of (B.6) from the third, we obtain:

vt +
1

2
Λ3 ·

(

∇ρ3 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+ (B.9)

−1

2
Λ4 ·

(

∇ρ4 −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

+ βu = Vm · τ

Finally, the first and the fourth equations of (A.20) are needed to close the system.
Note that (B.7-B.9) and the first and fourth of (A.20) are all expressed ingradient
form. The importance of this formulation resides in the way thoseequations can
be discretized.
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Now letting:

Ui =
1

2
Λi ·

(

∇ρi −
a

γR
∇s +

a

γR

∑

Qi∇yi + c12∇b

)

, i = 1, 4

U5 =
1

2
v ·
(

1

c1
∇b − a

γR
∇s +

a

γR

∑

Qi∇yi

)

U6 = v · ∇s

U7,i = v · ∇yi, i = 1, ..., N
′

= N − 1

Vu = Vm · n

Vv = Vm · τ

V
′

b = Vb +
a

γR

∑

QiVyi
(B.10)

With the use of Eqs. (B.10), the system made of (B.7-B.9) plusthe first and fourth
equations of (A.20) can be expressed in a compact way:







bt = c1

(

a

γR
st −

a

γR

∑

Qiyi,t −
4∑

i=1

Ui + 2U5 − F + V
′

b

)

ut = −U1 + U2 + βv + Vu

vt = −U3 + U4 − βu + Vv

st = −U6 + Vs

yi,t = −U7,i + Vyi
, i = 1, ..., N

′

(B.11)

Indeed, in the new system we have local terms, such asF , βu e βv, and source
terms, such asV

′

b , Vu, Vv, Vs, andVyi
. All other terms containing space derivatives

express differentiations of generalized Riemann variables along directions which
lie on the surface of a Mach conoid or along the direction ofv itself. Let a Mach
conoid be drawn backwards in time from a generic point, Q, to be evaluated at
time t + ∆t. Projecting the conoid onto the physical plane at timet, a circle is
the intersection of the conoid with the physical plane. The radius of the circle
is the speed of sound and its center, P, is the origin of thev vector ending at Q.
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According to the choice ofn andτ , four points are identified on the circle as the
origin of the lines defined by the vectorsΛi. It is thus easy to identify from which
computational cell the information proceeds, which is carried along a line parallel
to one of theΛi. Each one of the terms contributing to the equations, thus, can be
discretized using information related to its domain of dependence.

B.2 Equations in the computational plane

It is now necessary to transform the derivatives expressed in the physical plane
(x, y) into derivatives expressed in the computational plane (x̂, ŷ). The computa-
tional, intermediate, and physical planes can be defined by acomplex variable:

ẑ = x̂ + iŷ

ζ = ξ + iη

z = x + iy

In the computational plane the flowfield is a box[0, 1] × [0, 1] discretized with
an equally-spaced cartesian grid. The intermediate planeζ is obtained from the
computational plane bystretchingthe coordinatesx andy. The new grid is still
cartesian but no more equally-spaced. Thisstretchingtransformation is particu-
larly easy since the transformation functions of the two coordinates are decoupled.
To obtain the flowfield in the physical plane, where the grid iscurvilinear orthog-
onal in order to be well adapted to the geometry of the body, the transformation
function z = z(ζ) is needed. In two-dimensional problems a powerful tool to
create orthogonal grids around difficult bodies is represented byconformal map-
ping [55, 62]. For an orthogonal frame obtained by conformal mapping of the
intermediate frameζ onto the physical planez, we can use the notations [53]:

g =
dζ

dz
= Ge−iα = ξx + iηx = −iξy + ηy

φ = φ1 + iφ2 =
d log g

dζ
=

Gξ

G
− iαξ = −i

Gη

G
− αη = −αη − iαξ

whereα is the same variable used in Eqs. (B.2) and (B.3), that is the angle between
the two frames.

Now the system of Eqs. (B.10) must be explicitly expressed interms of deriva-
tives in the intermediateζ plane. To do so, we note that for a scalarf the following
relation holds:

∇f = fxi + fyj = G(fξn + fητ )
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wheren andτ are now unit vectors along the coordinate linesη andξ, respec-
tively. It is now possible to write the Eqs. (B.10) in the intermediate plane (ξ, η):

U1 =
G

2
(u + a)

[

(b + u)ξ −
a

γR
sξ +

a

γR

∑

Qiyi,ξ + c12bξ

]

+

+
G

2
v

[

(b + u)η −
a

γR
sη +

a

γR

∑

Qiyi,η + c12bη

]

U2 =
G

2
(u − a)

[

(b − u)ξ −
a

γR
sξ +

a

γR

∑

Qiyi,ξ + c12bξ

]

+

+
G

2
v

[

(b − u)η −
a

γR
sη +

a

γR

∑

Qiyi,η + c12bη

]

U3 =
G

2
u

[

(b + v)ξ −
a

γR
sξ +

a

γR

∑

Qiyi,ξ + c12bξ

]

+

+
G

2
(v + a)

[

(b + v)η −
a

γR
sη +

a

γR

∑

Qiyi,η + c12bη

]

U4 =
G

2
u

[

(b − v)ξ −
a

γR
sξ +

a

γR

∑

Qiyi,ξ + c12bξ

]

+

+
G

2
(v − a)

[

(b − v)η −
a

γR
sη +

a

γR

∑

Qiyi,η + c12bη

]

U5 =
G

2
u

[

bξ −
a

γR
sξ +

a

γR

∑

Qiyi,ξ + c12bξ

]

+

+
G

2
v

[

bη −
a

γR
sη +

a

γR

∑

Qiyi,η + c12bη

]

U6 = G(usξ + vsη)

U7,i = G(uyi,ξ + vyi,η), i = 1, ..., N
′

β = G(uαξ + vαη)

F = −aG(vαξ − uαη) (B.12)

Now the derivatives expressed in the intermediate planeζ = (ξ, η) must be trans-
formed into derivatives expressed in the computational plane ẑ = (x̂, ŷ). Noting
that:

fξ = fx̂x̂ξ, fη = fŷŷη
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we can finally write the Eqs. (B.12) in the computational plane:

U1 =
1

2
λx

1

[

(Rx
1)x̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

+

+
1

2
λy

3

[

(Rx
1)ŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

U2 =
1

2
λx

2

[

(Rx
2)x̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

+

+
1

2
λy

3

[

(Rx
2)ŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

U3 =
1

2
λx

3

[

(Ry
1)x̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

+

+
1

2
λy

1

[

(Ry
1)ŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

U4 =
1

2
λx

3

[

(Ry
2)x̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

+

+
1

2
λy

2

[

(Ry
2)ŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

U5 =
1

2
λx

3

[(
Rx

1 + Rx
2

2

)

x̂

− a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

+

+
1

2
λy

3

[(
Ry

1 + Ry
2

2

)

ŷ

− a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

U6 = λx
3sx̂ + λx

3sŷ

U7,i = λx
3yi,x̂ + λx

3yi,ŷ, i = 1, ..., N
′

β = λx
3αx̂ + λy

3αŷ

F = −1

2
[(λx

2 − λx
1)vαx̂ − (λy

2 − λy
1)uαŷ]

where:

λx
1 = Gx̂ξ(u + a) λx

2 = Gx̂ξ(u − a) λx
3 = Gx̂ξu

λy
1 = Gŷη(v + a) λy

2 = Gŷη(v − a) λy
3 = Gŷηv
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and

Rx
1 = b + u Rx

2 = b − u

Ry
1 = b + v Ry

2 = b − v

It is now convenient to express in each equation the terms containing the sameλx,y
i

in order to approximate the derivatives withupwinddifferences, either forward or
backward according to the sign ofλx,y

i . By letting:

fx
1 = −1

2
λx

1

[

(Rx
1)x̂ − vαx̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

fx
2 = −1

2
λx

2

[

(Rx
2)x̂ + vαx̂ −

a

γR
sx̂ +

a

γR

∑

Qiyi,x̂ + c12bx̂

]

fx
3 = −λx

3(vx̂ + uαx̂) (B.13)

fx
4 = −λx

3sx̂

fx
i = −λx

3yi,x̂, i = 1, ..., N
′

and

f y
1 = −1

2
λy

1

[

(Ry
1)ŷ + uαŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

f y
2 = −1

2
λy

2

[

(Ry
2)ŷ − uαŷ −

a

γR
sŷ +

a

γR

∑

Qiyi,ŷ + c12bŷ

]

f y
3 = −λy

3(uŷ − vαŷ) (B.14)

f y
4 = −λy

3sŷ

f y
i = −λy

3yi,ŷ, i = 1, ..., N
′
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Finally the system can be written in its final form:







bt = c1

(

fx
1 + fx

2 + f y
1 + f y

2 + V
′

b +
a

γR
st −

a

γR

∑

Qiyi,t

)

ut = fx
1 − fx

2 + f y
3 + Vu

vt = f y
1 − f y

2 + fx
3 + Vv

st = fx
4 + f y

4 + Vs

yi,t = fx
i + f y

i + Vyi
, i = 1, ..., N

′

(B.15)

we recall the expression of the source terms:

V
′

b = Vb +
a

γR

∑

QiVyi
=

1

c1
β +

a

γR
(γ − 1)Vs +

a

γR

∑

QiVyi

Vu = Vm · n =
1

ρ
(∇ · T) · n

Vv = Vm · τ =
1

ρ
(∇ · T) · τ (B.16)

Vs = − 1

T

∑

µiVyi
+

R

p
(−∇ · q + ∇v : T)

Vyi
=

ẇi

ρ
− 1

ρ
∇ · ji

with:

T =
1

Rer

µ

[

−2

3
(∇ · v)I + ∇v + (∇v)T

]

(B.17)

q = − γr

γr − 1

1

RerPr

k∇T − 1

LerRerPrr

∑

ρDhi∇yi (B.18)

ji = − 1

PrrLerRer

ρDim∇yi (B.19)

To complete the transformation from the physical plane to the computational plane
the viscous terms must be transformed in terms of derivatives in the computational
plane. It is therefore necessary to express∇ · q, ∇ · ji, (∇ · T) · n, (∇ · T) · τ ,
andΦ = ∇v : T in the computational plane.
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The following expressions are taken from [59] and [47]. Firstly ∇v is evalu-
ated:

∇v = G(vξn + vητ ) =

= G [(un + vτ )ξn + (un + vτ )ητ ] =

= G [(uξ − vαξ)nn + (uη − vαη)nτ + (vξ + uαξ)τn + (vη + uαη)ττ ]

now letting:

e11 = G(uξ − vαξ) = G(x̂ξux̂ + vφ2)

e12 =
1

2
G(uη + vξ − vαη + uαξ) =

1

2
G(ŷηuŷ + x̂ξvx̂ + vφ1 − uφ2)

e22 = G(vη + uαη) = G(ŷηvŷ − uφ1)

The following expressions hold:

∇v + (∇v)T = 2 [e11nn + e12(nτ + τn) + e22ττ ] (B.20)

∇ · v = e11 + e22 (B.21)

therefore we can express the viscous stress tensor from Eq. (B.17):

T = T11nn + T12(nτ + τn) + T22ττ

where:

T11 =
2µ

3Rer
(2e11 − e22)

T12 =
2µ

3Rer
e12

T22 =
2µ

3Rer
(2e22 − e11)

finally obtaning, using (B.1):

∇ · T = ∇ · [T11nn + T12(nτ + τn) + T22τ ] =

= G [T11ξn + T11(αξτ + αηn) + T12ξτ +

+ T12ηn + 2T12(αητ − αξn) + T22ητ − T22(αξτ + αηn)] =

= G [x̂ξT11x̂ + ŷηT12ŷ − (T11 − T22)φ1 + 2T12φ2]n +

+ G [x̂ξT12x̂ + ŷηT22ŷ − (T11 − T22)φ2 + 2T12φ1] τ (B.22)

and from the symmetry ofT:

∇v : T =
1

2
(∇v + ∇vT ) : T = T11e11 + 2T12e12 + T22e22
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from which we obtain the expression ofΦ:

Φ =
µ

Rer

[

2(e2
11 + 2e2

12 + e2
22) −

2

3
(e11 + e22)

2

]

(B.23)

Finally, we obtain the heat flux vector (B.18) and the mass fluxvector (B.19) and
their divergence. The heat flux vectorq becomes:

q = q1n + q2τ

q1 = −G

[
γr

γr − 1

k

RerPrr
x̂ξTx̂ +

1

LerRerPrr

∑

ρDx̂ξhiyi,x̂

]

q2 = −G

[
γr

γr − 1

k

RerPrr

ŷηTŷ +
1

LerRerPrr

∑

ρDhiŷηyi,ŷ

]

and its divergence, using (B.1):

∇ · q = ∇q1 · n + ∇q2 · τ + q1∇ · n + q2∇ · τ =

= G(q1ξ + q2η + q1αη + q2αξ) =

= G(x̂ξq1x̂ + ŷηq2ŷ − q1φ1 + q2φ2) (B.24)

The mass flux vectorji is:

ji = ji1n + ji2τ

ji1 = − G

PrrRerLer

ρDx̂ξyix̂

ji2 = − G

PrrRerLer

ρDŷηyiŷ

and its divergence:

∇ · ji = G(x̂ξji1x̂ + ŷηji2ŷ − ji1φ1 + ji2φ2) (B.25)

The source termsV
′

b , Vm, Vs, andVyi
can be finally evaluated in the computational

planeẑ with the use of Eqs. (B.22), (B.23), (B.24) and (B.25).

B.3 Two-Dimensional axisymmetric problems

The same two-dimensional equations (A.20) can be used for axisymmetric prob-
lem with the addition of some terms; therefore the effect of axisymmetry is treated
as a source term. The axisymmetric operators (gradient, divergence, etc.), denoted
with ()a, can be expressed as a function their planar counterpart, denoted with()p.
Following the work presented [59] and [47], the final resultsare shown here.
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We now introduce three unit vectorsi, j, andk along the axial, radial, and
azimuthal direction, respectively, to define a cartesian frame in the physical plane.
Using the relations between planar and axisymmetric operators, the equations of
motion (A.20) remain unchanged for the axisymmetric problem, except for the

second of (A.20), which has the added term
a

y
(v · j) on the right-end side, and the

source terms, whose expression is illustrated below. In thecomputational plane,
the first of (B.15) becomes:

(bt)a = (bt)p + c1A

where:

A = ae33 (B.26)

e33 =
v · j
y

=
u sinα + v cos α

y

Now the viscous terms must be derived for the axisymmetric case. Noting that:

(∇v)a = (∇v)p + e33kk

the (B.20-B.21) become:

(∇v + ∇vT )a = (∇v + ∇vT )p + 2e33kk

(∇ · v)a = (∇ · v)p + e33

consequently we can expressT from Eq. (B.17):

T = (T11)ann + (T12)a(nτ + τn) + (T22)aττ + (T33)akk

where:

(T11)a =
2µ

3Rer

(2e11 − e22 − e33)

(T12)a =
2µ

3Rer

e12

(T22)a =
2µ

3Rer

(2e22 − e11 − e33)

(T33)a =
2µ

3Rer

(2e33 − e11 − e22)

Finally we obtain the expression forΦ:

(Φ)a = (Φ)p +
4µ

3Rer

[
e2
33 − e33(e11 + e22)

]
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and for the source termVs from (B.16):

(Vs)p = − 1

T

∑

µi(Vyi)p +
R

p
[(Φ)p − (∇ · q)p]

(Vs)a = − 1

T

∑

µi(Vyi)a +
R

p

[

(Φ)a − (∇ · q)p +
1

y
(q1 cos α + q2 sin α)

]

and for the source termVyi from (B.16):

(Vyi)p =
ẇi

ρ
− 1

ρ
(∇ · ji)p

(Vyi)a =
ẇi

ρ
− 1

ρ

[

(∇ · ji)p +
1

y
(ji1 cos α + ji2 sin α)

]

Note that(q)a = (q)p and(ji)a = (ji)p, since(∇f)a = (∇f)p for a generic scalar
f . Lastly we must derive the expression forVm:

(Vm)p =
1

ρ
(∇ ·T)p (B.27)

now lettting:

Txy = (T · i) · j = T11 sin α cos α + T12(cos2 α − sin2 α) − T22 sin α cos α

Tyy = (T · j) · j = T11 sin2 α + 2T12 sin α cos α − T22 cos2 α

the following relation is obtained:

(Vm)a = (Vm)p +
1

ρy
[Txy cos α + (Tyy − T33) sin α]n +

− 1

ρy
[Txy sin α + (T33 − Tyy) cos α] τ

and expressing the terms explicitly:

(Vm)a = (Vm)p +
2µ

ρRer

[
(e11 − e33) sin α + e12 cos α

y

]

n +

+
2µ

ρRer

[
(e22 − e33) cosα + e12 sin α

y

]

τ

The axisymmetric expression for the source terms(Vs)a, (Vyi)a, and(Vm)a have
been obtained.
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B.4 Time-marching finite difference method

The code is based on the explicit two-level (predictor-corrector) scheme [52, 54],
patterned on the well-known MacCormack scheme and having second-order ac-
curacy in both space and time. The convective terms are discretized withupwind
differences, either forward or backward according to the sign of λx,y

i . The dif-
fusive terms are treated as source terms, discretized explicitly by second-order
centraldifferences.

Let t = k∆t, x̂ = n∆x̂, andŷ = m∆ŷ. Knowing all the values at levelk,
solution at levelk + 1/2 (predictor) is obtained as follows:







(yi)
k+ 1

2
nm = (yi)

k
nm + (yi,t)

k
nm

∆t
2

(s)
k+ 1

2
nm = (s)k

nm + (st)
k
nm

∆t
2

(b)
k+ 1

2
nm = (b)k

nm + (bt)
k
nm

∆t
2

(u)
k+ 1

2
nm = (u)k

nm + (ut)
k
nm

∆t
2

(v)
k+ 1

2
nm = (v)k

nm + (vt)
k
nm

∆t
2

(B.28)

To evaluate the time derivatives(yi,t)
k
nm, (st)

k
nm, (bt)

k
nm, (ut)

k
nm, and(vt)

k
nm at

levelk, the (B.15) are used. Only the discretized form offx
1 is shown here since

the other quantitiesf q
p (p = 1, 2, 3, 4, i; q = x, y) are discretized following the

same logic. Thefx
1 approximation at the first level (predictor) is the following:

(fx
1 )k

nm = − 1

4∆x̂

[
(λx

1)
k
n′m + (λx

1)
k
n′′m

] [
(Rx

1)
k
n′m − (Rx

1)
k
n′′m

]
+

+
1

4∆x̂

[
(λx

1)
k
n′m(v)k

n′m + (λx
1)

k
n′′m(v)k

n′′m

] [
(α)k

n′m − (α)k
n′′m

]
+

+
1

4∆x̂

[

(λx
1)

k
n′m(

a

γR
)k
n′m + (λx

1)
k
n′′m(

a

γR
)k
n′′m

]
[
(s)k

n′m − (s)k
n′′m

]
+

− 1

4∆x̂

∑

i

[

(λx
1)

k
n′m(

aQi

γR
)k
n′m + (λx

1)
k
n′′m(

aQi

γR
)k
n′′m

]
[
(yi)

k
n′m − (yi)

k
n′′m

]
+

− 1

4∆x̂

[
(λx

1)
k
n′m(c12)

k
n′m + (λx

1)
k
n′′m(c12)

k
n′′m

] [
(b)k

n′m − (b)k
n′′m

]

(B.29)

where the indexn′ andn′′ are defined as follows:

(λx
1)

k
nm ≥ 0 ⇒

{
n′ = n
n′′ = n − 1

(λx
1)

k
nm < 0 ⇒

{
n′ = n + 1
n′′ = n

The Eq. (B.29) is obtained from the first of (B.13) discretizing the spatial deriva-
tives withupwinddifferences, either forward or backward according to the sign
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of (λx
1)

k
nm. The terms multiplying the space derivatives are substituted with their

average value between the two nodes. A special treatment is needed when the sign
of (λx

1)
k
nm changes betweenn′ andn′′. In that case the local value of(λx

1)
k
nm is

used and the (B.29) becomes:

(fx
1 )k

nm = − 1

2∆x̂
(λx

1)
k
nm

[
(Rx

1)
k
n′m − (Rx

1)
k
n′′m

]
+

+
1

2∆x̂
(λx

1)
k
nm(v)k

nm

[
(α)k

n′m − (α)k
n′′m

]
+

+
1

2∆x̂
(λx

1)
k
nm(

a

γR
)k
nm

[
(s)k

n′m − (s)k
n′′m

]
+

− 1

2∆x̂

∑

i

(λx
1)

k
nm(

aQi

γR
)k
nm

[
(yi)

k
n′m − (yi)

k
n′′m

]
+

− 1

2∆x̂
(λx

1)
k
nm(c12)

k
nm

[
(b)k

n′m − (b)k
n′′m

]
(B.30)

The diffusive terms, according to their nature, are discretized by central differ-
ences [56]. For example, the mass flux vector componentsji1 and ji2 are dis-
cretized as follows:

(ji1)
k
nm = − (G)nm

PrrRerLer
(ρ)k

nm(D)k
nm(x̂ξ)n

(yi)
k
n′m − (yi)

k
n′′m

2∆x̂

(ji2)
k
nm = − (G)nm

PrrRerLer
(ρ)k

nm(D)k
nm(ŷη)m

(yi)
k
nm′ − (yi)

k
nm′′

2∆ŷ

and the divergence of the mass flux vectorji is:

(∇ · ji)k
nm = (G)nm

[

(x̂ξ)n
(ji1)

k
n′m − (ji1)

k
n′′m

2∆x̂
− (ji1)

k
nm(φ1)nm +

+ (ŷη)m
(ji2)

k
nm′ − (ji2)

k
nm′′

2∆ŷ
+ (ji2)

k
nm(φ2)nm

]

(B.31)

with
{

n′ = n + 1
n′′ = n − 1

{
m′ = m + 1
m′′ = m − 1

All the other diffusive terms are evaluated following the same logic. Finally, the
terms which do not contain space derivatives, such the chemical source term (A.9)
or the added term for axisymmetric problems (B.26), are explicitly evaluated at
level k. To summarize, the time derivatives at levelk can be evaluated using the
(B.15) and expressions like (B.29) and (B.31) for the convective terms and the



B.4. TIME-MARCHING FINITE DIFFERENCE METHOD 207

diffusive terms, respectively. Finally (B.28) can be used to obtain the values at
levelk +1/2. Note that since the variableb is an implicit function of temperature,
the value ofT at levelk + 1/2 is obtained from the value ofb at the same level
using the Newton’s iterative procedure. From the knowledgeof (T )

k+1/2
nm and

of (yi)
k+1/2
nm , the ratio of specific heats(γ)

k+1/2
nm and the frozen speed of sound

(a)
k+1/2
nm can be evaluated.
Solution at the second levelk +1 (corrector) is obtained using the same equa-

tions (B.28), withk + 1/2 instead ofk:






(yi)
k+1
nm = (yi)

k+ 1

2
nm + (yi,t)

k+ 1

2
nm

∆t
2

(s)k+1
nm = (s)

k+ 1

2
nm + (st)

k+ 1

2
nm

∆t
2

(b)k+1
nm = (b)

k+ 1

2
nm + (bt)

k+ 1

2
nm

∆t
2

(u)k+1
nm = (u)

k+ 1

2
nm + (ut)

k+ 1

2
nm

∆t
2

(v)k+1
nm = (v)

k+ 1

2
nm + (vt)

k+ 1

2
nm

∆t
2

(B.32)

The time derivatives at levelk + 1/2, needed to obtain the solution at levelk + 1,
are obtained from the (B.15) withF q

p instead off q
p . TheF q

p are defined as follows:

(F x
p )

k+ 1

2
nm = 2(fx

p )
k+ 1

2
nm − (fx

p )k
n′m

(F y
p )

k+ 1

2
nm = 2(f y

p )
k+ 1

2
nm − (f y

p )k
nm′ (B.33)

where

(λx
p)

k
nm > 0 ⇒ n′ = n − 1 (λx

p)
k
nm < 0 ⇒ n′ = n + 1

(λy
p)

k
nm > 0 ⇒ m′ = m − 1 (λy

p)
k
nm < 0 ⇒ m′ = n + 1

The diffusive terms are evaluated with expressions like (B.31) withk+1/2 instead
of k. In the discretized form of the equations, the metric terms are also present:
(G)nm, (α)nm (φ1)nm, and(φ2)nm. Their expression in discrete form can be found
in [59].

Thanks to the B.33, the technique is second-order accurate both in space and
time even if two-nodes finite differences are being used. Themethod has some
advantages over other techniques. One is simplicity, whichis also responsible for
reducing computational time. Another is easiness in handling boundary points
and boundary conditions. Both sets of equations (B.28) and (B.32), in addition
to local terms, contain terms (thef q

p ) which express physical contributions from
one side or the other. Terms which express contribution fromoutside, are not
computed from inside the computational region. They must bedetermined us-
ing some appropriate, physical boundary condition. The calculation at boundary
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points, therefore, is not affected by arbitrariness and no errors are introduced at
the boundaries.

The time step∆t is determined from the CFL (Courant-Friedrick-Lewis) con-
dition with a special correction for the viscous case. The time step is evaluated as
follows:

∆t =
cs

λ̂max∆x̂
, λ̂max = max(λx

i ∆x̂, λy
i ∆ŷ), i = 1, ..., 3 (B.34)

wherecs is the Courant number of the scheme, limited to 2 as shown in [25] (a
typical value is between0.5 and2.0). For viscous flows the stability analysis is
more complex, and the following expression is used [67]:

∆t =
cs

λ̃max

, λ̃max = max(
8∆x2

Rer
,
∆y2

Rer
) (B.35)

whereRer is the reference Reynolds number. The local time step∆t is the small-
est among (B.34) and (B.35). For transient problems, the time step must be the
same everywhere and therefore the smallest∆t evaluated in the flowfield is used
for every node. If steady-state solutions are sought, a way of reducing the compu-
tational time consists of using, for each node, the maximum time step permitted
by the CFL conditions. Alocal time step, different for each node, is therefore
used to speed-up convergence to the steady-state solution.For chemically react-
ing flows, the computational time can be reduced using special techniques such as
point implicit or operator splitting. Details on these techniques can be found in
[58].



Appendix C

Difference form of the in-depth
energy equation

The in-depth energy balance in the moving coordinate systemhas been derived in
chapter1:

ρcp

(
∂T

∂t

)

x

=
1

A

∂

∂x

(

kA
∂T

∂x

)

t

+ ρcp

(
∂T

∂x

)

t

ṡ (C.1)

which holds for the most general case (variable cross-section area and variable
properties). In chapter2 the finite-difference method for the energy equation has
been described for the simpler case of planar surface, constant properties and
constant nodal size. Here the difference form of the equation for the most general
case represented by Eq. (C.1) will be described.

C.1 Interior nodes

The differential form of Eq. (C.1) is the following:

ρncpn

T
′

n − Tn

∆t
=

1

∆xnAn

[

−αn+1(T
′

n − T
′

n+1 + Tn − Tn+1) + αn−1(T
′

n−1 − T
′

n + Tn−1 − Tn)
]

+
ρncpnṡ

4∆xn

(

T
′

n+1 − T
′

n−1 + Tn+1 − Tn−1

)

(C.2)
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multiplying (C.2) through by4∆xn∆tAn to eliminate the denominators, and col-
lecting all the terms involving the unknownsT

′

n on the left hand side results in:

−∆t(4αn−1 − ρncpnṡAn)T
′

n−1 + (4ρncpn∆xnAn + 4∆tαn+1 + 4∆tαn−1)T
′

n

−∆t(4αn+1 + ρncpnṡAn)T
′

n+1 =

∆t(4αn−1 − ρncpnṡAn)Tn−1 + (4ρncpn∆xnAn − 4∆tαn+1 − 4∆tαn−1)Tn

+∆t(4αn+1 + ρncpnṡAn)Tn+1 (C.3)

where:

αn+1 =

(
∆xn+1

kn+1An+1
+

∆xn

knAn

)−1

, αn−1 =

(
∆xn−1

kn−1An−1
+

∆xn

knAn

)−1

(C.4)

The termsρn, kn, andcpn
represent the density, thermal conductivity, and specific

heat of the material for then-node, respectively. The termAn is the cross-section
area of then-node and∆xn is the nodal size of then-node (which is fixed in size
but may vary from node to node).

C.2 The surface node

The energy input to the first node (n = 1) will be left simply asqc, which will
replace the terms of the form:

αn+1(Tn − Tn+1) + αn−1(Tn−1 − Tn) = qcAn

αn+1(T
′

n − T
′

n+1) + αn−1(T
′

n−1 − T
′

n) = q
′

cAn

Thus we have the energy difference equation for the first nodeas:

ρncpn

T
′

n − Tn

∆t
=

1

∆xnAn

[

−2αn+1(T
′

n − T
′

n+1 + Tn − Tn+1) + q
′

cAn + qcAn

]

+
ρncpnṡ

4∆xn

[(

1 − αn+1

αn−1

)

(T
′

n+1 − T
′

n + Tn+1 − Tn) − An

αn−1
(q

′

c + qc)

]

(C.5)
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multiplying (C.5) through by4∆xn∆tAn to eliminate the denominators, and col-
lecting all the terms involving the unknownsT

′

n on the left hand side results in:

[

4ρncpn∆xnAn + 8∆tαn+1 + ρncpnṡ∆tAn

(

1 − αn+1

αn−1

)]

T
′

n

−∆t

[

8αn+1 + ρncpnṡAn

(

1 − αn+1

αn−1

)]

T
′

n+1 =

[

4ρncpn∆xnAn − 8∆tαn+1 − ρncpnṡ∆tAn

(

1 − αn+1

αn−1

)]

Tn

+∆t

[

8αn+1 + +ρncpnṡAn

(

1 − αn+1

αn−1

)]

Tn+1

+An∆t

[

4 − ρncpnṡ

(
An

αn−1

)]

(q
′

c + qc) (C.6)

C.3 The last node

The last node does not conduct energy to an adjacent node. Hence the conduction
term is replaced by a temperature-potential convective transfer communicating
with a ”reservoir” at temperatureTres:

αn+1(Tn − Tn+1) + αn−1(Tn−1 − Tn) = hres(Tn − Tres)An

αn+1(T
′

n − T
′

n+1) + αn−1(T
′

n−1 − T
′

n) = hres(T
′

n − Tres)An

Thus we have the energy difference equation for the last nodeas:

ρncpn

T
′

n − Tn

∆t
=

1

∆xnAn

[

2αn−1(T
′

n−1 − T
′

n + Tn−1 − Tn) − hresAn(T
′

n + Tn − 2Tres)
]

+
ρncpnṡ

4∆xn

[(

1 − αn−1

αn+1

)

(T
′

n − T
′

n−1 + Tn − Tn−1) −
(

hresAn

αn+1

)

(T
′

n + Tn) + 2
hres

αn+1
TresAn

]

(C.7)
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multiplying (C.7) through by4∆xn∆tAn to eliminate the denominators, and col-
lecting all the terms involving the unknownsT

′

n on the left hand side results in:

−∆t

[

8αn−1 − ρncpnṡAn

(

1 − αn−1

αn+1

)]

T
′

n−1 +

[

4ρncpn∆xnAn + 8∆tαn−1 + 4∆thresAn − ρncpnṡ∆tAn

(

1 − hresAn

αn+1
− αn−1

αn+1

)]

T
′

n =

∆t

[

8αn−1 − ρncpnṡAn

(

1 − αn−1

αn+1

)]

Tn−1 +

[

4ρncpn∆xnAn − 8∆tαn−1 − 4∆thresAn + ρncpnṡ∆tAn

(

1 − hresAn

αn+1
− αn−1

αn+1

)]

Tn +

2An∆thresTres

[

4 + ρncpnṡ

(
An

αn+1

)]

(C.8)

C.4 Equations for coefficients in energy equation ar-
ray

The coefficientsAn, Bn, Cn, andDn in the array of Eq. (2.8) are determined by
Equations (C.3), (C.6), and (C.8).

For nodes in the ablating material except the first and last, from Eq. (C.3):







An = −∆t(4αn−1 − ρncpnṡAn)

Bn = (4ρncpn∆xnAn + 4∆tαn+1 + 4∆tαn−1)

Cn = −∆t(4αn+1 + ρncpnṡAn)

Dn = −AnTn−1 + (4ρncpn∆xnAn − 4∆tαn+1 − 4∆tαn−1)Tn − CnTn+1

(C.9)



C.4. EQUATIONS FOR COEFFICIENTS IN ENERGY EQUATION ARRAY213

For the surface node of the ablating material (n = 1), from Eq. (C.6):






A1 = 0

B1 =
[

4ρncpn∆xnAn + 8∆tαn+1 + ρncpnṡ∆tAn

(

1 − αn+1

αn−1

)]

C1 = ∆t
[

8αn+1 + ρncpnṡAn

(

1 − αn+1

αn−1

)]

D1 =
[

4ρncpn∆xnAn − 8∆tαn+1 − ρncpnṡ∆tAn

(

1 − αn+1

αn−1

)]

T1

− C1T2 + An∆t
[

4 − ρncpnṡ
(

An

αn−1

)]

(q
′

c + qc) = F(q
′

cond)

(C.10)

For the last node (n = N), from Eq. (C.8):






AN = −∆t
[

8αn−1 − ρncpnṡAn

(

1 − αn−1

αn+1

)]

BN =
[

4ρncpn∆xnAn + 8∆tαn−1 + 4∆thresAn − ρncpnṡ∆tAn

(

1 − hresAn

αn+1
− αn−1

αn+1

)]

CN = 0

DN = −A1TN−1

+
[

4ρncpn∆xnAn − 8∆tαn−1 − 4∆thresAn + ρncpnṡ∆tAn

(

1 − hresAn

αn+1
− αn−1

αn+1

)]

TN

+ 2An∆thresTres

[

4 + ρncpnṡ
(

An

αn+1

)]

(C.11)

Note that if there are one or more non-ablating back-up materials (such as insula-
tors or structural materials) the finite difference equations have the same form ex-
pressed in Eqs. (C.3), (C.6), and (C.8) without the convection term (that iṡs = 0).

A particular treatment is adopted for the last ablating nodesince the rear
boundary of this node is stationary with respect to a fixed coordinate system while
the front boundary is stationary with respect to the moving coordinate system.
Within this node, therefore, a variation occurs between themoving and fixed co-
ordinate system. Since the last node is a shrinking node (this special treatment is
adopted only for the last node) theṡ term for this node is taken as half its value.
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