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1. Introduction

In the literature, several statistical methods have been proposed for
analyzing interval-valued data in different empirical fields, such as
chemometrics [12–14,25], ecotoxicology [2],meteorology [24,32], med-
icine [35], physics [22], pattern recognition [18], telecommunications
[15], health and retirement [34], economics and finance [20]. As
remarked by Manski and Tamer “researchers often have only interval
data on variables that can, in principle, be measured more precisely”
[34]. For instance, “the interval data on wealth in the Health and Retire-
ment Study (HRS) provide a ready illustration [30]. Let v denote a
person's wealth. Under the HRS questionnaire protocol, a respondent
is asked to report v. If he does not comply, the respondent is then
asked to report if wealth falls within a sequence of brackets. The HRS
thus yields a wealth interval [v0, v1] for each respondent. The interval
is degenerate when a respondent provides a point value of wealth, is
an informative interval of positive width when the respondent answers
the subsequent bracket questions, and is the uninformative interval −
∞, + ∞ otherwise”. Notice that, in general, interval-valued data are
vague and imprecise data conversely to single-valued data that are pre-
cise data. Consequently, interval-valued data are considered as a loss of
information. For example, the sentence “the temperature is 14” is more
precise and more informative than “the temperature is more or less
tiche, Via L. Rodinò n. 22, 80138
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between 12 and 15”. However, there are real cases in which the use of
single-valued data (numerical data) may bring about a heavy loss of
information. In fact, it is more informative to consider the interval
between the minimum and the maximum daily temperature than the
average value or the central value of the daily temperature. From a
methodological point of view, interesting contributions have been
suggested in the main fields of statistics as time series analysis [3,38],
cluster analysis [13,16], principal component analysis [12,18,31], multi-
dimensional scaling [17,22], regression analysis [11,20,34], decision
trees [32], self-organizing maps [2,15,24], neural networks [9].

In particular, focusing on time series analysis, there are several
experimental situations and real applications in which the empirical
information is represented by interval-based observations. For example
in meteorology wemight want to analyze a time series of daily temper-
atures or air pollutant concentrations, in finance the daily volatility of an
asset, inmedicine the daily systolic or diastolic pressure of a patience. In
cases such as these it is more interesting to take in account of the
interval-valued structure of the data considering the minimum and
maximum values recorded over the period of interest, or the mean
value and the deviation from the extremes, because, for a given time
period, they contain more information about the phenomenon of inter-
est than a single-point valued observation which summarise the infor-
mation in the same time period. For this reason, in recent years, the
analysis of interval valued time series (IVTS, hereafter) has attracted
the attention of the statistical and econometric communities (see for
example Refs. [1,3,37,38]). Indeed, over the last two decades change
point detection has emerged as a relevant research topic in several
fields of research. In the context of time series analysis the detection
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of changes is useful from several points of view. First it can reveal a
behavior of the time series that could otherwise be misunderstood
and modeled inadequately; second, in case of long time series, a
model estimated on a recent segment of the series might provide
more accurate forecasts, eventually the identification of breaks
might reveal the presence of outliers (see Ref. [8]). The undiscussed
contribution in the field of dating multiple changes occurring at
unknown dates is due to Bai and Perron (see among others Refs. [4,5]).
In case of multiple changes in mean Cappelli et al. [8] have proposed a
method called atheoretical regression trees (ART) that employs least
square regression trees (LSRT) to estimate the number and location of
changes whereas, recently, an extension based on a fuzzy approach
that deals with imprecise, vaguely observed time series has been devel-
oped by Cappelli et al. [7]. In chemometrics and environmetrics change
point analysis is a useful tool for monitoring and control; in this context
an interesting contribution has been proposed by Jansen [28]. In partic-
ular, motivated by the application of singlemolecule detection in a high-
ly dilute solution, Jansen discussed the problemofmultiple change point
detection in the intensity curve of low-intensive Poisson observations.
He explained that themultiple change point detection problem is inher-
ently a multiscale problem and analyzed the data using an extension of
the continuous wavelet transform (CWT) (the unbalanced wavelet
transform). In this way, the presence of change points in the underlying
intensity curve is revealed by a multiscale chain of local maxima in the
CWT analysis. Then, he proposed an algorithm for the reconstruction
of the chains by linking local maxima across scales; the algorithm is cru-
cial in detecting small changes against intensive noise. Other interesting
contributions have been proposed in the literature. Jaurskova [29] pro-
posed change point detection methods for hydrological and
meteorological time series. Jandhyala et al. [26] developed methods for
detection and estimation of unknown change-point inWeibull parame-
ters and applied the proposedmethods to daily minimum temperatures
time series. Wu et al. [39] pursued a change-point analysis of rainfall
data and global warming data by applying isotonic regression based
change-point methodology, as well as a suitable trend detection test
for stationary time series. Lund et al. [33] proposed a change-point
detection analysis for periodic and autocorrelated time serieswith appli-
cation to precipitation data. Dierckx and Teugels [10] suggested a
change point analysis of extreme valueswith applications to earthquake
and climatological (i.e. precipitations and temperatures) time series.
Jandhyala et al. [27] applied change-point methods for mean annual
rainfall time series. Gallagher et al. [19] suggested a change point
detection analysis for daily precipitation data. In this paper in order to
deal with interval-valued time series we propose to employ, in the
framework of ART, a deviation measure based on a suitable squared
distance measure [15] that combines the midpoint (centers) and
width (radius) of the intervals associated with the interval-valued
time varying units. Our methodological approach has important advan-
tages. Firstly, with respect to the other methodological approaches pro-
posed in the literature in environmetrics and chemometrics literature,
our change point detectionmethod is able to analyze interval time series
by considering all the values contained in the minimum-maximum
range of a (e.g. daily) time series conversely to the previous methods
which analyze only significant values (e.g. mean or extreme value) of
a (e.g. daily) time series. Furthermore our method since it is based on
a least-square regression trees approach (in fact is called atheoretical
regression trees) ismodel-free and then it is not conditioned by theoret-
ical restrictions connected to possible distribution assumptions.

The remainder of the paper is organized as follows: in Section 2 we
introduce the notion of interval valued data and we illustrate the ART
method showing how it can be employed to detect change points in
interval-valued time series. In Section 3 we present the results of simu-
lation studies pertaining to the behavior of the proposed approach
whereas an empirical application to change point detection in a data
set of environmental variables is discussed in Section 4. Concluding
remarks are drawn in Section 5.
2. Detecting change points in interval-valued time series

In this sectionwe introduce the notion of interval-valued time series
and we briefly describe the issue of change point detection and regres-
sion trees showing how these can be employed to detect change points
in IVTS.

2.1. Interval-valued time series

An interval-valued time series can be formalized as Ỹt = [lt, ut], t =
1,…, T, such that each time unit has an interval structure characterized
by a lower and an upper bound lt and ut, respectively.

Each observation can be represented by a vertical segment defined
by the center (midpoint)ct ¼ ltþut

2 and radius (spread) rt ¼ ut−lt
2 of the in-

terval and thus the IVTS can be reformalized as

~Yt ¼ ct ; rt½ �; t ¼ 1;…; T:

Note that the center-radius representation is simple and convenient
because the range is a common measure of variability of a random
variable and it is often employed for estimation purposes in various
empirical applications.

In order to compare two interval-valued time units the following
Euclidean distance can be employed [15]:

d t; t0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct−ct0ð Þ2 þ rt−rt0ð Þ2

q
: ð1Þ

This distance measure combines the information on both the center
and width of the interval associated to each interval-valued time unit
and it satisfies the usual properties of distance measures.

Notice that, other possible distance measures could be considered
for comparing interval-valued time units. See, for instance, Refs. [12,
21,23,25].

2.2. Change points detection and regression trees

Consider a standard point-valued time series Yt characterized by
m + 1 regimes and m changes so that t = Tj − 1 + 1, …, Tj and j =
1, …, m + 1 with T0 = 0 and Tm + 1 = T. In order to estimate the set
of unknown change points (T1, …, Tm) the least square principle is

used and the estimated break points ðT̂1;…; T̂mÞ are such that:

T̂1;…; T̂m

� �
¼ arg min

T1 ;…;Tmð Þ
SSR T1;…; Tmð Þ ð2Þ

where SSR(T1, …, Tm) denotes the sum of squares residuals of the

m + 1 partition that in case of changes in means is: SSRðT1;…; TmÞ ¼
∑mþ1

j¼1 ∑T j

t¼Tð j−1Þþ1ðYt−μ jÞ2:.
Cappelli et al. [8] have proposed a procedure that detects such

change points employing LSRT. In general, given a continuous response
variable Y and a set of predictors X1, …, Xp, regression trees model the
relationship between the response and the covariates using a recursive
partitioning approach that results into a partition of Y based upon the
values of the predictor variables. In particular, LSRT are piecewise-
constant models: a node h i.e. a subsample of statistical units is split
into its left and right descendants hl and hr to reduce the deviance of
the observed dependent variable Y fitting to each node the mean of
corresponding Y values. The algorithm selects the split, i.e. the binary
division, that minimizes sum of squared residuals:

SSR hlð Þ þ SSR hrð Þ ¼
X
i∈ l;rf g

X
Y∈hi

Y−μ̂ hið Þð Þ2 ð3Þ

where μ̂ðhiÞ is the mean of the observed y values in node h(i) (i ∈ {l, r})
thus, the splitting criterion (3) corresponds to the (2) computed for a
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binary partition. Once a node is partitioned, the splitting process is
recursively applied to each subnode until either they reach a minimum
size or no improvement of the criterion (3) can be achieved.

Indeed, LSRT are a practical tool for datingmultiple changes inmean
occurring at unknown dates in a time series Yt. At this aim a single
artificial covariate is employed in the recursive partition process i.e. a
sequence of completely ordered numbers k = 1, …, T. Tree regressing
the time series Yt on k provides a partition of the series into homoge-
neous segments such that μ̂ j ≠ μ̂ jþ1; the partition is represented as a
binary tree whose split points identify candidate change points. Note
that a binary tree is a hierarchical structure i.e. a nested sequence of par-
titions and since the tree tends to be overly large a pruning method is
employed to trim it back. Pruning is the process of discarding terminal
nodes whose contribute to the reduction in deviance is negligible and
it generates a sequence of subtrees that represent nested change point
models. In order to select the subtree whose terminal nodes provide
the optimal partition corresponding to the actual number of changes
and distinct subperiods present in the data, we use classical model selec-
tion criteria. Extensive simulation studies, comparison with current
methods and applications to various real time series have provided evi-
dence of the usefulness of the approach (see Ref. [36]) that has been
called atheoretical regression tree (ART) because it employs a single
artificial covariate and no parametric model is assumed and estimated
in the subperiods.

The squared distance measure (1) can be used in the framework of
ART to detect change points in IVTS.

At this aim we define the deviation over the entire sample period

SS ~Yt

� �
¼

XT
t¼1

ct−cð Þ2 þ rt−rð Þ2
h i

where c and r are the mean values of the centers and radii, respectively.
Then, in ART's recursive portioning approach, the best split of a ge-

neric node h, that identifies a candidate change point, minimizes

SSR hlð Þ þ SSR hrð Þ ¼
X
i∈ l;rf g

XT hið Þ

t¼1

½ðct−cðhiÞÞ2 þ rt−r hið Þð Þ2� ð4Þ

where cðhiÞ and rðhiÞ are the mean values of the centers and radii in
node hi (i ∈ {l, r}) and T(hi) is the length of the corresponding subseries.

After a large tree is grown we employ classical cost-complexity
pruning [6] to generate the sequence of subtrees corresponding to alter-
native nested change point models of various dimension (number of
changes and regimes). Then, to select the preferable subtree (model)
among the competing ones, we consider an information criterion; in
particular we use a modified Bayesian Information Criterion (BIC)
defined as

BIC mð Þ ¼ ln σ̂2 mð Þ þ p ln Tð Þ=T

where σ̂2ðmÞ ¼ T−1SSR~Yt
ðT̂1;…; T̂mÞ is the sum of squared residuals of

the m-partition of the IVTS and p = (m + 1) × (k + 1) with k = 2
because in each regime 2 parameters are estimated i.e. the mean value
of the centers and radii, respectively.

3. Simulation experiments

In this section we present the results of simulation experiments
carried out to evaluate the proposed approach considering as perfor-
mance indicators the number of structural change points detected
(cp) and the rate of correct identification of the change points (ci)
(either exact identifications or short intervals around the true value).
Three basic scenarios have been analyzed:
1. changes only in the centers;
2. changes only in the radii;
3. changes in both centers and radii.

The data generating process (DGP) of each interval-valued time unit
is: Yt ~ N(μt, σt

2). Throughout the simulations, it is m = 2 thus two
change points occur in the data at times T1 = 80 and T2 = 150, the
length of the series is T = 200 and 1000 Monte Carlo replications are
generated.

For the third scenario, i.e. changes in both centers and radii, a further
simulation experiments has been carried on considering a shorter series
(T = 130) withm = 4 changes not equally spaced.

3.1. Scenario I

We start with the case where changes occur only in the centers and
thus their identification should not be affected by the presence of the
radii. Indeed this is a base case to assess the behavior of the method
that we expect to perform as standard ART for single-valued data pro-
viding similar results.

The parameter values of the Normal distributions in the different
segments

Yt � N 0;1ð Þ if t≤100
Yt � N 0:5;1ð Þ if 100b t≤ 200
Yt � N 1;1ð Þ if t N200

8<
: :

For illustrative purposes one of the simulated series (centers and
radii) and the corresponding error bar series are plotted in Fig. 1. Note
that since the change in the centers is quite small and the radii are not
subject to change, on the whole the plot of the error bar does not sug-
gest the presence of changes. It is also worth noticing that increasing
steps are difficult cases where most procedures fail to select both the
right number of changes and their location.

We have applied ART employing the deviation measure defined in
the (4) and to avoid the identification of changes in the tails, we have
set a minimum segment length of 15 observations.

Table 1 reports the results averaged over the 1000 Monte Carlo
replications. The method identifies the right number of change point
(cp = 2.03) and only occasionally detects an additional spurious
break. The rates of exact correct identifications (ci) are pretty high for
both changes and they became notably high for larger intervals around
the true date, despite the fact that the changes are quite small.

Eventually, since in this case only the centers are subject to change,
for comparison purposes we have applied the standard ART with devi-
ation measure (3) to the series of the centers, and found very similar
results (see Table 2). In other words, although the data could be treated
as point-valued, the use of a deviation measure for IVTS does not affect
the analysis and the standard method does not outperform the pro-
posed approach.

3.2. Scenario II

In the second simulation experiments only the radii are subject to
change. This is a case particularly relevant because, when no changes
occur in the midpoints, any standard method (classical ART or Bai and
Perron's) that does not take into account the structure of the data,
applied to single-valued time series would detect no changes. In order
to render this situation we have simulated the time unit from non-
homoschedastic normal distributionswith constantmean. TheDGP are:

Yt � N 0;1ð Þ if t≤100
Yt � N 0;1:5ð Þ if 100b t≤ 200
Yt � N 0;2ð Þ if t N200

8<
: :

Again, the error bar plot of one simulated series (Fig. 2) shows a very
slight evidence of changes. Despite the weak graphical evidence, the



Fig. 1. Changes only in the centers, one simulated series.
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method is effective in detecting the presence of changes in the radii as
well as their number and location, as we can conclude from Table 3
that reports the results averaged over the 1000 MC replications.

Note that the rates of correct identifications are slightly lower with
respect to the previous case (changes only in the centers), this is due
Table 1
Changes only in the centers—simulation results averaged over the 1000 MC replications.

cp = 2.03

Break 1 (T1 = 80)
ci ci ± 1 ci ± 2 ci ± 4
.55 .76 .85 .93

Break 2 (T2 = 150)
ci ci ± 1 ci ± 2 ci
.56 .80 .87 .95

Table 2
Standard ART applied to the center series—simulation results averaged over the 1000 MC
replications.

cp = 2.08

ci ci ± 1 ci ± 2 ci ± 4

Break 1 (T1 = 80)
.53 .74 .83 .91

Break 2 (T2 = 150)
.56 .78 .86 .95
to the fact that the changes in the radii have been rendered by the vari-
ance of the DGP of the time units and in terms of square roots, they are
extremely mild.

3.3. Scenario III

Eventually we have analyzed the case where both centers and radii
are subject to changes.

In the first setting the means of the normal distributions of the cen-
ters have been set as in case study I whereas the changes in radii have
been generated using the variances of case study II. One simulated series
is depicted in Fig. 3.

We see that the presence of changes both in the centers and radii,
although not very strong, leads to a graphical evidence of two changes
of increasing magnitude.

Table 4 reports the results of the simulation experiment.
Not surprisingly in presence of changes in both centers and radii the

proposed method achieves the highest rates of correct identification.
It's worth reminding that the procedure is based on a recursive

binary partitioning algorithm thus, once a split is performed and the
corresponding change point is identified, the search is repeated sepa-
rately on the subsegments defined by the change point. For this reason,
as it will be shown by the next experiment, themethod is able to handle
the case of multiple (more than two) change points.

In order to provide more evidence of the effectiveness of
the proposed approach we have carried on a further simulation



Fig. 2. Changes only in the radii, one simulated series.
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experiment considering a more complex setting. In particular a short
time series (T= 130) has been generated that contains four changes
both in the centers and radii, not equally spaced. The DGP of the sub-
series are:

Yt � N 0;1ð Þ if t≤ 25
Yt � N 0:3;0:8ð Þ if 25 b t≤60
Yt � N 0:7;1:1ð Þ if 60 b t≤80
Yt � N 0:5;1:3ð Þ if 80 b t≤110
Yt � N 0:7;1:1ð Þ if t N110

8>>>><
>>>>:

:

As we can see the changes in the parameters of the normal distribu-
tions are extremely mild and their values fluctuate; as a consequence
both the series of the centers and radii show an irregular behavior as
Table 3
Changes only in the radii—simulation results averaged over the 1000 MC replications.

cp = 2.04

ci ci ± 1 ci ± 2 ci ± 4

Break 1 (T1 = 80)
.43 .63 .78 .90

Break 2 (T2 = 150)
.37 .63 .75 .87
we can see from Fig. 4. Note that since the length of the subseries is
very short we have set a minimum segment length of five observations.

The results averaged over the 1000MC replications (see Table 5) are
consistent with the previous simulations. In particular, since the pro-
posed approach is based on a deviance measure that combines centers
and radii, this simulation confirms that in case of changes in both, the
method provides the best performances with very high percentage of
correct identification that reach almost 100% for intervals of ±4 obser-
vations around the true date. Moreover the method is able to handle
multiple (more than two) change points that are quite close to each
other and unequally spaced. Eventually note that the mean number of
change points detected (3.87) is slightly underestimated, this is likely
due to the change at observation 80 that concerns a very short period
(20 observations) and whose percentage of correct identifications are
lower compared to the other changes.

4. An air pollution application: The change point analysis of the
PM10 time series in Rome

In the empirical application we have considered a data set of envi-
ronmental variables collected in Rome in 1999 in themonitoring station
installed inViaArenula, close to the historical center of the city.Wehave
focused on concentration of particulatematter 10 (PM10) that is among
themost harmful of all air pollutants. In general particulatematter is the
term for solid or liquid particles (such as dust, fume,mist, smog, smoke)
found in the air that cause air pollution. It may vary greatly in color,



Fig. 3. Changes in both centers and radii, one simulated series.
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density, size, shape, and electrical charge, from place to place and from
time to time. Smaller particles are likely responsible for adverse health
effects because of their ability to reach the lower areas of the respiratory
tract. The PM10 standard includes particles, measured as thousands for
cubicmeter, with a diameter of 10 μmor less. According to health-based
EU air quality standards the average daily concentration of PM10 should
not exceed 50 μg/m3.

We have analyzed the sample period 01 August–30 November and
thus T = 122. The original time series provides daily values recorded
on hourly basis and thus time units are represented by interval-valued
data whose conversion into a single value for each day entails loss of
information and inaccuracy. In Fig. 5 it is depicted the time series of
the centers and radii whereas Fig. 6 reports the error bar graph corre-
sponding to the interval-valued time units.
Table 4
Changes in centers and radii—simulation results averaged over the 1000 MC replications.

cp = 2.03

ci ci ± 1 ci ± 2 ci ± 4

Break 1 (T1 = 80)
.58 .79 .88 .94

Break 2 (T2 = 150)
.59 .81 .89 .96
The visual inspection of both series in first place shows that the
PM10 values often exceed the standards, moreover the plot suggests
the presence of a possible change located at the beginning of October
as well as of possible outliers (time units characterized by relatively
larger midpoint and/or radius) located at the extremes.

We have applied the regression tree based procedure setting a min-
imum number of observations per segment of 7 days andwe got a large
tree with nine terminal nodes corresponding to eight candidate change
points that are indicated in Fig. 6. Thenwe have generated a sequence of
nested partitions by pruning back the tree and we have employed the
proposed modified BIC to select the optimal number of changes.

In Fig. 7 it is displayed in the form of a tree diagram the optimal par-
tition corresponding to the change points selected according to the
modified BIC whereas Table 6 summarizes some stylized facts of the
entire series and the five subperiods identified by the change points.

As expected the first and strongest change occurs around themiddle
of the series (observation 68, 7th of October), when the series of PM10
shifts towards higher levels of both centers and variability of the radii. In
particular, in the first segment, running from the 1st of August to the 7th
of October, the average daily concentration of PM10 is 47.9, and thus it
does not exceed the European air quality standards, opposed to the sec-
ondperiodwhere themeandaily concentration is 75.8. This is likely due
to increasing vehicles circulation after the summer break. Two more
changes occur at the beginning and the end of the series (observations
11 and 114, 11th of August and 22th of November, respectively) and
they are both characterized by a sudden shift that identifies outliers.



Fig. 4. Four changes not equally spaced in both centers and radii, one simulated series.
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Moreover the change at time 11 separates the period (running from
12th of August to 7th of October) of lowest concentration of PM10 in
terms of mean values (centers), variability and width of the radii as
we can see from the mean and standard deviations associated to this
subperiod (see Table 5). We may see this period as the most respectful
one in terms of limit values. The last change occurs at observation 95
(4th of November), and it identifies two subperiods of both high mean
levels and daily variability of PM10. A further insight into the
partitioning process is provided by the graph of the values of the
Table 5
Four changesnot equally spaced in centers and radii—simulation results averagedover the
1000 MC replications.

cp = 3.87

ci ci ± 1 ci ± 2 ci ± 4

Break 1 (T1 = 25)
.70 .91 .95 .96

Break 2 (T2 = 60)
.83 .93 .96 .99

Break 3 (T3 = 80)
.47 .75 .84 .95

Break 4 (T4 = 110)
.76 .92 .97 .99
objective function (3) associated to each possible split of the tree
nodes, reported in Fig. 8.

As we can see, all changes correspond to a strong minimum of the
objective function;moreover the behavior of the plot for changes occur-
ring at observations 11 and 114 confirms that they identify outliers. On
thewhole, the application findings confirm how the proposed approach
is effective in detecting change points in IVTS separating periods that
differ from each other.
5. Conclusions

In several real life and research situations data are collected in the
form of intervals. To analyze interval-valued data, usually researchers
summarize the original data into single values, such as the centers or
the medians of the intervals, but by doing so some important informa-
tion in the original data is lost such as the range of the interval.

In the last years efforts have been done either to extend classical
methods or to develop new approaches to deal with interval valued
data. This paper has addressed the problem of detecting change points
in interval-valued time series proposing, in the framework of atheoret-
ical regression trees the use of a proper distance measure that accounts
for the interval structure of the time ordered units. Indeed, change point
analysis is a useful tool for monitoring and control and in the last
decades it has emerged as a relevant research topic. However various



Fig. 5. PM10—time series of midpoints and radii.

Fig. 6. PM10—error bars time series.
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methods proposed in the literature consider the case single-valued time
series.

We have presented the results of three simulation studies pertaining
to different scenarios and an empirical application to a real interval
Fig. 7. PM10—regression tree.
valued time series that have shown the usefulness of the proposed pro-
cedure. Indeed, according to the simulation experiments themethod se-
lects the number of changes and their location accurately. In particular,
when changes are present only in the centers and thus the data in terms
of change point analysis can be treated as single valued, the use of a dis-
tance measure that accounts for the width of the intervals favors the
correct identification of the change points. In case of changes only in
the radii our proposal represents a tool to detect change points that
Table 6
Stylized facts of the entire series and of the subperiods identified by the change points.

c r sdc sdr

Entire series
1 August–30 November 60.3 40.3 24.2 16.5

Regimes
01 August–11 August 59.9 36.4 24.6 13.3
12 August–07 October 45.7 34.5 10.5 9.5
08 October–4 November 77.2 49.4 21.33 18.1
05 November–22 November 62.4 39.2 18.2 15.9
22 November–30 November 103.6 58.3 28.7 29.8



Fig. 8. PM10 behavior of the objective function.
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would otherwise be missed by classical methods for single valued data
typically applied to the series of the centers. Eventually themethod pro-
vides the best performances when both centers and radii are subject to
change. Overall the simulations confirm that themethod is effective and
it can be confidently employed for change point analysis.

In the application we have considered a time series of an air pollut-
ant, the particulate matter that is responsible for harmful effects on
health. The analysis has shown that the concentration of PM10 does
not remain constant over the period of interest and that the method
also helps identify outliers.

Eventually the procedure can be easily implemented in any software
that provides the classification and regression tree methodology and it
provides a quick flexible tool that, due to its simplicity, is particularly
useful for applied time series analysis.
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