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Abstra
t. Spe
ulative parallel dis
rete event simulation requires a sup-

port for reversing pro
essed events, also 
alled state re
overy, in 
ase they

reveal as 
ausally in
onsistent. In this arti
le we present an approa
h

where state re
overy relies on a mix of hardware- and software-based

te
hniques. Parti
ularly, we exploit the Hardware Transa
tional Memory

(HTM) support, as o�ered by Intel Haswell CPUs, to pro
ess events by

the appli
ation 
ode as in-memory transa
tions, whi
h are possibly 
om-

mitted only after their 
ausal 
onsisten
y is veri�ed. At the same time,

we exploit an innovative software-based reversibility te
hnique, fully rely-

ing on transparent software instrumentation targeting x86/ELF obje
ts,

whi
h enables undoing side e�e
ts by events with no a
tual ba
kward re-


omputation. Ea
h thread within our multi-thread spe
ulative pro
essing

engine dynami
ally (namely, on a per-event basis) sele
ts whi
h re
overy

mode to rely on (hardware vs software) depending on varying runtime

dynami
s. The latter are 
aptured by a lightweight model indi
ating to

what extent the HTM support (not paying any instrumentation 
ost) is

e�
ient, and after what level of events' parallelism it starts degrading

its performan
e, e.g., due to ex
essive data 
on�i
ts while manipulating


ausality meta-data within HTM based transa
tions. We released our

implementation as open sour
e software and provide some experimental

results for an assessment of its e�e
tiveness.

1 Introdu
tion

When dealing with Dis
rete Event Simulation (DES), its move onto parallel

ar
hite
tures has been histori
ally based on the Parallel Dis
rete Event Simula-

tion (PDES) paradigm [7℄. In this kind of simulation, as well as in the traditional

DES paradigm, the evolution of the system is des
ribed in terms of timestamped

dis
rete events, whi
h are impulsive�they happen at a spe
i�
 simulation time

instant, the timestamp of the event, and have no duration. Parallelism is a
hieved

in PDES by partitioning the simulation model into several distin
t entities, 
alled

simulation obje
ts or logi
al pro
esses (LPs). Ea
h LP is asso
iated with a pri-

vate simulation state�the whole simulation state is the union of these private

states�and the exe
ution of an impulsive simulation event at any LP produ
es

a state transition on the state of the LP itself. The privateness of the LPs'

simulation states implies that information ex
hange a
ross di�erent LP is only

supported via the ex
hange of events, whi
h 
an be generated (in any number)

during the exe
ution of whi
hever event.



PDES spe
ulative exe
ution [10℄ allows pro
essing events with no previous

assuran
e of their 
ausal 
onsisten
y. This means that an event destined to some

LP 
an be dispat
hed for exe
ution with no guarantee at all regarding the fa
t

that no other events with a higher priority, say lower timestamp, will be ever re-


eived by that same LP in the future. Su
h events, referred to as straggler events,

are the a-posteriori materialization of a timestamp-order violation, also referred

to as 
ausal violation. Su
h violations require some state re
overy (reversibility)

support for undoing the side e�e
ts on the LPs' states whi
h are asso
iated with

in
onsistent pro
essing of events.

In literature, the reversibility support has been traditionally based on pure

software implementations exploiting either 
he
kpointing te
hniques (see, e.g.,

[15, 16℄) or reverse 
omputing ones (see, e.g., [2℄). A few other approa
hes have

been based on o�-loading the 
he
kpoint task to o�-the-shelf or un
onventional

hardware [9, 18℄. More re
ently, the Hardware Transa
tional Memory (HTM)

support o�ered by modern pro
essors, su
h as the Intel Haswell, has been taken

into 
onsideration in order to enable the spe
ulative exe
ution of events as in-

memory transa
tions [19℄, making them automati
ally re
overable with low over-

head thanks to the relian
e on the hardware transa
tional 
a
he. However, to

the best of our knowledge, there has been no attempt to exploit hardware and

software based reversibility in a synergi
 
ombination for spe
ulative PDES.

In this arti
le we present a spe
ulative PDES engine, oriented to multi-
ore

ma
hines, whi
h is based on su
h a kind of hardware/software 
ombination. Par-

ti
ularly, we enable ea
h 
on
urrent worker thread operating within the engine

to dynami
ally sele
t the best suited reversibility support among two: (1) one

relying on HTM fa
ilities inspired to [19℄ and (2) another relying based on soft-

ware reversibility, parti
ularly in the form of undo 
ode blo
ks [3℄. The dynami


sele
tion is based on the 
onsideration that not all the spe
ulatively exe
uted

events are valuable in the same manner when run as HTM transa
tions due

to several reasons. A �rst one deals with the fa
t that the �nal 
ommit of the

transa
tion needs to 
he
k/update 
ausality meta-data, hen
e the higher the de-

gree of 
on
urren
y while a

essing these meta-data, the higher the likelihood of

yielding to data 
on�i
ts that lead to the abort of the HTM transa
tions. Also,


ausality meta-data are updated a

ording to the progress of the 
ommit horizon

of the PDES run, as determined along time by the 
ommit of the event with the

lowest timestamp. Hen
e spe
ulatively pro
essed events with HTM support that

are further ahead of the 
ommit horizon will need to �nd 
ausality meta-data

re�e
ting more updates upon trying to 
ommit, whi
h again leads to an abort if

these updates were not yet issued by the 
ommitment of events with higher pri-

ority, say lower timestamps. Finally, the HTM support is limited to transa
tions

whose read/write set �ts (with no 
apa
ity 
on�i
t by other 
ores of the same

CPU) the transa
tional hardware 
a
he. Hen
e for models with events that (or

exe
ution phases where the events) have large data sets the likelihood of su
-


essfully 
ommitting the 
orresponding HTM transa
tions may be (signi�
antly)

redu
ed.



We over
ome these drawba
ks in our spe
ulative PDES engine by dynami-


ally enabling any worker thread to pro
ess an event not as an HTM transa
tion

(just to redu
e the likelihood of running non-valuable transa
tions), but rather

via a modi�ed version of the original event-handler 
ode. This version is trans-

parently instrumented in order to be able to generate (at runtime) the minimal

set of ma
hine instru
tions (the so 
alled undo 
ode blo
k) that allows revers-

ing any memory side e�e
t. In the instrumentation pro
ess we target x86/ELF

obje
ts. The possibility to 
ommit events run with software reversibility is no

longer bound to the possibility to 
ommit an HTM transa
tion. This leads to

the s
enario where the engine is able to improve fruitful usage of 
omputing

resour
es just be
ause of the possibility to exploit the HTM support in the most

valuable manner, while jointly relying on a bit more 
ostly software reversibility

when valuable hardware based reversibility would be impaired.

Clearly, the 
oexisten
e of HTM and software based reversibility (with 
on-


urrent threads relying on one or the other at a given time instant) needs solu-

tions in order to avoid that the two te
hniques do not interfere with ea
h other.

Spe
i�
ally, valuable HTM work should not be interfered by software reversibil-

ity based one. For the 
ase of 
on
urrent spe
ulatively pro
essed events bound to

the same LP (hen
e operating within the same lo
al state) this is a
hieved by in-

trodu
ing a prioritization me
hanism that leads an HTM pro
essed event to gain

higher priority with respe
t to the events pro
essed with the software reversibil-

ity support. So the latter will never 
on
urrently a

ess (any portion of) the

overall data set�say LP state as a whole�possibly targeted by the HTM trans-

a
tion, hen
e not leading to its abort. On the other hand, we still enable inter-LP


on
urren
y, thus enabling the so 
alled weak-
ausality model [17℄, by not pre-

venting multiple HTM transa
tions to su

essfully operate on disjoint data sets

within the LP state. Also, given that in our software reversibility s
heme we

avoid the usage of 
he
kpointing (in fa
t the undo 
ode blo
k is not a log of

data, rather of ma
hine instru
tions), we avoid at all the typi
ally large usage

of memory by 
he
kpointing (only partially resolved by in
remental 
he
kpoint-

ing s
hemes) hen
e further redu
ing the (potential) problems related to limited


a
he 
apa
ity issues of the HTM support and 
on�i
ting 
a
he a

esses by the

threads.

Our engine has been released as open sour
e software

1

, and we also provide

some experimental data for an assessment of its e�e
tiveness when running the


lassi
al Phold PDES ben
hmark [8℄ on an Intel Haswell pro
essor, with HTM

support, equipped with 4 physi
al 
ores.

The remainder of this arti
le is stru
tured as follows. In Se
tion 2 we dis-


uss related work. In Se
tion 3 we present the methodology standing behind

hardware- and software-reversibility based exe
ution of PDES models, and we

des
ribe the design prin
iples 
hara
terizing our mixed simulation engine ar
hi-

te
ture. Se
tion 4 presents an experimental assessment of our proposal.

1

https://github.
om/HPDCS/htmPDES/tree/reverse



2 Related Work

The state restore operation is of fundamental importan
e in spe
ulative PDES,

and has therefore been extensively studied in the literature. Two main in
arna-

tions of state restore s
hemes have been proposed, one based on state 
he
kpoint

and reload, and one based on reverse 
omputing. The former �avour is based on

the possibility for the simulation engine to know what are the memory bu�ers

that keep ea
h LP's simulation state, whi
h are 
opied onto a separate bu�er�


alled the simulation snapshot�at a given point of the exe
ution. In this way, un-

doing a 
hain of wrongly-
omputed events (namely, state updates) boils down to

sele
ting a simulation snapshot whi
h is still 
onsistent (i.e., it was taken at a sim-

ulation time smaller than the straggler's one). This snapshot is then 
opied onto

the LP live state image, thus undoing the e�e
ts of 
ausal-in
onsistent events.

This approa
h is both memory- and 
omputationally-intensive, and might lead

to poor simulation performan
e, sin
e if no 
ausal in
onsisten
y is dete
ted at all,

resour
es are spent for taking unne
essary snapshots. To this end, several pro-

posals have addressed the possibility to take state snapshots less frequently (see,

e.g., [16℄) or in an in
remental way (see, e.g., [21℄) or 
ombining the two s
hemes

(see, e.g., [15, 20℄). Other solutions rely on hardware support to o�oad from the

CPU the memory 
opy for taking the 
he
kpoint. Spe
i�
ally, the work in [18℄

proposed to exploit programmable DMA engines to perform the 
opy, while [9℄

presents the design of a so 
alled rollba
k-
hip, a hardware fa
ility that auto-

mati
ally saves old versions of state variables upon their updates. Both these

approa
hes, redu
e the CPU-time for 
he
kpointing tasks but do not dire
tly


ope with memory usage.

Reverse 
omputing is instead based on the notion of reverse events. A reverse

event ē asso
iated with a forward event e is an event su
h that if the exe
ution

of e produ
es the state transition e(S) → S′, the exe
ution of ē on S′ produ
es

the inverse transition ē(S′) → S. Su
h reverse events 
ould be implemented

manually [2℄ or via 
ompiler-assisted approa
hes [12℄. Although reverse 
ompu-

tation is mu
h less memory-greedy than 
he
kpointing, the main issue with this

approa
h lies in the rollba
k length, namely the number of events whi
h must

be undone upon a state restore operation. In parti
ular, the total 
ost of a roll-

ba
k operation is dire
tly proportional to the number of undone events and their

granularity, as reverse events re-pro
ess (although in a reversed fashion) all the

steps of a forward event, even if some of them are not dire
tly related to state

updates.

The more re
ent proposal in [3℄ has ta
kled the state restore operation via

software reversibility through the adoption of undo 
ode blo
ks. The goal of this

approa
h is to redu
e the time-
omplexity of the rollba
k operation, making the

reversibility of events independent of the forward exe
ution's granularity. This is

done by relying on stati
 binary instrumentation, targeting x86-64/ELF obje
ts,

where the simulation model's 
ode is s
anned sear
hing for all ma
hine-level

instru
tions whi
h entail a memory update. These instru
tions are transparently

augmented with an ad-ho
 routine whi
h 
omputes the target address of the

memory write just before it takes pla
e, so that the original value is dire
tly



pa
ked into an on-the-�y assembled ma
hine instru
tion whose exe
ution restores

it. All these runtime generated assembly instru
tions are stored into an undo


ode blo
k whi
h, when exe
uted, undoes all the e�e
ts of the exe
ution of

a forward event on the simulation state. This solution �nds a good balan
e

between in
remental 
he
kpointing�no a
tual meta-data are required to restore

a previous state�and reverse 
omputing�the exe
ution 
ost of an event is no

longer dependent on the 
omplexity of forward events. Nevertheless, if an event

is unlikely to be undone due to a rollba
k operation, the 
ost of tra
ing memory

updates and generating undo 
ode blo
k is paid unne
essarily.

Another re
ent proposal [19℄ exploits HTM fa
ilities o�ered by modern Intel

Haswell CPUs to allow running simulation events within transa
tions. An ad-ho


routine determines whether the exe
ution of an event is safe or not, by 
he
king


ompa
t shared meta-data keeping tra
k of the simulation time asso
iated with

the events that are being run by the 
on
urrent threads. The event asso
iated

with the smallest timestamp is 
onsidered safe, and it is therefore the only event

whi
h is exe
uted outside of a transa
tion. By using this s
heme, all the events

whi
h are transa
tionally exe
uted are automati
ally aborted if a 
on�i
t on the

same data stru
tures is dete
ted. At the end of a transa
tion, the safety of the

just-exe
uted event is evaluated again, and in 
ase the event has be
ome safe, it

is then 
ommitted. In the negative 
ase, the transa
tion is immediately aborted

and (possibly) restarted, be
ause the a

ess to the shared meta-data makes it

doomed if the event is not safe yet�in fa
t, another thread will eventually update

the 
ontent of the meta-data, to indi
ate that the exe
ution of a safe event has

been 
ompleted. A dynami
 throttling strategy is used to in
rease the likelihood

of 
ommitting a transa
tion, by delaying the time instant at whi
h the shared

meta-data are a

essed.

Our work di�ers from previously published work sin
e none of the afore-

mentioned proposals makes use of a 
ombination of hardware and software re-

versibility for state restore operations. Parti
ularly, we use the results in [19℄

and [3℄ as baselines for building a mixed hardware/software re
overability sup-

port that takes the advantages of the two di�erent te
hniques As pointed out

in the introdu
tion, we dynami
ally resort to undo 
ode blo
ks (thus paying the


ost of running an instrumented 
ode version) only in 
ase valuable spe
ulative

work 
annot be 
arried out (by a thread at some point in time) via the relian
e

on HTM. Thus we pay the overhead of software reversibility only when HTM

based reversibility does not pay o� (or is inviable due to, e.g., transa
tional 
a
he


apa
ity limitations).

3 The Hardware/Software Reversibility Based Engine

3.1 Basi
s

We target a baseline spe
ulative PDES engine stru
ture that is independent of

the a
tual reversibility support, whose s
hematization is provided in Figure 1. In


omplian
e with traditional PDES, the engine supports the partitioning of the

simulation model into n distin
t LPs, ea
h one asso
iated with a unique ID in the



LP0

Simulation state

Event Handlers

LP1

Simulation state

Event Handlers

LPn-2

Simulation state

Event Handlers

LPn-1

Simulation state

Event Handlers

. . . 

Priority

Queue

Fig. 1. Basi
 engine organization.

range [0, n− 1]. Ea
h LP is asso
iated with a private simulation state (although

possibly s
attered on dynami
 memory) and with one or more event handlers

representing the 
ode blo
ks in 
harge of pro
essing the simulation events and

generating state updates, as well as of (possibly) produ
ing new events to be in-

je
ted in the system. The delivery of a simulation event to the 
orre
t handler is

demanded from the underlying simulation kernel, whi
h is also in 
harge of guar-

anteing 
onsisten
y of a shared event pool that keeps all the already s
heduled

events, as well as 
ausal 
onsisten
y of the updates o

urring on the LPs' states.

Con
erning the event pool, we rely on a shared lo
k-prote
ted global queue, par-

ti
ularly a 
alendar queue [1℄. Multiple 
on
urrent worker threads 
an extra
t

events from the event pool and 
an 
on
urrently dispat
h the exe
ution of the


orresponding LPs by a
tivating some event handler as a 
allba
k fun
tion.

3.2 Simulation Horizons and Valuability of Spe
ulative Work

In spe
ulative PDES, we 
an always identify a point on the simulation time axis

whi
h is the 
ommit horizon�
ommonly referred to as Global Virtual Time

(GVT). This is the simulation time instant that distinguishes between events

whi
h might be undone (e.g., due to some 
ausality violation) and events whi
h

will never be undone. This time instant 
an be logi
ally identi�ed by 
onsidering

that any simulation event e exe
uted at simulation time T 
an only generate

some new event e′ asso
iated with timestamp T ′ ≥ T . In fa
t, violating this

assumption would imply that an event in the future might a�e
t the past, whi
h

is 
learly a non-meaningful 
ondition for any real-world pro
ess/phenomenon.

Therefore, to identify the 
ommit horizon, it is su�
ient to identify, a
ross all the

events whi
h are 
urrently s
heduled at (or have just been pro
essed by) any LP

in the system the one asso
iated with the minimum timestamp. Su
h timestamp


orresponds to the 
ommit horizon. In fa
t, no event still to be exe
uted in the

system might produ
e a 
ausal in
onsisten
y involving the LP in 
harge of the

exe
ution of the 
ommit horizon event

2

.

With our target engine organization, the 
ommit horizon is asso
iated with

the oldest event that is 
urrently being exe
uted (or has just been exe
uted) at

any worker thread. Therefore, keeping tra
k of the 
ommit horizon boils down

to registering, for ea
h worker thread, the timestamp of the event e 
urrently

2

Simultaneous events do not violate this assumption. Nevertheless, if not properly

handled by some tie-breaking fun
tion [11, 13℄, they 
ould indu
e livelo
ks in the

spe
ulative exe
ution.



commit

horizon

high

likelihood

low

likelihood

ST

abort probability

delay required

Fig. 2. Three logi
al regions on the simulation time axis, with varying density of pend-

ing events�those still to be pro
essed, whi
h will possibly generate new ones along the

simulation time (ST) axis.

being exe
uted, by repla
ing the value only after a new event is fet
hed for

pro
essing from the event pool, so that any new event possibly produ
ed by e

has its timestamp already re�e
ted into the event pool. The 
ommit horizon 
an

be 
omputed as the minimum among the registered values.

At any time, the 
ommit horizon event 
an be 
onsidered as a safe (namely,


ausally 
onsistent) one, and therefore does not require any reversibility me
h-

anism for its exe
ution. Let us now dis
uss about the likelihood of safety of

other events to be pro
essed, whi
h stand ahead of the 
ommit horizon. Empir-

i
al eviden
e plus statisti
al 
onsiderations based on 
lassi
al distributions for

the timestamp in
rement driving the generation of events in 
ommon simulation

models (see, e.g., [5, 6℄) have shown that event patterns are, at any time, 
hara
-

terized by greater density of events, say lo
ality of a
tivities, in the near future of

the a
tual GVT. This situation is depi
ted in Figure 2. Also, su
h lo
ality tends

to move along the time axis just based on the advan
ement of the 
ommit hori-

zon. The impli
ation is that the risk of materialization of 
ausal in
onsisten
ies

when spe
ulatively pro
essing one event that is ahead of the 
ommit horizon is

somehow linked to its distan
e from su
h horizon. This is also linked to the no-

tion of lookahead of DES models, a quantity expressing the minimal timestamp

in
rement we 
an experien
e for a given model when pro
essing whi
hever event

that originates new events to be inje
ted in the system. Larger lookahead leads

to produ
e new events in the far future, hen
e those getting 
loser to (although

not 
oin
iding with) the 
urrent 
ommit horizon be
ome automati
ally safe.

By this 
onsideration, the spe
ulative pro
essing of events that are 
loser

to the 
ommit horizon looks more valuable in terms of avoidan
e of 
ausality

in
onsisten
ies, hen
e our approa
h is to enable the pro
essing of these events

as HTM-based transa
tions, say via the more e�
ient (lower overhead) re
over-

ability support. We also note that running events that are 
lose to the 
ommit

horizon as HTM-based transa
tions will also lead to faster advan
ement of su
h

horizon, as 
ompared to what we would expe
t if running them via software-

based reversibility, sin
e this would lead to longer pro
essing times due to the

overhead for produ
ing the undo 
ode blo
ks. However, an HTM-based trans-

a
tion 
an 
ommit only after events standing in the past have already been


ommitted and the 
orresponding worker threads have already updated their

entries in the meta-data array keeping their 
urrent timestamp. So, in order to



in
rease the likelihood of 
ommitting the HTM-based transa
tional exe
ution

of some event, this transa
tion typi
ally needs to in
lude a busy-loop delay en-

abling a wait phase just before 
he
king whether the meta-data were updated

3

.

Che
king the meta-data at some wrong point in time will in its turn lead to

the impossibility to re
he
k these data fruitfully in the future, sin
e the updates

o

urring between the two 
he
ks will lead to a data 
on�i
t and to the abort

of the 
he
king transa
tion. In Figure 2 we show how su
h a delay should be

sele
ted somehow proportionally to the distan
e (in terms of event 
ount) of the

event pro
essed via HTM support from the 
ommit horizon. Overall, for events

that are further ahead from the 
ommit horizon, the delay 
ould not pay o�,

hen
e a more pro�table approa
h to spe
ulatively pro
essing them is the one to

run them outside the HTM-based transa
tion, still with reversibility guarantee

a
hieved via software.

The problem of determining what is the threshold distan
e from the 
om-

mit horizon beyond whi
h HTM support does not pay o� is 
learly also related

to the interferen
e between 
on
urrent HTM-based transa
tions when using the

underlying hardware resour
es. In fa
t, if we experien
e a s
enario where two


on
urrent transa
tions both require large transa
tional 
a
he storage for exe-


uting the 
orresponding dispat
hed events, and the 
a
he is shared a
ross the


ores, then even if an event would ideally reveal as 
ausally 
onsistent upon

attempting to �nalize the transa
tions, it would anyhow be doomed to abort

due to 
a
he 
apa
ity 
on�i
ts. A similar 
a
he 
apa
ity-due abort may even be

experien
ed in 
ase of single HTM-based transa
tion instan
e, just depending

on the transa
tion data set, whi
h might ex
eed the 
a
he 
apa
ity.

To 
ope with the runtime adaptive sele
tion of the threshold value, we rely

on a hill 
limbing s
heme based on the following parameters, easily measurable

at runtime a
ross su

essive wall-
lo
k-time windows:

� THTM , the total pro
essing time spent a
ross all the worker threads while

pro
essing events (either 
ommitted or aborted) via HTM support

� COMMITHTM , the total number of 
ommitted events whose spe
ulative

exe
ution has been based on HTM support;

� Tsoft, the total pro
essing time spent a
ross all the worker threads while

pro
essing events (either 
ommitted or aborted) that are made re
overable

via software-based support (here we in
lude the time spent for instrumenta-

tion 
ode used to generate undo 
ode blo
ks, plus the time for running the

undo 
ode blo
ks in 
ase the events are eventually undone);

� COMMITsoft, the total number of 
ommitted events whose exe
ution has

been based on the software support for re
overability.

By the above quantities, we 
ompute the so 
alled work-value ratio (WVR)

for both HTM-based and software-based re
overability just like:

WVRHTM =

THTM

COMMITHTM

WVRsoft =
Tsoft

COMMITsoft

(1)

3

Other kind of delays, su
h as operating system sleeps, are unfeasible sin
e any

user/kernel transition will lead an HTM-based transa
tion to abort deterministi-


ally on 
urrent HTM-equipped pro
essors.



whi
h express the average amount of CPU time required for performing useful

work (namely, for pro
essing an event that is not undone) with the two di�erent

re
overability supports. Then, the threshold value THR determining the 
ommit

horizon distan
e (evaluated as event 
ount) beyond whi
h we 
onsider it more


onvenient to pro
ess the event via software reversibility, rather than HTM-based

one, is in
reased or de
reased depending on whether the relation WVRHTM ≤

WVRsoft is veri�ed (as 
omputed on the basis of statisti
s, on the baseline

parameters listed above, 
olle
ted in the last observation window). In order to

avoid stalling in lo
al minima (e.g. due to the avoidan
e of runtime samples for

any of the above listed parameters), we intentionally perturb THR by ±1 within
the hill 
limbing s
heme if its value rea
hes either zero or the number of threads


urrently running in the PDES platform.

3.3 Engine Ar
hite
ture

As mentioned, our engine allows the 
o-existen
e of hardware-based and software-

based reversibility fa
ilities. While introdu
ing hardware-based reversibility fa
il-

ities is somehow easy�it 
an be done using the primitives TRANSACTION_START,

TRANSACTION_END, and TRANSACTION_ABORT to drive event pro
essing�software-

based reversibility requires a bit more 
are, espe
ially when targeting full trans-

paren
y to the appli
ation-level developer. To 
ope with this issue, we rely on

stati
 binary instrumentation. In parti
ular, we exploit the Hija
ker [14℄ open-

sour
e 
ustomizable stati
 binary instrumentation tool. Using this tool, we are

able (before the �nal linking stage of the appli
ation-level simulation model) to

identify any memory writing instru
tion (either a simple mov or a more 
omplex

ones, like 
move or movs instru
tions) and to pla
e just before ea
h memory-

update instru
tion a 
all to a reverse_generatormodule whi
h reads the 
ur-

rent value of the target memory lo
ation so as to dire
tly generate the reverse

instru
tion able to undo the 
orresponding side e�e
t a

ording to the proposal

in [3℄. The sequen
e of reversing instru
tions for a same event forms the undo


ode blo
k of the event. Clearly, the instrumented and the non-instrumented ver-

sions of the appli
ation modules also need to 
oexist (sin
e the non-instrumented

version is the one to be run in 
ase of HTM-based reversibility). Su
h 
oexisten
e

has been a
hieved by using a multi-
oding s
heme when rewriting the ELF of

the program at instrumentation time, and by identifying the entry points to the

two versions of 
ode (instrumented and not) within the same exe
utable using

fun
tion pointers exposed to the PDES engine.

In our implementation the reversing instru
tions asso
iated with an event

(those forming the undo 
ode blo
k of the event) are organized into a reverse

window, whi
h is used as a sta
k of negative instru
tions that 
an be invoked via

a 
all. Corre
t exe
ution of an undo 
ode blo
k is ensured by the presen
e of a

ret instru
tion at the end of the reverse window. Also, if the forward exe
ution

of an event updates multiple times the same memory lo
ation, only the �rst

instru
tion updating that lo
ation should be asso
iated with the generation of

an inverse instru
tion, sin
e the following updates would be anyhow undone by



Algorithm 1 Shared Lo
k A
quisition/Release

1: int lo
k_ve
tor[n℄

2: double timestamp[n℄ ⊲ To avoid priority inversion

3: int thread_id[n℄ ⊲ To avoid priority inversion

4: pro
edure Lo
k_LP(e, LP, mode, lo
king)

5: if mode = EXCLUSIVE then

6: acquired ← false

7: while ¬acquired∧ lo
king do

8: while lo
k_ve
tor[LP℄ > 0 do

9: nop

10: old_lock← lock_vector[LP ]
11: if CAS(-1, old_lock, lock_vector[LP ]) then
12: acquired← true

13: else

14: acquired ← false

15: while ¬acquired∧ lo
king do

16: while lo
k_ve
tor[LP℄ < 0 do

17: nop

18: old_lock← lock_vector[LP ]
19: if CAS(old_lock + 1, old_lock, lock_vector[LP ]) then
20: acquired← true

21: if ¬acquired then

22: atomi
ally {

23: timestamp[LP℄ ← T (e)
24: thread_id[LP℄ ← thread_id

25: }

26: return acquired

27: pro
edure Unlo
k_LP(LP, mode)

28: if mode = EXCLUSIVE then

29: lock_vector[LP ]← 0

30: else

31: do

32: old_lock ← lock_vector[LP ]
33: while ¬ CAS(old_lock − 1, old_lock, lock_vector[LP ])

the �rst inverse instru
tion. We therefore employ a fast hashmap to keep tra
k of

destination addresses within a forward event. Whenever reverse_generator is

a
tivated, this hashmap is queried to determine whether the destination address

was already involved in a negative instru
tion generation.

As mentioned before, to ensure 
onsisten
y and minimize the e�e
ts of data


ontention on HTM-based exe
ution of events, we must ensure that at no time

two di�erent worker threads 
an exe
ute both software-reversible and hardware-

reversible events at on
e, whi
h target the same LP state. In fa
t, if this would

happen, we might in
ur the risk of having less valuable work to invalidate more

valuable one (sin
e the HTM-based transa
tion would be aborted if its data

set would overlap the write set of the event exe
uted via software-based re-

versibility). Also, we 
annot allow two (or more) events run via software-based

reversibility to simultaneously target the same LP state. In fa
t, these events

would not be regulated by any transa
tional exe
ution s
heme

4

. To this end,

we rely on a syn
hronization me
hanism similar in spirit to an atomi
 shared

read/write lo
k [4℄. Whenever a worker thread extra
ts an event from the shared

4

The undo 
ode blo
ks guarantee reversibility of memory updates limited to events

exe
uting the updates on the LP state in isolation, whi
h 
omplies with 
lassi
al

PDES where ea
h LP is an intrinsi
ally sequential entity.



event pool, it �rst determines whether it should exe
ute it using hardware-based

or software-based reversibility a

ording to the poli
y introdu
ed in Se
tion 3.2.

If the sele
ted exe
ution mode is HTM-based, the worker thread tries to a
quire

the lo
k on the target LP in a non-ex
lusive way, whi
h nevertheless fails (i.e.,

requires spinning) in 
ase any other worker thread already took it in an ex
lu-

sive way. On the other hand, if the sele
ted exe
ution mode is based on software

reversibility, the worker thread tries to a
quire the lo
k in an ex
lusive way, yet

this operation requires spinning if at least one worker thread has non-ex
lusively

taken the lo
k. Nevertheless, this approa
h might lead to some priority inversion,

among the threads whi
h are running more valuable events via HTM support and

threads whi
h are running less valuable events via software-based reversibility.

To avoid this, we use a locking �ag to instru
t the algorithm to avoid spin-

ning if it was not possible, for any reason, to a
quire the lo
k�namely, setting

locking to false transforms the lo
k into a trylo
k. Therefore, if the lo
k is not

taken, two additional values in two arrays are updated atomi
ally: timestamp

and thread_id, whi
h are exploited on a per-LP basis. In parti
ular, the worker

thread registers the timestamp it has an event to pro
ess at, and its thread id.

The latter value is only used to 
reate a total order among threads in 
ase simul-

taneous events are present, to avoid possible deadlo
k 
onditions. These values

are periodi
ally inspe
ted by other worker threads (upon a safety 
he
k for the


urrent pro
essed event, whi
h fails), so as to determine whether some higher

priority event is waiting. In that 
ase, if the work 
arried out is not likely to

be 
ommitted shortly, thanks to the reversibility supports it gets squashed, so

that higher priority is given immediately to events at a smaller timestamp. Algo-

rithm 1 shows the lo
k management pseudo-
ode, whi
h relies on the Compare

and Swap (CAS) read-modify-write primitive to in
rease/de
rease the value of a

shared per-LP 
ounter. Value -1 for the 
ounter means that the lo
k is ex
lusively

taken, while value 0 indi
ates that no thread is running an event bound to the

LP. A positive value is a sort of referen
e 
ounter whi
h tells how many worker

threads are 
on
urrently exe
uting events via hardware-based reversibility.

We 
an now dis
uss the organization of the main loop of threads within our

spe
ulative PDES engine, whose pseudo-
ode is shown in Algorithm 2. Essen-

tially, it is made up by three di�erent exe
ution paths, ea
h one asso
iated with

one of the di�erent exe
ution modes. Initially, a 
all to a Fet
h() pro
edure al-

lows to extra
t from the shared event pool the event with the smallest timestamp.

Then, a statisti
al approximation of the number of events whi
h are expe
ted

to fall before the 
urrently fet
hed event (sin
e others my still be pro
essed or

might be produ
ed as a result of the pro
essing) is 
omputed as:

T (e)− commit_horizon

average_timestamp_increment
(2)

where average_timestamp_increment is 
omputed as

commit_horizon

total_committed_events

(

5

). This value, together with the threshold THR (see Se
tion 3.2), is used to

5

For non stationary models, where the distribution of the timestamp in
rement be-

tween su

essive events 
an 
hange over time in non-negligible way, this same statis-



Algorithm 2 Main loop

1: pro
edure MainLoop

2: new_events = ∅ ⊲ Set of events generated during the exe
ution of an event

3: while ¬endSimulation do

4: e ← Fet
h( )

5: if e = NULL then

6: goto 3

7: events_before←
T (e) − commit_horizon

average_timestamp_increment

8: if Safe( ) then ⊲ Safe exe
ution: on the 
ommit horizon

9: Lo
k_LP((e, LP (e), NON_EXCLUSIVE, true))
10: new_events ← Pro
essEvent(e)

11: Unlo
k_LP(LP (e), NON_EXCLUSIVE)
12: else if events_before ≤ THR then ⊲ HTM-based exe
ution: high likelihood region

13: if ¬ Lo
k_LP((e, LP (e), NON_EXCLUSIVE, false)) then
14: goto 7

15: BeginTransa
tion( )

16: new_events ← Pro
essEvent(e)

17: Throttle(events_before)

18: if Safe( ) then

19: CommitTransa
tion( )

20: Unlo
k_LP(LP (e), NON_EXCLUSIVE)
21: else

22: AbortTransa
tion( )

23: Unlo
k_LP(LP (e), NON_EXCLUSIVE)
24: goto 7

25: else ⊲ Software-reversible exe
ution: low likelihood region

26: if ¬ Lo
k_LP((e, LP (e), EXCLUSIVE, false)) then
27: goto 7

28: SetupUndoCodeBlo
k( )

29: new_events ← Pro
essEvent_Reversible(e)

30: while ¬ Safe( ) do
31: if timestamp[LP℄ < T (e) ∨ ( timestamp[LP℄ = T (e)∧ thread_id[LP℄ < tid) then
32: Unlo
k_LP(LP (e), EXCLUSIVE)
33: UndoEvent(e)

34: new_events = ∅
35: goto 7

36: Flush(e, new_events)

37: atomi
ally {

38: if thread_id[LP℄ = tid

39: timestamp[LP℄ ← T (e)
40: thread_id[LP℄ ← tid

41: }

determine whether a 
ertain event might be more valuable or not, thus requiring

either HTM-support or software-based reversibility (line 12). Additionally, it an

event is exe
uted exploiting HTM, this value drives as well the sele
tion of a

delay before 
he
king again the safety of the 
orresponding transa
tion (namely,

whether the timestamp of the event has in the meanwile be
ome the 
ommit

horizon), so as to avoid making it doomed with a high likelihood (line 17).

In 
ase of a safe exe
ution, i.e. the exe
ution of the event on the 
ommit hori-

zon (lines 8�11), we take a non-ex
lusive lo
k, whi
h is used to inform any other

thread that the destination LP is 
urrently pro
essing an event. This avoids that

any other worker thread starts pro
essing an event via software-based reversibil-

ti
 
ould be simply rejuvenated periodi
ally, by dis
arding non-re
ent events 
om-

mitments and subtra
ting from commit_horizon the upper limit of the dis
arded

simulation time portion.



ity at the same LP while we are pro
essing in safe mode. Moreover, we 
on�gure

the lo
k to spin be
ause the worker thread in 
harge of exe
uting this event has

the highest priority and any other 
ompeting thread will try to give it permission

to 
ontinue exe
ution as fast as possible.

For a transa
tional exe
ution (lines 12-24), we use the trylo
k version of the

per-LP lo
k. If we fail to a
quire the lo
k, the exe
ution resumes from line 7,

meaning that we 
he
k again whether the extra
ted event has be
ome safe or

not, in the meanwhile. Otherwise, as already explained before, we start exe
uting

the event within an HTM-based transa
tion, introdu
ing an arti�
ial delay�via

the Throttle(events_before) 
all�whi
h is proportional to the estimated

number of events in between the 
ommit horizon and the 
urrently exe
uted

event. If the transa
tion be
omes doomed (lines 21�24) the exe
ution restarts

from line 7, so as to 
he
k whether the just-aborted event has be
ome safe.

The 
ase of exe
ution via software reversibility (lines 25�34) is a bit di�erent.

In fa
t, �rst we have to take an ex
lusive lo
k�in a trylo
k fashion, for the same


onsideration related to the HTM exe
ution�and we have to setup the undo


ode blo
k, by allo
ating a reverse window bu�er. At the end of the exe
ution

of the event, similarly to the HTM-based 
ase, we have to wait for the event

to be
ome safe. Nevertheless, sin
e this exe
ution entails taking an ex
lusive

lo
k, we 
ontinuously 
he
k whether some other thread is registered at the same

LP with a higher priority (line 31). This situation might arise due to another

event, exe
uted at any other worker thread, generating a new event to the same

LP with a timestamp smaller than the one of the event 
urrently pro
essed

via software-based reversibility. Failing to make this spe
i�
 
he
k 
ould either

hamper liveness (a thread waits its event to be the 
ommit horizon, whi
h 
annot

happen) or 
orre
tness (events are 
ommitted out of order). Line 31, paired with

lines 21�25 of Algorithm 1, is able to ensure both 
orre
tness and liveness.

Whenever an event is exe
uted, and then 
ommitted thanks to safety assur-

an
e, in whi
hever exe
ution mode, we �rst pla
e into the 
alendar queue any

possible new event generated (line 36), and we then unregister the thread from

the timestamp and thread_id ve
tors whi
h are used to avoid priority inversion

(lines 37�40). For the implementations of Fet
h(), Flush(), and Safe(), we

refer the reader to [19℄.

4 Experimental Results

We tested our proposal with the Phold ben
hmark for PDES systems [8℄. This is

made up by syntheti
 LPs whose behavior 
an be tailored depending on test s
e-

nario one would like to generate. We in
luded 1024 LPs in the simulation model,

ea
h one s
heduling events for itself or for the other obje
ts. Spe
i�
ally, upon

pro
essing an event, the probability to s
hedule a new event destined to another

simulation obje
t has been set to 0.2, whi
h is representative of s
enarios with

non-minimal intera
tions a
ross the simulated parts. Also, the initial population

of events has been set to 1 event per simulation obje
t, while the timestamp

in
rement determining the a
tual timestamp of newly s
heduled events has been



set to follow the exponential distribution with mean value equal to one simula-

tion time unit. The model lookahead has been set to a minimal value 
omputed

as the 0.5% of the average timestamp in
rement. Further, the overall simula-

tion is partitioned in to 4 phases where the LPs exhibit alternate behaviors in

terms of updates into their states. Spe
i�
ally, phases 1 and 3 are write-mild

sin
e ea
h event only updates the 
lassi
al 
ounter of pro
essed events and a

few other statisti
al values within the LP state. Contrariwise, phases 2 and 4

are write-intensive, sin
e event pro
essing also updates an array of 
ounters' val-

ues, still embedded with the LP state (parti
ularly, by performing 500 updates

on the array entries). Overall, the di�erent phases mimi
 varying lo
ality and

memory a

ess pro�les one might expe
t from real appli
ations' workloads. A


lassi
al busy-loop 
hara
terizing PHOLD event pro
essing steps is also added

whi
h is set to generate an average event granularity of about 25 mi
rose
onds.

In this experiment, we 
ompare the performan
e of our mixed hardware- and

software-based approa
h to both pure hardware-based reversibility (as proposed

in [19℄) and pure software-based one ex
lusively relying on undo 
ode blo
ks (this

is a
hieved by preventing any thread to exploit HTM in our engine). We did not


ompare with the performan
e a
hievable by some last generation traditional

spe
ulative PDES platform just be
ause the data reported in [19℄ have shown

that event granularity values of a few (tens of) mi
rose
onds do not allow this

type of platforms to provide signi�
ative speedup values (due to the fa
t that

they are based on expli
it partitioning of the workload a
ross the threads, and

on expli
it message passing for event 
ross-s
heduling, thus resulting mu
h more

adequate for larger grain simulation models). Overall, we assessed our proposal

with a workload 
on�guration just requiring alternative forms of spe
ulative

parallelization (like the one we propose), as 
ompared to the 
lassi
al ones.

We have run this ben
hmark by varying the number of employed threads

from 1 to the maximum number of physi
al CPU-
ores in the underlying HTM-

equipped ma
hine, whi
h is equipped with two Intel Haswell 3.5 GHz pro
essors,

24 GB of RAM and runs Linux�kernel 3.2

6

. For the 
ase of single-thread runs,

the exe
ution time values are those a
hieved by simply running the appli
ation


ode on top of a 
alendar queue s
heduler.

In Figure 3 we report the observed exe
ution time values while varying the

number of threads (ea
h reported value resulting as the average over 5 di�erent

samples). The data 
learly show how our mixed HW/SW approa
h to reversibil-

ity outperforms both the others, with a maximum gain of up to 10% vs the pure

HW approa
h and of 30% vs the pure SW approa
h (a
hieved when running with

4 threads). Su
h a gain by the mixed approa
h is 
learly related to the fa
t that

write-intensive phases lead the pure software re
overability support to be
ome

more intrusive, be
ause of 
ostly generation of bigger undo 
ode blo
ks, whi
h

does not pay-o� 
ompared to the relian
e on pure HTM-based reversibility. On

the other hand, the pure HTM-based approa
h does not allow the maximization

6

The hyper-threading support o�ered by the pro
essors has been ex
luded just to

avoid 
ross-thread interferen
es�due to 
on�i
ting hyper-threads' a

esses to hard-

ware resour
es�whi
h might alter the reliability of our analysis
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of the usefulness of the 
arried out spe
ulative work for larger thread 
ounts. In

fa
t, the slope of the exe
ution time 
urve for the pure HW approa
h be
omes

slightly worse than the one of the pure SW approa
h when moving from 3 to 4

threads. Our mixed approa
h is able to get the best of the two by just avoiding

ex
essive aborts of HTM transa
tions when relying on larger thread 
ounts, also

redu
ing the 
ost of undo 
ode blo
ks generation thanks to a fra
tion of events

exe
uted with HTM support. The data reported in Figure 4 show how the pure

HW approa
h su�ers from a kind of thrashing when in
reasing the thread 
ount,

while the pure SW approa
h has minimal in
iden
e of events undo, and that the

mixed approa
h avoids the thrashing phenomenon just like the pure SW ap-

proa
h does (but has less overhead sin
e exe
utes a portion of the events via

HTM support).

5 Con
lusions

We have presented a spe
ulative PDES engine where reversibility of 
ausal in
on-

sistent events is based on a mix of hardware and software fa
ilities. The hardware

part relies on HTM support o�ered by modern pro
essors, parti
ularly the Intel

Haswell, while software reversibility is based on transparent instrumentation and

on the dynami
 generation of blo
ks of 
ode able to undo memory side e�e
ts.

We have shown via an experimental study with a 
lassi
al ben
hmark how the

proposed mixed approa
h 
an over
ome the drawba
ks of both the two baseline

ones, in terms of delivered performan
e of by the simulation engine.
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