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Abstract A linear elastic second gradient orthotropic two-dimensional solid that is invariant under 90◦ rotation 1

and for mirror transformation is considered. Such anisotropy is the most general for pantographic structures that 2

are composed of two identical orthogonal families of fibers. It is well known in the literature that the corresponding 3

strain energy depends on nine constitutive parameters: three parameters related to the first gradient part of the 4

strain energy and six parameters related to the second gradient part of the strain energy. In this paper, analytical 5

solutions for simple problems, which are here referred to the heavy sheet, to the nonconventional bending, and to 6

the trapezoidal cases, are developed and presented. On the basis of such analytical solutions, gedanken experiments 7

were developed in such a way that the whole set of the nine constitutive parameters is completely characterized in 8

terms of the materials that the fibers are made of (i.e., of the Young’s modulus of the fiber materials), of their cross 9

sections (i.e., of the area and of the moment of inertia of the fiber cross sections), and of the distance between the 10

nearest pivots. On the basis of these considerations, a remarkable form of the strain energy is derived in terms of the 11

displacement fields that closely resembles the strain energy of simple Euler beams. Numerical simulations confirm 12

the validity of the presented results. Classic bone-shaped deformations are derived in standard bias numerical tests 13

and the presence of a floppy mode is also made numerically evident in the present continuum model. Finally, we 14

also show that the largeness of the boundary layer depends on the moment of inertia of the fibers. 15

Keywords Analytical solution · Floppy mode · Identification · Pantographic structures · Second gradient elasticity 16

Mathematics Subject Classification 74A30 · 74Q15 17

1 Introduction 18

The aim of this paper is to provide a linear second gradient elastic model for two-dimensional pantographic structures. 19

Pantographic lattices may have an importance in many scientific and applicative sectors, such as in dynamics where 20

the possibility of bandgaps is possible, the biomechanics of fiber reinforcements of growing and reconstructed living 21
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tissues, and in piezo- or flexo-electricity. The measurements performed in [1] showed that, starting from the first22

failure up to the definitive rupture, the energy that is necessary to reach the total rupture is greater than the elastic23

energy that can be accumulated at maximum. This implies that this microstructure has the ability to generate an24

extremely tough (meta)material.25

At the microlevel, the pantographic structure has a lattice that is composed of two orthogonal families of fibers.26

The fibers are constituted by cylinders with a given cross-sectional shape. At each intersecting point of the two27

families, and orthogonal to them, we have a much smaller rod that serves to connect the two families of fibers. At28

the mesolevel, for each fiber is assumed the validity of the Euler beam model with finite axial resistance, and for29

each intersecting point of the two families of fibers, it is also assumed that the internal hinge constraint is valid. In30

this simplified case, the resistance of such internal pivots to the relative rotation among the two families of fibers is31

assumed to be zero, so that the presence of one floppy mode is considered; see, for example, [2].32

At the macrolevel, the continuum model is not isotropic. Pipkin, Steigmann, Eremeyev, and dell’Isola [3–7]33

have worked on models of this kind. In classic models, if one takes a fiber in a shell (or in a plate) and changes its34

curvature within the tangent space of the shell (or within the plate), and with reference to the actual configuration,35

then the elastic energy does not change. This clearly shows the necessity of changing this kind of modeling for36

pantographic structures because the fibers for sure accumulate strain energy in their bending process. In other words,37

the so-called geodesic bending should be taken into account [8–10], and we need a model for which it is associated38

to a change in the elastic energy. Macroscopic models have the advantage of small computational cost. However,39

microscopic and mesoscopic models can be helpful in the development of a good macroscopic model as well as in40

the identification of its parameters. In addition, the presence of defects and imperfections at the microscale makes41

the model at the microlevel very difficult to define. Moreover, because these structures are very thin and light but42

have a high anisotropic stiffness, buckling and postbuckling phenomena can occur when the structures are subjected43

to compression or bending deformation. Therefore, for the identification of material parameters, new experiments44

should be designed very carefully, with an eye toward avoiding critical deformations that could trigger instability45

(e.g., [11–13]).46

Size–scale effects [14–16] cannot be investigated when the mechanics is investigated via a classical approach.47

In [17] isotropy and microrandomness imply conformal invariance of the curvature. Numerical investigation of48

pantographic structures requires the development of new techniques [18–26]. In addition, the proper employment49

of existing methods, for example [27], are used to obtain the dynamics of such a class of microstructured materials.50

In the first half of the nineteenth century, Piola [28] already investigated microstructural effects in mechanical51

systems in his works by means of continuum theories [29–32]. Many strategies can be used with this aim. When52

strongly localized deformation features are observed [33–39], a suitable theoretical model is given by adding, to the53

displacement field, additional kinematical descriptors [40–43]. This leads to what is called a micromorphic model54

[44].55

It is also possible to use second- or higher-order gradient theories, where, respectively, the deformation energy56

is a function of second- or higher-order displacement gradients [45–48]. Such a possibility is accomplished in the57

literature not only for monophasic [49–54] but also for biphasic (e.g., [55–61]) or granular material [62] systems58

and in cases of lattice/woven structures [63–65]. An important characteristic of second- and higher-order continua59

is that, unlike classical Cauchy continua, they can respond to concentrated forces and to other generalized contact60

actions (e.g., [66]). In addition, new manufacturing procedures, for example 3D printing processes, now allow61

important applications in terms of a wide class of new materials [67] with a given microstructure (architectured62

materials). In fact, pantographic structures [68,69] can be 3D printed and experimentally verified. From this point63

of view, it is observed that the elongation of each fiber can be more than 10 % [70]. This justifies the finite axial64

resistance at the mesoscale. Moreover, in bias elongation tests, the presence of boundary layers whose lengths are1 65

proportional to the moments of inertia of the fibers (see also [71]) and interactions between elongation and bending66

constitute necessary ingredients of a good model.67

In [72], the isotropic strain-gradient model is considered. It appears that, in the linear elasticity case, only four68

independent moduli appear in the 2D case. This result was confirmed in [73]. In [74], a complete description of69

the anisotropic (e.g., [75–77]) 2D (see also [78–80]) strain gradient elasticity is given. In this paper we take the70
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appropriate kind of orthotropy for linear strain gradient elasticity for pantographic structure. In this context we have 71

three first gradient coefficients and six second gradient coefficients. A complete characterization (or identification 72

[81,82]) of the nine constitutive coefficients for pantographic structures is given. Moreover, the symmetry analysis 73

as performed in [83,84] may be useful for different geometries of fibers, for example for fibers constituting a 74

nonorthogonal lattice. 75

The method is the same as that used for the isotropic case in [73]. We take a first gradient problem whose solution 76

is known. Then the solution is imposed on the second gradient case and the external actions are explicitly calculated 77

via the boundary conditions. Thus, the set of constitutive parameters is identified via a method that is explained. 78

2 Formulation of problem 79

2.1 Definition of deformation energy functional 80

B is a 2D body that is considered in the reference configuration, where the X are the coordinates of its points. 81

U (G,∇G) is the internal energy density functional that is a function of the deformation matrix G =
(

FT F − I
)

/2 82

and of its gradient ∇G. Here, F = ∇χ , where χ is the placement function, FT is the transpose of F , and ∇ is 83

the gradient operator. The energy functional E(u(X)) depends on the displacement u = χ − X and makes two 84

contributions: the internal and the external energies, 85

E(u(X)) =
∫∫

B

[

U (G,∇G) − bext · u
]

dA −
∫

∂B

[

text · u + τ ext · [(∇u)n]
]

ds −
∫

[∂∂B]
f ext · u, (1) 86

where n is the unit external normal and the dot · indicates the usual scalar product; bext is the external body force (per 87

unit area); text and τ ext are (per unit length) the external force and double force; and f ext is the external concentrated 88

force, which is applied on the vertices [∂∂B]. In other words, the last integral is the sum of the external works made 89

by the concentrated forces applied to the vertices. In addition, 90

∂B =
m
⋃

c=1

�c, [∂∂B] =
m
⋃

c=1

Vc. 91

Thus, the boundary ∂B is the union of m regular parts �c (with c = 1, . . . , m), and the so-called boundary of 92

the boundary [∂∂B] is the union of the corresponding m vertex points Vc (with c = 1, . . . , m) with coordinates X c. 93

Finally, for the sake of simplicity, we make explicit that the line and vertex integrals of a generic field g(X) are 94

∫

∂B

g(X)ds =
m

∑

c=1

∫

�c

g(X)ds,

∫

[∂∂B]
g(X) =

m
∑

c=1

g
(

X c
)

. (2) 95

2.2 Formulation of variational principle 96

A standard procedure to derive the system of partial differential equations (PDEs) is to assume δE = 0 for any 297

kinematically admissible displacement variation δu. Thus, from (1) the procedure to find the minimum of E is 98

explored, see [85]: 99

δE = −
∫∫

B

δuα

[

(

Fαi

(

Si j − Pi jh

))

, j
+ bext

α

]

dA 100

+
∫

∂B

[

δuα

(

tα − text
α

)

+ δuα, j n j

(

τα − τ ext
α

)]

ds +
∫

[∂∂B]
δuα

(

fα − f ext
α

)

. (3) 101
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Fig. 1 Discrete pantographic structure. Left-hand side: reference configuration; right-hand side: deformation in floppy mode condition

For the sake of simplicity, we skip to index notations (the derivative with respect to X j , which is the j th component102

of position X , is indicated by the subscript j after a comma; a general rule for index notation: the subscript indices of103

a symbol denoting a vector or a tensor quantity denote the components of that quantity) and the following positions104

were used:105

tα = Fαi

(

Si j − Ti jh,h

)

n j − Pka

(

Fαi Tih j Pahn j

)

,k
, (4)106

τα = Fαi Ti jkn j nk, (5)107

fα = Fαi Tih j Vh j , (6)108

where P is the tangential projector operator (Pi j = δi j − ni n j ), and V is the vertex operator109

Vh j = νl
hnl

j + νr
hnr

j ,110

where superscripts l and r refer (roughly speaking, left and right), respectively, to one and the other sides that define111

a certain vertex point Vc; ν is the external tangent unit vector. The stress and hyperstress tensors are112

Si j = ∂U

∂Gi j

, Ti jh = ∂U

∂Gi j,h

. (7)113

2.3 Two-dimensional second gradient orthotropic D4 linear elasticity114

In pantographic structures, the lattice is composed of two orthogonal families of fibers. It is assumed that in the115

2D case, for each fiber the Euler beam model with finite axial resistance is valid and for each intersecting point the116

internal hinge constraint is valid (Fig. 1, left-hand side).117

The resistance of such internal pivots to the relative rotation among the two families of fibers is assumed to be118

zero, so that the presence of one floppy mode is considered (Fig. 1, right-hand side). The equivalent linear elastic119

continuum model is not isotropic. In the 2D case the collection of symmetry groups is shown in [86]. The equivalent120

continuum model of a pantographic structure should be invariant for a π/2 rotation and for a mirror transformation.121

This symmetry group is denoted by D4. The internal energy for such a symmetry group is reported in Appendices122

A and B of [74]. The derivation of these equations is not straightforward; it is done explicitly in [87]; see also the123
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related works [88,89]. In particular, the reader is encouraged to refer to Eq. (50) of Ref. [87] and the internal energy 124

density functional U (G,∇G) is as follows: 125

U (G,∇G) = Û (ǫ, η) = 1

2
CIJǫI ǫJ + 1

2
Aαβηαηβ , (8) 126

where the indices I and J vary from 1 to 3, the indices α and β vary from 1 to 6, ǫI is the I th component of the 127

column vector ǫ 128

ǫ =

⎛

⎝

G11

G22√
2G12

⎞

⎠, (9) 129

ηα is the αth component of the column vector η 130

η =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

G11,1

G22,1√
2G12,2

G22,2

G11,2√
2G12,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (10) 131

CIJ is the IJth component of the 3 × 3 matrix C , 132

C =

⎛

⎝

c11 c12 0
c12 c11 0
0 0 c33

⎞

⎠, (11) 133

and Aαβ is the αβth component of the matrix A, 134

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a11 a12 a13 0 0 0
a12 a22 a23 0 0 0
a13 a23 a33 0 0 0
0 0 0 a11 a12 a13

0 0 0 a12 a22 a23

0 0 0 a13 a23 a33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12) 135

In this class of orthotropic materials, the isotropic classic two Lamè coefficients λ and µ are replaced by the three 136

coefficients c11, c12, and c33. In addition, the four isotropic coefficients are replaced by the six coefficients a11, a12, 137

a13, a22, a23, and a33. The bulk modulus κ and the shear modulus µ are the most convenient pair of elastic constants 138

for an isotropic material [90–98]. Nevertheless, we prefer to write the density of the deformation energy in (8) in 139

terms of the Lamè coefficients λ and µ. 140

The positive definiteness of matrices C and A assures the positive definiteness of U . To do this, it is sufficient to 141

calculate the eigenvalues of both matrices and impose a restriction on their positivity. The eigenvalues λC
1 , λC

2 , and 142

λC
3 of matrix C are easy to calculate, 143

λC
1 = c33, λC

2 = c11 − c12, λC
3 = c11 + c12, 144

and a restriction on their positivity means 145

c33 > 0, c11 > c12, c11 > −c12. (13) 146
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The eigenvalues λA
1 , λA

2 , and λA
3 of matrix A in (12) are the same as that of its submatrix A1:147

A1 =

⎛

⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞

⎠.148

Their analytical derivation is not straightforward because it requires an analytical solution of a third-order149

polynomial equation. Such a derivation is certainly possible, but the results would occupy too much space. Thus,150

we can formally write a condition for positive definiteness as follows:151

λA
1 > 0, λA

2 > 0, λA
3 > 0. (14)152

The presence of a floppy mode has the consequence of relaxing these conditions in such a way that semipositive153

definiteness is accepted. In other words, the equal sign is accepted in restrictions (13) and (14). In particular, we154

will show in (62), and therefore in the representation (65), that the identification of a pantographic structure implies155

c33 = 0, so that the first inequality of (13) is in fact relaxed to become c33 ≥ 0. Moreover, an explicit representation of156

the eigenvalues λA
1 , λA

2 , and λA
3 with the identification of the pantographic structure can easily be evaluated from (65):157

λA
1 = 0, λA

2 = 0, λA
3 = 3

Em Im

dm

> 0.158

Even in this case, the need to relax the conditions (14)1 and (14)2, so that the equal sign is accepted for pantographic159

structures, becomes evident.160

The system of PDEs can be deduced by the first line of (3). Here, it is made explicit:161

c11u1,11 + 1

2
c33

(

u1,22 + u2,12
)

+ c12u2,12 = a11u1,1111 + 1√
2
(a13 + a23)

(

u2,1222 + u2,1112 + 2u1,1122
)

162

+ a22u1,1122 + a12
(

u2,1222 + u2,1112
)

163

+ 1

2
a33

(

u1,2222 + u1,1122 + u2,1222 + u2,1112
)

− bext
1 (15)164

c11u2,22 + 1

2
c33

(

u2,11 + u1,12
)

+ c12u1,12 = a11u2,2222 + 1√
2
(a13 + a23)

(

u1,1222 + u1,1112 + 2u2,1122
)

165

+ a22u2,1122 + a12
(

u1,1222 + u1,1112
)

166

+ 1

2
a33

(

u2,1111 + u2,1122 + u1,1112 + u1,1222
)

− bext
2 . (16)167

An interchange of indices 1 and 2 in the displacement field ui and in the external force per unit area bext
i in (15),168

because of the symmetry D4 , gives Eq. (16), and vice versa.169

3 The case of a rectangle170

In this section we define the case of a rectangular body. The reason for this choice is twofold. First, all boundaries171

are straight. This means that the external normals do not depend on the space coordinate X , and therefore – see, for172

example, Eq. (4) – the boundary conditions are simplified. Second, the presence of vertices implies an increasing173

number of possible coefficient identifications. The reason is that vertex-boundary conditions, as we will see, must174

be considered.175

3.1 General framework of straight lines176

In Fig. 2 the scheme of a rectangle is represented. Side names are A, B, C , and D and vertex names V1, V2, V3,177

and V4. In these hypotheses, (4), (5), and (6) are simplified,178

tα = Sα j n j −
(

Tα jh,h + Tαh j,h

)

n j + Tαh j,knhnkn j , τα = Tα jkn j nk, fα = Tαi j Vi j , (17)179
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and we have 180

t1 = c11u1,1n1 + c12u2,2n1 + c33

2

(

u1,2 + u2,1
)

n2 − a11n1
(

u1,112n2 + u1,111(2 + n1n1)
)

181

− a12
(

u2,222n1(1 + n2n2) + u2,122n2(1 + 2n1n1) + u2,112n1(2 + n1n1)
)

182

− a13√
2

n1
(

u1,222n1n2 + u2,222(1 + n2n2) + u1,122(2 + n1n1) + u2,112(2 + n1n1) + u1,111n2n2
)

183

− a13√
2

u1,112n2(2 + n2n2) − a23√
2

n1
(

u1,1222(1 + n2n2) + u2,112(1 + 2n2n2)
)

184

− a23√
2

n2
(

u2,122(2 + n2n2) + u1,1122(1 + n1n1) + u2,111(1 + n1n1)
)

185

− a33

2
n1

(

u1,122(1 + 2n2n2) + u2,112(1 + 2n2n2)
)

186

− a33

2
n2

(

u1,222(2 + n2n2) + u2,122(2 + n2n2) + u1,112(1 + n1n1) + u2,111(1 + n1n1)
)

(18) 187

τ1 = a11u1,11n1n1 + a12n1
(

u2,22n2 + u2,12n1
)

188

+ a13√
2

(

u1,22n1n1 + u2,22n1n2 + u2,12n1n1 + u1,11n2n2
)

+ a22u1,12n1n2 189

+ a23√
2

n2
(

2u1,12n1 + u2,12n2 + u2,11n1
)

+ a33

2
n2

(

u1,22n2 + u1,12n1 + u2,12n2 + u2,11n1
)

(19) 190

in terms of the displacement fields. Because of the symmetry D4, an interchange of indices 1 and 2 in the displacement 191

field ui and in the external unit normal ni in (18) and in (19) gives, respectively, the force t2 per unit length and 192

the double force τ2 per unit length in the other direction in the same way (15) gives Eq. (16) and vice versa. This 193

is why we do not explicitly write out the expressions of the force t2 per unit length and of the double force τ2 per 194

unit length. 195

3.2 Sides and vertices 196

The characterizations of sides A, B, C , and D is done by inserting into (18) and (19) the unit norms ni = −δi1, 197

ni = δi2, ni = δi1, and ni = −δi2, respectively. 198

The last term of (3) is reduced, because of (2)2, to 199

∫

[∂∂B]
δuα

(

fα − f ext
α

)

=
[

δuα

(

Tαi j Vi j − f ext
α

)]

V1
+

[

δuα

(

Tαi j Vi j − f ext
α

)]

V2
200

+
[

δuα

(

Tαi j Vi j − f ext
α

)]

V3
+

[

δuα

(

Tαi j Vi j − f ext
α

)]

V4
. (20) 201

For vertex V1 side A has n j = −δ1 j and νi = δi2 and side B has n j = δ2 j and νi = −δi1, so that 202

[

Vi j

]

V1
=

[

νl
i nl

j + νr
i nr

j

]

V1
= −δi2δ1 j − δi1δ2 j . 203

Fig. 2 Nomenclature of 2D
body B
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L. Placidi et al.

For vertex V2 side B has n j = δ2 j and νi = δi1 and side C has n j = δ1 j and νi = δi2, so that204

[

Vi j

]

V2
=

[

νl
i nl

j + νr
i nr

j

]

V2
= δi1δ2 j + δi2δ1 j .205

For vertex V3 side C has n j = δ1 j and νi = −δi2 and side D has n j = −δ2 j and νi = δi1, so that206

[

Vi j

]

V3
=

[

νl
i nl

j + νr
i nr

j

]

V3
= −δi2δ1 j − δi1δ2 j .207

For vertex V4 side D has n j = −δ2 j and νi = −δi1 and side A has n j = −δ1 j and νi = −δi2, so that208

[

Vi j

]

V4
=

[

νl
i nl

j + νr
i nr

j

]

V4
= δi1δ2 j + δi2δ1 j .209

Thus, finally, (20) yields210

∫

[∂∂B]
δuα

(

fα − f ext
α

)

=
[

δuα

(

−Tα21 − Tα12 − f ext
α

)]

V1
+

[

δuα

(

Tα12 + Tα21 − f ext
α

)]

V2
211

+
[

δuα

(

−Tα21 − Tα12 − f ext
α

)]

V3
+

[

δuα

(

Tα12 + Tα21 − f ext
α

)]

V4
, (21)212

where Tα12 + Tα21, in terms of the displacement field, is, for α = 1,213

T112 + T121 =
(

a22 +
√

2a23 + a33

2

)

u1,12 +
(√

2a23 + a33

2

)

u2,11 +
(

a12 +
√

2

2
a13

)

u2,22, (22)214

and, for α = 2,215

T212 + T221 =
(

a22 +
√

2a23 + a33

2

)

u2,12 +
(√

2a23 + a33

2

)

u1,22 +
(

a12 +
√

2

2
a13

)

u1,11, (23)216

where we again note, because of the symmetry D4, the same characteristics for the interchange of the indices of217

the displacement field ui . In other words, we remark again that Eq. (23) is derived from (22) by interchanging the3 218

indices of the displacement field ui and of its derivatives.219

3.3 Heavy sheet: an analytical solution220

The rectangle in Fig. 2 is now considered heavy (a heavy sheet) and hanged by the top side B. The word heavy221

corresponds to a weight loading, i.e., a constant distributed force in the vertical direction and directed downward.222

The kinematic constraints on the displacement field exclude the kinematic effects of the Poisson effect, in the sense223

that no lateral displacement is admissible at either vertical side, where horizontal forces must be prescribed. In224

the next section, we will use the fact that in pantographic strictures (see also the right-hand side of Fig. 3), such a225

horizontal force is apparently zero.226

Thus, the needed kinematic constraints on the horizontal side B and on the two vertical sides A and C are227

(δu2)B = 0, (δu1)A = 0, (δu1)C = 0. (24)228

As a result, the top side of the rectangle cannot displace vertically and neither the vertical left- nor right-hand229

side can displace horizontally; see also Fig. 3. In what follows we proceed as in [73]. Thus, we consider the general230

solution of the anisotropic first gradient case and we calculate the set of boundary conditions we need, in the second231

gradient case, to obtain the same solution.232

Accordingly, the following displacement field is considered:233

u1 = 0, u2 = ρg(X2 − l)(3l + X2)

2c11
. (25)234
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Identification of two-dimensional pantographic structure

Fig. 3 Heavy sheet gedanken experiment. Continuum left-hand side and discrete right-hand side points of view

The two PDEs (15) and (16) are satisfied by an external force per unit area, 235

bext
1 = 0, bext

2 = −ρg, (26) 236

that is due to the weight. We have used the following intermediate results: 237

u2,2 = ρg(l + X2)

c11
, u2,22 = ρg

c11
. (27) 238

We now calculate the edge forces that are necessary to have the displacement field (25). The apex with letter A, 239

B, C , or D refers to the name of the edge according to the nomenclature in Fig. 2. 240

From (18) and (25) we have 241

t1 = t
ext,A
1 = −ρg(l + X2)

c11
c12, t1 = t

ext,C
1 = ρg(l + X2)

c11
c12. (28) 242

This horizontal force is a static consequence of the Poisson effect and is associated to the kinematic constraint 243

(24)3. From (18) we have simply 244

t2 = t
ext,A
2 = 0, t2 = t

ext,C
2 = 0. 245

From (18) and (25) we have 246

t1 = t B
1 = 0, t1 = t D

1 = 0, 247

i.e., no shear condition in the horizontal sides, and 248

t2 = t B
2 = ρg(l + X2)x2=l = 2ρgl, t2 = t D

2 = −ρg(l + X2)X2=−l = 0. (29) 249

The (29)1 is the expected reaction at the upper boundary. The (29)2 means that there is no reaction at the bottom 250

of the body. 251

Following the evaluation of the forces per unit length, we now calculate the analogous double force per unit 252

length. In this case as well, an apex with letter A, B, C , or D refers to the name of the edge according to the 253

nomenclature in Fig. 2. 254

From (19) and (25) we simply have 255

τ1 = τ
ext,A
1 = 0, τ1 = τ

ext,C
1 = 0, 256
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L. Placidi et al.

i.e., no double force condition in the horizontal direction for the vertical sides. On the other hand, in the vertical257

direction we have258

τ2 = τ
ext,A
2 = a13ρg√

2c11
, τ2 = τ

ext,C
2 = a13ρg√

2c11
. (30)259

From (19) and (25) we have260

τ1 = τ
ext,B
1 = 0, τ1 = τ

ext,D
1 = 0,261

i.e., no double force condition in the horizontal direction for the horizontal sides, and we also have262

τ2 = τ
D,ext
2 = ρga11

c11
, τ2 = τ

B,ext
2 = ρga11

c11
. (31)263

To keep the displacement field in (25), the wedge force is, from (21), (22), and (23),264

f ext
α = −Tα12 − Tα21265

for wedges V1 and V3, and the converse266

f ext
α = Tα12 + Tα21267

for wedges V2 and V4. We have from (22), (25), and (27)268

T112 + T121 =

(

2a12 +
√

2a13

)

ρg

2c11
, (32)269

and from (23) and (25) and (27)270

T212 + T221 = 0.271

3.4 An analytical solution for nonconventional bending272

Let us take into account the displacement field273

u1 = 0, u2 = −aX2
1

2
, (33)274

which represents a nonconventional bending field (see also Fig. 4). The two PDEs (15) and (16) are satisfied by the275

following external force per unit area:276

bext
1 = 0, bext

2 = −a

2
c33. (34)277

Let us now explain why we call this kind of deformation a nonconventional bending. It is true, in fact, that, for278

each horizontal microbeam, the bending condition that is achieved is conventional. However, at the macroscale the279

pantographic sheet deformation is completely different. For example, the direction of each vertical fiber remains280

invariant, i.e., the vertical fibers do not rotate at all, and does not follow the direction of the horizontal fibers as in281

the classical conventional bending case, where both horizontal and vertical fibers remain orthogonal to each other.282
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Identification of two-dimensional pantographic structure

Fig. 4 Discrete pantographic structure in nonconventional bending case. Left-hand side: reference configuration; right-hand side:
deformation in nonconventional bending condition

In what follows we calculate the edge forces that are necessary to have the displacement field (33). Even in this 283

case the apex with letter A, B, C , or D refers to the name of the edge according to the nomenclature in Fig. 2. 284

From (18) and (33) we have 285

t1 = t
ext,A
1 = aL

2
c33, t2 = t

ext,A
2 = 0, (35) 286

and 287

t1 = t
ext,C
1 = −aL

2
c33, t2 = t

ext,C
2 = 0. (36) 288

For reasons of symmetry, the force on side A is the opposite of that on side C . 289

From (18) we have no traction conditions in the vertical direction, 290

t
ext,B
2 = t

ext,D
2 = 0, 291

for horizontal sides and a nonnull shear condition, 292

t
ext,B
1 = −t

ext,D
1 = −aX1

2
c33, (37) 293

in the horizontal direction for the horizontal sides. Again we remark that, for reasons of symmetry, the force on 294

side B is the opposite of that on side D. Now we calculate the double force per unit length and use the same 295

convention to characterize each edge. 296

From (19) and (33) we simply have 297

τ1 = τ
ext,C
1 = 0, 298

and we also have 299

τ2 = τ
ext,C
2 = −a33

2
a. (38) 300
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We remark that the force per unit length on this side is zero. Thus the total external moment Mext
C on side C is301

only due to the double force τ
ext,C
2 of (38),302

Mext
C =

∫ l

−l

τ
ext,C
2 ds = −a33

2
a

∫ l

−l

ds = −a33al, (39)303

which gives an interpretation of the parameter a introduced in (33), i.e.,304

a = −
Mext

C

a33l
. (40)305

From (19) and (33), for reasons of symmetry, we simply have306

τ1 = τ
ext,A
1 = τ

ext,C
1 = 0, τ2 = τ

ext,A
2 = τ

ext,C
2 = −a33

2
a = 1

2l
Mext

C . (41)307

From (19) and (33) we have308

τ1 = τ
ext,B
1 = 0, τ1 = τ

ext,D
1 = 0,309

and we also have310

τ2 = τ
B,ext
2 = −a13√

2
a, τ2 = τ

D,ext
2 = τ

B,ext
2 = a13

a33

Mext
C

l
√

2
. (42)311

We impose no kinematic restrictions on wedges. This means, again, that the external (or reaction) wedge force,312

in order to have the displacement field (33), is313

f ext
α = −Tα12 − Tα21314

for wedges V1 and V3 and the converse315

f ext
α = Tα12 + Tα21316

for wedges V2 and V4. We have from (22) and (33)317

T112 + T121 = a

2

(

a33 +
√

2a23

)

= −
Mext

C

2l

(

1 +
√

2
a23

a33

)

. (43)318

From (23) and (33), on the other hand, we simply have319

T212 + T221 = 0. (44)320

3.5 An analytical solution for the trapezoidal case321

Let us take into account the following displacement field (see also Fig. 5):322

u1 = 0, u2 = bX1 X2. (45)323

The two PDEs (15) and (16) are satisfied by the nonnull horizontal external force per unit area:324

bext
1 = b

(

c12 + 1

2
c33

)

, bext
2 = 0.325

In what follows we consider the solution (45) and calculate the whole set of boundary conditions.326
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Identification of two-dimensional pantographic structure

Fig. 5 Discrete pantographic structure in trapezoidal case. Left-hand side: reference configuration; right-hand side: deformation in
trapezoidal condition

In particular, we calculate the edge forces and double forces that are necessary to have the displacement fields 327

(45) and use the same convention to characterize each edge. 328

From (18) and (45) we have 329

t1 = t
ext,A
1 = 0, t2 = t

ext,A
2 = −b

2
c33 X2, (46) 330

and 331

t1 = t
ext,C
1 = bc12 L , t2 = t

ext,C
2 = −t

ext,A
2 = b

2
c33 X2. (47) 332

From (18) we have 333

t
ext,B
1 = t

ext,D
1 = b

c33l

2
, t

ext,B
2 = −t

ext,D
2 = bc11 X1. (48) 334

From (19) and (45) we simply have 335

τ2 = τ
ext,A
2 = τ

ext,C
2 = 0, 336

i.e., null double force per unit length in the vertical direction for vertical sides, and we also have 337

τ1 = τ
ext,A
1 = τ

ext,C
1 = b

(

a12 + a13√
2

)

. (49) 338

From (19) and (45) we have 339

τ1 = τ
ext,B
1 = τ

ext,D
1 = b

2
(
√

2a23 + a33), τ2 = τ
B,ext
2 = τ

D,ext
2 = 0. (50) 340

123

Journal: 10665-ENGI Article No.: 9856 MS Code: ENGI-D-15-00194.3 TYPESET DISK LE CP Disp.:2016/4/9 Pages: 21 Layout: Medium

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

L. Placidi et al.

We impose no kinematic restrictions on wedges. This means, again, that the external (or reaction) wedge force,341

in order to have the displacement fields (45), is342

f ext
α = −Tα12 − Tα21343

for wedges V1 and V3 and the converse344

f ext
α = Tα12 + Tα21345

for wedges V2 and V4. We have from (22) and (45)346

T112 + T121 = 0;347

on the other hand we simply have348

T212 + T221 = b

2

(

2a22 + 2
√

2a23 + a33

)

. (51)349

4 The pantographic case350

Let us assume that the two families of fibers in the pantographic structure are aligned with the axes of the frame of351

reference. It would be convenient for the reader to have in mind the right-hand sides of Figs. 3, 4, and 5. A series352

of intuitive considerations is made in this section. In other words, a set of gedanken experiments is conceived for353

the purpose of parameter identification. First of all, in the heavy sheet case, we can prove not only that the vertical354

displacement of side D is355

u2(X1, X2 = −l) = 2ρgl2

c11
= 2ρm gl2

Em

, (52)356

where ρm is the mass per unit volume of the microbeams and Em is their Young’s modulus, but also the relation357

ρ = ρm Am

dm

, (53)358

where Am is the cross-sectional area of each microbeam and dm is the distance between two adjacent families of359

microbeams. From (52) and (53) we have360

c11 = Em

2ρgl2

2ρm gl2 = Em

ρm Am

dm

1

ρm

= Em Am

dm

. (54)361

Second, in the nonconventional bending case we set an equivalence of such a case with a series of a number362
(

i.e., 2l
dm

)

of conventional bending microbeams, so that the total external moment Mext
C on side C is related to the363

external moment Mm on each microbeam,364

Mext
C = − 2l

dm

Mm, (55)365

and the vertical displacement of side C is366

u2(X1 = L , X2) = −aL2

2
= − Mm L2

2Em Im

, (56)367
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Identification of two-dimensional pantographic structure

where Im is the moment of inertia of the microbeams. Equations (40), (55), and (56) give 368

a33 = −
Mext

C

al
= 2l

dm

Mm

1

al
= 2l

dm

aL22Em Im

2L2

1

al
= 2

Em Im

dm

. (57) 369

Further trivial considerations made from the particular pantographic structure in the heavy sheet configuration 370

are made. First of all, the natural absence of the Poisson effect in this configuration makes the horizontal edge force 371

per unit length on the vertical sides that are given from (28). This and (54) give 372

t
ext,C
1 = ρg(l + X2)

c11
c12 = 0 ⇒ c12 = 0. (58) 373

Second, in the same heavy sheet configuration, the natural absence of a double force on the vertical sides gives, 374

from (30) and (54), 375

τ
ext,C
2 = a13ρg√

2c11
= 0 ⇒ a13 = 0. (59) 376

Note that the identification that is made explicit in (59) can also be achieved assuming zero double force on the 377

horizontal sides for the nonconventional bending case from (42). 378

In addition, in the same heavy sheet configuration, the natural absence of double force on the horizontal sides 379

gives from (31) and (54) 380

τ
D,ext
2 = ρga11

c11
= 0 ⇒ a11 = 0. (60) 381

Moreover, in the same heavy sheet configuration, the natural absence of wedge forces gives, from (32) and (54), 382

T112 + T121 =

(

2a12 +
√

2a13

)

ρg

2c11
= 0 ⇒ 2a12 +

√
2a13 = 0. (61) 383

Note that the identification that is made explicit in (61) can also be achieved assuming zero horizontal double 384

force in the trapezoidal case on the vertical sides from (49). 385

It is also convenient to consider, in the nonconventional bending case, the fact that the external force per unit 386

area must be zero. Thus, from (34) we have 387

bext
2 = −a

2
c33 = 0 ⇒ c33 = 0. (62) 388

Note that the identification that is made explicit in (62) can also be achieved assuming, in the nonconventional 389

bending case, zero horizontal force per unit length on the vertical sides from (35)1 or from (36)1 or assuming zero 390

horizontal force per unit length on the horizontal sides from (37) or, in the trapezoidal case, by assuming zero 391

vertical force per unit length on the vertical sides from (46)2 and (47)2 or zero horizontal force per unit length on 392

the horizontal sides from (48). 393

Moreover, in the nonconventional bending case, the natural absence of wedge forces gives, from (43), 394

T112 + T121 = a

2

(

a33 +
√

2a23

)

= 0 ⇒ a33 +
√

2a23 = 0. (63) 395

Note that the identification that is made explicit in (63) can also be achieved assuming zero horizontal double 396

force in the trapezoidal case on the horizontal sides from (50). 397
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Finally, assuming zero wedge forces in the trapezoidal case, we have from (51)398

T212 + T221 = b

2

(

2a22 + 2
√

2a23 + a33

)

= 0 ⇒ 2a22 + 2
√

2a23 + a33 = 0. (64)399

Equations (54), (57), (58), (59), (60), (61), (62), (63), and (64) completely characterize the orthotropic material.400

In particular, the two constitutive matrices are represented as follows:401

C = Em Am

dm

⎛

⎝

1 0 0
0 1 0
0 0 0

⎞

⎠, A = Em Im

dm

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 1 −

√
2 0 0 0

0 −
√

2 2 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −

√
2

0 0 0 0 −
√

2 2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (65)402

It is interesting to recognize that the internal energy (8) can now be computed using (9), (10) and using the definition,403

in the linear case, of the deformation matrix G and of its gradient ∇G:404

U (G,∇G) = 1

2

Em Am

dm

(

G2
11 + G2

22

)

+ 1

2

Em Im

dm

[

G22,1
(

G22,1 − 2G12,2
)

+ 2G12,2
(

−G22,1 + 2G12,2
)]

405

+ 1

2

Em Im

dm

[

G11,2
(

G11,2 − 2G12,1
)

+ 2G12,1
(

−G11,2 + 2G12,1
)]

,406

or, in terms of the displacement field,407

U (G,∇G) = Em Am

2dm

(

u2
1,1 + u2

2,2

)

+ 1

2

Em Im

dm

(

u2
1,22 + u2

2,11

)

. (66)408

Expression (66) is a remarkable form of the energy. It simply resembles the contributions of both series of fibers409

for axial and for bending deformations of the microbeams. Note, finally, that expression (66) is not compatible410

with that derived in [99], where the authors aimed only at proving the necessity of a second gradient energy for411

pantographic continua and not for the related parameter identification in terms of microstructural characteristics.412

On the basis of this simple strain energy function, we show in the next section numerical simulations that confirm413

the validity of the model.414

5 Numerical simulations415

In the numerical simulations in this section we will not simply refer to the rectangle in Fig. 2; we will refer to416

it—but rotated by 45◦. The fibers are aligned, in the nondeformed configuration, along the horizontal and vertical417

directions, not along the rectangle’s sides.418

In Fig. 6 a displacement of the short side of the rectangle in the direction of its long side is shown, and the result419

is a classic bone-shaped deformation. In Fig. 7 a displacement is prescribed, in the direction of the short side of420

the rectangle, to the single vertex on the left-hand side, a zero displacement is applied at the bottom vertex, and a421

floppy mode is shown.4 422

In Fig. 6a is shown the deformation of the fibers, even though the model is a continuum, in the numerical bias423

test, where the color indicates the deformation energy density. Note the concentration of the deformation energy424

density around the corners and the classic bone shape of the deformation of the body. The same bone shape is also425

shown in Fig. 6b, where colors indicate the shear deformation G12 and where we refer to the same boundary value426

problem. In Fig. 7 the floppy mode is shown. In this case the color indicates the deformation energy density and427

the scale makes clear that for a high deformation level we have practically zero deformation energy.428
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Fig. 6 Bias test. In both panels a representation of the numerical results on the continuum model is presented. a Deformation of fibers
(color: deformation energy density) in the continuum model of the pantographic structure. The directions of the fibers represent the
privileged directions of the orthotropic continuum model; they are not a graphical representation of any simulated discrete model. b

Deformation of continuum pantographic structure (colors: shear deformation G12)

Fig. 7 Floppy mode:
deformation of fibers (color:
deformation energy density)
in continuum model of
pantographic structure

To show the presence of a boundary layer, we illustrate in Fig. 8b the second derivative u1,22 of the first displace- 429

ment component u1 with respect to the second coordinate X2, as a function of a third coordinate s characterizing 430

each point of the cut represented in Fig. 8a. Note that on the one hand, because of the high axial rigidity of each 431

microbeam of the pantographic structure, for small values of the coordinate s the deformation regime is almost 432

rigid and the strain gradient component u1,22 is almost zero. For high values of the same coordinate s, on the other 433

hand, the component u1,22 is much higher. Thus, a transition zone can be appreciated. Such a transition zone is the 5434

so-called boundary layer of the problem. The thickness of such a boundary layer is proportional to the ratio between 435

the second and first gradient parameters. In Fig. 8b different boundary layers are numerically evaluated for different 436

values of the second gradient parameters. In particular, we show the results for the identified value of the second 437

gradient parameter in terms of the moment of inertia of the sections of the microbeams, as well the results for lower 438

(one tenth and one hundredth times) and for higher (ten and one hundred times) values of such a moment of inertia. 439

Finally, it is worth noting that it is confirmed that the largeness of the boundary layers is effectively proportional to 440

the second gradient parameters, in the sense that the higher the second gradient parameters, the larger the boundary 6441

layer. 7442
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Fig. 8 Boundary layer. a On the left-hand side we show the cut on which we calculate u1,22, represented on the right-hand side (b).
In addition, on the right-hand side, we show the numerical simulations calculated using different moments of inertia Im given in the
legend of Fig. 8b

6 Conclusion443

In this paper we have identified the whole set of nine parameters of a homogeneous linear elastic second gradient444

orthotropic D4 material, which is the most general symmetry that is valid for pantographic structures with two445

identical and orthogonal families of fibers. Analytical solutions were developed and shown and, as a consequence,446

the identification was done in terms of the Young’s modulus of the fiber material, of the area, and of the moment of447

inertia of the cross sections of the fibers and the distance between the nearest pivots. A remarkable form of the strain448

energy that closely resembles the strain energy of simple Euler beams was derived in terms of the displacement449

field. Numerical simulations confirmed the validity of the presented model. In fact, a bone-shaped deformation,450

in a proper bias test, was obtained, as was a continuum floppy mode, which is a deformation mode with finite451

deformation and zero deformation energy. Finally, we also showed the dependence of the largeness of the boundary452

layer with respect to the second gradient coefficients of the model.453
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