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in the extension of fluents is bounded by a given constant, although such extensions are
in general different across the infinitely many situations. We argue that such theories are
common in applications, either because facts do not persist indefinitely or because the
agent eventually forgets some facts, as new ones are learned. We discuss various classes of

fg?;%ﬁée representation bounded action theories. Then we show that verification of a powerful first-order variant
Reasoning about action of the p-calculus is decidable for such theories. Notably, this variant supports a controlled
Situation calculus form of quantification across situations. We also show that through verification, we can
Verification actually check whether an arbitrary action theory maintains boundedness.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The situation calculus [65,75] is a well-known first-order formalism with certain second-order features for representing
dynamically changing worlds. It has proved to be an invaluable formal tool for understanding the subtle issues involved in
reasoning about action. Its comprehensiveness allows us to place all aspects of dynamic systems in perspective. Basic action
theories let us capture change as a result of actions in the system [73], while high-level languages such as Golog [58] and
ConGolog [26] support the representation of processes over the dynamic system. Aspects such as time [74], knowledge and
sensing [79], probabilities and utilities [14], and preferences [11], have all been addressed. The price of such a generality
is that decidability results for reasoning in the situation calculus are rare, e.g., [86] for an argument-less fluents fragment,
and [49] for a description logic-like two-variable fragment. Obviously, we have the major feature of being able to rely on
regression to reduce reasoning about a given future situation to reasoning about the initial situation [75]. Generalizations of
this basic result such as just-in-time histories [33] can also be exploited. However, when we move to temporal properties,
virtually all approaches are based on assuming a finite domain and a finite number of states, and often rely on proposi-
tional modal logics and model checking techniques [6,63]. There are only few exceptions such as [21,32,82], which develop
incomplete fixpoint approximation-based methods.
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In this paper, we present an important new result on decidability of the situation calculus, showing that verification of
bounded action theories is decidable. Bounded action theories are basic action theories [75], where it is entailed that in all
situations, the number of object tuples that belong to the extension of any fluent is bounded. In such theories, the object
domain remains nonetheless infinite and an infinite run may involve an infinite number of objects, though at every single
situation the number of objects we predicate on is finite and, in fact, bounded.

But why should we believe that practical domains conform to this boundedness assumption? While it is often assumed
that the law of inertia applies and that fluent atoms persist indefinitely in the absence of actions that affect them, we all
know that pretty much everything eventually decays and changes. We may not even know how the change may happen,
but nevertheless know that it will. Another line of argument for boundedness is epistemic. Agents remember facts that they
use and periodically try to confirm them, often by sensing. A fact that never gets used is eventually forgotten. If a fact can
never be confirmed, it may be given up as too uncertain. Given this, it seems plausible that in several contexts an agent’s
knowledge, in every single moment, can be assumed to be bounded. While these philosophical arguments are interesting
and relate to some deep questions about knowledge representation, one may take a more pragmatic stance, and this is
what we do here. We identify some interesting classes of bounded action theories and show how they can model typical
example domains. We also show how we can transform arbitrary basic action theories into bounded action theories, either
by blocking actions that would exceed the bound, or by having persistence (frame axioms) apply only for a finite number
of steps. Moreover we show that we can effectively check whether any arbitrary theory with a bounded initial situation
description remains bounded in all executable situations (to do so we need to use verification).

The main result of the paper is that verification of an expressive class of first-order w-calculus temporal properties in
bounded action theories is decidable and, precisely, EXPTIME-complete. This means that we can check whether a system or
process specified over such a theory satisfies some specification even if we have an infinite domain and an infinite set of
situations or states. In a nutshell, we prove our results by focussing on the active domain of situations, i.e., the set of objects
for which some atomic fluent holds; we know that the set of such active objects is bounded. We show that essentially we
can abstract situations whose active domains are isomorphic into a single state, and thus, by suitably abstracting also actions,
we can obtain an abstract finite transition system that satisfies exactly the same formulas of our variant of the p-calculus.

This work is of interest not only for Al, but also for other areas of computer science. In particular it is of great interest for
the work on data-aware business processes and services [53,45,38]. Indeed while there are well-established results and tools
to analyze business processes and services, without considering the data manipulated, when data are taken into account
results are scarce. The present work complements that in, e.g., [37,4,9,5,10], and hints at an even more profound relevance
of the situation calculus in those areas [64]. More generally, our results can be recast in other formalisms for reasoning
about action, both in Al and in CS.

The rest of the paper is organized as follows. In Section 2, we briefly review the situation calculus and basic action
theories. Then in Section 3, we define bounded action theories. Then, in Section 4, we discuss various ways of obtaining
bounded action theories, while showing that many practical domains can be handled. In Section 5, we introduce the u.,
language that we use to express first-order temporal properties. After that, we show that verification of wL, properties
over bounded action theories is decidable, first in the case where we have complete information about the initial situation
(Section 6), and then in the general incomplete information case (Section 7). In Section 8, we characterize the worst-case
computational complexity of the problem as EXPTIME-complete. In Section 9, we give a technique based on our verification
results, to check whether an arbitrary basic action theory maintains boundedness. In Section 10, we review the related
literature. Finally, in Section 11, we conclude the paper by discussing future work topics.

2. Preliminaries

The situation calculus [65,75] is a sorted predicate logic language for representing and reasoning about dynamically chang-
ing worlds. All changes to the world are the result of actions, which are terms in the language. We denote action variables
by lower case letters a, action types by capital letters A, and action terms by ¢, possibly with subscripts. A possible world
history is represented by a term called a situation. The constant Sg is used to denote the initial situation where no actions
have yet been performed. Sequences of actions are built using the function symbol do, where do(a, s) denotes the successor
situation resulting from performing action a in situation s. Besides actions and situations, there is also the sort of objects for
all other entities. Predicates and functions whose value varies from situation to situation are called fluents, and are denoted
by symbols taking a situation term as their last argument (e.g., Holding(x, s), meaning that the robot is holding object x
in situation s). For simplicity, and without loss of generality, we assume that there are no functions other than constants
and no non-fluent predicates. We denote fluents by F and the finite set of primitive fluents by /. The arguments of fluents
(apart from the last argument which is of sort situation) are assumed to be of sort object.

Within this language, one can formulate action theories that describe how the world changes as the result of the available
actions. Here, we concentrate on basic action theories as proposed in [67,75]. We also assume that there is a finite number of
action types. Moreover, we assume that there is a countably infinite set of object constants A/ for which the unique name
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assumption holds. However, we do not assume domain closure for objects.? As a result, a basic action theory D is the union
of the following disjoint sets of first-order (FO) and second-order (SO) axioms:

o Dy: (FO) initial situation description axioms describing the initial configuration of the world (such a description may be
complete or incomplete);
e Dposs: (FO) precondition axioms of the form

Poss(A(X), 5) = a(X, s),

one per action type, stating the conditions ¢4 (X, s) under which an action A(X) can be legally performed in situation s;
these use a special predicate Poss(a, s) meaning that action a is executable in situation s; ¢a(X,s) is a formula of the
situation calculus that is uniform in s. A formula is uniform in s if it mentions no other situation term but s and does not
mention Poss (see [75] for a formal definition);

o Dsgq: (FO) successor state axioms of the form

F(x,do(a,s)) = ¢r(X,a,s),

one per fluent, describing how the fluent changes when an action is performed; the right-hand side (RHS) ¢r (X, a, s)
is again a situation calculus formula uniform in s; successor state axioms encode the causal laws of the world being
modeled; they take the place of the so-called effect axioms and provide a solution to the frame problem;

e D¢y: (FO) unique name axioms for actions and (FO) domain closure on action types;

e Dyno: (FO) unique name axioms for object constants in N;

e X: (SO) foundational, domain independent, axioms of the situation calculus [67].

We say that a situation s is executable, written Executable(s), if every action performed in reaching s was executable in the
situation in which it occurred.

One of the key features of basic action theories is the existence of a sound and complete regression mechanism for
answering queries about situations resulting from performing a sequence of actions [67,75]. In a nutshell, the regression
operator R* reduces a formula ¢ about a particular future situation to an equivalent formula R*[¢] about the initial
situation Sp, by basically substituting fluent relations with the right-hand side formula of their successor state axioms.
Here, we shall use a simple one-step only variant R of the standard regression operator R* for basic action theories. Let
¢(do(c, s)) be a formula uniform in the situation do(c,s). Then R[¢(do(x,s))] stands for the one-step regression of ¢
through the action term o, which is itself a formula uniform in s.

3. Bounded action theories

Let b be some natural number. We use the notation |{x | ¢(X)}| > b, meaning that there exist at least b distinct tuples
that satisfy ¢, to stand for the following first-order logic (FOL) formula:

K pGRO A AGRI A\ KX
i,je{l,....b}i#]

We also use the notation |{x| ¢ (X)}| < b, meaning that there are fewer than b distinct tuples that satisfy ¢, to stand for:
(x| ()} = b).
Using this, we define the notion of a fluent F(X,s) in situation s being bounded by a natural number b as follows:

Boundedr p(s) = |{x | F(X,s)}| < b,
i.e,, fluent F is bounded by b in situation s if there are fewer than b distinct tuples in the extension of F in situation s.
The notion of situation s being bounded by a natural number b is defined as follows:
Boundedp (s) = /\ BoundedF p(s),
FeF

i.e., every fluent is bounded by b in situation s.
We say that an action theory D is bounded by b if every executable situation is bounded by b, formally:

D = Vs.Executable(s) D Boundedy(s).

Example 1. Consider a warehouse where items are moved around by a robot (a similar example is formalized in [31]). There
are k storage locations where items can be stored. There is also a shipping dock where new items may arrive and stored
items may be shipped out. We can axiomatize this domain as follows.

2 Such an assumption is made in [27], where standard names [57] are used to denote objects. Thus, the results here generalize those in [27].
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We have the following action precondition axioms>:
Poss(move(x,1,1'), s) = At(x,1,s) A IsLoc(l') A —3y.At(y,l',s)
Poss(arrive(x), s) = —3y.At(y, ShipDock, s) A =3l At(x,1, s)
Poss(ship(x), s) = At(x, ShipDock, s)

The first axiom says that, in situation s, the robot can perform action move(x,l,l’), i.e., move object x from location [ to I,
if and only if x is at [ in s and I’ is a location where no object is present in s. The second precondition axiom says that
action arrive(x) is executable in situation s, i.e., object x may arrive at the warehouse in s, if and only if the shipping dock
is empty and x is not somewhere else in the warehouse. The last axiom says that object x can be shipped in situation s if
it is at the shipping dock in s.

For the fluent At, we have the following successor state axiom:

At(x,1,do(a,s) =y x,l,a,)T vV At(x,1,s) A=y~ (x,1,a,5)
where

y*(x, L a,s)=3.a=movex, ', I) A At(x,l',s) A IsLoc(l) A —3y.At(y,1,s)
v a=arrive(x) Al = ShipDock and

y~(x,1,a,s)=AW.a=movex, L) Al' £l AIsLoc(l') A —3y.At(y,l’, s)
Vv a = ship(x) A At(x, ShipDock, s)

This says that object x is at location [ in the situation that results from doing action a in s if and only if ¥ (x,1, a,s) holds
or if x is already at [ in s and y~(x,1,a,s) does not hold. y*(x,1,a, s) specifies the conditions under which action a makes
object x be at location [ in situation s, i.e., if a is to move x to a free location I from another location I’ where x was in s, or
a is x arriving and [ is the shipping dock. y ~(x,[, a, s) specifies the conditions under which action a makes object x cease
to be at location [ in situation s, i.e., a is to move x to a different location that is free, or is to ship x.

We specify the initial situation with the following initial state axioms:

vx, l.—At(x,1, Sp)
IsLoc(l) =1= ShipDockvI=SLiVv...vI=SL

We also have unique name axioms for the locations. For clarity, IsLoc is a non-fluent predicate, although it is easy to recast
it as a fluent that is unaffected by any action.

It is not difficult to show that this theory is bounded by k+1. First note that there are k-1 locations initially and the set
of locations never changes, so IsLoc is bounded by k+1. For fluent At, it is initially bounded by 0, but the arrive action can
augment its extension. However, the action theory ensures there can be at most one item at each of the k+1 locations. Thus
At remains bounded by k+1. Therefore, the theory is bounded by k+1. Observe that, as there are infinitely many constants
denoting distinct objects, effectively an unbounded number of items may be handled by subsequent arrive, move, and ship
actions. Despite this, the theory remains bounded. O

We shall see that for bounded action theories, verification of sophisticated temporal properties is decidable.
4. Obtaining bounded action theories

Before focusing on verification, in this section we look at various interesting sufficient conditions that guarantee that
a basic action theory is bounded. Later, in Section 9, we will see that it is actually possible to use verification to check
whether any arbitrary basic action theory, with a bounded initial situation description, is indeed bounded.

4.1. Bounding by blocking

We observe that the formula Boundedy(s) is a FO formula uniform in s and hence it is regressable for basic action
theories. This allows us to introduce a first interesting class of bounded action theories. Indeed, from any basic action
theory, we can immediately obtain a bounded action theory by simply blocking the execution of actions whenever the
result would exceed the bound.

Let D be a basic action theory. We define the bounded basic action theory D, by replacing each action precondition
axiom in D of the form Poss(a(x),s) = ®(x,s) by a precondition axiom of the form

Poss(a(x), s) = ®(x, s) A R[Boundedp(do(a(X), s))] (1)

3 Throughout this paper, we assume that all free variables in a formula are implicitly universally quantified from the outside. Occasionally, to be clear,
we will write Yo to denote the universal closure of ¢ explicitly.
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Theorem 1. Let D be a basic action theory with the initial description Dy such that Dy = Boundedy, (So), for some b, and let Dy, be
the basic action theory obtained as discussed above. Then, Dy, is bounded by b.

Proof. By (1) it is guaranteed that any executable action leads to a bounded situation. Hence by induction on executable
situations, we obtain the thesis. O

Example 2. Suppose that we have a camera on a smartphone or tablet computer. We could model the storage of photos on
the device using a fluent PhotoStored(p, s), meaning that photo p is stored in the device’s memory (in situation s). Such a
fluent might have the following successor state axiom:

PhotoStored(p, do(a, s)) = a = take Photo(p)
Vv PhotoStored(p, s) A a # delete Photo(p)

We may also assume that action take Photo(p) is always executable and that delete Photo(p) is executable in s if p is stored
ins:

Poss(takePhoto(p), s) = True

Poss(delete Photo(p), s) = PhotoStored(p, s).

Now such a device would clearly have a limited capacity for storing photos. If we assume for simplicity that photos come
in only one resolution and file size, then we can model this by simply applying the transformation discussed above. This
yields the following modified precondition axioms:

Poss(take Photo(p), s) =
—PhotoStored(p, s) A |{p’ | PhotoStored(p’,s)}| <b —1
Vv PhotoStored(p, s) A |{p’ | PhotoStored(p’,s)}| <b

Poss(delete Photo(p), s) = PhotoStored(p, s) A
[{p’ | PhotoStored(p’,s)}| <b+1.

Note how the condition on the right hand side of the first axiom above ensures there are fewer than b photos stored after
the action of taking a photo p occurs. Clearly, the resulting theory is bounded by b (assuming that the original theory is
bounded by b in Sg). O

Note that this way of obtaining a bounded action theory is far from realistic in modeling the actual constraints on the
storage of photos. One could develop a more accurate model, taking into account the size of photos, the memory manage-
ment scheme used, etc. This would also yield a bounded action theory, though one whose boundedness is a consequence of
a sophisticated model of memory capacity.

Example 3. Let’s extend the previous example by supposing that the device also maintains a contacts directory. We could
model this using a fluent InPhoneDir(name, number, photo, s), with the following successor state axiom:

InPhoneDir(na, no, p,do(a, s)) =
a =add(na, no, p) v InPhoneDir(na, no, p, s) A
a # deleteName(na) A a # deleteNumber(no)

We could then apply our transformation to this new theory to obtain a bounded action theory, getting precondition axioms
such as the following:

Poss(add(na, no, p), s) =
—3na’, no’, p’.InPhoneDir(na’, no’, p’, s) A (na’ =na v no’ =no) A
PhotoStored(p, s) A |{p’ | PhotoStored(p’,s)}| <b A
|{{na’,no’, p’y | InPhoneDir(na’,no’, p’,s)}| <b—1

The resulting theory blocks actions from being performed whenever the action would result in a number of tuples in some
fluent exceeding the bound. O

We observe that this kind of bounded action theories are really modeling a capacity constraint on every fluent,* which
may block actions from being executed. As a result, an action may be executable in a situation in the original theory, but
not executable in the bounded one. Thus an agent may want to “plan” to find a sequence of actions that would make the
action executable again. In general, to avoid dead-ends, one should carefully choose the original action theory on which the
bound is imposed, in particular there should always be actions that remove tuples from fluents.

4 The bound b applies to each fluent individually, so the total number of tuples in a situation is bounded by |F|b. Instead, one could equivalently impose
a global capacity bound on the total number of tuples for which some fluent holds in a situation.
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4.2. Effect bounded action theories

Let's consider another sufficient condition for boundedness. Without loss of generality we can take the general form of
successor state axioms to be as follows:

F(X,do(a,s)) = @} (X,a,5) vV (F(X,s) A =®F (X, a,5))
We say that fluent F is effect bounded if, for every action a and situation s:
{0 | @ (©@.a.9)} <|{o'| Pf(0',a,9)},

i.e., for every action and situation, the number of tuples added to the fluent is less than or equal to that deleted.
We say that a basic action theory is effect bounded if every fluent F € F is effect bounded.

Theorem 2. Let D be an effect bounded basic action theory with the initial situation description Dg such that Do = Boundedj(So),
for some b. Then D is bounded by b.

Proof. By induction on executable situations. O

Example 4. Many axiomatizations of the Blocks World are not effect bounded. For instance, suppose that we have fluents
OnTable(x, s), i.e., block x is on the table in situation s, and On(x, y, s), i.e., block x is on block y in situation s, with the
following successor state axioms:

OnTable(x,do(a, s)) =a =moveToTable(x)
Vv OnTable(x, s) A—3y.a =move(x, y)

On(x, y,do(a,s)) =a=move(x,y) Vv On(x, y,s) A
—3z.(z# y Aa=move(x, z)) Aa#moveToTable(x)

Then, performing the action moveToTable(B1) will result in a net increase in the number of objects that are on the table
(assuming that the action is executable and that B1 is not already on the table). Thus, fluent OnTable is not effect bounded
in this theory.

However, it is easy to develop an alternative axiomatization of the Blocks World that is effect bounded. Suppose that we
use only the fluent On(x, y, s) and the single action move(x, y), where y is either a block or the table, which is denoted by
the constant Table. We can axiomatize the domain dynamics as follows:

Oon(x, y,do(a,s)) =a=move(x, y)
v Oonix,y,s) A—3z.(z# y Aa=move(x, 2))

That is, x is on y after action a is performed in situation s if and only if a is moving x onto y or x is already on y in
situation s and a does not involve moving x onto an object other than y. We say that move(x, y) is executable in situation
s if and only if x is not the table in s, x and y are distinct, x is clear and on something other than y in s, and y is clear
unless it is the table in s:

Poss(move(x, y),s) =x# Table Ax#y A—3z.0n(z,x,5) A
3z.(z# y A On(x,z,s)) A (y =Table v —=3z.0n(z, y, s))

Then it is easy to show that any occurrence of move(x, y) in a situation s where the action is executable, adds (x, y) to
0={(,y)|0onX,y' s)} while deleting (x, y”) for some y” s.t. y” # y, leaving |0| unchanged. Note that we must require
that x be on something in the action precondition axiom to get this. Any action other than move(x, y) leaves O unchanged.
Thus On is effect bounded.

The precondition that x be on something for move(x, y) to be executable means that we cannot move a new unknown
block onto another or the table. We must of course impose restrictions on “moving new blocks in” if we want to pre-
serve effect boundedness. One way to do this is to add an action replace(x, y), i.e. replacing x by y. We can specify its
preconditions as follows:

Poss(replace(x, y),s) =x# Table Ay # Table Ax#y A
—3z.0n(z,x,s) A3z.0n(x, z,s) A —3z.0n(z, y,s) A —3z.0n(y, z, s)

That is, replace(x, y) is executable in situation s if and only if x and y are not the table and are distinct, x is clear and on
something in s, and y is clear and not on something in s. We can modify the successor state axiom for On to be:

On(x, y,do(a,s)) =a=move(x,y) Vv
3z.(a =replace(z,x) A On(z,y,s))
v onx,y,s) A—3z.(z# y Aa=move(x, z)) A
—3z.(z # y Aa=replace(x, z)),
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where On(x, y) becomes true if x replaces z and z was on y in s, and On(x, y) becomes false if z replaces x and x was on
y in s. It is straightforward to show that this change leaves On effect bounded. O

Example 5. For another simple example (perhaps more practical), let’s look at how we could specify the “favorite web sites”
menu of an Internet application. We can assume that there is a fixed number of favorite web sites positions on the menu,
say 1 to k. We can replace what is at position n on the menu by the URL u by performing the action replace(n, u). This can
be axiomatized as follows:

FavoriteSites(n, u,do(a, s)) =a =replace(n, u) v
FavoriteSites(n, u,s) A —3u’.(u’ # u Aa =replace(n, u’))

Poss(replace(n, u),s) =n € [1..k] A 3u’.FavoriteSites(n, u’, s)

It is easy to show that in this axiomatization, FavoriteSites is effect bounded. No action, including replace(n, u), causes the
extension of the fluent to increase. O

The FavoriteSites fluent is typical of many domain properties/relations, such as the passengers in a plane, the students
in a class, or the cars parked in a parking lot, where we can think of the relation as having a finite capacity, and where
we can reassign the objects that are in it. In some cases, the capacity bound may be difficult to pin down, e.g., the guests
at a wedding, although the capacity is by no means unbounded. As well, there are definitely examples where we need an
unbounded theory, e.g., to model a pushdown automata that can recognize a particular context-free language. The situation
calculus is a very expressive language that accommodates this, for instance, it has been used to model Turing machines
[75]. One might arguably want an unbounded “favorite sites” menu or contacts directory, although this seems hardly prac-
tical. Another interesting question is how such capacity constraints might apply to a complex agent such as a robot that is
modeling its environment. Clearly, such a robot would have limitations with respect to how many environment features/ob-
jects/properties it can memorize and track. Finally, note that the condition |{G | d>;(6, a,9)}| < {0’ | & (0',a,s)}| is not a FO
formula and it is difficult (in fact, undecidable) in general to determine whether a basic action theory is effect bounded. But
as our examples illustrate, there are many instances where it is easy to show that the bounded effects condition holds.

4.3. Fading fluents action theories

Fading fluents action theories are based on the idea that information over time loses strength and fades away unless it is
reinforced explicitly. A fading fluents action theory with fading length given by a natural number ¢ is an action theory where
a fluent F(x,s) is defined by making use of some auxiliary fluents F;(x,s), for 0 <i < ¢ where F(X,s) = \/o;-, Fi(%, s) and
the auxiliary fluents have successor state axioms of the following special form: T

Fi(%,do(a,s)) = ®F (X,a,5) A|{0 | 3d".®F©0,d,s)}| <b
and for 0 <i < £ we have:
Fi(X,do(a,s)) = =@} (X,a,5) A Fiy1(X,5) A =P (X, 4, 5).

Thus, tuples are initially added to Fy, and progressively lose their strength, moving from F; to F;_1 each time an action
occurs that does not delete or re-add them; eventually they move out of Fy and are forgotten. Note that:

e Technically, a fading fluents action theory is a basic action theory having as fluents only the auxiliary fluents.

e It is simple to obtain a fading fluent version of any basic action theory.

e It is often convenient to include explicit refreshy (x) actions, whose effect, when applied to a situation s, is simply to
make F,(X,do(refreshp(X,s))) true, and F;(X, do(refreshp(X,s))) false for 0 <i < £. Similarly it may be convenient to
include forgety(x) actions, whose effect is to make F;(X, do(forgety (X, s))) false, for all i.

Theorem 3. Let D be a fading fluents action theory with fading length ¢ and initial database Dy such that Dy = Boundedy(So), for
some b. Then, D is bounded by b.

Proof. By induction on executable situations. For the base case, we have that initially for each fluent, we have at most b
facts, hence Sg is bounded by b. For the inductive case, by the inductive hypothesis we have that Boundedj(s). Now, take an
arbitrary action a(f), and an arbitrary fluent F. Then: (i) Boundedpbb(do(a(_f), s)), since positive effects are bounded by b in
its successor state axiom; and (ii) for all 0 <i < ¢, since F; depends on F;; in the previous situation in its successor state
axioms, we have that Boundedp,.,b(do(a(?),s)) since Boundedf, , p(s) and in the worst case the whole extension of Fiyq in
s is carried over to F; in do(a(f),s). O

Example 6. Imagine a sort of “vacuum cleaner world” where a robotic vacuum cleaner may clean a room or region r [76].
If a room/region is used, then it becomes unclean. We could model this using a fluent IsClean(r,s) with the following
successor state axiom:
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IsClean(r,do(a, s)) = a = clean(r) v IsClean(r, s) A —a = use(r)

Clearly, cleanliness is a property that fades over time. By applying the proposed transformation to this specification, we
obtain the following:

IsCleany(r,do(a,s)) =a=clean(ry A1 <b
and for 0 <i < ¢ we have:
IsClean;(r,do(a, s)) = a # clean(r) A IsClean;;1(r, S) A a # use(r)

This is a somewhat more realistic model where after ¢ steps, we forget about a room being clean. O

Example 7. Consider a robot that can move objects around. We might model this using a fluent At(objet, location, s) with
the following successor state axiom:

At(o,l,do(a,s)) =a=moveTo(o,l) va=observe(o,l) v
At(o,l,s) Ana #takeAway (o) A
=3A'.l' £1 A (a=moveTo(o,l') v a=observe(o,l))

Here, moveTo(o,l) represents the robot’s moving object o to location I. We also have an action observe(o,l) of observing
that object o is at location [, a kind of exogenous action that might be produced by the robot’s sensors. As well, we have
another exogenous action take Away (o), representing another agent’s taking object o to an unknown location. If the world is
dynamic, most objects would not remain where they are indefinitely, even if the robot is unaware of anyone moving them.
By applying the proposed transformation to this specification, we obtain a theory where information about the location of
objects fades unless it is refreshed by the robot’s observations or actions. After ¢ steps, the robot forgets the location of an
object it has not observed or moved; moreover, this happens immediately if the object is taken away. O

Example 8. As a final example, consider a softbot that keeps track of which hosts are online. We might model this using a
fluent NonFaulty(host, s) with the following successor state axiom:

NonFaulty(h,do(a, s)) =a = pingS(h) v NonFaulty(h, s) A a # pingF(r)

Here the action pingS(h) means that the host h has been pinged successfully, and the action pingF (h) means that the host
h has not responded to a pinging within the allocated time. As time passes, we may not want to assume that currently
non-faulty hosts remain non-faulty. If we apply the proposed transformation to this specification, we obtain a theory where
information about hosts being non-faulty fades. The agent must periodically ping the host successfully to maintain its
knowledge that the host is non-faulty. Notice that, obviously, the theory does not provide a full account of the mechanisms
that regulate the hosts’ availability, but only the knowledge that the softbot has about the hosts. O

An interesting natural example of such fading representations is the pheromones left by insects. Note that it is also
possible to model fading with time as opposed to fading with the number of actions, though in this case we have to bound
how many actions can occur between clock ticks.

5. Expressing dynamic properties

To express properties about Situation Calculus action theories, we introduce a specific logic, inspired by the p-calculus
[40,15], one of the most powerful temporal logics, subsuming, in the propositional setting, both linear time logics, such
as Linear Temporal Logic (LTL) [69] and Property-Specification Language (PSL) [39], and branching time logics, such as
Computational Tree Logic CTL [20] and CTL* [41]. The main characteristic of the p-calculus is its ability to express directly
least and greatest fixpoints of (predicate-transformer) operators formed using formulas relating the current state to the next
one. By using such fixpoint constructs one can easily express sophisticated properties defined by induction or co-induction.
This is the reason why virtually all logics used in verification can be considered as fragments of the w-calculus. Technically,
the w-calculus separates local properties, asserted on the current state or on states that are immediate successors of the
current one, from properties talking about states that are arbitrarily far away from the current one [15]. The latter are
expressed through the use of fixpoints. Our variant of the w-calculus is able to express first-order properties over situations
while, at the same time, allowing for a controlled form of first-order quantification across situations, inspired by [5], where
the quantification ranges over objects that persist in the extension of some fluents across situations.

Formally, we define the logic u£, as:

Di=¢ | =D | Py A Dy | IX.LIVE(X) A D |
LIVE(X) A (—)® | LIVER) A [—]DP | Z | uZ.D
In addition, we use the usual FOL abbreviations for Vv, D, =, and V, plus the standard p-calculus abbreviation vZ.® =

—uZ.~®[Z/—Z], where we denote with ®[Z/—Z] the formula obtained from & by substituting each occurrence of Z with
—Z. Let us comment on some aspects of uLp:
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e ¢ in the expression above is an arbitrary (possibly open) uniform situation-suppressed (i.e., with all situation arguments
in fluents suppressed) situation calculus FO formula, in which the only constants that may appear are those explic-
itly mentioned in the situation calculus theory beyond Dy, i.e., those occurring in Dpess U Dssq U Do.> Observe that
quantification inside ¢ is not subject to any restriction; in particular, LIVE(-) is not required.

e Z is an SO (0-ary) predicate variable, denoting a set of situations (the SO assignment to Z is parameterized by the FO
assignment to the individual variables, see later).

e uZ.® and vZ.d are fixpoint formulas which denote, respectively, the least and the greatest fixpoint of the formula &
seen as a predicate transformer AZ.® on sets of situations. To guarantee the existence of fixpoints, as usual in the
p-calculus, formulas of the form pwZ.® and vZ.® must satisfy syntactic monotonicity of & with respect to Z, which
states that every occurrence of the variable Z in ® must be within the scope of an even number of negation symbols.

e 1Z.® and vZ.® may contain free individual variables, which are those of ®; technically, these act as parameters of
the fixpoint formula, i.e., the value of fixpoints «£Z.® and vZ.® is determined only once an assignment to the free
individual variables is given, see, e.g., [59] (Chap. 10).

® LIVE(X1,...,Xp) stands for /\ie{lwn} LIVE(X;). We assume that in LIVE(X) A (—)® and LIVE(X) A [—]®, the variables X
are exactly the free individual variables of ®, after we have substituted each bound predicate variable Z in ® by the
corresponding binding fixpoint formula pZ.®’ or vZ.®’. Observe that Z is not further substituted in &’.°

e The Boolean connectives have their usual meaning. Quantification over individuals in 3x.LIVE(x) A ® and Vx.LIVE(x) D ®
(i.e., =3Ix.LIVE(x) A —®) has the expected meaning, with the proviso that individuals over which quantification ranges
must belong to the active domain of the current situation, i.e., belong to the extension of some fluent in the current
situation, as required by LIVE(-).

o Intuitively, the use of LIVE(-) in L, ensures that objects are only considered in quantification across situations if they
persist along the system evolution, while the evaluation of a formula with objects that are not present in the current
extension of the fluents trivially evaluates to either false for 3 or true for V. In particular:

- LIVE(X) A (—)® denotes the set of situations s such that for some possible next situation s', i.e., such that s’ =do(a, s)
for some action a executable in s, we have that & holds in s, with the variables occurring free in ®, X, assigned to
objects in the active domain of s.

- LIVE(X) A [—]® denotes the set of situations s such that in all possible next situations s’, we have that ® holds in ¢/,
with the variables occurring free in @ assigned to objects in the active domain of s.

- LIVE(X) D {(—)® (i.e., =(LIVE(X) A [—]—®)) denotes those situations s such that for some possible next situation s’, we
have that @ holds in ', as long as the variables occurring free in ® are assigned to objects in the active domain of s.

- LIVE(X) D [—]® (i.e., ~(LIVE(X) A (—)—®)) denotes those situations s such that for all possible next situations s’, we
have that @ holds in ', as long as the variables occurring free in ® are assigned to objects in the active domain of s.

Next we turn to semantics. Since uL, contains formulas with free individual and predicate variables, given a model
M of an action theory D with object domain A and situation domain S, we introduce a valuation (v, V) formed by an
individual variable valuation v which maps each individual variable x to an object v(x) in A, and a parameterized predicate
variable valuation V, which, given the valuation of the individual variables v, maps each predicate variable Z to a subset
V (v, Z) of situations in S (notice that for each individual variable valuation v the mapping may change). Given a valuation
(v, V), we denote by (v, V)[x/d] the valuation (v’,V’) such that: (i) for every individual variable y # x, we have that
v'(y) =v(y) and v'(x) =d, (ii) for every predicate variable Z, we have that V'(v’, Z) = V(v', Z). Sometimes we also use
the notation v[x/d], to denote the valuation v’ such that, for every individual variable y that is not a component of X,
we have v/(y) = v(y), and v/(x;) =d; for all components x; of X. Analogously, we denote by (v, V)[Z/£] the valuation
(v/, V') such that: (i) for every individual variable x, we have v'(x) = v(x), (ii) for every predicate variable Y # Z, we have
V/(v',Y)=V(v,Y), and (i) V'(v/,Z) = E. Also we denote by adom’™ (s), the active (object) domain of situation s in the
model M, which is the set of all objects occurring in some FM(s) (F € F) or as the denotation in M of a constant in the
set C of object constants occurring in Dpgss U Dssq U Do. Then, we assign semantics to formulas by associating to a model
M and a valuation (v, V), an extension function (-)(};‘V) which maps £, formulas to the inductively defined subsets of S,
as shown in Fig. 1 (for clarity, we interpret explicitly the abbreviation vZ.®). Notice that, given a (possibly open) uniform

5 (learly, this assumption can be avoided by adding to the initial situation description, a new “dummy” fluent that holds for a bounded number of
constants.
6 More precisely, in LIVE(X) A (—)® and LIVE(X) A [—]® we require that X = free(®), where free(®) is inductively defined as follows:

free(e) are the free variables of the FO formula ¢
free(—=®) = free(®)
free(®1 A &) = free(dq) U free(dy)
free(Ix.LIVE(x) A ®) = free(d) — {x}
free(LIVE(X) A (—)®) = free(®)
free(LIVE(X) A [—]®) = free(d)
free(2) = 1% ?fZ ?s unbound
free(uz.®'y if Z is bound by nZ.®’
free(uZ.®) = free(®[Z/Z']) where ®[Z/Z'] is ® with Z substituted by a fresh (unbound) predicate variable Z’.
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@, = {seS|M,vEgls]}
(*q’)mv) =S- (CP){},ftv)
(@1 A DL, = (@0}, N@237,
(3X. LIVE(X) A q>){;4v) = {seS| Eldﬁe adom"’t(s).s € (@)(;f‘v)[x/d]}
(LIVE(X) A (7)<I>)(/“/flvj = {seS|X/dev and d C adom™ (s) and
Ja. (a, s) € Poss™ and doM (a,s) € (d>)(/“/f‘v)}
(LIVE(X) A [—]d))@f‘v) = {se8S| i/a € v and d € adom™ (s) and
Va.(a,s) € Poss™ implies do™ (a, s) € (d)){:/flv)}
(Z){:,Av) = V(,2)
oM _ M ce
(MZ‘I’)/(&{V) = ECS] ((b)(wv)[zj\/{g] cé&}
(VZJ:D)(V’V) = U{S CS|EC (¢)(V1v>[z/g]}

Fig. 1. 1L extension function (-){%,).

situation-suppressed situation calculus formula ¢, by a slight abuse of notation, we denote by ¢[s] the corresponding
formula with the situation calculus argument reintroduced and assigned to situation s.
Intuitively, the extension function (~)(}/’_lv) assigns the following meaning to the u.C, constructs’:

e The extension of wZ.® is the smallest subset £, of situations such that, assigning to Z the extension &, the resulting
extension of @ is contained in &£, (with the assignments of the individual variables and the other predicate variables
given by v and V, respectively). That is, the extension of (Z.® is the least fixpoint of the operator (@)(/“:‘V>[Z/5]. Notice
that for each valuation of the free individual variables in ®, this operator is different: the free variables act as parameters
of the predicate transformer AZ.®.

e Similarly, the extension of vZ.® is the greatest subset £, of situations such that, assigning to Z the extension &,, the
resulting extension of ® contains &,. That is, the extension of vZ.® is the greatest fixpoint of the operator (q))mV)[Z/S]'

Observe that when a uwL, formula ® is closed, its extension (d>)(},f‘v) does not depend on the valuation (v, V). In fact,

the only formulas of interest in verification are those that are closed. We say that a theory D entails a closed wL, formula
@, written D = @, if, for every model M of D, it is the case that S{)M S (d))(/://lv) (for any valuation (v, V), which is in fact
irrelevant for closed formulas).

We can express arbitrary temporal/dynamic properties using least and greatest fixpoint constructions. For instance, to say
that it is possible to reach a situation where (the closed formula) ® holds, we use the least fixpoint formula ©Z.® v (—)Z.
This corresponds to a well-known CTL formula, namely EF® [20]. Instead, uZ.® Vv [—]Z expresses that, no matter which
actions are executed, a situation where & holds is eventually reached. This corresponds to the CTL formula AF ®. Similarly,
we can use the greatest fixpoint formula vZ.® A [—]Z to express that ® must hold in all possible reachable situations.
Again, this corresponds to the well-known CTL formula AG®. Instead, vZ.® A (—)Z expresses that @ holds in the current
situation and there exists always the possibility of moving to a next situation where ® continues to hold. This corresponds
to the CTL formula EG®. For convenience we sometime use the CTL notation as abbreviation for the above fixpoint formulas.

Example 9. We show several examples of properties that we may want to verify for the warehouse robot domain of Exam-
ple 1. First, suppose that we want to say that it is possible to eventually have shipped all items that are in the factory. This
can be expressed in our language as a least fixpoint formula q)egggi

WZ.(Vx,l.=At(x, D)) v (=)Z

In the above, we rely on the fact that if there are no items left in the factory, then all items that were there must have
been shipped. It is easy to check that the theory of Example 1, D1, entails that this formula holds in the initial situation Sg,
formally D; |= ®eg9. In fact, we can also show that the above property always holds:

Dy = vZ.Pego A [—]Z.

7 By mentioning situations explicitly, it is also possible to define these operators directly in second-order logic as follows [34]:

rZ.P[s]
vZ.P[s]

VZ.(V5.9[8]1 D Z(8)) D Z(s)
3Z.(V8.Z(5) D D[S A Z(s)

Note that ® may contain free individual and predicate variables, and indeed these remain free in ©Z.® and vZ.®. In this paper, we prefer to leave
the situation implicit to allow for interpreting formulas over arbitrary transition systems, including finite ones, and hence relating our logic to standard
p-calculus.

8 Note that more generally, a formula uZ.¢ v (—)Z, i.e., EFg in CTL, represents an instance of a planning problem, if we assume complete information
on the initial situation; it is entailed by a theory if there exists an executable sequence of actions such that the goal ¢ holds afterward. If instead we have
incomplete information, the formula only tells us that in each model there exists a sequence of actions, but such sequences may be different in different
models.
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The formula ®.g9 corresponds to the CTL formula EF(Vx,l.—At(x,1)), while the formula above corresponds to
AGEF (Vx, .=At(x,])).

A second property that we may want to verify is that it is possible to eventually have all items shipped out of the factory
and then later to eventually have all locations filled with items. This can be expressed as follows:

D1 E uX.[(Vx, L.-At(x, D)) A uY.(VLIsLoc(l) D Ix.At(x, 1)) vV (=)Y)] Vv (—)X
or, equivalently, in CTL notation:

Dy = EF[(¥x, .=~At(x, ) A EF(VL.IsLoc(l) D Ix.At(x, )]

Our next example concerns a safety property; we can show that it is always the case that if an item is at the shipping
dock it can be moved away or shipped out next:

D1 = VvZ.[Vx.At(x, ShipDock) D (—)—At(x, ShipDock)] A [-]Z

Notice that x is quantified across situations, although LIVE(x) is not explicitly written, as implied by At(x, ShipDock). In CTL
notation we write (informally, EX stands for “there exists a successor such that”):

D1 = AG[Vx.At(x, ShipDock) D EX—At(x, ShipDock)].

However, this is not the case for other locations. Indeed, all locations, including the shipping dock, could become occupied,
hence no movement between locations would be possible, except for shipping the item out from the shipping dock:

D1 E—vZ.[VLVE() D Vx.(At(x,]) D (LIVE() D (—)=At(x, DN A [-]Z
which simplifies to (also observing that At(x,[) implies LIVE(x) and LIVE(])):
D1 E—vZ.[Vx,LAt(x,]) D (—)At(x, D] A [-]Z.
But it is always possible to clear a location in two steps:
D1 EvZ.VL.Ex.At(x,]) D ((—)(LIVE() A (=) (—IX.AtX, D) A [—1Z

The above involves quantification across situations, and we require the location involved to persist (it trivially does).

Now, let’s consider another example where we quantify across situations. We may want to say that it is always the case
that if an item is in the warehouse, it is possible to have it persist until it is eventually shipped out (i.e., removed from all
locations):

D1 EvX.[Vx.ALAt(x,1)) D uY.(VL=At(x, 1)) vV LIVE(x) A (—)Y] A [—]X.

Note that the weaker property that it is always the case that if an item is in the warehouse, it is possible to have it shipped
out eventually if it persists also holds:

D1 EvX.[Vx.(ALAt(x,1)) D nY.(VI.=At(x,1)) v (LIVE(x) D (—)Y)] A [—]X.

Finally, consider the property that if an item o is eventually shipped (i.e., VI.—At(o,l) and hence o is not in the active
domain) there is a future situation where o eventually comes back (i.e., it arrives back to the shipping dock and hence
reappears in the active domain). While we cannot write this property in ©uL, because o does not persist after it has
been shipped, the property itself is trivially true. Indeed, if an object o disappears from the active domain, the theory
does not predicate on o anymore. Hence the object o will appear back only if introduced by the action arrive(o). Observe
however that, since the theory is not predicating on o, if we can use o as the actual parameter of the action, then we
can use as actual parameter any other object not in the active domain. That is, if arrive(x) can be instantiated with some
object outside the active domain (which is indeed the case) then it can be trivially instantiated with o. Analogously, the
property that o eventually comes back no matter what actions are executed is trivially false. Indeed, if we can instantiate
arrive(x) with o, then we can instantiate it with every object outside the active domain. Thus, we can trivially have an
infinite sequence of actions where arrive(o) never occurs. This discussion hints at the essential aspect of persistence in
quantification across: when objects persist we can express meaningful temporal properties over them, while when they do
not, temporal properties trivialize, see Section 10. O

Observation 1. Observe that we do not have actions as parameters of [—]- and (—)-. However, we can easily remember the
last action performed, and in fact a finite sequence of previous actions. To do this, for each action type A(X), we introduce
a fluent Lasta (X, s) with successor state axiom:

Lasta(x,do(a,s)) =a= A(X)
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We can also remember the second last action by introducing fluents SecondLast (X, s) with successor state axioms:
SecondLast (X, do(a, s)) = Lasta (X, s)

Similarly for the third last action, etc. Notice that each of these fluents has an extension in each situation containing at
most one tuple of objects corresponding to the parameters X of the corresponding action A.

In this way, we can store a finite suffix of the history in the current situation and write FO formulas relating the
individuals in the parameters of actions occurring in the suffix. For example, we can write (assuming for simplicity that the
mentioned fluents have all the same arity):

WZ.(3x.Last 4(X) A SecondLastp (X)) V (—)Z,

i.e., it is possible to eventually do B(x) followed by A(X) for some X.

Observation 2. While L, allows for quantification over objects that persist across situations, the expressiveness of bounded
action theories often makes its use avoidable. For instance, we can easily introduce a finite number of “registers”, i.e.,
fluents that store only one tuple, which can be used to store and refer to tuples across situations. We can do this by
introducing fluents Reg;(x, s) and two actions setReg;(X) and clearReg; to set and clear the register Reg; respectively. These
are axiomatized as follows:

Regi(%,do(a, s)) = a = setReg;(X) v
Regi(x,s) Aa # clearReg;

Poss(setReg;i(X), s) = —3x.Reg;i (X, s)

Poss(clearReg;, s) = 3x.Reg; (X, s)

For example, we can write (assuming for simplicity that the mentioned fluents have all the same arity):

IZ.(3X.Regi(X) A F(X) A (=)3y.Regi(}) AF'(§)) V (—)Z

This formula says that there exists a sequence of actions where eventually the tuple referred to by register i has property
F and there is an action after which it has property F’. Note also that this approach can be used to handle some cases of
quantification over objects that do not persist across situations.

6. Verification of bounded action theories with complete information on Sy

We now show that verifying wL, properties against bounded action theories is decidable. In this section we focus on
action theories with complete information on the initial situation. The case of incomplete information is addressed in the
next section. In particular, we assume that the extension of all fluents in the initial situation S is given as a (bounded)
database. We further assume that the domain of interpretation for objects A is also given. Notice that, as a consequence of
the presence of infinitely many object constants and the unique name assumption on them Dy,,, A must be infinite.? As
a result of these two assumptions, we have that the action theory D admits only one model M [67] which, by a slight
abuse of terminology, we call the model of the action theory D (though in order to define it we need A as well).

Our main result is the following.

Theorem 4. Let D be a bounded action theory with initial situation described by a (bounded) database and with infinite object domain
A, and let ® be a closed Ly formula. Then, checking whether D {= @ is decidable.

The proof is structured as follows. Firstly, we show that action terms can be eliminated from £, formulas without
loss of generality (cf. Section 6.1). Exploiting this, we show that only the fluent extensions in each situation, and not the
situations themselves, are relevant when evaluating (£, formulas (cf. Section 6.2). In this step, we also prove that checking
FO formulas and answering FO queries locally, i.e., on a given situation, are, under boundedness, respectively decidable and
effectively computable.

Then, based on the observations above, we introduce transition systems as alternative structures (to the models of situa-
tion calculus action theories), over which u£, formulas can be evaluated. Transition systems are less rich than the models
of situation calculus action theories, as they do not reflect, in general, the structure of the situation tree. Yet, they can
accommodate the information of models needed to evaluate L, formulas (cf. Sections 6.3 and 6.4). In this step, we de-
fine the notion of persistence-preserving bisimulation, i.e., a variant of standard bisimulation which requires a certain kind
of isomorphism to exist between bisimilar states and their successors (cf. page 187), and prove that persistence-preserving
bisimilar transition systems preserve the truth-value of £, formulas (cf. Theorem 13). This is a key step in the proof,

9 By the way in case of action theories with a given finite object domain, verification becomes easily reducible to model checking, since the corresponding
situation calculus model is bisimilar to a finite propositional transition system.
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which allows us to reduce the verification of uL, formulas over an infinite transition system to that over a bisimilar
transition system that is finite.

In the third and fundamental step (Section 6.5), we carry out a faithful abstraction operation, and show how to actually
construct a finite transition system that is persistence-preserving bisimilar to the one, infinite, induced by the model of the
action theory (cf. Procedure 1 and Theorems 15 and 16). Finally, we prove that verification is decidable on finite transition
systems, thus on the one induced by the model of the action theory (cf. Theorem 17).

The rest of this section details these steps.

6.1. Suppressing action terms

Under uniqueness of action names, domain closure for actions, and the fact that action types are finitely many, we can
remove, without loss of generality, action terms from uniform situation calculus formulas.

Theorem 5. For every, possibly open, situation calculus FO formula ¢(X, s) uniform in s and with free variables X, all of object sort,
there exists a situation calculus formula ¢’ (X, s) uniform in s, where no action terms occur, such that

Dea EY(@(X,5) = ¢'(%,9)).

Proof. By induction on the structure of ¢. If ¢ is F (£, s), we have that, by definition, t can only contain object terms, so ¢’
is F(t,s). If ¢ is A(y) = A'(y)), with X S yU ', if A=A’, then ¢’ is y =y, else ¢’ is L. The case of Boolean connectives
is straightforward. If ¢ is 3a.¢ (%, a, s), consider the formula ¢” =\/,c 4 3¥a.¢a (X, ¥a,s), with ¢4 obtained from ¢ (X, a, s),
by replacing each occurrence of a with A(y4), where y4 are fresh variables. We obviously have: D¢ = V(¢ = ¢”). Now,
for each ¢4, let ¢, be a formula containing no action terms, such that D¢, |= V(¢4 = ¢};). By induction hypothesis, such a
¢/, exists. Finally, let ¢’ =\/4 4 3V4.¢/, (X, ¥a,s). Clearly, ¢’ contains no action terms and is uniform in s. By considering
unique name axioms for actions and domain closure for action types (Dcq), we can see that D¢ = V(9" = ¢’). Thus, since
Deqa EV(p = @), the thesis follows, i.e., D EV(p =¢'). O

This result immediately extends to uLp, since in wLp formulas, only uniform (situation suppressed) situation calculus
FO subformulas can occur.

Theorem 6. Any (L, formula ® can be rewritten as an equivalent 1Ly, formula ®’, where no action terms occur, such that Deq =
V(D = D).

On the basis of this theorem, without loss of generality, we always rewrite @£, formulas so that actions do not occur
in them.

6.2. Suppressing situation terms

Since the FO components of uL, formulas are situation-suppressed, situations are obviously irrelevant when checking
nLy formulas; more precisely, the FO components (thus the whole logic) are sensitive only to the interpretation of fluents
(and constants) at each situation, while the situations themselves are not relevant. The impact of this observation on the
evaluation of wL, formulas in the general case will become evident in Section 6.4. Here, we focus on the local evaluation of
FO components (on the interpretation of a single situation), or more specifically of FO situation calculus formulas uniform
in s, and present some notable results that, besides being interesting per se, will be useful later on.

Given a basic action theory D, we denote by F the set of its fluent symbols and by C the (finite) set of constants
in N explicitly mentioned in D, beyond Dyp,. Then, given a model M of D with object domain A and a situation s,
it is natural to associate s with a FO interpretation Zxq(s) = (A, Iy, where: (i) for every c € C, L =cM and (ii) for
every (situation-suppressed) fluent F of D, FI = {El | <Ei, s) € FM}. The following result is an obvious consequence of the
definitions above.

Theorem 7. For any possibly open FO situation-suppressed situation calculus formula ¢ uniform in s, any situation s, and any object
variable valuation v, we have that M, v = @[s] if and only if Za4(s), v = @.

In other words, when evaluating a uniform FO situation-calculus formula on a situation, one needs only focus on the
interpretation relative to the situation of interest.

Next, we show that, despite the object domain’s infiniteness, for bounded action theories, we have decidability of FO
formulas evaluation. Even more, we obtain that we can compute the answers to FO queries on specific situations. Notice
that the latter result is not obvious, in that the object domain is infinite and, thus, so could be the answer. Importantly,
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these results imply that we can check action executability and compute the effects of action executions, two facts that we
will strongly leverage when checking £, formulas.

We start by showing some results concerning the decidability of FO formulas evaluation in an interpretation with finite
predicate extensions, but infinite domain. Consider a finite set F of predicate symbols (situation-suppressed fluents) and
a finite set C (a subset of N') of constant symbols; then, a (FO) interpretation Z, over an infinite domain A, is a tuple
T =(A,-L), where -Z assigns an extension FZ over A to each predicate symbol F € F, and a distinct object cZ € A to
every constant in C. The active domain of an interpretation Z, denoted adom(Z), is the set of all the individuals occurring in
the extension of some fluent F € F, or interpreting some constant c € C, in Z. Moreover, for simplicity, we assume that all
the constants mentioned in FO formulas of interest belong to C.

First, let us recall a classical result saying that FO formulas (with no function symbols other than constants) can always
be rewritten as formulas with quantified variables ranging only over the active domain of the interpretation. For an inter-
pretation Z = (A, L), we define the restriction of Z to its active domain as the interpretation 7 = (adom(Z), -T). In words, Z
is the same interpretation as Z, except that the object domain is replaced by the active domain. For technical convenience,
given an interpretation Z, a FO formula ¢, and a (FO) variable valuation v, we define the interpretation Z#-V as the in-
terpretation (adom(Z) U Dy v, Iy, where Dy,y C A is the set containing all the objects from A that v assigns to the free
variables of ¢. Observe that D, , is always finite, since so is the set of ¢’s free variables.

Theorem 8 (Theorem 5.6.3 of [60]). For every FO formula ¢, one can effectively compute a formula ¢’, with quantified variables ranging
only over the active domain, such that for any interpretation Z = (A, -T) with infinite domain A, and any valuation v, we have that

I,viEgifandonly if 19V, v = ¢ .

This result essentially says that checking whether Z, v = ¢’ requires knowing only the interpretation function I of T,
while the interpretation domain A can be disregarded. In other words ¢’ is a domain-independent formula [1]. One way to
obtain domain-independent formulas is to avoid the use of negation and instead use logical difference with respect to the
active domain. The above theorem says that it is always possible to transform a FO formula to be evaluated over an infinite
domain to a domain-independent one to be evaluated over the active domain only, suitably augmented with the objects
assigned to the free variables of the formula (and actually its proof gives an effective procedure to do so).

An immediate consequence of Theorem 8 is that if adom(Z) is finite, then checking whether Z, v |= ¢ is decidable, no
matter whether the interpretation domain of Z is finite or infinite. Indeed, in the former case, decidability is obvious, while
in the latter, one can simply check whether Z% ", v = ¢’, which requires only lookups on the finite extensions of fluents
and, in the presence of quantified variables, iterating over the finitely many elements of the active domain union the objects
assigned by v to the free variables of ¢. Thus, we have the following result.

Theorem 9. Given a possibly open FO formula ¢ and an interpretation T = (A, -T) with infinite A, if adom(Z) is finite, then, for any
valuation v, checking whether Z, v |= ¢ is decidable.

Proof. See discussion above. O

Theorem 9 can be lifted to computing all the valuations v such that Z, v |= ¢. Let go be a_FO formula with free variables
% and Z = (A,-Z) a FO interpretation. Then, the answer on Z to 2 is the relation ot {d €A |Z,v = @, for v(X) = d}
Sometimes, it is useful to fix the valuation of some varlables Xin C x say v(Xin) = dm, and then consider the answer to ¢
under this partial assignment, that is, the relation (p {dout eA |Z,v =@, for v(xi) = dm and v(X\ Xip) = dou[} 10 The

Xin/
following theorem says that if Z has an infinite domain A but a finite active domain, and the answer go)_( /i is finite, then
in/%in

the objects occurring in the answer come necessarily from either the active domain, or the values assigned to X;;, by v.

Theorem 10. Con51der a FO formula ¢ with free variables X. Let T be an interpretation with infinite A and finite active domain. If

(p_ ) is finite, then <pa i C (adom(Z) U dm)” where n = |X\ Xin|.

Proof. By contradiction. It can be easily proven that if Z, v |= ¢, for v(x;) = d; ¢ (adom(Z) Ua,-n) and x; € X\ Xin, then for any
other valuation v’ = v[x;/d;] such that d} € A\ (adom(Z) Ud;,), we have that Z, v’ |= ¢. Since A is infinite and adom(Z) is
finite, such d; are infinitely many, thus oz /i is infinite. Contradiction. O

Xin/Gin

In other words, any “new” object, with respect to those in adom(Z), occurring in the answer, must come from 21,-,,.
A direct consequence of Theorems 9 and 10 is that one can actually compute the answer on Z to ¢.

10 X\ X, denotes the tuple obtained from X by projecting out the components of X;,.
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Theorem 11. Consider a FO formula ¢ with free variables X Let T = (A, L) be an interpretation with infinite A and finite active

domain. If, for some valuation v such that v(Xi) = din, <p;(I /i is finite, then go)?z /i is effectively computable.
in/in in/Uin

Proof. It suffices to record in gD_I_ - all those tuples Elout such that for some v with v(Xj;) = Elm and v(X\Xin) = Bout, it is the

Xin/Qin
case that Z, v = ¢. Since by Theorem 10 such d,,; are finitely many and can be obtained using values from adom(Z) U djy,
which is finite, and, by Theorem 9, checking whether Z, v |= ¢ is decidable, it follows that (pg i is computable. O

in/Uin

These results find immediate application to the case of bounded action theories. Indeed, bounded action theories guaran-
tee that Zp4(s), in Theorem 7, is finite (for s executable). Thus, by Theorem 9, for ¢ and v as above, we have that checking
whether Zx4(s), v = ¢ is decidable. A useful implication of this is that it is decidable to check whether an action AM ()
is executable in a given situation s. Indeed, this requires checking whether M, v |= Poss(A(X), s), with v(x) = 0, which, by
Theorem 7, is equivalent to Zxq(s), vV |= ¢a(X), with ¢4(x,s) the RHS of the precondition axiom of A, which, in turn, is
decidable. Moreover, Theorem 11 can be used to show that for a bounded action theory, the effects of executing an action
at a given situation, as determined by the successor-state axioms, are computable and depend only on Zx,(s) (and the
action). Indeed, we can exploit these results to get a sort of one-step regression theorem in our setting [67,75].

Theorem 12. Let M be a model of a bounded action theory D, s an executable situation, and a = A (0) an action, with action type
A(Y). Then, for any fluent F, there exists a situation-suppressed action-term-free formula ¢ = ¢ (X, y) such that FZm (do™ @) —

%/%A ) and hence FTxm@0™ @) i effectively computable.

Proof. Let F(x,do(a,s)) = ¢r(X,a,s) be the successor-state axiom for fluent F. For the extension of F at situation s’ =
doM(a, s), we have that (p,s’) € F iff M, v = ¢r(X, A(¥),s), for some v such that v(X) = p and v(y) = 0. Notice that
¢F contains, in general, action and situation terms, and is uniform in s. However, by Theorem 5, it can be rewritten as
an equivalent action-term-free formula ¢,’§ (X,¥,s). Then, by suppressing the situation argument, we obtain: p € FZMm ) iff

Zm(S),v = ¢R (R, y), for some v such that v(X) = p and v(y) = 0. That is, for ¢ = ¢f, FIME) = ¢§/’%’1(S). Thus, since by
boundedness of D, FZM©) is finite, Theorem 11 implies the thesis. O

This result implies that, given Za4(s) and an action a = AM (), we can obtain the interpretation of each F at
doM(a, s) by simply “querying” Za,(s). Hence, by taking the same interpretation of constants as in M, we can construct
Im (doM(a, s)), from Zarm(s) and the successor-state axioms of D.

6.3. Ly over transition systems

The results presented in Sections 6.1 and 6.2 suggest that, for the purpose of verification of L, formulas, one can
operate on simpler structures than the models of situation calculus action theories. Indeed, as we saw, both actions and
situations can be essentially disregarded. In this section, we introduce such simpler structures, namely transition systems
(TS), show how L, formulas are evaluated over them, and present some important results that allow us to perform the
verification on TSs instead of on the original model. The connection between models of situation calculus theories and
transition systems will be discussed in Section 6.4. By Theorem 5, we can focus, without loss of generality, on a variant of
nLp where action terms do not occur.

By Intf’c, we denote the set of all possible interpretations of the situation suppressed fluents in F and constants in C,
over the object domain A. A transition system (TS) (over the situation-suppressed fluents F, constants C, and object domain
A)is atuple T = (A, Q,qo,—,Z), where:

A is an object domain;

Q is a set of states;

qo € Q is the initial state;

—C Q x Q is a transition relation between states; and

Z:Q Intf'c is a labeling function associating each state g with an interpretation Z(q) = (A, -Z@) such that the
constants in C are interpreted in the same way in all the states over which Z is defined.

To interpret a L, formula over a TS T = (A, Q, qo, —, Z), we use valuations (v, V) formed by an individual variable
valuation v and a parameterized predicate variable valuation V, as in Section 5. We define the extension function (~)(Tv vy
which maps L, formulas to subsets of Q, as follows:
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@)y.v) =qeQIZ@,vEe)
(_'q))z-v,V) =Q- (qj){vyv)
(P11 (DZ){V,V) = (q)l);[vﬁv) N (dJZ){VYV)

(@ LIVEQ) A ), ) = (g€ Q |3d € adom(Z(9))-q € (P){,, y)(x/a))

(LIVE(X) A (—)Q)(Tv’v) = {qe Q |X/devandd < adom(Z(q)) and
3q'.g—~q andq eﬁ(d))(Tqu)}

{ge Q |X/d € vand d € adom(Z(q)) and
Vvq'.q — q' implies q’ € (CD)(TV,V)}

(Z)(T,,,V)T V(Z) ;

(MZ-CD)(V,V) = ﬂ{g cQ | (qD)(VJ/)[Z/g] - 5}

(LIVE(X) A [—]q’)(Tv,V)

Given a L) formula @, we say that a transition system T satisfies ® at state q, under v and V, written T, q, (v, V) = &,
ifqe (d>)(TV’V). When @ is closed on predicate variables, we omit V, as irrelevant, and write T,q, v = ®. If ® is closed on
both individual and predicate variables we simply write T,q = ®. For closed formulas, we say that T satisfies ®, written
TE®IfT,q = .

For our TSs we can prove a suitable version of the classical bisimulation invariance result for the p-calculus, which states
that bisimilar TSs satisfy exactly the same p-calculus formulas, see e.g., [15]. Obviously, the notion of bisimulation needed
here is not the classical one, but one that takes into account the FO interpretations labeling the states of the transition
systems, as well as the controlled form of quantification across states allowed in puLp.

We first recall the standard notions of isomorphism and isomorphic interpretations. Two FO interpretations Z7 = (A4
and 7, = (A,, ~ZZ>, over the same fluents F and constants C, are said to be isomorphic, written Z; ~ 7, if there exists a
bijection (called isomorphism) h : A1 — A, such that: (i) for every F € F, it is the case that X € FZ1 if and only if h(x) € FZ2;
and (ii) for every c € C, we have that cZ2 = h(cZ1). It is immediate to see that if h is an isomorphism, then so is h—!, and
that ~ is an equivalence relation. Intuitively, in order for two interpretations to be isomorphic, it is required that one can be
obtained from the other by renaming the individuals in the interpretation domain. Notice that, necessarily, the interpretation
domains of isomorphic interpretations have the same cardinality. When needed, to make it explicit that h is an isomorphism
between Z; and Z, we write Z; ~, 7. We denote by h|p, the restriction of h to D1, i.e., the mapping h|p, : D1 — h(Dy),
such that hip, (d) = h(d), for every d € D4. In addition, recall that 7 = (adom(Z), -T) denotes the restriction of an interpretation
T =(A,-T) to its active domain.

The bisimulation relation that captures L, can be defined as follows. Let Tq = (A1, Q1,q10,—>1,Z1) and Tp =
(A2, Q2,q20, —2,Z2) be two transition systems (over the situation-suppressed fluents and constants of an action theory
D), and let H be the set of all possible bijections h: D1+ Dy, for D1 € Ay and Dy, C Ay. Arelation BC Q1 x Hx Qy isa
persistence-preserving bisimulation between T1 and To, if (g1, h, q2) € B implies that:

)

1 Z1(q1) ~h Z2(q2);
2. for each ¢ € Qy, if g1 —1 ¢ then there exists g, € Q2 such that:
(@) g2 —295,
(b) there exists a bijection h’ : adom(Z;(q1)) U adom(Z1(q})) = adom(Zz(q2)) U adom(Z(q5)) such that its restriction
h'ladom(z, (q1)) coincides with h and its restriction h'|agom(z, (g, is such that (q}, ladom(z; q)))- 42} € B:
3. for each ¢, € Qa, if g2 —3 g}, then there exists g} € Q; such that:
(@) q1 =245,
(b) there exists a bijection h’" : adom(Z1(q1)) U adom(Z:1(q})) = adom(Z3(q2)) U adom(Z>(q})) such that its restriction
W |adom(z; (q1)) coincides with h and its restriction h’|qgom(z, @) is such that (g}, I'|qgom(z, @) q,) € B.

Notice that requirements 2b and 3b impose the existence of a bijection h’ that preserves the bijection h (in fact, the
isomorphism) between the objects in adom(Z;(q1)) and those in adom(Z,(q,)); this essentially means that the “identity”
of such objects is preserved along the transition. Moreover, h’ is required to induce an isomorphism between adom(Z1(q}))
and adom(Z,(q5)), when restricted to adom(Z;(q})), such that (g}, I |agomz, @) q5) € B.

We say that a state g1 € Q1 is (persistence-preserving) bisimilar to q; € Q3, written g1 ~ qa, if there exists a persistence-
preserving bisimulation B between T1 and T such that (g1, h, q2) € B, for some h; when needed, we also write q1 & q2,
to explicitly name h. Finally, a transition system T; is said to be persistence-preserving bisimilar to T, written T1 ~ T, if
q10 &~ Q0. It is immediate to see that bisimilarity between states and transition systems, i.e., the (overloaded) relation ~, is
an equivalence relation.

Next, we prove a result (Theorem 13) saying that @£, enjoys invariance under this notion of bisimulation. To this end,
we first show the result for the simpler logic Lp, obtained from @£, by dropping the fixpoint construct. Namely, Lp is
defined as:

=@ | =D | Py A Dy | IXLIVE(X) A D | LIVER) A (—)P | LIVER) A [—]D
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Such a logic corresponds to a first-order variant of the Hennessy-Milner Logic [50]. Note that its semantics is completely
independent from the second-order valuation.
Given an individual variable valuation v we denote by iM(v) its image on the object domain.

Lemma 1. Consider two transition systems T1 = (A1, Q1,q10, —>1,2Z1) and Ty = (A2, Q2, G20, —>2, I2), two states g1 € Q1, q2 €
Q2, such that q1 =~y q2, and two individual variable valuations v1 and v, mapping variables to A1 and A,, respectively. If there exists
a bijection h between adom(Z1(q1)) Um(v1) and adom(Z3(q2)) U IM(v2) whose restriction ﬁladom@ (qn)) coincides with h and such
that for each individual variable x, fl(vl (%)) = va(x), then for every formula ® of Lp, possibly open on individual variables, we have
that:

T1,q1,v1 E @ ifand only if Ty, q2, v = .

Proof. We proceed by induction on the structure of ®. For ® = ¢, we observe that, by Theorem 8, Z;(q;), vi = ¢ if and only
if fiw'vi @), viE¢ (i=1,2), for ¢’ the rewriting of ¢ as its domain-independent version. Further, since T q1) ~n i) (q2),
and there is a bijection h between the objects assigned to variables by vi and vy (even if they are not in adom(Z;(q1))
or adom(Z,(q2))), it follows that I}‘Nl (qq) ~ I}‘p’vz (q2), thus, by the invariance of FOL wrt isomorphic interpretations, it
follows that f1w'vl(q1), vi | ¢’ if and only if fzw,vz (q2), v2 = ¢'. These two facts easily imply the thesis. The cases for
Boolean connectives are obtained by straightforward induction using the same individual valuations vi and v, and the
same bijection h.

For @ = 3y.LIVE(y) A ®'. Suppose that Tq,q1, vq = ®. Then, for some dy, it is the case that Tq, q1, v1[y/d1] = LIVE(Y) A
@', Notice that this implies d; € adom(Z;(q1)), then fl(dl) = h(d) = da, for some d; € adom(Iz(qz)) as h coincides with
h on adom(Z1(q1)). Consider the individual valuation v;[y/d,]. For every variable x we have h(vl[y/dl](x)) = vz[y/dz](x)
(for y we have vy[y/dy](y) =dy = h(d1) = h(vl[y/dl](y))) Hence, using these new valuations and the same bijection h
now restricted to iM(v{[y/d1]) and iM(v2[y/d2]) (to take into account the assignments to y), we can apply the induction
hypothesis, and conclude that T3, g2, va[y/d2] = LIVE(Y) A @', which implies T2, g2, v2 = ®. The other direction is proven
symmetrically.

For ® = LIVE(X) A (—)®’. Suppose that T1, q1, v1 = (LIVE(X) A (—)®'). By definition, this implies that v1(x;) € adom(Z1(q1))
for each x; € X, and there exists a transition qq —1 q; such that Ty, g, vy = @'. Since q1 &}, g2, there exist: (i) a transition
g2 —2 g5, and (ii) a bijection h’ : adom(Z;(q1)) U adom(Z1(q})) — adom(Z3(q2)) U adom(Z(q3)) such that its restriction

’ . . . . P / . . . = / = /
h'ladom(z, (q1)) coincides with h, its restriction h'|ggom(z, (q;) is an isomorphism such that Z;(q) W lgomz, @ 75(q5), and
q7 |

., q5. Now consider two new variable valuations v, and v/, defined as follows:
adom(Z1(¢})) 12 1 2

o for x; € X (for which we have that v(x;) € adom(Z;(q1))), let V() = vq(x) and v (x;) = va(x);

e choose di € Aq and, for all y ¢ X, let v (y) =dy, then: if d; € adom(Z;(q1)) U adom(Z;(q})), for all y ¢ X, let v} (y) =
h'(dy); else, choose dy ¢ adom(Z(q2)) U adom(Z(q5)), let, for all y ¢ X, v, (y) =da, and contextually extend h’ so that
h'(d1) =d,.

As a result, for all variables x, we have h'(v}(x)) = v,(x) (for h’ possibly extended as above). Consider the bijection =
W ladom(z, @)umv)- With this new bijection and the valuations v} and v/, we can apply the induction hypothesis, and
obtain that Tq, g, vi = @ implies T2, g, v} = @, and since g2 —2 g, we have that T2, qz, v} = (LIVE(X) A (—)®"). Now,
observe that the only free variables of (LIVE(X) A (—)®’) are x; € X, and that, for these, we have V(X)) =vq(x) and v} (x;) =
v, (x;). Therefore, we can conclude that Ty, gz, V2 = (LIVE(X) A (—)®’). The other direction can be proven in a symmetric
way.

For ® = LIVE(X) A [—]®”: we observe that we can rewrite ® as —(LIVE(X) D (—)®’), with ® = —&”. Then, assume that
T1,q1, v1 k= (LIVE(X) D (—)®'). By definition, this implies that: (i) either for some x; € X we have v1(x;) ¢ adom(Z;(q1));
or (ii) for all x; € X we have vi(x;) € adom(Z1(qq1)) and there exists a transition q; —1 q; such that T1,q},v1 = @'. We
distinguish the two cases:

o If for some x; € X, v1(x;) ¢ adom(Z; (q1)), then we have that v,(x;) ¢ adom(Z;(qz)). Indeed, assume toward contradiction
that v, (x;) € adom(Z,(qz2)). Since T (q1) ~n Iz(qz) it follows that the inverse h~! of h is unique, hence h~1(vy(x;)) =
v1(x;)) and vq(x;) € adom(Z;(q1)), getting a contradiction. Thus, we have that Ty, qa, v2 ¥ LIVE(X) and so Ta, ¢z, V2 =
(LIVE(X) D (=) ).

o If for all x; €%, vi(x;) € adom(Z;(qq)), we can proceed in the same way as for the case of ® = LIVE(X) A (—)d’.

The other direction is proven symmetrically. O

We can now extend the result to the whole pu.Cp.
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Lemma 2. Consider two transition systems T1 = (A1, Q1,q10, —>1,2Z1) and To = (A3, Q2, G20, —>2, L2), two states q1 € Q1, q2 €
Q2, such that q1 =~y q2, and two individual variable valuations v and v, mapping variables to A1 and A3, respectively. If there exists
a bijection h between adom(Z1(q1)) U IM(v1) and adom(Z3(q2)) U IM(v2) whose restriction h|adom(z, (q1)) coincides with h and such

that for each individual variable x, fl(v1 (%)) = va(x), then for every formula ® of uL), closed on the predicate variables but possibly
open on the individual variables, we have:

T1,q1,vi =@ ifand only if T2, q2, v2 = .

Proof. We prove the theorem in two steps. First, we show that Lemma 1 can be extended to the infinitary version of L£p that
supports arbitrary infinite disjunction of formulas sharing the same free variables [88]. Then, we recall that fixpoints can be
translated into this infinitary logic, thus guaranteeing invariance for the whole u£, logic. Let W be a possibly infinite set
of open Lp formulas. Given a transition system T = (A, Q, qo, —, Z), the semantics of \/ ¥ is (\/ \l/)(TV’V) = UWG\P(W){V,V)'
Therefore, given a state g of T and a variable valuation v, we have T,q,v =V if and only if T,q, v = ¢ for some ¢ € W.
Arbitrary infinite conjunction is obtained for free through negation. Lemma 1 extends to this arbitrary infinite disjunction.
By the induction hypothesis, under the assumption of the Lemma, we can assume that for every formula ¢ € ¥, we have
T1,q10, v1 = ¥ if and only if T2, g0, v2 = ¢. Given the semantics of \/ W above, this implies that T1, q10, vi =/ V¥ if and
only if Ty, q20,v2 E V.

In order to extend the result to the whole w.Lp, we translate p-calculus approximates into the infinitary £p by (see [15,
88]), where the approximant of index « is denoted by u“Z.® for least fixpoint formulas ©Z.® and v*Z.® for greatest
fixpoint formulas vZ.®. This is a standard result that holds also for L. In particular, such approximates are as follows:

ulZ.® = false WZ.® = true
ubtliz. o = o(z/pfz.®] VA Z.0 = d[Z/vPZ.D)
WzZo =\y4,uzo VZ.® = Ny, VP20

where A is a limit ordinal, and the notation ®[Z /v Z.®] denotes the formula obtained from & by replacing each occurrence
of Z by v#Z.®. By Tarski and Knaster Theorem [85], the fixpoints and their approximates are connected by the following
properties: given a transition system T and a state q of T,

e g€ (,uZ.d))(TV’V) if and only if there exists an ordinal « such that s e (,u"‘Z.fb)(TV’V) and, for every B < «, it holds that
s¢ WPzl

e q¢ (vZ.<I>)(Tv,V) if and only if there exists an ordinal o such that s ¢ (v"‘Z.(b)(Tqu) and, for every S8 < «, it holds that
qe Wfz.e)l, .

Since each approximate, including the ones corresponding exactly to the least and greatest fixpoints, can be written as an
infinitary £p formula, we get the thesis. O

With this lemma in place we can prove the invariance result.

Theorem 13. Consider two transition systems Ty = (A1, Q1,q10, —>1,2Z1) and Ty = (A2, Q2, G20, =2, 12). If T1 ~ T, then, for
every Ly closed formula ®

Ti=®ifandonly if Ty = ®.

Proof. If T; ~ T, then for some bijection h we have g9 ~, q20. This implies that T (q10) ~h fz(ng). Now consider the
variable valuations v{ and v, defined as follows (notice that since & is closed such individual valuations are irrelevant
in evaluating it): choose an arbitrary di; € A1 and let, for all variables x, v{(x) =dy; if di € adom(Z1(q1)), let, for all x,
v2(x) =h(dy); else, choose d ¢ adom(Z>(q2)) and let, for all x, v} (x) =d5.

Now, define a bijection h’ such that for all d € adom(Z(q1)), h'(d) = h(d), and if d; ¢ adom(Zy(q1)), h'(d1) = da. It can
be seen that h’ is a bijection between adom(Z;(q1) UiM(v1) and adom(Z;(q2) U M(v3) such that Z7(qq) “h ladom(zy @y I2(q2)

and for all variables x, h’(v1(x)) = v,(x). Hence, by Lemma 2, we obtain the thesis. O

Thus, to check whether a transition system T satisfies a £, formula @, one can perform the check on any transi-
tion system T’ that is bisimilar to T. This is particularly useful in those cases where T is infinite-state but admits some
finite-state bisimilar transition system. We exploit this result later on.

6.4. Transition systems induced by a situation calculus theory
Among the various TSs, we are interested in those induced by models of the situation calculus action theory D. Con-

sider a model M of D with object domain A and situation domain S. The TS induced by M is the labeled TS Trq =
(A, Q,qo,Z, —), such that:
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Q =S is the set of possible states, each corresponding to a distinct executable situation in S;

qo = Sy € Q is the initial state, with S3! the initial situation of D;

— € Q x Q is the transition relation such that ¢ — ¢’ iff there exists some action a such that (a,q) € Poss™ and
’— oM .

q'=do”"(a,q);

e 7:Qr Intf’c is the labeling function associating each state (situation) g with the interpretation Z(q) = Zx(q).

As it can be seen, the TS induced by a model M is essentially the tree of executable situations, with each situation labeled
by an interpretation of fluents (and constants), corresponding to the interpretation associated by M to that situation. Notice
that transitions do not carry any information about the corresponding triggering action.

We can now show that the semantics of ©L, on a model can alternatively be given in terms of the corresponding
induced TS.

Theorem 14. Let D be an action theory, M a model of D with (infinite) object domain A and situation domain S, and T o4 the
corresponding induced TS. Then for every Ly formula & (with no occurrence of action terms) we have that:

M T
(D)) = (P

Proof. By induction on the structure of ®. For the base case of an open uniform situation-suppressed situation calculus
formula ¢, we need to prove that

@My, =(5€SIMVEQIS = (@), ={s€S|Z(). v E @}

This is indeed the case: since no action terms occur in ¢ and ¢ is uniform in s, the evaluation of ¢ depends only on
the interpretation of each fluent (and constant) at s, i.e., on Zx4(s). Once this base case is settled, the inductive cases are
straightforward. O

6.5. Abstract finite-state transition system

As shown above, satisfaction of uL, formulas is preserved by persistence-preserving bisimulations. This holds even
between an infinite- and a finite-state TS. When this is the case, the verification can be performed on the finite TS using
standard p-calculus model checking techniques, which essentially perform fixpoint computations on a finite state space. We
next show how, for the case of bounded theories, one can construct a finite TS Tf that is bisimilar to the TS T 4 induced
by M.

We construct Tr using Procedure 1. The procedure takes as input an action theory D (with complete information on
the initial situation) bounded by b and a model M of D with infinite object domain A,'" and returns a finite-state TS TF
bisimilar to T 4. T is built incrementally, through iterative refinements of the set of states Q, the interpretation function
Z, and the transition relation —. Initially, Q contains only the initial state qo (line 2); Z(qo) interprets constants and fluents
in the same way as M at the initial situation (line 3); and — is empty (line 4). The set Q¢ contains the states of T to be
“expanded” (initially go only, line 5); this is done at each iteration of the while loop (lines 6-20), as explained next.

Firstly, a state q is extracted from Q. (lines 7 and 8). Then, a finite subset O of objects from A is defined (line 9). The
values from O, together with those from adom(Z(q)), are used, in combination with the action types, to generate actions
executable on the interpretation Z(q)'? (lines 10, 11). The particular choice of O guarantees that the set of generated
actions, while finite, is fully representative, for the purpose of verification, of all the (possibly infinitely many) actions
executable on Z(q) (see Theorem 16). Moreover, the objects are chosen so as to maximize reuse of the objects occurring in
the interpretation of the states already in Q.

The actual expansion step consists in computing, for each generated action, the interpretation Z’ obtained by executing
the action on (a situation with interpretation) Z(q). This is done by computing, on Z(q), the answers to the right-hand
side ¢ (a, y) of the (situation-suppressed) successor state axiom of each fluent F, with a set to the current action (line 12).
Once 7’ has been computed, two cases are possible: either it is isomorphic to some interpretation Z(q’) labeling an existing
state ¢’ € Q (line 13), under some isomorphism that preserves Z(q), or it is not (line 15). In the former case, the transition
relation is simply updated with a transition from q to ¢’ (line 14) and no new state is generated. We stress that, in this case,
the isomorphism is defined over the whole A, not only over the active domains of the interpretations. In the latter case,
a fresh state q’ with labeling Z(q") is added to Q, and the transition relation is updated with g — ¢’ (lines 16). Further, ¢’
is also added to Q¢, so as to be expanded in future iterations. The procedure iterates over the expansion step until the set
Q¢ is empty, i.e., until there are no more states to expand.

1 In fact, given the object domain A, the model M is fully determined by D modulo object renaming.
12 Notice that since Poss(a, s) is uniform in s, the situation does not play any role in establishing whether, for given a and s, Poss(a, s) holds. In fact, only
the interpretation of fluents (and constants) at s matters. Consequently, one can take such an interpretation and safely suppress the situation argument.
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Procedure 1 Computation of a finite-state TS persistence-preserving bisimilar to T r4.

Input: A basic action theory D bounded by b, with complete information on Sg, and a model M of D with infinite object domain A
Output: A finite-state TS Tr = (A, Q, qo, Z, —) persistence-preserving bisimilar to T a4
1: let F the set of fluents of D, C the set of constants explicitly mentioned in D;
: let Q :={qo}, for qo a fresh state;
: let Z(qo) = T (S
et — :=0;
: let Qe :={qo};
: while (Q¢ # ) do
pick q € Qee;
let Qe := Qe — {q};
let O C A be any (finite) set of objects such that:
(i) 10| = max{[x| | A(??) € A}:
(ii) 0 Nadom(Z(q)) =
(iii) |0 N quq adom(I(q))l is maximal (subject to (i) and (ii)).
10:  for all action types A(X) of D do

QDOO\_IO’)U‘I.&LMN

11: for all valuations v such that v(X) € (adom(Z(q)) U O)‘EI and

Z(q), v = Poss(A(X)) do _ _
12: let 7 = (A, -Z') be an interpretation such that: (i) ¢cZ = ¢, for all constants in C; (ii) FZ = {d | Z(q), v[y/d] = ¢ (A(X), ¥)}, for ¢r(a, y) the

(situation-suppressed) RHS of the SSA of fluent F.
13: if (there exists ¢’ € Q and an isomorphism h between Z’ and Z(q’) that is the identity on adom(Z(q))) then
14: —:=—U{qg—>q¢};
15: else
16: let Q := Q W{q'}, for q’ a fresh state;
Z(qH:=1';

- :==>U{q—>¢};
Qre = Qre W{q'};

17: end if
18: end for
19:  end for

20: end while
21: return Tr=(A,Q,qo.Z,—)

We observe that the choice of ¢’ at line 14 guarantees the existence of an isomorphism h’ between Z’ and Z(q’) that
is the identity on adom(Z(q)). That is, any object occurring in Z’ that comes from Z(q) must be mapped into itself. The
purpose of this choice is to avoid adding a fresh state q” (with interpretation Z’) to Q but reuse any state q’ already in Q,
if bisimilar to the candidate q”. This is a key step for the procedure to construct a transition system that is both finite and
persistence-preserving bisimilar to T .

We can now show that Procedure 1 terminates and returns a TS persistence-preserving bisimilar to T 4. This result is
split into two main results: Theorem 15, which shows that the procedure terminates, returning a finite TS, and Theorem 16,
which shows that the obtained TS is indeed persistence-preserving bisimilar to T r4.

To prove termination, we first derive a bound on the active domain of the interpretations labeling the states in Q.

Lemma 3. There exists a value b’ =) " b -arp +|C| such that, at any iteration of Procedure 1 and for any q € Q, ladom(Z(q))| < b/,
where b is the value bounding D, ar the arity of fluent F, and C the set of constants explicitly mentioned in D.

Proof. We first show that: () for every q € Q, there exists a situation s executable in D such that Z(q) = Za4(s). This
intuitively means that, modulo situation suppression, every state of T is labeled by an interpretation that matches that of
M on constants and fluents at some executable situation s.

The proof is by induction on Q. For qg, the thesis follows by the definition of Z(qp) at line 3, as Sé\/l is executable.
For the induction step, consider ¢ € Q and assume, by the induction hypothesis, that Z(q) is as above, for an executable
situation s. Then, for any valuation (of object variables) v, we have that Z(q), v = Poss(A(X)) if and only if Za (s), v =
Poss(A(X)), that is, by Theorem 7, M, v/ = Poss(A(X), o), for o a situation variable and v’ a situation calculus variable
assignment analogous to v on all individual variables and such that v'(o) =s. Thus, by line 11, A(X) is executable at s
(with respect to M and v). Similarly, for any fluent F and valuation v, we have that Z(q), v = ¢r(AX), ) iff M,V |=
¢F(A(x) y,0), that is, since F(y,do(a, o)) = ¢r(a, y, o) (by_definition of successor-state axiom), Z(q), v = or(ARX), y) iff
M,V = F(y do(A(X), 0)). But then, since by line 12, FZ' = {d € A | Z(q), v[y/d] = ¢r(A(X), y)}, it follows that T, v |= F(¥)
iff M, v'[y/d] = F(y,do(A(X), 0)). Thus, F¥' = {d eEA|M,v [y/d] = F(x,do(A(X), 0))}. Therefore, when a state ¢’ is added
to Q (line 16), its labeling Z(q’) =7’ is such that Z(q') = Zr(do™M (AM (v (%)), s)). This proves (f).

Observe that () and the boundedness of D imply, together, that [adom(Z(q))| is bounded, for any q € Q. We denote by
b’ the bound on |adom™ (s)|, for any executable situation s of D, and on |adom(Z(q))|, for q € Q. Notice that, in general, b’
is different than b, in that the former bounds the number of objects occurring in the interpretations, while the latter bounds
the number of tuples in the interpretation of fluents. To obtain b’, observe that if the theory is bounded by b, then, for any
model, the extension of each fluent F € F at any executable situation contains at most b distinct tuples. Thus, the extension
of the generic fluent F cannot contain, at any executable situation, more than ar - b distinct objects, where ar is the arity
of F (the maximum number of tuples, each with distinct objects, distinct also from all others in the extension). As a result,
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the extensions cannot contain, overall, more than ) .. rar - b distinct objects. Hence, considering that Z(q) interprets both
the fluents in F and the constants in C, it follows that Jadom(Z(q))| <> pcrar-b+I|C|=b". O

Then, we use the obtained bound to show that also the set of all objects occurring in the labelings of some state in Q,
denoted adom(Q), is bounded.

Lemma 4. Let adom(Q) = quQ adom(Z(q)). At any iteration of Procedure 1, we have that |adom(Q)| < 2b’ + N, for b’ the bound
on l[adom(Z(q))| defined as in Lemma 3, and N the maximum number of parameters of the action types in D.

Proof. By induction on the size of Q. For Q = {qo}, we have that adom(Q) = adom(Z(qg)), thus the thesis follows as, by
Lemma 3, |adom(Z(qo))| <b’. For Q = {qo, ..., qn}, assume, by induction hypothesis, that |adom(Q )| < 2b’ + N. Since, by
Lemma 3, the state g € Q¢ < Q picked at line 7 is such that |adom(Z(q))| <b’ and A is infinite, then, by Theorem 10 (after
applying Theorem 5, if action terms have to be suppressed in ¢f), Z’' (line 12) is such that adom(Z’) € adom(Z(q)) U v(%).">
Now, observe that v(X) may take values from O and that the constraints on the choice of O (line 9) require that the reuse
of objects from adom(Q) be maximized. That is, including fresh objects (with respect to adom(Q)) in O is allowed (in
fact, required) only if needed to guarantee that |0| = |X| (while O Nadom(Z(q)) = ¥). Thus, two cases are possible: either
ladom(Q) \ adom(Z(q))| < |X| (in which case fresh objects must be added to 0), or not. In the first case, because |x| <N
and adom(Z(q)) < adom(Q), it follows that |adom(Q)| — |adom(Z(q))| < N. Thus, since |adom(Z(q))| < b’, we have that
ladom(Q)| < N +b’. From this, observing that |adom(Z(q’))| <b’, we obtain |adom(Q U {q'})| <2b" + N. In the second case,
O contains no fresh objects, thus |adom(Q U {q'})| = [adom(Q)| <2b’+ N. O

Exploiting this result, we can prove termination.
Theorem 15. Procedure 1 terminates and returns a finite-state transition system Tg.

Proof. Firstly, observe that, as a consequence of Lemma 4: (i) checking whether Z(q), v |= Poss(A(X)) (line 11) is decidable,
and (ii) FT (line 12) is computable. These, indeed, are implied by the fact that |[adom(Z(q))| is bounded, thus finite, and by
Theorems 9 and 11, respectively. To apply these theorems, however, one needs to suppress action terms first, if present, in
formulas ¢r(A(X), y) and ¢a(X). To this end, Theorem 5 can be used. Notice also that computability of FZ@0) (line 3) is a
direct consequence of the fact that D has complete information and is bounded, therefore the extension of all fluents at Sy
is finite. Items (i) and (ii) above guarantee that all the atomic steps of Procedure 1 can be completed in finite time.

Next, we prove that eventually Q. = ¢. Observe that, since A (i.e., the set of action types of D), Q, O, adom™ (Sp),
and adom(Z(q)) are finite, it follows that, at every iteration of the while-loop (lines 6-20), the nested loops (lines 10-19)
terminate; thus, proving that Q. becomes empty in a finite number of steps is sufficient to prove that only a finite number
of iterations are executed and, hence, the procedure terminates. Obviously, this also implies that the returned Q, thus Tp,
is finite.

To see that eventually Q:. = @, notice that Q is inflationary, i.e., states, once added, are never removed. Consequently,
objects can be added to adom(Q) (when a fresh ¢’ is added) but not removed. This, together with the fact that, by
Lemma 4, |[adom(Q )| is bounded, implies that, from some iteration i on, adom(Q ) remains unchanged. Let AQ; be adom(Q)
at iteration i (and at subsequent steps). Obviously, after that point, if a fresh state q’ is added, it must be such that
adom(Z(q')) € AQ;. Notice that, even though adom(Q) cannot change, this is not the case for Q. Indeed, new states q’ could
still be added, as long as Z(q’) =Z’ contains only objects from AQ;. However, since |adom(Q )|, thus |AQ;|, is bounded, only
finitely many interpretations Z’ can be built using values from AQ;. Consequently, if new states keep being introduced after
i, it follows that, from some step i’ on, the interpretation Z’ generated at line 12 matches the interpretation Z(q") of some
q’ already in Q. Hence, from i’ on, the condition at line 13 is always satisfied (with h the identity function), and no fresh
state ¢’ can be added to Q any more. Therefore, no new state is added to Q¢ (line 16), which becomes eventually empty,
as at every iteration one state is extracted from it (line 7). This completes the proof. O

Finally, we show that the returned Tr retains all the information needed to check whether M = ®. That is, by Theo-
rem 13, we show that TF is persistence-preserving bisimilar to T a4.

Theorem 16. The TS Tr computed by Procedure 1, on a basic action theory D (with complete information) bounded by b and a model
M for D, is persistence-preserving bisimilar to the TS T p4 induced by M.

Proof. Let Tr = (A, Q,q()~,Ip,—>F>~ and Taq = (A,R,19,Zpr, > M), and define the relation B € Q x H x R such that
(q,h,r) e B if and only if Zr(q) ~n Za(r) (for any h). Notice that, since Tr and T o4 have the same object domain A, h can

13 To simplify the notation, we use v(x) for the set {v(xy), ..., v(xp)}.
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always be ;xtended to a standard isomorphism h between Zr(q) and Z a4 (r): namely, one can take any bijection h:iAe A
such that h|agom(z; (q)) = h-

We show that B is a persistence-preserving bisimulation between Tr and T (page 187). Consider a tuple (q, h,r) € B.
Requirement 1 of the definition is trivially satisfied by the definition of B. As to requirement 2, let ¢’ € Q be such that
q —F q'. As shown in the proof of Theorem 15, there exists an executable situation s such that Zg(q) = Zr4(s). More-
over, by the definition of T4, r is a situation such that Zx,(r) matches the interpretation given by M to fluents at r.
Because q —r ¢/, by the construction of T in Procedure 1 (line 11), we have that, for some valuation v and action type A,
IF (q), v = Poss(A(X)), that is, by the existence of s as above, M, v = Poss(A(X), s). Then, by extending h to an isomorphism
h between Zr(q) and Zr4(r), as discussed above, we can see that Zaq(r), v’ = Poss(A(X), 1), for v/ = =ho v, which implies
that M, v/ |= Poss(A(X), r). Therefore, by the definition of T r, for ' =d oM(AM(h(v(x)), r) € R, we have that r —>Mr. Thus
requirement 2a is fulfilled.

Next, we show the existence of an isomorphism R’ between Z¢ (@) and Z x4 (r") that extends h. Once proven, this implies

the existence of a bijection h’ : adom(q) Uadom(q’) — adom(r) Uadom(r’) such that h’|qdom(z;(q)) = h and Tr(q) W ladom(zp @'

fM (r'). Indeed, it is sufficient to take h’' = fl/\adom(q)Uadom(q» Thus, the existence of i’ implies requirement 2b.

To prove that such an i exists, we distinguish two cases: (i) when the transition ¢ — q’ is added at line 16 (i.e., ¢’
is a fresh state), and (ii) when it is added at line 14 (i.e., ¢’ is already in Q). For case (i), observe that Zx,(r") can be
obtained by applying the right-hand side of the successor-state axiom of each fluent F to Zx(r) (see Theorem 12), which
is also the way to obtain Zr(q') from Zf(q), accordmg to Procedure 1. Then, since h is an isomorphism between Zr(q)
and Za4(r), we have that Za (r) = h(Ip (q)) where h(IF (q)) denotes the mterpretatlon obtained from Zr(q) by renaming
its objects according to h. Because v/ =ho v, it can be checked that Za (1) = h(IF (@), thus R =his an isomorphism
between Zr(q') and Z ("), which obviously extends h. For case (ii), let Z' be the interpretation obtained by applying
the successor-state axioms to Zr(q). By the discussion above, we have that Z (') = fl(Z’) while, in general, Z' # Zr(q').
However, the condition at line 13 guarantees the existence of an isomorphism g such that Z' = g(Zr(q)), that is the identity
on adom(Zg(q)). Now, consider W=ho g. Being a composition of isomorphisms, R is an isomorphism itself, in partlcular
such that Zxq (') = h’(IF(q )). Moreover, ' extends hladom(z¢ (g))- This is a straightforward consequence of the facts that h
extends h and g is the identity on adom(Zr(q)), which imply that R’ matches h on adom(Zg(q)). Thus, requirement 2 is
fulfilled. The proof for requirement 3 follows the same argument, with h replaced by its inverse h~1.

Since B is a persistence-preserving bisimulation, the fact that (qo, ho, ro) € B, for hg the identity, completes the proof. O

Next we prove that checking whether Tr satisfies a L, formula is decidable.

Theorem 17. Given a transition system T = (A, Q, qo, Z, — ), if Q is finite and, for every q € Q, adom(Z(q)) is finite, then for every
WLy formula @, checking whether T |= @ is decidable.

Proof. Firstly, by applying Theorem 6 followed by Theorem 8 to the FO components of ®, we rewrite ® as an equivalent
1Ly (closed) formula " where no action terms occur and whose FO components are domain-independent. Once done so,
the theorem is a consequence of the finiteness of Q and adom(q), for g € Q. Under these assumptions, (<I>/)(TV V) is easily

computable by recursive applications of the definition of (~)(Tv v) (page 186). In particular, for the base case of ® a FO for-

mula ¢’, since ¢’ is action-term-free and domain-independent, one can apply Theorem 9. As to quantified variables (outside
the FO components), they can be easily dealt with, by the finiteness of adom(q). The other cases are straightforward. 0O

Finally, putting all the above results together, we obtain Theorem 4, by observing that one can compute T¢ using Proce-
dure 1 and then check whether T = ® by Theorem 17. Termination and correctness of this construction are guaranteed by
Theorems 13, 15, and 16.14

7. Dealing with incomplete information

In this section, we address the case of partial information on the initial situation, by assuming that Dy is a set of axioms
characterizing a possibly infinite set of bounded initial databases. Also in this case, we focus on theories whose models have
infinite object domains (as we have infinitely many distinct constants).

We first prove that whenever two models interpret their respective initial situations in isomorphic ways, they are
persistence-preserving bisimilar. We observe that this result holds independently of the cardinalities of the object domains
of the models.

14 Notice that no assumption is made on the object domain A of M except for it to be infinite. Hence, these results hold also if we assume standard
names for object domains, as done in [27]: in that case the object domain is infinite but numerable and coincides with the set of constants A/ (this requires
a second-order domain closure axiom).
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Theorem 18. Let D be a bounded basic action theory. For/ every two models M and M’ of D, with possibly different infinite object
domains A and A’, respectively, ifIM(S{)V‘) ~ IM/(S{)\" ), then Tpq =~ Taq.

Proof. Let Tpq = (A, Q,qo,—.Z) and Tary = (A, Q’,qy, —',Z'). We prove a stronger claim, i.e. that the relation B C
Q x H x Q' such that (g, h,q2) € B if and only if Z(q1) ~, Z/(q2) (for any h), is a persistence-preserving bisimulation
relation between T, and T . This result, once proven, implies the thesis; indeed, by Z4 (S(/)V‘) ~i'Mr(S(/)W). we have
that there exists h such that f(SOM) ~h f(Séw), thus, by the definition of B, (Sé"‘,ﬁ, Sé"‘/) € B, that is, (qo,ﬁ,qg) €B, as
o =Sy and gy = 3.

Let (q1, h, q2) € B. Requirement 1 of the definition of bisimulation (page 187) is clearly satisfied. For requirement 2, first
recall that, by definition of induced transition system (page 189), Z(q1) = Za4(q1) and 7'(q2) = Zaq(q2), thus fM (q1) ~n
Zaq(q2). Assume that there exists g € Q such that q; — q}. By definition of transition system induced by M (page 189),
there exist an action type A and a valuation v such that M, v = ¢4 (X, q1), for Poss(A(X),s) = ¢a(X,s) the precondition
axiom of A. This is equivalent to Zx((q1), v = ¢a (), for ¢a(X) the situation-suppressed version of ¢4 (%, s). Now, let ¢/, (X)

be the domain-independent version of ¢4 (x). By Theorem 8, we have that Za(q1), v = ¢4 (%) if and only if T/‘l’\fl’v(qﬂ, Vi

¢jq(?<). If we extend h to v(X) in a way such that we obtain a bijection h (by a cardinality argument, this is always possible),

then, because 7:'/\/! 1) ~n i’M/ (q2), we have that % V(q1) ViEd), (%) if and only if % hoV(qz), hov =9 (%). But then, again

by Theorem 8, Zaq(q2), hov = ¢4 (X). Thus, by reintroducing the situation argument in ¢4, we have that M’, v/ = ¢4 (X, q2),
that is, there exists an action a’ = AM/(E(V(}))) such that (d’, q2) € Poss™'. Therefore, by the definition of T4, it follows
that q; — ¢5, for ¢, = do™ (d’, q2). This proves requirement 2a.

For requirement 2b, we first show that fM (q7) can be obtained from I M (q1), through the successor-state axioms. To
this end, notice that Zx4(q}) can be obtained by taking, for each fluent F, the right-hand side ¢ (X, a, s) of the corresponding
successor-state axiom (the subscript F is removed to simplify the notation), then deriving the equivalent action-term-free
formula ¢(¥,%), as shown in Theorem 12, for action a = AM(v(%)), and finally letting FIm@) = ¢I/M(q1) that is, by
interpreting each F as the answer to the corresponding query ¢ on the interpretation Za(qq), under the partial as-
signment X/v(X) (constants are always interpreted as in M). Now observe that, since the action theory is bounded, so
is the extension of each fluent F at q; and ). Thus, by Theorem 10, the extension of each fluent at g} contains only
values from adom(Za4(q1)) U v(X), that is adom(Zq (@) € adom(ZTpq(q1)) U v(x). Hence, if we denote (for each F) the

domain-independent rewriting of ¢(¥,X) as ¢'(y, %), by Theorem 8, we have that FZm@) = ¢XI“;’E}E;“) zp’i’:f(i‘)“) that is,

by answering ¢’ on fM (q1), we obtain the extension of F at g). Obviously, by doing so for every fluent F, we can obtain
fM (q7) from fM (g1). By an analogous argument, it can be shown that i’Mr(q/z) can be obtained from 7:'Mr(q2), for action
a =AM (B ®)). R R i i

Next, consider again the bijection h defined above, and recall that h extends h on v(X), and that Zx¢(q1) ~n Zar(q2). By
the invariance of FO under isomorphic interpretations, we have that, for each fluent F, the answers to ¢’ on Z Mm(q1) and
IM (q2), under the partial assignments, respectlvely, X/v(X) and x/h(v(x)) coincide, modulo the object renaming induced

by h. But then, it is immediate to check that h’ = h|adom(IM (@1)Uadom(Zpq (q))) is a bijection such that Z 4 @ ~ L ———

IM/(qz) and, hence, by the definition of B, (q}, I'|sdom(z ., (qu)),qz) € B. This proves requirement 2b. The proof of require-
ment 3b is analogous. O

Now, consider a set Mod of models of D having isomorphic interpretations at So. By Theorem 18, all such models have
induced TSs that are persistence-preserving bisimilar to each other. Thus, by Theorem 13, to check whether a u£, formula
¢ holds in all models of Mod, one can perform the check on any arbitrary model of Mod, using, e.g., the technique discussed
for the case of complete information. This result, together with the assumption of boundedness, will be exploited next, to
prove our main theorem.

Theorem 19. Let D be an action theory bounded by b with incomplete information on the initial situation, and let ® be a 1L, closed
formula. Then, checking whether D = & is decidable.

Proof. Let Modp be the set of all models of D, and consider a partition of it such that each cell contains only models
whose interpretations at Sop match, modulo object renaming. Formally, we define Modp = (Mod]D, ModZD, ...) such that, for
every two models M and M’ in Modip, fM(Sé‘/‘) ~ fM/(S(/)V”). As a consequence of the boundedness of D, the number of
cells in the partition is finite. Indeed, a bounded number of objects yields, up to object renaming, only a bounded number
of possible interpretations (of finitely many fluents and constants) at Sg. Thus, for some finite n depending on the theory D
and the bound b, we have that Modp = (Modlp, Mod%), ..., Mod} D)-

Since, by Theorem 18, any two models M and M’ of the generic cell ModiD induce persistence-preserving bisimilar
transition systems, then, by Theorem 13, we have that all the models of ModiD satisfy & if and only if some model M of
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ModiD satisfies ®. Thus, to check whether D = ®, we can simply choose one model M; per cell Modip, and then check
whether, for all i =1,...,n, M; = ®; if this is the case, then, and only then, we can conclude that D = &. Obviously, for
this approach to be effective, we need a model M; per cell Mod', and a way to perform the check. The rest of the proof
addresses these two points.

Let F be the set of situation-suppressed fluents of D, and C the (finite) set of constant symbols explicitly mentioned in
D (beyond Dy ). We observe that each cell Mod’D of the partition Modp = (Mod%), .. .,Mod’;)) can be uniquely identified
by an interpretation Z; of 7 and C over some infinite object domain A. Indeed, by transitivity of ~, any two models M, M’
of D such that Zy((Sg") ~Z; and 7y ,(S3*') ~ Z; are also such that Zy((S§1) ~ T, ,(S§*). Notice that Z; certainly exists,
as one can simply take fM(SOM), for some model M € ModiD. Clearly, each Z; contains only a bounded number of objects
in the active domain and satisfies Dy, i.e., Z; &= Do. )

Now, assume given one interpretation Z; per cell Mod’, (we show below how to obtain them) and observe that, from
7i, we can extract a complete initial situation description as a database Df). This can be easily done, as Z; is finite. Consider
the theory D! = (D \ Dy) UD:, obtained by replacing Dy with Di, and assume the same interpretation of constants in C as
that defined by Z;. Under this assumption, D' defines a family of models that differ only in the object domain and in the
interpretation of constants outside C (which, however, must satisfy Dypo). In particular, the interpretation of fluents in F
and constants in C, at Sp, of all such models, is the same as that of Z;. Thus, the models of D' constitute a subset of Mod'D.
To isolate one of such models, we fix an arbitrary infinite object domain A (such that adom(Z;) € A), and arbitrarily extend
the partial interpretation of constants over the constants outside C, satisfying D,p,. Notice that this can always be done, as
A is infinite and the set of constant symbols countable. With A and the denotation of all constants fixed, D! has complete
information, i.e., yields a single model M;, thus, by Theorem 4, we can check whether D! = &, i.e., whether M! = ®
(notice that, as it turns out from Procedure 1, to perform the check, one does not even need to know the interpretation of
constants outside C). This, by the discussion above, is equivalent to checking whether for all models M € Mod’y, it is the
case that M = ®. Therefore, if the set of interpretations I' = {73, ..., Z,} is given, we can check whether D = ®.

It remains to explain how such a set of interpretations I' = {Z1, ...,Z,} can be obtained. To this end, observe that, by
Lemma 3, it follows that |adom(Z;)| <) pc.rar -b+ |C| =b’. Based on this, the set T of interpretations Z; can be obtained
by: (i) fixing a set O of b’ arbitrary objects; (ii) generating a set Y’ of all the finitely many interpretations of F and C over
0, such that Dy, is enforced on C and for every interpretation Z’ € Y/, /= Dy; (iii) for any set Y” € Y’ of isomorphic
interpretations, removing from Y’ all but one of such interpretations (in fact, this step is not needed to our purposes, but
avoids useless redundancies). The resulting Y’ is the set of desired interpretations Zi,...,Z,, which we rename simply
as Y.

Now, observe that, by the way it is defined, Y contains, up to object renaming, all possible interpretations of F and C
over a set of b’ distinct objects, that satisfy Dy and Dy, (on C). Thus, since for a generic model M of D, the interpretation
fM(Sé‘A) contains at most b’ distinct objects (by the boundedness of D), it turns out that there exists an interpretation
Z; € Y such that fM(S(/)Vl) ~ 7Z;. Therefore, the cell Mod‘lD such that M e Mod,, is characterized by some interpretation
7Z; € Y, namely the interpretation at Sg shared, up to object renaming, by the models of the cell itself. On the other hand,
because any Z; € Y enforces Dyno and is such that Z = Dy, it follows that there exists some model M of D such that
fM(SOM) ~ T;. Therefore, every interpretation of Y characterizes some cell Mod'y, specifically, that of the models M such
that fM(Sé\/‘) ~ T;. Therefore, Y is indeed the set of desired interpretations. This concludes the proof. O

This result, besides stating decidability of the verification problem under incomplete information, provides us with an
actual procedure to perform verification in this case.

8. Computational complexity

In this section, we assess the computational complexity of verifying £, formulas over a bounded situation calculus
basic action theory D. In particular we show that the constructive techniques we have used for proving decidability are, in
fact, optimal with respect to worst case computational complexity. We make the assumption that, for a basic action theory
D, the maximum number of distinct objects occurring in the state of any situation, dominates the input size of D itself, and
that there exists a bound ar on the maximum arity of fluents. This is a reasonable assumption, analogous to that, typical in
databases, that the size of the database provides a higher bound on the size of the input along all dimensions, and that, in
practical cases, there exists an upper bound on the arity of relations. We exploit the constructive techniques introduced for
showing decidability to get an exponential time upper-bound.

Theorem 20. Verifying 1L, formulas over a situation calculus basic action theory bounded by b, with complete information on the
initial situation, can be done in time exponential in b.

Proof. This is a consequence of Procedure 1 and the complexity of (£, model checking. Firstly, consider Procedure 1 and
observe that, by Lemma 4, at any iteration, the number m of distinct objects occurring, overall, in the interpretations of
states (i.e. [adom(Q)| of Lemma 4) is bounded by 2b’ + N, where b’ =" _ b - aF, ar is the arity of fluent F, and N is the
maximum number of parameters in action types. Since we assume |F| and N bounded by b, and ar bounded by a constant,
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it turns out that m is polynomial in b. Now, observe that, with m distinct objects and ar bounded by a constant, one can
obtain a number of interpretations of 7 and C that is at most exponential in m, i.e., in (a polynomial of) b. Then, because
in Procedure 1 every state is associated with exactly one interpretation, and since no state is visited more than once, we
have that the while-loop (lines 6-20) terminates after, at most, an exponential number of iterations.

As to each iteration, by our assumptions, we have that any loop inside the while-loop ends after at most exponentially
many iterations. Indeed, for any action type with at most N parameters, we have at most m" possible assignments, thus
mN <m", which gives an exponential bound, as both m and b’ are polynomial with respect to b. Now, observe that the
dominant operation in the while-loop is checking whether two interpretations are isomorphic. Since also this check can be
performed in exponential time with respect to b (the problem is in NP), we obtain, overall, an exponential time-bound for
Procedure 1.

Now, recall that propositional p-calculus model checking is polynomial with respect to the sizes of the input transition
system and the input formula [40]. As to the transition system, the check is performed on the one returned by Procedure 1,
which has size at most exponential in b (i.e., as many interpretations as one can obtain with at most m objects, plus a
quadratic number of transitions wrt it). As to the formula, say ®, we first rewrite it (in polynomial time) into its equivalent
domain-independent version ®’, and then “propositionalize” it, by quantifier elimination, using only the values that occur,
overall, in the active domains of the interpretations of the states of the input transition system. This step can be done,
again, in exponential time, and returns a quantifier-free formula exponentially larger than the original one, but equivalent
to it, on the obtained finite transition system. Thus, since w-calculus model checking is polynomial wrt the size of both the
transition system and the formula, we obtain that, overall, the check requires time at most exponential wrt b. 0O

Such an exponential bound is, in fact, tight, as we can show the EXPTIME-hardness of the problem by reduction from
acceptance in a polynomial-space bounded alternating Turing machine.

Theorem 21. Verifying uLp formulas over bounded situation calculus basic action theories with complete information on the initial
situation is EXPTIME-hard.

Proof. We show a reduction from polynomial-space bounded alternating Turing machines, whose acceptance problem is
EXPTIME-complete [18]. A (one-tape) Alternating Turing Machine (ATM) [18] is a tuple M = (Q, T, 8, qo, & where

Q is the finite set of states;

I' is the finite tape alphabet;

§:Q xI'x Q xTI' x {L, R} is called the transition table (L shifts the head left and R shifts the head right);
qo € Q is the initial state;

g:Q — {and, or, accept} specifies the type of each state.

If M is in a state g € Q with g(q) = accept then that configuration is said to be accepting. A configuration with g(q) = and

is said to be accepting if all configurations reachable in one step are accepting. A configuration with g(q) = or is said to

be accepting when there exists some configuration reachable in one step which is accepting. (The latter is the type of all

states in a Nondeterministic Turing Machine.) M is said to accept an input string w if the initial configuration of M (where

the state of M is qo, the head is at the left end of the tape, and the tape contains w) is accepting. An ATM is said to be

polynomial-space-bounded if it scans at most a number of tape cells that is polynomially-bounded by the size of the input.
Following [75] (Chap. 4), we can axiomatize the ATM using the following fluents:

e transTable(q,c,q’,c’,m,s). This is a situation-independent predicate (i.e., with a trivial successor-state-axioms preserv-
ing its content forever) describing the ATM’s transition table §: when in state g scanning tape symbol c, the machine
enters state g/, overwrites ¢ with tape symbol ¢/, and moves its tape head in the direction m, which is one of L (left)
or R (right).

e gType(q,t,s). This is a situation-independent predicate assigning (once and for all) a type t € {and, or, accept} to the
state q of the ATM.

e cell(i, c,s). This means that tape cell i € [0, ..., ¢] contains the symbol c € I" U {blank} in situation s. Notice that in every
situation the number of facts of the form cell(i, y, s) is fixed and determined by the maximal length of the tape of the
bounded ATM, ¢. Initially, the first cells contains the input word w while the others are blank.

e state(q, s). This means that in situation s, the machine’s state is q. Initially, we have state(qg, So), where qq is the initial
state of the ATM.

e scan(i, s). This means that the machine’s head is scanning tape cell i € [0, ..., ¢] in situation s. Initially, the head is
scanning tape cell 0. In any situation, there will only be one fact of the form scan(i, s).

We need just one action type trans(q’, ¢/, m), meaning that the machine makes a transition from the current configuration
to a new configuration where the state is ¢/, tape symbol ¢’ is written, and the tape head moves in direction m, whose
precondition axiom is as follows:



G. De Giacomo et al. / Artificial Intelligence 237 (2016) 172-203 197

Poss(trans(q’,¢’,m),s) = 3q, i, c.state(q, s) A scan(i, s) A cell(i, ¢, s) A
transTable(q,c,q’,c’,m,s)

The successor state axioms for the fluents that can change are as follows:

state(q, do(a, s) = Ic, m.a = trans(q, c,m) V
state(q, s) A—3q’,c,m.a=trans(q’,c,m) Aq' #q

scan(i,do(a,s) =
3q, c,i’.a=trans(q, c, L) Ascan(i’, s) A
i('=0Di=iYA@{"#0Di=i"-1)Vv
dq, c.a =trans(q,c, R) Ascan(i’,s) Ai=i+1vVv
scan(i, s) A —3q, c, m.a = trans(q, ¢, m)

cell(i, c,do(a, s) = 3q, m.a = trans(q, c, m) A scan(i, s) V
cell(i, c,s) A —3q, ¢’,m.a =trans(q, c’,m) A scan(i,s) A¢' #c

For initial situation description, assuming the input w =cg...cj, we have:

state(qo, So), scan(0, Sp),
cell(0, cg, So), ..., cell(i, ci, Sp),
cell(j, blank, Sp), for je[i,...,¢]

Acceptance of the ATM is defined using the following uL, formula ®:

nZ.(3q.state(q) N gType(q, accept) Vv
(3q.state(q) A gType(q, and)) A[—]1Z Vv
(3q.state(q) A gType(q, o) A (—)Z

Then we have that D = @ if and only if M accepts w. Notice that in any situation there is exactly one fact of the form
gType(q,t,s). Notice also that the above condition does not require quantification across situations. O

9. Checking boundedness

We now show that we can always check whether a basic action theory maintains boundedness for a given bound. That
is, if the initial situation description is bounded, then the entire theory is too (for all executable situations).

First notice that we can determine in a situation s whether every executable action a if performed next does not exceed
the bound (i.e. in do(a, s)). We can capture the notion of a fluent F being bounded at the next step by the formula:

/\ Vx.Poss(A(X).s) D Boundedp ,(do(A(X), 5)).
AcA

Notice that each Boundedr p(do(A(X),s)) is regressable through A(X). As a result the formula above is equivalent to
a first-order situation calculus formula uniform in s; we call the latter formula NextOrigBoundedr (s), and we call
NextOrigBounded),(s) the formula /\ ;. » NextOrigBoundedp ;(s). '

To check that the theory is bounded by b it is sufficient to verify that the theory entails the temporal formula:

AGNextOrigBounded,, = vZ .NextOrigBounded, A [—]Z,

which expresses that always along any path NextOrigBounded, holds. Unfortunately deciding whether this formula is entailed
by the action theory is directly doable with the techniques in previous sections only if the theory is bounded, which is what
we want to check. However it turns out that we can construct a modified version of the action theory that is guaranteed to
be bounded and that we can use to do the checking.

Let D be the action theory. We define a new action theory DD obtained by augmenting D as follows:

e DDs, = Ds, U{¢[F/F'] | ¢ € Ds,)
e DDss = Dss U {F'(x,do(a, s)) = ®(X, a, s) A NextOrigBounded,(s) | F(X,do(a, s)) = ®(X,a,s) € Dss}
o DDy, = {Poss(A(X), s) = W(X, a, s) A NextOrigBoundedy (s) | Poss(A(X), s) = VU(x,a,s) € Dap}

Intuitively DD extends D with primed copies of fluents, which are axiomatized to act, in any situation, as the original ones
as long as the original theory remains bounded by b in that situation, otherwise they become empty (and actions cannot be
executed according to Poss). It is easy to show the following key property for DD.

Lemma 5.

DD = Vs.(¥5.8 < s D NextOrigBounded,, () D VX.(F' (%, s) = F(X, s)).
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Proof. By induction on situations. O

Now we define a new action theory D’ which can be considered a sort of projection of DD over the primed fluents
only. Let D’ be:

o Dy =I{¢[F/F']| ¢ € D).
e Dic ={F'(X,do(a,s)) = ®[F/F'1(%, a, s) A NextOrigBounded,[F /F'](s) | F(x,do(a,s)) = ®(%, a,s) € Dss}
o Dy, = {Poss(AR), s) = W[F/F'|(%, a,s) A NextOrigBounded,[F /F'](s) | Poss(A(X),s) = W (X, a,s) € Dap}

Notice that D’ is bounded by construction if D/SO is, and furthermore it preserves the information about the original theory
being bounded at the next step, though in terms of primed fluents. Exploiting the above lemma on DD and the construction
of D’, we can show that D’ has the following notable property:

Lemma 6.

D = AGNextOrigBounded,,(So) iff D' = AGNextOrigBounded,[F /F'](So).!®

Proof. By Lemma 5, it is immediate to see that D = AGNextOrigBounded,,(So) implies D’ = AGNextOrigBoundedb[1?/1:'”](50).
For the opposite direction, suppose that D’ = AGNextOrigBoundedb[I?/Ig/](So), but D = AGNextOrigBoundedy,(So) does not
hold. This means that there exists a model of D and a situation S where —NextOrigBoundedy,(S) holds, though in all previous
situations s < S we have that NextOrigBoundedy,(s) holds. Now by Lemma 5, we can construct a model for D’ such that the
truth values of F are replicated in F’ as long as NextOrigBounded, holds in the previous situation. So in S, we must have
ﬂNextOrigBoundedb[F/F’](S), which contradicts the assumption that D’ = AGNextOrigBoundedb[I?/I-?/](So). O

By Lemma 6, since D’ is bounded by b if D’SO is, it follows that:

Theorem 22. Given a basic action theory whose initial situation description is bounded by b, then checking whether the entire theory
is bounded by b is decidable.

Notice that we pose no restriction on the initial situation description except that it is representable in first-order logic,
hence checking its boundedness remains undecidable:

Theorem 23. Given a FO description of the initial situation Dy and a bound b, it is undecidable to check whether all models of Dy are
bounded by b.

Proof. By reduction to FO unsatisfiability. Suppose we have an algorithm to check whether a FO theory Dy is bounded by 0.
Then we would have an algorithm to check (un)-satisfiability of Dg. Indeed consider for a fixed fluent F:

Do = (Do AIK.FR, S0) v ( \ YX—F(X. So))
FeF

Note that Az VX.—F(X, So) has only models bounded by 0, while 3%.F (%, So) has only models with at least one tuple

(and thus one object) in F. Hence we get that Dy is bounded by 0 iff Dy is unsatisfiable. A similar argument holds for
every bound b. O

Nonetheless in many cases we know by construction that the initial situation is bounded. In such cases the proof tech-
nique of Theorem 22 provides an effective way to check if the entire theory is bounded.

10. Related work

Besides the situation calculus [65,75], many other formalisms for reasoning about actions have been developed in Al,
including the event calculus [55,80,81], the features and fluents framework [77], action languages such as A [44] and C+
[47], the fluent calculus [87], and many others. In most of these, the focus is on addressing problems in the representation
of action and change, such as the frame problem. Some attention has also been paid to specifying and verifying general
temporal properties, especially in the context of planning. The Planning Domain Definition Language (PDDL) [66] has been

15 Notice that NextOrigBoundedb[F / F '] expresses that in the original theory the next situations are bounded, though now syntactically replacing original
fluents with their primed version.
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developed for specifying planning domains and problems, and a recent version supports the expression of temporal con-
straints on the plan trajectory [46]. Approaches such as those in TLPlan [3], in TALplanner [56], or in planning via model
checking [68] support planning with such temporal constraints. Within the situation calculus, temporal constraints for plan-
ning have been studied in, e.g., [11,7]. All these planning-related approaches are essentially propositional and give rise to
transition systems that are finite-state. One interesting attempt to interpret first-order linear temporal logic simultaneously
as a declarative specification language and procedural execution language is that of MetateM [8], though verification is not
addressed.

Most work on verification has been done in computer science, generally focusing on finite-state systems and programs.
Many logics have been developed to specify temporal properties of such systems and programs, including linear-time logics,
such as Linear Temporal Logic (LTL) [69] and Property-Specification Language (PSL) [39], and branching time logics such
as Computation Tree Logic (CTL) [20] and CTL* [41], the w-calculus [40,15], which subsumes the previous two, as well as
Propositional Dynamic Logic (PDL) [42], which incorporates programs in the language. Model checking (and satisfiability)
in these propositional modal logics is decidable [6], but such logics can only represent finite domains and finite state
systems. Practical verification systems, e.g., [52,19], have been developed for many such logics, based on model checking
techniques [6].

In Al, verification by model checking has become increasingly popular in the autonomous agents and multi-agent sys-
tems area. There, many logics have been proposed that additionally deal with the informational and motivational attitudes of
agents [72,70,90,93,23,82]. Some recent work has been specifically concerned with formalizing multi-agent knowledge/be-
lief and their dynamics [89,51]. Moreover, various Belief-Desire-Intention (BDI) agent programming languages have been
developed that operationalize these mental attitudes [71,13,24,25]. Verification is important in this area as agent autonomy
makes it crucial to be able to guarantee that the system behaves as required [43]. Furthermore, one generally wants to
ensure that the agents’ mental states as well as their behaviors evolve in a way that satisfies certain properties. Agent logics
can be used to specify such properties. Much of the verification work in this area focuses on the model checking of BDI
programs. For instance, [12] shows how to use the SPIN model checker [52] to verify properties of finite-state AgentSpeak
programs. [36,43] compile BDI programs and agent properties to verify into Java and use JPF [92] to model check them.
[63] develops MCMAS, a symbolic model checker specifically for multi-agent systems. [2] develops a theorem proving-based
verification framework for BDI programs that uses a PDL-like logic.

In the situation calculus, there is also some previous work on verification. Perhaps the first such work is [34], where
verification of possibly non-terminating Golog [58] programs is addressed, though no effective techniques are given. Focus-
ing on the propositional situation calculus (where fluents have only the situation as argument), [86] presents decidable
verification techniques. In [48], these techniques are generalized to a one-object-argument fluents fragment of the situation
calculus, and in [49] to theories expressed in two-object-argument fragment. Techniques for verification resorting to second-
order theorem proving with no decidability guarantees are presented in [82,83], where the CASLve verification environment
for multi-agent ConGolog [26] programs is described. In [21], characteristic graphs for programs are introduced to define a
form of regression over programs to be used as a pre-image computation step in (sound) procedures for verifying Golog
and ConGolog programs inspired by model checking. Verification of programs over a two-variable fragment of the situation
calculus is shown to be decidable in [22]. [54] establishes conditions for verifying loop invariants and persistence proper-
ties. Finally, [32,78] propose techniques (with model-checking ingredients) to reason about infinite executions of Golog and
ConGolog programs based on second-order logic exploiting fixpoint approximates.

More recently, work closely related to ours [27,28,31,30] has shown that one obtains robust decidability results for tem-
poral verification of situation calculus action theories under the assumption that in every situation the number of object
tuples forming the extension of each fluent is bounded by a constant. In particular, [27] introduced bounded situation cal-
culus basic action theories; this work, however, assumes standard names for the object domain and, more significantly,
disallows quantification across situations in the verification language. In the present paper, which is a direct extension of
[27], both of these limitations are removed. In [28] an extended language with an explicit knowledge operator was consid-
ered, while in [31] online executions (i.e., executions where the agent only performs actions that it knows are executable)
and progression are studied; like [27], these papers also assume standard names and rule out quantification across situa-
tions from the verification language. [30] addresses verification over online executions with sensing in bounded situation
calculus theories, adopting as verification language a first-order variant of Linear Temporal Logic (FO-LTL), again without
quantification across situations.

One may think of bounded action theories as related to certain classes of action theories that ensure that the progression
of the theory remains first-order representable [61,91], for instance, local-effect action theories [62], where only fluent in-
stances involving the arguments of an action may be affected by it. However, it should be clear that bounded action theories
need not be local-effect, as actions in a bounded action theory may affect fluent instances involving objects that are not
arguments of the action, as long as the extension of fluents remains bounded. Nor are local-effect action theories necessarily
bounded. Nonetheless, [31,30] show that the progression of a bounded action theory is always first-order representable. It
would be interesting to study further the relationship between such classes of theories.

The work in this paper is also closely related to [10]. There, an ad-hoc formalism for representing actions and change
is developed with the purpose of capturing data-aware artifact-centric processes. This formalism describes action precondi-
tions and postconditions in first-order logic, and induces genericity [1] - there called uniformity - on the generated transition
system. Intuitively genericity requires that if two states are isomorphic they induce the “same” transitions (modulo isomor-
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phism). This means, in particular, that the system is essentially Markovian [75]. As verification language, [10] considers
FO-CTL, a first-order variant of CTL that allows for quantifying across states without requiring object persistence, as, instead,
we do here. Their results imply that one can construct a finite-state transition system over which the FO-CTL formula of in-
terest can be verified. However, differently from our case, such a transition system depends also on the number of variables
in the formula. While bounded situation calculus action theories enjoy genericity, it is easy to see that, without assuming
object persistence, we immediately lose the possibility of abstracting to a finite transition system independently from the
formula to verify. This is true even if we drop completely fixpoints. Indeed, assume that we have an action that replaces an
object in the active domain by one in its parameters. Then, without persistence, for any bound n over the number of objects
in a candidate finite abstraction, we can write a (fixpoint-free) formula saying that there exists a finite run with more than
n distinct objects:

X1 .LIVE(X1) A (—) (IX2.LIVE(X2) A X2 # X1 A
(—)(IX3LIVE(X3) AX3 # X1 AX3F X3 A

(=) (@xn1LIVE(Xn1) A Xnt1 F X1 A -+ AXny1 7 Xn)))

Obviously, this formula is false in the finite abstraction, while true in the original transition system, where objects are not
“reused”. Notice that the formula belongs also to FO-CTL and this limitation applies to [10] as well. This observation shows
that the persistence condition is crucial to obtain an abstraction that is independent from the formula.

It is interesting to observe that while dropping persistence is certainly a valuable syntactic simplification, the deep
reason behind it is that generic transition systems, including those generated by situation calculus basic action theories,
are essentially unable to talk about objects that are not in the current active domain. If some object that is in the active
domain disappears from it and reappears again, after some steps, the basic action theory will treat it essentially as a fresh
object (i.e., an object never seen before). Hence, any special treatment of such objects must come from the formula we
are querying the transition system with: for example, we may isolate runs with special properties and only on those do
verification. The fact that FO-CTL can drop persistence while maintaining decidability of verification over generic transition
systems tells us that FO-CTL is not powerful enough to isolate interesting runs to be used as a further assumption for
verification. Recently, this intuition has been formally proven for the entire w-calculus, by showing that the two notions
of bisimulation induced by enforcing or relaxing persistence collapse for generic transition systems [17]. On the basis of
this result, the paper shows the decidability of verification of w-calculus properties without enforcing persistence against
bounded situation calculus action theories. Interestingly this contrasts with the undecidability of FO-LTL when persistence is
not enforced [17,5].

The results in this paper are relevant not only for Al, but also for other areas of computer science (CS). There is some
work in CS that uses model checking techniques on infinite-state systems. However, in most of this work the emphasis is on
studying recursive control rather than on a rich data-oriented state description; typically data are either ignored or finitely
abstracted, see e.g., [16]. There has recently been some attention paid in the field of business processes and services to
include data into the analysis of processes [53,45,38]. Interestingly, while we have verification tools that are quite good for
dealing with data and processes separately, when we consider them together, we obtain infinite-state transition systems,
which resist classical model checking approaches to verification. Only lately has there been some work on developing verifi-
cation techniques that can deal with infinite-state processes [37,4,9,5,10]. In particular, the form of controlled quantification
across situations in our u£, language, which requires object persistence in the active domain, is inspired by the one in [5],
which in turn extends the verification logic presented in [27]. There, the infinite-state data-aware transition systems (with
complete information) to verify are defined using an ad-hoc formalism based on database operations, and the decidabil-
ity results are based on two conditions over the transition systems, namely run-boundedness and state-boundedness. The
latter is analogous to our situation-boundedness. In this paper, we make the idea of boundedness flourish in the general
setting offered by the situation calculus, detailing conditions needed for decidability, allowing for incomplete information,
and exploiting the richness of the situation calculus for giving sufficient conditions for boundedness that can easily be used
in practice. Such results can find immediate application in the analysis of data-aware business processes and services.

11. Conclusion

In this paper, we have defined the notion of bounded action theory in the situation calculus, where the number of flu-
ent atoms that hold remains bounded. We have shown that this restriction is sufficient to ensure that verification of an
expressive class of temporal properties remains decidable, and is in fact EXPTIME-complete, despite the fact that we have an
infinite domain and state space. Our result holds even in the presence of incomplete information. We have also argued that
this restriction can be adhered to in practical applications, by identifying interesting classes of bounded action theories and
showing that these can be used to model typical example dynamic domains. Decidability is important from a theoretical
standpoint, but we stress also that our result is fully constructive being based on a reduction to model checking of an
(abstract) finite-state transition system. An interesting future enterprise is to build on such a result to develop an actual
situation calculus verification tool.

A future research direction of particular interest is a more systematic investigation of specification patterns for obtaining
boundedness. This includes patterns that provide bounded persistence and patterns that model bounded/fading memory.
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These questions should be examined in light of different approaches that have been proposed for modeling knowledge,
sensing, and revision in the situation calculus and related temporal logics [79,35,84,89]. This work has already started. In
particular, as mentioned earlier, the approach of this paper has been extended in [31,30] to allow verification of temporal
properties over online executions of an agent, where the agent may acquire new information through sensing as it exe-
cutes and only performs actions that are feasible according to its beliefs. In that work, the agent’s belief state is modeled
meta-theoretically, as an action theory that is progressed as actions are performed and sensing results are obtained. In [28],
temporal epistemic verification is tackled within a language-theoretic viewpoint, where the situation calculus is extended
with a knowledge modality [79]. The form of boundedness studied in that case requires that the number of object tuples
that the agent thinks may belong to any given fluent be bounded. In [31,30], instead, it is only required that number of
distinct tuples entailed to belong to a fluent is bounded, while the number of tuples that are in the extension of a flu-
ent in some model of the theory need not be bounded. More work is needed to fully reconcile these meta-theoretic and
language-theoretic approaches.

Finally, an important topic to address is verification of agent programs [34] expressed in a high-level language, like
Golog [58] or ConGolog [26], which are based on the situation calculus. Some cases where verification of ConGolog programs
is decidable are identified in [22]. More recently, the framework presented here has been extended to support verification
of ConGolog programs, without recursive procedures, over bounded situation calculus action theories [29]. Note that this
extension is not immediate, as a temporal property may hold over all executions of a program without holding over all
branches of the situation tree. However it can be shown that the whole program configuration, formed by the situation and
the remaining part of the program to execute, is bounded (if we disallow recursion), and hence the approach presented in
this paper can be applied to show decidability of verification [29].

Acknowledgements

The authors acknowledge the support of: Sapienza Universita di Roma, under the research project Immersive Cognitive
Environments; Ripartizione Diritto allo Studio, Universita e Ricerca Scientifica of Provincia Autonoma di Bolzano-Alto Adige,
under project Verification and Synthesis from Components of Processes That Manipulate Data; and the National Science and En-
gineering Research Council of Canada under grant RGPIN-2015-03756 Specification, Verification, and Synthesis of Autonomous
Adaptive Agents.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley, 1995.
[2] N. Alechina, M. Dastani, F. Khan, B. Logan, J.-J. Meyer, Using theorem proving to verify properties of agent programs, in: Specification and Verification
of Multi-Agent Systems, Springer, 2010, pp. 1-33.
[3] F. Bacchus, F. Kabanza, Planning for temporally extended goals, Ann. Math. Artif. Intell. 22 (1-2) (1998) 5-27.
[4] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, P. Felli, Foundations of relational artifacts verification, in: Proc. of BPM, 2011,
pp. 379-395.
[5] B. Bagheri Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, M. Montali, Verification of relational data-centric dynamic systems with external services,
in: Proc. of PODS, 2013, pp. 163-174.
[6] C. Baier, J.-P. Katoen, K. Guldstrand Larsen, Principles of Model Checking, MIT Press, 2008.
[7] J.A. Baier, S.A. Mcllraith, Planning with temporally extended goals using heuristic search, in: Proc. of ICAPS, 2006, pp. 342-345.
[8] H. Barringer, M. Fisher, D.M. Gabbay, G. Gough, R. Owens, MetateM: an introduction, Form. Asp. Comput. 7 (5) (1995) 533-549.
[9] E. Belardinelli, A. Lomuscio, F. Patrizi, Verification of deployed artifact systems via data abstraction, in: Proc. of ICSOC, 2011, pp. 142-156.
[10] F. Belardinelli, A. Lomuscio, F. Patrizi, Verification of agent-based artifact systems, J. Artif. Intell. Res. 51 (2014) 333-376.
[11] M. Bienvenu, C. Fritz, S.A. Mcllraith, Planning with qualitative temporal preferences, in: Proc. of KR, 2006, pp. 134-144.
[12] R.H. Bordini, M. Fisher, C. Pardavila, M. Wooldridge, Model checking AgentSpeak, in: Proc. of AAMAS, 2003, pp. 409-416.
[13] R.H. Bordini, ].F. Hubner, M. Wooldridge, Programming Multi-Agent Systems in AgentSpeak Using Jason, Wiley, 2007.
[14] C. Boutilier, R. Reiter, M. Soutchanski, S. Thrun, Decision-theoretic, high-level agent programming in the situation calculus, in: Proc. of AAAI/IAAI, 2000,
pp. 355-362.
[15] J. Bradfield, C. Stirling, Modal mu-calculi, in: Handbook of Modal Logic, vol. 3, Elsevier, 2007, pp. 721-756.
[16] O. Burkart, D. Caucal, F. Moller, B. Steffen, Verification of infinite structures, in: Handbook of Process Algebra, Elsevier, 2001, pp. 545-623.
[17] D. Calvanese, G. De Giacomo, M. Montali, F. Patrizi, On first-order p-calculus over situation calculus action theories, in: Proc. of KR, 2016.
[18] A.K. Chandra, D.C. Kozen, LJ. Stockmeyer, Alternation, J. ACM 28 (1) (1981) 114-133.
[19] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2: an opensource tool for symbolic model
checking, in: Proc. of CAV, 2002, pp. 359-364.
[20] E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic, in: Proc. of Logics of Programs,
Workshop, 1981, pp. 52-71.
[21] J. ClaBen, G. Lakemeyer, A logic for non-terminating Golog programs, in: Proc. of KR, 2008, pp. 589-599.
[22] J. ClaBen, M. Liebenberg, G. Lakemeyer, B. Zarrief3, Exploring the boundaries of decidable verification of non-terminating Golog programs, in: Proc. of
AAAI 2014, pp. 1012-1019.
[23] PR. Cohen, HJ. Levesque, Intention is choice with commitment, Artif. Intell. 42 (2-3) (1990) 213-261.
[24] M. Dastani, 2apl: a practical agent programming language, Auton. Agents Multi-Agent Syst. 16 (3) (2008) 214-248.
[25] ES. de Boer, K.V. Hindriks, W. van der Hoek, ].C. Meyer, A verification framework for agent programming with declarative goals, J. Appl. Log. 5 (2)
(2007) 277-302.
[26] G. De Giacomo, Y. Lespérance, HJ. Levesque, ConGolog, a concurrent programming language based on the situation calculus, Artif. Intell. 121 (1-2)
(2000) 109-169.
[27] G. De Giacomo, Y. Lespérance, F. Patrizi, Bounded situation calculus action theories and decidable verification, in: Proc. of KR, 2012, pp. 467-477.
[28] G. De Giacomo, Y. Lespérance, F. Patrizi, Bounded epistemic situation calculus theories, in: Proc. of I[JCAI 2013, 2013, pp. 846-853.


http://refhub.elsevier.com/S0004-3702(16)30047-9/bib416248563935s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib41444B4C4D3130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib41444B4C4D3130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F616D61692F426163636875734B3938s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42504D3131s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42504D3131s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F706F64732F4861726972694347444D3133s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F706F64732F4861726972694347444D3133s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42614B473038s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F616970732F42616965724D3036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib424647474F3935s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4943534F433131s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42656C617264696E656C6C692E6574616C3A4A4149523134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F4269656E76656E75464D3036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib426F7264696E692E6574616C3A41414D41533033s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4A61736F6E426F6F6B3037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F616161692F426F7574696C6965725253543030s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F616161692F426F7574696C6965725253543030s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42533037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib42434D533031s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib43444D502D4B523136s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib43684B533831s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6361762F43696D61747469434747505253543032s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6361762F43696D61747469434747505253543032s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib436C61726B6545383143544Cs1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib436C61726B6545383143544Cs1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib436C617373656E3A4B523038s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F616161692F436C617373656E4C4C5A3134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F616161692F436C617373656E4C4C5A3134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F436F68656E4C3930s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61616D61732F44617374616E693038s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6A61706C6C2F426F657248484D3037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6A61706C6C2F426F657248484D3037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4465476961636F6D6F4C4C3A41494A30302D436F6E476F6C6F67s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4465476961636F6D6F4C4C3A41494A30302D436F6E476F6C6F67s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F476961636F6D6F4C503132s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F696A6361692F476961636F6D6F4C503133s1

202 G. De Giacomo et al. / Artificial Intelligence 237 (2016) 172-203

[29] G. De Giacomo, Y. Lesperance, F. Patrizi, S. Sardina, Verifying ConGolog programs on bounded situation calculus theories, in: Proc. of AAAI, 2016.

[30] G. De Giacomo, Y. Lespérance, F. Patrizi, S. Vassos, LTL verification of online executions with sensing in bounded situation calculus, in: Proc. of ECAI,
2014, pp. 369-374.

[31] G. De Giacomo, Y. Lespérance, F. Patrizi, S. Vassos, Progression and verification of situation calculus agents with bounded beliefs, in: Proc. of AAMAS,
2014, pp. 141-148.

[32] G. De Giacomo, Y. Lespérance, A.R. Pearce, Situation calculus based programs for representing and reasoning about game structures, in: Proc. of KR,
2010, pp. 445-455.

[33] G. De Giacomo, HJJ. Levesque, Projection using regression and sensors, in: Proc. of [JCAIL, 1999, pp. 160-165.

[34] G. De Giacomo, E. Ternovskaia, R. Reiter, Non-terminating processes in the situation calculus, in: Proc. of the AAAI'97 Workshop on Robots, Softbots,
Immobots: Theories of Action, Planning and Control, 1997, pp. 18-28.

[35] R. Demolombe, M. del Pilar Pozos Parra, A simple and tractable extension of situation calculus to epistemic logic, in: Proc. of ISMIS, 2000, pp. 515-524.

[36] L.A. Dennis, M. Fisher, M.P. Webster, R.H. Bordini, Model checking agent programming languages, Autom. Softw. Eng. 19 (1) (2012) 5-63.

[37] A. Deutsch, R. Hull, F. Patrizi, V. Vianu, Automatic verification of data-centric business processes, in: Proc. of ICDT, 2009, pp. 252-267.

[38] M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, Process-Aware Information Systems: Bridging People and Software through Process Technology,
Wiley, 2005.

[39] C. Eisner, D. Fisman, A Practical Introduction to PSL. Integrated Circuits and Systems, Springer, 2006.

[40] E.A. Emerson, Model checking and the mu-calculus, in: Descriptive Complexity and Finite Models, AMS, DIMACS, 1996, pp. 185-214.

[41] E.A. Emerson, ].Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time (preliminary report), in: Proc. of POPL, 1983,
pp. 127-140.

[42] M. Fischer, R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. Syst. Sci. 18 (2) (1979) 194-211.

[43] M. Fisher, L.A. Dennis, M.P. Webster, Verifying autonomous systems, Commun. ACM 56 (9) (2013) 84-93.

[44] M. Gelfond, V. Lifschitz, Representing action and change by logic programs, ]. Log. Program. 17 (2/3&4) (1993) 301-321.

[45] C.E. Gerede, J. Su, Specification and verification of artifact behaviors in business process models, in: Proc. of ICSOC, 2007, pp. 181-192.

[46] A. Gerevini, D. Long, Preferences and soft constraints in PDDL3, in: Proc. of ICAPS-2006 Workshop on Preferences and Soft Constraints in Planning,
2006, pp. 46-54.

[47] E. Giunchiglia, ]J. Lee, V. Lifschitz, N. McCain, H. Turner, Nonmonotonic causal theories, Artif. Intell. 153 (1-2) (2004) 49-104.

[48] Y. Gu, L. Kiringa, Model checking meets theorem proving: a situation calculus based approach, in: Proc. of 11th International Workshop on Nonmono-
tonic Reasoning, Action, and Change, 2006.

[49] Y. Gu, M. Soutchanski, Decidable reasoning in a modified situation calculus, in: Proc. of IJCAI, 2007, pp. 1891-1897.

[50] M. Hennessy, R. Milner, On observing nondeterminism and concurrency, in: Proc. of ICALP, 1980, pp. 295-309.

[51] A. Herzig, Belief change operations: a short history of nearly everything, told in dynamic logic of propositional assignments, in: Proc. of KR, 2014,
pp. 141-150.

[52] GJ. Holzmann, The model checker SPIN, IEEE Trans. Softw. Eng. 23 (5) (1997) 279-295.

[53] R. Hull, Artifact-centric business process models: brief survey of research results and challenges, in: Proc. of OTM 2008 Confederated International
Conferences, 2008, pp. 1152-1163.

[54] RE. Kelly, AR. Pearce, Property persistence in the situation calculus, Artif. Intell. 174 (12-13) (2010) 865-888.

[55] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Gener. Comput. 4 (1) (1986) 67-95.

[56] J. Kvarnstrom, P. Doherty, TALplanner: a temporal logic based forward chaining planner, Ann. Math. Artif. Intell. 30 (1-4) (2000) 119-169.

[57] HJ. Levesque, G. Lakemeyer, The Logic of Knowledge Bases, MIT Press, 2001.

[58] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R.B. Scherl, GOLOG: a logic programming language for dynamic domains, J. Log. Program. 31 (1997) 59-84.

[59] L. Libkin, Elements of Finite Model Theory, Springer, 2004.

[60] L. Libkin, Embedded finite models and constraint databases, in: Finite Model Theory and Its Applications, Springer, 2007, pp. 257-338.

[61] E. Lin, R. Reiter, How to progress a database, Artif. Intell. 92 (1-2) (1997) 131-167.

[62] Y. Liu, HJ. Levesque, Tractable reasoning with incomplete first-order knowledge in dynamic systems with context-dependent actions, in: Proc. of IJCAI,
2005, pp. 522-527.

[63] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: a model checker for the verification of multi-agent systems, in: Proc. of CAV, 2009, pp. 682-688.

[64] A. Marrella, M. Mecella, S. Sardifia, SmartPM: an adaptive process management system through situation calculus, IndiGolog, and classical planning,
in: Proc. of KR, 2014, pp. 1-10.

[65] J. McCarthy, PJ. Hayes, Some philosophical problems from the standpoint of artificial intelligence, Mach. Intell. 4 (1969) 463-502.

[66] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL—the planning domain definition language, Tech. Rep.
CVC TR98003/DCS TR1165, Yale Center for Computational Vision and Control, 1998.

[67] F. Pirri, R. Reiter, Some contributions to the metatheory of the situation calculus, ]. ACM 46 (3) (1999) 261-325.

[68] M. Pistore, P. Traverso, Planning as model checking for extended goals in non-deterministic domains, in: Proc. of I[JCAI, 2001, pp. 479-484.

[69] A. Pnueli, The temporal logic of programs, in: Proc. of FOCS, 1997, pp. 46-57.

[70] A. Rao, M. Georgeff, An abstract architecture for rational agents, in: Proc. of KR, 1992, pp. 439-449.

[71] A.S. Rao, AgentSpeak(l): BDI agents speak out in a logical computable language, in: Proc. of Agents Breaking Away, 7th European Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World, 1996, pp. 42-55.

[72] A.S. Rao, M.P. Georgeff, Modeling rational agents within a BDI-architecture, in: Proc. of KR, 1991, pp. 473-484.

[73] R. Reiter, The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression, in: Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, Academic Press, 1991, pp. 359-380.

[74] R. Reiter, Natural actions, concurrency and continuous time in the situation calculus, in: Proc. of KR, 1996, pp. 2-13.

[75] R. Reiter, Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems, MIT Press, 2001.

[76] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall, 2010.

[77] E. Sandewall, Features and Fluents, Oxford University Press, New York, 1994.

[78] S. Sardifia, G. De Giacomo, Composition of ConGolog programs, in: Proc. of I[JCAI, 2009, pp. 904-910.

[79] R.B. Scherl, HJ. Levesque, Knowledge, action, and the frame problem, Artif. Intell. 144 (1-2) (2003) 1-39.

[80] M. Shanahan, Solving the Frame Problem - A Mathematical Investigation of the Common Sense Law of Inertia, MIT Press, 1997.

[81] M. Shanahan, The event calculus explained, in: Artificial Intelligence Today, Springer, 1999, pp. 409-430.

[82] S. Shapiro, Y. Lespérance, H. Levesque, The cognitive agents specification language and verification environment, in: Specification and Verification of
Multi-Agent Systems, Springer, 2010, pp. 289-315.

[83] S. Shapiro, Y. Lespérance, H.J. Levesque, The cognitive agents specification language and verification environment for multiagent systems, in: Proc. of
AAMAS, 2002, pp. 19-26.

[84] S. Shapiro, M. Pagnucco, Y. Lespérance, H.J. Levesque, Iterated belief change in the situation calculus, Artif. Intell. 175 (1) (2011) 165-192.

[85] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pac. J. Math. 5 (2) (1955) 285-309.


http://refhub.elsevier.com/S0004-3702(16)30047-9/bib444C50532D414141493136s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F656361692F476961636F6D6F4C50563134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F656361692F476961636F6D6F4C50563134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4465476961636F6D6F4C505641414D41533134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4465476961636F6D6F4C505641414D41533134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F476961636F6D6F4C503130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F476961636F6D6F4C503130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F696A6361692F476961636F6D6F4C3939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib446554523937s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib446554523937s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F69736D69732F44656D6F6C6F6D6265503030s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44656E6E69734657423132s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib444850563A494344543A3039s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44756D6173323030353A50414953s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44756D6173323030353A50414953s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib456946693036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib456D6572736F6E3936s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib456D48616C383343544C2As1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib456D48616C383343544C2As1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4669736865724C61646E657250444C3739s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6361636D2F46697368657244573133s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6A6C702F47656C666F6E644C3933s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib47657265646553753A4943534F4332303037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4765726576696E694C6F6E673036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4765726576696E694C6F6E673036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F4769756E636869676C69614C4C4D543034s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib47754B693036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib47754B693036s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F696A6361692F4775533037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib484D3830s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F4865727A69673134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F4865727A69673134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F7473652F486F6C7A6D616E6E3937s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib48756C6C323030383A4172746966616374s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib48756C6C323030383A4172746966616374s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F4B656C6C79503130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6E67632F4B6F77616C736B69533836s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F616D61692F4B7661726E7374726F6D443030s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C654C613031s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C657665737175653A4A4C5039372D476F6C6F67s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C69626B696E3034s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C69626B696E3037s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C696E5265697465723937s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C69754C657665737175653035s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C69754C657665737175653035s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4C6F6D757363696F51523039s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4D614D533134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4D614D533134s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib4D63436172746879313936393A4149s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib5044444C3938s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib5044444C3938s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib5069727269523A4A41434D3939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib506973746F7265547261766572736F3A494A4341493031s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib506E75656C6C694C544C3937s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib52616F47656F72676566664B523932s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6D61616D61772F52616F3936s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6D61616D61772F52616F3936s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6B722F52616F473931s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib52656974657239314672616D65s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib52656974657239314672616D65s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib5265697465723936s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib52656974657230312D426F6F6Bs1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib52757373656C6C4E6F72766967s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib53616E646577616C6C426F6F6B3934s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F696A6361692F53617264696E61473039s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F53636865726C4C3033s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A626F6F6B732F6461676C69622F30303935303835s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A626F6F6B732F73702F776F6F6C6472696467655639392F5368616E6168616E3939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib53684C4C3130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib53684C4C3130s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6174616C2F5368617069726F4C4C3032s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F6174616C2F5368617069726F4C4C3032s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F5368617069726F504C4C3131s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib546172736B693535s1

G. De Giacomo et al. / Artificial Intelligence 237 (2016) 172-203 203

[86] E. Ternovskaia, Automata theory for reasoning about actions, in: Proc. of IJCAI, 1999, pp. 153-159.

[87] M. Thielscher, From situation calculus to fluent calculus: state update axioms as a solution to the inferential frame problem, Artif. Intell. 111 (1-2)
(1999) 277-299.

[88] J. van Benthem, Modal Logic and Classical Logic, Bibliopolis, 1983.

[89] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic, Springer, 2008.

[90] B. van Linder, W. van der Hoek, ].C. Meyer, Formalising abilities and opportunities of agents, Fundam. Inform. 34 (1-2) (1998) 53-101.

[91] S. Vassos, F. Patrizi, A classification of first-order progressable action theories in situation calculus, in: Proc. of IJCAI, 2013, pp. 1132-1138.

[92] W. Visser, K. Havelund, G.P. Brat, S. Park, F. Lerda, Model checking programs, Autom. Softw. Eng. 10 (2) (2003) 203-232.

[93] M. Wooldridge, Reasoning about Rational Agents, MIT Press, 2000.


http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A636F6E662F696A6361692F5465726E6F76736B6169613939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F546869656C73636865723939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F61692F546869656C73636865723939s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib76616E42656E7468656D3833s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib76616E4469746D6172736844454C626F6F6B3038s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6675696E2F4C696E646572484D3938s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib566173736F7350617472697A69494A4341493133s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib44424C503A6A6F75726E616C732F6173652F5669737365724842504C3033s1
http://refhub.elsevier.com/S0004-3702(16)30047-9/bib576F6F6C647269646765426F6F6B3030s1

	Bounded situation calculus action theories
	1 Introduction
	2 Preliminaries
	3 Bounded action theories
	4 Obtaining bounded action theories
	4.1 Bounding by blocking
	4.2 Effect bounded action theories
	4.3 Fading ﬂuents action theories

	5 Expressing dynamic properties
	6 Veriﬁcation of bounded action theories with complete information on S0
	6.1 Suppressing action terms
	6.2 Suppressing situation terms
	6.3 μLp over transition systems
	6.4 Transition systems induced by a situation calculus theory
	6.5 Abstract ﬁnite-state transition system

	7 Dealing with incomplete information
	8 Computational complexity
	9 Checking boundedness
	10 Related work
	11 Conclusion
	Acknowledgements
	References


