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SUMMARY 

In this study, a method for crack detection and quantification in beams based on wavelet analysis is presented. 

The static deflection is measured at particular points along the length of (i) real damaged structures, using few 

displacement transducers and a laser sensor, and (ii) simulated structures, using closed-form analysis, for give location of 

a concentrated load along the beam. Furthermore, the measurement of the beam displacements in a large number of 

spatially distributed points is made by processing digital photographs of the beam. The smoothed deflection responses of 

the cracked beams are then analyzed using the wavelet transform. For this purpose, a Gaus2 wavelet with two vanishing 

moments is utilized. The wavelet transform spikes are used as indicators to locate and quantify the damage; furthermore, 

the multi-scale theory of wavelet is employed, in order to eliminate or at least reduce the spurious peaks and enhance the 

true ones. Simply supported beams with single and double cracks are used to demonstrate the devised methodology. Open 

and fatigue cracks of different sizes and locations have been used in the examples. In a closed-form analysis, the damage 

is modeled as a bilinear rotational spring with reduced stiffness in the neighborhood of the crack location.  Damage 

calibration of simply supported steel beams with open and fatigue cracks has been carried out experimentally using this 

technique. A generalized curve has been proposed to quantify the damage in a simply supported beam. Based on the 

experimental study, the spatial wavelet transform is proven to be effective to identify the damage zone even when the 

crack depth is around 3% of the height of the beam. 
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1. INTRODUCTION 

 

The detection of crack-like defects in mechanical systems and civil engineering structures is a problem that received 

considerable attention from engineering researchers in the last decades [1-4]. The research effort devoted to this topic is 

due to its practical importance. For example, one of the most important requirements for the proper maintenance of 

machinery or civil infrastructure systems is the detection of crack-like damage at the early stages of growth. This 

leads to the necessity of developing nondestructive techniques for crack detection that are both practical and accurate 

[5-10]. 

To ensure high system performance, structural safety and integrity, and low maintenance cost, structural health 

monitoring (SHM) has emerged as a reliable, efficient, and economical approach to monitor the system performance, 

detect damage, assess/diagnose the structural health condition, and make corresponding maintenance decisions [11]. 

Damage is often observed in many engineering structures during their service life. The damage may be caused by various 

factors, such as excessive response, cumulative crack growth, wear-and-tear of working parts, and impact by a foreign 

object. The detection of damage in civil engineering and mechanical systems is a problem that received considerable 

attention from researchers in the recent years. The existing diagnostic techniques (ultrasonic, radiography, acoustic 

emission, etc.) require not only a priori knowledge of the damaged region, but also accessibility to the vicinity of damage. 

In the last decade, wavelet theory has been one of the emerging and fast-evolving mathematical and signal 

processing tools [12]. An important feature of the wavelet transform (WT) is the ability to characterize the local 

irregularity of a function and to react to subtle changes of the signal structure. A crack in a structure introduces 

singularities to the first derivative of the static deflection curve (i.e., rotation of the beam cross-section). These small 

defects cannot be identified directly from the structure response, but observed on wavelet transforms because local 

abnormalities in the signal result in large wavelet coefficients (WCs) in the neighborhood of the damage [13, 3]. The 

crack location is indicated by a peak in the variations of the WCs along the length of the beam. The static deflection 

measurements at sparse intervals are relatively easier and cost-effective compared to dynamic response measurements. 

Thus, for damage detection in beams, methods where the WT is applied on spatial signals, static displacement responses 

were most commonly employed [14]. In Garstecki et al. [15] static and dynamic numerical examples were used to identify 

damages in structure by discrete wavelet transformation; beyond the identification of the (open crack) damage, the aim 

of the paper was to determine the minimum  number of measurements points sufficient for the goal, also in presence of 

noise. Spanos et al. [14] built a WT modulus map where boundary effects were eliminated and damage-related local 

maxima were clearly identifiable. They also conducted numerical tests on the (simulated) pseudo-experimental response 

of beams featuring up to three open cracks. Wavelet analysis has been performed on the simulated static deflected shape 

for locating the damage and wavelet-kurtosis-based calibration of the extent of damage and an experimental validation of 

this method has been carried out by Pakrashi et al. [16, 17]. The proposed method has been validated experimentally by 

performing wavelet analysis on the damaged shape of a simply supported freely vibrating aluminium beam by Pakrashi 

et al. [16]. Damage calibration of a simply supported phenolic beam with an open crack has been carried out 

experimentally using this technique by Pakrashi et al. [17]. A method to detect the location and also to quantify the open 

crack using the deflection response of the damaged beams alone has been proposed by Umesha et al. [11]. The deflection 

was measured at a particular point for various locations of a concentrated load on the beam. This static deflection profile 

was used as the input signal for wavelet analysis. Rucka and Wilde [18] presented a method to localize damage in a 

polystyrene cantilever beam using static deflection for the purpose of damage (one open crack) detection  via Gaussian 



and Coiflet wavelet families; the measurement of the beam displacements of spatially distributed points was obtained by 

processing digital photographs. In Rucka and Wilde [19] a continuous wavelet transform was applied to detect 

experimentally vibration based damage both for beams and plates; for the one-dimension problem (one open crack) 

Gaussian wavelets were considered, whereas for two dimensional structure reverse biorthogonal wavelet was applied. Shi 

et al. [20] used a computer vision camera to capture the static deformation profiles of one-crack and two-crack cantilever 

beams under loading; the profiles were then processed to reveal the existence and location of the irregularities (slots) on 

the deformation profiles by applying wavelet transform. In Rucka [21] higher vibration modes and the influence of their 

order were studied for damage detection; vibration measurement techniques were considered on a steel cantilever beam 

with rectangular notches of different depth, identified by Gaussian wavelets Gaus4, Gaus6, and Gaus8. Wu and Wang  

[22] employed a laser profile sensor to measure the deflection profile of a cracked cantilever aluminum beam subjected 

to a static displacement at its free end; the smoothed static profile of the cracked beam was analyzed with Gabor wavelet 

to identify the open crack with different depths. Wavelet transform combined with inverse analysis was used in 

Piatkowska and Garbowski [23] for the detection of concentrated defects in structural health monitoring of a cantilever 

steel beam; the authors proposed a “pseudo experiment” to minimize the discrepancy between the wavelet representation 

of real measurable quantities and the numerically computed ones. 

 The aim of the present work is to detect, locate and evaluate damage at beams under static load based on discrete 

wavelet analysis. To this end, the static displacement of damaged simply supported beams under a load applied at the 

beam center is measured at few locations along the beam axis; then the measurement of the beam displacements in a large 

number of spatially distributed points is made by processing digital photographs of the beam. The smoothed displacement 

profile of the beam is used as the input of continuum wavelet transform (CWT) analysis to detect subtle discontinuities 

in the response, namely rotations of beam cross-sections. For this purpose, Gaus2 wavelet is utilized. The peak of CWT 

coefficient is used as indicator to identify damage. Effect of crack depth, position, number (one or two cracks) and type 

(open or fatigue cracks) are discussed based on the peak value of the wavelet coefficients. Furthermore, the single crack 

is modeled as a bilinear rotational spring characterized by a reduced stiffness in beam element and comparison is made 

between experimental and analytical results. 

 

 

 

 

 

 

 

 

 

Figure 1. Design of the experimental setup. a) Lateral view; b) cross section and sliding device for 

load suspension (front view); c) sliding device for load suspension (lateral view); d) real picture. 
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2. EXPERIMENTAL STUDIES OF DAMAGE DETECTION USING WAVELET ANALYSIS 

2.1 Experimental set-up 

Four types of simply supported beam were adopted in the experiment for verification purposes, Fig. 1a. All of  them were 

cut from the same steel sheet to avoid any variation in material properties, and machined to the same dimensions of  L = 

290 mm and I-shaped cross-section  IPE80 (height h = 80 mm, flange thickness t = 5.2 mm,  flange width w = 46 mm, 

web thickness tw = 3.8 mm), Fig. 1b. The only difference is that one beam specimen (I) has a machined slot, another one 

(II) has a fatigue crack, the third one (III) has two machined slots, and the fourth one (IV) has a machined slot and a 

fatigue crack. The open cracks are created by sawing notches into the lower section of the beam of cross section. The 

fatigue cracks are generated by cycling the sample to maximum and minimum loads. The locations of the non-propagating 

vertical cracks are situated at abscissas z1 = 1.93 m and z2 = 0.97 m from the left hand support of the beam. The beam is 

subjected to a static weight at the center. The considered damage conditions were: crack depth d1= 0.5 t, 0.7 t, 0.85 t, 0.95 

t, 1.0 t, 0.3 h at z1 for the I specimen; crack depth d1= 0.3 h at z1 for the II specimen; crack depth d2= 0.3 h at z2 and crack 

depth d1= 0.4 t, 0.7 t, 1.0 t at z1 for the III specimen; crack depth d2= 0.3 h at z2 and crack depth d1= 0.25 h at z1 for the IV 

specimen. As indicated by the schematic in Figure 1, the beams were simply supported at both ends using roller devices 

fixed on a work table. In particular, Figures 1b,c,d show the details of the annular support and the rectangular bracket that 

connects it to the lower flange of the beam, which were suitably designed. 

Figure 2 shows the general arrangement of the experimental setup. A static weight of magnitude F has been carefully 

put on the beam to deflect the beam for elastic deformation. A digital displacement transducer (Mitutoyo Digimatic 

Indicator, 543-682, ID-S1012M), analogical displacement transducers (Mitutoyo Model 2050F Dial Indicator) and a 

laser profile sensor  (optoNCDT ILD 1302-50) are employed to measure the deflection profile of the beams. 

 

 

 

 

 

 

 

 

 

 

 

The value of the Young’s modulus E = 203.481 GPa and the processed profile data were identified in terms of the 

magnitude of the measured displacements of the healthy beam, Fig. 3a: 

 

 𝑢 =
𝐹𝑧(−3𝐿2+𝑧2)

6𝐵
,    0 ≤ 𝑧 ≤ 𝐿 (1) 

 

where B = EI is the bending stiffness and I the moment of inertia of the cross-section of the healthy beam. Figure 3a 

shows one such calibration for a static load 3 kN. In a previous work [24] the authors formulated an analytical model for 

b) 

c) 

a) 

Figure 2. Experimental setup. a) Overall view; b) lateral view; c) crack detail across the centre of 

the lower flange. 



simulating the static behavior of multi-cracked beams and a WT based method for damage identification. The influence 

of a fatigue crack at abscissa zc was accounted for by means of a bilinear rotational spring, the stiffness kc of which was 

affected by a suitable damage parameter c: 

 

 𝑣 = {

𝐹𝑧(−6𝐿αc−3𝐿2εc+𝑧2εc)

6𝐵εc
,    0 ≤ 𝑧 ≤ 𝑧c

𝐹[𝑧3εc−3𝐿2(2αc
2+𝑧εc)]

6𝐵εc
,   𝑧c ≤ 𝑧 ≤ 𝐿

 (2) 

 

with c = zc / L, c = kc / B. The values of such a parameter were identified on the basis of the displacements measured in 

the damaged beams. For sample’s sake, Figure 3b reports the results of the above mentioned identification in the case of  

crack depth = 1.0 t at z2 for a static load 2 kN. 

 

 

 

 

 

 

 

 

 

 

 

2.2 Image analysis 

The deflected photographs has been recorded in the spatial domain by an Sony NEX-3N digital camera with  resolution 

of 16 MP  (http://www.sony.co.uk/support/en/product/nex-3n). The images were recorded in RAW, which allows the 

post-production  correction via editing (Sony Image Data Converter v. 4.2.04), and in ready-to-use JPEG compression 

format. The latter have shown the optimal compromise between accuracy and speed in image recording throughout 

4912×2760 pixels size. Eventually to increase this resolution, each image was interpolated by the open-source software 

GIMP (GNU Image Manipulation Program) v. 2.8.2, thus obtaining images of size 150009968. Figure 4 shows the 

captured image of a beam under load. The lower and upper edges of the beam were detected from the image by a pattern 

recognition scheme simulating a graduated ruler. It can be seen that a white background was used in experiment to provide 

good contrast against the blue surface of the steel beam. Since the cracks were made to simulate the general internal (often 

invisible) damages in a structure, direct observation does not serve the general purpose of this study. As such, in the 
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Figure 3. Identification of material, damage and image data. a) Young’s  modulus; b) damage 

parameter; c) signal smoothing. 
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experiment, the profiles were actually captured only along the top surfaces as shown in Fig. 4. All the images were 

processed by γ-correction, with γ=0.8, thus obtaining brighter data, [25].  

 

 

 

 

 

 

 

 

 

To determine the deformation of the beam under load, both when it was undamaged and when cracks were present, each 

image was first segmented. To segment an image means to determine a partition of the data with respect to a specific 

characteristic of the elements to be identified, for example, the gray level, the color, the shape and so on; the number of 

classes in which the data should be partitioned determines the level of detail in which the segmented data will be 

represented. In the considered images the beam appeared as a rectangular object with uniform gray level and therefore a 

segmentation with respect to gray level was adopted.  

Many different methods exists to segment images, depending on the specificity of the acquired data; here the 

Otsu method was chosen [26] also for its efficiency. It provides the optimal threshold to separate the objects from the 

background. It is based on the assumption that the histogram of the data is bi-modal and therefore two classes of pixels 

are considered, the object and the background. The optimal threshold is obtained by  minimizing the intra-class variance: 

 

𝜎𝜔
2(𝑡h) = 𝜔1(𝑡h)𝜎1

2(𝑡h) + 𝜔2(𝑡h)𝜎2
2(𝑡h)     (3) 

 

where  𝜎k
2 , k = 1,2  are the variances of the classes and the weights 𝜔k , k = 1,2  represent the probabilities of the two 

classes separated by the threshold th. 

In order to detect the shape of the beam, a 4-levels segmentation was advisable; it has been obtained by applying 

hierarchically the binarization described above. The beam corresponded to the second value among the four obtained, 

when sorted in ascending order; after area filtering it was easily identified. 

Assuming a fixed horizontal step, the corresponding values vi of the measured vertical displacements of the upper 

beam were evaluated; therefore a vector V with the “n” measures vi was available. The first measurement point was the 

first left point of the beam and the step was the same among all the analysed images; this was crucial to perform a 

comparison among all the data collected on beams under different load conditions. 

2.3 Wavelet analysis 

A wavelet  is a L2- function with compact support and zero average; the function  is called the mother wavelet and by 

dilation and shifting parameters a family of wavelets may be obtained. 

The correlation between the signal f (z), representing the values of the vertical measurements taken on the upper beam, 

and the scaled wavelet 

 

Figure 4.  Magnification of a zone of the photograph. 
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is the continuous wavelet transform (CWT); a and b are the scale and position parameters respectively. If the wavelet is 

compressed, that is a » 1, only a limited portion of the signal f (z) is approximated, whereas a global approximation is 

obtained with a « 1.  The result of the CWT is the coefficient C representing the similarity between the analyzed signal 

and the chosen wavelet function. The specific kind of wavelet should be selected in order to facilitate the detection of the 

signal’s features of interest. Abrupt changes in signal can be detected by wavelets centered around the discontinuity; more 

precisely, the set of coefficients of CWT increases with scale, whereas the precise localization of the discontinuity can be 

obtained at the small scales. Therefor a peak in the coefficient C can indicate the location of a crack. 

The vanishing moments 
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are important in the detection of discontinuities. A wavelet with n vanishing moments is orthogonal to polynomials up to 

degree n-1. Following [27] and [18], it can be shown that a wavelet with n vanishing moments can be interpreted as the 

n-th derivative of a function : 
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therefore the corresponding CWT may be written as: 
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Therefore the CWT is the n-th derivative of the signal f (z) suitably smoothed by the wavelet 

 

( ) aax− .       (8) 

 

In [28] an interesting review on wavelets’ analysis and a comparison on their capability for damage detection were 

presented; it was stressed that, when changing scale, Gaussian wavelets don’t interrupt the propagation of the maxima 

[29]. Moreover, from Eq. (4), once the parameter a is adequately small in the domain of interest, the CWT is proportional 

to the n-th derivative of the signal f (z). Therefore, for the purpose of this paper, the wavelet Gaus2, with two vanishing 

moments, was chosen to detect the presence of a discontinuity in the analyzed beam; the chosen wavelet is available in 

the Matlab Toolbox [30] which will be the software used later to implement the identification methodology. 

2.4 Deflection profile of the bending beam and the denoising process 



To erase the noises from the original signal of the deflection profile for a better detection purpose, a smoothing algorithm 

provided by Matlab R2007a, ‘rloess’, is imported in the data processing before the wavelet transform [22]. The method 

assigns zero weight to data outside six mean absolute deviations;  a span value of 45% showed to be the most efficient in 

all cases. For sample’ sake, the case of crack depth = 1.0 t at z1 from the left hand support of the beam, for a static load 2 

kN, is shown in Fig. 3c: it can be seen that the original signal is smoothed effectively for a possible detection with wavelet 

transform. 

2.5 Damage detection using wavelet analysis 

To determine the position of the crack a wavelet analysis was performed. The second order derivative of a Gaussian, W,  

is a wavelet useful to identify discontinuity in signals. In the present situation for the undamaged beam with load there is 

a discontinuity in the third order derivative in the middle of the beam; when the beam is damaged is present another 

discontinuity is present in its location in the 4th order derivative. 

Each signal V representing the deformation is convolved with a wavelet W with suitable variance. When a 

discontinuity in the 3rd order derivative of the vector V is present the convolution showed a peak. Some other peaks may 

be present, due to the presence of noise.  

To recognize the peaks due to a true discontinuity the multi-scale theory of wavelet is used. In [31, 27], as already 

recalled, the authors observed that the Gaussian wavelets propagate the maxima, when their  scale is changed, so the 

peaks corresponding to a true discontinuity do not change position, whereas the peaks due to noise may change high or 

position. This consideration suggested us to consider the wavelet Gaus2  with three different scales, consider the 

convolution and then study the product. The result eliminated or at least reduced the spurious peaks and enhanced the 

true ones. The choice of the scale was mainly related with the length of the domain of interest; since the  support of the 

wavelet with scale a is about [-2a, 2a] and the number of measurements points was 312, a reasonable choice for the scale 

of three wavelets was 3, 6 and 9, Fig. 5a; so, the confusion between two possible adjacent discontinuities was avoided 

and it was possible an accurate position detection. 

Based on the calculation shown by Eq. (4), the crack position can be discerned by conducting the smoothed 

discrete deflection signals from the captured image with wavelet transform. To avoid any experimental errors usually 

happened at the measurement border, the mid 312 (= n) points out of 15000 from the deflected photograph are selected. 

Chang and Chen [32] pointed out that the WT may exhibit local maxima at the beam ends, even if no damaged section is 

located therein. These boundary effects, relevant for any function defined on a finite interval, represent a non-negligible 

limitation of the approach, since no reliable diagnosis can be formulated on the damage state at the beam ends. In [18] to 

avoid large discrepancy at the boundaries, the signal was extended outside its original support by a cubic spline 

extrapolation. Spanos et al.  [14] observed that boundary effects can be eliminated if the WT is applied on the difference 

between the displacement responses of the damaged and undamaged beam, subject to the same load. In [33], the problem 

of the damage masked by CWT border distortions was discussed and a new signal extension polynomial method to 

enhance damage detection by spatial CWT is proposed. The method is based on high-order polynomial functions that fit 

the original data and its first derivative so as to extend smoothly the signal and its derivatives. For their simplicity the 

signal boundary constraint approaches are preferred. Traditional extending methods as zero padding, periodic padding, 

symmetric padding and linear padding (e.g., see MATLAB Wavelet Toolbox [30]), are usually employed in WA. 

In more detail, the CWTs were normalized with respect to the chosen scales of WT as follows, Fig. 5b. Indicating 

the different wavelet scales with p1=3, p2=6, and p3=9, the normalized CWT was defined as  

 



CWTnorm  =  CWT ⋅  (𝑝1 ∙ 𝑝2 ⋅ 𝑝3)  ⋅  √2  ⋅  √CWTmax
3

   (9) 

 

where 

CWT =  |CWT(𝑝1)|  ∙  |CWT(𝑝2)|  ∙  |CWT(𝑝3)|   (10a) 

CWTmax  =  Max𝑧(CWT)     (10b) 

 

 

 

 

 

 

 

 

2.6. Single open crack (First specimen) 

2.6.1 Damage location 

The damage detection of the open crack with the depth d1= 0.5 t located at z1 is first studied (Fig. 6). 

 

 

 

 

 

 

 

 

Figure 7a  shows the calculated wavelet coefficients (CWT) of the smoothed deflection profile (difference between the 

displacement responses of the damaged and undamaged beam, subject to the same load) around the crack area of the steel 

beam with the product of three different wavelets Gaus2 with scales 3, 6, 9. Although small perturbations can be seen at 

some regions which are owing to noises, an apparent perturbation at z1 is intransigently un-changeable when the product 

of wavelets of different scales is calculated. Although the crack depth is around 50% of the flange thickness, the crack 

position still can be detected successfully by the spatial wavelet transform method experimentally From these 

experimental studies, it is found that the crack, whose depth is equal or more than 50% of the flange thickness, can be 

Figure 5.  Wavelet transforms. a) Convolutions at different scales; b) normalized product. 
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Figure 6. a) Single open cracked beam; b) open crack detail A for d1=0.5t (0.7t, 0.85t, 0.95t); c) open 
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evidently detected by the proposed experiment set and spatial wavelet transform. To further show the effectiveness of the 

damage detection method using the spatial wavelet transform, the detection of transverse cracks with larger depths d1=0.7 

t, 0.85 t, 0.95 t, 1.0 t, 0.3 h, which is located at the position z1 from the fixed end of the same beam structure, is conducted. 

Figures 7b,c,d,e,f illustrates the wavelet coefficients after the transform of the deflection profile around the crack area, as 

above with the product of the wavelets with scales 3, 6, 9. 

 

 

 

 

 

 

 

 

 

 

2.6.2 Damage evaluation 

A suggestive curve has been constructed, Fig. 8, to quantify the damage in a simply supported beam by taking envelop 

of all maximum WCs of the deflection response measured at damage points. The damage severity s is defined as: 

 

𝑠 = 1 −
𝐼𝑑

𝐼
      (11) 

 

where Id is the moment of inertia of the damaged cross-section. Applying the analytical model proposed in [24] leads to 

a slightly good agreement with the results obtained via the experimental tests, Fig. 9. 

Polynomial interpolation of the experimental curve of Fig. 8: 

 

P(𝑠) = 20.9275 + {16.8591 + ⟦22.4049 + [−0.00485656 + (0.0649298 + 0.698705 ∙ 〈−0.635793 + 𝑠〉) ∙ (−0.405768 + 𝑠)] ∙

(0.594049 + 𝑠)⟧ ∙ (−0.274852 + 𝑠)} ∙ (−0.83809 +  𝑠)    (12) 

 

allows to evaluate the actual crack depth d starting from the known peak value P̅; in fact, the corresponding severity 𝑠̅ 

can be calculated by solving the algebraic equation 

 

[ P(𝑠) = P̅ ]   →   𝑠̅      (13) 

 

The moment of inertia of the damaged cross-section is given by Eq. (11): 

 

𝐼d = (1 − 𝑠̅)𝐼       (14) 
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Figure 7. Normalized CWTs for a single open crack. 



The actual crack depth 𝑑̅  can be calculated by solving one of the following two equations that relate Id and depth of the 

crack, depending on the fact that the flaw affects only the flange: 

 

𝐼d1(𝑑) = (𝑤 − 𝑡𝑤) 𝑡3 3⁄ + 𝑡𝑤 (ℎ − 𝑡)3 3⁄ + 𝑤 𝑡3 12⁄ + 𝑤𝑡(ℎ − 𝑡 2⁄ )2 − 𝑤 𝑑3 12⁄ − 𝑤𝑑(ℎ − 𝑑 2⁄ )2 − 𝐴1(𝑑)[𝑦1(𝑑)]2 

      (15) 

where:    

 𝐴1(𝑑) = 𝑤𝑡 + 𝑡𝑤(ℎ − 2𝑡) + 𝑤(𝑡 − 𝑑) (16a)  

 𝑆1(𝑑) = (𝑤 − 𝑡𝑤) 𝑡2 2⁄ + 𝑡𝑤 (ℎ − 𝑡)2 2⁄ + 𝑤(𝑡 − 𝑑)[(𝑡 − 𝑑) 2⁄ + (ℎ − 𝑡)] (16b) 

 𝑦1(𝑑) = 𝑆1(𝑑)/𝐴1(𝑑) (16c)  

or penetrates in the web of the cross-section: 

 𝐼d2(𝑑) = (𝑤 − 𝑡𝑤) 𝑡3 3⁄ + 𝑡𝑤 (ℎ − 𝑑)3 3⁄ − 𝐴2(𝑑)[𝑦2(𝑑)]2 (17) 

where: 

 𝐴2(𝑑) = (𝑤 − 𝑡w)𝑡 + (ℎ − 𝑑)𝑡𝑤 (18a) 

  𝑆2(𝑑) = (𝑤 − 𝑡𝑤) 𝑡2 2⁄ + (ℎ − 𝑑)2 2⁄  (18b)  

 𝑦2(𝑑) = 𝑆2(𝑑)/𝐴2(𝑑) (18c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

In more detail, the analytical results were obtained by applying the WT (product of the wavelets with scales 3, 6, 9) to the 

signal given by the difference between the deflection profiles of the damaged (Eq. (2)) and healthy (Eq. (1)) beams 

respectively: 

So = v – u      (19) 

 

 

 

2.7 Single fatigue crack (second specimen) 

The damage detection of the fatigue crack with the depth d1 = 0.3 h located at z1 is now studied, Fig. 10. The problem can 

be easily traced back to the scenario already addressed in the preceding Subsect. 2.4.1. In fact, in the load condition which 

involves the opening of the crack fatigue, it behaves as an open crack (slot), and then is attributable to the situation of 
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Figure 8. Envelop curves of wavelet peaks. 
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Figure 9. Single open crack, crack position 2/3L 

s1= t: comparison between the CWTs obtained by 

the analytical model and the experimental test. 



§2.4.1 shown in Fig. 7f. On the other hand, in the loading condition that causes the closing of the fatigue crack, the beam 

behaves as healthy and thus the WT does not indicate any damage. 

 

 

 

 

2.8 Double cracked beam, two open cracks 

The damage detection of two open cracks located at z1 and z2 is depicted in Fig. 11.  

The depth of the second crack is d2=0.3h, while for the first crack different depths are considered: d1=0.4t, 0.7t, t. In 

analogy to what was done in the Subsect. 2.4.1 and shown in Fig. 7, the normalized CWTs are plotted in Fig. 12. 

 

 

 

  

a)  b)  

Figure 10. a) Single fatigue cracked beam; b) fatigue crack detail A for d1=0.3 h. 



 

 

 

 

 

 

 

 

 

 

 

 

2.9 Double cracked beam, one open crack and one fatigue crack 

The damage detection of one open crack and one fatigue crack located at z1 and z2 and with depths d2=0.3 h and d1=0.25 

h  is sketched in Fig. 13.   

 

 

 

 

 

 

 

 

 

 

 

 

In order to highlight the existence and the depth of both cracks and to distinguish the fatigue from the open crack, we 

adopt the procedure proposed in [24], where it was defined, in addition to the signal So in Eq. (19), also the signal 

 

Sf = v+ - v-      (20) 

 

Figure 11. a) Double open cracked beam; b) second open crack detail B for d2=0.3h; c) first 

open crack detail A for d1=0.4 t (0.75t)  d) first open crack detail A for d1=t. 

a)  

b)  c)  d)  

Figure 12. Double cracked beam, two open cracks. a) d2=0.3h, d1=0.4t; b) d2=0.3h, d1=0.7t; 

c) d2=0.3h, d1=t. 

a) b) c) 

Figure 13. a) Double cracked beam; b) second fatigue crack detail B for d2=0.3 h; c) first 

open crack detail A for d1=0.25 h. 

b)  c)  



where v+ indicates the deformed shape of the beam damaged obtained with a load applied in one direction and v indicates 

the deformed shape obtained with the same load applied in the opposite direction. In the test that is presented here, the 

load has been directed downward, while the beam is trivially been rotated by an angle equal to  around its longitudinal 

axis. Also apply in this case the WT, as described in the previous sections, to the signals So and Sf. In Fig. 14a the signal 

So indicating the presence of both cracks, in that they open both under the load directed downward. In Fig. 14b, the signal 

Sf declared the existence of only the fatigue crack, since it behaves as healthy in v- with the load directed upwards and 

therefore is not filtered by the signal Sf, unlike the open crack that manifests its influence in both v+ both v- and then is 

eliminated by calculating the difference v+ - v-. 

 

 

 

 

 

 

 

 

 

 

 

 

3. CONCLUSION 

An experimental method for crack identification in beams based on the spatial wavelet transform applied to static 

deflection of the beam is presented. Unlike other damage identification techniques, wavelet- based methods can be applied 

not only to structural members but also to full structures. In addition, the damage can be detected using the static response 

of the structures. This is a very useful feature of the method since it is much easier and more inexpensive to measure the 

static response compared to the dynamic one. Another fact that makes the wavelet-based methodology easy to implement 

in practice is that it can be used for structural monitoring at the expected areas of damage only. All these properties make 

the method a potentially reliable and cost-effective assessment technique that can be applied to the maintenance of the 

built structures. 

The experiments were conducted using an optical method which allowed simultaneous measurements of static 

deflection lines in a large number of spatially distributed points. The proposed method provides very fast, noncontact, 

simple measurements that require only a personal computer and a commercially available camera. The accuracy of this 

method depends on the picture resolution. In experimental studies, a commercial camera is employed to capture the static 

deflection profile of  multi-cracked simply supported beams subjected to a static load at its middle point. Such a static 

deflection profile, in which the discontinuity of rotation of the beam cross-section  at the crack position is too small to be 

perceived, is conducted by the Gaus2 wavelet transform to discern or amplify the perturbation at the crack position. 

Denoising  process of the original deflection signal given by the camera and padding treatments of the images to reduce 

edge effects for enhanced damage identification are critical for an effective detection using wavelet analysis. In order to 

eliminate the spurious peaks and enhance the true ones, the application of the product of three Gaus2 wavelets transforms 

generated using three suitably selected scales to the difference between the damaged and the healthy deflection profiles 

has proved particularly effective. In this respect, the detection method is proven to be practically feasible and effective 

Figure 14. Double cracked beam, one open crack (z1) and one fatigue crack (z2). a) signal So; b) 

signal Sf. 

a) b) 



through our experimental studies even for a minor crack with a depth of around 3% of the beam height. The use of the 

Gaussian wavelet with two vanishing moments provides a clear and precise way of detecting the crack position by maxima 

lines. The wavelet detection technique makes it possible to detect cracks which require input data easy to be obtained, i.e. 

only the static response of the structure. 

The location of damage is precisely determined by the peak of CWT wavelet coefficient. It is observed that the 

sign of the peak of CWT coefficients can be used to help identifying the crack location whether  on the upper or lower 

side of the beam. The crack depth and load location affect the wavelet coefficient, where deeper the crack size the wavelet 

coefficients slightly increase. Hence, the present method can be applied as an indicator to predict the location and quantify 

damage. Detection and calibration of open and fatigue cracks in beams have been studied in detail experimentally and 

analytically. A local damage model has been considered to model  open and fatigue cracks and the static profile  has been 

simulated for both single and double cracks. A calibration of damage on steel simply supported beams with progressively 

increasing cracks has been experimentally performed. The generalized curve/envelop of maximum CWTs has been 

proposed to quantify the damage. The quantity of the damage is evaluated by mapping the maximum CWT onto the 

generalized curve. The proposed method can easily be applied to beams with other boundary conditions and it can be 

extended to identify multiple damages in single- and multi-span beams. Hence, the present method can easily be adopted 

as a structural health monitoring tool for civil and mechanical engineering structures. 
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