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ABSTRACT 
The prefrontal cortex (PFC) supports goal-directed actions and exerts cognitive control over 

behavior but the underlying coding and mechanism are heavily debated. We present evidence 
for the role of goal-coding in the PFC from two converging perspectives: computational 
modeling and neuronal-level analysis of monkey data. We show that neural representations of 

prospective goals emerge by combining a categorization process that extracts relevant 
behavioral abstractions from the input data and a reward-driven process that selects candidate 

categories depending on their adaptive value; both forms of learning have a plausible neural 
implementation in the PFC. Our analyses demonstrate a fundamental principle: goal-coding 
represents an efficient solution to cognitive control problems, analogous to efficient coding 

principles in other (e.g. visual) brain areas. The novel analytical-computational approach is of 
general interest since it applies to a variety of neurophysiological studies. 
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INTRODUCTION 

 

Flexible cognitive control is fundamental to our everyday activities. It relies on the ability to 

efficiently learn to extract and fulfill goals, different from habitual decisions that build  on stereotyped 

responses (Dolan and Dayan, 2013). The prefrontal cortex (PFC) supports goal-directed behavior by 

biasing response selection based on contextual information, goals, and other task-relevant information 

or task-sets (Koechlin et al., 2003; Koechlin and Hyafil, 2007; Frank and Badre, 2012; Genovesio et 

al., 2006; Miller and Cohen, 2001; Monsell, 2003; Passingham and Wise, 2012; Reverberi et al., 

2012). The neural codes and mechanisms supporting these PFC abilities remain elusive, with 

contrasting proposals that include mixed selectivity for a large basis of task-related properties (Rigotti 

et al., 2013) and representations of prospective behavioral goals (Genovesio et al., 2012; Yamagata et 

al., 2012). 

 To disentangle these alternatives, here we simulated three tasks previously used to study 

monkey prefrontal function (Genovesio et al., 2012): a duration-discrimination, a distance-

discrimination and a match-to-sample task. To simulate these tasks, we used a probabilistic 

computational model that fuses unsupervised and value-driven learning. In particular, we used an 

approximate nonparametric probabilistic category learning method (Anderson, 1991; Sanborn et al., 

2010) to infer from experience a set of candidate categories that guide stimulus-action-value 

transitions, and a reward-sensitive process to select the actual category to be used for action control at 

any given trial (Collins and Koechlin, 2012; Collins and Frank, 2013). 

 Like in the monkey studies reported in Genovesio et al. (2012), neural representations of 

prospective goals – or goal-codes - emerged in the model as latent statistical categories grouping 

noisy stimulus-action-value contingencies in optimal ways. The analysis of the model behavior 

demonstrates that the emerged goal-codes afforded efficient learning and action selection. To assess 

if the goal-codes replicate the coding properties of PFC neurons in the Genovesio et al., (2012) study 

– that is, an advance representation of the identity of the to-be-selected target stimulus – we compared 

the monkey PFC data and the latent states learned with the computational model using an 

information-theoretic approach based on (conditional) mutual information, which permit assessing 

their specific coding properties while excluding confounds. The analyses revealed that the goal-codes 

emerged in the model replicate with high accuracy key properties of PFC neurons and the goal 

information is not confounded with other characteristics of stimuli such as their color or magnitude. 

The results thus provide a novel mechanistic explanation of how the PFC exerts cognitive control by 

learning prospective goal-codes. Furthermore, our results integrate two influential streams of research 

on PFC functioning that focus on behavioral control (Miller and Cohen, 2001; Passingham and Wise, 

2012) and category learning (Seger and Miller, 2010), respectively, showing that these are 

complementary processes within a non-parametric probabilistic learning system. In a broader 

perspective, our study points to hierarchical probabilistic inference as a general framework to 

understand prefrontal function (Monsell, 2003; Doya et al., 2007; Friston, 2010; Friston et al., 2013; 

Donoso et al., 2014). 
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METHODS 

 

Recap of the experimental procedure of the target monkey experiment   

Our testbed is a set of three monkey tasks (duration-discrimination, distance-discrimination and 

match-to-sample) where goals were implicitly defined by stimuli magnitudes and colors/shapes 

(Genovesio et al., 2012). In the original monkey experiment, trials began with the sequential 

presentation of visual context stimuli S1 and S2 that were either a red square or a blue circle (hereon 

we will refer only to their color). Then, each of two target stimuli coding the identity (color and 

shape) of S1 and S2 appeared on a video monitor, randomly to the left or to the right of the screen 

center (Figure 1a). The monkey’s task was to touch a switch below the stimulus that previously 

either: lasted longer (duration-discrimination task), appeared farther from screen center (distance-

discrimination task), or appeared twice in the trial (match-to-sample task). In each trial of the 

duration-discrimination task the duration and the identity of the stimuli varied, but not their distance. 

In the distance-discrimination task the distance and the identity of the stimuli varied, but not their 

duration. In the match-to-sample task the duration of the stimuli varied but not their identity or 

distance. (Note that this is a peculiar match-to-sample task, because the same sample is presented 

twice, not once as usual, in order to have the same number of stimuli presentations as in the duration- 

and distance-discrimination tasks.) In the duration- and match-to-sample task, the stimuli appeared at 

screen center and lasted 200 – 1.200 ms, varying in steps of 200 ms (6 levels in totals). In the 

distance task, the stimuli lasted 1000 ms each and the distance from the screen center varied from 1.6 

to 9.4 visual degrees, in steps of 1.6 degrees (in total 6 levels). S1 and S2 had equal probability of 

either lasting longer in the duration and matching to sample task, or being father from screen center 

in the distance task. The period between S2 and the presentation of the targets for the response lasted 

400 or 800ms. 

 During the training phase, monkeys learned the three tasks in a sequence using a block design, 

which included first the duration task, then the distance task, and finally the match-to-sample task, 

with occasional presentation of blocks containing the previously learned tasks, until adequate 

performance. When monkeys had average response accuracy of 80% or more in the duration- and 

distance-tasks and in the match-to-sample task the recording period started. In this test period, the 

monkeys performed the three tasks in blocks with pseudo-random task-order, during which 

dorsolateral and caudal PFC neural-cell activity was registered (with means of n=192 trials for 

duration, n=151 trials for distance, and n=92 trials for match-to-sample task, respectively).  

The average neural activity of interest was calculated in the 80-400 ms period after it could be 

discriminated which was the stimulus with the greatest magnitude; during this period, the PFC 

neurons were found to carry prospectively the information on the goal identity; see Genovesio et al. 

(2012) for other details. 

 

Computational modeling methods:  

We simulated the experiments using a probabilistic generative model that learns to predict 

reinforcement based on noisy sensory information - context (stimuli S1 and S2 with noisy magnitude 

and color-identity properties) and target (the color-identities of S1 and S2) - actions (press S1 or S2), 

and latent states or categories inferred during learning (Figure 1c). We assumed that the latent 

categories correspond to a population of PFC neurons, where individual neurons have specific 

preferences (e.g., for a response) and compete for selection. The conditional probability that a given 

category is selected in a given context corresponds instead to the strength of connectivity between 
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neurons in the latent category population and input neurons encoding context information (Pouget et 

al., 2013). Thus, a given context conditionally drives the selection of the latent category most-

strongly related with it, which (together with the target stimulus) determines action selection, i.e. the 

selection of the action with the higher probability to reinforcement.  

 

 

 
 

Figure 1: Behavioral analysis. (a) Experimental paradigm; details in Methods . (b) Monkey: Psychometric profile of 

the probability to choose the identity of stimulus S1. For the duration- and distance-discrimination tasks, the probability is 

plotted as a function of the ratio between S1 and S2 magnitudes, which on a log scale is a sigmoid (Stoianov and Zorzi, 

2012) summarized by a variability coefficient, a task-specific Weber fraction w (Pica et al., 2004; Stoianov and Zorzi, 

2012). For the match-to-sample task, the psychometric profile plots the monkeys' response accuracy as a function of the 

duration ratio between the two stimuli, displaying independence from it. Stars, circles, and triangles represent data points 

of the duration, distance, and match task, respectively. Blue, red and gray lines show corresponding sigmoid fits . (c-d) 

Model. (c) Bayesian network representing probabilistic relations between sensory stimuli, latent s tates (categories), 

available actions, and reward. Insets: top right, population activity averages of the goal cells aligned on the decision point; 

bottom right, population activity averages of the goal cells and of the response (right or left target locat ion) cells. Solid 

line, preferred goal (blue) or response (orange), dashed line anti-preferred goal (blue) or response (orange). (d) Average 

psychometric profile of the model, using the same format as in (b). 
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 The model includes a context variable that jointly encodes the perceived properties of the 

stimuli S1 and S2: distance (6 magnitude levels, from closer to farther from the center), duration (6 

magnitude levels, from shorter to longer), and color (2 levels: red and blue). The four magnitudes 

inputs (i.e., the duration and distance of both S1 and S2) were encoded noisily: continuous Gaussian 

noise was added to each of the four inputs and the resulting continuous values were rounded to obtain 

their final values (6 magnitude levels each). A fully orthogonal coding of the context variable would 

require (6*6*2)^2 levels, but since in our tasks only one property (either duration or distance) varies 

in magnitude in a given trial, we could use a compact coding with only 288 levels1. The model 

includes also a target variable that encodes the properties of response-triggering stimuli: color (2 

levels) and position (2 levels: left and right). The target variable was orthogonally coded (4 levels). 

The model finally includes a response variable orthogonally coded to represent the two possible 

actions of the monkey (left and right response), and a reward variable orthogonally coded to 

represent two possible outcomes (rewarded and not rewarded).  

  

Description of the computational model:  The model uses a Bayesian reinforcement learning scheme 

to update the conditioned probabilities based on the number of successes and failures. The update 

considers the (Bernoulli distribution of) predicted reinforcement and the actual action outcomes. In 

parallel, an approximate non-parametric learning method, Dirichlet non-parametric mixture process, 

shapes the clustering of the contexts into latent categories according to their utility in obtaining 

reinforcement. First, observed contexts recruit existing clusters according to their overall selection 

frequency (i.e., popularity) or engage novel ones with a small probability, favoring compact 

clustering (Gershman and Blei, 2012; Donoso et al., 2014). Second, the conditional probabilities 

between contexts and categories are scaled depending on the observed stimulus-action-value 

contingencies; in other words, the probability of reinforcement contributes to the shaping and 

selection of the categories, see Equation 2 below. This approximate learning method gradually shapes 

on the acquisition of latent category units that permit to “model” or “explain” the observed stimulus-

action-value contingencies and afford efficient reward acquisition (Collins and Koechlin, 2012; 

Collins and Frank, 2013). The specific method we adopted for the Dirichlet non-parametric mixture 

process is a local maximum a posteriori (MAP) inference, developed by Sanborn, Griffiths, & 

Navarro (2010) for category learning and later applied in the domain of reinforcement learning 

(Collins & Frank, 2013); this non-iterative, local procedure is more biologically realistic compared to 

alternative (e.g., non local) methods. 

 In our target monkey task, monkeys had to infer the correct "rule" or "goal" (say, red-goal) 

based on the sequential presentation of two visual stimuli (a red square and a blue circle) and then 

select a response (press a button) when the two stimuli were successively presented together, in a 

randomized (left or right) position. In analogy with this situation, in our model the two earlier 

presented stimuli S1 and S1 correspond to context stimuli ct that are categorized into latent states, 

whereas targets correspond to response-triggering stimuli st (Figure 1c). Importantly, the perceived 

context stimuli c are clustered into latent states (categories) z according to their utility to obtain 

                                                                 
1 To obtain the context variable, the magnitude properties and the color properties of S1 and S2 were combined, using 

mixed multiplicative-additive coding. First, for each property, duration and distance, the magnitudes of S1 and S2 were 

multiplicatively combined in an index with 6*6=36 levels. Second, the two (duration- and distance-coding) indexes were 

additively combined in an overall magnitude index with 36+36=72 levels ; the rationale for the additive combination is 

that, in our tasks, only one among duration or distance varied. Third, the color properties of S1 and S2 were 

multiplicatively combined in an index with 2*2=4 levels. Finally, the overall representation of the context input was built 

by multiplicatively combining the magnitude and the color properties in an index of 72*4=288 levels.  
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reinforcement. The clustering is defined by a probability distribution P(z|c) and initialized with a 

nonparametric probabilistic approach: a Dirichlet mixture process also known as Chinese Restaurant 

Process (Gershman and Blei, 2012). According to this popular metaphor, clusters, or categories, 

correspond to restaurant tables and contexts to customers. A newly experienced context (new 

customer) cn+1 is assigned to a new cluster (empty table; new category) znew with a small probability 

P(znew | cn+1) = α/A (controlled by concentration parameter α, here α=2) or to an old cluster (occupied 

table; old category) zi according to a measure of its popularity P(zi | cn+1) = Σj P(zi | cj) / A (table 

occupancy; category priors) across all contexts, where A is a normalizing factor: A = α + Σi,j P(zi | cj) 

that essentially counts the number of experienced contexts. Thus, the perceived context ct evokes the 

most probable context-specific category (category inference) zt = argmax i P(zi | ct) that in turn 

conditions the successive action selection process and critically to the organization of the category 

structure, the belief in this assignment P(zi | ct) is scaled with the probability of the current 

reinforcement outcome caused by this choice (category learning) (Sanborn et al., 2010; Collins and 

Frank, 2013); see formula (2) below. 

 The value function defining the reinforcement contingencies is implemented as a binomial 

probability distribution of reinforcement (rewarded: r=1, not rewarded: r=0) and conditioned on the 

target stimulus, action, and latent category (that is in turn conditioned on the context stimulus, see 

formula (1) and Figure 1C. The distribution is parameterized by a Beta-conjugate distribution, which 

simply counts the number of successes and failures to obtain reinforcement and affords standard 

Bayesian learning (3a,b).  

 

 
 

When conditioned on the currently selected latent category zi, target stimulus st, and desired reward 

outcome r=1, the probabilistic value function allows inferring the action that most likely brings to 

that outcome (action inference). The chosen action  brings to an actual reward outcome . 

 Experiencing a given trial is followed by an update of the category- and reward- distributions, 

i.e., learning. The posterior category distribution is updated exploiting an approximate form of 

Bayesian category learning (Anderson, 1991), accounting here for the observed stimuli-action-value 

contingencies (Collins and Frank, 2013) (category learning). 

 

 
  

To calculate the posterior of the reward function, we first update the beta-conjugate prior of the 

conditioned binomial distribution, accounting for the observed reinforcement: 

 

 

 

 
 

 Finally, we calculate the posterior conditioned reinforcement distribution                Pt+1 (r=0, 

r=1) by normalizing   and  to sum to one (conditional value learning). 
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Method for calculating noise in the model stimuli and responses:  The perception of sensory 

magnitudes such as time and distance is intrinsically noisy (e.g., Tudusciuc & Nieder, 2007), such 

that the perceived magnitudes vary from trial to trial and the variability wn of the perceived 

magnitudes scales with the magnitudes according to the Weber-Fechner law (Gibbon, 1977; Dehaene, 

2003 Whalen et al., 1999). The noise causes considerable response variability and hinders the 

learning of magnitude-dependent tasks because of reduced consistency of the experienced stimulus-

action-value contingencies. In order to perform a realistic simulation of the monkey experiments in 

which magnitude comparison plays a crucial role in the duration and distance tasks, we needed to 

provide our prefrontal model with input stimuli having an adequate level of perceptual noise. We 

approached this issue by adopting a typical point-wise internal noisy magnitude representation, so-

called mental number line, characterized by Gaussian noise wn = nw0 that scales with the magnitude n 

and which is parameterized by a variability coefficient w0 (e.g., Whalen et al., 1999). We then 

conducted a re-analysis of the monkeys’ behavior in the original experiment (Genovesio et al., 2012), 

in order to adequately estimate the variability coefficient w0 of the perceived relevant (duration and 

distance) properties. 

The first step of the analysis is the calculation of magnitude discriminability coefficients at the 

behavioral level, the so-called Weber fraction w (Figure 1b). They were obtained by using the 

monkey responses in the post-learning test period to build psychometric response profiles for each of 

the three tasks (Figure 1b). For the duration- and distance-discrimination tasks, the profiles display 

the probability of selecting the identity of stimulus S1 as a function of the log-ratio between the 

magnitude properties of S1 and S2. Consistent with what reported in the literature, on a log-scale the 

profile of our magnitude-comparison tasks is a symmetric sigmoidal curve (see e.g., Stoianov and 

Zorzi, 2012). Essentially, the larger the absolute value of the log-ratio between the compared 

magnitudes, the larger the probability to select the correct stimulus; or in other words, the more 

different the magnitudes are, the greater are the odds for a correct response. The profiles are 

summarized by a magnitude discriminability coefficient, a Weber fraction w that describes the slope 

of the sigmoid: the smaller the w, the more vertical is the slope and more precise is the response (Pica 

et al., 2004). For the match-to-sample task, the psychometric profile of Figure 1b plots the monkeys' 

response accuracy as a function of the duration ratio between the two stimuli, which was manipulated 

in the task, but irrelevant to solve it. As expected, the response appears independent of ratio. 

 An ideal, noise-free perception of magnitude feeding an errorless decision-making system 

would result in magnitude discriminability coefficient w equal to zero. However, here we observed 

relatively large Weber fractions in the duration- and distance-discrimination tasks (Figure 1b) 

suggesting that in the monkey brain these processes are quite noisy. The moderate error rate in the 

match-to-sample task, in which magnitude perception is not essential, indicates that other noisy 

mental processes (e.g., memory storage and implicit task selection) contribute to the variability of 

response-selection in this and the other task(s). To account for the variability of these non-perceptual 

processes, we subtracted a noise term  from the calculated behavioral 

discriminability coefficients w (shown in Figure 1b). This permitted us to estimate the variability 

coefficients of the internal representations of duration-discrimination, w0 = 0.34 and distance-

discrimination, w0 = 0.33. We used these parameters to generate noisy magnitude stimuli using the 

aforementioned number-line model  - but note that two control simulations reported 

below show that the learning mechanism is robust to greater levels of noise. Finally, we added 

constant variability at response-selection by randomly alternating 5% of the responses. 
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Information-theory measures used in the analyses  To compare the PFC neurons in the (Genovesio 

et al., 2012) study and the clusters evolved by the computational model we used information-theoretic 

measures. In particular, we analyzed the information content (in terms of properties of interests such 

as goals or colors and their combination) conveyed by the PFC neurons and the clusters evolved by 

the computational model.  

 In order to apply information measurements to responses with many levels (or continuous 

values), the responses first need to be discretized at just few levels (e.g., two or three); this procedure 

is necessary to avoid that sparse observations of multiple response levels artificially distort the 

information measures (Panzeri et al., 2007). We adopted a simple three-level response-discretization 

procedure based on normalized values: first, we normalized the response by subtracting its mean and 

dividing by its variance; then, we created three categories separated by levels -0.5 and 0.5. A 

preliminary entropy-measuring analysis revealed that the three-level discretization increased the 

overall information content relative to a simpler two-level discretization; furthermore, it did not lose 

too much information relative to a four-level discretization.  

 We used the three-level discretization to perform information-criteria analyses of two kinds of 

raw responses: the firing rate of the PFC neurons and the selection probabilities of the latent states of 

the computational model. The properties of interest had already just few levels: the goal had two 

levels (red and blue target); the task had three levels (duration, distance, and match-to-sample); the 

index of the larger stimulus had two levels (either S1 or S2), and the color of the first stimulus also 

had two levels (either red or blue). 

The information-theoretic measures we used are introduced below: 

 Entropy   is a measure of the overall quantity of information 

conveyed by response x and it essentially measures response variability. Here, p(x i) is the probability 

of each specific response level x i.  

 Mutual information  measures the information 

carried by the neural response x about a stimulus property s where p(s), p(x), and p(x,s) are the 

marginal and joint empirical probabilities of the property and the response. Critically, in the case of 

multiple related properties, it does not measure the specific amount of information carried by each of 

them. In our task, this might potentially confound the interpretation of goal-coding neurons. Because 

goals could possibly encode a mixture of color, magnitude, and task information, it is possible that 

neurons encoding one of these properties carry non-specific information about the goal.  

 To rule out such confounds, we used conditional mutual information 

 that measures the amount of 

information about a property s while controlling for another property s'. Note that relative to I(x;s), 

I(x;s|s') can decrease, remain invariant, or increase. The more it decreases, the more the response 

encodes s by virtue of s'. Following our goal-coding hypothesis, we expected that the mutual 

information between the response x and the goal property conditioned on all related properties would 

not drop to (or be close to) zero. Indeed, such a drop which would imply that most of the goal-related 

information is explained away by the property s'; for example, if I(x;goal|colour) drops close to zero, 

then color-coding would be a more parsimonious explanation than goal-coding. To verify that the 

conditional information is statistically different than zero, we used the formal non-parametric method 

of Ince et al. (2012). 

 

Tuning functions and Contrastive Preference of neurons for stimuli features  

We finally considered the PFC neurons and the clusters evolved by the computational model as 
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neural filters and analyzed the preferred stimuli features to which they may had been tuned. The 

preference  of a latent category    for a given feature    was indexed with the expected 

conditional probability that the set of context stimuli having such feature 

 would activate the category :  

 

  (4) 

 

where | cf | is the number of stimuli having feature f. The index ranges from 0 to 1, with value of 0 

meaning null preference and value of 1 indicating maximal preference. 

 As a second step, as in our testbed monkey experiment (Genovesio et al., 2012), we expressed 

the preference to one of a pair of related features  by calculating the contrastive preference 

  - the difference between the preferences for each of those features, see equation (5). The index 

ranges from -1 to +1, with value of +1 meaning preference to , value of -1 meaning preference to 

, and value of 0 meaning no specific preference. 

 

-   (5) 

  

 

RESULTS 

 

The probabilistic computational model was first trained and then tested in a block design following 

the target monkey experiment protocol. Each block presented pseudo-randomly selected patterns 

from a given task, with noise added as described earlier.  

 Below we report the results of the simulations of the monkey experiments (behavioral and 

neural data) and of several control experiments. All the results reported below are calculated as the 

average of 30 simulations.  

 

Behavioral results 

 The first critical test for our model was the ability to adequately replicate the monkey 

behavioral data. Using the monkey protocol and applying perceptual and action-selection variability 

measures derived from the analysis of the monkey psychometric profile (see the Methods section), 

we administered the three experimental tasks to 30 replicas of the model, which were learned 

successfully within a few thousands of trials (Figure 7) despite the considerable noise of the stimulus-

action-value contingencies. Response accuracy during the test period was equivalent to monkeys’ 

performance: 80% (s.e. = 0.5%) in the duration task, 80% (s.e. = 0.5%) in the distance-task, and 95% 

(s.e. = 0.4%) in the match-to-sample task (reward-driven learning continued also in this test period). 

At the behavioral level the model exhibited monkey-like response accuracy, psychometric profiles 

(per-task correlations, R2>0.88) and magnitude discriminability in the test period (Figure 1b,d). 

 

Neural-level analysis 

 Following an adequate simulation of monkeys’ behavior (Figure 1b,d) we performed a neural-

level analysis of the way the model obtains flexible control of behavior. In keeping with the goal-

coding hypothesis, we predicted that 1) the model would have learned the observed stimuli-action-
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value contingencies by clustering the large number of context stimuli into a small set of latent states 

or categories; and 2) that the latent states would correspond to goals (i.e., the color of the target 

stimulus that had to be selected). The other possible clustering structures were a common 

representation of magnitude (e.g., clusters coding for “the larger” and “the smaller” stimuli) or a 

sensory oriented encoding, clustering one or a combination of context stimuli properties (e.g., cluster 

coding for colors).  

 We found that the computational model consistently used a very limited number of popular 

categories, each aggregating a large number of contexts (Figure 2a,b). However, this result per se is 

not yet sufficient to assess the goal-coding hypothesis – that is, that the used latent categories actually 

carry goal-related information; to this aim, it is essential to analyze what these latent states encode. 

The next relevant questions were: are the learned categories purely perceptually driven (Freedman et 

al., 2001)? Did they code basic perceptual categories such as stimuli magnitude? Or did they cluster 

prospective goals or control signals? Did they correspond to the coding characteristics of the monkey 

PFC neurons studied in the same tasks? We approached these critical questions with a thorough 

information-criteria analysis based on (conditional) mutual information measures. 

 

Analyses using information measures  

 We used information-theoretic measures to assess the coding properties of the PFC neurons in 

the (Genovesio et al., 2012) study and the clusters created by the model, and in particular to assess if 

they code (or carry information on) prospective goals, in keeping with the goal-coding hypothesis. 

Here, "goal information" indicates a property or a set of properties that are relevant for a (future) 

choice, e.g., whether red or blue should be the choice for the target. In the monkey experiment, there 

are two possible targets for the choice, so goal information can be measured as a contrastive 

preference (see formula 5) between the to-be-chosen vs. the not-to-be-chosen target (e.g., red vs. 

blue). 

 We first analyzed all the 324 PFC-neurons recorded from the three tasks and all latent 

categories whose activity conveyed at least 0.8 bits overall information (measured with entropy) and 

0.10 bits mutual-information about the goal (arbitrary thresholds). This analysis identified n=117 

latent categories (among the 30 replicas of the model) and n=31 PFC neurons encoding goals (Figure 

2c,d; black dots indexing the mutual information conveyed by the unit response about the goal). 

However, as explained in the methods section, the mutual information analysis cannot rule out 

the possibility that goal-coding is “spurious” and confounded by other properties of the stimuli 

properties. To verify whether these units conveyed genuine goal information, we then calculated 

the conditional mutual information conveyed by the units about the goals, considering various task-

related potential confounds of the goal-property (Figure 2c,d; color dots indexing the corresponding 

conditional mutual information for each unit). As explained in the methods, if the mutual information 

conditioned on a given property substantially decreases (relative to the non-conditional mutual 

information) and approaches zero, then this property would explain away the information conveyed 

by the unit about the goals (or in other words, the units would encode a confounding property, not a 

goal). However, for all the units identified as goal-coding, the conditional mutual information was 

significantly greater than zero (p<0.05 using the method of Ince et al., 2012), revealing thus genuine 

domain-general representation of prospective goals in both the PFC neurons and the latent categories, 

although noisier in the neural data.  
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Figure 2: Neural-level analysis. (a-b) Learning evolved compact latent-state control scheme favoring transfer 

learning: (a) raster plot indexing the selected context-category during each trial. (b) Popularity of the most frequently 

used latent states (bars, s.e.). Note that all the three tasks use the same (few) latent states. Once a role for a given latent 

state is established in the first task, it remains unvaried in the successively learned tasks – a mechanism that might play an 

important role for transfer learning, see Figure 7. (c-d) Information-theoretic analysis of PFC-neurons (c) and latent 

categories (combining the latent units of all 30 replicas) (d) showing the amount of overall information conveyed by the 

selected units about the goals (black dots; units ordered by the amount of mutual information) and the amount of goal-

information when conditioned on various task-related properties (color dots). Since for each unit the conditional mutual 

information does not (or just slightly) decrease relative to the mutual information, both the PFC and th e model genuinely 

encode goals independent of basic task-related properties; the model does so less noisily, probably because of lack of 

previous experiences. In both the PFC data and the model, l(r;goal | task) is slightly higher than l(r;goal), see Figure 2c,d. 

In the model, I(r;goal | color S1) is slightly lower than I(r;goal). To understand why this is the case, it is necessary to note 

that Figure 2d shows the average of the three tasks, and in the match -to-sample task I(r;goal | color S1) is close to zero, 

because the identity of S1 is sufficient to infer the goal, or in other words S1 explains away the goal information. Also in 

the PFC data, I(r;goal | color S1) is close to zero; the reason why the average value shown in Figure 2c is slightly higher 

is because of the slightly higher (and noisier) value in the other two tasks. 
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Tuning functions 

 To corroborate this conclusion, we investigated the coding properties of the model units and 

PFC goal-coding neurons (as identified using the above analysis), by compactly expressing goal-

coding for each task in terms of contrastive preference (see formula 5) to respond to the color 

corresponding to the prospective goal (e.g., “red”) but not the other (e.g., “blue”). Figure 3 shows the 

scatter-plots of preferences, calculated separately for each pair of tasks. Note that the dots 

representing task-sets are exclusively present in the top-right and bottom-left panels and lay along the 

main diagonal. This result indicates that, like in the monkey data, the goal-coding responses are task-

invariant (i.e., the task sets have the same goal preference in all the three tasks), which corroborates 

the hypothesis of a domain-generality of goal-codes. Note that the coding properties of goal-codes 

are different from (and cannot be explained in terms of) simpler color-selective – or color-coding – 

responses, because the neurons/units were only active when the color they were selective for 

corresponded to the behavioral goal (see Figure 4). This result corroborates the hypothesis that latent 

categories are true goal-codes rather than having a mere preference for sensory properties like color 

or magnitude. 

 

 

 
Figure 3: Goal-coding: PFC neurons (a-c) and latent categories (d-f) exhibit the same task-invariant goal 

preference. Each point indexes the normalized contrastive preference of a single unit to one but not the other 

goal (aggregated data). (See also Figure 4) 

 

 In a further analysis we also investigated the coding properties of the 20 most frequently 

selected clusters in every replica of the model, and in particular if they encoded one or more of the 

following properties: goal-coding (Figure 4a,b); order-based magnitude preference, by calculating 

the contrastive preference for greater first (S1>S2) and second (S1<S2) stimuli magnitude (Figure 
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4d); and color preference of one of the context stimuli, S1, by calculating the contrastive preference 

for “red” and “blue” S1-stimuli (Figure 4g).  

 Once again we found that the goal-coding preference was task-invariant (Figure 4a,b), 

providing thus strong evidence about its domain-generality. Moreover, and consistent with monkey 

data, no latent category units exclusively encoded other stimuli dimensions such as a common 

representation of magnitude across tasks (Figure 4d).  

 Overall, the emerged goal-codes were not purely stimulus-related but constituted a task-

relevant abstraction: a possible way the PFC might convert order- and feature-based stimulus codes 

into a domain-general but goal-specific code that affords efficient action selection.  

 

 

Figure 4. Preferences of the 20 most frequently selected latent categories for each of the 30 learners (i.e., 

without information-criteria selection). Each point in panels (a,b,d,g) indexes the non-normalized contrastive 

preference of a given latent category in two different tasks (axis labels) for various combinations of features 

(Methods). Values at the top-right and bottom-left angles indicate the same preference, and values near the 

center indicate lack of preference. The most clear is the goal-preference (panels a,b) in corroboration of 

Figure 3,d-f. Black dots and magenta stars indicate strong and weak goal-preference (arbitrary threshold of 

0.2), respectively. Consistent with monkey data, no latent category exhibited preference for order-based 

relative magnitude coding (d) or for color (g). Instead, the categories with strong goal-preference (black dots) 

also show a weak preference for simple properties (magnitude-size and color, e-f,h-i) that combine to build 

goals. A histogram of the number of latent-categories with strong goal-preference per learner is shown in (c). 
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Figure 5. Emergent goal-coding mechanism in a sample learner. (a) In each of the three tasks studied here 

(duration, distance, or color-match), context stimuli S1 and S2, each characterized by a color (either red or 

blue) and variable magnitude properties (either duration or distance) are clustered into few popular latent states 

(here, the first three are shown) that correspond to the color-identity of the to-be-selected target stimulus (red 

or blue). The six colored matrices show latent-state selection in each of the tree tasks and for each color 

condition (S1-red or S1-blue; the color of S2 is either complimentary to S1 in the Duration and Distance task, 

or equal to that of S1 in the Color-Match task). Each colored matrix shows the probability (blue-to-red 

gradient indexes probability from 0 to 1) of selecting each of the three most-popular latent states (row 1, 2, and 

3) for each combination of relevant magnitudes characterizing S1 and S2 (columns; ordered by decreasing 

difference between the magnitudes of S1 and S2). In this learner, the first latent state is preferred when the 

greater stimulus is red or in case of red color-matching stimuli ("red goal"). The second latent state is preferred 

when the greater stimulus is blue or in case of blue color-matching stimuli ("blue goal"). Note that the second 

and third latent states are almost equally preferred in the same conditions, which implies that the blue-goal was 

redundantly encoded. This redundancy is controlled in the model by the concentration parameter alpha (see 

Method section). (b) Given a selected latent-state, say red-goal, the response selection depends on the location 

of the corresponding target (i.e., whether the red target is to the left or right). In other words, if latent state 1 

has been selected (i.e., red goal), a red target located to the left (or right) evokes a left (or right) target 

response. If instead latent states 2 or 3 have been selected (i.e., blue goal), left- and right-located blue targets 

correspondingly evoke left/right switch presses. 
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Analysis of the emergent goal-coding mechanism 

 To better understand the principle of goal-coding, we analyzed and showed in Figure 5 the 

emergent neural-level mechanism of goal-coding and response selection in one sample learner, 

whose latent-state selection is shown of Figure 2a. At the top is shown the probability  of 

selecting each of the three most-popular latent states  for each combination of context-stimuli  

properties (color and duration/distance of stimuli S1 and S2), separated in six different panels by the 

implicit stimuli-dependent task and color of S1. The bottom of the figure shows the probability 

 of obtaining reward given each combination of target stimuli  (Red-Blue or 

Blue-Red) and possible action  (press Left or press Right), separately for each of the three most-

popular latent states whose selection preference is shown above. This probability is used by the 

learner to select the action that brings reward. 

Thus, upon the (noisy) perception of context stimuli S1 and S2, this learner would 

preferentially select the first latent state if the stimuli were perceived as having red goal (i.e., larger 

or longer red stimulus or red color-matching stimuli), and the second or the third latent state if a blue 

goal was instead perceived (i.e., larger or longer blue stimulus or blue color-matching stimuli). The 

selected latent state conditions the successive response selection upon target appearance. For 

example, if the red goal was selected (i.e., the first latent state is active), and the target stimuli 

correspond to "red to the left, blue to the right", the learner would press the left button in order to 

obtain reward. 

 

Control simulations 

 The simulations thus far replicated the monkey data in the specific testbed conditions at both 

the behavioral and neural levels. In addition, we have conducted a set of control simulations, with 

two aims: 1) demonstrating the generality, robustness and scalability of our computational methods; 

and 2) generating novel empirical predictions – a paramount feature of computational modeling, 

whose results should extend beyond the mere replication of existing data. 

 

Effects of perceptual noise. An important question is whether the proposed computational scheme is 

robust to various levels of noise in magnitude perception, or in other words whether it permits 

extracting appropriate goals with high or low levels of noise. We investigated this issue in two 

control simulations. In one, the noise was half of that used in the main simulation, while in the other 

the noise was doubled. In general, we expected to observe corresponding changes in behavioral 

discriminability, but not qualitative differences such as the impossibility for the model to extract 

goal-codes  (unless of course the model experiences ceiling effects of noise, which would preclude 

learning in general, not only goal-coding). 

 As predicted, much smaller perceptual variability ( w0=0.17  for both distance and duration) 

largely improved magnitude discriminability at the behavioral level (duration: w=0.28, s.e. = 0.01, 

distance: w=0.27, s.e. = 0.01); and neural-level analysis revealed the same control mechanism based 

on goal-coding (Figure 6a-c). Note that this simulation would represent a closer approximation of an 

experiment with adult human participants, whose magnitude (or analog number) processing system is 

generally more precise than that of monkeys. 

 The result of the second control simulation (with higher levels of noise) exceeded our 

expectations. The subjects learned to identify and select correct targets despite very large perceptual 

noise (: w=0.68 for both distance and duration) and consequently, with much worse magnitude 
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discriminability relative to the main simulation (duration: : w=0.99, st. err = 0.039, distance: : 

w=0.89, st. err = 0.034). Importantly, a neural-level analysis revealed that even in this case the model 

extracted goals during the first two, noisy tasks (Figure 6d-f), thus demonstrating the robustness of 

the goal-coding principle. 

 

 
Figure 6.  Robustness of the goal-extraction mechanism for cognitive control revealed by control simulations 

in various easier and more challenging learning conditions. (a-c) Small variability of magnitude perception; 

block-design learning. (d-f) Large variability of magnitude perception; block-design. (g-i) Variability as in the 

main simulation but tasks learned and tested in completely interleaved design. Each point in panels (a-b,d-e,g-

h) indexes the non-normalized contrastive goal-preference of a given latent category in two different tasks 

(axis labels). See also Figure 4 and Methods. 

 

Redundancy of goal-coding. We then verified the role of the concentration parameter α that controls 

the probability for a newly experienced context to evoke a new latent state (“table” in the Chinese 

Restaurant) or to join some of the popular latent states. Control simulations with various levels of this 

parameter (α = 1, 2, 5, 10) revealed that the performance, sensitively measured with the behavioral 

Weber fraction w, was essentially unaffected by α. At the same time, the number of exploited latent 

states increased along with α, as expected. However, for a given level of alpha, the same (popular) 

latent states were used in all three tasks, which together with contrastive-preference analysis of these 

latent states as that in Figure 3 corroborated the finding in the main simulation that once a specific 
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(goal-coding) role of a latent state is established, it remains invariant in the successfully learned 

tasks, which in turn is critical for transfer learning. Finally, with the help of our information-theory 

analysis we also found that the goal-coding specificity was essentially the same as in the main 

simulation. Thus, the concentration parameter alpha essentially controls the redundancy of goal-

representation, but it does not change the goal-coding principle. 

 

Goal-coding selection criterion. We further verified the impact of the specific selection criteria on 

our novel neural-level analysis. Putting a threshold on entropy was necessary to ensure that the 

analysis focused only on units having a reasonable amount of response variability. Halving the 

threshold, from 0.80 to 0.40, left unchanged the pool of goal-coding PFC neurons and extended the 

pool of latent states by just five units, obtaining essentially invariant results. We expected a more 

significant impact of the mutual-information selection criteria that specifically sought goal-coding 

units. Indeed, doubling it, from 0.10 to 0.20, restricted the selected pool to just n=9 PFC neurons and 

slightly decreased the number of latent states. Expectedly, these very specific goal-coding units 

showed more clearly dichotomous contrastive goal-preference distribution. On the contrary, halving 

the mutual-information criterion, from 0.10 to 0.05, extended the pool to n=53 PFC neurons and 

slightly increased the number of latent states. As expected, this less-specific pool had slightly less-

clear dichotomous distribution of contrastive goal-preferences. 

 

Effects of block design vs. interleaved design. The main simulation presented the stimuli in block-

design, but we hypothesized that the same goal-based control mechanism would emerge without task 

blocking, as well. To test this prediction, we conducted a control simulation in which the tasks were 

learned using interleaved design by pseudo-randomly selecting task-type in each trial; all the rest was 

kept invariant. The result confirmed the prediction. Relative to the main simulation, magnitude 

discriminability just slightly increased (duration: : w=0.54, st. err = 0.015, distance: : w=0.50, st. err = 

0.012), but goal-coding and the associated control strategy was consistently found (Figure 6g-i). 

 

Transfer learning and the differences between standard (flat) RL learning and our proposed 

(structured) method. Classical reinforcement learning methods (e.g. TD learning) are sufficient to 

learn the correct policy in our tasks, provided that each pair of context-target stimuli is observed 

several times. However, we hypothesized that our proposed (structured) method based on a non-

parametric component - which essentially extracts goal-to-response mappings - would have been 

advantageous when learning novel tasks that share similarities with the already acquired ones (i.e., 

transfer learning) – pointing thus to a specific adaptive value of structured models and goal-coding in 

the PFC.  

 To verify this prediction, we run a control simulation using a flat generative probabilistic 

model of reward P(rt | st , at , ct ), with the same binomial distributions as in the main model. As 

hypothesized, the flat model successfully learned the tasks. However, the flat model showed a slow 

learning process that has the same trend for each new task, with poor or no generalization. This is in 

contrast with the learning trend of the structured model that instead reuses its knowledge to learn 

faster each novel task (Figure 7). Thus, a key advantage of the non-parametric component is the 

predisposition to build and reuse already acquired goal contingencies across different domains and in 

novel situations, which is consistent with a role of PFC in supporting one-shot learning and providing 

behavioral flexibility without catastrophic forgetting (Doya, 1999; Koechlin and Hyafil, 2007; Shima 

et al., 2007).  
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Figure 7.  Advantage of goal-coding in transfer learning. Comparison between: (i) the learning trend of the 

non-parametric (full) hierarchical model in which goal-codes emerge (i.e., the main simulation; thick red line), 

(ii) the learning trend of a control flat model in which the learning task for every context-target pair departs 

from the same uniform prior (thick black dotted line), and (iii) the learning trend of a control (hierarchical) 

model with untrained latent states (i.e., using only the Chinese-restaurant prior; thick blue dashed line). 

Relative to the flat model, the initial delay in the learning trend of the full hierarchical model (due to initial 

learning of latent categories) turns into a consistent advantage during the learning of successive tasks: a 

signature of transfer learning. The control model was not able to learn the tasks, plausibly because it lacks a 

mechanism that extracts useful internal representations in a restricted feature set. Thin lines delineate s.e. 

bands. 

 

Unsupervised clustering and the role of supervised category learning. To show the critical role of 

categorization driven by the reinforcement signal, we performed another control simulation in which 

the latent units were initialized according to the Dirichlet mixture process (as in the hierarchical 

model used in the main simulation) but not further trained to account for the conditions bringing to 

reward (i.e., not applying formula 2). The procedure, parameters, number of replicas, learning 

schedule were the same as in the main simulation. We expected that the Chinese-restaurant-process 

prior would randomly associate the input context stimuli with a limited number of active latent 

variables, providing no useful internal representation of the context and thus producing low 

performance. Indeed, as shown on Figure 7, this model was not able to learn the tasks and responded 

at chance level, further emphasizing the importance of value-driven learning in shaping a 

behaviorally relevant categorization process. 

 

Scalability of the computational learning approach. To assess the scalability of the proposed 

method to more challenging experimental conditions, we generalized the setup by increasing the 

number of colors and available responses. The identity of each context stimulus S1 and S2 were 

randomly drawn among k colors, and the target stimulus was a random permutation of all available 

identities (colors). As in the main simulation, the action consisted in selecting the identity of the 

stimulus that (as in the main simulations) lasted longer, was more distant, or matched the context 

stimuli, but this time located in one of k possible positions and among all other identities. Note that 
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the complexity of the task increases dramatically along with k. For k=3, there are 648 context stimuli 

and 6 target displays, while for k=4, there are 1152 context stimuli and 24 target displays.  

 The model successfully learned also these two problems, after a higher number of learning 

trials reflecting the increasing complexity (k=3: 20.000 trials, k=4: 50.000 trials). As in the main 

simulation, the reinforcement learning procedure used a goal-coding strategy to solve the tasks and 

the goal-response mappings created in the first phase greatly simplified the learning of the second and 

the third tasks (Figure 8), further supporting the generality of the proposed approach. 

 

 
Figure 8. Generalization: learning trend (a,b) and raster plot of category selection (c,d) of  control 

simulations generalizing the tasks to more than two stimuli identities (i.e., colors; a,c: k=3;  b,d: k=4), 

demonstrating scalability of the method. High learning accuracy is obtained at the cost of increased number of 

trials. The number of used categories increases relative to the main simulation (Figure 2a), consistent with the 

increased number of possible goals.  

 

 

DISCUSSION 

 

The PFC lies at the apex of the brain control hierarchy (Fuster, 1997) and is uniquely positioned to 

integrate context, reward, and control-related information and to learn their (noisy) contingencies. 

This gives PFC great flexibility in supporting goal-directed behavior but also implies that it has to 

solve complex, multidimensional learning and selection processes. From a statistical viewpoint, this 
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problem can be finessed by learning a hierarchical generative model that links stimuli, actions and 

rewards to internal (“hidden” or “latent”) states or categories, which need to be inferred, too (Friston, 

2010). In keeping with this idea, in tasks requiring subjects to learn a large set of actions the PFC was 

found to develop abstractions, or categories of actions that permit to guide the behavior (Shima et al., 

2007); however, other kinds of categories have been found in the PFC such as object categories 

(Freedman et al., 2001), leaving open the question of what kind of categories better support goal-

directed behavior. Here we tested the idea that goal-codes or prospective representations of goals 

constitute a solution to the problem faced by the PFC: learning abstract categories that are useful to 

steer goal-directed action and cognitive control. We hypothesized that goal representations (or goal-

codes) – here, prospective representations of the to-be-selected target stimuli - emerge in PFC as 

“latent states” (or categories) of a generative model that clusters relevant statistical properties of 

stimuli and value information and successively bias response selection towards goal-relevant 

outcomes. 

 To test the hypothesis we used a probabilistic generative model that combines unsupervised 

non-parametric learning (for latent state learning and categorization) and reinforcement learning (to 

guide the categorization towards task-relevant abstractions). Non-parametric Bayesian networks have 

flexible structure allowing learning rich internal representations of complex data (Ghahramani, 2013). 

Previously, approximate non-parametric learning successfully developed categories (Sanborn et al., 

2010), and non-parametric value-driven learning was used to build task-sets (Collins and Koechlin, 

2012; Collins and Frank, 2013) supporting the viability of the method. 

 The testbed for our simulation was a series of studies reported in Genovesio et al. (2012), where 

the experimenters collected monkeys dorsolateral and caudal PFC single-cell data during the post-

learning period, and reported goal-coding cells common to all three tasks. The results of our 

computational simulations and information analyses successfully replicated these data; and beyond 

that, they showed that goals emerge as latent task dimensions that encode behaviorally relevant task 

regularities and stimuli properties, thus offering a normative explanation for the domain-general 

representation of prospective goals found in the monkey PFC (Genovesio et al., 2012; Yamagata et 

al., 2012).  

 Furthermore, despite the Chinese restaurant process (CRP) produces a very high number of latent 

states and usually selects (or “populates”) a logarithmic function of the number of experienced 

context stimuli (Gershman and Blei, 2012), we found that our model – which uses reinforcement 

signals in combination with CRP – consistently uses very few of them. This result is consistent with 

the idea that, while sets of broadly tuned PFC neurons might provide a “basis” or “repertoire” to 

execute a variety of cognitive control tasks, each specific task might critically depend on a smaller set 

of cells that have highly selective and task-specific (e.g., goal-related) properties. Future studies 

looking at the dynamics of PFC representations during learning might permit testing this hypothesis 

and studying if the learning process benefits from the putatively “critical” properties to be already 

present in a PFC “repertoire” (transfer learning) and/or from adaptive coding: the ability of PFC 

neurons to flexibly adapt their properties to convey task-relevant information (Duncan, 2001). 

 The close matching of the model and the data at both behavioral and neural levels, and the results 

of our control simulations in more challenging experimental conditions, support our hypothesis that 

PFC goal-coding might be a fundamental organizing principle for efficient flexible control. 

Furthermore, our novel analyses based on information-theory measures corroborate the goal-coding 

hypothesis by ruling out the possibility that the neuronal coding of goals was the result of a confound 

with other task-related features.   
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 Key to our results is the combination of two forms of learning in which an unsupervised category 

learning process extracts relevant behavioral abstractions from the input data but the selected 

categories are sculpted by a value-driven process according to their adaptive value (see Equation 2). 

Both forms of learning have been extensively reported in the PFC (Frank and Badre, 2012) but they 

are typically studied in isolation. Our proposal thus brings an integrative perspective that reconciles 

two influential streams of research on prefrontal function that focus on behavioral control (Miller and 

Cohen, 2001; Passingham and Wise, 2012) and category learning (Seger and Miller, 2010), 

respectively.  

 Furthermore, at difference with most (model-free) reinforcement learning models of cognitive 

control that use direct stimulus-response mappings and in which goals are implicitly encoded in a 

value function of states and actions (Botvinick et al., 2009; Sutton and Barto, 1998; Dayan, 2009; 

O’Reilly et al., 2010), in our method goals are explicitly coded. Explicit goal representations are a 

characteristic feature of most model-based probabilistic architectures for goal-directed behavior, such 

as planning-as-inference (Pezzulo, 2012; Solway and Botvinick, 2012; Pezzulo et al., 2013) and 

active inference (Friston, 2010; Clark, 2013), where they have a key role in guiding action selection 

and control (Lepora and Pezzulo, 2015, Pezzulo and Castelfranchi, 2009, Pezzulo et al., 2014a, 

Pezzulo et al., 2014b, Verschure et al., 2014). Our model complements these proposals by offering a 

mechanistic explanation of how their required goal representations might be learned in the first place. 

Furthermore, our results suggest that encoding the prospective goal might simplify cognitive control 

tasks by permitting splitting them into two distinct phases, goal identification and target selection, 

and to carry on only limited information (the target identity) from the former to the latter. In this 

perspective, an advance representation of the identity of the to-be-selected target stimulus is an 

efficient way to encode context information in cognitive control tasks, and couples accuracy (it 

permits the model, or the monkey, to respond adequately when the target appears) and parsimony 

(only the identity of the target stimulus need to be remembered, not its other features such as its 

magnitude). 

 The results of our study parallel a body of evidence in human neuroscience that shows the 

relevance of nonparametric methods to understand human learning and cognitive control (Collins & 

Frank 2013; Collins & Koechlin 2012; Donoso et al., 2014). Reassuringly, all these complementary 

research streams show that the same set of computational methods can apply to a variety of data 

obtained using different techniques, single cell neurophysiological responses in monkeys, and human 

fMRI or EEG data. The convergence of results in these computational studies suggest that some of 

the benefits of the nonparametric model, such as its usefulness for transfer learning, might have 

general application, as they have been reported in previous simulations (Collins & Frank 2013) and 

confirmed here in a very different set-up. 

 Our study also points to the importance of using appropriate state or task representations for 

solving cognitive control tasks. The Wilson et al. (2014) study established a role for the orbitofrontal 

cortex in state representations, but did not address the problem of how to learn them. Here, instead, 

we discuss the (nonparametric) computational mechanisms that permit learning state representations 

that encode prospective goals and mapping these mechanisms to single cell properties of the monkey 

prefrontal cortex.  

 We verified the robustness, generality, and scalability of the obtained results using various 

control learning simulations. First, we showed that the result is robust with respect to the level of 

perceptual noise. To this aim we applied the same behavioral protocol of the main simulation but we 

introduced either half or double perceptual noise. We found that accuracy correspondingly increased 
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or decreased, as expected, but the same goal-coding principle emerged (Figure 6a-f). We then 

assessed whether the goal-coding we found was specific to the block-design task presentation or if it 

also emerged using a more ecologically valid design in which multiple tasks are interleaved. To this 

aim we applied a behavioral paradigm in which the tasks were presented in entirely interleaved 

design, i.e., they were pseudo-randomly selected across all learning trials. The results demonstrated 

that the same goal-coding strategy emerged and guided the behavior demonstrating the generality of 

the approach (Figure 6g-i). Finally, we verified whether the goal-coding principle would scale 

beyond simple dichotomous choices. We thus designed a more challenging task with multiple 

possible goals in which the identity (i.e., color) of context stimuli S1 and S2 was pseudo-randomly 

selected among k colors, and all the k colors were presented in random order as target stimuli. 

Simulations with three and four target colors resulted in successful learning and the analyses revealed 

that also in these more challenging situations the behavior was guided by emergent goals (Figure 8).  

 Overall, the control simulations indicate that the goal-coding principle extends beyond the 

specific conditions of our reference monkey neurophysiological study (Genovesio et al., 2012) and 

applies to various more challenging conditions, demonstrating the scalability of the non-parametric 

value learning approach to situations that include stimulus-response-value contingencies that are very 

noisy and presented in variable order. For example, the large-noise control simulations explain how 

infants with not fully developed perceptual system could nevertheless robustly extract implicit goals 

despite very noisy internal stimuli representations (e.g., Feigenson, 2011). More generally, the 

control simulations correspond to novel empirical predictions that remain to be tested by future 

research.  

 The current model has also some limitations, and in particular it eschews the full complexity of 

PFC responses in cognitive control tasks. For example, Genovesio et al, 2014 report that, in one of 

the tasks studied here, PFC neurons carry information that is not related to the current trial (e.g., 

information about past goal and outcomes). This information was irrelevant - in fact, the monkeys 

were not required to maintain that information in memory to correctly perform the task - and future 

studies are needed to assess whether this information is used for action selection or other functions 

such as monitoring. Despite so, this evidence raises the intriguing issue that the carry-on of 

information from one trial to another might be used to learn the long-term statistics of the task or its 

try-by-trial structure, which would require an extension of the current model. 

 The novel analytical-computational approach adopted in this study is of general interest since it 

applies to a variety of neurophysiological studies. The non-parametric Bayesian approach we used 

(Gershman and Blei, 2012) affords efficient approximate learning of complex nonlinear latent 

features within a probabilistic generative framework (Sanborn et al., 2010), providing an excellent 

vehicle for neural-level analysis alike connectionist neurocomputational modeling (Stoianov and 

Zorzi, 2012). We framed the proposed learning procedure at a high, so-called “computational” of 

analysis. However, plausible biological implementations have been proposed for the belief 

propagation methods that we used for the inference (Doya et al., 2007), along with approximate 

inference methods that permit addressing larger state spaces (Friston, 2010). The overall 

nonparametric approach has a viable biological implementation, too, and points to hierarchical 

statistical learning in prefrontal hierarchies (Friston, 2008; Frank and Badre, 2012; Koechlin and 

Summerfield, 2007) shaped by reinforcement-related signals through prefrontal – (ventral) basal 

ganglia loops (O’Reilly and Frank, 2006). Collins and Frank (2013) showed that the non-parametric 

Dirichlet process used here can be neurally implemented and has good quantitative fits to the 

behaviour produced by a neural network (in which the sparseness of the connectivity matrix from 
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contexts to PFC was linked to the alpha clustering parameter), even though the mapping is not exact. 

Exploring the detailed biological mechanisms underlying the proposed nonparametric model is an 

open objective for future research. 

 

SUMMARY AND CONCLUSION 

 

We report a computational study suggesting that goal-coding at the single cell level represents an 

efficient solution to cognitive control problems: it permits selecting among the available actions 

based on the current task and goal contingencies (Miller and Cohen, 2001; Passingham and Wise, 

2012), has low memory requirements, and permits to learn faster novel tasks (transfer learning) by 

aggregating novel unseen contexts to context-categories learned in previous tasks and thus reusing 

existing sensory-motor strategies (Figure 2a, 6). Goal-coding might be a fundamental organizing 

principle of prefrontal cortex (Koechlin et al., 2003; Passingham and Wise, 2012), analogous to 

efficient coding principles in other (e.g. visual) brain areas, and one of its neural signatures might be 

the modulation of PFC tuning profiles depending on task-relevant rules (Stokes et al., 2013). 
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