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Abstract—Event monitoring is an important application of
sensor networks. Multiple parties, with different surveillance
targets, can share the same network, with limited sensing
resources, to monitor their events of interest simultaneously.
Such a system achieves profit by allocating sensing resources to
missions to collect event related information (e.g., videos, photos,
electromagnetic signals). We address the problem of dynamically
assigning resources to missions so as to achieve maximum
profit with uncertainty in event occurrence. We consider time-
varying resource demands and profits, and multiple concurrent
surveillance missions. We model each mission as a sequence
of monitoring attempts, each being allocated with a certain
amount of resources, on a specific set of events that occurs as a
Markov process. We propose a Self-Adaptive Resource Allocation
algorithm (SARA) to adaptively and efficiently allocate resources
according to the results of previous observations. By means of
simulations we compare SARA to previous solutions and show
SARA’s potential in finding higher profit in both static and
dynamic scenarios.

I. INTRODUCTION

Sensor networks have a great potential to support a variety
of applications, one of which is to monitor special events [1],
[2], [3]. Constrained by the functionality and availability of
sensing resources, it is sometimes prohibitive to monitor every
event simultaneously. Thus, an efficient resource allocation
solution is needed to monitor the most valuable events.

Heavy attention has been paid to this allocation problem
in many novel sensor network applications. The approaches
proposed in [4] and [5] attempt to guarantee a minimum
degree of sensing coverage while optimizing either the number
of active sensors or power consumption. In this paper, we
consider surveillance missions which target a specific set
of events that may occur with some probability; a certain
amount of resources is required to monitor each event. If the
required resources have been allocated when an event occurs,
the mission will collect related information and achieve an
associated profit. We assume that the availability of resources
can be quantitatively measured [6], and resources can be either
separated to support multiple missions, or combined together
to statisfy higher resource-demanding missions.

If the events that will occur, as well as their demands
on resources and profits, are known a priori, this resource
allocation problem can be formulated as the general Knapsack
Problem, for which both Polynomial-Time Approximation
Scheme (PTAS) and Fully PTAS (FPTAS) have been proposed.

In practice, however, we cannot perfectly predict which events
will occur. As a consequence, the actual demands of resources
and profit achieved may differ from what is predicted. In
this paper, we aim at achieving the optimal profit through
successful observations, when the events that will occur are
uncertain.

Consider a mission, which initially requires one camera
to monitor the surroundings. When an event (e.g., smoke or
alarm) is observed, more resources (e.g., additional cameras
or sensors) may be allocated for a better understanding of
the ongoing condition. If the amount of allocated resources
is insufficient, the mission may return no profit due to a
failed observation attempt; instead if too many resources
are allocated and exceed what is required, a portion of the
resources is over allocated and therefore wasted. Our work
tries to balance the risk of insufficient assignment and the
drawback of over allocation.

We model a mission as a sequence of observation attempts
on specific events of interest, and assume that the probability
that one event follows another is known based on a preliminary
statistical analysis. For each mission, the event occurrence
can be modeled as a Markov process, each state of which
is represented by an occurring event. Depending on whether
the allocated resources are sufficient to monitor the occurring
event, the observation in that state can be successful or not.

In our system, the missions may be submitted before the
system starts or during the system’s lifetime. Some works
consider instant acceptance and rejection of newly submitted
missions [7] while others maintain every mission in a list
until its deadline arrives [8]. We consider the former approach
too aggressive because a mission that is currently low-profit
may contribute more in the future if a high-valued event
occurs. In this paper, all missions are pooled and wait for
resources to be allocated, while the system keeps updating
the conditions of event occurrence and adjusts the resource
allocation plan accordingly. We propose an algorithm SARA
(i.e., Self-Adaptive Resource Allocation) to guide the dynamic
allocation of resources to missions.

Our contributions include:
• For missions monitoring specific events, we introduce a

mission model based on an event-driven Markov process,
to evaluate the value of missions in different conditions,
even when the events that will occur are uncertain;



• We develop an algorithm SARA, which takes the mission
model as input, and adaptively adjusts resource allocation
solutions along with the evolving conditions;

• We perform numerical simulation and compare SARA
with other competitive works to prove its efficiency.

The rest of this paper is organized as follows. Section II lists
related work on resource allocation in sensor networks. Section
III explains our mission model and problem formulation.
Section IV describes the details of our algorithm SARA.
Section V shows the results of simulation. Section VI is the
conclusion.

II. RELATED WORK

In the literature, there are several works addressing resource
allocation problems to facilitate a wide range of applications in
sensor networks. Unlike SARA, whose objective is to search
for the maximum profit, some works consider power to be the
most critical resource and make effort to extend the lifetime
of network while providing a certain level of functionality.
Cardei et al. [9] and Hsin et al. [10] propose algorithms which
provide power efficiently while maintaining complete network
coverage. Kumar et al. [11] develop an energy-efficient solu-
tion to form an impenetrable barrier and extend the algorithm
for more complicated scenarios with heterogenous sensors.
Cao et al. [12] introduce their power-saving protocol which
guarantees a bounded-delay sensing coverage. Carle et al.
[13] and Wang et al. [14] study the scenarios where both
surveillance coverage and network connectivity are required
to be guaranteed.

Rather than providing complete sensing coverage, some
works focus on the targets in which the users are interested.
Gui et al. [15] propose a collaborative messaging scheme
among sensors to track the movement of a single target,
while Liu et al. [16] monitor all permanent targets as long
as possible. In our settings, we handle multiple missions
simultaneously instead of supporting a single tracking mission;
we also consider that no event can be guaranteed to be
observed all the time.

We also consider the uncertainty in event occurrence, which
leads to uncertain demands and profits of missions before the
events actually occur. Our previous work [17] proposes an
algorithm for a static stochastic resource allocation problem.
Mainland et al. [18] design a decentralized self-organized
approach which lets the sensors independently decide their
actions according to their previous performance. Fang et al.
[8] study the sensor activation problem and suggest optimal
scheduling based on what happened in the past. Our algorithm
SARA takes a Markov process-based mission model as input,
evaluates the value of missions based on known event occur-
rence conditions, and tunes the allocation plan accordingly.

III. MISSION MODEL AND PROBLEM FORMULATION

In this paper, we assume that each surveillance mission
has many targets of interest, and define an event to be a
single or any combination of these targets, such that the set of
targets occurring at anytime corresponds to an event. Therefore

only one event occurs at a time. The event occurrence can
be modeled as a discrete time Markov process, for which
we identify the state as the event currently needing sensing
resources, and the transitions between states as the occurrence
of a new event. As an example, consider a mission that requires
the monitoring of potential fires which may or may not be
followed by explosions or by harmful smoke, or by both. In
such a scenario, the occurrence of a fire may be modeled
as event e1, potentially followed by several repetitions of
the same event e1 in the following time slots. A successive
explosion would bring the mission to state e2, while instead
the smoke would cause a transition to e3. The occurrence of
both smoke and explosions would require a major resource
expenditure for simultaneously monitoring two targets and
would be considered as a different event e4.

We model the lifetime of a mission based on this event-
driven Markov process, where a mission is considered as a
sequence of attempts at monitoring the occurring events. At
each time slot, the required resources and achievable profit
of a mission are consequent to the state of the process (i.e.,
the occurring event). In the following we will interchangeably
adopt the terms “state” and “event” of a mission.

Table I lists the frequently used notations.

TABLE I
FREQUENTLY USED NOTATIONS

Notations Descriptions

mi, e
(i)
j , EOIi Mission i, j-th event of mi, set of mi’s events

d
(i)
j , v

(i)
j Demand and profit of e(i)j

~Di, ~D Vector of d(i)
j , vector of ~Di

~Vi, ~V Vector of v(i)
j , vector of ~Vi

Pi,P∆t
i Transition matrix of mi, Pi to the power of ∆t

p
(i)
jk (∆t), p

(i)
jk

Probability that e(i)k occurs exactly ∆t time slot(s)
after e(i)j ; note that p(i)

jk = p
(i)
jk (1)

~Πi, π
(i)
j

Long-term probability distribution of EOIi,
long-term occurrence probability of e(i)j

θ ∈ [0, 1]
Required minimum successful observation rate for
activated missions

~Ui(r,∆t)
Expected profit of mi in ∆t time slot(s) with an
amount r of resources, given different initial events

~R(t), ri(t)
Resource allocation strategy at time t, the amount of
resources allocated to mi at time t

Gopt(t1, t2) Actual best profit achievable between time t1 and t2

More formally, we consider α missions {m1, · · · ,mα}.
The lifetime of mission mi evolves through (ni + 1) possible
states corresponding to the elements of the set Events Of
Interest EOIi , {e(i)

1 , · · · , e(i)
ni } or to the null event e(i)

0 that
represents the case when nothing occurs.

We denote with e
(i)
j the j-th event of mission mi, which

is characterized by a specific resource demand d
(i)
j and by

a profit v(i)
j which corresponds to the potential gain that



the successful observation of event e(i)
j can contribute to the

mission. To achieve v
(i)
j , when e

(i)
j is occurring at least a

resource of d(i)
j is required to be allocated to mi; otherwise,

the monitoring attempt will fail, resulting in zero profit by mi

in that time slot. Missions that are allocated with resources are
called activated, and those that successfully observe events are
called valid. We hereby denote with ~Di = {d(i)

0 , · · · , d(i)
ni } and

~Vi = {v(i)
0 , · · · , v(i)

ni }, the vectors of demands and profits of
EOIi, respectively.

We also denote with p(i)
jk the transition probability between

events e(i)
j and e

(i)
k , that is the probability that, while being

in state e(i)
j the event that occurs in the following time slot

will be e(i)
k . We hereby denote with Pi the transition matrix,

whose elements are the transition probabilities between states.
Moreover, we denote with p(i)

jk (∆t) the probability that the
transition between states e(i)

j and e
(i)
k occurs in exactly ∆t

time slot(s). This value is the element of the j-th row and
k-th column of the matrix P∆t

i (i.e., Pi to the power of ∆t).
We model the missions so that any of their events may

occur before or after their null events, which makes the related
Markov process irreducible and aperiodic (the proof is trivial).
In other words, for any pair of events e

(i)
j and e

(i)
k , the

probability that e(i)
k will occur after e(i)

j , given a long enough
time, is non zero (i.e., ∃∆t > 0, s.t. p(i)

jk (∆t) > 0, ∀i, j, k).

A. Problem Formulation

Our objective is to search for a resource allocation strategy
to maximize profit achieved during the system’s lifetime,
subject to the constraint where the capacity of resources during
one time slot is C. ~R(t) = {r1(t), · · · , rα(t)} denotes the
strategy applied at time t, indicating that a resource of ri(t)
is allocated to mission mi in the t-th time slot.

Let ~S(t) = {e1(t), · · · , eα(t)} be the events occurring in
the t-th time slot, where ei(t) ∈ EOIi, and di(t) and vi(t)
represent the demand and profit of ei(t), respectively. If ~S(t)
is known for t ∈ [t1, t2), the problem to calculate Gopt(t1, t2)
(i.e., the optimal profit achieved between time t1 and t2) can be
formulated as an Integer Linear Programming (ILP) problem:

Gopt(t1, t2) = max

t2−1∑
t=t1

α∑
i=1

vi(t) ∗ zi(t) (1)

s.t.

α∑
i=1

di(t) ∗ zi(t) ≤ C ∀t ∈ [t1, t2)

The solution zi(t)’s are binary variables, and ri(t) is solved as
di(t) ∗ zi(t). If zi(t) = 1, mi is allocated with resource di(t)
for a profit vi(t) by successfully monitoring ei(t); otherwise,
mi is not activated and no resource will be assigned.

Because resources have to be allocated before ~S(t) actually
occurs, a prediction of ~S(t) is needed, based on which an
approximation of Gopt(t1, t2) can be calculated.

B. Probability Distribution of ~S(t)

In order to estimate the events that occur in the future at
time t (i.e., ~S(t)), we propose to use the latest observed event
to calculate the probability distribution of ~S(t), according to
the Markov process of event occurrence. As mentioned before,
for a given mi, if e(i)

j is currently occurring and successfully
observed, the probability that e(i)

k will occur after exactly ∆t

time slot(s) can be calculated as p(i)
jk (∆t).

By contrast, if no previous observation is available, as the
Markov process model is both irreducible and aperiodic, it has
a stationary probability distribution of states, which can be
used as the estimate of future event arrivals. This distribution
is independent of the initial state and can be calculated as
follows: {

~ΠiPi = Pi∑ni

j=0 π
(i)
j = 1

where ~Πi = {π(i)
0 , · · · , π(i)

ni } indicates the long-term occur-
rence probability of each event of EOIi. When the initial
state e(i)

j is unknown, ~Πi is taken as the occurrence probability
distribution of EOIi at any time.

In addition, inspired by the work of Fang et al. [8] and their
concept of Partial Observation Learning, in our algorithm, we
also introduce a step called exploration. We strategically select
a newly-submitted or long-untouched mission to explore, as
the occurrence state of its event is unknown or has not been
updated for a while. This mission to explore will be activated
with randomly assigned resources to get a chance of successful
observation, by which its most recent state may be monitored,
resulting in better understanding of current system status.

C. Eligible Resource Assignment

Once the estimate of ~S(t) (i.e., the probability of events
occurring in the t-th time slot) is calculated, the next step is
to estimate how many resources should be allocated.

Targeted by the same mission, suppose that both events e1

and e2 have a 50% chance of occurring. The demands of e1

and e2 are 10 and 20, respectively. Allocating an amount of
resources equal to the expectation of demands, which is 15 in
this case, is not an efficient solution because it is insufficient
to meet the requirements of e2, while 5 units of resource will
be wasted due to over allocation if e1 occurs.

Therefore, instead of allocating resources to meet the de-
mand expectation of each mission, we set a threshold θ on the
successful observation rate to balance the tradeoff between
under and over allocation. It is required that the resources
will not be allocated to a mission unless they are sufficient
to observe the event with a probability of at least θ. In other
words, a θ-solution guarantees that an activated mission has
at least θ probability to be valid.

Suppose that {e(i)
0 , · · · , e(i)

ni } is sorted in increasing order
of demands and re-indexed. Given the initial state e(i)

j , if an
amount r of resource is allocated after exactly ∆t time slot(s),
the successful observation rate at that time can be calculated
as the sum of p(i)

jk (∆t), where k ∈ [0, ni] and r ≥ d
(i)
k . If



the threshold θ is satisfied, the amount of r is eligible, and a
mission can only be activated with eligible resources.

D. Expectation of Profit with Eligible Resources

The importance of missions is evaluated in terms of profit
achieved via successful observations. Since the events that
actually occur cannot be predicted perfectly, instead, we use
the expectation of profit to evaluate missions.

We define ~Ui(r,∆t) = {u(i)
0 (r,∆t), · · · , u(i)

ni (r,∆t)} for
mission mi to denote the expectation of profits in the next
∆t time slot(s) when a resource of r is allocated, where
u

(i)
j (r,∆t) represents the value of expectation when the initial

state is e(i)
j . ~Ui(r,∆t) may be calculated iteratively as follows:

~Ui(r,∆t) = ~Ui(r,∆t− 1) + P∆t
i
~Vi − ~Yi(r,∆t) (2)

where

~Yi(r,∆t) = {y(i)
0 (r,∆t), · · · , y(i)

ni
(r,∆t)}

y
(i)
j (r,∆t) =

∑
k∈[0,ni],r<d

(i)
k

p
(i)
jk (∆t) ∗ v(i)

k

When ∆t = 0, ~Ui(r, 0) = ~0 for all r; otherwise, ~Ui(r,∆t)
is equal to the sum of ~Ui(r,∆t − 1) and the profit expected
in the last time slot, (i.e., P∆t

i
~Vi− ~Yi(r,∆t)), where the term

~Yi(r,∆t) accounts for the events that are not granted enough
sensing resources.

IV. RESOURCE ALLOCATION ALGORITHM

In this section, we introduce SARA, the self-adaptive re-
source allocation algorithm, which is supported by three sub-
algorithms. Every ∆t time slot(s) (i.e., execution cycle), based
on known information, SARA repeatedly updates the prob-
ability distribution of event occurrence (ALG EI in section
IV-A), evaluates the values of missions when different levels
of resources are allocated (ALG EPC in section IV-B), and
suggests a resource allocation solution for the next execution
cycle (ALG OSS in section IV-C).

A. Algorithm: EOI Inference (ALG EI)

Algorithm ALG EI infers the probability distribution of
event occurrence. It takes three vectors ~P , ~E and ~L as inputs.
~P is the vector of transition matrices of missions. ~E = {εi}
denote the last observed event εi by mi, and ~L = {li} records
the time interval since εi was observed. If mi has not observed
anything, εi and li are set to -1.

The output ~S = { ~S1, ~S2, · · · , ~Sα} represents a vector of
probability distributions, where ~Si = {s(i)

0 , · · · , s(i)
ni } denotes

how likely it is that e(i)
j just occurred during the last time slot.

Missions are divided in two sets A and B (line 1), depending
on the presence of previous observations of their events. A
is the set of missions which have never observed any event
before the current time, while B is the set of missions with at
least one successful observation for each. For missions in A,
since there is no information about the past, ALG EI assigns
~Πi, the long-term probability distribution of event occurrence,
as the value of ~Si (line 4). If instead mission mj belongs to

B, its last successful observation occurred lj time slot(s) ago,
when it observed εj . The elements p(j)

εjk
(lj) of P ljj represents

the probability that event e(j)
k occurs exactly lj time slot(s)

after the initial state e(j)
εj (line 10). Note that lj may be zero,

when mj observed εj in the last time slot. We define the
corresponding P0

j as an identity matrix.
We refer to Fang’s concept of Partial Observation Learning

[8] for a better understanding about the system status. The idea
is to allocate resources to selected missions, regardless of how
profitable they are, and explore their recent conditions. ξ in
line 2 denotes the index of the mission to be explored. When
A is not empty, ALG EI selects one mission from A (line
6); otherwise, the mission with the longest interval since last
successful observation will be marked (line 14). ~Sξ is set as
all -1’s for other algorithms in the following sections (line 16).

Algorithm 1 EOI Inference

Input: ~P , ~E , ~L
Output: ~S = {~S1, · · · , ~Sα}
1: A ← {i|εi = −1}, B ← {i|εi 6= −1}
2: ξ ← −1
3: for all i ∈ A do
4: ~Si ← ~Πi

5: if ξ = −1 then
6: ξ ← i
7: end if
8: end for
9: for all j ∈ B and k ∈ [0, nj ] do

10: s
(j)
k ← p

(j)
εjk

(lj)
11: end for
12: if ξ = −1 then
13: lj∗ = arg maxj{lj |j ∈ B}
14: ξ ← j∗

15: end if
16: ~Sξ ← {−1, · · · ,−1}

B. Algorithm: Expectation of Profit Calculation (ALG EPC)

The profit expectation of a mission may be affected by two
factors: the events that may occur and the amount of allocated
resources. ALG EI infers the probability distribution of the
most recent event occurrence, and ALG EPC evaluates how
important each mission is when being allocated with a certain
level of resources.

In addition to ~S (i.e., output of ALG EI) and ~P , ALG EPC
takes other four arguments: ~D, ~V , θ and ∆t. The first two are
the vectors of demands and profits of all missions, while θ
is the threshold introduced in section III-C. ∆t is the length
of execution cycle, based on which ALG EPC calculates the
expectation of profit.

The output ~WS(∆t) consists of ~WSi (∆t)’s. Given distribu-
tion ~S of current states, wSi (d

(i)
k ,∆t) ∈ ~WSi (∆t) represents

the expected profit in the next ∆t time slot(s) if a resource of
d

(i)
k is allocated.



ALG EPC works in two parts. First, for every i, r and
t, ~Ui(r, t) is calculated (line 12). As mentioned in section
III-D, given initial state e(i)

j , u(i)
j (r, t) ∈ ~Ui(r, t) denotes mi’s

expected profit in the next t time slot(s) with a resource of r
allocated. Second, each element of WSi (r,∆t), except for the
one that corresponds to the mission to explore, is updated by∑ni

j=0 s
(i)
j ∗u

(i)
j (r,∆t), which is the sum of profit expectations

with different initial states, where s(i)
j ∈ ~Si is the probability

that e(i)
j is the initial event (line 16). For the mission to be

explored, where s(ξ)
j = −1, ALG EPC keeps every wSξ (r,∆t)

as 0 (line 15). This mission will be activated with randomly
assigned resources, no matter how much profit is expected.

Algorithm 2 Expectation of Profit Calculation

Input: ~S, ~P , ~D, ~V , θ, ∆t
Output: ~WS(∆t) = { ~WS1 (∆t), · · · , ~WSα (∆t)}
1: ~WS(∆t)← ~0
2: ~Ui(r, t)← ~0, where i ∈ [1, α], r ∈ ~Di, t ∈ [0,∆t]
3: for i = 1, · · · , α do
4: for t = 1, · · · ,∆t do
5: for j = 0, · · · , ni do
6: p← 0, v ← 0
7: for k = 0, · · · , ni do
8: p ← p+ p

(i)
jk (t)

9: v ← v + p
(i)
jk (t) ∗ v(i)

k

10: if p ≥ θ then
11: if t = 1 or u(i)

j (d
(i)
k , t− 1) > 0 then

12: u
(i)
j (d

(i)
k , t) ← u

(i)
j (d

(i)
k , t− 1) + v

13: end if
14: end if
15: if t = ∆t and s

(i)
j ≥ 0 then

16: wSi (d
(i)
k ,∆t) += s

(i)
j ∗ u

(i)
j (d

(i)
k ,∆t)

17: end if
18: end for
19: end for
20: end for
21: end for

Given mission mi and the t-th time slot after the occurrence
of the initial state e

(i)
j , two auxiliary variables p and v are

introduced (line 6). While k is iterated from 0 to ni (line
7), which indicates the increment of allocated resources from
d

(i)
0 to d

(i)
ni , p represents the successful observation rate, and

v represents the profit expectation. Each increment enables a
new event e(i)

k to be observable, and the chance to observe
successfully is increased by p

(i)
jk (t) (line 8), which is the

occurrence probability of e(i)
k given e(i)

j and t. Similarly, each
time v (i.e., accumulated profit expectation) is increased by
p

(i)
jk (t)∗v(i)

k (line 9), which is the product of e(i)
k ’s occurrence

probability and profit.
Threshold θ sets a minimum observation rate for all acti-

vated missions. When t = 1, u(i)
j (r, t) is not assigned as v

until p ≥ θ, to guarantee that v is achievable with an eligible
allocation to mi. When t > 1, the value of r should also satisfy

u
(i)
j (r, t− 1) > 0 (line 11); otherwise, θ is not guaranteed for

at least one time slot during the given execution cycle.

C. Algorithm: One-Step Scheduling (ALG OSS)

Taking ~WS(∆t) from ALG EPC, ~D, the total available
sensing resources C, and current time t as inputs, ALG OSS
applies dynamic programming to calculate the optimal so-
lution, which is the resource allocation that maximizes the
expectation of profit in one execution cycle of ∆t time slot(s).

When the current solution needs to be tuned at time t, AL-
G OSS is executed, and its output consists of Goss(t, t+ ∆t)
and ~R(t) = {ri(t)}. Goss(t, t + ∆t) is an approximation of
Gopt(t, t + ∆t) in problem (1), and, as described in section
III-A, ri(t) denotes the resources to be allocated to mi.

Algorithm 3 One-Step Scheduling

Input: ~WS(∆t), ~D, C, t
Output: Goss(t, t+ ∆t), ~R(t) = {r1(t), · · · , rα(t)}
1: ~F ← ~0, ~H ← ~0
2: for all i = 1, · · · , α do
3: for all r = 1, · · · , C do
4: fir ← f(i−1)r

5: for all j = 0, · · · , ni do
6: if r ≥ d(i)

j and wSi (d
(i)
j ,∆t) > 0 then

7: x ← f
(i−1)(r−d(i)j )

+ wSi (d
(i)
j ,∆t)

8: if x > fir then
9: fir ← x, hir ← d

(i)
j

10: end if
11: end if
12: end for
13: end for
14: end for
15: Goss(t, t+ ∆t) ← fαC , r ← C
16: for all i = α, · · · , 1 do
17: ri(t) ← hir
18: r ← r − ri(t)
19: end for
~Fi and ~Hi are introduced for dynamic programming, where

fir ∈ ~Fi denotes the optimal result when the following
conditions are met: 1) only the missions in {mj |j ∈ [1, i]}
can be activated; 2) the total allocated resources are no more
than r. Each fir is associated with an hir ∈ ~Hi, which denotes
the amount of resources allocated to mi to achieve fir.

When either i or r is equal to 0, there is no way to achieve
any profit (i.e., f0r and fi0 are 0); in other cases, the way of
calculating fir is either not activating mi so that fir is assigned
with the same value as f(i−1)r (line 4), or activating mi with
a resource of d(i)

j ∈ ~Di to get wSi (d
(i)
j ,∆t) ∈ ~WSi (∆t) as

profit. In the second case, ALG OSS needs to consider all
(ni + 1) allocation options of ~Di to find the optimal fir. Each
time the best fir is found, hir is set as the corresponding d(i)

j .
Therefore, ALG OSS solves the optimal fir in O(αCnmax)
time, where nmax is the largest value among all ni’s.

Lines 2-14 calculate fir and hir by dynamic programming,
and Goss(t, t+ ∆t) is equal to fαC (line 15). For the mission



mξ to be explored, the corresponding ~WSξ (∆t) is kept as zero
by ALG EPC, therefore mξ will not be allocated with any
resource by ALG OSS due to the constraint in line 6.

For any given optimal fir, hir indicates how many resources
should be allocated to mi. Iterating from the initial coordinate
(i, r) = (α, C), each time we can find the best option hir for
mi (line 17). After a resource of ri(t) = hir is allocated, i and
r are decreased by 1 and ri(t), respectively (line 18), to reach
the next coordinate (i− 1, r − ri(t)), until ~R(t) is obtained.

Replacing t and (t + ∆t) by t1 and t2, respectively, the
output Goss(t1, t2) is an approximation to the actual optimal
result Gopt(t1, t2), which is calculated before the events actu-
ally occur. We hereby define pmin as the minimum value in
any transition matrix Pi. The following theorem characterizes
the difference between Goss(t1, t2) and Gopt(t1, t2):

Theorem 1. In a special case where θ = 0 and pmin > 0,
Goss(t1, t2) and Gopt(t1, t2) satisfy:

Gopt(t1, t2) ≤ B(t2 − t1) ∗Goss(t1, t2)

where B(t2 − t1) =
(t2 − t1) ∗ (1/pmin − 1)

1− (pmin)
(t2−t1)

Proof. Define Gmax as the maximum profit achieved by any
combination of events during (t2− t1) time slot(s), no matter
if it can occur or not. Therefore Gopt(t1, t2) ≤ Gmax. In
addition, Gmax and Goss(t1, t2) can be solved as ILP:

Gmax = max

t2−1∑
t=t1

α∑
i=1

ni∑
j=0

v
(i)
j ∗ z

(i)
j (3)

Goss(t1, t2) = max

α∑
i=1

ni∑
j=0

wSi (d
(i)
j , t2 − t1) ∗ z(i)

j (4)

Both (3) and (4) yield to the same constraints:

α∑
i=1

ni∑
j=0

d
(i)
j ∗ z

(i)
j ≤ C (5)

ni∑
j=0

z
(i)
j ≤ 1 ∀i ∈ [1, α] (6)

According to ALG EPC, when θ = 0,

wSi (d
(i)
j , t2 − t1) =

ni∑
k=0

s
(i)
k ∗ u

(i)
k (d

(i)
j , t2 − t1) (7)

where

u
(i)
k (d

(i)
j , t2 − t1) =

t2−1∑
t=t1

j∑
q=1

p
(i)
kq (t− t1 + 1) ∗ v(i)

q

≥
t2−1∑
t=t1

p
(i)
kj (t− t1 + 1) ∗ v(i)

j

≥
t2−t1∑
t=1

(pmin)t ∗ v(i)
j (8)

Therefore, from (7) and (8), we get

wSi (d
(i)
j , t2 − t1) ≥

ni∑
k=0

s
(i)
k

t2−t1∑
t=1

(pmin)t ∗ v(i)
j

= v
(i)
j (t2 − t1)/B(t2 − t1) (9)

Note that (3) and (4) share the same constraints, which
means that if we apply the solution ~Z = {z(i)

j } of problem (3)
to problem (4), the constraints (5) and (6) are still satisfied.
Suppose that the result of applying ~Z to problem (4) is G′,
then G′ ≤ Goss(t1, t2) because Goss(t1, t2) is the optimal
result of problem (4). Therefore,

Gmax = max

t2−1∑
t=t1

α∑
i=1

ni∑
j=0

v
(i)
j ∗ z

(i)
j

≤ max

α∑
i=1

ni∑
j=0

B(t2 − t1) ∗ wSi (d
(i)
j , t2 − t1) ∗ z(i)

j

= B(t2 − t1) ∗G′

≤ B(t2 − t1) ∗Goss(t1, t2)

As a result, we have proved the following relation:

Gopt(t1, t2) ≤ Gmax ≤ B(t2 − t1) ∗Goss(t1, t2)

D. Algorithm: Self-Adaptive Resource Allocation (SARA)

Supported by the algorithms shown above, SARA allocates
resources in an online environment, where the system lifetime
is divided into multiple execution cycles of ∆t time slot(s).

Taking mission information (~P , ~D and ~V), resource capacity
C, threshold θ, system lifetime T and the length of execution
cycle ∆t as inputs, SARA repeatedly calculates ~R(t).

At the beginning of each execution cycle, the probability
distribution ~S of the most recent event occurrence is calculated
by ALG EI (line 5), and the profit expectation ~WS(∆t) is
solved by ALG EPC (line 6). As describe in section IV-A,
for the mission mξ to be explored, the corresponding ~Sξ is
set to all -1’s by ALG EI. An event e(ξ)

j of mξ is randomly
selected and its demand d(ξ)

j is allocated to mξ (line 9 and line
11). ALG OSS is executed without considering the resources
that are already allocated for exploration (line 10), and returns
the resource allocation solution for the other missions.

At the end of each time slot, after running missions based on
~R(t), if a mission mi successfully observes an event, εi ∈ ~E
is updated to show the most recent known state (line 20),
while li ∈ ~L changes to 0 as it just occurred (line 21). For
those missions that fail to see anything, their values in ~E are
unchanged, but those in ~L are increased by 1, unless the
original value is -1, which means that this mission has not
observed any event yet (line 23).



Algorithm 4 Self-Adaptive Resource Allocation

Input: ~P , ~D, ~V , C, θ, T , ∆t
1: ~E ← {−1, · · · ,−1}
2: ~L ← {−1, · · · ,−1}
3: for all t = 0, · · · , T do
4: if t%∆t = 0 then
5: ~S ← ALG EI(~P, ~E , ~L)
6: ~WS(∆t) ← ALG EPC( ~S, ~P, ~D, ~V, θ,∆t)
7: for all i = 1, · · · , α do
8: if ~Si = {−1, · · · ,−1} then
9: d

(i)
j ∈ Di is randomly selected

10: ~R(t) ← ALG OSS( ~WS(∆t), ~D, C − d(i)
j , t)

11: ri(t) ← d
(i)
j

12: end if
13: end for
14: else
15: ~R(t) ← ~R(t− 1)
16: end if
17: Allocate resource based on ~R(t) and run missions
18: for all i = 1, · · · , α do
19: if mi successfully observes e(i)

j then
20: εi ← j
21: li ← 0
22: else if li > 0 then
23: li ← li + 1
24: end if
25: end for
26: end for

V. NUMERICAL RESULTS

In this section, we test SARA’s performance in different
settings, and compare it with the Activation Strategy Algo-
rithm (ASA) developed by Fang et al. [8] and a variant of
SARA called Stationary solution. Those algorithms all aim to
allocate limited sensing resources among surveillance missions
to monitor the most profitable events, when the events that
potentially occur cannot be predicted precisely.

ASA constructs unbiased esimators to evaluate expectation
of profit for missions. It ranks every mission by weighing
total profit that has been achieved in the past, and selects the
mission set that has accumulated more profit than any other
set, assuming that it will still be more profitable in the future.
In our simulation, we use (i, j) to represent the case when
a resource of d(i)

j is allocated to mi. When mi observes an
event with d

(i)
j , the profit estimator of (i, j) will be updated.

ASA selects the most valuable (i, j), in addition to performing
exploration. Like ASA, SARA also adaptively tunes its solu-
tion according to the observed events, but does not evaluate
missions by their achieved profits. Instead, SARA updates the
evolving probability distribution of event occurrence, by which
it calculates the expectation of profit in the future.

In addition, we design a variant of SARA, assuming that
the distribution Πi can be used to represent EOIi’s occurrence

probability over a long enough time. The output of ALG EI is
set as ~S∗ = {~S∗1 , · · · , ~S∗α}, where ~S∗i = {Πi, · · · ,Πi}, based
on which ALG EPC calculates a fixed value of ~WS∗

(∆t),
resulting in a fixed resource allocation for all time slots.
Therefore, this solution is called Stationary.

For SARA, we compare three different values of θ = 0, 0.5
and 1. For θ = 0, SARA does not guarantee any event will be
observed when allocating resources; for θ = 1, SARA enables
those missions allocated with resources to observe any event
that actually occurs; for θ = 0.5, each activated mission has
at least 50% chance to observe the occurring event.

Each simulation result shown in the remaining part of this
section is averaged over 10 test cases.

A. Simulation Setup

For each test case, 10 missions are created, each targeting
20 events of interest. The demands of events are randomly
drawn from [1, 25], and the capacity of available resources
is 100. The profits follow a bimodal distribution consisting of
two Gaussian distributions N (25, 100) and N (75, 100), by
which the events are divided into two sets of high and low
values. For the null event of mi that represents the case when
no event occurs, its profit is set as 0 and demand is equal to the
highest demand among EOIi, because the case that nothing
occurs can be verified only when the highest potential demand
has been satisfied but still nothing is observed.

Mission mi is associated with a matrix Pi, which is later
transformed into a Markov transition matrix. Initially, the
element p(i)

jk of Pi is generated differently according to two
models: the Dense and the Sparse Model. In the Dense Model,
each p(i)

jk has a 20% chance to be zero, while this chance in the
Sparse Model is set as 80%; otherwise, p(i)

jk is randomly drawn
from [1, 100]. In other words, in the Dense Model when an
event is occurring there are more possible subsequent events.
In the Sparse Model, the occurrence of events, more or less,
has some specific sequence. In addition, to make sure that Pi
is irreducible, p(i)

jk is always forced to be greater than zero if
either j or k is equal to 0, which means that the null event
can either occur before or after any event. After initialization,
every p(i)

jk is divided by the sum of j-th row in Pi to represent
a valid probability indicating how likely e(i)

k occurs after e(i)
j .

At the end of each time slot, all information of the occurring
events is collected, based on which the actual optimal profit
achievable in that time slot can be solved as a Knapsack
Problem. Note that this actual optimal profit is calculated with
all necessary knowledge that cannot be predict precisely, thus
no algorithm can achieve better performance. We will compare
the results of SARA, ASA and the Stationary solution with this
actual optimal.

B. Static Cases with Fixed Mission Set

In this case, missions are submitted before the system starts
and never removed until the end. Each mission can be activated
or deactivated at the beginning of any execution cycle.

Setting θ as 0, Fig. 1 shows the average ratio between
SARA’s results and the actual optimal in different models,



given different lengths of ∆t of execution cycle. As shown in
the figure, the shorter ∆t is (i.e., higher execution frequency
of SARA) the better is the performance. The performance
downgrades faster when increasing ∆t from 1 to 5, and finally
suffers by about 6% in the Dense Model (i.e., from 55%
to 52%) and 21% in the Sparse Model (i.e., from 64% to
53%), indicating that the prediction over a long time horizon
is more unreliable. Since ∆t = 1 gives the best performance,
we always apply this length to the execution cycle.

Fig. 1. SARA v.s. Actual Optimal with Variable ∆t

Fig. 2 compares the performance of SARA when θ is
variable. 0.5-SARA and 1-SARA are more likely to over
allocate resources because a minimum observation rate needs
to be guaranteed. The figure shows that SARA can perform
better in the Sparse Model than in the Dense, where the event
occurrence is easier to predict. 0-SARA returns better results
than 1-SARA (i.e., 17% better in the Dense Model and 31%
in the Sparse), but only slightly outperforms 0.5-SARA.

Fig. 2. SARA v.s. Actual Optimal with Variable θ

We also compare the number of valid (i.e., missions that
successfully observe events) and activated missions (i.e., mis-
sions that are allocated with resources) among θ-SARAs in
Fig. 3, where the white and black bars represent corresponding
number, respectively, and the ratio between the numbers is
marked over the set of bars. The figure shows that both

0.5-SARA and 1-SARA satisfy the required observation rate,
although 1-SARA’s rate is slightly lower than 100% because
of exploration. 0-SARA results in a similar number of valid
missions as 0.5-SARA achieves, where the former activates
the most number of missions for the best profit and the latter,
with a higher threshold θ = 0.5, concentrates resources on
fewer missions to achieve a better observation rate. 1-SARA
is shown to be too conservative as its numbers of both valid
and activated missions are the lowest, which results in the
poorest result shown in Fig. 2.

Fig. 3. Number of Valid and Activated Missions Achieved by SARAs

Fig. 4 compares 0-SARA, ASA and the Stationary solution.
0-SARA performs the best in both Dense and Sparse models.

Fig. 4. 0-SARA, ASA and Stationary v.s. Actual Optimal

The difference between 0-SARA and the Stationary solution
is trivial in the Dense Model, where most pairs of events can
occur successively. Even if SARA observes what is currently
occurring, it is hard to precisely predict what will occur in
the future. As a result, over a long period of time, the results
of SARA and Stationary solution may be close, but both are
better than ASA by about 17% (i.e., 56% compared to 48%).

In the Sparse Model, instead, because the pairs of events that
can occur one after the other are limited, based on the results of
observations, SARA can modify previous allocation strategies
when a mission becomes more or less important. This provides



SARA an advantage over ASA and the Stationary solutions in
each time slot. SARA achieves a performance more than 28%
better than ASA (i.e., averaging 64% of the actual optimal
compared to 50%) and 21% better than the Stationary solution
(i.e., averaging 64% compared to 53%).

C. Dynamic Cases with Changing Mission Set

In this case, 10 missions are initially created, and at the
beginning of each time slot, a new mission may be submitted.
The lifetime of each mission is randomly drawn from 1 to
20 time slots. When the deadline of a mission arrives, it is
terminated and no longer waits to be activated.

Since ASA and the Stationary solution are designed for
static scenarios and cannot be applied to this setting, in this
section we only study SARAs with variable θ. Fig 5 shows
that, on average, SARA still works better in the Sparse Model.
In both models, 0-SARA performs better than the other two,
and the difference is similar to that in the static simulation.

Fig. 5. Performance of SARAs in Online Environment

VI. CONCLUSION

We model a surveillance mission as a sequence of obser-
vation attempts on events of interest, whose occurrence is
modeled as a Markov process. We develop a Self-Adaptive
Resource Allocation algorithm (SARA) to maximize the ex-
pectation of profit by efficiently allocating limited sensing re-
sources, which is also capable of tuning the allocation strategy
based on the evolving conditions. Although the occurrence
states of events cannot be predicted precisely, based on the
known information collected from successful observations,
SARA calculates an approximation result. For a special case,
we prove that the difference between SARA and the actual
optimal is bounded. Simulation results show that the perfor-
mance of SARA is competitive compared to other algorithms
in this scenario of event monitoring with uncertainty.
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