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Abstract 
This article shows how Gradient Projection (GP) algorithms are capable of solving 
with high precision a Dynamic User Equilibrium (UE) model based on Splitting Rates, 
i.e. turning movements fractions by destination. 
Dynamic Traffic Assignment (DTA) is formulated as a Variational Inequality problem 
defined on temporal profiles of arc conditional probabilities, that express a sequence 
of deterministic route choices taken at nodes by road users directed toward each 
destination. 
Congestion is represented through a macroscopic traffic model capable to reproduce 
a range of phenomena having increasing complexity, from links with bottleneck to 
intersections with spillback. Different time discretizations, from few seconds to few 
minutes, are also possible, which allows a range of applications from planning to 
operation. 
This assignment model, which is fully link based, is proved to be equivalent to a path 
based formulation. It also allows for the computation of a handy gap function for 
analysing convergence to equilibrium. 
Numerical experiments on test networks are presented, showing that the proposed 
GP algorithms converge to dynamic equilibrium in a reasonable number of iterations, 
outperforming the Method of Successive Averages (MSA). 
 
Keywords: Dynamic Traffic Assignment; deterministic and sequential route choice; 
bottleneck and spillback congestion; Variational Inequalities; implicit path enumeration. 

1. INTRODUCTION 

1.1 MOTIVATIONS 

Although DTA models that are applicable to large road networks can be found in the 
literature since 20 years, dynamic assignment is only now receiving around the world a 
greater attention from transport planners and operators of traffic management centres, 
for two main reasons. First, it is now clear that in many cases static models are not 
adequate for simulating congestion on transport networks: where queuing is a relevant 
phenomenon, they are just not able of reproducing real traffic data for speeds and flows 
at the same time. Second, the primary levers of daily traffic management, such as driver 
information and signal setting, act on anticipatory rerouting and vehicle accumulation, 
whereas these phenomena have an intrinsic dynamic nature. 

However, static traffic assignment is still considered the reference approach, if the 
main purpose of the analysis is not the simulation of a given situation, but rather the 
comparison among different design scenarios in terms of aggregated Key Performance 
Indicators. The main reason for this is, in our view, the lack of good algorithms for 
solving Dynamic User Equilibrium problems with a sufficient level of precision. It is not 
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just a matter of faster convergence; the truth is that the most common solution 
approach, that is the Method of Successive Averages applied to a micro or meso-scopic 
model, is often not capable at all of converging in practice to a stable solution. 

1.2 LITERATURE REVIEW 

Despite the intensive efforts produced by the transportation research community 
(starting from the early models of, e.g.: Jayakrisham et al., 1994; Ben-Akiva et al., 1997; 
Adamo et al., 1999), Dynamic Traffic Assignment is still one of the most challenging 
issues in network modelling. A satisfactory mathematical framework that ensures the 
existence and uniqueness of a Dynamic User Equilibrium, along with a convergent 
algorithm that can rapidly compute its solution, are goals to be achieved yet. Some 
consistent formulations are available (e.g.: Friesz et al., 1993; Ran and Boyce, 1994; 
Heydecker and Addison, 1998); but one shall be ready to pay a high price in terms of 
model realism on the supply side (e.g. simple point-queue models with no flow conflicts 
at nodes and no spillback congestion) and/or on the demand side (e.g. instantaneous 
shortest paths or System Optimum vs. User Equilibrium). 

Thus, Fixed-Point-like formulations, with their poor mathematical properties, and 
MSA algorithms, with their slow convergence patterns, still dominate the panorama of 
DTA models today. An up-to-date review of some academic and commercial software 
available for real-life applications can be found in Barcelo (2010). 

In traffic management applications the essential property of a DTA model is its 
sensitivity (sound reaction) to local changes of the main supply parameters, accidental, 
such as the capacity reductions due to traffic events, and intentional, such as the signal 
settings at node intersections due to traffic control. While coping with this requirement, 
the dynamic models applied in real-time (e.g.: Mahmassani, 2001; Ben-Akiva et al., 2002; 
Gentile and Meschini, 2011) introduce some simplifying assumption compared to off-
line models wrt route choice: given the lack of information and/or experience, users are 
normally assumed to follow their habitual paths, which leads to the Dynamic Network 
Loading. On the contrary, in transport planning some simplification to enhance the 
model properties is possible wrt the representation of network congestion, because 
pathological conditions, such as spillback and gridlock, are moderated by equilibrium 
route choices and should be anyhow avoided by proper design. 

In this article Gradient Projection algorithms are applied to dynamic assignment. This 
approach has been successfully applied to solve static traffic assignment, initially with 
explicit path enumeration (e.g. Jayakrishnan et al., 1994). Lately, similar approaches 
have been used to develop bush-based algorithm with implicit path enumeration (e.g. 
Dial, 2006), that allowed a relevant improvement in the state-of-the-practice for the case 
of stationary equilibrium. For the case of DTA, GP algorithms based on explicit path 
enumeration are used in Mahut and Florian (2008) in the assignment tool Dynameq, and 
also the route swapping mechanism proposed by Smith and Mounce (2011) in their 
more theoretical analysis can be seen as a variant of this method.  

1.3 OBJECTIVES AND CONTRIBUTIONS 

The main contribution of the present paper is twofold:  
 to show how gradient projection can effectively be applied also to sequential local 

choices at nodes for users directed toward a given destination, and  
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 to prove that, in the case of deterministic route choices, the Dynamic User 
Equilibrium based on arc conditional probabilities formulated as a Variational 
Inequality problem is equivalent to that based on path probabilities. 

This paper builds up on the research (Bellei et al., 2005; Gentile et al., 2005; Bellei et 
al., 2006; Gentile et al., 2007) that brought to the model called DUE (Dynamic User 
Equilibrium), which is the tool for macroscopic dynamic assignment available in the 
VISUM software package (Gentile et al., 2006), with the aim of improving convergence to 
equilibrium wrt MSA. 

The sub-models of the supply side (arc model, node model) can be combined in two 
different ways to produce arc travel times starting from arc flows. The first approach is 
to consider short time intervals of a few seconds and to process all nodes for each 
temporal layer in chronological order; this is the classical way of dealing with the 
network simulation in DTA macro and meso-scopic models (e.g.: Papageorgiou, 1990; Lo 
and Stezo, 2012). The second approach allows to consider long time interval of few 
minutes and to process relations among whole temporal profiles, but requires iterating 
to reproduce spillback (e.g.: Gentile et al., 2007; Himpe et al., 2013). A through 
comparison between the two approaches has been recently developed in Gentile (2015); 
in this paper we limit our attention to the second approach. 

Hypocritical congestion is here modelled through an arc performance function for 
whole links, namely the Average Kinematic Wave (AKW) model proposed in Gentile et 
al. (2005), while hypercritical congestion is modelled through a transmission model for 
intersections with spillback, namely the Network Performance Function (NPF) proposed 
in Gentile (2015), which is based on the GLTM (Gentile, 2010). Actually, also the latter is 
capable of reproducing hypocritical congestion, but relies on the shift of cumulative 
inflows and outflows to obtain the arc travel time, which is too coarse when the time 
intervals are long. 

As in many other papers on DTA, for economy of space, the focus is here on the user 
equilibrium and not on the simulation or congestion model. The reader is thus referred 
to the above papers which specifically deal with the cost function. 

The proposed assignment model is based on a continuous representation of time, 
where each variable is a temporal profile (a continuous function of time). Route choice 
and flow propagation are performed for each destination separately; temporal layers 
with (possibly) long time intervals (up to 10-15 minutes) are processed in chronological 
order (reversed, for route choice). This means that here it is not possible to exploit the 
acyclicity of the space-time network for the computation of dynamic shortest paths and 
network loading, like could instead be done if the time was discretized with short time 
intervals (1-5 seconds). This complication pays back with the possibility of simulating 
on any modern machine and in a practical time (few hours) large scale networks with 
many thousands of arcs and hundreds of zones. The original version of the model was 
based on Logit route choices (Bellei et al., 2005), but in this paper we will refer to its 
deterministic version. 

In this paper, the Dynamic User Equilibrium is sought through Gradient Projection 
methods, which are capable to solve models of different complexity (depending on the 
prevailing congestion conditions) with high precision in a reasonable number of 
iterations. The main contribution of this article is then the proposal and test of a family 
of GP algorithms for our link-based DTA model. 

In deterministic static assignment, the gradient of the objective function (given by the 
sum of arc cost integrals, originally proposed by Beckmann et al., 1956) wrt path flows is 
the vector of path costs for each OD pair. This also the operator of the corresponding 
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Variational Inequality formulation. Thus, in case of explicit path enumeration Gradient 
Projection is easy. The main novelty of the proposed algorithms lays, however, in the 
application of the GP method to the local route choice at a node among the arcs of its 
forward star for users directed toward a given destination, thus adopting implicit path 
enumeration.  

In general, the search direction is in this case obtained by applying a flow shift, from 
alternatives whose cost is above the average to alternatives whose cost is below the 
average, that is proportional to the difference between the cost of the alternative and the 
average cost. 

The first tested algorithm is a direct application of the Exact Gradient Projection 
(EGP) method (Bertsekas, 1976), where the search direction is given by the geometrical 
projection of the gradient to the polytope (given by the non-negativity flow constraints 
and the consistency demand constraint) that forms the space of feasible solutions. This 
implies the solution of a quadratic program, which we propose to address at low 
computation cost using the Greedy approach, similarly to what is done in LUCE (Gentile, 
2014). 

The second tested algorithm considers an approximated projection method (Rosen, 
1960), here referred to as Quasi Gradient Projection (QGP), where only non-null flows 
are taken into account in the determination of the search direction; if the new iterate 
falls out of the space of feasible solutions, then the search direction is shortened so as to 
satisfy all negativity constraints. 

The third tested algorithm is an application of the Reduced Gradient Projection (RGP), 
which has been extensively applied in static assignment (e.g. Jayakrishnan et al., 1994). 
The consistency constraint (i.e., the sum of all path flows is equal to the demand flow) is 
eliminated from the optimization problem by extracting from it the flow of the current 
shortest path and by substituting in the objective function the latter with the resulting 
(linear) expression. The key idea is to get the search direction by applying a flow 
reduction to each non-minimal travel alternative that is proportional to the difference 
between the cost of the alternative and the cost of the best alternative. 

If these projections are scaled by some approximation of the cost Hessian inverse the 
method provides a Quasi-Newton search. Because the differentiation of path costs in a 
dynamic framework is not at all trivial (due to the concatenation of travel times and the 
propagation of flows), then we tested several scaling of the gradient based on the costs 
themselves. 

All such algorithms require to store in memory the (in)flow of each arc for each time 
interval per destination. Relevant savings can be achieved by recording only the positive 
flows and reconstructing the missing arc probabilities a posteriori, based on the current 
solution of dynamic shortest trees. 

A further innovation that was introduced in the proposed algorithms concerns the 
propagation on the network of demand flows travelling towards a given destination 
based on given travel times and arc conditional probabilities. In our original DTA model 
(Bellei et al., 2005) this operation requires that only the conditional probabilities of 
efficient arcs (i.e. arcs that bring the user closer to the destination with respect to some 
topological order) are positive, since this restrictive condition ensures the possibility of 
propagating the flows in topological order. However, assuming a fixed (i.e. constant 
during the day) topological order for each destination (for example resulting from some 
reference cost pattern) may be not an easy and satisfactory choice; indeed, congestion 
can evolve into several directions, so that a fixed set of efficient arcs may cut out good 
paths (in terms of congested cost). To tackle this issue, static assignment algorithms 
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introduce a (somewhat cumbersome) bush management scheme, where an acyclic sub-
graph containing all arcs with positive flow for each destination is updated to include 
whenever possible optimal arcs (i.e. arcs belonging to the current shortest tree). This 
process may considerably slow down convergence to an equilibrium on the whole 
graph. Moreover, in a dynamic context the definition of bushes presents further 
problems, connected to their temporal dimension; an attempt in this direction can be 
found in Ramadurai and Ukkusuri (2010). 

To overcome these difficulties, we successfully tested here a different approach. This 
consists in formulating and solving the Flow Propagation Model as a sequence of square 
linear systems, one for each temporal layer, where each equation represents the flow 
conservation at a node during the current interval and the unknowns are the flows 
exiting from each node during the same interval. These systems are rather sparse and 
almost triangular; can be easily solved through the Gauss-Seidel method or through 
more specific methods, such as the BICGSTAB. 

Casting the dynamic traffic assignment in terms of arc variables with implicit path 
enumeration and using a macroscopic congestion model (a variant of the Link 
Transmission Model) is a key factor for the robustness and consistency of the algorithm, 
on one side, as well as for its numerical tractability and computational efficiency, on the 
other side. 

Indeed, Yang and Jayakrishnan (2012) who applied Gradient Projection to a path 
based DTA model, explicitly mention that “the method does not converge to the perfect 
dynamic user equilibrium state due to the use of a finite set of path flow vectors and due 
to the stochastic nature of the employed microscopic simulation model”. Instead, our 
model implicitly consider all paths of the network and uses a macroscopic traffic model 
(which allows anyhow to represent spatial queues and spillback). These are probably 
the reasons why we did not find so far cases where our method did not converge (with a 
sufficient number of iterations), which leads us to state that in practice it is capable of 
reaching equilibrium. It shall however be highlighted that no proof is provided for this 
result, but only practical evidence. 

It is probably the first time that the convergence results of a DTA model are plotted 
on a logarithmic scale, like it is custom for static assignment algorithms. We will show 
how in practice convergence (measured by the relative gap) is reached in an acceptable 
number of iterations (100) to a good level (e.g. 10-4) for moderate congestion (without 
spillback) and to a fair level (e.g. 10-2) for high congestion (with spillback). 

In the seminal paper by Friesz et al. (1993) the DTA model is cast in the framework of 
functional analysis where travel time and flow variables are temporal profiles, and a VI 
formulation is proposed based on path flows. We adopt a similar approach, but our VI 
formulation is based on arc and node variables only. Although the proposed solution 
algorithm implies time discretization, we keep the concept of temporal profiles by 
assuming piecewise linear functions of time for travel times and cumulative flows. To do 
so on a fixed temporal discretization some (minor) approximation is however necessary. 

In this framework, we can consider large time interval of several minutes, which is an 
extremely relevant feature if computing times are an issue, like in operation. 

As clearly pointed out by Friesz and Mookherjee (2006), “the fundamental properties 
of DUE cannot be ignored simply for the sake of computability, while two features have 
been particularly over-simplified in many computational studies: the intrinsically nested 
nature of path delays, and the time shifted natures of arc inflows/outflows needed to 
construct a rigorous model of flow propagation”. We completely agree on this assertion 
and, based on our experience, we can confirm that any violation of this principles hinder 
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not only the consistency of the model, but also the practical possibility of converging to 
equilibrium. 

To these requirements we would add that the congestion model shall be realistic and 
include the representation of spillback and capacity drop. Indeed, the spatial back-
propagation of queues to adjacent links is a critical aspect of transport networks which 
is capable of severely deteriorating traffic conditions and is thus crucial for planning as 
well as for operation. By the way, in traffic management the local regulation policies, 
such as ramp metering, signal setting and dynamic speed control, try exactly to avoid the 
occurrence of these phenomenon. In this context, a DTA model which is not capable of 
reproducing them would be of little, if no, help. 

To support the validity of the proposed algorithms we present some numerical 
experiments on an elementary network, where it is possible to have expectations on the 
solution, as well as on larger test networks, to check how the proposed algorithms scale 
when several destinations interact on longer paths. Different time discretizations with 
intervals of 6, 60 and 600 sec. are considered. The outcome is very encouraging. 

For the first time we were able to achieve in all our experiments on the elementary 
networks the same level of convergence (in terms of gap function) that we nowadays 
expect to see in static assignment (e.g. 10-5). Actually the proposed methods are often 
able to reach nearly double precision. 

On the larger network results are still satisfactory, as the proposed methods are 
always able to reach a minimal convergence (e.g. 10-2) in few iterations, while this 
objective could not be reached through MSA. Even better results are obtained if the level 
of congestion is not too high. After all, when spillback occurs the problem becomes 
strongly non-separable, also in space and not only in time. Thus, we can expect slower 
convergence than in separable static models. 

The model resulting from this research has been implemented in a new version of the 
software DUE for VISUM, called TRE, which is the simulation engine of PTV-OPTIMA 
(Gentile and Meschini, 2011), a comprehensive solution for real-time traffic prediction 
and decision support system. 

The paper is organized as follows. Section 2 presents the mathematical background, 
including the general formulation of User Equilibrium and its solution through Gradient 
Projection methods. Section 3 presents the Dynamic Traffic Assignment problem and its 
arc formulation for implicit path enumeration. Section 4 presents at the pseudo-code 
level the solution algorithms based on GP applied to local choices. Section 5 presents the 
numerical experiments on both elementary networks and larger test networks. No 
conclusion section is provided, as this last paragraph of this introduction serves well at 
this scope. 

2. GRADIENT PROJECTION ALGORITHMS FOR THE 
USER EQUILIBRIUM PROBLEM 

2.1 FORMULATIONS OF EQUILIBRIUM 

Let’s consider a generic equilibrium problem where each user of group i must choose 
one among a non-empty set Ai of available alternatives (e.g. the paths connecting a given 
O-D pair, or the arcs exiting a given node to continue the journey toward a given 
destination). Let I be the set of homogeneous groups (wrt to the choice) among which 
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users are partitioned and A be the set of all alternatives: A = ⊔iI Ai (⊔ denotes the union 
of disjoint sets).  

The share (or fraction) pa of users choosing the generic alternative aAi is here 
referred to as its probability. The set Sp of feasible probability vectors is a non-empty, 
convex polytope: 
Sp = {pA : aAi pa = 1 , iI; pa  0 , aA} .  (1) 

The alternatives of different groups are interdependent. Specifically, the cost ca  0 of 
each alternative aA is here assumed to be non-negative and to depend (jointly) on the 
entire choice pattern p (e.g. through travel demand and arc flows, as clarified in Section 
3.3 for the case of DTA), and not (separately) on the probability pa of that alternative 
only: 

   ,a a bc c p b A  ; in compact form: c = c(p) .  (2) 

We assume that users are rational decision makers and are perfectly informed; they 
will then choose an alternative with minimum cost (deterministic behavior). On this 
base, no user finds convenient to unilaterally change alternative at equilibrium. 

In other words, at equilibrium for each group all used alternatives have the same 
minimum cost, and no unused alternative has a lower cost. Therefore, the average cost 
among users is equal to the minimum cost. In the case of route choice on transport 
networks, the above statements are also referred to as Wardrop Principles (1952). 

The classical way of formulating the deterministic equilibrium is to find a feasible 
choice pattern p*Sp that satisfies the following Complementarity Conditions (CC): 

          * * * 0 ,min
a i a ic c p a A i Ip p  ,  (3) 

where, for each group iI, it is: 

   ,min

i a ic Min c a A  . (4) 

At equilibrium p*, if an alternative aAi is used, i.e. pa* > 0, then Equation (3) requires 
that its cost is minimum, i.e. ca(p*) = cimin(p*) ; if instead that alternative is unused, then 
its cost can be higher than the minimum, because Equation (3) is satisfied for pa* = 0. 

The equilibrium problem can be also formalized as a (Finite-Dimensional) Variational 
Inequality (VI), where a feasible choice pattern p*Sp is sought such that (the sum of) 
the average cost for all groups c(p*)T  p, for p = p*, is minimal wrt any (other) pSp : 

   


    
* * 0 ,a a a p

a A

c p p Sp p  ;  (5) 

in compact form: c(p*)T  (p* – p)  0 , pSp . 
Note that the cost pattern c(p*) is that corresponding to the candidate equilibrium p*. 

This is also called descriptive (or Nash) user equilibrium. Instead, the problem of finding 
the minimum average costs c(p)Tp is called normative system equilibrium (but it will 
not be addressed here). 

The first application of VI to traffic assignment was proposed by Smith (1979) and 
Dafermos (1980) for the static case. 

The above VI (5) reflects the definition of equilibrium: if at given choice pattern p*Sp 
for some user it is possible to change the alternative to a better one, the resulting new 
choice pattern pSp would imply a lower average cost c(p*)Tp ; then p* is not a solution 
of the VI nor an equilibrium. If the contrary is true, then p* is a solution of the VI and an 
equilibrium. 

The following statements are all equivalent, thus showing the coincidence of the two 
formulations (3) and (5): 
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Figure 1. Graphic interpretation of VI, for the case of one group with two alternatives. 

In grey, the normal cones to the feasible set in points A and B; their unfeasible portion is 
dashed (costs are non-negative). 

 
With reference to Figure 1, equilibrium can occur: in points like A, where both 

alternatives are used with the same cost and the cost vector is then perpendicular to the 
feasible set of probabilities Sp ; in points like B, where some alternative is not used, and 
the opposite of the cost vector belongs to the normal cone wrt the feasible set (the 
normal cone at point p*Sp is the set of all directions with which no p-p* with pSp 
makes an acute angle). The latter is actually the general case, because the normal cone in 
A is the perpendicular line to Sp ; this is exactly what stated by the VI. If the cost vector is 
the gradient of an objective function, the VI is the necessary first order condition for its 
minimization in the feasible set. 

Let (p)[0,1] be the relative gap function: 

 
 

 

 
    
  

1 , st:
 

T

pT

c
Max S

c

p x
p x

p p
 . (7) 

Given a candidate equilibrium pSp , the relative gap (p) yields the best improvement 
on the sum of average costs that is achievable by shifting choice probabilities to better 
alternatives. At equilibrium the gap function shall then be null, as by definition no 
improvement is achievable. The problem can then be formulated as the following non-
differentiable Min-Max program (MM): 

   , st: pMin Sp p  . (8) 

The relative gap function is also equivalent to one minus the ratio between the sums 
of minimum and average costs: 

p2 

p1 

-c(pA*) 

1 

1 0 

-c2 

-c1 

pA* 

-c(pB*) pB* 

-c1 
-c2 

Sp 
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where, for each group iI, it is: 



 
i

med

i a a
a A

c c p  . (10) 

Indeed, given a cost pattern c(p), the minimum average cost for all groups is obtained by 
assigning all users to minimum cost alternative(s): 

 

 
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 
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1

minT
T

i
p

i I
pT T med

i
i I

cMin c Sc
Max S

cc c

pp x xp x
x

pp p p p
 . (11) 

The gap function can be taken as an indicator of how far we are from an equilibrium 
at the current choice pattern p, and can thus be used in the stop criterion of the solution 
algorithm. 

Interestingly, by summing up Equations (3) we get: 

    0med min

i i
i I i I

c c
 

  p p  . (12) 

Based on (9) this is another formulation of equilibrium, i.e. the problem of finding p*Sp 
as the feasible Zeros of a Function (ZF):  
(p*) = 0 . (13) 

Let P(x, X, G) denote in general the G-norm projection of xA on a convex set XA, 
i.e. the one to one map which provides the unique solution y* of the following minimum 
distance problem: 

           
 

, st:
T

Min X
G

y x y x G y x y  , (14) 

where G is any symmetric positive definite matrix. Also based on Figure 1, VI (5) is 
equivalent to the following fixed-point problem based on (minus) Cost Projection (CP):  
p* = P(p* - G-1  c(p*), Sp , G) , (15) 
where G is useful to scale the costs in the space of probabilities. Equilibrium is then 
attained when the projection of the cost vector opposite, scaled by the inverse of G, 
coincides with the current probability vector.  

The above fixed-point formulation of equilibrium is totally different from the classical 
Fixed-Point problem (FP) based on the composition of two functions, one for the 
demand and the other one for the supply (e.g. Cantarella, 1997): 
p*  p(c(p*)) ; (16) 
here the (one to many) map p(c) expresses the deterministic choice model of Wardrop. 
This map yields all feasible probability vectors p that, for a given cost vector c, satisfy 
the complementarity conditions (3). 

The choice map p(c(p)) and the projection map P(p - G-1  c(p), Sp , G) coincide only at 
equilibrium. Note that (a point of) the choice map is usually obtained as an all-or-
nothing assignment to minimum cost alternatives, thus being intrinsically unstable and 
discontinuous when close to an equilibrium of type A; instead, the projection map is 
continuous, if the cost function is such, and shifts probabilities to better alternatives in 
inversely proportional manner to their cost (more details will be provided in Section 
2.2), thus being more suited for equilibrium algorithms. 
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If the cost function is continuously differentiable and its Jacobian c(p) is symmetric 
for all pSp (not applicable in DTA models), then VI (5) is equivalent to the first order 
necessary conditions of the following Non-Linear optimization program (NL): 

    , st:
T

pMin c d S
 
     
 


p

0

p x x p  ,  (17) 

where the curve integral provides the same result following any path in the space of 
probabilities from 0 to p. Indeed, the gradient of the objective function is the cost vector: 
(p) = c(p) .  (18) 

The first application to traffic assignment of this approach can be found in the 
seminal work of Beckmann et al. (1956). 

Referring to (15), we will then talk of Gradient Projection also in the general (non-
differentiable or asymmetric) case, where no objective function is available. In other 
(naïve) words, VI can be interpreted as the first order conditions of some optimization 
problem which may be impossible to formulate. The cost function of the VI is thus the 
gradient of this “phantom” NL. 

The equilibrium can then be equivalently be formulated as CC, VI, MM, ZF, CP, FP and 
NL (only in case of symmetry). Existence of a solution is ensured if c(p) is continuous 
and can be proved by applying Brower’s theorem to the FP (16). Uniqueness of the 
solution is ensured if c(p) is strictly monotone (increasing) over Sp: 
(c(p2) – c(p1))T  (p2 – p1) > 0 ,  p2Sp ≠ p1Sp ; (19) 
a proof by contradiction is provided in Cantarella (1997). 

2.2 BACKGROUNDS ON PROJECTION ALGORITHMS 

Inspired by the fixed-point formulation (15), one of the most immediate algorithms to 
solve VI (5) and then obtaining an equilibrium is the Gradient Projection (GP) method. 
Like other methods (e.g. Newton), this consists in solving at each iteration n a VI with an 
approximated cost function cn(p)  c(p) to obtain the next iterate pn+1 : 
cn(pn+1)T  (pn+1 – p)  0 , pSp .  (20) 
In this case, the approximated cost function is defined as a deviation from the original 
cost function evaluated at the current iterate pn :  
cn(p) = c(pn) + G  (p – pn) . (21) 
By applying the CP formulation (15) to the VI (20) , based on (21) we have: 
pn+1 = P(pn+1 - G-1  (cn(pn+1) = c(pn) + G  (pn+1 – pn)) , Sp , G) . (22) 
Thus, the solution of the VI relative to the generic iteration n is obtained by calculating 
the projection of the (suitably scaled) anti-gradient – G-1  c(pn) on Sp : 
pn+1 = P(pn – G-1  c(pn) , Sq , G) . (23) 

The algorithm starts with a feasible choice pattern p1Sp and for n = 1, 2, … obtains 
through (23) a sequence of feasible probability vectors {pn}. 

The latter converges to the unique p* which solves the original VI, under the 
following conditions: the cost function c(pn) is Lipshitz continuous (i.e. there is a limit in 
how fast it can change) and strongly (which is more than strictly) monotone for each 
p2Sp and p1Sp: 
||c(p2) – c(p1)||2  ||p2 – p1||2 , (24) 
(c(p2) – c(p1))T  (p2 – p1)  ||p2 – p1||22 , (25) 
with constants  and  such that: 
(/min(G))2 < 2(/max(G)) , (26) 



Gentile G.   Solving a DUE model based on Splitting Rates with GP algorithms 

Submitted 15.02.2016 to Transportation Research B 11 

where min(G) and max(G) denote, respectively, the smallest and largest eigenvalue of G. 
The proof of the above (and more general) results can be found in Harker and Pang 
(1990). A similar result is provided by Friesz and Mookherjee (2006) for a DTA model 
with continuous time formulation.  

In practice, the above conditions are not proved to apply in DTA, so that the solution 
may be not unique and the sequence {pn} may not converge to it. However, we can 
consider the probability vector produced by the projection (23) as a good direction for a 
local search, while the new iterate shall be obtained through a line search or 
backtracking technique by taking a suitable step size (a more formal discussion on these 
issues can be found in Facchinei and Pang, 2003). 

To this aim, the availability of the gap function (p) as a metric of equilibrium is only 
partially helpful, because its calculation may have the same computational cost of the 
direction itself. Thus we can use a nonsummable diminishing step size. 

Similarly, by applying the Method of Successive Averages (MSA) for solving the fixed-
point problem CP (15) we obtain the following iteration rule: 
pn+1 = nP(pn – G-1  c(pn)) , Sp , G) + (1-n)pn . (27) 

Under the assumptions of the Blum theorem (1954), the convergence of this method 
is guaranteed (almost surely, in presence of random variables) if the sequence of step 
sizes {n} satisfies the following conditions: 


    , lim 0n n

n
n

 . (28) 

The first condition guarantees that the step sizes will not be too large, while the 
second collectively assures that the step sizes will not be too small. In the conventional 
MSA it is: n = 1/(n+1) . However, at the beginning n could be too large, and therefore 
the gap function does not decrese until a number of iterations. In contrast, after a large 
number of iterations, the step size could become too small, such that the convergence 
speed becomes extremely slow. Coping with these issues, Liu et al. (2009) provide 
several methods for choosing a sequence of steps that comply with (28), depending on 
the required accuracy one wants to reach. 

Note that the MSA algorithm is the most widely used approach to solve DTA problems 
but it is generally applied to the FP (16), as in Mounce R. (2007) and Mounce and Carey 
(2014), where convergence is proved under strict monotonicity assumptions. However, 
we shall underline that the proof of convergence does not necessarily imply good 
performance in practice. This motivated our research for better performing algorithms. 

In our DTA model (see Section 3), continuity holds (for a formal proof see Han et al., 
2015), but monotonicity doesn’t. For this reason, the GP algorithms that will be 
proposed in the following are only heuristics with no guarantee of convergence. 
Nevertheless, in our numerical tests the methods always converged to an equilibrium. 
Further investigation on the Network Congestion Model may allow to identify specific 
mathematical properties and conditions to ensure convergence and uniqueness, but this 
is out of the scope of this paper. 

2.3 THE PROPOSED METHOD 

In this paper we will investigate the performance of a class of GP methods to solve 
DTA by applying the following generic iterate: 
pn+1 = P(pn –Gn-1  nc(pn)) , Sp , Gn) . (29) 

Here, the matrix Gn can be chosen at each iteration. This allows for a better scaling of 
the cost/gradient, which due to congestion can assume a large range of values. 
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Moreover, the nonsummable diminishing step sizes n are applied directly to the 
gradient c = c(pn). This proved to be effective in our numerical tests, because it makes 
possible to reach a null value of probability for a given alternative (if needed) in a finite 
number of iterations, which is impossible when adopting the classical MSA approach 
(27). 

We adopted the following formula for the step size of iteration n: 
2

1

1

n

badn



 
   

  
 , (30) 

where nbad is the number of “bad” iterations obtained in the previous n-1 iterations. This 
events induce to scale down the gradient in order to obtain a smoother, but slower, 
convergence. An iteration is considered as bad, if the gap function has not decreased 
sufficiently (as desired), or has increased instead: 

 
1

3 1
2

n

badn Bool


 



      ; (31) 

the Boolean function applies to a Boolean expression x : 
Bool(x) = 1, if x = TRUE, Bool(x) = 0, if x = FALSE. 
Note that this check is possible only a posteriori with one iteration of delay, because the 
gap function n is available after re-computing the minimum costs during iteration n. In 
our numerical examples we have used a multiplier 1 = 2, an exponent 2 = 0.66 and a 
gap reduction factor 3 = 1 . 

We assume that matrix Gn / n is diagonal with known positive entries ga > 0 for aA, 
each one suitable to scale the cost ca into the space of probabilities. A variety of options 
can be adopted leading to different algorithms. 

Two practical ways of defining the scale factors are: 
ga =  cimin / (n) , aAi ; (32) 
ga = ca / (n), aAi . (33) 

The additional parameter  > 0 (whose typical value is 1) is a fixed cost/gradient 
multiplier and can be used to improve convergence. As mentioned already, values lower 
than 1 ensure a smoother but slower convergence, while values higher than 1 may 
accelerate convergence at the risk of instability. 

If it is possible to compute the partial derivatives of the cost function, by setting: 

 1 a

a

n a

c
g

p


 
 

p
 , (34) 

we obtain a Linearized Jacobi method, with better convergence properties than the 
simple Gradient Projection. A similar approach is to consider for aAi the derivative of 
the non-common cost with the best alternative ai*ArgMin(ca , aAi) of the group: 

   *1
iaa

a

n a a

cc
g

p p

 
        

pp
 . (35) 

Although no proof of convergence is available, we will then consider as a valid iterate 
for finding the equilibrium the projection p̂ = pn+1 of the anti-gradient –c in the polytope 
of feasible probabilities Sp calculated at the current choice patterns p = pn Sp . Based on 
(14), this is the result of the following quadratic program: 

2

ˆ ˆ ˆ0.5 , st: 1, ; 0 ,
i

a
a a a a a

a A a Aa

c
Min p p g p i I p a A

g 

  
           
   

   , (36) 

where the G-norm distance between point p–nG-1c and its projection p̂ on the feasible 



Gentile G.   Solving a DUE model based on Splitting Rates with GP algorithms 

Submitted 15.02.2016 to Transportation Research B 13 

set Sp is minimized.  
Problem (36) can be transposed in the space of probability shifts pa = p̂a – pa : 

2

0.5 ,st: 0 , ; 0 ,
i

a
a a a a a

a A a Aa

c
Min p g p i I p p a A

g 

  
             
   

   . (37) 

The solution of (37) is unique (we have a strictly convex objective function and non-
empty compact convex domain) and can be applied in the Exact Gradient Projection 
(EGP) algorithm to find the new iterate of the probabilities: 
ˆ

a a ap p p  . (38) 

 

 
Figure 2. Graphic interpretation of the Gradient Projection iterate for the case of two 

alternatives. If c1/g1 < c2/g2 , like depicted above, then p1 > 0 and p2 < 0. 

2.4 THE GREEDY SOLUTION APPROACH 

The Lagrangian problem of (37) is: 
2

0.5 , st: 0 ,
i

a
a a i a a a

a A i I a Aa

c
Min L p g p p p a A

g  

  
               
   

    . (39) 

The derivative of the Lagrangian for an alternative aAi of group iI is: 

a a a i

a

L
c p g

p


     


 . (40) 

The first order conditions of (39) are then: 

  0 ,

0 ,

0 ,

0 ,

a a

a

i

a

a a

L
p p a A

p

L
i I

L
a A

p

p p a A


     


 

  


 
   


     

,   

    0 ,

0 ,

,

0 ,

i

i a a a a a

a
a A

i a a a

a a

c p g p p a A

p i I

c p g a A

p p a A



           


   

      


    


 . (41) 

Based on the first equation in (41), for each alternative at least one of the two 
complementarity condition shall be equal to zero. On this base, we can partition the 

p2 

p1 

-nG-1c 

p 

1 

1 0 

p 

-c2/g2 

-c1/g1 

p̂ 
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alternatives of each group iI in two sets, namely Bi , including the alternatives that have 
a positive probability in the projection, and Ai-Bi , including the other alternatives that 
are set to zero in the projection: 

,

,

i a
a a i

a

a a i i

c
p p a B

g

p p a A B

 
     

     

 . (42) 

Using (42) in the consistency constraint yields: 

0 0
1

i i i

i i i i

i

a
a

a B a A Bai a
a a i

a A a B a A Ba

a B a

c
p

gc
p p

g

g

  

   




 

       

 
  


 , (43) 

1

1
i

i

a
a

a B a

i

a B a

c
p

g

g





 
  

 
 




. (44) 

Let’s denote by ciavg(Bi) the average cost of the alternatives belonging to set Bi 
weighted by the scale factors reciprocal 1/ga: 

 
1

i

i

a

a Bavg a
i i

a B a

c

g
c B

g










 . (45) 

Note that, based on (45), if the scale factors of each group are all equal as in (32), then 
the weighted average cost ciavg(Bi) becomes the mean cost of used alternatives: 

  i

a
a Bavg

i i

i

c

c B
B





 . (46) 

Instead, if each scale factor is proportional to the corresponding cost as in (33), then 
the weighted average cost ciavg(Bi) becomes the reciprocal of the arithmetic mean of the 
reciprocal costs (also called the harmonic mean): 

 
1

i

iavg

i i

a B a

B
c B

c




 . (47) 

Equation (43) can then be rewritten also as follows:  

 
1

i i

i

a
a A Bavg

i i i

a B a

p

c B

g

 



  




 . (48) 

Assume a set Bi is given. We can compute the value of the Lagrangian multiplier i 
through (48) and then the probability shifts pa through (42). To fully satisfy (41), 
including the last two conditions, and thus state that Bi is optimal, the following must 
hold true: 

,

0 ,

a a ai i i

a a i

c p g a A B

p p a B

       


    
 . (49) 

Using the probability shifts of (42), and denoting: 
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xa = ca – pa  ga ,  (50) 
the above condition becomes:  

,

,

i ia i

ai i

x a A B

x a B

    

   

 . (51) 

Let’s ideally order along a line the alternatives for increasing value of xa . Based on 
(51), the optimality of Bi is ensured if i separates the two groups of alternatives. Thus, 
set Bi is necessarily constituted by the first |Bi| alternatives. The idea is then to eliminate 
from Bi all the alternatives with xa  i , because based on (42) the corresponding 
projection implies a non-positive probability: pa + pa = (i-xa)/ga  0, which contradicts 
the assumption on Bi . 

Based on the above considerations, a simple method for finding a set Bi that actually 
satisfies (51), and thus yields through (44) and (42) the desired probability shifts, is 
provided by the following “greedy algorithm”: 

 
Greedy Algorithm for Exact Gradient Projection 
start with Bi = Ai , 
then iteratively: 
 compute i through (44) , 
 compute pa through (42) , 
 eliminate from Bi the alternatives with pa + pa  0 , 
 loop until no further alternative has been eliminated . 
 
The algorithm stops in less than |Ai| iterations, because each time some alternative is 

eliminated from Bi . To prove the validity of the above Greedy Algorithm, let’s rewrite 
(44) using (50) with reference to set Bi as follows: 

 

1

1
i

i

a

a B a
i i

a B a

x

g
B

g







 




 . (52) 

The following inductive relation holds: 

 

 
1 1

1
i

i

i i b
a B b a b

i i

a B a

B b x
g g

B

g

 



   
       

  
 




 . (53) 

which shows that i(Bi) is an average with positive weights between i(Bi-b) and xb . 
Hence, i(Bi) is in the middle. On this base, for each alternative b that we eliminate from 
Bi it is:  
pb + pb  0  xb  i(Bi)  i(Bi)  i(Bi-b) . (54) 

Therefore during the Greedy Algorithm i decreases while alternatives are removed 
from Bi ; the algorithm stops at most when Bi is a singleton and in any case when i(Bi) 
separates the two set of alternatives, as required by (51). 

In conclusion, the optimal probability shifts are: 
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 
1

,
1

,

i i

i

avg

i i a a
a b i

b A Ba

b B b

a a i i

c B c g
p p a B

g

g

p p a A B

 




 
     



     




 . (55) 

The probabilities of set Ai-Bi that are put to zero by the shifts are spread among the 
remaining active alternatives Bi proportionally to the reciprocal of the scale factors. 

Because at the solution i(Bi) shall separate the two sets, based on (53) it is also 
minimum. Based on (52) if set Bi is constituted by only one alternative, say b, we have: 
i(b) = xb + gb . (56) 

The algorithm can then be improved with the following better initialization of Bi :  

 : i i a b bB a A x x g     ,  (57) 

where b can, for example, be (one of) the alternative with minimum cost ca or, even 
better, (one of) the alternative with the lowest i(a) . 

2.5 QUASI GRADIENT PROJECTION 

The Quasi Gradient Projection (QGP) is obtained with reference to a specific subset Bi 
of alternatives without considering the non-negativity constraints, while the 
probabilities of set Ai-Bi are not modified. 

In this case, the first order conditions of (39) yield: 

0 ,
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  


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0 ,
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c p g a B

p i I


       

    




 . (58) 

Substituting the shift given by the first equation of (58) in the second equation we get:  
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a B a B a
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 



 
       


 


 . (59) 

Then probability shifts are: 

 
,

0 ,

avg
i i a

a i

a

a i i

c B c
p a B

g

p a A B

 
   


    

 . (60) 

On this basis, if the cost is higher than the average, then the probability will decrease; 
the contrary is true if the cost is lower than the average. 

It is immediate to verify that if set Ai-Bi is constituted by alternatives with null 
probability pa = 0, then the above probability shifts coincide with those of the gradient 
projection (55). 

The shifts provided by (60) can lead to a negative probability for some alternative 
aBi. Moreover, if the current probability pa of such alternative is null (so that pa = 0 and 
pa < 0), then clearly the search direction p+p obtained from set Bi is unfeasible and 
this alternative should be removed from Bi . 
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Once Bi has no such alternatives, if pa >0 and pa + pa < 0, then we shall “shorten” the 
step in the search direction until it satisfies the non-negativity constraint by applying the 
following correction: 

1, , : 0a
i i a

a

p
Min a B p

p

 
       

 
 ,  (61) 

ˆ
a a i ap p p   . (62) 

The set Bi should be the largest possible. Its determination is then attained through 
the following algorithm: 

 
Greedy Algorithm for Quasi Gradient Projection 
start with Bi = Ai , 
then iteratively: 
 compute pa through (60) , 
 eliminate from Bi the alternatives with pa = 0 and pa < 0 , 
 loop until no further alternative has been eliminated . 
finally apply (61) and (62). 

2.6 REDUCED GRADIENT PROJECTION 

The probability of the best alternative ai*ArgMin(ca , aAi) of each group iI can 
be eliminated from problem (17) using the consistency constraint: pai* = 1 - aAi-ai* pa ; 
thus obtaining a problem with non-negativity constraints only, whose objective function 
can be written as: 

  *
*

, *, 1
i

i i

T

a a i i a a
a A a

c d p p a A a p p
 

         
p

0

x x  .  (63) 

The Reduced Gradient Projection (RGP) considers in principle as search direction the 
anti-gradient of the above objective function, for each aAi -ai*: 

*ia a

a

c c
p


  


 .  (64) 

This shall be suitably scaled in order to apply shifts it in the space of probabilities. 
The scale factor is doubled wrt that used in the EGP and QGP algorithms because the 
difference cost from the best alternative is (on average) twice as that from the average 
cost: 

*
, *

2
ia a

a i i

a

c c
p a A a

g


    


 . (65) 

The resulting shifts, which are all non-positive, may however produce some negative 
probabilities. We have then to limit the projection so that the non-negativity constraints 
are satisfied. Finally, the new iterate of the best alternative ai* is obtained through the 
consistency constraint: 

 

*
*

ˆ 0, , *

ˆ ˆ1
i

i i

a a a i i

a a
a A a

p Max p p a A a

p p
 

      

  




 . (66) 

Mahut and Florian (2008) propose to consider as reference alternative ai* the one 
with the highest probability, instead of that with the lowest cost. In our numerical test 
this option did not show evident advantages wrt the classical one. Moreover, they 
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propose a “quasi” reduced gradient approach by shortening the search direction as in 
(61). Again, this option did not prove to be clearly convenient wrt the classical one. 

The Min-Max Projection (MMP) is a variant of the RGP algorithm (e.g. Dial, 2006). It 
involves only the best alternative ai* and the worst used alternative ai


ArgMax(ca , 

aAi: pa >0). The resulting projection is computed as follows: 

 

*

*
*

2

ˆ 0,

ˆ , *

ˆ ˆ1

i i

i

i

i i i

i

i i

a a

a

a

a a a

a a i i i

a a
a A a

c c
p

g

p Max p p

p p a A a a

p p







  



 


 



   



    
  





 . (67) 

3. ARC BASED FORMULATION OF DTA 

3.1 NETWORK REPRESENTATION 

In a dynamic framework each variable is a function of the clock time . We assume 
that the network is empty out of the simulation period . 

The road network constituting the transport supply is represented here by means of a 
directed graph (N, A), where N is the set of nodes and A  N×N is the set of arcs. Each arc 
aA is described through a vector of characteristics a() that allow to represent its 
performance (time and cost) and its dependence on traffic flows (congestion); arc 
characteristics are usually constant in time, but may presents temporary variations. The 
initial node of the generic arc aA is referred to as tail and denoted a–N, while the final 
node is referred to as head and denoted a+N. The set of arcs exiting the generic node 
iN is referred to as it forward star and denoted i+ = {aA: a– = i}. Symmetrically, the set 
of arcs entering node iN is referred to as backward star and denoted i– = {aA: a+ = i}. 

Let Z  N be the subset of nodes, called zone centroids, where trips can start and end. 
Let G be the set of user classes. The travel demand is given as a fixed (but time varying) 
flow dodg() of class gG users departing at time  from origin oZ and directed toward 
destination dZ. We assume that on the graph there exists a non-empty set Kid of acyclic 
paths connecting each node iN to every destination dZ. Let K = odZZ Kod . 

3.2 FIXED-POINT SCHEMA 

In this section the DTA model is presented through a conceptual schema, as a Fixed 
Point problem. A more convenient mathematical formulation as a Variational Inequality 
problem with full explanation of all variables and functions will be provided later in this 
paper. Here we concentrate our attention on the essential aspects of the modelling 
architecture. 
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Figure 3. Schema of the DTA model with implicit path enumeration. 
 
Rounded boxes are functionals, while sharp boxes are variables. The dashed boxes 

indicate external input. The dotted arrows show the crucial role of travel times in DTA, 
beyond disutility.  

The whole outer cycle is the Dynamic User Equilibrium (DUE) problem, while the 
inner cycle between FPM and NCM is the Dynamic Network Loading (DNL) problem. 

 
NCM – Network Congestion Model. It takes as input the arc volumes, that are typically 

aggregated from destination specific flows, and the arc characteristic. It yields as output 
the arc exit times. This sub-model aims at reproducing various traffic phenomena, from 
hypocritical congestion to queue spillback, which imply a different level of complexity.  

ACM – Arc Cost Model. It takes as input the travel times and the arc characteristic. It 
yields as output the arc costs perceived by each user class, considering their different 
values of time and tolls. 

RCM – Route Choice Model. It takes as input the arc costs, as well as the arc travel 
times that allow for the dynamic (forward) concatenation of perceived utilities. It yields 
as output the expected costs (arc satisfactions) to reach the destination using each local 
alternative, that are then used to compute the arc conditional probabilities. However, it 
can be convenient to perform the latter computation directly in the FPM.  

FPM – Flow Propagation Model. It takes as input the travel demand and the local 
choices, as well as the travel times that allow for the dynamic (forward) propagation of 
flows. It yields as output the arc flows of each class directed towards each destination, 
that are then aggregated into arc volumes.  

 

Notation of the Dynamic User equilibrium 
pagd()  probability that, at time , users of class gG directed toward destination 

dZ choose to enter arc aA conditional on being at its tail node – these are the 
pa of the previous section (Splitting Rates) 

dodg()  demand flow of class gG travelling from origin oZ to destination dZ and 
departing at time  

a() characteristic vector of arc aA at time  
qagd()  flow of class gG users entering arc aA at time  directed to dZ 

a() NCM 

ACM 

cag() 

FPM dodg() 

padg() 

RCM 

qadg() 

wadg() 

a() 

qa() 

DNL 
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qa()  volume entering arc aA at time  
a()  exit time of arc aA for users entering at time  
cag()  cost of arc aA perceived by users of class gG entering it at time  
wagd()  expected cost perceived by users of class gG entering arc aA at time  and 

directed toward destination dZ – these are the ca of the previous section 
 

Arc conditional probabilities reflect the route choice taken at each tail node by users 
of a certain class directed toward a given destination. For the deterministic case, the 
global path choices form origins to destinations can be consistently derived as a 
sequence of such local choices; note that the same is true for the Logit case, while it is 
false for the Probit case (Gentile and Papola, 2006). Arc probabilities play a crucial role 
in the proposed model formulation, since they can be exploited in the definition of a 
sound variational inequality, because their feasibility set is simple and well defined 
(non-negativity and tail sum equal to one). 

From a model perspective, arc probabilities padg() are the result of the route choice 
model; they are derived by the arc satisfactions wadg() applying a discrete choice model 
(in our case the deterministic Wardrop model) locally at the tail node. But from an 
algorithm perspective, they can be conveniently computed together with the flow 
propagation model; actually, here the new arc probabilities at each iteration are also the 
result of the Gradient Projection algorithm which modifies the old (current) variables to 
determine a new search direction. All this can be technically done at once in the FPM.  

3.3 MODEL EQUATIONS 

The performance pattern of the network is given by the travel time ta() of each arc 
aA for users entering it at time  and by the corresponding travel cost cag() for each 
class gG. The travel time is obtained from the exit time as follows: 

   a at        , (68) 

while the cost is a linear function of the travel time; for example we can assume: 

     ˆ vot

ag ag g ac c t       ,  (69) 

where ĉag() is the monetary cost of arc aA and class gG while gvot  0 is the class 
value of time. Note that the proposed supply model is multiclass but not multimodal, 
because the travel time of an arc is the same for all users and only the cost may differ 
among classes. The extension to users classes with different vehicle speeds is not trivial 
as in the static case, as it requires a more complex traffic model. 

Due to congestion phenomena, the exit time of the generic arc aA at time  depends 
in general on the entire flow pattern qA = {qa(), aA}: 

   ,a a A    q  .  (70) 

The above Network Congestion Model is crucial for DTA, but is not the focus of the 
present paper. In particular, we will consider the Network Performance Function (NPF) 
proposed in Gentile (2015), which is based on the GLTM (Gentile, 2010). However, the 
proposed framework is valid also for other supply models. 

We first introduce the model with explicit path enumeration. This will allow to better 
highlight the difference with the proposed model with implicit path enumeration. 

The generalized cost ckg() of path kK for class gG is assumed to be additive, i.e. it 
is given by the sum of the costs associated with the Ak  A arcs constituting the path, 
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each taken at the time ka[-]() when a user that entered k at time  reaches the initial 
node a– of arc aAk by following k : 

      
k

kg ag ka
a A

c c




     .  (71) 

The exit time ki() of the sub-path of kK from its initial node until node iNk (whose 
arcs are Aki  Ak) for users that entered k at time  is given by the following 
concatenation formula: 

      
ki

ki a ka
a A

t




       .  (72) 

The route choice of users is reproduced through a deterministic model where only 
(dynamic) shortest paths (i.e. with minimum cost) are utilized. Then, the probability 
pkg() of choosing the generic path kKod at time  for users of class gG travelling 
between oZ and dZ shall satisfy, beyond non-negativity pkg()  0 and consistency 
kKod pkg() = 1, the following complementarity condition: 

       0kg odg kgc w p       ,  (73) 

where widg() is in general the cost of the shortest path from node iN to destination 
dZ for users of class gG leaving i at time  : 

    ,idg kg idw Min c k K      .  (74) 

Based on (73) if k is used, i.e. pkg() > 0, then it is shortest, i.e. ckg() = wodg(). 
The flow qkg() of class gG users entering the generic path kKod at time  can be 

simply obtained by multiplying its choice probability pkg() by the demand flow of class 
g between oZ and dZ : 

     kg kg odgq p d      .  (75) 

The flow qadg() of class gG users travelling toward destination dZ that enter arc 
aA at time  is given by: 

          1

1

:od k

ka

adg kg ka
o Z k K a A

q q






  

 
    


   .  (76) 

Equation (76) comes from the FIFO rule, that applied to a generic network element k 
states: 

    1in out
k k kn n     ,  (77) 

where nkin() and nkout() are, respectively, the cumulative inflow and outflow of k at 
time , while k-1() yields the entrance time for given exit time , that is the inverse of 
k() yielding the exit time for given entrance time . Indeed, taking the derivatives of 
(77) we have: 

  
 

   
  

 
 

1 1 1

1

1

in out
k k k k kin out

k k k

k

n n
q q

  





        
       

    
 ,  (78) 

where qkin() and qkout() are, respectively, the inflow and outflow of k at time . 
The volume qa() entering arc aA at time  is given by the sum of all the relative 

destination and class arc flows multiplied by the class vehicle equivalents geqv  0 : 

   eqv
a g adg

d Z g G

q q
 

      .  (79) 

We now introduce the model with implicit path enumeration. 
We can define the cost of the shortest path from arc aA to destination dZ for users 

of class gG leaving its initial node a–N at time  through the following equation: 
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      adg ag aa dg
w c w       . (80) 

On this base we can express the cost of the shortest path from node iN as the result 
of the following local choice among the arcs i+ of the forward star: 

    ,idg adgw Min w a i     . (81) 

The combination of (80) and (81) yields a recursive problem (a square system of non-
linear equations) that can be solved by processing nodes in reversed topological order 
starting from the destination, as shown later on in this paper. 

The probability padg() that users of class gG travelling toward destination dZ 
enter arc ai+ conditional on being in its initial node iN at time  shall satisfy, beyond 
non-negativity padg()  0 and consistency ai+ padg() = 1 conditions, the following 
complementarity condition, that is the local version of (73): 

       0adg idg adgw w p       .  (82) 

Based on (82), if a is used, i.e. padg() > 0, then it is shortest, i.e. wadg() = widg(). 
Then, the arc flows are the result of local choices: 

     adg adg idgq p q      . (83) 

The flow qidg() of class gG users travelling toward destination dZ that exit node iN 

at time , based on (77), is given by: 

      
 1

1 a

idg idg adg a

a i

q d q








 
      


  . (84) 

The combination of (83) and (84) yields a recursive problem (a square system of 
linear equations) that can be solved by processing nodes in topological order starting 
from origins, as shown later on in this paper. 

The probability of the generic path kKod resulting from the sequential model is: 

      
k

kg adg ka
a A

p p




     . (85) 

3.4 VARIATIONAL INEQUALITY FORMULATIONS OF DUE 

The DUE problem can be formulated through the following Variational Inequality in 
terms of path probabilities: 

      

 
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 
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

p p

p  , (86) 

where, based on (75),(76),(79),(70),(68),(69), from (71)-(72) we have that each path 
cost ckg() is a function of the path choice pattern pKGT : 

   ,kg kg KGc c


  p  .  (87) 

Note that (87) includes the solution of DNL, because (76) requires the exit times 
which are produced by (70). This is essentially the VI formulation proposed by Friesz et 
al. (1993), but casted in the space of path probabilities instead of path flows. Although 
here the departure time choice is not included, it is possible to do so as in Bellei et al. 
(2006). 

As an alternative, we propose here a formulation of DUE based on local choices at 
each node iN among its forward star made by users of class gG directed toward each 



Gentile G.   Solving a DUE model based on Splitting Rates with GP algorithms 

Submitted 15.02.2016 to Transportation Research B 23 

destination dZ ; the resulting Variational Inequality is in terms of arc conditional 
probabilities: 

      

 

 
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 
 
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

p p

p ,  (88) 

where, based on (83)-(84), (79),(70),(68),(69), from (81)-(80) we have that each arc 
satisfaction wadg() is a function of the arc probability pattern pADGT : 

   ,adg adg AGDw w


  p  .  (89) 

Note that also (89) includes the solution of DNL, because (84) requires the exit times 
which are produced by (70). The exit times could be, for example, obtained from the 
conditional probabilities through the Cell Transmission Model or Link Transmission 
Model (although here we did a different choice considering the NPF). 

The gap function of the VI (88) can be conveniently written, like in (9), as: 
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 ; (90) 

if the average cost of local choices at the current solution (denominator) is equal to the 
minimum cost of the node, then the gap function is null, no local choice can be improved, 
and we hence have equilibrium. 

In the following we prove that if p*ADGT is a solution of VI (88) for implicit path 
enumeration, i.e. an equilibrium at the node local level, then the p*KGT obtained through 
(85) is a solution of VI (86) for explicit path enumeration, i.e. an equilibrium at the path 
global level. Therefore, if the proposed heuristic has success and finds a solution of the 
arc-based equilibrium, then  also a solution of the path-based equilibrium is found. 

 
Theorem 1. Equivalence of local and global equilibrium for DUE. 

Based on (6) we can equivalently prove the following for each dZ: 

      

      
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c w p k K o Z

        

         

 (91) 

Proof. 
Consider the generic path kKod and let: 

      * *

k

kg adg ka
a A

p p




     . (92) 

If pkg*() = 0, then the right side of (91) is satisfied. Let’s then consider the case where 
pkg*() > 0. Based on (92), it is: 

    * 0,adg kka
p a A


      . (93) 

Then, from (80), based on the left side of (91) we have: 

       ,ag a ka dg a dg
c w w a A         . (94) 

Finally, (71) based on (94), becomes: 

             
k

kg odgka kaa dg a dg
a A

c w w w  


         . (95) 

Thus, also in this case, the right side of (91) is satisfied. ■ 
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4. APPLYING GP ALGORITHMS TO LOCAL CHOICES 

In the following we present a class of Gradient Projection methods for solving the 
formulation of Dynamic Traffic Assignment with implicit path enumeration. 

The simulation period  is discretized into  subsequent time intervals separated by 
an ordered list T of instants with indices from 0 to , whose generic clock time is t, 
tT. 

Besides the transposition into vectors of the temporal profiles introduced in section 
3, which is self-explanatory (just note that flows and probabilities are referred to 
intervals while times and costs to instants), some additional notation is required: 

 ht = (t+1 –t) is the duration of interval tT; +1 = ; 
 eatT  t is the interval which includes the exit time t + tat of aA for users who 

enter at t ; 
 mate is the share of inflow during interval tT that exits aA during interval eT ≥ t 

– clearly, it is: mate = 0 for e < eat or e > ea t+1 ; 
 it is the reverse topological order of node iN at instant tT; 
 itN is the -th node in reverse topological order. 

 
We now present the iterative equilibrium procedure which implements the schema of 

Figure 3 and solves the Variational Inequality formulation (88). The stop criterion is 
based on the gap function (90) and the search direction is based on GP.  

 
* Dynamic User Equilibrium 
function DUE 
 qADGT  0ADGT           * reset destination flows 
 n  0 , nbad  0; num  1 , den  1   * initialization 
 do               * main assignment cycle 
 
  call NCM            * Network Congestion Model 
  cagt  ĉag + gvot  tat , aA , gG , tT  * Arc Cost Model 
 
  n = num / den          * compute gap function 
  if n  nmax or n < min then exit loop  * stop criterion 
  n  n + 1 ; num  0 , den  0    * start new iteration 
  if n > 2 and n-1  3  n-2 then nbad  nbad + 1 * update bad iterations 
  n  (1/(1+nbad))2       * update the gradient step 
 
  for each dZ          * for each destination 
   for each gG         * for each class 
    call DSP(dZ, gG)      * Dynamic Shortest Paths 
    call FPM(dZ, gG)      * Flow Propagation Model 
   next g 
  next d 
 
 loop 
end function 
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The great advantage of the VI formulation (88) based on arc conditional probabilities 
padg() is that the feasible set is a simple polytope, thus leading to the possibility of 
applying the gradient projection approach as a solution algorithm. 

The disadvantage is that its gradient function requires the solution of a DNL. In the 
proposed solution algorithm in each iteration of the DUE we perform just one iteration 
of fixed point problem that solves the DNL, starting from the current exit times of the 
previous iteration.  

If we look at the fixed point schema of Figure 3 we can see how the arc flows for each 
destination qadg() would represent a more convenient iterate, because this variable is 
internal to both DUE and DNL . However, the feasible set of arc flows is very complex as 
it includes the result of the DNL for each feasible arc probability pattern. 

On these basis, the proposed algorithm can be considered at the same time a method 
for the solution of: a fixed point problem based on destination arc flows, or a VI problem 
based on arc conditional probabilities, where the DNL is solved approximatively with 
one iteration. 

The Network Congestion Model is one of the main components of DTA, but it is not 
the focus of this paper. For completeness we present here the simple example of a space-
separable whole link model with final bottleneck (no interaction at nodes nor spillback) 
based on Average Kinematic Waves (Gentile et al, 2005). We used here the following 
notation for the characteristics of the generic arc aA: sa > 0 is the free flow speed; la is 
the length; a is the capacity; ga is the green share. 
 
* Network Congestion Model – an example based on Average Kinematic Waves 
function NCM 
 for each aA 
 
  qat  dZ gG geqve  qadgt , tT * arc volumes 
 
  * Average Kinematic Waves 
  ta0  la / sa 
    sa 
  for t = 1 to  
   s  s(qat) = 0.5  sa  (1 + (1 - qat / a)0.5) * speed from the fundamental diagram 
   tat  la / s 
      + s – sa  * shockwave speed (valid for parabolic diagrams) 
   if (ht-1 + tat)   < la then tat  la /  + ht-1   / (s – )  (1 – s / ) 
     la / tat 
   tat  Max(ta t-1 + ht-1  (qat / (a  ga) – 1) , tat)  * bottleneck model 
  next t 
 
  * Arc Propagation Map (valid for constant exit capacity. i.e. no spillback) 
  e = 0 
  do until e+1 > 0 + ta0  : e = e + 1 loop 
  ea0 = e  
  maTT  0aTT 
  for t = 0 to -1 
   do until e+1 > t + tat  : e = e + 1 loop 
   ea t+1 = e  
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   h  ht + ta t+1 - tat 
   if h > 0 then 
    for e = eat to ea t+1 
     if e = eat then t0  t + tat else t0 = e 
     if e = ea t+1 then t1  t+1 + ta t+1 else t1 = e+1 
     mate  (t1 – t0) / h 
    next e 
   else 
    mate  1 
   end if 
  next t 
  ma  1 
 
 next a 
end function 
 

The introduction of the arc propagation map (Gentile, 2015) highly improves the 
quality of the solution, especially in case of time varying exit capacity (not considered 
above). 

The computation of Dynamic Shortest Trees for each destination (or origin) is the 
heart of any model for deterministic route choices. Here we adopt the Temporal Layer 
approach proposed by Chabini (1998) adapted to continuous cost functions and long 
time intervals as in Gentile (2016), which requires to handle a list L of nodes, to be 
visited in reverse topological order, inside each temporal layer, visited in reverse 
chronological order. 
 
* Dynamic Shortest Paths 
function DSP(dZ, gG) 
 for t =  to 0 step -1       * in reverse chronological order 
  wit   , iN-d ; wdt  0    * initialize node labels 
  L  d           * initialization of nodes list 
    0 ; it   , it  0 , iN     * init of topological order 
  do until L =         * until the node list is empty 
   j  ArgMin(wit , iL) ; L  L – j  * extract the node with least label 
      + 1 ; jt   ; it  j   * increase topological order 
   for each aj–        * for each arc of the backward star 
    i  a– ; e  eat       * set tail and exit interval 
    if it =  then      * to avoid absorbing cycles 
     wat  cagt + wje     * interpolation of minimum cost 
     if e <  then wat  wat + (t + tat – e)  (wj e+1 – wje) / he * … follows 
     if wit > wat then     * Bellman check 
      wit  wat      * improve the label  
      if iL then L  L + i  * insert the node in the list 
     end if 
    end if 
   next a 
  loop 
  i0t             * rem the first index in the top ord 
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 next t 
end function 
 

The Flow Propagation Model proposed in this paper introduces a relevant novelty. 
Usually, the network loading is performed on an acyclic sub-graph, for example that of 
efficient arcs (i.e. arcs that bring the user closer to the destination with respect to some 
topological order). Here, we allow for (only temporary) solutions that may include 
cycles, solving the Flow Propagation Model as a sequence of Square Linear Systems 
(SLS), one for each temporal layer.  

Each equation represents the flow conservation at a node during the current interval 
and the unknowns are the flows exiting from each node during the same interval. The 
matrix of each system depends on the search direction in terms of arc conditional 
probabilities and on the arc propagation map (i.e. on the travel times). It is in general 
rather sparse and almost triangular (if nodes are in topological order). It is the identity 
matrix if all the flow entering one arc in a given interval exits in later intervals. 

Moreover, the matrix is diagonally dominant (i.e., for every column, the magnitude of 
the diagonal entry is larger than the sum of the magnitudes of all the other entries) and 
then non-singular, because the sum of arc conditional probabilities of each node forward 
star in the search direction is one, while the elements of the arc propagation map are 
smaller than one. The Jacobi and Gauss–Seidel methods for solving the linear system 
converge. The latter can then be usually solved (depending on the congestion level) to 
nearly double (10-16) precision (the highest possible on standard computers) through a 
few (say, less than 10) iterations of an iterative method, such as the BICGSTAB (Van der 
Vorst, 1992). 

Preconditioning through the solution of a simplified problem, as suggested in Saad 
(2003), provides a remarkable speed-up. For instance, we can triangularize the matrix. 
In our case, we can load on the network the vector to be preconditioned as if it was a 
demand flow, by following the topological order resulting from dynamic shortest paths, 
as in the classical case of efficient arcs.  

The iterative solution of the SLS is initialized by loading the demand on efficient arcs. 
 
* Flow Propagation Model 
function FPM(dZ, gG) 
 qit  0 , iN , tT       * reset node flows 
 for t = 0 to           * in direct chronological order 
  qot  qot + dodgt , oZ      * load travel demand on nodes 
  qilin  qit , iN        * set the SLS constants 
  padir  0 , palin  0 , aA    * initialize the search direction 
  for  = i0t to 2 step -1      * in topological order 
   i  it          * for each node 
   call GPA(dZ, gG, tT, iN)   * find the search direction padir 
   palin = matt  padir , ai+    * compute the SLS coefficients 
   qa[+] t  qa[+] t + qit  palin , a i+   * propagate node flows in this interval 
  next  
  qit – ai[–]qa[–] t  palin = qilin , iN   * solve for qt this Square Linear System 
  qa[+] e  qa[+] e + qit  padir  mate  ht / he , e > t: mate >0 , ai+  * prop. to future int. 
  qadgt  qa[–] t  padir , aA    * update arc inflows by class and dest. 
 next t 
end function 
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The following procedure implements the proposed Gradient Projection algorithms for 

the local route choice of class gG users directed toward destination dZ that during 
interval tT pass through node iN. 

The procedure computes the gap function numerator and denominator as well. 
 
* search direction with Gradient Projection Algorithms 
function GPA(dZ, gG, tT, iN) 
 if t =  then r   else r  t+1 * r is the cost reference instant for current interval 
 padir  0 , ai+ 
 B  {ai+: a[+]t < } 
 qtot  aB qadgt 
 a*  ArgMin(war , aB) 
 a  ArgMax(war , aB: qadgt > 0) 
 wmin  wa* r 
 wmax  wa r 
 wmed  aB qadgt  war 
 if qtot = 0 then 
  B  a* 
 else 
  num  num + aB (war – wmin)  qadgt  ht 
  den  den + wmed  ht 
 end if 
 if |B| = 1 then 
  a  B 
  padir  1 
 else if wmax = wmin then 
  padir  qadgt / qtot , aB 
 else if GP = MSA then 
  padir  n  Bool(a = a*) + (1-n)  qadgt / qtot , aB 
 else 
 
  * different gradient scaling 
  if GS = wnod then 
   ga  wmin 
  else if GS = warc then 
   ga  war 
  else if GS = wavg then 
   ga  wmed / qtot 
  end if 
  ga  ga / (n) 
  pa  0 , ai+ 
 
  * different gradient projection 
  if GP = EGP then 
   wsup  wmin + ga*  (1 – pa*) 
   wsum  0 
   psum  0 
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   gden  0 
   for each aB 
    if war – ga  pa < wsup then 
     wsum  wsum + war / ga 
     gden  gden + 1 / ga 
    else 
     B  B – a 
     pa  – qadgt / qtot 
     psum  psum + qadgt / qtot 
    end if 
   next a 
   do 
    EndLoop  TRUE 
    wavg  (wsum + psum) / gden 
    for each aB 
     pa  (wavg – war) / ga 
     if pa < 0 and pa + qadgt / qtot < 0 then 
      EndLoop  FALSE 
      B  B – a 
      pa  – qadgt / qtot 
      wsum  wsum – war / ga 
      psum  psum + qadgt / qtot 
      gden  gden – 1 / ga 
     end if 
    next a 
   loop until EndLoop 
 
  else if GP = QGP then 
   wsum  aB war / ga 
   gden  aB 1 / ga 
   do 
    EndLoop  TRUE 
    wavg  wsum / gden 
    for each aB 
     pa  (wavg – war) / ga 
     if pa < 0 and qadgt / qtot < 0 then 
      EndLoop  FALSE 
      B  B – a 
      pa  0 
      wsum  wsum – war / ga 
      gden  gden – 1 / ga 
     end if 
    next a 
   loop until EndLoop 
     Min(1, – qadgt / qtot / pa , aB: pa < 0) 
   pa  pa  , aB 
 
  else if GP = RGP then 
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   for each aB 
    if war > wmin and qadgt / qtot > 0 then 
     pa  0.5  (wmin – war) / ga 
     if pa < – qadgt / qtot then pa  – qadgt / qtot 
     pa*  pa* – pa 
    end if 
   next a 
 
  else if GP = MMP then 
   a  a 
   if qadgt / qtot > 0 then 
    pa  0.5  (wmin – wmax) / ga 
    if pa < – qadgt / qtot then pa  – qadgt / qtot 
    pa*  pa 
   end if 
 
  end if 
  padir  qadgt / qtot + pa , ai+ 
 end if 
end function 

5. NUMERICAL EXPERIMENTS 

We present here some experiments of the proposed Gradient Projection algorithms 
on test networks, comparing them also with MSA. The convergence pattern of the gap 
function is analysed for different time discretizations, with time intervals ht of 6, 60 and 
600 sec. Different levels of demand wrt (storage and bottleneck) capacity are also 
considered, so that three different kinds of congestion are experimented, namely: 
hypocritical, queuing and spillback. 

The various versions of GP (EGP, QGP, RGP, MMP) have been tested in the above 
different situations. However, it was not possible to clearly state the superiority of one 
method over the others: performance patterns are in most cases very similar and the 
differences seem to be related with the specific instance of the problem. We reached a 
similar conclusion when testing several definitions of the scaling factor, specifically that 
of Equation (33) and (34) wrt to current and initial conditions. 

The first battery of tests is performed on the simple dipole network of Figure 4, 
where it is possible to have expectations on the solution. All links share the following 
characteristics: free flow speed of 90 km/h, link capacity of 1800 veh/h, jam density of 
150 veh/km, jam wave speed of 30 km/h, parabolic hypocritical branch of the 
fundamental diagram, linear hypercritical branch. All links have a base length equal 
length of 1 km. Travel demand is constant for 40 min with entry: d14 = 1500 veh/h. 
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Figure 4. Topology of the dipole network.  
 
In the dipole network there is one diversion with only two alternatives. In this case 

the 4 GP algorithms essentially coincide.  
A glance to the temporal profiles of diversion flows and travel times is presented in 

the following, for the different levels of congestion. These results, obtained through EGP 
with the gradient scaling of Equation (34) for the case of one minute intervals, show 
how the proposed method is capable of obtaining the expected solution. 

 

 
Figure 5. Dipole network with hypocritical congestion. The links of the deviation 2-5 

and 5-3 have length of 600 m each. The bottleneck 2-3 has exit capacity of 1200 veh/h. 
 

Figure 5 shows how in the hypocritical case the shorter bottleneck receives more 
flow than the (slightly longer) deviation so that the two travel times are equal. This is 
very similar to what happens in the static case.  
 

 
Figure 6. Dipole network with queue. The links of the deviation 2-5 and 5-3 have 

length of 5 km each. The bottleneck 2-3 has an exit capacity of 500 veh/h. 
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Figure 6 shows how the shorter bottleneck receives initially the whole demand flow, 
which is higher than the exit capacity, until the queue gets so big that the (much longer) 
deviation becomes convenient. From that point on, the share of demand entering into 
the bottleneck decreases until it receives exactly a flow equal to its exit capacity, so as to 
maintain a stable queue with a constant travel time. 

 

 
Figure 7. Dipole network in spillback. The links of the deviation 2-5 and 5-3 have 

length of 15 km each. The bottleneck 2-3 has an exit capacity of 500 veh/h. 
 
Figure 7 shows how the shorter bottleneck receives the whole demand flow during 

the entire simulation, because the queue spills back to the incoming link before its delay 
makes the (very long) deviation convenient. At that point the travel time along the 
bottleneck becomes constant while the inflow drops to the level of the exit capacity, 
although the link capacity is higher. The queue develops further on the first link. Note 
that it would be convenient in terms of total network cost if some users is directed to the 
deviation as this allows a better usage of the existing capacity with a global saving of 
time. Moreover, in a more complex network this would avoid the impediment of other 
turns at the node 2 for users who are not directed to node 3. But clearly in a descriptive 
equilibrium user are selfish consumers, and once arrived at node 2 they chose for the 
shorter time of the bottleneck. Thus, when spillback occurs, the DTA becomes a DNL. 

Interestingly, the diminishing step size is not required by this simple network, as we 
always found a proper value of the base gradient multiple ( = 5, 2, 2, respectively, in the 
hypocritical, queue and spillback cases) for which the best convergence is achieved 
assuming n = 1 in all iterations. 

 

 
Figure 8. Convergence pattern for the dipole network – EGP outperforms MSA. 
 

EGP-wa  MSA  
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Figure 8 show that, as expected, the gradient projection algorithm outperforms MSA 
for all the possible kinds of congestion: hypocritical, queue and spillback. 

The Dial network (Dial, 2006) has been considered for testing how the proposed 
algorithms scale in the case where several O-D couples (from 4 origins to 4 destinations) 
interact on the same links (100 arcs). This highly congested network was specifically 
conceived to involve relevant changes of the shortest trees from the free flow condition 
to the equilibrium condition, with links that are used in the opposite direction in the two 
cases; it can thus be considered a difficult problem, despite the small size. 

One hour of simulation has been executed, where for the first half an hour a travel 
demand given by the original O-D matrix (with all 500 veh/h entries) is loaded on the 
network. Note that the static outlet of this network produces huge queues in the 
dynamic simulation. Moreover, the capacity of the links is here halved at the final 
section, to reproduce bottlenecks (e.g. traffic signals). 

 

 
Figure 9. Topology of the Dial network and symmetric link characteristics – Capacities 

are 200 veh/h along the faster central corridors (thick black line), and 300 veh/h on the 
other slower links; the other numbers are free flow travel times. 

 
The jam density of links is assumed equal to 1/10 of the capacity, the free flow speed 

is assumed equal to 60 km/h and the jam wave speed to 25 km/h.  
Three types of congestion are considered, corresponding to different demand levels: 

moderate queues (mded = 0.2  cong = 0.2); heavy queues (mdem = 0.5  cong = 1.5); 
heavy spillback (mdem = 1.0  cong = 4.5). Here, mdem is the demand multiplier, and 
cong is the relative cost of congestion wrt free flow travel times for equilibrium flows 
(for real cities cong is typically is the range 0.2-1.0, see for example the Traffic Index 
data at www.tomtom.com). 

Below we present the sensitivity of the algorithms wrt time discretization, which 
shows that convergence is slower if we have to adjust decisions (probabilities) at many 
intervals. 
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Figure 10. Convergence pattern for Dial network – EGP outperforms MSA. 
 
Figure 10 shows how gradient projection outperforms MSA for all demand levels, 

both in the long term (after 100 iterations) and in the short term (after 20 iterations). 
Moreover convergence appears to be smoother for EPG than for MSA. Clearly, the higher 
the demand, the higher is the congestion and its non-separability (in time and space), 
the more difficult is the problem, and thus the convergence is slower.  

However, as already experimented in Yang and Jayakrishnan (2012), the relative 
improvement of gradient projection to MSA can be modest in heavy congestion and on 
larger networks. To improve the efficiency of the method they used a Gauss-Seidel 
approach with early recalculation of costs. This approach can be possibly applied also to 
our method and will be the object of future research. 

There are not many papers aimed at finding methods with a better convergence than 
MSA in the DTA literature. We provide in the follwing a qualitative comparison with the 
method proposed by Yang and Jayakrishnan (2012). In the case of moderate congestion, 
in 100 iterations our methods converged to a relative gap of 10-4, while their method 
reached 0.510-2. For heavier congestion our method reaches the above minimal target 
(10-2), while their method could not really converge (as reported by the authors). 

Clearly, convergence with heavy congestion is an issue; but this is true also for many 
static assignment algorithms. In DTA we face the additional complexity of a highly non-
separable supply model. 

 

 
Figure 11. Convergence pattern for Dial network – EPG works well with different ht . 
 
Figure 11 shows how EGP supports well different time discretization, with intervals 

from 6 to 600 seconds. Clearly, the more intervals the more difficult is the problem, and 
thus the convergence is slower. 

EGP-wa , ht 60 sec MSA , ht 60 sec 

EGP-wa , ht 600 sec EGP-wa , ht 6 sec 
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Figure 12. Convergence pattern for Dial network – EPG performing similarly with 

different scaling factors. 
 
Figure 12 shows how EGP performs similarly with any of the scaling factors tested: wi 

(current node min cost), wi0 (initial node min cost), wavg (current average node cost), 
wa (current arc satisfaction), wa0 (initial arc satisfaction). Tests are executed for ht of 
600 sec, and for two congestion levels: moderate (mded = 0.2) and heavy (mdem = 0.5). 

 

 
Figure 13. Convergence pattern for Dial network – All gradient projection methods 

performing similarly. 
 
Figure 13 shows how all the proposed gradient projection methods (EPG, QGP, RGP, 

MMP) perform similarly. Tests are executed for ht of 600 sec, and for two congestion 
levels: moderate (mded = 0.2) and heavy (mdem = 0.5). 

These results merit some comments, because the higher (analytical more than 
computational) effort required to solve the projection problem exactly with EPG, instead 
that approximatively with RGP or MMP, seems not to be justified. This algorithm 
behaviour can be explained with the fact that the implicit path enumeration method 
operates with a limited number of used local alternatives (e.g. a few links of the node 
forward star). When this number reduces to two all the proposed algorithm basically 
coincide. We have experimented that in some cases in presence of more alternatives, 
MMP converges less smoothly than the other three methods, because it involves only 
two alternatives. Instead the difference between EPG, QGP and RGP is in practice minor, 
despite the theoretical superiority of EPG. 

Although in theory the solution of the dynamic shortest paths and (more important) 
the solution of the linear system for the flow propagation can imply each time a different 

mdem = 0.2 (moderate queues) mdem = 0.5 (heavy queues) 

mdem = 0.2 (moderate queues) mdem = 0.5 (heavy queues) 
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computation cost, we have found that in practice the running times of each iteration is 
fairly stable on a given network. To see this we can consider a larger test network 
(representing the city of Cosenza, Italy) with 524 arcs and 40 zones; 120 intervals of 1 
minute each were used to simulate a time varying demand with a multiplier mded of the 
original matrix from 1.0 to 1.4. 

 

 
Figure 14. Convergence pattern for the Cosenza network – The computation time (in 

milliseconds) per iteration is fairly stable. 
 
Figure 14 shows the convergence pattern experimented in the case of moderate 

queues (mded = 1.0  cong = 0.20), heavy queues (mded = 1.2  cong = 0.35), and 
heavy spillback (mded = 1.4  cong = 0.60). The computing time per iteration ranges 
from 550 to 900 milliseconds, depending on the level of congestion, which is higher in 
the early iterations where the arcs used to reach each destination do not form yet a 
bush, like they shall at equilibrium. A mini-desktop computer with Intel Core i5-4210U 
1.70 GHz was used to run the tests. 

 

 
Figure 15. Convergence pattern for the Rome network. 
 
Figure 15 shows the convergence pattern experimented for the larger network of 

Rome (with 9365 links and 453 zones) in the case of heavy queues (cong = 0.40), which 
is the daily condition in the eternal city, as reported by the TomTom Traffic Index (Cohn, 
2014). Simulating the whole day with 10 minutes intervals required almost 3 hours of 
computation, for 100 iterations. 

The larger dimension of the network and especially of the number of zones produces 
a harder problem to solve. After all the proposed algorithm partitions the assignment 

EGP-wa , ht 60 sec 

EGP-wa , ht 60 sec 

EGP-wa , ht 600 sec 
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model by destinations and the search directions refer to each sub-problem separately. 
Nonetheless, an acceptable convergence with a relative gap of 10-2 is reached after 30 
iterations and one of 410-3 after 100 iterations. This is suitable for many applications 
and certainly a relevant step forward in the direction of a more precise computation of 
Dynamic User Equilibrium, wrt other assignment methods. 
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