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Abstract. Speculative parallel discrete event simulation requires a sup-
port for reversing processed events, also called state recovery, in case they
reveal as causally inconsistent. In this article we present an approach
where state recovery relies on a mix of hardware- and software-based
techniques. Particularly, we exploit the Hardware Transactional Memory
(HTM) support, as offered by Intel Haswell CPUs, to process events by
the application code as in-memory transactions, which are possibly com-
mitted only after their causal consistency is verified. At the same time,
we exploit an innovative software-based reversibility technique, fully rely-
ing on transparent software instrumentation targeting x86/ELF objects,
which enables undoing side effects by events with no actual backward re-
computation. Each thread within our multi-thread speculative processing
engine dynamically (namely, on a per-event basis) selects which recovery
mode to rely on (hardware vs software) depending on varying runtime
dynamics. The latter are captured by a lightweight model indicating to
what extent the HTM support (not paying any instrumentation cost) is
efficient, and after what level of events’ parallelism it starts degrading
its performance, e.g., due to excessive data conflicts while manipulating
causality meta-data within HTM based transactions. We released our
implementation as open source software and provide some experimental
results for an assessment of its effectiveness.

1 Introduction

When dealing with Discrete Event Simulation (DES), its move onto parallel
architectures has been historically based on the Parallel Discrete Event Simula-
tion (PDES) paradigm [7]. In this kind of simulation, as well as in the traditional
DES paradigm, the evolution of the system is described in terms of timestamped
discrete events, which are impulsive—they happen at a specific simulation time
instant, the timestamp of the event, and have no duration. Parallelism is achieved
in PDES by partitioning the simulation model into several distinct entities, called
simulation objects or logical processes (LPs). Each LP is associated with a pri-
vate simulation state—the whole simulation state is the union of these private
states—and the execution of an impulsive simulation event at any LP produces
a state transition on the state of the LP itself. The privateness of the LPs’
simulation states implies that information exchange across different LP is only
supported via the exchange of events, which can be generated (in any number)
during the execution of whichever event.



PDES speculative execution [10] allows processing events with no previous
assurance of their causal consistency. This means that an event destined to some
LP can be dispatched for execution with no guarantee at all regarding the fact
that no other events with a higher priority, say lower timestamp, will be ever re-
ceived by that same LP in the future. Such events, referred to as straggler events,
are the a-posteriori materialization of a timestamp-order violation, also referred
to as causal violation. Such violations require some state recovery (reversibility)
support for undoing the side effects on the LPs’ states which are associated with
inconsistent processing of events.

In literature, the reversibility support has been traditionally based on pure
software implementations exploiting either checkpointing techniques (see, e.g.,
[15,16]) or reverse computing ones (see, e.g., [2]). A few other approaches have
been based on off-loading the checkpoint task to off-the-shelf or unconventional
hardware [9,18]. More recently, the Hardware Transactional Memory (HTM)
support offered by modern processors, such as the Intel Haswell, has been taken
into consideration in order to enable the speculative execution of events as in-
memory transactions [19], making them automatically recoverable with low over-
head thanks to the reliance on the hardware transactional cache. However, to
the best of our knowledge, there has been no attempt to exploit hardware and
software based reversibility in a synergic combination for speculative PDES.

In this article we present a speculative PDES engine, oriented to multi-core
machines, which is based on such a kind of hardware /software combination. Par-
ticularly, we enable each concurrent worker thread operating within the engine
to dynamically select the best suited reversibility support among two: (1) one
relying on HTM facilities inspired to [19] and (2) another relying based on soft-
ware reversibility, particularly in the form of undo code blocks [3]. The dynamic
selection is based on the consideration that not all the speculatively executed
events are valuable in the same manner when run as HTM transactions due
to several reasons. A first one deals with the fact that the final commit of the
transaction needs to check/update causality meta-data, hence the higher the de-
gree of concurrency while accessing these meta-data, the higher the likelihood of
yielding to data conflicts that lead to the abort of the HTM transactions. Also,
causality meta-data are updated according to the progress of the commit horizon
of the PDES run, as determined along time by the commit of the event with the
lowest timestamp. Hence speculatively processed events with HTM support that
are further ahead of the commit horizon will need to find causality meta-data
reflecting more updates upon trying to commit, which again leads to an abort if
these updates were not yet issued by the commitment of events with higher pri-
ority, say lower timestamps. Finally, the HTM support is limited to transactions
whose read/write set fits (with no capacity conflict by other cores of the same
CPU) the transactional hardware cache. Hence for models with events that (or
execution phases where the events) have large data sets the likelihood of suc-
cessfully committing the corresponding HTM transactions may be (significantly)
reduced.



We overcome these drawbacks in our speculative PDES engine by dynami-
cally enabling any worker thread to process an event not as an HTM transaction
(just to reduce the likelihood of running non-valuable transactions), but rather
via a modified version of the original event-handler code. This version is trans-
parently instrumented in order to be able to generate (at runtime) the minimal
set of machine instructions (the so called undo code block) that allows revers-
ing any memory side effect. In the instrumentation process we target x86/ELF
objects. The possibility to commit events run with software reversibility is no
longer bound to the possibility to commit an HTM transaction. This leads to
the scenario where the engine is able to improve fruitful usage of computing
resources just because of the possibility to exploit the HTM support in the most
valuable manner, while jointly relying on a bit more costly software reversibility
when valuable hardware based reversibility would be impaired.

Clearly, the coexistence of HTM and software based reversibility (with con-
current threads relying on one or the other at a given time instant) needs solu-
tions in order to avoid that the two techniques do not interfere with each other.
Specifically, valuable HTM work should not be interfered by software reversibil-
ity based one. For the case of concurrent speculatively processed events bound to
the same LP (hence operating within the same local state) this is achieved by in-
troducing a prioritization mechanism that leads an HTM processed event to gain
higher priority with respect to the events processed with the software reversibil-
ity support. So the latter will never concurrently access (any portion of) the
overall data set—say LP state as a whole—possibly targeted by the HTM trans-
action, hence not leading to its abort. On the other hand, we still enable inter-LP
concurrency, thus enabling the so called weak-causality model [17], by not pre-
venting multiple HTM transactions to successfully operate on disjoint data sets
within the LP state. Also, given that in our software reversibility scheme we
avoid the usage of checkpointing (in fact the undo code block is not a log of
data, rather of machine instructions), we avoid at all the typically large usage
of memory by checkpointing (only partially resolved by incremental checkpoint-
ing schemes) hence further reducing the (potential) problems related to limited
cache capacity issues of the HTM support and conflicting cache accesses by the
threads.

Our engine has been released as open source software!, and we also provide
some experimental data for an assessment of its effectiveness when running the
classical Phold PDES benchmark [8] on an Intel Haswell processor, with HTM
support, equipped with 4 physical cores.

The remainder of this article is structured as follows. In Section 2 we dis-
cuss related work. In Section 3 we present the methodology standing behind
hardware- and software-reversibility based execution of PDES models, and we
describe the design principles characterizing our mixed simulation engine archi-
tecture. Section 4 presents an experimental assessment of our proposal.

! https://github.com/HPDCS/htmPDES/tree/reverse



2 Related Work

The state restore operation is of fundamental importance in speculative PDES,
and has therefore been extensively studied in the literature. Two main incarna-
tions of state restore schemes have been proposed, one based on state checkpoint
and reload, and one based on reverse computing. The former flavour is based on
the possibility for the simulation engine to know what are the memory buffers
that keep each LP’s simulation state, which are copied onto a separate buffer—
called the simulation snapshot—at a given point of the execution. In this way, un-
doing a chain of wrongly-computed events (namely, state updates) boils down to
selecting a simulation snapshot which is still consistent (i.e., it was taken at a sim-
ulation time smaller than the straggler’s one). This snapshot is then copied onto
the LP live state image, thus undoing the effects of causal-inconsistent events.
This approach is both memory- and computationally-intensive, and might lead
to poor simulation performance, since if no causal inconsistency is detected at all,
resources are spent for taking unnecessary snapshots. To this end, several pro-
posals have addressed the possibility to take state snapshots less frequently (see,
e.g., [16]) or in an incremental way (see, e.g., [21]) or combining the two schemes
(see, e.g., [15,20]). Other solutions rely on hardware support to offload from the
CPU the memory copy for taking the checkpoint. Specifically, the work in [18]
proposed to exploit programmable DMA engines to perform the copy, while [9]
presents the design of a so called rollback-chip, a hardware facility that auto-
matically saves old versions of state variables upon their updates. Both these
approaches, reduce the CPU-time for checkpointing tasks but do not directly
cope with memory usage.

Reverse computing is instead based on the notion of reverse events. A reverse
event € associated with a forward event e is an event such that if the execution
of e produces the state transition e(S) — S’, the execution of € on S’ produces
the inverse transition €(S’) — S. Such reverse events could be implemented
manually [2] or via compiler-assisted approaches [12]. Although reverse compu-
tation is much less memory-greedy than checkpointing, the main issue with this
approach lies in the rollback length, namely the number of events which must
be undone upon a state restore operation. In particular, the total cost of a roll-
back operation is directly proportional to the number of undone events and their
granularity, as reverse events re-process (although in a reversed fashion) all the
steps of a forward event, even if some of them are not directly related to state
updates.

The more recent proposal in [3] has tackled the state restore operation via
software reversibility through the adoption of undo code blocks. The goal of this
approach is to reduce the time-complexity of the rollback operation, making the
reversibility of events independent of the forward execution’s granularity. This is
done by relying on static binary instrumentation, targeting x86-64/ELF objects,
where the simulation model’s code is scanned searching for all machine-level
instructions which entail a memory update. These instructions are transparently
augmented with an ad-hoc routine which computes the target address of the
memory write just before it takes place, so that the original value is directly



packed into an on-the-fly assembled machine instruction whose execution restores
it. All these runtime generated assembly instructions are stored into an undo
code block which, when executed, undoes all the effects of the execution of
a forward event on the simulation state. This solution finds a good balance
between incremental checkpointing—mno actual meta-data are required to restore
a previous state—and reverse computing—the execution cost of an event is no
longer dependent on the complexity of forward events. Nevertheless, if an event
is unlikely to be undone due to a rollback operation, the cost of tracing memory
updates and generating undo code block is paid unnecessarily.

Another recent proposal [19] exploits HTM facilities offered by modern Intel
Haswell CPUs to allow running simulation events within transactions. An ad-hoc
routine determines whether the execution of an event is safe or not, by checking
compact shared meta-data keeping track of the simulation time associated with
the events that are being run by the concurrent threads. The event associated
with the smallest timestamp is considered safe, and it is therefore the only event
which is executed outside of a transaction. By using this scheme, all the events
which are transactionally executed are automatically aborted if a conflict on the
same data structures is detected. At the end of a transaction, the safety of the
just-executed event is evaluated again, and in case the event has become safe, it
is then committed. In the negative case, the transaction is immediately aborted
and (possibly) restarted, because the access to the shared meta-data makes it
doomed if the event is not safe yet—in fact, another thread will eventually update
the content of the meta-data, to indicate that the execution of a safe event has
been completed. A dynamic throttling strategy is used to increase the likelihood
of committing a transaction, by delaying the time instant at which the shared
meta-data are accessed.

Our work differs from previously published work since none of the afore-
mentioned proposals makes use of a combination of hardware and software re-
versibility for state restore operations. Particularly, we use the results in [19]
and [3] as baselines for building a mixed hardware/software recoverability sup-
port that takes the advantages of the two different techniques As pointed out
in the introduction, we dynamically resort to undo code blocks (thus paying the
cost of running an instrumented code version) only in case valuable speculative
work cannot be carried out (by a thread at some point in time) via the reliance
on HTM. Thus we pay the overhead of software reversibility only when HTM
based reversibility does not pay off (or is inviable due to, e.g., transactional cache
capacity limitations).

3 The Hardware/Software Reversibility Based Engine

3.1 Basics

We target a baseline speculative PDES engine structure that is independent of
the actual reversibility support, whose schematization is provided in Figure 1. In
compliance with traditional PDES, the engine supports the partitioning of the
simulation model into n distinct LPs, each one associated with a unique ID in the
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Fig. 1. Basic engine organization.

range [0,n — 1]. Each LP is associated with a private simulation state (although
possibly scattered on dynamic memory) and with one or more event handlers
representing the code blocks in charge of processing the simulation events and
generating state updates, as well as of (possibly) producing new events to be in-
jected in the system. The delivery of a simulation event to the correct handler is
demanded from the underlying simulation kernel, which is also in charge of guar-
anteing consistency of a shared event pool that keeps all the already scheduled
events, as well as causal consistency of the updates occurring on the LPs’ states.
Concerning the event pool, we rely on a shared lock-protected global queue, par-
ticularly a calendar queue [1]. Multiple concurrent worker threads can extract
events from the event pool and can concurrently dispatch the execution of the
corresponding LPs by activating some event handler as a callback function.

3.2 Simulation Horizons and Valuability of Speculative Work

In speculative PDES, we can always identify a point on the simulation time axis
which is the commit horizon—commonly referred to as Global Virtual Time
(GVT). This is the simulation time instant that distinguishes between events
which might be undone (e.g., due to some causality violation) and events which
will never be undone. This time instant can be logically identified by considering
that any simulation event e executed at simulation time 7' can only generate
some new event ¢’ associated with timestamp T’ > T. In fact, violating this
assumption would imply that an event in the future might affect the past, which
is clearly a non-meaningful condition for any real-world process/phenomenon.
Therefore, to identify the commit horizon, it is sufficient to identify, across all the
events which are currently scheduled at (or have just been processed by) any LP
in the system the one associated with the minimum timestamp. Such timestamp
corresponds to the commit horizon. In fact, no event still to be executed in the
system might produce a causal inconsistency involving the LP in charge of the
execution of the commit horizon event?.

With our target engine organization, the commit horizon is associated with
the oldest event that is currently being executed (or has just been executed) at
any worker thread. Therefore, keeping track of the commit horizon boils down
to registering, for each worker thread, the timestamp of the event e currently

2 Simultaneous events do not violate this assumption. Nevertheless, if not properly
handled by some tie-breaking function [11,13], they could induce livelocks in the
speculative execution.
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Fig. 2. Three logical regions on the simulation time axis, with varying density of pend-
ing events—those still to be processed, which will possibly generate new ones along the
simulation time (ST) axis.

being executed, by replacing the value only after a new event is fetched for
processing from the event pool, so that any new event possibly produced by e
has its timestamp already reflected into the event pool. The commit horizon can
be computed as the minimum among the registered values.

At any time, the commit horizon event can be considered as a safe (namely,
causally consistent) one, and therefore does not require any reversibility mech-
anism for its execution. Let us now discuss about the likelihood of safety of
other events to be processed, which stand ahead of the commit horizon. Empir-
ical evidence plus statistical considerations based on classical distributions for
the timestamp increment driving the generation of events in common simulation
models (see, e.g., [5,6]) have shown that event patterns are, at any time, charac-
terized by greater density of events, say locality of activities, in the near future of
the actual GVT. This situation is depicted in Figure 2. Also, such locality tends
to move along the time axis just based on the advancement of the commit hori-
zon. The implication is that the risk of materialization of causal inconsistencies
when speculatively processing one event that is ahead of the commit horizon is
somehow linked to its distance from such horizon. This is also linked to the no-
tion of lookahead of DES models, a quantity expressing the minimal timestamp
increment we can experience for a given model when processing whichever event
that originates new events to be injected in the system. Larger lookahead leads
to produce new events in the far future, hence those getting closer to (although
not coinciding with) the current commit horizon become automatically safe.

By this consideration, the speculative processing of events that are closer
to the commit horizon looks more valuable in terms of avoidance of causality
inconsistencies, hence our approach is to enable the processing of these events
as HTM-based transactions, say via the more efficient (lower overhead) recover-
ability support. We also note that running events that are close to the commit
horizon as HTM-based transactions will also lead to faster advancement of such
horizon, as compared to what we would expect if running them via software-
based reversibility, since this would lead to longer processing times due to the
overhead for producing the undo code blocks. However, an HTM-based trans-
action can commit only after events standing in the past have already been
committed and the corresponding worker threads have already updated their
entries in the meta-data array keeping their current timestamp. So, in order to



increase the likelihood of committing the HTM-based transactional execution
of some event, this transaction typically needs to include a busy-loop delay en-
abling a wait phase just before checking whether the meta-data were updated®.
Checking the meta-data at some wrong point in time will in its turn lead to
the impossibility to recheck these data fruitfully in the future, since the updates
occurring between the two checks will lead to a data conflict and to the abort
of the checking transaction. In Figure 2 we show how such a delay should be
selected somehow proportionally to the distance (in terms of event count) of the
event processed via HTM support from the commit horizon. Overall, for events
that are further ahead from the commit horizon, the delay could not pay off,
hence a more profitable approach to speculatively processing them is the one to
run them outside the HTM-based transaction, still with reversibility guarantee
achieved via software.

The problem of determining what is the threshold distance from the com-
mit, horizon beyond which HTM support does not pay off is clearly also related
to the interference between concurrent HTM-based transactions when using the
underlying hardware resources. In fact, if we experience a scenario where two
concurrent transactions both require large transactional cache storage for exe-
cuting the corresponding dispatched events, and the cache is shared across the
cores, then even if an event would ideally reveal as causally consistent upon
attempting to finalize the transactions, it would anyhow be doomed to abort
due to cache capacity conflicts. A similar cache capacity-due abort may even be
experienced in case of single HTM-based transaction instance, just depending
on the transaction data set, which might exceed the cache capacity.

To cope with the runtime adaptive selection of the threshold value, we rely
on a hill climbing scheme based on the following parameters, easily measurable
at runtime across successive wall-clock-time windows:

— Trru, the total processing time spent across all the worker threads while
processing events (either committed or aborted) via HTM support

— COMMITyrn, the total number of committed events whose speculative
execution has been based on HTM support;

— Tsor¢, the total processing time spent across all the worker threads while
processing events (either committed or aborted) that are made recoverable
via software-based support (here we include the time spent for instrumenta-
tion code used to generate undo code blocks, plus the time for running the
undo code blocks in case the events are eventually undone);

— COMMITs,y¢, the total number of committed events whose execution has
been based on the software support for recoverability.

By the above quantities, we compute the so called work-value ratio (WVR)
for both HTM-based and software-based recoverability just like:

Tarm Tsoft

w == VReoft = 1
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3 Other kind of delays, such as operating system sleeps, are unfeasible since any

user/kernel transition will lead an HTM-based transaction to abort deterministi-

cally on current HTM-equipped processors.



which express the average amount of CPU time required for performing useful
work (namely, for processing an event that is not undone) with the two different
recoverability supports. Then, the threshold value T'H R determining the commit
horizon distance (evaluated as event count) beyond which we consider it more
convenient to process the event via software reversibility, rather than HTM-based
one, is increased or decreased depending on whether the relation WV Rgrayr <
WV Rsopt is verified (as computed on the basis of statistics, on the baseline
parameters listed above, collected in the last observation window). In order to
avoid stalling in local minima (e.g. due to the avoidance of runtime samples for
any of the above listed parameters), we intentionally perturb TH R by +1 within
the hill climbing scheme if its value reaches either zero or the number of threads
currently running in the PDES platform.

3.3 Engine Architecture

As mentioned, our engine allows the co-existence of hardware-based and software-
based reversibility facilities. While introducing hardware-based reversibility facil-
ities is somehow easy—it can be done using the primitives TRANSACTION_START,
TRANSACTION_END, and TRANSACTION_ABORT to drive event processing—software-
based reversibility requires a bit more care, especially when targeting full trans-
parency to the application-level developer. To cope with this issue, we rely on
static binary instrumentation. In particular, we exploit the Hijacker [14] open-
source customizable static binary instrumentation tool. Using this tool, we are
able (before the final linking stage of the application-level simulation model) to
identify any memory writing instruction (either a simple mov or a more complex
ones, like cmove or movs instructions) and to place just before each memory-
update instruction a call to a reverse_generator module which reads the cur-
rent value of the target memory location so as to directly generate the reverse
instruction able to undo the corresponding side effect according to the proposal
in [3]. The sequence of reversing instructions for a same event forms the undo
code block of the event. Clearly, the instrumented and the non-instrumented ver-
sions of the application modules also need to coexist (since the non-instrumented
version is the one to be run in case of HTM-based reversibility). Such coexistence
has been achieved by using a multi-coding scheme when rewriting the ELF of
the program at instrumentation time, and by identifying the entry points to the
two versions of code (instrumented and not) within the same executable using
function pointers exposed to the PDES engine.

In our implementation the reversing instructions associated with an event
(those forming the undo code block of the event) are organized into a reverse
window, which is used as a stack of negative instructions that can be invoked via
a call. Correct execution of an undo code block is ensured by the presence of a
ret instruction at the end of the reverse window. Also, if the forward execution
of an event updates multiple times the same memory location, only the first
instruction updating that location should be associated with the generation of
an inverse instruction, since the following updates would be anyhow undone by



Algorithm 1 Shared Lock Acquisition/Release

1: int lock_vector[n]
2: double timestamp[n] > To avoid priority inversion
3: int thread_id[n] > To avoid priority inversion
4: procedure Lock_LP(e, LP, mode, locking)
5: if mode = EXCLUSIVE then
6: acquired < false
7 while —acquired A locking do
8: while lock_vector[LP] > 0 do
9: nop
10: old_lock < lock_vector[LP]
11: if CAS(-1, old_lock, lock vector[LP]) then
12: acquired < true
13: else
14: acquired <« false
15: while —acquired A locking do
16: while lock_vector[LP] < 0 do
17: nop
18: old_lock < lock_vector[LP]
19: if CAS(old lock + 1, old_lock, lock vector[LP]) then
20: acquired < true
21: if —acquired then
22: atomically {
23: timestamp[LP] < T'(e)
24: thread_id[LP] <+ thread_id
25:
26: return acquired

27: procedure UnrLock LP(LP, mode)
28: if mode = EXCLUSIVE then

29: lock_vector[LP] + 0

30: else

31: do

32: old_lock < lock vector[LP]

33: while = CAS(old_lock — 1, old_lock, lock_vector[LP])

the first inverse instruction. We therefore employ a fast hashmap to keep track of
destination addresses within a forward event. Whenever reverse_generator is
activated, this hashmap is queried to determine whether the destination address
was already involved in a negative instruction generation.

As mentioned before, to ensure consistency and minimize the effects of data
contention on HTM-based execution of events, we must ensure that at no time
two different worker threads can execute both software-reversible and hardware-
reversible events at once, which target the same LP state. In fact, if this would
happen, we might incur the risk of having less valuable work to invalidate more
valuable one (since the HTM-based transaction would be aborted if its data
set would overlap the write set of the event executed via software-based re-
versibility). Also, we cannot allow two (or more) events run via software-based
reversibility to simultaneously target the same LP state. In fact, these events
would not be regulated by any transactional execution scheme*. To this end,
we rely on a synchronization mechanism similar in spirit to an atomic shared
read/write lock [4]. Whenever a worker thread extracts an event from the shared

* The undo code blocks guarantee reversibility of memory updates limited to events
executing the updates on the LP state in isolation, which complies with classical
PDES where each LP is an intrinsically sequential entity.



event pool, it first determines whether it should execute it using hardware-based
or software-based reversibility according to the policy introduced in Section 3.2.
If the selected execution mode is HTM-based, the worker thread tries to acquire
the lock on the target LP in a non-exclusive way, which nevertheless fails (i.e.,
requires spinning) in case any other worker thread already took it in an exclu-
sive way. On the other hand, if the selected execution mode is based on software
reversibility, the worker thread tries to acquire the lock in an exclusive way, yet
this operation requires spinning if at least one worker thread has non-exclusively
taken the lock. Nevertheless, this approach might lead to some priority inversion,
among the threads which are running more valuable events via HTM support and
threads which are running less valuable events via software-based reversibility.
To avoid this, we use a locking flag to instruct the algorithm to avoid spin-
ning if it was not possible, for any reason, to acquire the lock—namely, setting
locking to false transforms the lock into a trylock. Therefore, if the lock is not
taken, two additional values in two arrays are updated atomically: timestamp
and thread_id, which are exploited on a per-LP basis. In particular, the worker
thread registers the timestamp it has an event to process at, and its thread id.
The latter value is only used to create a total order among threads in case simul-
taneous events are present, to avoid possible deadlock conditions. These values
are periodically inspected by other worker threads (upon a safety check for the
current processed event, which fails), so as to determine whether some higher
priority event is waiting. In that case, if the work carried out is not likely to
be committed shortly, thanks to the reversibility supports it gets squashed, so
that higher priority is given immediately to events at a smaller timestamp. Algo-
rithm 1 shows the lock management pseudo-code, which relies on the Compare
and Swap (CAS) read-modify-write primitive to increase/decrease the value of a
shared per-LP counter. Value -1 for the counter means that the lock is exclusively
taken, while value 0 indicates that no thread is running an event bound to the
LP. A positive value is a sort of reference counter which tells how many worker
threads are concurrently executing events via hardware-based reversibility.

We can now discuss the organization of the main loop of threads within our
speculative PDES engine, whose pseudo-code is shown in Algorithm 2. Essen-
tially, it is made up by three different execution paths, each one associated with
one of the different execution modes. Initially, a call to a FETCH() procedure al-
lows to extract from the shared event pool the event with the smallest timestamp.
Then, a statistical approximation of the number of events which are expected
to fall before the currently fetched event (since others my still be processed or
might be produced as a result of the processing) is computed as:

T(e) — commit_horizon

(2)

average timestamp _increment

. . . commit horizon
where average timestamp increment is computed as —
— — total _committed__events

(®). This value, together with the threshold THR (see Section 3.2), is used to

% For non stationary models, where the distribution of the timestamp increment be-
tween successive events can change over time in non-negligible way, this same statis-



Algorithm 2 Main loop

1: procedure MaixLoopr

2 new _events = () > Set of events generated during the execution of an event
3 while —endSimulation do
4 e <+ FercH()
5: if e = NULL then
6: goto 3
7 cvents before T(e) Acommztih?rzzon
- average timestamp increment
8 if SAFe() then > Safe execution: on the commit horizon
9 Lock LP((e, LP(e), NON EXCLUSIVE, true))
10: new events + ProcessEVENT(e)
11: UnLock _LP(LP(e), NON_EXCLUSIVE)
12: else if cvents_before < THR then > HTM-based execution: high likelihood region
13: if - Lock LP((e, LP(e), NON EXCLUSIVE, false)) then
14: goto 7
15: BEeGINTRANSACTION( )
16: new events + ProcessEVENT(e)
17: THROTTLE(events _before)
18: if Sare() then
19: CoMMITTRANSACTION( )
20: Unpock LP(LP(e), NON EXCLUSIVE)
21: else
22: ABORTTRANSACTION( )
23: UnLock_LP(LP(e), NON_EXCLUSIVE)
24: goto 7
25: else > Software-reversible execution: low likelihood region
26: if - Lock LP((e, LP(e), EXCLUSIVE, false)) then
27: goto 7
28: SerupUNpoCopEBLOCK( )
29: new _events < PROCESSEVENT REVERSIBLE(e)
30: while - Sarg() do
31: if timestamp|LP] < T'(e) V ( timestamp[LP] = T'(e)A thread_id[LP] < tid) then
32: Unrock LP(LP(e), EXCLUSIVE)
33: UNDOEVENT(e)
34: new_events = 0
35: goto 7
36: FLusH(e, new events)
37: atomically {
38: if thread_id[LP] = tid
39: timestamp|LP] < T'(e)
40: thread_id[LP] <« tid

determine whether a certain event might be more valuable or not, thus requiring
either HTM-support or software-based reversibility (line 12). Additionally, it an
event is executed exploiting HTM, this value drives as well the selection of a
delay before checking again the safety of the corresponding transaction (namely,
whether the timestamp of the event has in the meanwile become the commit
horizon), so as to avoid making it doomed with a high likelihood (line 17).

In case of a safe execution, i.e. the execution of the event on the commit hori-
zon (lines 8-11), we take a non-exclusive lock, which is used to inform any other
thread that the destination LP is currently processing an event. This avoids that
any other worker thread starts processing an event via software-based reversibil-

tic could be simply rejuvenated periodically, by discarding non-recent events com-
mitments and subtracting from commit _horizon the upper limit of the discarded
simulation time portion.



ity at the same LP while we are processing in safe mode. Moreover, we configure
the lock to spin because the worker thread in charge of executing this event has
the highest priority and any other competing thread will try to give it permission
to continue execution as fast as possible.

For a transactional execution (lines 12-24), we use the trylock version of the
per-LP lock. If we fail to acquire the lock, the execution resumes from line 7,
meaning that we check again whether the extracted event has become safe or
not, in the meanwhile. Otherwise, as already explained before, we start executing
the event within an HTM-based transaction, introducing an artificial delay—via
the THROTTLE(events before) call—which is proportional to the estimated
number of events in between the commit horizon and the currently executed
event. If the transaction becomes doomed (lines 21-24) the execution restarts
from line 7, so as to check whether the just-aborted event has become safe.

The case of execution via software reversibility (lines 25-34) is a bit different.
In fact, first we have to take an exclusive lock—in a trylock fashion, for the same
consideration related to the HTM execution—and we have to setup the undo
code block, by allocating a reverse window buffer. At the end of the execution
of the event, similarly to the HTM-based case, we have to wait for the event
to become safe. Nevertheless, since this execution entails taking an exclusive
lock, we continuously check whether some other thread is registered at the same
LP with a higher priority (line 31). This situation might arise due to another
event, executed at any other worker thread, generating a new event to the same
LP with a timestamp smaller than the one of the event currently processed
via software-based reversibility. Failing to make this specific check could either
hamper liveness (a thread waits its event to be the commit horizon, which cannot
happen) or correctness (events are committed out of order). Line 31, paired with
lines 21-25 of Algorithm 1, is able to ensure both correctness and liveness.

Whenever an event is executed, and then committed thanks to safety assur-
ance, in whichever execution mode, we first place into the calendar queue any
possible new event generated (line 36), and we then unregister the thread from
the timestamp and thread_id vectors which are used to avoid priority inversion
(lines 37-40). For the implementations of FETCH(), FLUSH(), and SAFE(), we
refer the reader to [19].

4 Experimental Results

We tested our proposal with the Phold benchmark for PDES systems [8]. This is
made up by synthetic LPs whose behavior can be tailored depending on test sce-
nario one would like to generate. We included 1024 LPs in the simulation model,
each one scheduling events for itself or for the other objects. Specifically, upon
processing an event, the probability to schedule a new event destined to another
simulation object has been set to 0.2, which is representative of scenarios with
non-minimal interactions across the simulated parts. Also, the initial population
of events has been set to 1 event per simulation object, while the timestamp
increment determining the actual timestamp of newly scheduled events has been



set to follow the exponential distribution with mean value equal to one simula-
tion time unit. The model lookahead has been set to a minimal value computed
as the 0.5% of the average timestamp increment. Further, the overall simula-
tion is partitioned in to 4 phases where the LPs exhibit alternate behaviors in
terms of updates into their states. Specifically, phases 1 and 3 are write-mild
since each event only updates the classical counter of processed events and a
few other statistical values within the LP state. Contrariwise, phases 2 and 4
are write-intensive, since event processing also updates an array of counters’ val-
ues, still embedded with the LP state (particularly, by performing 500 updates
on the array entries). Overall, the different phases mimic varying locality and
memory access profiles one might expect from real applications’ workloads. A
classical busy-loop characterizing PHOLD event processing steps is also added
which is set to generate an average event granularity of about 25 microseconds.
In this experiment, we compare the performance of our mixed hardware- and
software-based approach to both pure hardware-based reversibility (as proposed
in [19]) and pure software-based one exclusively relying on undo code blocks (this
is achieved by preventing any thread to exploit HTM in our engine). We did not
compare with the performance achievable by some last generation traditional
speculative PDES platform just because the data reported in [19] have shown
that event granularity values of a few (tens of) microseconds do not allow this
type of platforms to provide significative speedup values (due to the fact that
they are based on explicit partitioning of the workload across the threads, and
on explicit message passing for event cross-scheduling, thus resulting much more
adequate for larger grain simulation models). Overall, we assessed our proposal
with a workload configuration just requiring alternative forms of speculative
parallelization (like the one we propose), as compared to the classical ones.

We have run this benchmark by varying the number of employed threads
from 1 to the maximum number of physical CPU-cores in the underlying HTM-
equipped machine, which is equipped with two Intel Haswell 3.5 GHz processors,
24 GB of RAM and runs Linux—kernel 3.25. For the case of single-thread runs,
the execution time values are those achieved by simply running the application
code on top of a calendar queue scheduler.

In Figure 3 we report the observed execution time values while varying the
number of threads (each reported value resulting as the average over 5 different
samples). The data clearly show how our mixed HW/SW approach to reversibil-
ity outperforms both the others, with a maximum gain of up to 10% vs the pure
HW approach and of 30% vs the pure SW approach (achieved when running with
4 threads). Such a gain by the mixed approach is clearly related to the fact that
write-intensive phases lead the pure software recoverability support to become
more intrusive, because of costly generation of bigger undo code blocks, which
does not, pay-off compared to the reliance on pure HTM-based reversibility. On
the other hand, the pure HTM-based approach does not allow the maximization

6 The hyper-threading support offered by the processors has been excluded just to
avoid cross-thread interferences—due to conflicting hyper-threads’ accesses to hard-
ware resources—which might alter the reliability of our analysis
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of the usefulness of the carried out speculative work for larger thread counts. In
fact, the slope of the execution time curve for the pure HW approach becomes
slightly worse than the one of the pure SW approach when moving from 3 to 4
threads. Our mixed approach is able to get the best of the two by just avoiding
excessive aborts of HTM transactions when relying on larger thread counts, also
reducing the cost of undo code blocks generation thanks to a fraction of events
executed with HTM support. The data reported in Figure 4 show how the pure
HW approach suffers from a kind of thrashing when increasing the thread count,
while the pure SW approach has minimal incidence of events undo, and that the
mixed approach avoids the thrashing phenomenon just like the pure SW ap-
proach does (but has less overhead since executes a portion of the events via
HTM support).

5 Conclusions

We have presented a speculative PDES engine where reversibility of causal incon-
sistent events is based on a mix of hardware and software facilities. The hardware
part relies on HTM support offered by modern processors, particularly the Intel
Haswell, while software reversibility is based on transparent instrumentation and
on the dynamic generation of blocks of code able to undo memory side effects.
We have shown via an experimental study with a classical benchmark how the
proposed mixed approach can overcome the drawbacks of both the two baseline
ones, in terms of delivered performance of by the simulation engine.
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