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Introduction

One of the most peculiar features of the early neoclassical growth theory was the

exogeneity of the growth rate. The application of the principle of substitution

among factors of production to economic growth makes incentives to capital

accumulation necessarily vanish as the aggregate production function exhibits

decreasing returns to capital. As a result, the economy is doomed to a steady

state where the capital-labor ratio is constant and per-capita output is only able

to grow by relying on technical progress.

Technical progress, in fact, may be conceived of as a third factor of produc-

tion of the aggregate production function, but such an assumption is not without

cost. The logic of the ‘replication argument’ requires that the production func-

tion is constant returns in capital and labor: given the state of technology,

output can always be doubled by reproducing the existing production process.

The introduction of a third factor yields increasing returns. If this factor has

to be endogenous to the system it must be the outcome of economic agents’

decisions and, accordingly, must be rewarded. Such remuneration, though, is at
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viii INTRODUCTION

odds with the neoclassical theory of distribution. As, under competitive condi-

tions, factors of productions are paid according to their marginal productivities

then the whole product is not sufficient to pay its cost of production; indeed,

as is well known, under increasing returns to scale the Euler theorem does not

hold. This difficulty forced technical change to be an ‘exogenous’ factor of pro-

duction for prolonged time. The development of neoclassical growth theory can

actually be interpreted as an attempt to make technical change and the steady

state growth rate endogenous to the economic system.

Basically two routes have been pursued. The first one derived endogenous

growth rates by setting a lower bound to returns to capital; by doing this, the

incentive to capital accumulation never ends and the capital-labor ratio never

settles down to a steady state value. The so-called ‘AK’ models are the main

example of this way out of the exogenous growth. The second route made

technical change endogenously determined as the outcome of rewarded R&D

activities; along this way perfect competition must be abandoned to make the

distributional side of the economy fit. This class of models is usually referred

to as ‘Neo-Schumpeterian growth’.

My dissertation mainly focuses on this second stream of research.

The plan of the book is as follows.

In the first essay, ‘Exogenous and Endogenous Growth in a Historical Per-

spective’, I propose a survey and an interpretation of the structure and of the

basic results of neoclassical (exogenous and endogenous) and neo-schumpeterian

growth.
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The second essay, ‘An Uncertainty-Based Explanation of Symmetric Growth

in Schumpeterian Growth Models’, provides a re-foundation of the symmetric

equilibrium characterizing the research sector of most of the R&D driven growth

models. This result is usually derived by assuming symmetric expectations on

future per-sector R&D expenditure. On the contrary, it is assumed that future

per-sector distribution of R&D efforts is characterized by non-probabilistic un-

certainty. By adopting the multi-prior expected utility theory axiomatized by

Gilboa and Schmeidler (1989) I and my co-authors prove that the symmetric

structure of R&D investment is uniquely compatible with uncertainty-averse

agents adopting a maxminimizing strategy.

The third paper,‘A Quality Ladder Growth Model with Asymmetric Fun-

damentals’, generalizes the standard quality ladder growth model as proposed

by Grossman and Helpman (1991) to encompass cases where the economy’s

fundamentals are asymmetric. In particular, asymmetry is introduced in the re-

search technology and in the utility weights and cost of production of the lines

of production. It is shown that the basic results of the symmetric case remain

unaffected.

In the fourth paper, ‘Uncertainty-Averse Agents in a Quality Ladder Growth

Model with Asymmetric Fundamentals’, I derived the equilibrium in an econ-

omy with asymmetric fundamentals and where the agents are subject to non-

probabilistic uncertainty. Agents are assumed to adopt a maxminimizing strat-

egy to face such an uncertainty.

In the fifth essay, ‘Time-Varying Elasticity of Substitution and Economic
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Growth’, I show that in a standard neoclassical growth model framework the

path followed by the elasticity between capital and labor must be a non decreas-

ing one; I suggest considering this evolution as a possible source of economic

growth.
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Exogenous and Endogenous

Growth in a Historical

Perspective

0.1 Introduction

The so-called ’marginalist revolution’ took place around the 70’s of the XIXth

century. It produced a theory of the level and distribution of output based on

the endowments of production factors, technology and consumer preferences.

In such a theory, economic growth had to be conceived of as the result of the

increase in the factors’ endowments. Early marginalist analyses of economic

growth have been provided by Marshall, Cassel and Wicksell. However, we

start our survey from Solow’s (1956, 1957) formulation of the neoclassical growth

model because it later became the basic point of reference of any discussion on

neoclassical exogenous and endogenous growth.
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xivEXOGENOUS ANDENDOGENOUS GROWTH IN AHISTORICAL PERSPECTIVE

In the lecture held for the receiving of the 1987 Nobel Prize for Economics,

Robert Solow (1988) reconstructs the development of his research work on

growth theory. He remembers how his work started by analyzing the Key-

nesian growth models by Harrod (1939) and Domar (1946) and by attempting

to solve their critical points.

These economists had found the conditions under which the economy can

develop along a balanced growth path, when utilizing its productive capacity

in a normal way and by employing all the existing labor force. First, these

conditions require that investments be equal to savings corresponding to the

normal productive capacity utilization, so that:

I = sY ∗ (Y ∗ being the normal productive capacity income)

and

I/K = s/v = gwwhere v is the capital-income ratio and gw is the so-called

warranted growth rate. The second requisite is that the warranted growth rate

equals the growth rate of population (the natural growth rate) n. These two

growth rates are not related in any definite way, and nothing guarantees that the

autonomous investment decisions allow the economy to grow at the warranted

growth rate. On the contrary, the growth path corresponding to gw is, at least

in Harrod’s opinion, unstable (the so-called ‘knife edge’) so that the economy

cannot grow along it. This kind of instability, which was perceived as highly un-

satisfactory since it was not observable in the actual capitalistic economies, has

been eliminated by Solow by introducing the neoclassical principle of substitu-

tion among factors of production. This principle assures both that investments
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adjust to the savings corresponding to the full employment of capacity, so that

the economy grows at the warranted growth rate, and that the capital-income

coefficient v varies until the warranted growth rate adjusts to the natural one

so that the economy employs the whole labor supply.

It seems however, that this important advancement in growth theory is re-

sponsible for the exogeneity2 of the long run growth rate, so that the ‘new’

endogenous growth theories were born to correct this undesired consequence

of the principle of substitution and of the related decreasing marginal factors

productivity.

0.2 The Exogenous Growth

We briefly illustrate the main characteristics of the exogenous growth model.

0.2.1 The macro model

The represented economy is perfectly competitive. The factors of production,

labor and capital, are continuously fully employed and their rewards coincide

with their marginal productivity. In this economy there is a single good, which

can either be consumed or saved3. Population (L) evolves according to the

exogenous exponential dynamics:

L(t) = L(0)ent

2By exogeneity of the growth rate we mean its independence of agents’ preferences. In the
opposite case we will speak of endogeneity.

3The one-sector hypothesis prevents the model from being affected by the ‘capital critique’.
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The production function Y = F (K,L)4 exhibits constant returns to scale,

is well behaved5 and satisfies the Inada conditions6. By the constant return

hypothesis:

Y/L = F (K/L, 1) the product per unit of labor (y ) is a function of the sole

capital per unit of labor ( k), y = f(k).

Savings (S) are assumed to be a constant given share (s) of income, so that

S = sY

and S/L = sy = sf(k), and by the adjustment hypothesis of investments to

saving: sf(k) = I/L.

The dynamics of the economy are given by the pace at which capital accu-

mulates:

K =
.
I − δk (where δ is the depreciation rate of capital), so that:

sf(k)− δk =
.
K/L.

By deriving the identity k = K/L with respect to time, we obtain:

.

K/L =
.

k + nk

so that

.

k = sf(k)− (n+ δ)k.

Capital per worker will grow until sf(k) > (n+ δ) (i.e.
.

k > 0 ). The Inada

conditions assure that for relatively low levels of k this inequality holds. The

4Unless strictly reuired, I drop in what follos the time argment for notational simplicity.
5The function is continuous and twice differentiable with ∂F/∂K > 0, ∂F/∂L > 0,

∂2F/∂K2 < 0, ∂2F/∂L2 < 0.
6The Inada conditions require that lim

t→∞f 0(k) = 0 and lim
t→0

f 0(k) = ∞. These conditions
were introduced by Inada (1963) to assure the existence, stability and uniqueness of a station-
ary growth path. Indeed, in Solow (1956, pp. 77-8) the case of sustained growth is analyzed
by assuming production functions which violate these conditions.
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same conditions guarantee the existence, uniqueness and stability of the steady-

state value k∗ . The economy evolves towards k∗where sf(k∗) = (n+ δ)k∗and
.

k = 0. In the steady state, the capital K and the labor L grow at the same rate

n. Also the product, given the constant return hypothesis, grows at the same

rate. Therefore the growth rate of per-capita income is null independently of

saving propensity (s), which represents agents’ preferences.

This result follows from the variability of the capital-output ratio and the

tendency towards full employment of all factors. To catch the underlying intu-

ition, we can look at the growth rate of the economy as the result of the growth

rates of capital (s/v) and labour (n). If the economy grows at a rate higher than

n, then s/v needs to be higher than n. Capital will be growing faster than labor

and the capital-labor ratio is also increasing. Given the decreasing marginal

productivity of factors the capital output ratio is also increasing. This means

that s/v is decreasing until it adjusts to n.

The only chance to have sustained per capita growth in the long run relies

therefore on technical progress. This is represented in the neoclassical theory

as a third factor of production (A), so that the production function becomes:

Y = F (K,L,A).

Technical progress can enter the functional form of the production function

in various ways, but the only one which allow for the existence of a steady state

is the labor augmenting one, which characterizes progress as an increase in the

efficiency of the labor factor:

Y = F (K,AL) .
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The reason why growth is indeed named exogenous is that technical progress

is modeled as an original factor of production; analogously to the labor force

it is assumed to grow exponentially over time (A(t) = A(0)eλt) at a constant

rate (λ). It simply occurs in the economy without being produced by any agent

whose preferences are therefore irrelevant for its evolution. We discuss later how

the neoclassical theory tried to amend this unsatisfactory treatment of technical

change.

0.2.2 Convergence

The transitional dynamics of the system show an important implication of the

model. Given the rate of technological progress, the growth rate of per-capita

capital tends towards the equilibrium value with a speed of convergence inversely

proportional to the level of the initial stock of capital. Indeed:

∂(
.

k/k)

∂k
= s

µ
f 0(k)
k
− f(k)

k2

¶
=

s

k2
(f 0k)k − f(k)) < 0

being the quantity in square brackets negative, because it is equal to the

opposite of the marginal productivity of labor.

This result is the basis of the convergence hypothesis according to which

poorer economies should grow faster than richer ones, and should finally reach

them at the steady state value of the per-capita growth rate. However, this

conclusion holds only if the different economies have the same steady state. This

requires that the parameters which determine the steady state (the propensity

to save, the technology, population and depreciation growth rates) must be equal

for all the economies. If they differ have different steady state levels of per-capita
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income and the convergence proposition does not hold. So, the Solow model only

implies convergence conditional to the steady state, not absolute convergence

(the simple fact that poorer countries grow faster than richer ones).

Thanks to the data set becoming available in the eighties, the convergence

hypothesis has been tested both in the absolute and in the conditional versions.

Baumol (1986) found evidence to support the absolute convergence hypothesis

for the period 1870-1979. The sample he used however, based on Maddison

(1982), only considers the sixteen countries which have successfully completed

the process of industrialization; it is therefore biased. De Long (1988) in fact

showed that the hypothesis is rejected once the sample is completed with those

countries which were relatively rich in 1870 but failed to industrialize. Tests on

the complete sample of the Summer and Heston (1993) data set for the post-war

period have led to the refutation of the absolute convergence hypothesis (cfr.

Mankiew, Romer and Weil (MRW, 1992) or Barro and Sala-i-Martin (1995)).

Therefore, attention turned to verifying convergence in its conditional form.

MRW find evidence of conditional convergence, but they add the saving rate

of human capital to the determinants of the steady state. Evidence in favor

of conditional convergence also emerges in Barro (1997) and Barro and Sala-i-

Martin (1995). Here however, regressions are conditioned to several economic

indicators whose role in the growth process remains theoretically unexplained.

Therefore, the convergence hypothesis remains doubtful from an empirical point

of view7.

7 It can be interesting to note that in Barro (1997, Chap. 1, Tables 1.1 p.13 and 1.3
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0.2.3 The micro model

We saw how in the Solow model the propensity to save is taken as a given. Cass

(1965) and Koopmans (1965), by refining a seminal paper by Ramsey (1928),

provide a micro-foundation of the neoclassical growth model.

The economy is characterized by a finite number of identical infinitely-lived

households which supply labor to the firms and receive wages as reward. This

reward may be either consumed or saved by purchasing assets on which an in-

come interest is received. Savings define the dynamics of the accumulation of

capital. The dynamics of the economy are defined by the maximization prob-

lem of the representative household. The household maximizes his discounted

intertemporal utility over an infinite time horizon:

Max
ct

£
U =

R∞
0

e−ρtu(ct)ent
¤

where c is consumption, ρ is the rate of time preference and n is the rate of

growth of the family size. The maximization is subject to two conditions:

First, it must satisfy the budget constraint:

.
a = w + ra− c− na

where w is the wage rate, a is the amount of per-capita financial asset and r

is the interest rate. Secondly, a no-Ponzi game condition has to be satisfied in

order to avoid the possibility that households finance for ever their consumption

pp. 34) conditional convergence is tested by means of two different dependent variables:
per-capita growth rate and investment rate. Only the former shows a significant negative
relation with the initial level of per-capita income. If this is the case the convergence effect
should not be ascribed to the higher capital accumulation of backward countries as implied
by the Solow model. Dowrick and Nguyen for example find the convergence effect even when
controlling for capital accumulation and labor force participation; they attribute it to catch
up in Total Factor Productivity. Analogously Abramovitz (1986) suggests that convergence
can be basically driven by the adoption of the technological frontier.
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simply by borrowing money:

lim
t→∞

³
a(t)e−

R t
0
(r(u)−n)du

´
≥ 0

which states that the discounted value of assets must be asymptotically non-

negative.

The household’s maximization problem has to be coupled with the firm’s

one to determine the economy’s path of consumption and accumulation. The

representative firm maximizes its profits, that is the difference between the value

of its production and the payments to rent labor and capital services:

Π = F (K,L)− wL− (r + δ)K8 .

The solution of these two problems defines a system of two differential equa-

tions, which describes the optimal path of per-capita capital and consumption.

Solving for
.

k = 0 and
.
c = 0 provides the steady state pair of values (c∗, k∗),

which turns out to be a saddle point. If the economic agents have perfect fore-

sight, this saddle point will be the actual point the economy tends to.

Therefore, in equilibrium the per-capita growth rate of consumption, capital

and income are zero. The only possibility for sustained growth derives from the

existence of exogenous technical progress. We are back to Solow’s conclusions.

To sum up, we can say that the Solow model appeared unsatisfactory both

from an empirical and a theoretical point of view. First, apart from the recent

debate on the convergence hypothesis, it was soon clear that the model was un-

able to account for some of the ‘stylized fact’ regarding growth (Kaldor, 1961).

Second, the only way through which it could generate sustained per-capita

8We did not consider the intertemporal problem because if there are no adjustment costs
maximizing the present value of profits coincides with maximizing profits at any point in time.
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growth was to assume exogenous technical progress. The technical progress

is described as a factor of production on which the theory has nothing to say.

It is not rewarded nor provided by any economic agent9. It is a public good,

because it is non-rival and non-excludable, but there is no explanation for its

production: it appears in the economy like ‘manna from heaven’10. This seem-

ingly unsatisfactory11 characteristic of the technical progress is strictly linked

to the structure of the neoclassical theory. From a logical point of view, the

production function must be linearly homogeneous in labor and capital (the ri-

val inputs), because of the so-called ’replication argument’. The introduction of

a third factor (Romer 1990b) engenders increasing returns12 . If this factor has

to be the outcome of economic agents’ decisions, it must be rewarded. But the

neoclassical theory of distribution cannot account for this remuneration: under

increasing return to scale the Euler theorem does not hold and the product

is not sufficient to pay the factors of production according to their marginal

productivity.

In what follows, we analyze how the marginalist theory of growth made the

technological progress endogenous while maintaining its theory of distribution.

However, it is worth noting here that it is assumed that capital and technical

9Shell (1966, 1973) provided models where innovation is a good produced in the econ-
omy. However he derives an optimal steady state level of A which in turn is not capable of
engendering sustained growth.
10Vintage capital models (see for example Solow 1960) do not solve this problem. They

require capital accumulation for the existence of technical progress but they do not explain
who introduces innovations.
11 ‘..exogenous theories of technical change are essentially confession of ignorance..’ (Shell,

1973, p.77).
12 If R is the set of rival inputs, N a non-rival input and F (R,N) the production function,

we have: F (µR,N) = µF (R,N), so that F (µR, µN) > µF (R,N) for µ > 1.
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progress are two distinct and independent factors. Kaldor (1957) notes that

technical progress is embodied in new capital goods, so that the distinction

between movements along the production function due to an increase in the per-

capita capital and the shifts of the production function deriving from an increase

in the factor ‘technical progress’ is an illegitimate one13. He proposes a ‘technical

progress function’, which relates the growth rate of per-capita capital to that of

the per-capita output. This function incorporates both the improvements due

to the technical change and those due to the higher intensity of capital.

0.3 The First Generation of Endogenous Growth

Models

The basic way through which the new growth theories make the growth rate

endogenous is by setting a lower bound to the decrease of the marginal pro-

ductivity of capital. Indeed, in the Solow model the growth rate necessarily

relies on exogenous technical progress because the marginal product of capital

tends to zero and the incentive to save necessarily comes to an end. There are

basically three ways of stopping the decrease of the marginal product of capi-

tal: the introduction of a production externality which offsets the decrease of

13 Indeed Solow (1957) shows that if the factors of production are paid according to their
marginal productivities, it is possible to distinguish changes in per-capita output from those
due to technical change to those attributable to a change in the capital labor ratio. How-
ever in a following paper Solow (1960, p.90) observes: ‘Improvements in technology affect
output only to the extent that they are carried into practice either by net capital formation
or by replacement of old-fashioned equipment..’. Accordingly he develops a model (vintage
model) where technical progress occurs only when investments take place. The conclusions of
exogeneity of the rate of growth are however not affected.
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the marginal productivity of the private capital, the introduction of the ’human

capital’ factor which assures that the physical capital never becomes abundant

and, eliminating the factor through which the capital would become abundant,

i.e. the labor factor.

0.3.1 The externality

Arrow (1962) has been the first to suggest that the technological progress can

be due to a process of learning by doing, and that the total stock of capital

can be considered as a measure of it. Basically as accumulation goes on, the

technological level of the economy increases. The problem of factors reward

under increasing returns to scale is solved because firms produce under constant

return to scale and they reward the factors of production according to their

marginal productivity. At the same time, the accumulation of capital causes an

externality on the technological level and therefore increases returns to scale.

The production function of the single firm can be represented as:

Yi = A(K)F (Ki, Li) where K =
P

iKi

In this way, the level of technology is taken as a given in the individual

choices of production, but it is endogenous because it depends on the level of

accumulation and eventually on the propensity to save. However, the Arrow

model was developed in the case of a fixed capital-labor ratio and this implied

that in the long run the output growth was limited by the growth in population.

The output growth was therefore still independent of savings behavior.

The same idea has been made popular by Romer (1986). In an optimal
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growth framework, Romer introduces an externality into the production function

due to the production of ‘knowledge’, i.e. the technological level. Knowledge (R)

is produced by devoting resources to research. The externality arises because of

the non-rival nature of the knowledge good. Therefore the single firm production

function, when assuming a Cobb-Douglas case, is:

Yi = AKα
i L

β
i R

1−α−β
i Rγ where R = Ri

If γ = α+ β

the aggregate production function becomes

Y =
P

i Yi = AKαLβR

The production function exhibits constant return to scale in R14 . Since in

these kinds of models R is commonly thought of as a sort of capital, we have

derived a so-called AK model. Its main characteristic is the constant marginal

productivity of capital and the rate of growth is given by the saved fraction of

the net marginal product of capital, in our case:

g = s(AKαLβ − δ) .

It must be made clear that the hypothesis γ = α+β , is essential for the result

of the endogeneity of the steady state. The mere existence of the externality,

γ > 0, i.e. increasing returns, is not sufficient to generate endogenous growth.

From this point of view these kinds of models do not seem robust.

An analogous result had already been put forward by Frankel (1961). He

14Anyhow, as Romer pointed out later (1994, p.15), the assumption of a similar production
function is not legitimate. Indeed, according to the ‘replication argument’ the production
function need be constant return to scale in the sole rival inputs, labor and capital. Adding
a third factor of production should render the production function increasing return to scale.
This conclusion has been avoided for the difficulty to handle a similar case as regards the
distribution side. The solution suggested by Romer (1987, 1990) will be the introduction of
imperfect competition in research growth models.
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wanted to combine two different types of aggregate production functions: the

Cobb-Douglas to account for the theory of distribution, and a linear production

function a la Harrod (Y = aK) to re-establish the role of capital accumulation as

the engine of growth. The way he achieved this result is exactly the same way as

Romer did. He introduced an externality of production (E), which is a function

of the capital-labor ratio. The production function becomes Y = AKαL1−αE, if

E = (K/L)1−α then Y = AK. It appears then that the novelty of the ‘seminal’

1986 paper by Romer consisted only of focusing on the concept of knowledge

instead of capital as the factor of production generating the externality. The

scarce hype attributed to Frankel’s contribution can probably be attributed to

its relying on the ‘knife edge’ assumption of externality. Apparently this was

not sufficient reason to prevent Romer’s paper from becoming a revolutionary

one.

0.3.2 The human capital.

Human capital (H) constitutes the second line of research along which endoge-

nous growth theories have developed. Lucas (1988) has completed and made

popular the Uzawa (1965) human capital growth model. Lucas agrees with

Romer on the point of differences in productivity levels among countries being

due to differences in knowledge. But the source of knowledge is singled out more

in the accumulation of human capital than in research.

The introduction of human capital in the model requires the definition of

three different elements: the contribution of human capital to production, the



0.3. THE FIRST GENERATIONOF ENDOGENOUS GROWTHMODELSxxvii

allocation of time between labor and the accumulation of H, the link between

the time devoted to accumulation of H and its rate of growth.

The production function is:

Y = AKβ [uhL]1−β hγa

Where u is the share of time devoted to work, h the level of human capital of

the individual worker and N the number of workers. The last term hγa represents

the externality due to the average level of human capital.

The time, 1− u, devoted to the accumulation of H is related to its growth

rate by the differential equation:

.

h = δhζ(1− u)

Lucas stresses the necessity to rule out the case ζ < 1, otherwise the model

is unable to yield sustained growth. The case ζ > 1 yields explosive growth,

therefore he assumes ζ = 1: the production of H is linear in the level of human

capital and is homogeneous of degree two in the two factorsH and (1−u). In this

case the model generates sustained growth. It is worth noting that the existence

of the positive externality is unnecessary in order to obtain sustained growth;

the key assumption is the ‘knife edge’ condition ζ = 115 . It can be noticed that

the human capital factor enters the production function in exactly the same way

as the labor augmenting technical progress. It can produce sustained growth

because it is assumed to grow exponentially ( ζ = 1); it yields endogenous

growth because the amount of accumulated human capital is made dependent

on the agents’ preferences between working and accumulating H.

15 It must be stressed however that the model, once the agents are allowed to consume
‘leisure’, becomes unable to generate sustained growth (Solow, 1992).
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Sustained growth with human capital had also been obtained by Uzawa.

Lucas (1988, pp. 19-20) acknowledges his contribution but stresses that Uzawa

only described a path of optimal accumulation without obtaining it as the out-

come equilibrium of the economy.

0.3.3 Constant returns to capital

This class of models is characterized by the same AK production function we

have seen in Romer and Frankel. The rationale in obtaining it is slightly differ-

ent. It is assumed that all the factors of production are reproducible, i.e. they

are all capital of some kind. As the factors of production are all producible, the

capital never becomes ‘abundant’ and its marginal productivity and the rate of

profit never fall to zero. For example in Rebelo (1991), output is produced by

physical and human capital. Both kinds of capital are produced by means of

a constant returns technology, which uses the same composite capital as input.

Necessarily, the final good is also produced under constant returns and the as-

sumption of a unique method of production makes the profit rate depend only

on technology. If

Y = AK

then

r = A

and the rate of growth is

g = sA = sr (or g =
r − ρ

σ
when assuming the maximizing representa-

tive agent with ρ being the rate of time preferences and 1/σ the intertemporal
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elasticity of substitution of consumption).

0.4 The Imperfect Competition

Up to this point, the analyzed models of endogenous growth rely either on

technical progress arising as a by-product of capital accumulation, or on the in-

troduction of a second reproducible factor of production (human capital). The

missing point is the analysis of the technical progress as the outcome of inten-

tional choices of profit (or utility) maximizing agents. The prolonged absence

of this analysis, which contrasts with the evidence of firms’ research and de-

velopment expenses, can be explained by the difficulty of reconciling increasing

returns and perfect competition. It follows from the ‘replication argument’ that

the production function needs to be constant returns in labour and capital. If

this is the case, and firms are price-takers, the reward of the two factors ex-

hausts the whole product and there is no scope for the reward of the research

factor. It is therefore clear that the introduction of technical progress as the

outcome of intentional choices implied the abandonment of perfect competition

and the introduction of firms’ market power. This is exactly the route followed

by Romer in his 87 and 90 models. These models are based on the idea that

growth is sustained by the increased specialization of labor across increasing

varieties of lines of production. The existence of increasing returns is due to the

increasing number of intermediate goods used to produce the final good. The

production function is:
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Y = Lα
R A
0
x
(1−α)
i di

where xi is the quantity of the i − th intermediate good and [0, A] is the

interval on which the set of intermediate goods is measured. The production

set of the intermediate goods is non-convex. Indeed, a fixed cost arising from

acquiring or producing a new idea must be paid for producing a new good. The

intermediate sector is monopolistic since any firm is the exclusive beneficiary of

an idea. Therefore, any firm chooses the value of x by equating its marginal

revenue, derived from taking the marginal product of the good as its demand

price, to the marginal cost derived from a technology which uses only capital.

If any unit of the intermediate good is produced by means of η units of capital

(so that xi ⇐= ηxi), we find a symmetric equilibrium with xi =x¯
and K = Ax

¯
.

Plugging the expression for K in the production function:

Y = Lα
R A
0

µ
K

Aη

¶1−α
di = LαK1−αηα−1Aα

So that for given quantities of labor and capital, the increase in the number

of intermediate good increases the amount of the final good. Increasing returns

are introduced through the differentiation of intermediate good16. The dynam-

ics of technological progress are explained by the search for the monopolistic

rents arising in the production of ideas, so that for the first time it is the re-

sult of intentional and rewarded actions. Then, the introduction of imperfect

competition allows the existence of increasing returns to be handled.

Nevertheless, even in this case, assuming linearity in the production of the

16More precisely, given the free entry condition it is possible to compute the value of A in
terms of K. By plugging the value in the production function we obtain increasing returns in
labor and capital.
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factor (A) increasing the technological level is essential in order to obtain endoge-

nous growth. Romer himself says: “Linearity in A is what makes unbounded

growth possible, and in this sense, unbounded growth is more like an assumption

than a result of the model” (Romer, 1990, p. S84). The production function

of ideas is
.

A = δLaA , so that the increase of ideas in the economy is propor-

tional to the stock of existing ideas. And this is a necessary condition: “If A

were replaced [..] by some concave function of A-[..]- human capital employed

in research would shift out of research and into manufacturing as A becomes

larger” (ibid.). Endogenous growth is therefore supported both by the existence

of increasing returns and, in an essential way, by the existence of spillovers in

research production. The rationale for this assumption is that knowledge is a

non-rival good, so that all the researchers can use it freely in their activity. But

while the mere existence of this positive spillover seems plausible, the hypothesis

that it can assure the linearity in the production of A is doubtful.

In a similar way, Grossman and Helpman (1991, chap.3) derive endogenous

growth by means of a private sector engaged in R&D, which produces new ideas

and increases the variety of the existing goods. The structure of the economy

is analogous to that of Romer 90, but the product differentiation belongs to the

consumption sector instead of the intermediate one.

The representative agent instantaneous utility function is:

C =
³R A

0
xαi di

´ 1
α

with 0 < α < 1

This utility function, due to Dixit and Stiglitz (1977), shows a consumer’s

preference for product variety. It can easily be shown that utility is a rising
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function of the number of final goods A. This preference anyhow, is not sufficient

to assure endogenous growth. Once again, the key role is played by the non-

rival nature of knowledge and by the assumption of a linear spill over in its

production.

The contributions analyzed so far consider horizontal innovation, which con-

sists of expanding product variety. The appearance of a new good introduces

a new sector in the economy, which satisfies new functions and needs. The

substitutability between the new product and those already existing is finite.

However, innovation can have a different nature. It often consists of improving

the quality of already existing goods or developing the production process of a

certain good. This is vertical innovation and is the basis of the schumpeterian

idea of ‘creative destruction’, where the destruction consists of rendering a series

of goods obsolete.

Like the horizontal case, the vertical innovation can be considered both for

the final goods sector (Grossman and Helpman, 1991, chap. 4) and for the

intermediate one (Aghion and Howitt, 1992 and 1998, chap. 2,3). In the first

case there are N goods each of which can be qualitatively improved an infinite

number of times. The producer owning the most updated version of a good be-

comes monopolist. The profit flow deriving from being monopolist constitutes

the incentive to innovate. In the second case however, there is a single final

good produced under perfect competition and an intermediate sector in which

the owner of the innovation of the last generation is monopolist. There are

two basic ways in which vertical innovation differs from horizontal innovation.
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First, uncertainty is introduced into the production process of innovations. It

is assumed that innovations arrive randomly according to a Poisson distribu-

tion of parameter λ. The introduction of uncertainty makes the description of

the innovation sector more plausible. Nevertheless, at the aggregate level, the

growth rate of ideas is proportional to the arrival rate of the Poisson process

λn (n being the number of researchers), so that
.

A/A = λn ln γ where γ is a

measure of the improvement in technology. The assumptions concerning ideas

production are analogous to those of Romer. Second, and more fundamental,

the vertical nature of innovation renders any monopoly associated with an in-

novation transitory. The discovery of a vertically integrated product determines

the extinction of the previous monopolist’s rents: this is the ‘destructive’ com-

ponent of technological progress. The temporary nature of monopolistic rents

is taken into account by the firm engaged in R&D and this generates an inverse

relation between the amounts of research in two successive periods. This rela-

tion requires that agents have perfect foresight on the future amount of research,

which will be carried out in their sector.

0.5 The Scale Effect and the Endogenous Growth

When discussing the AK model we saw how the absolute scale of population

enters the expression for the growth rate of income. This effect is commonly

referred to as ‘scale effect’ and it characterizes both the AK models and the

first generation of R&D models. As capital has constant returns to scale it is
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capable of yielding a constant growth rate, once population growth is added the

growth rate will be ever increasing. Such an explosive trend of output is em-

pirically testable as it implies that larger countries grow faster than the smaller

ones. Barro and Sala-i-Martin (1995) analyze two samples: one consisting of 87

countries for the period 1965-75 and one of 97 countries for 1976-85; they find

a weak and not significant correlation between the extent of the labor force and

the growth rate of output. Nevertheless, they notice, the choice of the single

country as the scale variable can be misleading as the variables geographically

relevant can be larger (Kremer (1993) finds a positive correlation between world

population and per-capita growth) or smaller (e.g. the industrial district).

The first way out of the scale effect appeared as early as the first AK model.

We saw how in Frankel (1962) there is no scale effect as the externality is caused

not by the total but by the per-capita level of capital stock. By so doing, the

labor force disappears from the growth rate of the economy. Analogously, Lucas

(1988) attributes the externality to the average level of human capital. While

in Arrow (1962) the externality was caused by the total capital stock which

represented the cumulated knowledge of producers, it is less clear what is the

underlying rationale for focusing on average (physical and human) capital. A

shortcoming of this solution is however that the labor factor disappears from the

production function so that it does not provide any contribution to production.

Jones (1995a) showed the empirical weakness of the AK models. He stressed

that the trend of post-war per-capita growth rate in the OECD countries is

substantially stable. Such stability, if the model is correct, must be coupled
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with the stability of the variables explaining the long-run growth rate. In the

period considered the investement rates have followed an upward trend which

should have affected the growth rates; the absence of other variables which could

have offset the effect of the investment rates makes Jones reject the empirical

soundness of the AK models.

The scale effect characterizes the steady state growth rate of the R&D mod-

els. In these models indeed the growth rate basically depends on the amount of

labor employed in the research sector. Jones (1995a, b) tested this conclusion

by studying the correlation between the number of scientists and engineers and

the growth rate. The scale effect is rejected17.

Moreover Jones (1995a, b) showed how the existence of the scale effect in the

R&D models derives from a hypothesis which is both arbitrary and necessary for

the models to yields endogenous growth. This is hypothesis is the linearity in the

production of the factor which is accumulated endogenously. Jones considered

a general production function of ideas:

.

A = δLaA
ϕ

The stock of existing ideas can have different effects on the production of

ideas. If the most obvious ideas are discovered first leaving the most difficult

ones to be found the spillover deriving from the stock A is negative (ϕ < 0);

if the increase in knowledge on the contrary spurs the discovery of new ideas,

then the spillover is positive. The special case assumed by the R&D models

17 Jones’ empirical analyses, however, have been questioned. Backus et al. (1992) find
evidence of scale effect when considering only the manufacturing sector. Moreover it has been
argued that his results could be biased because of problems in the measurement of quality
improvements of goods and services (see for example Griliches (1994)).
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though has no economic explanation (ϕ = 1). Jones develop the case ϕ < 1: as

.

A/A = δLa/A
1−ϕ, the steady state rate of growth of ideas is g = n/1− ϕ: the

growth rate of the economy depends only on technology and population. In order

to avoid the scale effect the endogenous factors (namely preferences) disappear

from the growth rate. Still, it is not a mere return to exogenous growth as

technical change is the outcome of rational choice of profit-maximizing agents:

Jones names his model semi-endogenous.

The attempts to eliminate the scale effects from the R&D growth models

basically developed along two lines. The first is closer to Jones’ solution in

that it assumes that as the level of knowledge increases the productivity of the

research sector decreases. This idea is developed, among the others, by Kortum

(1997) and Segerstrom (1998). Their model, it is shown by Jones (1999), can be

subsumed under the case ϕ < 0. Analogously to Jones’ result the growth rate

is exogenous. It is worth noting however that changes in research intensity and

population even though do not affect per capita growth rates in fact influence

the steady state level of per-capita income.

The second way out of the scale effect instead reassures the endogeneity of

the growth rate. The basic argument is that as the number of researchers grows

the number of sectors where they are employed increases in a way that leaves

per-sector research intensity unaffected. Basically, these models consider both

vertical and horizontal innovation. The former is characterized by the usual

spillover which enables the model to engender sustained growth (i.e.
.

ϕ = 1).

As regards the horizontal innovation instead, it is required that the number of
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sectors in the economy grows proportionally to the population (A = kL). Such

a condition is necessary to generate endogenous growth without scale effect; if

the sectors of the economy grow slower than population the scale effect arises,

if they grow faster the models become exogenous. Then, in order to eliminate

the scale effect in the endogenous growth literature a further ad hoc condition

is required.

0.6 Concluding Remarks

Summing up, it seems that the endogenous growth models are based on the

hypothesis of constant returns in the reproducible factor, capital (physical or

human) or knowledge. Such a structure implies a permanent influence of changes

in the investment rates and in the share of labor devoted to R&D on per-capita

growth rate and it opens large possibilities for economic policy and shows that

the exogenous- endogenous growth debate is not a simple academic matter.

From a theoretical point of view these models are not robust in that they

hinge on ‘knife edge’ restrictions on technology, which allow them to generate

linearity in the production of the reproducible factor of production. This seems

to be the reason why many of the results accomplished by the endogenous

growth theories, even though already obtained during the 60’s, were considered

implausible18 . After all, the Solow model attempted to solve the problem of the

18As Stiglitz observes: “We knew how to construct models that ‘worked’, but felt uneasy
making these special assumptions. It was one thing to assume that savings rate were constant-
that was a behavioral hypothesis that provided a not bad description of the economy over
long periods of time, ( ).But it was quite another thing to assume, for instance, that the
effects of learning just offset the effects of diminishing returns due to land scarcity! That was
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Harrod-Domar instability and the new growth theories share the same feature.

As Solow notes: “modern literature is in part just a very complicated way of

disguising the fact that it is going back to Domar, and, as with Domar, the rate

of growth becomes endogenous” (1992, p.18).

Still, credit must be given to endogenous growth models because they have

contributed to the focus on elements like the production of knowledge and hu-

man capital that had been underrated until then. The biggest accomplishment

of the theories seems however, to be a technical one. By introducing general

equilibrium models of imperfect competition they made it possible for the neo-

classical theory to cope with both increasing returns and innovation as the

outcome of profit-maximizing agents’ decisions19. From a neoclassical point of

view it is a huge result to make innovation and the marginal theory of distri-

bution consistent. Unlike in Schumpeter’s Theory of Economic Development

(1934) it is no longer necessary to assume that whenever an innovation occurs

the marginal theory of distribution breaks down.

a technological assumption, and although we may have agreed with Einstein that God had
created a universe of great simplicity, it seemed going to far to assume that he had endowed
technology with these special parameters, simply so that we could construct our steady state
models” (1990, p.55).
19As admitted by Aghion himself: “The main contribution of the new growth theory so far

has been predominantly technical in nature. It is now possible to deal with increasing returns
and imperfect competition in dynamic general equilibrium models which are simple as those
developed in the recent industrial organization literature. This technological breakthrough
has in turn made it possible to formalize a number of existing ideas concerning development”
(1994, p.7).
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An Uncertainty-Based

Explanation of Symmetric

Growth in Schumpeterian

Growth Models20

0.7 Introduction

Most vertical R&D-driven growth models (such as Grossman-Helpman 1991,

Segerstrom 1998, Aghion-Howitt 1998, Ch.3) focus on the symmetric equilibrium

in the research industries, that is, on that path characterized by an equal size

of R&D investments per sector. As is well known, in these models the engine of

growth is technological progress, which stems from R&D investment decisions

20This paper is co-authored with G.Cozzi and P. Giordani.
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taken by profit-maximizing agents. By means of research each product line

can be improved an infinite number of times and the firms manufacturing the

most updated version of a product monopolize the relative market and thus

earn positive profits. However, these profits have a temporary nature since any

monopolistic producer is doomed to be displaced by successive improvements

in her product line. The level of expected profits together with their expected

duration, as compared with the cost of research, determines the profitability of

undertaking R&D in each sector.

Now, the plausibility of the symmetric equilibrium requires that each R&D

sector be equally profitable, so that the agents happen to be indifferent as

to where targeting their investments. The profit-equality requirement implies

two different conditions. First, the profit flows deriving from any innovation

need be the same for each industry: this is guaranteed by assuming that all the

monopolistic industries share the same cost and demand conditions. Second, the

monopolistic position acquired by innovating needs be expected to last equally

long across sectors: this requires that the agents expect the future amount of

research to be equally distributed among the different sectors. As is well known

to the reader familiar with the neo-Schumpeterian models of growth, future is

allowed to affect current (investment) decisions via the forward-looking nature

of the Schumpeterian ‘creative destruction’ effect.

Grossman and Helpman (1991, p.47) recognize the centrality of the assump-

tion of symmetric expected R&D investments in order to justify the selection of

the symmetric equilibrium: with the assumption that “the profit flows are the
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same for all industries [..] an entrepreneur will be indifferent as to the industry

in which she devotes her R&D efforts provided that she expects her prospective

leadership position to last equally long in each one. We focus hereafter on the

symmetric equilibrium in which all products are targeted to the same aggregate

extent. In such an equilibrium the individual entrepreneur indeed expects profit

flows of equal duration in every industry and so is indifferent as to the choice

of industry”. Hence in this framework it is crucial to assume that an equal

distribution of future R&D efforts across industries is expected.

Although expecting equal future profitability across sectors constitutes a

necessary condition for each agent to choose a symmetric allocation of R&D

efforts, it is however not sufficient: in fact, equal future profitability makes the

investor indifferent as to where targeting research. As a result, the allocation

problem of investments across product lines is indeterminate even if symmetric

expectations are assumed. Notice also that the way this allocation problem is

solved is not always without consequence for this class of models, as recently

pointed out by Cozzi (2003). For instance in a Segerstrom’s (1998) framework,

because of the ‘increasing complexity hypothesis’, the alternative prevalence of

the symmetric or asymmetric equilibrium has powerful effects on the growth

rate of the economy: if indifferent agents, for a whatever reason (a ‘sunspot’),

are induced to allocate their investment only in a small fraction of sectors, the

dynamic decreasing returns to R&D investments will imply a lower aggregate

growth rate as compared with the one associated with an equal distribution

of R&D efforts across all sectors. An equally relevant effect of sunspot-driven
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asymmetric R&D investments on steady-state growth rates reappears in the

Howitt’s (1999) extension to an ever expanding set of product lines (see Cozzi

(2004)). Hence both solutions to the ‘strong scale effect’ problem (Jones (2004))

exhibit dependence of growth rates on the intersectoral distribution of R&D.

In this paper we provide an alternative route to make the focus on the sym-

metric equilibrium compelling. Our basic idea is that the agent’s beliefs on the

future (per sector) distribution of R&D investments are characterized by uncer-

tainty, in the sense that information about that distribution is too imprecise to

be represented by a (single additive) probability measure. The distinction be-

tween risk and uncertainty traces back to Frank Knight (1921) and states that

risk is associated with ventures in which an objective probability distribution of

all possible events is known, while uncertainty characterizes choice settings in

which that probability distribution is not available to the decision-maker.

In recent years a number of attempts have been made to extend the ex-

pected utility theory in order to embrace the distinction between risk and un-

certainty22. Here however we will follow the maxmin expected utility (MMEU)

decision rule axiomatized by Gilboa and Schmeidler (1989), which formalizes

a ‘taste for uncertainty’23. According to this rule, an uncertainty-averse deci-

22For instance Bewley (1986) has developed his theory of the ‘status quo’, by dropping
the axiom of complete preferences inside the Anscombe and Aumann (1963) version of the
Savage’s theory.
23Gilboa and Schmeidler (1989) provide an axiomatic foundation of the maxmin expected

utility decision rule in the framework of Anscombe and Aumann (1963). Several applications
of this rule have been elaborated over the last few years. We recall, among the others, Epstein
and Wang (1994), and Hansen and Sargent (2000). Notice that a ‘taste for uncertainty’
can alternatively be modeled via the Choquet expected utility (CEU) theory axiomatized by
Schmeidler (1989). In it, expected utility is computed according to a capacity (that is, a not
necessarily additive probability) via the Choquet integral. MMEU and CEU coincide in a
special but important case, namely, when the capacity is convex.
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sion maker is provided, not with a unique prior - as in the standard expected

utility theory -, but with a set of priors. When evaluating the different acts to

choose among, this agent will compute the minimal expected utility over her

set of priors for each of them (acts), and then will single out the one associated

with the highest computed value. Consequently, in our framework the decision

maker will be assumed to maximize her expected pay-off with respect to the

R&D investment decision, while singling out the minimizing choice scenario,

that is, the worst probability distribution over the future configuration of R&D

investments. Unlike in Epstein and Wang (1994), in this paper the maxmin

decision rule eliminates indeterminacy and makes the symmetric - and growth

maximizing - allocation of R&D investment emerge as the unique equilibrium.

Importantly, our assumption on the agents’ beliefs does not affect any fun-

damentals of the economy and is to be interpreted as a way of treating sector-

specific ‘extrinsic uncertainty’. Moreover, since uncertainty does not affect

aggregate variables, in order to develop our argument, we need to introduce

neither the optimal consumption problem solved by households, nor the profit-

maximizing problem solved by firms (for them the reader is referred to Segerstrom

(1998)). As the problem is that of distributing a given amount of R&D efforts

across product lines, all we need is the description of the R&D sector.

Our result holds for a however small probability that a however small fraction

of individual’s portfolio be affected by strong uncertainty. Hence a microscopic

departure from the standard treatment of extrinsic uncertainty leads to potential

macroscopic growth consequences.
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The rest of the paper is organized as follows. In Section 2 we briefly de-

scribe the basic structure of the R&D sector, with particular reference to the

Segerstrom’s (1998) formalization. In Section 3 we explain the core of our argu-

ment, enunciate and prove the proposition. In Section 4 we conclude with some

remarks.

0.8 R&D Sector

In this Section we provide a description of the vertical innovation sector which

is basically common to most neo-schumpeterian growth models. This sector

is characterized by the efforts of R&D firms to develop better versions of the

existing products in order to displace the current monopolists25 . We assume a

continuum of industries indexed by ω over the interval [0,1]. There is free entry

and perfect competition in each R&D race. Firms employ labor and produce,

through a constant returns technology, a Poisson arrival rate of innovation in the

product line they target. Adopting Segerstrom’s (1998) notation, any firm hiring

lj units of labor in industry ω at time t acquires the instantaneous probability

of innovating Alj/X(ω, t), where X(ω, t) is the R&D difficulty index.

Since independent Poisson processes are additive, the specification of the

innovation process implies that the industry-wide instantaneous probability of

innovation is ALI(ω,t)/X(ω, t) ≡ i(ω, t), where LI(ω, t)=
P

j lj(ω, t). The pa-

rameter X(ω, t) describes the evolution of technology; as in Segerstrom (1998),

25 It seems irrelevant to our purpose to distinguish whether the monopolistic sector is that
of the final goods - as in Segerstrom (1998) - or that of the intermediate ones - as in Aghion
and Howitt (1998, Ch.3) and Howitt (1999).
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we assume it to evolve in accordance with

·
X(ω, t)

X(ω, t)
= µi(ω, t)

where µ is a constant. However we do not impose any sign restriction on µ,

in order to leave the difficulty index increasing, decreasing or remaining constant

as research accumulates. In the next section we will return to this problem by

specifying the range of values of µ which render our proposition significant.

Whenever a firm succeeds in innovating, she acquires the uncertain profit

flow that accrues to a monopolist, that is, the stock market valuation of the

firm: let us denote it with v(ω, t). Thus, the problem faced by an R&D firm is

that of choosing the amount of labor input in order to maximize her expected

profits:

max
lj
[v(ω, t)A/X(ω, t)lj − lj ]

which provides a finite, positive solution for lj only when the arbitrage

equation27 v(ω, t)A/X(ω, t) = 1 is satisfied. Notice that in this case, though fi-

nite, the size of the firm is indeterminate because of the constant return research

technology.

Efficient financial markets require that the stock market valuation of the

firm yield an expected rate of return equal to the riskless interest rate r(t). The

shareholder receives a dividend of π(t)dt28 over a time interval of length dt and

27We consider the wage rate as the numerarie.
28We drop the ω argument from the profit function because, when assuming symmetric cost

and demand conditions, the profit flows in each monopolistic industry coincide.
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the value of the monopoly appreciates by
·
v(ω, t)dt if no firm innovates in the

unit time dt. However, if an innovation occurs, the shareholder suffers a loss of

v(ω, t). It happens with probability i(ω, t)dt, whereas no innovation occurs with

probability [1− i(ω, t)dt]. Therefore, the expected rate of return from holding a

share of monopolistic firm per unit time is

π(t) +
·
v(ω, t)[1− i(ω, t)]

v(ω, t)
− i(ω, t)

which needs be equal to the interest rate r(t). From this equality we can

derive the firm’s market valuation:

v(ω, t) =
π(t)

r(t) + i(ω, t)−
·
v(ω, t)

v(ω, t)

so that the R&D equilibrium condition is

π(t)A

X(ω, t)[r(t) + (1− µ)i(ω, t)
= 1

since

·
v(ω, t)

v(ω, t)
=

·
X(ω, t)

X(ω, t)
= µi(ω, t).

The usual focus on the symmetric growth equilibrium is based on the as-

sumption that the R&D intensity i(ω, t) is the same in all industries ω at time

t and strictly positive. The suggestion of a new rationale for this symmetric

behavior will be the topic of the next Section.
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0.9 The Re-foundation of the Symmetric Equi-

librium by Assuming Uncertainty-Averse Agents

We assume that the agent has a fuzzy perception of the future configuration of

R&D efforts and formalize her investment strategy as an equilibrium resulting

from a ‘two-player zero-sum game’ characterized by:

· the minimizing behavior of a ‘malevolent Nature’, which selects the prior

belief associated with the ‘worst possible scenario’ inside a pre-specified set of

priors and

· the maximizing behavior of the agent, whose optimal choice must take into

account the worst-case strategy implemented by Nature.

Before proceeding with the analysis, let us clarify two important aspects of

the model’s structure. In the previous Section we have referred to the R&D

firm as the one choosing the size and the distribution among sectors of R&D

investments. However, R&D firms are financed by consumers’ savings which

are channeled to them through the stock market. Thus, since the consumer is

allowed to choose the R&D sectors where to employ her savings, she ends up

with being our fundamental unit of analysis. The role of the R&D firms merely

becomes that of transforming these savings into research activity.

Notice also that in the basic set-up by which our paper is inspired (Grossman

and Helpman (1991) and Segerstrom (1998)), the agent is assumed to be risk-

averse. In fact, she is assumed to be able to completely diversify her portfolio

- by means of the intermediation of costless financial institutions - and then to
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only care about deterministic mean returns. This assumption is retained in our

set-up - which allows for a whatever asymmetric configuration of investments -

since, in order to carry out this diversification, it is sufficient to equally allocate

investments in a non-zero measure interval of R&D sectors (and not necessarily

in the whole of them). The crucial difference with respect to the standard

framework is then concerned with the assumption of uncertainty-averse agents,

where uncertainty only affects the mean return of the R&D investment and not

its volatility, against which the agent has already completely hedged.

Assumption:

X(ω, 0) = X0 ∀ω ∈ [0, 1].

We assume that all industries share the same difficulty index X0 in order to

focus on the role of expectations on the kind of equilibrium that will prevail.

Our problem can be stated as follows: at time t = 0 an agent is asked to

allocate a given amount of R&D investment among all the existing sectors. As

the agent is assumed to be uncertainty-averse, in maximizing her expected pay-

off she will take into account the minimizing strategy that a ‘malevolent nature’

will be carrying out in choosing the composition of future R&D efforts. We

denote with lm + α(ω) the agent’s investment in sector ω, and with LI + ε(ω)

the aggregate expected research in sector ω. lm and LI are, respectively, the

agent’s average investment per sector and the average expected research per

sector. ε(.) and α(.) represent deviations from the averages satisfying:
1R
0

ε(ω)dω = 0
1R
0

α(ω)dω = 0 and

ε(ω) > −LI α(ω) > −lm.
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The presence of the two functions α(.) and ε(.) is intended to allow for

asymmetry both in the agent’s investment and in expected research30. We also

assume the space to be partitioned into two events: symmetric and asymmet-

ric configuration of future R&D efforts. The first is supposed to occur with

probability 1 − p while p stands for the aggregate probability of all possible

asymmetric configurations. The interval [0, p] represents the unrestricted set of

priors assigned to each of them. As we will see, the minimizing strategy carried

out by Nature will end up with assigning probability p to the worst asymmetric

configuration (which is function of the agent’s choice) and 0 to all the others.

By partitioning the state space ‘configuration of future investments’ into the

events ‘asymmetric’ and ‘symmetric’, and by assigning the probability distrib-

ution (p, 1 − p) to them, we have implicitly assumed that the decision maker

has sufficient information to evaluate probabilistically the occurrence of both of

them. In fact, what is subject to uncertainty, and then to a ‘conservative assess-

ment’ through the maxmin strategy, is the particular asymmetric configuration

that would possibly take place among all those generated by the deviation ε.

Our conclusions do not crucially hinge on this partition32.

30These definitions imply:
1R
0

[LI + ε (ω)] dω = LI = L
1R
0

[lm + α (ω)] dω = Llm

where L denotes the number of agents in the economy.
With reference to Section 2 the following relation between lj and lm holds:
1R
0

P
j lj (ω) dω = Llm.

32For example, it can easily be shown how our result holds for a however small perturbation
of the probability distribution which assigns equal probabilities to every possible configuration
of future R&D investment across sectors.
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We can now enunciate the following:

Proposition 1 For a however small probability (p) of deviation (ε(ω)) and for

a however small deviation (ε(ω)) from symmetric expectation on future R&D

investment, uncertainty-averse agents who adopt a maxmin strategy to solve

their investment allocation problem, choose a symmetric investment strategy, i.e.

lm+α(ω) = lm ∀ω ∈ [0, 1]. Their optimal investment choice makes them expect

a symmetric distribution of future R&D effort among sectors: LI + ε(ω) = LI

∀ω ∈ [0, 1].

Proof. max
α(.)

min
ε(.)

1R
0

[lm + α(ω)]
A

X0
v(ω)dω


sub

1R
0

ε(ω)dω = 0 ;
1R
0

α(ω)dω = 0

where v(ω) =
π

r +
A

X0
[LI + ε(ω)]−

·
v(ω)

v(ω)

with probability 0 ≤ p ≤ 1.

Then the problem is equivalent to:

max
α(.)

minε(.)

1R
0

[lm + α(ω)]

p

A

X0
π

r +
A

X0
[LI + ε(ω)] (1− µ)

+ (1− p)

A

X0
π

r +
A

X0
LI(1− µ)

 dω

 =

= (1−p)
lm

A

X0
π

r +
A

X0
LI(1− µ)

+pmax
α(.)

minε(.)

1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
[LI + ε(ω)] (1− µ)

dω


which admits the same solution as:

max
α(.)

minε(.)

1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
[LI + ε(ω)] (1− µ)

dω

.
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Notice that this is valid for however small probability p.

We restrict our attention to the case: 0 < v(ω) < +∞. As at time t = 0,

A,X0, π, r are assumed to be positive constants, that condition requires µ < 1.

Let us suppose the following (not necessarily minimizing) expected reaction

function of Nature: ε(ω) = tα(ω) with t > 0. Notice that as t tends to zero

the deviation in each sector can be made arbitrarily small independently of

population size.

The objective function then becomes:
1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
[LI + tα(ω)] (1− µ)

dω.

Since [lm + α(ω)]

A

X0
π

r +
A

X0
[LI + tα(ω)] (1− µ)

is a strictly concave function

of α(ω), by Jensen’s inequality its integral

1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
[LI + tα(ω)] (1− µ)

dω

is maximized by α(ω) = 0 for all ω ∈ [0, 1]. Therefore, if α(ω) 6= 0 in a

non-zero measure subset of [0, 1], it follows:

min
ε(.)

1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
[LI + ε(ω)] (1− µ)

dω ≤
1R
0

[lm+α(ω)]

A

X0
π

r +
A

X0
[LI + tα(ω)] (1− µ)

dω <

1R
0

[lm + α(ω)]

A

X0
π

r +
A

X0
LI(1− µ)

dω =

=

A

X0
πlm

r +
A

X0
LI(1− µ)

which is instead attained if α(ω) = 0 for all ω ∈ [0, 1]

(almost everywhere). If indeed α(ω) = 0 for all ω ∈ [0, 1] (almost everywhere),

Jensen’s inequality implies:
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min
ε(.)

1R
0

lm

A

X0
π

r +
A

X0
[LI + ε(ω)] (1− µ)

dω =

A

X0
πlm

r +
A

X0
LI(1− µ)

which is instead

attained if ε(ω) = 0 for all ω ∈ [0, 1] (almost everywhere).

Therefore the worst harm Nature can inflict to the agent in the case α(ω) = 0

is always better for the agent than the worst harm Nature can inflict to the

agent in the case α(ω) 6= 0. Hence the symmetric portfolio - and zero measure

deviations from it - is the maximinimizing strategy of the agent.

Since this holds for any t > 0 and 0 < p < 1, the statement follows for

however small deviations and their probabilities.

Then, even if the agent is ‘almost sure’ (p → 0) of facing a symmetric

configuration of future investments (which would leave her in a position of in-

difference in her current allocation problem), the mere possibility of a slightly

different configuration (ε→ 0) makes her strictly prefer to equally allocate her

investments across sectors. This occurs because, whenever the agent evaluates

an asymmetric allocation of her current investments, she will always be induced

to expect the worst configuration of future investments inside the ε-generated

set.

0.10 Concluding Remarks

In the neo-schumpeterian growth models the existence of the creative destruc-

tion effect implies that expectations on future R&D investments affect the allo-

cation of current ones. Therefore the usual focus on the symmetric equilibrium
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in the vertical research sector relies on the assumption of a symmetric expected

per-sector distribution of R&D expenditure. However, in making the agents

indifferent as to where targeting their investments, this assumption is not suffi-

cient to univocally pin down the symmetric structure of R&D efforts: actually

symmetric expectation on future R&D leaves the current composition of R&D

investments indeterminate, with potentially large effects on growth rates.

We have shown that a possible way out of this indeterminacy is that of as-

suming uncertainty on the future configuration of R&D investments and max-

minimizer agents in the face of this uncertainty. Under this assumption, inde-

terminacy vanishes and the symmetric allocation of the vertical research expen-

ditures comes out as the unique optimal solution.
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A Quality-Ladder Growth

Model with Asymmetric

Fundamentals

0.11 Introduction

Since their very appearance horizontal as well as vertical R&D-driven growth

models have focused on structurally symmetric economies and on symmetric

equilibria in R&D and in the final (or intermediate) goods sector. In particular,

Romer (1990) proposed a model where technical progress is due to the expanding

variety of final goods, each of which is equally consumed in the economy because

of the symmetric structure of the utility function. Grossman and Helpman

(1991) elaborated a model of vertical innovation where growth is fostered by

the improving quality of the final (or intermediate) goods sector; expenditure

is evenly allocated over products and symmetry also characterizes the industry-

lxv
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specific R&D effort.

We develop a quality-ladder growth model with increasing complexity in

R&D for an economy with asymmetric fundamentals. In the research sector,

asymmetry is introduced both in the quality jumps, i.e. the improvement in

utility following each innovation, and in the probabilities of innovating per unit

of labor (the arrival rates). Moreover, the unit contribution to the consumer’s

utility of any final goods is industry-specific and so are their production costs.

As Jones (1995a) convincingly argued against the existence of the so called

‘scale effect’ in real economies our analysis, in aiming at ruling it out, incorpo-

rates the idea of increasing complexity in the research sector in two different

specifications respectively formalized by Segerstrom (1998) and Dinopoulos and

Segerstrom (1999).

As we will see, the introduction of different quality jumps and utility weights

across sectors breaks down the symmetric structure of market demands and of

per-sector profits; furthermore, asymmetric arrival rates will cause the prof-

itability of engaging in R&D to vary accordingly. Then, the creative destruc-

tion effect resulting from expectations on future research is the sole responsible

for equalizing the expected returns in R&D, which is a necessary condition for

having positive R&D efforts in each industry. The rational expectations equi-

librium requires expectations on research intensities to be equal to their actual

values; moreover, as our model assumes increasing complexity, the steady-state

analysis makes these intensities be constant over time. It will turn out that the

steady-state per-sector research intensities vary according to the specification
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of the difficulty index adopted.

The paper is organized as follows: in Section 2 we develop the model, analyze

its steady-state properties and draw the main comparative statics results. In

Section 3 we conclude with some remarks.

0.12 The Model

As usual, we assume a continuum of industries producing final goods indexed

by ω ∈ [0, 1]. In each industry firms are distinguished by the quality index j of

the goods they supply, with the quality of their goods being increasing in the

integer j. At time t = 0 in each industry some firms know how to produce a

j = 0 quality product and no other firms can offer a better one. In order to

develop higher quality versions of any product firms engage in R&D races. The

winner of a R&D race becomes the sole producer of a good whose quality is one

step ahead of the previous quality leader.

0.12.1 Households

We assume a fixed number of dynastic households (normalized to one) whose

members grow at the constant rate n > 0. Each member shares the same

intertemporally additively separable utility u(t) and is endowed with a unit of

labor she supplies inelastically. Therefore each household chooses its optimal

consumption path by maximizing the discounted utility

U ≡
∞R
0

L(0)e−(ρ−n)t log u(t)dt (1)
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where L(0) ≡ 1 is the initial population and ρ > n is the common rate of

time preferences.

The instantaneous utility function is a Cobb-Douglas. We introduce asym-

metric preferences by allowing the utility weights (α(ω)) to vary across sectors.

We also impose
1R
0

α(ω)dω = 1 to represent the homogeneity of degree one of the

utility function. With

log u(t) ≡
1R
0

α(ω) log
jmax(ω,t)P

j=0
λj(ω)d(j, ω, t)dω,

the static maximization problem can be represented as:

max
1R
0

α(ω) log
jmax(ω,t)P

j=0
λj(ω)d(j, ω, t)dω (2)

s.t.E(t) =
1R
0

"
jmax(ω,t)P

j=0
p(j, ω, t)d(j, ω, t)

#
(3)

where p(j, ω, t) and d(j, ω, t) denote, respectively, the price and consumption

of product ω of quality j at time t. λ(ω) is the size of quality improvements

that we assume to be industry-specific to allow for asymmetry in the technical

evolution of each line. Vertically differentiated products in a given industry

ω are perceived by consumers as perfect substitutes once adjusted for quality

differences. jmax(ω, t) denotes the highest quality reached by product ω at time

t and E(t) is the total expenditure at time t.

At each point in time consumers maximize static utility by spreading their

expenditure across sectors proportionally to the utility contribution of each

product line (α(ω)), and by only purchasing in each product line those products

with the lowest price per unity of quality. As we will see in the next subsection,

in each product line the jmax(ω, t) quality product is the only good with the

minimum price-quality ratio. Then, the individual static demand functions are:
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d(j, ω, t) =



α(ω)E(t)

p(j, ω, t)
for j = jmax(ω, t)

0 otherwise

(4)

Moreover, since the only jmax(ω, t) quality product is actually purchased, in

what follows it will be:
jmax(ω,t)P

j=0

λj(ω) = [λ(ω)]j
max(ω,t)

Substituting (4) into (2) and (2) into (1), we get the intertemporal maximum

problem

max
E

U =
∞R
0

e−(ρ−n)t
·
logE(t) +

1R
0

α(ω)
h
logα(ω) + log [λ(ω)]j

max(ω,t) − log p(j, ω, t)
i
dω

¸
dt

s.t.
∞R
0

e−
R t
0
[r(s)−n]dsE(t)dt ≤ A(0),

where r(s) is the instantaneous interest rate at time s and A(0) is the present

value of the stream of incomes plus the value of initial wealth at time t = 0.

The solution to this problem obeys the differential equation:

Ė(t)

E(t)
= r(t)− ρ. (5)

0.12.2 Manufacture

Each good is produced by only employing labor through a constant return to

scale technology. We modify the standard framework by introducing different

production costs across sectors: in order to produce one unit of good ω firms

hire lω units of labor regardless of quality.

In each industry the jmax(ω, t) quality product can only be manufactured by

the firm which has discovered it. Since firms engage in Bertrand competition,
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the quality leader monopolizes her relative market until a new innovation is

introduced in her product line. Indeed, having a quality advantage over her

competitors she can charge a price higher than her unit cost, with the adjusted-

quality price being still ε-lower than those of her followers. Moreover, because

of the so-called Arrow effect the quality leader does not engage in R&D races.

Hence she is always one step ahead of her immediate follower and the limit price

that still monopolizes the market is λ(ω)wlω.With D(ω, t) =
α(ω)E(t)L(t)

p [jmax(ω, t), ω, t]

being the market demand of good ω at time t, its unit elastic structure makes

the quality leader exactly set the limit price. Then:

p [jmax(ω, t), ω, t] = λ(ω)wlω.

We can now calculate the profit flow in each sector:

π(ω, t) =
λ(ω)− 1
λ(ω)

α(ω)E(t)L(t).

0.12.3 R&D races

This sector is characterized by the efforts of R&D firms to develop better versions

of the existing products in order to displace the current monopolists. We assume

free entry and perfect competition in each R&D race. Firms employ labor

and produce, through a constant returns technology, a Poisson arrival rate of

innovation in the product line they target. The asymmetry in the research sector

consists of different arrival rates across sectors. Any firm hiring lk units of labor

in industry ω at time t acquires the instantaneous probability of innovating

A(ω)lk/X(ω, t), where X(ω, t) is the R&D difficulty index.

Since independent Poisson processes are additive, the specification of the
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innovation process implies that the industry-wide instantaneous probability of

innovation (or research intensity) is

A(ω)LI(ω, t)

X(ω, t)
≡ i(ω, t) (6)

where LI(ω, t)=
P

k lk(ω, t). The R&D difficulty index X(ω, t) describes the

evolution of technology; it has been assumed to increase over time in order to

rule out the ‘scale effect’, that is, to allow for constant growth rates even with a

growing population. In what follows we will suppose it to evolve in accordance

with two alternative specifications, identified with the acronyms TEG and PEG

by Dinopoulos and Segerstrom (1999)36 . The first formalizes the idea that, in

each sector, easier inventions are earlier discovered:
·
X(ω, t)

X(ω, t)
= µi(ω, t) (TEG)

where the difficulty parameter µ is a positive constant. Actually, in analyzing

the properties of the steady-state under TEG in the next subsection, we will

assume µ to be industry-specific. The second formulation has been developed

to give reason for the increasing difficulty of introducing new products in more

crowded markets:

X(ω, t) = kL(t), (PEG)

where k is a positive constant.

Whenever a firm succeeds in innovating, she acquires the uncertain profit

36TEG stands for ‘Temporary effects on growth’ of policy measures such as subsidies and
taxes. The first TEG formulation has been proposed by Jones (1995b) and has been subse-
quently developed, among the others, by Kortum (1997). Here we discuss Segerstrom’s (1998)
version. PEG stands for ‘Permanent effects on growth’ of policy measures such as subsidies
and taxes. It has been independently developed by Young (1998), Dinopoulos and Thompson
(1998), Peretto (1998) and Howitt (1999). We adopt the formalization suggested by Dinopou-
los and Segerstrom (1999). Useful surveys on the scale effect problem and the way it has been
solved are Dinopoulos and Thompson (1999) and Jones (1999 and 2003).



lxxiiAQUALITY-LADDERGROWTHMODELWITHASYMMETRIC FUNDAMENTALS

flow that accrues to a monopolist, that is, the stock market valuation of the

firm: let us denote it with v(ω, t). Thus, the problem faced by a R&D firm is

that of choosing the amount of labor input in order to maximize her expected

profits:

max
lk

·
v(ω, t)A(ω)

X(ω, t)
lk − lk

¸
which provides a finite, positive solution for lk only when the arbitrage

equation37:

v(ω, t)A(ω)

X(ω, t)
= 1

is satisfied. Notice that in this case, though finite, the size of the firm is

indeterminate because of the constant return research technology.

Efficient financial markets require that the stock market valuation of the

firm yields an expected rate of return equal to the riskless interest rate r(t).

The shareholder receives a dividend of π(ω, t)dt over a time interval of length

dt and the value of the monopoly appreciates by
·
v(ω, t)dt if no firm innovates

in the unit time dt. However, if an innovation occurs, the shareholder suffers

a loss of v(ω, t). It happens with probability i(ω, t)dt, whereas no innovation

occurs with probability [1 − i(ω, t)]dt. Therefore, the expected rate of return

from holding a share of monopolistic firm per unit time is

π(ω, t) +
·
v(ω, t)[1− i(ω, t)]

v(ω, t)
− i(ω, t)

which needs be equal to the interest rate r(t). From this equality we can

derive the firm’s market valuation:

37We consider the wage rate as the numerarie.
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v(ω, t) =
π(ω, t)

r(t) + i(ω, t)−
·
v(ω, t)

v(ω, t)
so that the R&D equilibrium condition is

π(ω, t)A(ω)

X(ω, t)

"
r(t) + i(ω, t)−

·
v(ω, t)

v(ω, t)

# = 1. (7)

0.12.4 The labor market

Since in each industry the market demand D(ω, t) =
α(ω)E(t)L(t)

λ(ω)lω
requires

D(ω, t)lω units of labor in order to be produced, the total employment in the

manufacturing sector is:
1R
0

α(ω)E(t)L(t)

λ(ω)
dω.

Then, the labor market-clearing condition implies:

L(t) =
1R
0

α(ω)E(t)L(t)

λ(ω)
dω +

1R
0

LI(ω, t)dω. (8)

where
1R
0

LI(ω, t)dω is the total employment in the research sector.

0.12.5 Balanced growth paths

We now focus on the steady-state growth path where the endogenous variables

all grow at constant rates. We develop the analysis by distinguishing between

the two specifications of the difficulty index.

Steady-State under TEG Specification

In addition to the previous hypotheses on the asymmetric structure of our econ-

omy, let us also assume the difficulty parameter µ to be ω-specific. As a result,

the TEG specification can now be written as:
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·
X(ω, t)

X(ω, t)
= µ(ω)i(ω, t).

(TEG) implies that in steady-state i(ω, t) must be a constant over time

(i(ω, t) = i(ω)). Then, differentiating (6) with respect to time:

i̇(ω)

i(ω)
= 0 =

L̇I(ω)

LI(ω)
− Ẋ(ω)

X(ω)

and using (TEG), it follows:

L̇I(ω)

LI(ω)
− µ(ω)i(ω) = 0. (9)

Since in steady-state
Ė(t)

E(t)
= 0, the market-clearing condition implies that

employment in both manufacturing and R&D sector is growing at the population

growth rate (n). Moreover, a constant allocation of R&D employment among

sectors is required by a steady-state analysis:

L̇I(ω)

LI(ω)
=

L̇I
LI

= n

and from (9) we get:

i(ω) =
n

µ(ω)
.

The expression above states that, per each sector, the instantaneous proba-

bility of innovation is inversely proportional to the parameter µ characterizing

the law of motion of X.

As (4) implies the steady-state interest rate to be r(t) = ρ, and as differ-

entiating the arbitrage equation A(ω)v(ω, t)/X(ω, t) = 1 with respect to time

yields
·
v(ω, t)

v(ω, t)
= n, the balanced-growth research arbitrage condition is:

π(ω, t)A(ω)

X(ω, t)

·
ρ+

n

µ(ω)
− n

¸ = 1. (10)

Then the equilibrium function for X(ω, t) is
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X(ω, t) =
π(ω, t)A(ω)·
ρ+

n

µ(ω)
− n

¸ .
Given (6), the equilibrium per-sector research employment is

LI(ω, t) =
nX(ω, t)

µ(ω)A(ω)
=

π(ω, t)

µ(ω)

·
ρ

n
+
1− µ(ω)

µ(ω)

¸
and its population-adjusted value is given by

lI(ω) ≡ LI(ω, t)

L(t)
=

λ(ω)− 1
λ(ω)

α(ω)E

µ(ω)

·
ρ

n
+
1− µ(ω)

µ(ω)

¸ . (11)

As in steady-state the per-capita version of the resource condition (8) be-

comes:

1 = E
1R
0

α(ω)

λ(ω)
dω +

1R
0

lI(ω)dω, (12)

then the system made up of (11) and (12) defines the steady-state values of

per-capita consumption E and of the population-adjusted research employment

in each sector lI(ω). Using (11) to substitute for lI(ω) into (12), we get:

E =

 1R
0

α(ω)

λ(ω)
+

λ(ω)− 1
λ(ω)

α(ω)

µ(ω)

·
ρ

n
+
1− µ(ω)

µ(ω)

¸
 dω


−1

= Ē.

Plugging Ē into (11), we finally obtain:

lI(ω) =

λ(ω)− 1
λ(ω)

α(ω)Ē

µ(ω)

·
ρ

n
+
1− µ(ω)

µ(ω)

¸ .
We now turn to comparative statics analysis and state the following:

Proposition 2 .

-In each sector the population-adjusted research effort is an increasing func-

tion of the quality jump and utility weight and a decreasing function of the

difficulty parameter.
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-the population-adjusted value of the aggregate research effort is negatively

correlated with the rate of time preferences and positively correlated with the

population growth rate.

Proof. See the appendix.

Since the growth rate of individual utility can be thought of as the measure

of the economy’s growth rate, we can now solve for its steady-state value. Sub-

stituting for p(j, ω, t) = λ(ω)lω and E(t) = E, the balanced growth value of the

utility implies:

log u(t) = logE +
1R
0

α(ω)
h
logα(ω) + log [λ(ω)]

jmax(ω,t) − log [λ(ω)lω]
i
dω =

= logE+
1R
0

α(ω) logα(ω)dω+
1R
0

α(ω) log [λ(ω)]
jmax(ω,t)

dω−
1R
0

α(ω) log [λ(ω)lω] dω.

Since
1R
0

α(ω) log [λ(ω)]
jmax(ω,t)

dω =
tR
0

1R
0

[i(ω, τ)α(ω) log λ(ω)dω] dτ

(where
tR
0

i(ω, τ)dτ represents the expected number of successes in industry

ω up to time t), differentiating log u(t) with respect to time yields:

u̇

u
= n

1R
0

α(ω)

µ(ω)
log λ(ω)dω ≡ n log λ̂ where i(ω, τ) has been substituted for its

steady-state value.

Steady-State under PEG Specification

In balanced growth the arbitrage equation (7) becomes:

π(ω, t)A(ω)

X(ω, t) [ρ+ i(ω, t)− n]
= 1

where again ρ = r(t) and
·
v(ω)

v(ω)
=

Ẋ(ω)

X(ω)
with (PEG) requiring

Ẋ(ω)

X(ω)
= n.

Then i(ω) =
π(ω, t)A(ω)

X(ω, t)
− ρ+ n =

λ(ω)− 1
λ(ω)k

α(ω)A(ω)E − ρ+ n.

Notice that the probabilities of innovations i (ω) in steady-state are now
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proportional to industry-specific profits and research technologies.

As lI(ω) =
i(ω)X(ω, t)

L(t)A(ω)
, from the expression above we get:

lI(ω) =
λ(ω)− 1
λ(ω)

α(ω)E − k(ρ− n)

A(ω)
(13)

The steady-state resource condition is given by:

1 =
1R
0

α(ω)E

λ(ω)
dω +

1R
0

lI(ω)dω. (14)

The two equations (13) and (14) define the steady-state values of per-capita

consumption E and of the population-adjusted research employment in each

sector lI(ω).

Using (13) to substitute for lI(ω) into (14), we obtain the steady-state value

for E:

Ē = 1 + k(ρ− n)
1R
0

1

A(ω)
dω.

Plugging the expression above into (13) we get the steady-state value for

lI(ω):

lI(ω) =
λ(ω)− 1
λ(ω)

α(ω) + k(ρ− n)

·
λ(ω)− 1
λ(ω)

α(ω)
1R
0

1

A(ω)
dω − 1

A(ω)

¸
.

As before, we proceed with the comparative statics analysis by stating the

following:

Proposition 3 .

-In each sector the population-adjusted research effort is an increasing func-

tion of the quality jump and utility weight.

-the population-adjusted value of the aggregate research effort is negatively

correlated with the rate of time preferences and positively correlated with the

population growth rate.

Proof. See the appendix.
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Analogously to the TEG case, we can derive the steady-state growth rate of

utility. Differentiating log u(t) with respect to time yields:

u̇

u
=

1R
0

i(ω)α(ω) log λ(ω)dω.

0.13 Concluding Remarks

In the previous pages we have generalized a standard quality-ladder model with

increasing complexity in order to encompass economies with asymmetric funda-

mentals. We now sum up the basic differences with respect to the symmetric

case both in the hypotheses and in the results.

We have assumed a R&D sector characterized by industry-specific quality

jumps (λ(ω)) and arrival rates (A(ω)). While the first assumption makes the

mark-up charged by each monopolist (and then profits) vary across industries,

the second alters the per-sector profitability of engaging in R&D. Furthermore,

as in the standard case, the consumer’s utility is represented by a Cobb-Douglas

function; however asymmetric utility contributions (α(ω)) of each good are now

assumed. Accordingly, sector-specific market demands and profits are derived.

Finally in manufacture we have assumed different production costs across sectors

(lω). This hypothesis does not affect equilibrium quantities.

While these features are independent of the kind of increasing complexity

adopted, we now discuss the specific results relative to TEG and PEG hypothe-

ses. The steady-state under TEG specification is characterized by industry-

specific R&D efforts (LI(ω)) and research intensities (i(ω)): these intensities
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are negatively correlated with the industry-specific difficulty parameters µ(ω).

Actually, with sector-specific arrival rates (A(ω)) and profits (π(ω)) (due to

asymmetric fundamentals), returns in R&D are in fact equalized by the industry-

specific equilibrium values of X(ω). On the other hand, the steady-state values

of research intensity under PEG specification are industry-specific and propor-

tional to the different arrival rates, utility weights and the mark-ups charged in

each sector. In this case, as the law of motion of X(ω) is ω-independent, the

per-sector research employment (LI(ω)) is the variable which makes the engag-

ing in each R&D sector equally profitable. The different configuration of the

research intensities under TEG and PEG specification is finally reflected in two

distinct steady-state growth rates of utility. The comparative statics analysis

on the steady-state values of E and lI(ω) yields results analogous to those of

the standard symmetric case.

Appendix

Proof of proposition 1.

Since the zero measure of each industry makes negligible the contribution

of the variation of a ω-specific λ to Ē, then
dĒ

dλ
= 0. Analogously it will be

dĒ

dα
= 0 and

dĒ

dµ
= 0. Then, for any given ω:

dlI
dλ

=

1

λ2
αĒ

µ

µ
ρ

n
+
1− µ

µ

¶ > 0 as, by assumption, µ > 0

dlI
dα

=

λ− 1
λ

Ē

µ

µ
ρ

n
+
1− µ

µ

¶ > 0 as, by assumption, µ > 0
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dlI
dµ

= −
ρ− n

n

λ− 1
λ

αĒ·
µ

µ
ρ

n
+
1− µ

µ

¶¸2 < 0.

As LI ≡
1R
0

lI(ω)dω = 1 − Ē
1R
0

α(ω)

λ(ω)
dω, then

dLI
dρ

= −dĒ
dρ

1R
0

α(ω)

λ(ω)
dω and

dLI
dn

= −dĒ
dn

1R
0

α(ω)

λ(ω)
dω.

Therefore, since
dĒ

dρ
= −

1R
0

Ã
α(ω)

λ(ω)

[µ(ω) (1− λ(ω))]£¡
ρ
n − 1

¢
µ(ω) + 1

¤2
!
dωĒ2 > 0 and

dĒ

dn
= −

1R
0

α(ω)µ(ω)ρλ(ω) [λ(ω)− 1]
n2
h
λ(ω)

h³ ρ
n
− 1
´
µ(ω) + 1

ii2 Ē2 < 0 (as λ(ω) > 1),
we can finally state:

dLI
dρ

< 0 and
dLI
dn

> 0.

Proof of proposition 2.

dlI
dλ

=
1

λ2
α

·
1 + k(ρ− n)

1R
0

1

A(ω)
dω

¸
> 0

dlI
dα

=
λ(ω)− 1
λ(ω)

·
1 + k(ρ− n)

1R
0

1

A(ω)
dω

¸
> 0.

As LI ≡
1R
0

lI(ω)dω = 1 − Ē
1R
0

α(ω)

λ(ω)
dω, then

dLI
dρ

= −dĒ
dρ

1R
0

α(ω)

λ(ω)
dω and

dLI
dn

= −dĒ
dn

1R
0

α(ω)

λ(ω)
dω.

Therefore, since
dĒ

dρ
= k

1R
0

1

A(ω)
dω > 0 and

dĒ

dn
= −k

1R
0

1

A(ω)
dω < 0,

we can finally state:

dLI
dρ

< 0 and
dLI
dn

> 0.

dE

dk
= (ρ− n)

1R
0

1

A(ω)
dω > 0.
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Uncertainty-Averse Agents

in a Quality-Ladder Growth

Model with Asymmetric

Fundamentals

Quality ladders growth models (such as Grossman-Helpman 1991, Segerstrom

1998) focus on the role of technical progress as the main source of economic

growth. In this class of models technical change is the outcome of R&D in-

vestment decisions taken by profit maximizing firms. Any product line can be

improved an infinite number of times by means of research and the firms manu-

facturing the most updated version of a product monopolize the relative market

and thus earn positive profits. However, these profits have a temporary nature

as they only last until the next improvement in the same product line occurs;

lxxxiii
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in the neo-Schumpeterian literature this effect is commonly referred to as ‘cre-

ative destruction’. The profitability of undertaking R&D in each sector depends

on three sets of conditions: the magnitude of the profit flows associated with

any monopolistic position, the difficulty of acquiring such a position (i.e. the

probability of innovating) and its expected duration. We can refer to the first

two sets of conditions as the fundamentals of the economy, as they respectively

depend on the costs and demand conditions of the commodity sector and on the

technology of the research industry. On the other hand the expected duration of

the profit flows in a particular R&D sector depends on the agents’ expectations

on the future amount of research which will be carried out in that sector; that is,

future affects current investment decisions to the extent that agents anticipate

the ‘creative destruction’ effect.

The standard literature assumes that the economy has symmetric funda-

mentals: any sector shares the same profit flows and probabilities of innovating.

In order to equalize the overall profitability across the R&D sectors, symmetric

expectations on future R&D investments are also assumed. With these assump-

tions, the focus on the symmetric equilibrium in R&D investments is made

plausible.

In chapter 3 I have generalized the standard model (in particular I referred

to Segerstrom 1998) by assuming asymmetric fundamentals. In this case, the

creative destruction effect due to the expectations on future research is the sole

responsible for equalizing the expected returns in R&D; such equalization is

required if we want to derive positive R&D efforts in each industry. Moreover,
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as rational expectations equilibrium requires the equality between expectations

on research investments and their actual values, the actual investments in R&D

will equalize the returns across sectors. Still, it does not seem that this equi-

librium is uniquely pinned down; equal future profitability makes the investor

indifferent as to where targeting research. As a result, when the expectations on

future research equalize the expected returns in R&D, the allocation problem

of investments across product lines is indeterminate.

In this paper I assume that expectations on the future distribution of re-

search investment are uncertain. The basic idea is that, while the agents per-

fectly foresee the fundamentals of the economy, their beliefs on the future (per

sector) distribution of R&D investments are characterized by uncertainty, in

the sense that information about that distribution is too imprecise to be rep-

resented by a (single additive) probability measure. The distinction between

risk and uncertainty traces back to Frank Knight (1921) and states that risk

is associated with ventures in which an objective probability distribution of all

possible events is known, while uncertainty characterizes choice settings in which

that probability distribution is not available to the decision-maker. In order to

formalize the decision making under uncertainty I adopt the maxmin expected

utility decision rule axiomatized by Gilboa and Schmeidler (1989). According

to this rule, an uncertainty-averse decision maker is provided, not with a unique

prior - as in the standard expected utility theory -, but with a set of priors.

When evaluating the different acts to choose among, this agent will compute

the minimal expected utility over her set of priors for each of them (acts), and
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then will single out the one associated with the highest computed value. Ac-

cordingly to this framework I will assume the decision maker to maximize her

expected pay-off with respect to the R&D investment decision, while singling

out the minimizing choice scenario, that is, the worst probability distribution

over the future configuration of R&D investments. In this paper the maxmin

decision rule eliminates indeterminacy by selecting a unique equilibrium. As

we will see below the emerging equilibrium contradicts the conclusion of the

standard model as it does not equalize returns across sectors.

The rest of the paper is organized as follows. In Section 2 I recall the

structure of the R&D sector. In Section 3 I explain the core of the argument,

enunciate and prove the propositions. In Section 3 I conclude with some re-

marks.

0.14 The R&D Sector

The structure of the model is assumed to be the same as the one outlined in

chapter 3 under PEG specification of the increasing complexity index. As the

problem I focus on consists of the agent’s choice on how to allocate her saving

among the different research industries I briefly recall the structure of the R&D

sector. The research sector is made up of firms engaging in R&D to develop

better versions of the existing products (indexed by ω) in order to displace

the current monopolists. Free entry and perfect competition are assumed in

each R&D race. Firms employ labor and produce, through a constant returns
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technology, a Poisson arrival rate of innovation in the product line they target.

Any firm hiring lk units of labor in industry ω at time t acquires the instan-

taneous probability of innovating A(ω)lk/X(ω, t), where X(ω, t) is the R&D

difficulty index introduced to rule out the ‘scale effect’. Since independent Pois-

son processes are additive, the specification of the innovation process implies

that the industry-wide instantaneous probability of innovation (or research in-

tensity) is

A(ω)LI(ω, t)

X(ω, t)
≡ i(ω, t)

where LI(ω, t)=
P

k lk(ω, t). As R&D proceeds, its difficulty index X(ω, t) is

supposed to increase over time in order to rule out the scale effect. With refer-

ence to Dinopoulos and Segerstrom (1999), we model the increasing complexity

hypothesis according to the ‘PEG specification’:

X(ω, t) = µL(ω, t) (PEG)

where µ is a positive constant.

Whenever a firm succeeds in innovating, she acquires the uncertain profit

flow that accrues to a monopolist, that is, the stock market valuation of the

firm: v(ω, t). Thus, the problem faced by a R&D firm is that of choosing the

amount of labor input in order to maximize her expected profits:

max
lk

·
v(ω, t)A(ω)

X(ω, t)
lk − lk

¸
which provides a finite, positive solution for lk only when the arbitrage equa-

tion38:

v(ω, t)A(ω)

X(ω, t)
= 1

38We consider the wage rate as the numerarie.
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is satisfied. Efficient financial markets require that the stock market valua-

tion of the firm yields an expected rate of return equal to the riskless interest

rate r(t). Then, the firm’s market valuation is:

v(ω, t) =
π(ω, t)

r(t) +
A(ω)LI(ω, t)

X(ω, t)
−

·
v(ω, t)

v(ω, t)

where π(ω, t) is the profit flow in industry ω.

Then R&D equilibrium condition is

π(ω, t)A(ω)

X(ω, t)

"
r(t) +

A(ω)LI(ω, t)

X(ω, t)
−

·
v(ω, t)

v(ω, t)

# = 1.

0.15 The Equilibrium with Uncertainty-Averse

Agents

In deriving the result I assume that the agent’s beliefs on the future composition

of R&D efforts are characterized by Knightian uncertainty. This key-assumption

essentially incorporates the idea that the agent ignores the future composition

of R&D investments across sectors as well as a probability distribution over any

of them.

In the decision-making process, a preference for certainty (or ‘uncertainty-

aversion’) is introduced and basically formalized as in Gilboa-Schmeidler (1989).

The choice of an uncertainty-averse agent is thus represented as the result of

a two-player zero-sum game in which, say, player 1 selects the minimizing sce-

nario with respect to the variable subject to strong uncertainty, while player 2

maximizes her expected pay-off with respect to her decision variable by taking
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into account the ‘worst-case strategy’ carried out by player 1. In particular, our

agent is asked to allocate a certain amount of R&D investment among all the

existing sectors. As the agent is assumed to be uncertatinty-averse, and his set

of priors is unbounded, in maximizing her expected pay-off she will assign prob-

ability one to the worst possible configuration that a ‘malevolent nature’will be

choosing. We denote with lm + γ(ω, t) the agent’s investment in sector ω, and

with LeI(t) + ε(ω, t) the aggregate expected research in sector ω. lm and LeI(t)

are, respectively, the average agent’s investment per sector and the average ex-

pected research per sector. ε(.) and γ(.) represent deviations from the averages

satisfying:

1R
0

ε(ω, t)dω = 0
1R
0

γ(ω, t)dω = 0 and

ε(ω, t) > −LeI(t) γ(ω, t) > −lm.

The presence of the two functions γ(.) and ε(.) is intended to allow for

asymmetry both in the agent’s investment and in expected research39. It is

worth noting that unlike in chapter 3 the expected amount of research in any

sector LeI(ω, t), on which the ‘creative destruction effect’ depends, is allowed to

differ from the actual value (LI(ω, t) ). In fact, the assumption that beliefs on

the future per-sector composition of research effort are characterized by strong

39These definitions imply:
1R
0

[LI + ε (ω)] dω = LI = L
1R
0

[lm + α (ω)] dω = Llm

where L denotes the number of agents in the economy.
With reference to Section 2 the following relation between lk and lm holds:
1R
0

£P
k lk (ω)

¤
dω = Llm.
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uncertainty will break down the identity between the actual and expected R&D

efforts. As we will see below in the steady state analysis the result of this

procedure is a non rational expectation equilibrium where expectations on future

R&D turn out to be continuously inconsistent with their actual values.

With reference to the quality-ladder model with asymmetric fundamentals

sketched out in the previous chapter and given PEG specification, we can enun-

ciate the following

Proposition 4 Uncertainty-averse agents, who adopt a maxmin strategy to face

strong uncertainty on future R&D per-sector distribution, choose an asymmetric

investment strategy: lm + γ(ω, t) = lmπ(ω, t)/
1R
0

π(ω, t)dω, ∀ω ∈ [0, 1]. Their

optimal investment choice makes them expect an asymmetric composition of

future R&D effort among sectors:

LeI(t)+ε(ω, t) = LeI(t)π(ω, t)/
1R
0

π(ω, t)dω+[ρ− n]µL(T )

·
π(ω, t)/

1R
0

π(ω, t)dω
1R
0

1/A(ω)dω − 1/A(ω

∀ω ∈ [0, 1].

Proof. See Appendix A1.

We now solve the model for its steady-state values. In steady-state all en-

dogenous variables grow at constant rates and r(t) = ρ (as
Ė(t)

E(t)
= 0). Hence,

by substituting for LeI + ε(ω, t) as derived in proposition 1 into the research

arbitrage condition (7), we get:

π(ω, t)A(ω)

µL(t)
= ρ−n+ A(ω)

µL(t)

LeI(t) π(ω, t)
1R
0

π(ω, t)dω

+ µL(t)[ρ− n]

 π(ω, t)
1R
0

π(ω, t)dω

1R
0

1

A(ω)
dω − 1

A(ω)




whence:
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LeI(t) =
1R
0

π(ω, t)dω − µL(t)[ρ− n]
1R
0

1

A(ω)
dω (9)

Notice that, while strong uncertainty hits the expectations on per-sector

composition of future R&D, it does not affect expectations on the total amount

of R&D which will be carried on. Then, even when allowing for [lm + γ(ω, t)]L(t) 6=

LeI(t) + ε(ω, t), ∀ω ∈ [0, 1], it is however LeI(t) = lmL(t) ≡ LI(t).

The market-clearing condition is:

L(t) =
1R
0

α(ω)EL(t)

λ(ω)
dω + L(t)

1R
0

[lm + γ(ω, t)] dω

Manipulating, it can be written as:

1 = E
1R
0

α(ω)

λ(ω)
dω + lm (10)

Provided that π(ω, t) =
λ(ω)− 1
λ(ω)

α(ω)E(t)L(t), the steady-state resource

(10) and arbitrage (9) equations allow us to find the equilibrium values of lm

and E.

E = 1 + µ(ρ− n)
1R
0

1

A(ω)
dω

lm = 1−
1R
0

α(ω)

λ(ω)
dω − µ(ρ− n)

1R
0

1

A(ω)
dω

1R
0

α(ω)

λ(ω)
dω

It is easy to show that the usual comparative statics results hold:

dlm
dρ

< 0 and
dlm
dn

> 0

dE

dρ
> 0 and

dE

dn
< 0.

As the per-sector investment strategy is given by:

L(t) [lm + γ(ω)] = L(t)lm
π(ω, t)

1R
0

π(ω, t)dω

,

we can now complete the model by solving for the steady-state values of

per-capita investment in each research sector:
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[lm + γ(ω)] =

·
1−

1R
0

α(ω)

λ(ω)
dω − µ(ρ− n)

1R
0

1

A(ω)
dω

1R
0

α(ω)

λ(ω)
dω

¸
π(ω, t)

1R
0

π(ω, t)dω

[lm + γ(ω)] = α(ω)− α(ω)

λ(ω)
− µ(ρ− n)

1R
0

1

A(ω)
dω

1R
0

α(ω)

λ(ω)
dω

α(ω)− α(ω)

λ(ω)

1−
1R
0

α(ω)

λ(ω)
dω

.

In order to understand the effect on uncertainty on the steady state R&D

per sector investment, we need to compare this result with what we derived in

the previous chapter when agents were assumed to have perfect foresight on the

future distribution of R&D investment. In that case we had:

lI(ω) = α(ω)− α(ω)

λ(ω)
+ µ(ρ− n)

·µ
α(ω)− α(ω)

λ(ω)

¶
1R
0

1

A(ω)
dω − 1

A(ω)

¸
It is straightforward to notice that R&D investments are different if we as-

sume certainty or uncertainty conditions as in the latter case they do not depend

on the industry specific arrival rate ( A(ω)). As in the first case investments

were derived in such a way that returns across sectors were equalized, it turns

out that when agents are uncertainty averse the steady state returns cross sec-

tors differ systematically. This conclusion is of course surprising as we would

expect intersectoral competition to erase differences in the overall profitability

across sectors. However, as the agents are assumed to always expect the worst

possible scenario as regards the future distribution of research, the allocation

which maximizes their payoff requires that returns are not equalized.

0.16 Conclusions

One of the basic features of neo-schumpeterian growth models is the forward

looking nature of the creative destruction effect; that is expectations on future
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R&D investments affect the current allocation of R&D resources. In Chapter

3 I have derived the R&D investments which equalize returns across sectors

of an economy with asymmetric fundamentals. However, analogously to the

symmetric case of Chapter 1, it can be argued that equalization of expected

returns is not sufficient to make the agent choose the investments configuration

which actually equalizes returns; in fact agents become indifferent as their in-

vestments strategy, so that the returns-equalizing equilibrium is not univocally

determined.

In order to rule out indeterminacy I have assumed that beliefs on the fu-

ture distribution of R&D efforts are uncertain and that agents adopt a max-

minimizing strategy to face such an uncertainty. While this assumption allows

solving the indeterminacy problem it does not refound the returns equalizing

equilibrium.

Appendix

Proof. Proof. max
γ(·)

·
min
ε(·)

1R
0

[lm + γ(ω, t)] v(ω, t)
A(ω)

X(ω, t)
dω

¸
s.t.

1R
0

γ(ω, t)dω =
1R
0

ε(ω, t)dω = 0

ε(ω, t) > −LeI ; γ(ω, t) > −lm.

where v(ω, t) ≡ π(ω, t)

r(t)− v̇(ω, t)

v(ω, t)
+

A(ω)

X(ω, t)
[LeI(t) + ε(ω, t)]

.

Under PEG specification X(ω, t) = µL(t), whence
Ẋ(ω, t)

X(ω, t)
= n. Then, by

differentiating (7) with respect to time, we obtain:
v̇(ω, t)

v(ω, t)
=

Ẋ(ω, t)

X(ω, t)
= n.

Given these conditions, we first solve for the minimization problem:
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min
ε(·)

1R
0

[lm + γ(ω, t)]π(ω, t)

µL(t)

A(ω)
(r(t)− n) + LeI(t) + ε(ω, t)

dω

s.t.
1R
0

ε(ω, t)dω = 0

We set e(ω, t) =
ωR
0

ε(s, t)ds; then e0(ω, t) = ε(ω, t) ∀ω ∈ [0, 1]

and the minimization problem (Pmin) can be expressed as:

min
e0(·)

1R
0

G(e0)dω

s.t. e(0) = 0; e(1) = 0

where G(e0) =
[lm + γ(ω, t)]π(ω, t)

µL(t)

A(ω)
(r(t)− n) + LeI(t) + e0(ω, t)

This is the simplest problem of calculus of variations.

Since under the conditions specified above G(e0) ∈ C2, we can apply the

Euler theorem stating that:

if G(e, e0, ω) ∈ C2 and e∗ is optimal and C1, then e∗ must necessarily solve:

Ge− d

dω
Ge0 = 0 (E-E)

As in our case G does not depend on e, Ge = 0; hence E-E becomes:

d

dω
Ge0 = 0, implying thatGe0 ≡ Gε = − π(ω, t) [lm + γ(ω, t)]·

µL(t)

A(ω)
[r(t)− n] + LeI(t) + ε(ω, t)

¸2
be constant with respect to ω.

Thus,
π(ω, t) [lm + γ(ω, t)]·

µL(t)

A(ω)
[r(t)− n] + LeI(t) + ε(ω, t)

¸2 = k1 where k1 is a real constant.

Now we solve the expression above for ε(ω) :

r
π(ω, t)[lm + γ(ω, t)]

k1
=

µL(t)

A(ω)
[r(t)− n] + LeI(t) + ε(ω, t)
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ε(ω) =

r
π(ω, t) [lm + γ(ω, t)]

k1
−µL(t)
A(ω)

[r(t)−n]−LeI(t) (R-

F)

This function can easily be interpreted as the reaction function (R-F) of

the ‘nature’ to the agent’s decision. We can now plug it into the maximization

problem (Pmax) and solve for γ:

max
γ(.)

1R
0

[lm+γ(ω, t)]
π(ω, t)

µL(t)

A(ω)
[r(t)− n] + LeI(t) +

r
π(ω, t) [lm + γ(ω, t)]

k1
− µL(t)

A(ω)
[r(t)− n]− LeI(t)

dω

sub
1R
0

γ(ω, t)dω = 0

Rearranging, this problem becomes:

max
γ(.)

1R
0

[lm + γ(ω, t)]
1
2 (π(ω, t)k1)

1
2 dω

sub
1R
0

γ(ω, t)dω = 0.

Again, we solve Pmax as a problem of calculus of variations.

By setting:

c(ω, t) =
ωR
0

γ(s, t)ds, so that c0(ω, t) = γ(ω, t),

Pmax becomes:

max
c0

1R
0

F (c0)dω

sub c(0) = 0 ; c(1) = 0

where F (c0) ≡ F (γ) = [lm + γ(ω, t)]
1
2 [π(ω, t)k1]

1
2
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With the same reasoning as before, the Euler Equation Fc − d

dω
Fc0 = 0

implies:

Fc0 ≡ Fγ = − (π(ω, t)k1)
1
2

2[lm + γ(ω, t)]
1
2

= −k2 where k2 ∈ R+. [Fγ ]

From Fγ we can derive the expression for γ(ω, t):

γ(ω, t) =
π(ω, t)k1
4k22

− lm (1)

Plugging it into the (R-F), we get:

ε(ω) =

vuuutπ(ω, t)

·
lm +

π(ω, t)k1
4k22

− lm

¸
k1

− µL(t)

A(ω)
[r(t)− n]− LeI(t)

=
π(ω, t)

2k2
− µL(t)

A(ω)
[r(t)− n]− LeI(t) (2)

Now we can use the two conditions imposed by the constraints in order to

find the constants k1, k2:
1R
0

γ(ω, t)dω = 0 ⇐⇒
1R
0

·
π(ω, t)k1
4k22

− lm

¸
dω = 0

Hence:

k1 =
4k22lm

1R
0

π(ω, t)dω

(3)

1R
0

ε(ω, t)dω = 0 ⇐⇒
1R
0

·
π(ω, t)

2k2
− µL(t)

A(ω)
[r(t)− n]− LeI(t)

¸
dω = 0,

whence:

k2 =

1R
0

π(ω, t)dω

2LeI(t) + 2µL(t)[r(t)− n]
1R
0

1

A(ω)
dω

(4)

Substituting (4) into (3), we obtain:

k1 =

lm
1R
0

π(ω, t)dω·
LeI(t) + µL(t)[r(t)− n]

1R
0

1

A(ω)
dω

¸2 (5)
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Finally we can plug (4) and (5) into (1) and (2) in order to get the optimal

pair γ∗(ω, t), ε∗(ω, t):

γ∗(ω) =
π(ω, t)k1
4k22

− lm =

π(ω, t)

lm
1R
0

π(ω, t)dω·
LeI(t) + µL(t)[r(t)− n]

1R
0

1

A(ω)
dω

¸2

4


1R
0

π(ω, t)dω

2LeI(t) + 2µL(t)[r(t)− n]
1R
0

1

A(ω)
dω


2 − lm

= lm

 π(ω, t)
1R
0

π(ω, t)dω

− 1


ε∗(ω) =

π(ω, t)
1R
0

π(ω, t)dω

·
LeI(t) + µL(t)[r(t)− n]

1R
0

1

A(ω)
dω

¸
− µL(t)

A(ω)
[r(t)−n]−

LeI(t) =

= LeI(t)

 π(ω, t)
1R
0

π(ω, t)dω

− 1

+µL(t)[r(t)−n]
 π(ω, t)
1R
0

π(ω, t)dω

1R
0

1

A(ω)
dω − 1

A(ω)


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Time-Varying Elasticity of

Substitution and Economic

Growth

0.17 Introduction

Since the very beginning of neoclassical growth theory it has been apparent that

the elasticity of substitution between factors of production has a relevant role in

determining the growth path of potential output. In his seminal paper ‘A Con-

tribution to the Theory of Economic Growth’ Solow (1956, p.77) produced an

example where a production function with a sufficiently high elasticity of substi-

tution yields sustained growth and no steady states. That function constituted

the first example of the constant elasticity of substitution (CES) production

function; Solow himself, together with Arrow et alii (1961), later developed and

ci
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made popular its general form and its basic properties40 . The general form in

per capita terms is well known:

y = f(k) = γ [δkρ + (1− δ)]
1
ρ where y is per capita output, k the capital-

labor ratio, γ is an efficiency parameter, δ ∈ [0, 1] a distribution parameter and

ρ ∈ (−∞, 1] a substitution parameter. In particular, ρ is a transform of the

elasticity of substitution (σ), with σ = 1/(1 − ρ). When σ > 1 the marginal

product of capital is bounded from below; this is a necessary condition for the

incentive to capital accumulation to never vanish and then for sustained growth

to be possible. In the example we mentioned above Solow was actually assuming

σ = 2.41 . Recent literature has assessed the relationship between the elasticity

of substitution of a CES production function and per capita output growth. de

La Grandville (1989) derived the threshold value of σ above which per capita

accumulation never comes to an end; such a threshold turns out to be an inverse

function of the population growth rate and of capital depreciation rate, and it is

an increasing function of the saving rate42 . Moreover, he showed by a graphical

argument that, even if σ is not high enough to yield sustained growth, the growth

rate of per-capita income during the transition to the steady state and the steady

state values of per-capita income are both increasing function of σ. Klump and

de La Grandville (2000) and Klump and Preissler (2000) basically proved the

40This function had already been introduced by Pitchford (1960). Brown and De Cani
(1963) also developed it independently.
41 Such necessary condition has been singled out by Pitchford (1960) for the CES production

function; Ferguson (1965a, p.469) showed that it holds even for the case of a general constant
returns to scale production function.
42 Solow (1956,p.77) derives the threshold for sustained growth in terms of the saving rate

(s). The production function he adopts is : Y = (a
√
K +

√
L)2,the threshold he obtains is

s > n/a2 where n is the population growth rate.
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analogous results algebraically in the general framework of the normalized CES

production function43.

It is then clear that in the neoclassical theory the elasticity of substitution

is an important source of growth. de La Grandville (1989) suggested that a

high elasticity of substitution could have a played a key role in the development

of the South Asian countries; his hypothesis has been tested and confirmed

by Yuhn (1991). However, while the importance of the level of the elasticity

of substitution is widely recognized in many growth accounting studies and

it is viewed as a determinant of growth alternative to technical change44, an

increasing elasticity as a source of growth has been seldom applied to a growth

model. Arrow et alii (1961,) envisioned the possibility that capital deepening

might shift the elasticity of substitution; this suggestion led to the elaboration

of the variable elasticity of substitution (VES) production functions where σ

is a function of capital-labor ratio (see for example Sato and Hoffman (1968),

Lu and Fletcher (1968) and Revankar (1971)). These functions simply posited

a relation between σ and k; to my knowledge, the first attempt to make such

a relation endogenous and to incorporate it in a standard neoclassical growth

model has been provided by Miyagiwa and Papageorgiou (2004).

My basic idea is that the evolution of the elasticity of substitution is to be

43The normalization procedure adopted in de La Grandville (1989) consists in choosing
arbitrarily baseline values for k̄, ȳ=f(k̄) and m̄ = [f(k̄) − k̄f 0(k̄)]/f 0(k̄) (the marginal rate
of substitution between capital and labor) and then solving for the parameters γ and δ as
function of the sole baseline values and the elasticity of substitution.
44At this point it seems relevant to mention a fundamental ‘impossibility theorem’. Di-

amond, McFadden and Rodriguez (1978) proved the impossibility of measuring both the
elasticity of substitution and the bias of technical change given the time series of the relevant
market variables (see also Nerlove (1967) for an accessible expostion). The literature we refer
to avoids this impossibility by assuming some particular structure of the technical progress.
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related to the mere passing of time. A similar hypothesis has been suggested by

Sato and Hoffman (1968); they argued that as time passes and new technolo-

gies become available the opportunities for factor substitution are increased. I

intend to micro-found this intuition by showing that profit-maximizing firms

will be always willing to adopt substitution enhancing combinations of factors

of production; then, the actual path followed by the elasticity of substitution

has necessarily to be a non-decreasing one.

0.18 Anecdotal Empirical Evidence

The idea that the passage of time is factors’ substitution enhancing came to my

mind when studying the empirical literature on the estimates of σ. A complete

survey of the huge existing literature on the subject is out of the scope of the

analysis, but it is possible to quote some of the basic results to support the

intuition.

We should first notice that comparing results deriving from different studies

is usually misleading. Even when narrowing our attention to the U.S. economy

and to estimates based on CES production functions, several sources can account

for differences in the estimated σ. Among these, differences in the data sets, in

the econometric techniques and in the assumptions on technical progress are

worth mentioning. A fundamental distinction has to be made between time-

series and cross-sectional estimates; the latter tend to be significantly higher

than the former. Berndt (1976) reconciled the results obtained with the two
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different methodologies. However, recently Antras (2004) showed that Berndt’s

results could be due to the assumption of neutral technical progress; such an

assumption necessarily biases upward the estimates.

Time-series estimates for the period 1899 up to 1960 never surpass σ = .6.

Arrow et al. (1961) for the period 1909-49 obtain .57; Kendrick and Sato (1963)

for 1919-60 get .58; Wilkinson (1968) for 1899-1953 provides .54; David and van

de Klundert (1965) for 1899-1960 have .32; Sato (1970) for 1909-60 has .52. Of

all these estimates the most reliable are probably Wilkinson’s and Sato’s ones as

they both allow for factor augmenting non-neutral technical progress and they

do not suffer of simultaneous equations biases.

When the starting year of the sample is moved forward to 1929 we get higher

estimates. Ferguson (1965b) for the period 1929-63 obtains .67 ; Panik (1976) for

years 1929-66 gets .76; Kalt (1978) for 1929-67 has .76. Berndt (1976) for 1929-

1968 obtains estimates not significantly different from one but we have already

mentioned why they could be biased upward. Even though this evidence is not

compelling at all, it appears plausible to guess that the elasticity of substitution

has increased from the period 1899-1929 to 1930-1968. Such trend seems to

be confirmed by Antràs (2004) estimates for the period 1948-1998. When he

allows for biased technical change his estimates range from .681 to .891 when

computed with the econometric technique he considers the most efficient.

Stronger support in favor of our hypothesis comes from the studies of Brown

and De Cani (1963) and again Ferguson (1965b). The former split their sam-

ple into 1919-37 and 1938-58 and the estimates for σ rises from .08 to .11; the
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latter finds that when his sample is restricted to the period 1948-63 σ reaches

1.16 (from .67). It is clear that these increases are to be trusted more than

the previous evidence as they are obtained by using homogeneous methodolo-

gies and data, whatever they be. It then seems that the famous quotation by

Nerlove (1967, p.58) : “even slight variations in the period [..] tend to produce

drastically different estimates of the elasticity” is confirmed in the sense that

later periods show a higher elasticity. Two important results however question

our idea. Zarembka (1970, p.47) claims that ‘changes in period do not produce

significantly different estimates of the elasticity’; he supports his claim by show-

ing that the elasticities for 1957 and 1958 do not significantly differ. It seems

however that two years do not constitute a period long enough to assess the is-

sue. Sato and Hoffman (1968) directly considers the possibility of a time trend

in the elasticity of substitution by estimating the equation σ = a + bt (where

a and b are parameters and t is a measure of time). Their findings reject our

conjecture for the U.S.1909-60 (b < 0) while they confirm it for Japan 1930-60

(b > 0). Still, this result should be considered carefully as it is based on the

assumption of a linear time trend. I will show below that a change in such

assumtion changes the result. No clear evidence of such positive time trend can

instead be derived by cross-section estimates of the elasticity of substitution.

Many of the studies provide disaggregated estimates for two-digit industries of

the manufacturing sector; then the overall factors’ elasticity of substitution of

the economy is not readily available and comparisons across time become dif-

ficult. All these estimates are closer to one than those obtained in time series
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analysis. Still, some support to our hypothesis can be found. Griliches (1967)

and Zarembka (1970), respectively for year 1958 and 1957-58, found that the

elasticity of substitution does not significantly depart from one. Recent esti-

mates instead tend to suggest that σ has become significantly higher than one.

Bentolila and Saint Paul (2003) find σ = 1.06 for OECD countries (1972-93).

Duffy and Papageorgiou (2000) find σ > 1 for a sample of 82 countries from

1960 to 1987 both with and without adjusting the labor force for human cap-

ital; the same result is confirmed by Masanjala and Papageorgiou (2003) for a

98 non-oil countries sample.

0.19 The model

The model consists of two parts45 . In the first one I aim at showing that an

increase in the elasticity of substitution increases profits so firms will always be

willing to adopt substitution-enhancing changes in technology. In the second

one I propose a way to model the evolution of the elasticity of substitution;

as only increases in the elasticity will be actually implemented by firms, the

resulting outcome of the actual technology in the economy should provide a

non-decreasing path for the elasticity of substitution. According to the results

derived by de La Grandville (1989) and Klump and de La Grandville (2000)

such time-increasing path could be interpreted as an alternative explanation of

45The model relies on the assumption of a standard neoclassical production function with
a single capital good homogeneous to final output. As it is well known from the Cambridge
capital controversy, once heterogeneous capital goods are introduced, the basic properties con-
necting production and distribution in the neoclassical theory cannot be proved. Accordingly,
there is no claim that our results can be extended to the case of heterogeneous capital goods.
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economic growth. Moreover endogenous growth emerges as a possible outcome

in case the process for σ converges to a level of σ higher than the threshold level

singled out by de La Grandville (1989).

0.19.1 Firm

Let us consider perfectly competitive firms which maximize profits subject to a

CES production function. We want to show that an increase in σ raises their

profits for any given value of capital-labor ratio. The result follows by applying

results derived by Klump and de La Grandville (2000) to the firm maximizing

problem.

As it is well known, in a competitive equilibrium firms earn zero-profit and

the scale of production is indeterminate. In equilibrium we have:

π = pf(k)− rk − w = 0

where π are profits per-worker, p is the output price and r and w are, respec-

tively, the rental rate of capital and labor. As we want to study the comparative

statics of production functions which differ only for the values of the elasticity

of substitution, we normalize the CES function as in de La Grandville (1989).

The normalization procedure consists in choosing arbitrarly baseline values for

k̄, ȳ=f(k̄) and m̄ = [f(k̄) − k̄f 0(k̄)]/f 0(k̄) (the marginal rate of substitution

between capital and labor) and then solving for the parameters γ and δ as func-

tions of the sole baseline values and the elasticity of substitution. Klump and

de La Grandville (2000) derive the normalized CES function as:
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y = fσ(k) = ȳ

µ
k̄1−ρkρ + m̄

k̄ + m̄

¶ 1
ρ

they also compute

∂fσ(k)

∂σ
= − 1

σ2
1

ρ2
y

·
Π ln(

Π̄

Π
) + (1−Π) ln(1− Π̄

1−Π )
¸
where Π and Π̄ are the

actual and the baseline profit share.

It turns out that
∂fσ(k)

∂σ
> 0 ∀k 6= k̄ (see Klump and de La Grandville

(2000, p.285)).

Then, no matter what the optimal capital-labor ratio any firm chooses, it is

∂π

∂σ
> 0.

0.19.2 The Evolution of the Elasticity of Substitution

In the previous section I have shown that the actual technology implemented

by firms has to yield a non decreasing path of the elasticity of substitution. I

propose here a possible process which approximates such path. A restriction I

want to impose is bounding the elasticity of substitution from infinity to derive

a finite value to which the process converges.

A process fitting these requirements is a first order difference equation:

σt = σt−1 + εt where εt = ψεt−1ũt, ψ ∈ (0, 1), and σ0 ≥ 0, ε0 > 0.

where ũt =


ut if ut ≥ 0

0 if ut < 0.

and ut is a zero-mean random variable rectangularly distributed which takes

values in [−β, +β] with β < 1 − ψ. Notice that while ut is a random variable
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representing the innovation in the elasticity of substitution, only substitution en-

hancing innovations will be actually implemented if firms are profit-maximizing.

The autoregressive component of the process, εt, captures a decreasing trend

in the first difference of the elasticity of substitution; the underlying intuition

being that the most obvious possibilities for factor substitution are introduced

first and they vanish over time. The random shock ut represents the innovation

in the process: it is not implemented if negative and its domain is restricted in

such a way that the process for σ is not explosive. That is to say

lim
t→∞σt = σ0 + ε0ũ1 +ψε0ũ2+ ..+ψt−1ε0ũt+ .. = σ0+ ε0

∞P
i=0

ψi−1i ũi < +∞.

Indeed, our restriction assures that lim
t→∞σt < σ0 +

ε0
ψ

1

1− βψ
, and

lim
t→∞E0[σt] = σ0 +

ε0
ψ
E0
∞P
i=0

ψiũi = σ0 +
ε0
ψ2

1

1− βψ
.

If the elasticity of substitution does actually follow a similar process, the

steady state per capita income will be increasing over time; moreover it is pos-

sible to compare the limit value of σt with the threshold value σ̂ derived by de

La Grandville (1989) σ̂ = 1/[1− log(δ(σ̂)γ σ̂−1
σ̂ (σ̂))/ log(ns )]. If it turns out that

σ∞ > σ̂ the model generates endogenous growth. In determining this relation

a key role is played by the parameters ψ and β. As βψ → 1 σ∞ → ∞, that

is, the more persisent is the process for the elasticity increases and the larger

is the domain for innovations, the more likely is the possibility for endogenous

growth.
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0.20 Testing the Hypothesis

Arrow et al. (1961, pp. 229-30) derived the CES production function from the

relation:

log y = log a+ b logw (i)

where a and b are constants and y and w are per-capita income and real

wage. They also proved that the following relation holds: b = σ. Accordingly,

our hypothesis of an increasing elasticity of substitution over time can be tested

from (i) when assuming b = b(t). The time trend which seems to best approxi-

mate the process described in the previous section is the logarithmic one, then

I assume b = c+ d log t. The equation to be estimated is:

log y = log a+ c logw + d log t logw.

We are interested in assessing the sign and the significance of the parameter d

to determine wheter the elasticity of susbstitution has a logatithmic time-trend.

The first step has been to build up the series for {log y}t and {logw}t . The

period considered is 1947-2000 for the U.S. Data for GDP, price indexes, wages

and employment are taken from the National Income and Product Account

(Tables 1.1.5, 1.1.4, 2.2, 2.4.4, 6.4). Data series are all quarterly but for the

employment which is annual; I have computed the quarters by imputing one

fourth of the annual change in employment to any of the quarters. Although

the Dickey-Fuller test for both series rejects the null hypothesis of a unit root,

I thought detrending the series would be appropriate to single out only their

cyclical component. To this purpose I have applied the band pass filter with

the standard band of eight to thirty-two quarters; such procedures makes us
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lose twelve observation at the beginning and at the end of the period. Once the

series are thus manipulated a least square estimation confirm our hypothesis as

d = 1.39 with p-value = 0.000; also the overall fit of the estimation looks good:

R-squared =0.999 and p-value(F-statistic) = 0.000.

0.21 Conclusions

Standard neoclassical growth theory has always relied on the increase (be that

exogenous or endogenous) in total factors productivity in order to explain growth

in per-capita income. I suggest here that a possible alternative explanation of

economic growth is to be found in the evolution of the elasticity of substitution

over time. I have shown that profit-maximizing firms will make the actual path

followed by the elasticity of substitution a non-decreasing one. Such path ac-

cording to the results derived by Klump and de La Grandville (2000) and Klump

and Preissler (2000) determines a positive trend in the steady state per-capita

income; this process is also capable of producing endogenous growth in case

the elasticity of substitution converges to a sufficiently high value. Empirical

evidence seems to confirm the existence of a positive logarithmic time trend.
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