Downloaded 04/03/16 to 151.100.38.135. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. APPL. MATH. (© 2016 Society for Industrial and Applied Mathematics
Vol. 76, No. 2, pp. 688-704

DISSIPATIVE SCALE EFFECTS IN STRAIN-GRADIENT
PLASTICITY: THE CASE OF SIMPLE SHEAR*
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Abstract. We analyze dissipative scale effects within a one-dimensional theory, developed in
[L. Anand et al., J. Mech. Phys. Solids, 53 (2005), pp. 1789-1826], which describes plastic flow in
a thin strip undergoing simple shear. We give a variational characterization of the yield (shear)
stress—the threshold for the onset of plastic flow—and we use this characterization, together with
results from [M. Amar et al., J. Math. Anal. Appl., 397 (2011), pp. 381-401], to obtain an explicit
relation between the yield stress and the height of the strip. The relation we obtain confirms that
thinner specimens are stronger, in the sense that they display higher yield stress.
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1. Introduction. A number of experiments have shown that conventional plas-
ticity fails to capture the size-dependent behavior of metallic specimens undergoing
plastic flow in the size range below 100 microns, with smaller samples being, in gen-
eral, stronger (see [25] for a review).

Substantial theoretical work has been carried out to extend conventional plasticity
to the micron scale. It is acknowledged that size effects observed in metallic samples
are associated to the inhomogeneity of plastic flow [5], a fact that motivates a number
of strain-gradient plasticity theories, starting with [11].

In the so-called nonlocal or high-order theories, the flow rule that governs the
evolution of plastic strain is a partial differential equation which requires the speci-
fication of appropriate boundary conditions. The first of such theories was proposed
by Aifantis [1]; the vast majority of subsequent high-order theories were derived using
the virtual-power principle, by taking into account power expenditure by higher-order
stresses that are work-conjugate to the plastic-strain gradient [6, 15, 20, 21, 22].

Apparently, the theories developed by Gurtin and Anand [21, 22] are those that
have inspired most mathematical work. One of the distinctive aspects of [21] is that
the full plastic distortion (the sum of a symmetric plastic strain and a skew—symmetric
plastic spin) is accounted for. In particular, the issues of existence and uniqueness
of solutions for strain-gradient plasticity with plastic spin, as considered in [21], has
been addressed in [9] in the case of two-dimensional setting of antiplane shear, and in
[12, 32, 33] in the full three-dimensional setting. The model for plastically irrotational
materials proposed in [22] was studied in [36]. Theoretical and numerical analysis of
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a related model with no plastic spin is available in [35]. More recently, existence of
weak solutions for a model with plastic spin was established in [13] using a Korn’s
type inequality for incompatible tensor fields (see [34] and references therein). Of
particular importance for the present paper are the existence theorems for strain-
gradient plasticity based on the notion of energetic solution, which have been proved
both in the small-strain [19] and in the large-strain [29] setting.

The flow rules proposed in [22] are of particular interest because they incorporate
two length scales:

e an energetic scale L, which appears from letting the free-energy density de-
pend on derivatives of the plastic strain, EP, through the Burgers tensor,
G = curlEP;

e a dissipative scale ¢, which arises from letting the gradient of plastic strain
rate, VEP_ enter the dissipation-rate density.

The form of the free energy density is motivated by dislocation mechanics. In
particular, the choice of letting the free energy to depend on plastic strain gradient
through the Burgers tensor follows from the presumption that the so-called geomet-
rically necessary dislocations (whose density is measured by G) play a major role
in determining size-dependent response, a presumption that finds its justification in
homogenization results from discrete-dislocation models [18, 28].

Because of the complicated nature of the nonlocal flow rule, it is not easy to
understand how its solutions are affected by the material scales. On the other hand,
such understanding is crucial in order to identify these scales by comparison with
experiments. Thus, parallel with the literature dealing with modeling, researchers
have also endeavored to investigate how the various scales may affect the nature of
solutions, not only for the Gurtin—Anand theory, but also for other strain-gradient
plasticity theories.

This task is usually accomplished by working out a simple analytical problem
that mimics some experimental setup. For example, scale dependence for the torsion
experiment was investigated in [27] (by numerical and asymptotic considerations) in
the framework of the Fleck and Willis theory [17] and in [10] (by rigorous arguments)
for energetic scale effects within the Gurtin—Anand theory [22]. Moreover, for the
distortion-gradient plasticity (which accounts also for plastic spin), specific finite-
element schemes for the torsion problem have been recently proposed in [8]. Problems
involving microbending have been scrutinized in [26] and, more recently, in [16] in the
case of nonproportional plastic-strain histories.

With a similar goal in mind, a simplified flow rule, formulated in one spatial
dimension, was derived and analyzed in [4] to investigate the effects of both the
energetic and the dissipative scales, in both isotropic plasticity and crystal plasticity
under symmetric double slip (see, e.g., [6]). Such flow rule, which mimics the traction
problem in simple shear symmetry, will be introduced in section 2. In the same
section we will also make a comparison with conventional plasticity. This comparison
illustrates two well-known facts: (1) that the length-scale ¢ is expected to be a source
of additional strengthening; (2) that the natural way to quantify strengthening is
to consider increase of the Yield stress, Ty, i.e., the value of the (shear) stress that
triggers plastic flow in an initially virgin sample.

The aim of this paper is to rigorously confirm these facts. We will show that
the onset of plastic flow, whence 7y, is determined by the loss of stability (according
to the energetic formulation of rate-independent systems) of the virgin state. As
a consequence, we will explicitly determine the dependence of 7y on ¢, proving in
particular that 7y is strictly increasing with ¢, that is to say, smaller samples are
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stronger.

Results and proof are stated (in renormalized variables) in section 3, which also
contains an outline of the arguments (details are given in sections 4-5). In summary,
using the above-mentioned characterization of 7y in terms of stability, we will ar-
gue that 7y may also be characterized as the smallest value that the renormalized

dissipation
+h do
P*(y +€2 —( )) dy

attains among all ¢ € Hg((—h,+h)) such that f y)dy = 1 (see section 2 for the
definition of Sy and h, and Theorem 3.4 for the prec1se statement). This constrained
minimization problem had already been introduced in [4] and analyzed in [2], showing
that a minimum is attained in BV, which is smooth in the interior and satisfies the
corresponding Euler-Lagrange (E-L) equation. We will then argue that these results
permit to explicitly characterize 7y in terms of £ (see Theorem 3.5 and Figure 3.1).

2. Problem setup.

2.1. The traction problem. The one-dimensional theory developed in [4] de-
scribes plastic flow in a body having the shape of an infinite strip of width 2k, namely,

(2.1) Qh:{x:(z,y,z)ERB:—h<y<h},

as sketched in Figure 2.1. We restrict attention to the so-called traction problem,
describing an ideal experiment in which the bottom side of the strip is clamped and
a uniform shear traction T along the direction x is prescribed on the upper side. We
work in the rate-independent setting of quasistatic evolution in plasticity and we limit
our attention to the case of proportional loading, that is to say, we assume that 7 is
strictly increasing with respect to time. With this assumption, we may label each
instant by the corresponding value of the shear stress and adopt 7 in place of time as
the independent variable.

Y
-
2h -
i
S S

F1a. 2.1. An infinite strip of height 2h, clamped on the bottom side and subject to a uniform
shear traction T on the top side.

Because of translational invariance in the z- and z-directions, it is natural to
assume that the two kinematic fields of interest, namely the displacement u and the
plastic strain EP, are independent of x and z. Moreover, by symmetry considerations
(see Appendix A.4), it is natural to assume that u is parallel to the z-axis and that
the only nonvanishing components of EP are (EP);2 = (EP)g;. Therefore, we make
the Ansatz that u and EP have the following representation:

(2.2) u=u(y,7)er, E’=7"(y,7)sym (e ® ey),
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with {e; : i = 1,2,3} the canonical basis of R?. The stress tensor T, consistent with
(2.2) and in view of the balance equation divT = 0, is taken to be spatially constant
and having the representation

T(T) :T(el X ex + e ®e1).

2.2. A local flow rule: Strengthening and hardening. If the material is
modeled in the framework of von Mises plasticity with kinematic hardening, the flow
rule governing the evolution of the shear strain v may be written as

{7‘ — SokP = 7dis|

2.3 is
23 o € Sign(4?),

where Sy > 0 is the coarse-grain yield strength, k is the kinematic-hardening coeffi-
cient, a superimposed dot denotes differentiation with respect to the loading param-
eter 7, and
{+1} if z >0,
Sign(z) =< [-1,+1] ifxz=0,
{-1} if x <0.

Note that (2.3) may be equivalently rewritten in its dual form:
(2.4) |7 — SorP| < So and (7 — SoryP? — 7)AP >0 for all 7 € [—Sy, So).

Note also that |741¥| < Sy as there is no isotropic hardening. Granted that the body
is in its virgin state at the beginning of the experiment, namely,

(2.5) 7 (y,0) =0,

the solution of (2.3) is easily worked out and, on introducing the positive-part operator
(-)+= max{-, 0}, can be written as

(/S0 — 1),

p =
Y (y, ) -

This solution displays the typical features of a stress-strain diagram from classical
plasticity; in particular:
e the increase of Sy is associated to strengthening, that is, an increase of the
threshold for the onset of plastic flow, the Yield shear stress:

(2.6) Ty = So;

e the increase of k, with Sy fixed, is associated to hardening, that is, an increase
of the shear stress required to attain a given amount of plastic shear.
On multiplying (2.3) by 4P, we obtain the free energy balance

1) 50s (7)) + Sals?l = 7,

the free energy density being given by %/ﬁ("/p)z. The balance (2.7) can thus be
interpreted as a splitting of the internal power 7P expended on plastic flow into an
energetic part and a dissipative part, TY54P = Sy|4P|. Accordingly, we may say that,
in the present context,’

INote, however, that, as pointed out in [24] (see also [23, section 80]), it is not always possible
to discriminate between energetic and dissipative effects.
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e strengthening is a dissipative effect, whereas
e hardening is an energetic effect.
It is worth noticing that the strengthening effect (also referred to as “elastic gap”)
associated to the dissipative length-scale emerges also in the analysis of nonpropor-
tional plastic-straining histories carried out in [16].

2.3. A nonlocal flow rule: Size-dependent strengthening and harden-
ing. Using the strain-gradient plasticity theory of [4] we derive in Appendix A a
nonlocal, rate-independent flow rule. In particular, we replace the first of (2.3) with

(2.8a) 7 —So (k7 — szygy) = pdis _ k3i57

where the subscript y denotes the partial derivative in the y direction, and the inclu-
sion in (2.3) with

(Tdis ’ é_l kdis)
So

where the index y denotes partial differentiation with respect to y and

Sign(v) = { {ﬁ} if |v|]#0,

(2.8b) € Sign (%, 45%) ,

{veR?: |v|<1} if |v|=0

(see Remark 3.3 for a discussion of the dual formulation). Problem (2.8) must be
complemented by both initial conditions, for which we again choose the virgin-state
condition (2.5),

(29&) ’}/p|7-:0 = 0,
and boundary conditions, for which we choose microscopic hard conditions:
(2.9b) VPlye = APlymin = 0.

As explained in Appendix A, the partial differential equation (2.8a) is a constitutively
augmented microforce balance. The balance is engendered by a version of the principle
of virtual powers that accounts for power expenditure on the time derivative of the
shear-strain gradient 7}. In particular, taking the formal variation of the plastic free
energy

(2.10) WWF%%j@ﬁﬂﬂhﬁﬁy

and defining the plastic dissipation rate

+h
(2.11) TP(1P) = Sbu/ih SOz + 262y,

the following identity is arrived at:

d +h
(212) SO+ = [ rirdy,

dr —h
which is again interpreted as a splitting of work expenditure (the right-hand side of
(2.12)) into an energetic part and a dissipative part. Given that L (resp., £) appear
in the energetic (resp., dissipative) part of the energy balance (2.12), in line with the
discussion in section 2.2:
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e one may expect that the extra energy brought into play by L enhances hard-
ening effects, and that the extra dissipation associated to ¢ is a source of
additional strengthening.

We have recently scrutinized the role of L in [10], rigorously confirming this
expectation in the case of torsion of thin wires. The role of ¢ has been investigated
both formally and numerically in [4]. In view of the discussion in section 2.2 (cf., in
particular, (2.6)) a natural way to rigorously quantify the role of ¢ is to determine
how the yield shear stress

(2.13) Ty = sup {7‘ >0: 4" =0 in (—h,+h) x [0,7’]},
i.e., the value attained by 7 at the onset of plastic flow, depends on ¢. Such a relation
cannot be easily deduced a priori and is the main point of this paper.

3. Main results.

3.1. Scaling. In order to single out the relevant parameters, we introduce di-
mensionless independent variables:

T

0:=—.
So

Consistent with this choice, we introduce the dimensionless parameters:
(3.1) Ai=—, Ai=—.

The nonlocal flow rule (2.8) can now be reformulated in the domain [ := (—1,+1) and
takes the form (henceforth, for typographical convenience, we drop the superscript p
from ~P):

_ AQ oy = =dis _ 7.dis
(3.2) {0 Ky 4+ A%y T ke,

(79, AT1RT®) € Sign (5, M),

where the index r denotes partial differentiation with respect to r. Initial and micro-
scopically hard boundary conditions (2.9) now read as

(3.3) v(r,0) =v(-1,0) = v(+1,0) =0, (r,0) € I x[0,+00)

and the renormalized plastic free energy (resp., dissipation rate) are given by

(3.4) E(y) = g /1 (2 +A%2) dr, U(y) = /I VA2 + XN2A2dr

(cf. (2.10), resp., (2.11)). In renormalized variables, our aim becomes that of rig-
orously quantifying the dependence on the renormalized dissipative scale, A\, of the
renormalized yield shear stress (cf. (2.13))

Ty .
(3.5) S—zﬁy::sup{GZO: ¥=0 in IX[O,G]},

0

namely, the largest value attained by the renormalized shear stress 6 prior to the onset
of plastic flow.
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3.2. Energetic formulation. We assume hereafter that x > 0, A > 0, and
A > 0. Being a rate-independent dynamical system, the flow rule (3.2)—(3.3) can
be formulated in many equivalent ways. The formulation that best suits our needs is
the so-called energetic formulation proposed in [31]. With a view towards formulating
(3.2)—(3.3) in the energetic format, we introduce the (renormalized) energy functional:

(3.6) &(0,7) := E(vy) — G/I’ydr.

As usual, we write () := (6, -). We can now give the definition of energetic solution.

DEFINITION 3.1 (energetic solution). Given © > 0, a function v : [0,0] —
H{(I) is an energetic solution to (3.2)~(3.3) if the function [0,0] 360 — %£(6,~(0)) =
— [;ydr is in L'((0,©)) and if the following conditions are satisfied for all 6 € [0, ©)]:

(3.7a) E0,7(0)) < &O,v) +¥(y(0) —v) for all v € H(I),
0
(3.7b) £(0,7(0)) + disg (: 0, 0]) = — /O /I ~(9)dr dv,

where disg (7; [0,0]) is the total variation of v on [0,0] with respect to the distance
d(71,72) = ¥(n —72), i€,

N
disw (73 [0,0]) :=sup ¢ Y " W(y(0;) —v(0;-1)): NEN, 0=0p <--- <Oy =0
j=1

In the present setting (quadratic energy) the next proposition is established with-
out burden by invoking, for instance, Theorem 2.1 in [30].

PROPOSITION 3.2. There exists a unique solution v of (3.2)—(3.3). Moreover,
0 — ~(0) is Lipschitz continuous as a function from [0,0] to HZ(I).

Remark 3.3. As is well known (see, e.g., section 2.1 in [30]), there are other
equivalent ways to define a solution to (3.2)—(3.3). In particular, the dual formulation
(i.e., the strain-gradient counterpart of (2.4)) is given by

0 — Ky + A%y € 00(0) and () — wy + A%y, —0,4) >0 for all o € 9T(0),

where (-, -) denotes the duality pairing between H~1(I) and H}(I) and 0¥ (0) = {0 €
H=Y(Q): Y(u) > (o,u) for all u € H}(I)}. A slight generalization of the arguments
in [2, proof of Theorem 6.1] shows that ¥ (0) is characterized as

aV(0) = {%— Bt |1(F) M) ]oo < 1}.

3.3. Characterizations of 7y. The first main result of this paper is the fol-
lowing characterization of 6y.

THEOREM 3.4. Let v be the unique energetic solution to (3.2)—(3.3) and let

= — =8 > . = ) .
Oy 5 bup{G_O v=0 1n IX[O,G]}

TY
0
Then

(3.8) 0y = inf {\I/((b): ¢ € Hy(I), /I(bdr = 1}.
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In order to explain the relation between the two quantities, it is convenient to
briefly illustrate the main steps in the proof, whose details are given in section 4. We
begin by observing that the energy-balance condition (3.7b) is identically satisfied for
all § € (0,0y). Thus, what determines the onset of plastic flow is the loss of stability
of the trivial state v = 0. This leads us to consider the stability indicator:

(3.9) m(O) = inf ®o(6), where 29(6) = E(0,6) + V(o).

We will indeed argue that
Oy =inf {6 >0: m(0) <0}

(cf. Proposition 4.3). Next, we note that the plastic dissipation rate ¥ is (positively)
homogeneous of degree one in v, whereas the plastic free energy F is quadratic. Then,
a simple scaling argument can be used to show that the reduced stability indicator

(3.10) m(f) ;= inf ®p(¢), where Bg(¢) := \I!(¢)—6‘/I¢dr

PeH}(I)
is equivalent to the stability indicator:
m(r) <0< m(r) <0

(cf. Proposition 4.4). The last step of our argument consists of observing that, again
by homogeneity, for negative values of m we can restrict our attention to the subspace
of tests ¢ satisfying the normalization condition || ; ¢dr = 1: this leads to Theorem 3.4.
3.4. The formula for 7y . The second main result of this paper is the following
explicit formula for 7y .
THEOREM 3.5. The renormalized yield shear stress 0y = g—‘; and the renormalized
dissipative scale A = % are related by

(3.11) A= 2v/0y —1
' m(fy — /0% — 1) + 20y arctan 9; — '

Y

The proof is provided in section 5 and relies on results in [2], guaranteeing that
the relaxation in BV (I) of the infimum problem in (3.8) admits a minimizer ¢y which
is smooth in I and satisfies the E-L equation

doy
(3.12) Oy = oy el dr

o’ + (%) Vo)
By a suitable change of dependent variable, we convert (3.12) into a first-order dif-
ferential equation with two side conditions. The extra side condition selects the
eigenvalue Oy of the E-L equation (3.12), yielding (3.11).

The graph of 7y /Sy, recovered from (3.11), is plotted in Figure 3.1 (recall (3.1) and
(3.5)). Our result confirms that as the sample becomes smaller, i.e., A = ¢/h increases,
the actual yield strength increases: hence smaller samples are stronger. Needless to
say, the results from our plot agree with the numerical calculations carried out in [4]
and reported in Figure 4 thereof.
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14 — Ty L
9Y - 5 g

Fic. 3.1. Solid line: renormalized effective yield strength Ty /So versus renormalized dissipative
scale £/h, as from formula (3.11). Dashed line: the upper bound % <1+ % derived in [4]. This

plot agrees with the result computed numerically in [4] and reported in Figure 4 thereof. When
comparing the two figures, the reader should take into account that in the present paper the symbol h
denotes half the thickness of the strip, whereas in [4] the same symbol denotes the overall thickness.

Our explicit formula provides additional insight concerning the asymptotic be-
havior of the actual yield strength for small and large values of h. In particular, from
(3.11) one finds that, for 0 < 0y — 1 < 1,

a2 e,

™

which implies that, for 0 < A < 1, the renormalized actual yield strength has the
following asymptotic behavior:

2
6‘y—1~7/\2 for 0 <A< 1.
We also note that, as A = ¢/h — oo, a linear relation is recovered:
77
GY_)\NZ for A> 1.

Remark 3.6. It would be interesting to see if and how the dependence of Ty
on ¢ is modified by a generalization of the plastic dissipation-rate density in (2.11)

which preserves 1-homogeneity, namely (("yp)q + Eq("yg)q)l/q with ¢ > 1, as there are
mechanical arguments supporting it (see, e.g., [7, 14]). It would also be interesting
to seek for quantitative relations between the onset of plastic flow and the dissipative
length-scale under different symmetry assumptions (e.g., torsional symmetry) or even
in a generic three-dimensional framework.

4. Proof of Theorem 3.4. Existence and uniqueness of the minimum in (3.9)
is readily ascertained through the direct method of the calculus of variations, owing
to coercivity, lower semicontinuity, and convexity of ®4 in Hg (I).

LEMMA 4.1. For any A > 0 there exists a unique minimizer ¢ of the infimum
problem in (3.9).

The first step is to show that if the trivial state is not stable at a certain value
of the renormalized shear stress 6 during the loading process, then it is not stable for
whatever higher value.
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LEMMA 4.2. The function [0,0] 20 — m(0) defined in (3.9) is nonincreasing.
Proof. Let ¢y be the unique minimizer of ®y. First, we observe that

(4.1) ¢9>0 a.e. in [ for all 8 > 0.

Indeed, obviously ¢9 = 0; for 8 > 0, if ¢y < 0 in a set J of positive measure, then
(by the definitions (3.6) and (3.4) of &, resp., ¥) we would have ®y(|pg|) < Po(d0), a
contradiction. Thus, given #; < 65, we have

3.9
m(02) (:) @92 (¢92)
< Dy, (ds,) (by the definition of ¢g,)
(3.6),(4.1) 59

<0, (00,) E m(on),

as desired. 0
The previous lemma is expedient to arrive to the following characterization of 0y .

PROPOSITION 4.3. Let v be the unique energetic solution to (3.2)—(3.3) and let
Oy and m as in (3.5) (resp., (3.9)). Then

Oy =inf {6 > 0: m(9) < 0}.

Proof. Let us set @ = inf {6 >0: m(f) <0}. We notice that, since m(0) is
nonincreasing, m(6) = 0 in [0,5). Hence, by direct substitution into (3.7), we see
that the trivial function 6 — 0 is an energetic solution on the interval [0, 5) By the
uniqueness of the energetic solution, and by (3.5), it follows that 6y > 0.

The reverse inequality follows from the monotonicity of 6 — m(6): suppose indeed
that 0 < fly; then, by Lemma 4.2 there exists 6 < 6y such that m(6‘~) < 0; however,
0 < 0y implies that v(6) = 0; thus, by (3.7a) and (3.9), this means that m(f) = 0,
hence a contradiction. O

We now show that the reduced stability indicator defined in (3.10) can be used
to detect the onset of plastic flow. Indeed, we have the following equivalence.

PROPOSITION 4.4. The following characterization of 8y holds:
(4.2) Oy = inf{6 > 0 : m(0) < 0}.
Proof. In view of Proposition 4.3, it suffices to show that
m(f) <0 if and only if ~ m(6) < 0.

Since by definition @5 < &y, m(f) < 0 obviously implies 7m(f) < 0. For the reverse

implication, let us assume m(¢) < 0. Then there exists ¢ € HL(I) such that ®y(¢) <
0. On the other hand, by the 1-homogeneity of @y,

. Pplag) =~
iy T 20
Thus ®(ad) < 0 for a > 0 sufficiently small, whence m(6) < 0. O

With Proposition 4.4 at hand we are now ready to establish the variational char-
acterization we have been after.
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Proof of Theorem 3.4. Let

~

(4.3) By () == inf{\I/(qS) 6 € HA(ID), /(bdr— 1}

On recalling the definitions of ¥ and ®, given in (3.4) (resp., (3.10)), we see that the
inequality

(4.4) Oy < 0y (N)

is implied by the following chain of implications:

~

Oy(\) <80 = U(p) <0 for some ¢ € Hy(I) such that /qur =1
I

= inf <—/10¢d7"+\1/(¢)) <0

peHj(I)

(849 m(0) <0

L2 4. <.

Having established (4.4), it remains for us to prove the reverse inequality:
(4.5) Oy > Oy (N).
To this aim, let 8 € (0,0y ())). By the definition (4.3) of fy ()), we have

(4.6) 9/I¢dr =0 < ¥(¢p) forall p € Hi(I) such that /Iqbdr =1

Since both sides of the inequality in (4.6) are positively 1-homogeneous, (4.6) upgrades
to

(4.7) 9/(;5(17“ < W(¢) forall ¢ € HL(I) such that /(bdr > 0.
I I

In turn, since ¥ is nonnegative, (4.7) upgrades to

(4.8) 0< (g 9/¢dr = <I>9 (¢) for all ¢ € H}(I)

which holds for all 6 € (0, 5y(/\)) Summing up, we have the implication

0<0<b(N) Y m@) = wf Fp0)>0 ) g<ay,
peH}(I)
whence (4.5), since 0y > 0 by definition. a

5. Proof of Theorem 3.5. The infimum problem in (3.8) was addressed in [2].
Consider the relazation of U,

(5.1) (@)= inf { Tminf W(o) s {6} CWe' (1), o — ¢ in L1(1) },
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i.e., the largest lower semicontinous extension of W. It is shown in [2] that the relax-
ation W has the following representation for ¢ € BV (I):2

2
62 W)= [\forxe (5] ars MDD + A (61| + oD

Notice that, as is customary in the BV setting, homogeneous boundary conditions
are now incorporated in the functional through the penalization term A|¢|(0I) =
Al — 0[(9I), which measures the jump between the trace of ¢ and the prescribed null
value.

The following results were established in [2].

THEOREM 5.1 (see Thm. 5.1 in [2]). Let ¥ as in (5.1). There exists a unique
¢y € SBV(I) such that [, ¢pydr =1 and

T(oy) = mm{ (6): 6 € LI( /¢dr—1}

Moreover, ¢y is even, strictly decreasing in [0,1), and smooth in (—1,1); furthermore,
it solves the E—-L equation

doy

(5.3) T(py) = v = - A2di dr = inl
oy® +22(%r) ov? +22(%r)
and it satisfies
dy(r) Oy —1 . doy
A4 = d 1 = —0o0.
(5 ) r—gl* (;5y (0) Oy a r—l>r?* dr ( ) >

Remark 5.2. Notably, (5.4) shows that the solution ¢y € SBV (I) of the relaxed
minimization problem does not satisfy the boundary conditions ¢(—1) = ¢(1) = 0
generally speaking, this amounts to saying that, in order to minimize ¥ with mass
constraint, paying a jump discontinuity at the boundary is cheaper than attaining the
boundary value zero.

We are now ready to prove Theorem 3.5.
Proof of Theorem 3.5. In view of Theorem 3.4 and since H}(I) is dense in BV (1),

(5.5) U(gy) = Oy.
We also notice that, since d¢y /dr < 0in [0, 1) and ¢y is positive with [, ¢y (r)dr = 1,

(¢v) 5,2) \/¢ +)\2 ¢Y dr >/|¢y|dr—1

Now, consider the function

re |

(5.6)

doéy
((r) = = r

s+ ()"

2Here ||11|| denotes the total variation of a measure p (see, e.g., [3, Def. 1.4]) and 4¢ ar ¢ (resp., D% ¢)
denote the absolutely continuous (resp., singular) part of D¢ with respect to the Lebesgue measure
(see, e.g., [3, Thm. 1.28 and section 3.9]). We also refer to [3] for definitions and basic properties of
the spaces BV (I) and SBV ().
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Since ¢y is smooth and positive in I, ¢ is smooth as well. We note that

1-¢=1-) (%/)2 = (v )"
g+ (40)" gy 4 (

)
Hence, since ¢y > 0,

(5.7) Py =1-C.

&+ (%)

By also making use of the E-L equation, we see that ( satisfies the following differential
equation:

68) G ) - — g o
&+ (%)

It follows from (5.6) and (5.8) that % > 0. Hence,

le® /1 S /<<1—> S
A 0 Oy —/1-¢? o) Oy —1-0 7
In addition, since ¢y is even and because of (5.4), we have that

¢(0)=0 and lim ((r) =1.

r—1—

Therefore,

I d¢
(5:9) X _/0 PR —cy

The integral on the right-hand side of (5.9) is well defined and can be computed
explicitly. As a result, we arrive at formula (3.11) for the renormalized actual yield
stress. a

Appendix A. The nonlocal flow rule. In this section we briefly recapitulate
the steps leading to the flow rule (2.8), as devised in [4], with a few changes from the
original path. At variance with the previous sections, we do not assume proportional
loading. Accordingly, the independent variables are now y € (—h,+h) and ¢, which
stands for time, and the index y denotes partial differentiation with respect to y.

A.1. Principle of virtual powers. We start from the decomposition
(A.1) Uy =+ P
of the shear strain u, into an elastic part v° and a plastic part vP. This decomposition

is accompanied by the prescription that, given any part P = (a,b) C (—h,+h), the
internal power expended within P has the form

(A.2) Wit (P) = /P T4 + TPAP + kP4Rdy.
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Thus, power expenditure by the macroscopic shear stress T is accompanied by working
of the plastic microstress TP and gradient microstress kP. If body forces are left out of
the picture, the external power expended on P = (a,b) is localized on the boundary
0P = {a,b} and has the form

Wt (P) = F(B)it(b) + kP (b)3° (b) — F(a)i(a) — kP(a)3P(a),

where T and kP are, respectively, the macroscopic and the microscopic shear tractions.
The application of the principle of virtual powers yields
(1) the identification between stress and traction, namely 7 = 7, along with the
macroscopic-force balance:

(A.3) Ty =0;
(2) the identification of kP with kP, along with the microscopic force-balance:
T=7P— k;’ .

A.2. Constitutive prescriptions. Consistent with the choice (A.2) for the
internal power expenditure, it is assumed in [4] that the free-energy density ¢ depends
on the triplet (v¢,9P,}) through a constitutive equation of the form

0 =007 75)-

It is also assumed that the constitutive mapping delivering the free-energy density is
the sum
(%P ) = 0 () + P (VP )

of an elastic-energy mapping ©°, which takes into account the elastic shear, and a
defect-energy mapping ¢P, which depends on the plastic shear and on its gradient. In
particular, the elastic-energy mapping is given the form ¢°(+¢) = %G (7¢)?, with G > 0
the shear modulus.Ac This assumption is accompanied by the standard constitutive
prescription 7 = g—ﬁe, whence

(A.4) T =GA°

The microstresses are then split into an energetic part and a dissipative part by setting

P = 7_dis + Fen kP = kdis + Len
where N N
Fon — a(pp en _ 590p
Oy’ Oy’

so that the following reduced form of the dissipation inequality is arrived at:
0 < 7_dis;}/p + kdis;yél).

By analogy with the constitutive equations describing viscoplastic behavior in metals,
the following constitutive equations have been considered in [4]:

. dP\ "™ AP . dP\™ AP
dis __ - R dis — 2 (2 ly
. —S(do) K= s (do) L3

& =\/(P)2+ 27, S=H(S)d®,  S(0) = So.

(A.5)
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Here, S is the current yield strength, an internal variable whose value at time ¢ = 0 is
equal to the initial yield strength Sy and whose time derivative is proportional to the
effective flow rate dP through a (isotropic) hardening/softening function H(S); dy is
the reference flow rate; m > 0 is the rate-sensitivity parameter.

The constitutive prescription (2.8b) follows by setting H(S) = 0 (no isotropic
hardening) and by formally letting m — 0 in (A.5) (rate-independent limit). The
partial differential equation (2.8a) is recovered by choosing

N 1
PPy = 550 (K(YP)? 4+ L*(79)?).

A.3. The traction problem. In the traction problem, the bottom side of the
strip is clamped, that is,

(A.6) u(—h,t) =0,
and a time-dependent shear traction 7} (t) is prescribed on the upper side, that is,
7(h,t) = Th(t).

On recalling that the shear stress is spatially constant by (A.3), we see that the shear
stress 7(t) appearing in the flow rule (2.8) is a prescribed, spatially constant field.
Thus, the flow rule (A.5) can be solved for the plastic shear vP without knowing the
displacement field. The latter is recovered by integrating (A.1) and (A.4), and by
taking (A.6) into account, that is to say,

(A7) u(y,t) = /yh <LC§) + ’yp(s,t)> ds.

A.4. Comparison with the Gurtin—Anand three-dimensional theory.
Under constitutive prescriptions analogous to those mentioned above, once augmented
with kinematic hardening the three-dimensional theory developed in [22] leads to the

following flow rule (see also [23, section 90]):
TQ - Tback = T‘piS - diVKpiS,
(A.8a) 71 d s .
So ' (Thi, ¢7'KE,,) € Sign(EP, (VEP),

together with the standard force balance
(A.8b) divT = 0,
where

symVu =E°+ EP, T =2uE° + A(trE°)I,

1
Thack = SokEP — SgL? <AEp — sym(VdivEP) + g(div divEp)I> ,
VD if [V[2+[V[]2 #0
Sign(V, V) = { lv2+lw} VI
{(V,V) € RES x(REE xR 1 V[V <1} i [VP+[V]2 =0,
and Ty is the deviatoric part of T. Here R?s);ri,o denotes the space of symmetric and
traceless 3 x 3 matrices.

Let Q, be as in (2.1) and let 7 = 7(¢) be prescribed. Formally (in particular,
granted uniqueness), if (u, EP) is a solution to (A.8) in Q, x (0, 00) with (Tea)|y=1+n =

Te; and uly—=_p = 0, one can check that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/03/16 to 151.100.38.135. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

DISSIPATIVE SCALE EFFECTS IN GRADIENT PLASTICITY 703

(1) by translational invariance, (u, EP) are independent of x and z;

(2) by odd reflection with respect to z = 0 and in view of (1), u-es = e3-EPe; =
es - EPey = 0;

(3) since (—u, —EP) is a solution to (A.8) with 7 replaced by —7, by odd reflection
with respect to = 0 and in view of (1), u-e; =e;-EPe; =0 fori=1,2,3.

This motivates Ansatz (2.2) in section 2.

One can also check that if 7P is a solution to (2.8) and u is defined similarly

to (A.7), then (ueq,yPsym(e; ® e2)) is a solution to (A.8). In fact, we could have
introduced (2.8) as well in this way rather than through the ad-hoc discussion in
sections A.1-A.3. We have opted for the latter in the hope of making the resulting
model more transparent.
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