
Math. Nachr. 290, No. 2–3, 236–247 (2017) / DOI 10.1002/mana.201600038

Existence of solutions to a non-variational singular elliptic system
with unbounded weights

L. M. De Cave∗1, F. Oliva2, and M. Strani3
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In this paper we prove an existence result for the following singular elliptic system{
z > 0 in � , z ∈ W 1,p

0 (�) : −�pz = a(x)zq−1uθ ,

u > 0 in � , u ∈ W 1,p
0 (�) : −�pu = b(x)zq uθ−1 ,

where � is a bounded open set in R
N (N ≥ 2), −�p is the p-laplacian operator, a(x) and b(x) are suitable

Lebesgue functions and q > 0, 0 < θ < 1, p > 1 are positive parameters satisfying suitable assumptions.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction and main result

In this paper we are concerned with the following nonlinear singular elliptic system{
z > 0 in �, z ∈ W 1,p

0 (�) : −�pz = a(x)zq−1uθ ,

u > 0 in �, u ∈ W 1,p
0 (�) : −�pu = b(x)zquθ−1,

(1.1)

where � is a bounded open set in R
N (N ≥ 2), the weights a(x) and b(x) satisfy

a(x) ∈ L∞(�), b(x) ∈ Lm(�) for some m >
N

p
,

{
0 ≤ a(x), a(x) �≡ 0
0 < β ≤ b(x) a.e. in �, (1.2)

and the parameters q, θ , p are chosen so that

0 < θ < 1, 0 < q < p − θ, (1.3)

and {
θ + 1 < p < N ,

p �= 1 + √
qθ.

(1.4)

In (1.3) and (1.4) the upper bound on q, the lower bound on p and the last condition are technical assumptions
needed in the proof of our main result (see Section 3).

Being θ < 1, at least the second equation in (1.1) has a lower order term that is singular with respect to the
solution u, in the sense that it blows up when the solution is zero; additionally, when q < 1, also the right hand
side of the first equation in (1.1) becomes singular with respect to z.
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For the reader’s convenience, we recall that the p-laplacian operator, with p > 1, acts on a function v ∈ W 1,p(�)
as −�pv := −div

(|∇v|p−2∇v
)
.

Elliptic boundary value problems with singular lower order terms have been widely studied in the past. For what
concerns the case of a single equation, we recall the pioneering papers [7], [14] and the more recents works [3], [10],
[12], [15]–[17]. When considering elliptic systems with singular lower order terms, beyond the variational cases
studied in [4], [11], we recall the non-variational case with higher order terms that are linear with respect to the so-
lutions studied in [6], as well as [13], [18], where the authors study Lane–Emdem systems with negative exponents.

Going further in details, in [4] and [11] the variational counterpart of system (1.1) has been studied for p = 2
and for the general case p > 1 respectively; precisely, in [11] the author considers the following system{

z > 0 in �, z ∈ W 1,p
0 (�) : −�pz = qzq−1uθ ,

u > 0 in �, u ∈ W 1,p
0 (�) : −�pu = θ zquθ−1,

(1.5)

namely system (1.1) with a(x) ≡ q, b(x) ≡ θ and q, θ, p positive real numbers such that{
0 < θ < 1, 0 < q < p∗ − θ,

1 < p < N.
(1.6)

We underline that, on one hand, assumption (1.6) covers a wider range for the parameters q, θ, p with respect
to (1.3) and (1.4) but, on the other hand, the weights in the lower order terms of (1.1), namely a(x) and b(x),
are more general with respect to the ones of (1.5), that are in fact chosen in such a way to give a variational
structure to the system. Indeed, the particular choice a(x) ≡ q and b(x) ≡ θ allows to consider (1.1) as a system
of Euler-Lagrange equations associated to the following functional

J (v,w) = 1

p

∫
�

|∇v|p + 1

p

∫
�

|∇w|p −
∫

�

vθ
+w

q
+,

which is well-defined on W 1,p
0 (�) × W 1,p

0 (�) but is not differentiable in v (being θ < 1) and also in w, if q < 1.
Thus, in order to obtain the existence of a finite energy solution (u, z) to (1.5), the idea is to introduce a suitable
approximation Jn of J , depending whether q ≥ 1 or 0 < q < 1, allowing the definition of the Gateaux derivative
of J along every direction of the subspace W 1,q

0 (�) ∩ L∞(�) × W 1,q
0 (�) ∩ L∞(�); it is then possible to find a

solution to (1.5) by passing to the limit in a sequence of critical points of Jn .
Differently from the case studied in [11], here we no longer have a variational structure and in order to prove

the existence of a solution to (1.1), we can not proceed as in the proof of [11, Theorem 1.1].
The present work means to give a new contribution in the literature on non-variational singular elliptic systems,

proving that (1.1) admits a finite energy solution (u, z) ∈ W 1,p
0 (�) × W 1,p

0 (�), as enlightened in the following
Theorem.

Theorem 1.1 Suppose that (1.2), (1.3) and (1.4) hold. Then there exists (u, z) ∈ W 1,p
0 (�) × W 1,p

0 (�) positive
solution to (1.1) in the following sense:⎧⎪⎪⎨

⎪⎪⎩

∫
�

|∇z|p−2∇z∇ψ =
∫

�

a(x)zq−1uθψ ∀ψ ∈ W 1,p
0 (�),∫

�

|∇u|p−2∇u∇ϕ =
∫

�

b(x)zquθ−1ϕ ∀ϕ ∈ W 1,p
0 (�) .

(1.7)

Moreover, both u and z belong to L∞(�).

Remark 1.2 If q ≥ 1, applying the generalized Hölder inequality and using (1.2)–(1.4), we can easily prove
that the right hand side of the first equation in (1.7) is well defined; on the other side, when 0 < q < 1, to prove
that the right hand side of either the first equation or the second one is well defined, we have to proceed by steps,
as it will be clarified later on in the proof of Theorem 1.1.

The proof of Theorem 1.1 is based on an application of the Schauder’s Fixed Point Theorem, that we recall
here for reader’s convenience.

Theorem 1.3 (Schauder’s Fixed Point Theorem) Let X be a Banach space, S : X → X be a continuous map
such that S(C) is compact for every C ⊂ X bounded and K be a convex, closed and bounded subset of X that is
invariant for S. Then S has at least a fixed point in K.
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238 L. M. De Cave, F. Oliva, and M. Strani: Singular elliptic system with unbounded weights

The lack of variational structure for the system (1.1) prevents also to prove that the solution we find is different
from zero as done in [11], where this follows by using the property that such a solution is obtained as limit of
a sequence of non-trivial critical point of a certain approximating functionals Jn . The idea here is to define the
invariant set K in such a way it is far from zero, so that the solution (u, z) to (1.1) found by applying Theorem 1.3,
namely found as a fixed point of some map S defined on K, will not be identically zero.

We underline that the method proposed in this paper could be a first step to address the problem of the
existence of solutions to more general singular and non-variational systems of elliptic equations through fixed
point arguments. In particular we here have in mind the case in which both the equations are singular with respect
to their solutions and have non-constant weights in the lower order terms.

We close this Introduction with a short plan of the paper. In Section 2 we give some preliminary results needed
in order to prove our main result. Section 3 is the core of the paper. At first, we treat the trivial case a(x) ≡ A and
b(x) ≡ B, with A, B positive constants, showing that elementary computations lead to the existence of a solution
to (1.1) by taking advantage of the existence of a solution in the case A = q and B = θ (see [11]); the second part
of Section 3 is entirely devoted to the proof of Theorem 1.1 under its general assumptions.

2 Notations and preliminaries

For the sake of simplicity we will often use the simplified notation∫
�

f :=
∫

�

f (x) dx,

where no ambiguity on the integration variable is possible. Moreover we denote by r∗ the Sobolev conjugate of

1 ≤ r < N , given by
Nr

N − r
, and by r ′ = r

r − 1
the Hölder conjugate of 1 < r < ∞ (if r = 1 we define r ′ = ∞,

while if r = ∞ we define r ′ = 1).
If v : � → R is a measurable function, we define the positive part of the function v as

v+ = max(v, 0),

and the truncation function Tk at the level k ∈ N as

Tk(v) = max{−k, min(k, v)}.
We denote with ϕ

μ

1 the first eigenfunction of the p-laplacian operator with weight μ = μ(x), where 0 ≤ μ(x) ∈
Lm(�), with m > N

p and μ(x) �≡ 0. Namely 0 ≤ ϕ
μ

1 ∈ W 1,p
0 (�), ϕ

μ

1 �≡ 0 and it solves{
−div

(|∇ϕ
μ

1 |p−2∇ϕ
μ

1

) = λ
μ

1 μ(x)
(
ϕ

μ

1

)p−1
in �,

ϕ
μ

1 = 0 on ∂�,

where

λ
μ

1 = inf

{∫
�

|∇v|p :
∫

�

μ(x)|v|p = 1

}
.

It can be proven that ϕ
μ

1 is strictly positive in � (see [8, Proposition 3.2]) and that ϕ
μ

1 ∈ L∞(�) (see [9, Lemma
3.5]).

Moreover we denote by C1
0(�) the set of C1 functions on � with compact support.

The following two results will be used in the proof of Theorem 1.1 and represent a generalization of [1,
Theorem 2.2, Theorem 2.4].

Theorem 2.1 Let � ⊂ R
N (N ≥ 2) be a bounded open set and γ ∈ R

+. Assume that 0 ≤ f ∈ L1(�) is
not identically zero and that there exists a locally positive distributional solution v ∈ W 1,p

0 (�) to the following
singular problem⎧⎪⎨

⎪⎩
−div

(|∇v|p−2∇v
) = f (x)

vγ
in �,

v > 0 in �,

v = 0 on ∂�,

(2.1)

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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namely we assume that there exists v ∈ W 1,p
0 (�) such that

∀ ω ⊂⊂ � ∃ cω > 0 : v ≥ cω in ω, (2.2)∫
�

|∇v|p−2∇v∇ϕ =
∫

�

f ϕ

vγ
∀ϕ ∈ C1

0(�). (2.3)

Then v satisfies

f ψ

vγ
∈ L1(�) ∀ψ ∈ W 1,p

0 (�), (2.4)

∫
�

|∇v|p−2∇v∇ψ =
∫

�

f ψ

vγ
∀ψ ∈ W 1,p

0 (�). (2.5)

P r o o f . Let ψ ∈ W 1,p
0 (�) and ϕn ∈ C1

0(�) be a sequence of smooth functions converging to ψ in W 1,p
0 (�).

We take

ϕ :=
[
(ε p′ + |ϕn − ϕk |p′

)
1
p′ − ε

]
∈ C1

0(�),

as a test function in (2.3) and we find∫
�

f

vγ

[
(ε p′ + |ϕn − ϕk |p′

)
1
p′ − ε

]
=

∫
�

|∇v|p−2∇v∇(ϕn − ϕk)|ϕn − ϕk |p′−1[
(ε p′ + |ϕn − ϕk |p′)

1
p

]

≤
(∫

�

|∇v|p

) 1
p′

(∫
�

|∇(ϕn − ϕk)|p|ϕn − ϕk |p′

ε p′ + |ϕn − ϕk |p′

) 1
p

≤ ‖v‖
p
p′

W 1,p
0

‖ϕn − ϕk‖W 1,p
0

.

Since f, v ≥ 0, using Fatou’s lemma as ε → 0 we obtain∫
�

f

vγ
|ϕn − ϕk | ≤ ‖v‖

p
p′

W 1,p
0

‖ϕn − ϕk‖W 1,p
0

,

deducing that f ϕn

vγ is a Cauchy sequence in L1(�). Since ϕn converges almost everywhere to ψ , this implies that
limn→∞

∫
�

f ϕn

vγ = ∫
�

f ψ

vγ . In particular (2.4) holds and we can pass to the limit as n → ∞ in∫
�

|∇v|p−2∇v∇ϕn =
∫

�

f ϕn

vγ
,

obtaining (2.5).

Theorem 2.2 Assume f1, f2 ∈ Lm(�) be two nonnegative functions such that the corresponding solutions
v1, v2 of (2.1) are in W 1,p

0 (�). Then f1 ≥ f2 implies v1 ≥ v2.

In particular, if (2.1) admits a finite energy solution v ∈ W 1,p
0 (�) in the sense of (2.2) and (2.3), then v is

unique.

P r o o f . Since v1, v2 are finite energy solutions, (2.5) leads to∫
�

|∇v2|p−2∇v2∇(v2 − v1)+ =
∫

�

f2(v2 − v1)+

v
γ

2

,

−
∫

�

|∇v1|p−2∇v1∇(v2 − v1)+ = −
∫

�

f1(v2 − v1)+

v
γ

1

.

Summing up we obtain

0 ≤
∫

�

(|∇v2|p−2∇v2 − |∇v1|p−2∇v1
)∇(v2 − v1)+

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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240 L. M. De Cave, F. Oliva, and M. Strani: Singular elliptic system with unbounded weights

=
∫

�

(
f2

v
γ

2

− f1

v
γ

1

)
(v2 − v1)+

≤
∫

�

f1

(
1

v
γ

2

− 1

v
γ

1

)
(v2 − v1)+ ≤ 0,

implying χ {v2≥v1} = 0 almost everywhere, as desired.

3 Proof of Theorem 1.1

3.1 The case with constant weigths

We start by considering the easiest case where a(x) and b(x) are constant in �, i.e. a(x) ≡ A and b(x) ≡ B for
some A, B ∈ R

+. We show that elementary computations lead to the existence of a solution to (1.1); the main tool
we are going to use is the existence of a solution to the variational counterpart of (1.1), as it was proven in [11].

Precisely, let (w, v) ∈ W 1,p
0 (�) × W 1,p

0 (�) be a positive solution to{−�pw = q wq−1vθ ,

−�pv = θ wqvθ−1,

and let us look for a solution (z, u) to{−�pz = A zq−1uθ ,

−�pu = B zquθ−1,
(3.1)

of the form z = w
ρ

and u = v
σ

, being ρ, σ ∈ R
+ constants. By substituting we get

−�pz = −�pw

ρ p−1
= q

ρ p−1
(ρz)q−1(σu)θ = qσ θ

ρ p−q
zq−1uθ ,

−�pu = −�pv

σ p−1
= θ

σ p−1
(ρz)q(σu)θ−1 = θρq

σ p−θ
zquθ−1,

which translates into the following relation between the couples (A, B) and (ρ, σ )⎧⎪⎪⎨
⎪⎪⎩

A = A(ρ, σ ) = qσ θ

ρ p−q
,

B = B(ρ, σ ) = θρq

σ p−θ
,

Being the Jacobian of the map T : (ρ, σ ) → (A, B) different from zero for every (ρ, σ ) ∈ R
+ × R

+ (as a
consequence of the fact that q �= p − θ by assumption), the map T is invertible. This means that, once q and θ

are fixed, for all A, B ∈ R
+ we can find positive constants ρ and σ such that the couple (w/ρ, v/σ ) solves (3.1).

Remark 3.1 Thanks to the previous computations, it is possible to prove the existence of a solution to (1.1) in
the special case where both a(x) and b(x) are L∞ functions bounded from below by positive constants. Indeed,
one can use a sub/supersolution argument (see, for instance, [5] and the references therein) to find a solution (z, u)
to (1.1) that satisfies

zα ≤ z ≤ zα′ and uβ ≤ u ≤ uβ ′ a.e. in �,

being α, α′, β, β ′ ∈ R
+ such that

α ≤ a(x) ≤ α′, and β ≤ b(x) ≤ β ′ a.e. in �,

and being (zα, uβ) and (zα′ , uβ ′) solutions to (3.1) with the choices (A, B) = (α, β) and (A, B) = ˜(α′, β ′)
respectively.

For shortness, we will omit here further details on such a procedure, being the case of a(x) and b(x) bounded
from above and from below by positive constants included in the statement of Theorem 1.1, which we are going
to prove in the next subsection.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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3.2 The case with general weights satisfying (1.2)

As already pointed out, the main tool we mean to use to prove the existence of a solution to (1.1) is Theorem 1.3.
To this aim, we need to deal with three main parts: at first, after the identification of the map S, we define the set
K and we prove its invariance under the map S; subsequently, we treat the continuity and the compactness of S.

Let us start defining the map S as

S : X := Ls(�) −→ Ls(�) −→ Ls(�), (3.2)

v −→ z −→ u,

where s > Nθ
p , z solves the following problem{−�pz = a(x)zq−1vθ in �,

z = 0, on ∂�,
(3.3)

and, once z is given, u is defined as a solution to{−�pu = b(x)zquθ−1 in �,

u = 0 on ∂�.
(3.4)

We show that z and u are W 1,p
0 -functions, so that, if the map S admits a fixed point, it turns to be a solution to

(1.1) by definition.
Let us thus define K as

K := {
v ∈ Ls(�) s.t. v ≥ εϕa

1

} ∩ BR (Ls(�)),

being as before s > Nθ
p and ε, R > 0. Recall that ϕa

1 is the first eigenfunction of the p-laplacian operator in �

with homogeneous Dirichlet boundary conditions and weight a ≡ a(x).
The set K is obviously a convex, closed and bounded subset of Ls(�).

3.2.1 The invariance of the set K in the case 0 < q < 1

In this case both the equations in (1.1) are singular with respect to their solutions.
The first step is to prove the existence of a solution to (3.3) with v ∈ K, so that a(x)vθ ∈ Lr for some r > N

p

and a(x)v �≡ 0 (we recall that v ≥ εϕa
1 ). The existence of a positive distributional solution z ∈ W 1,p

0 (�) ∩ L∞(�)
to the singular equation (3.3) follows immediately from the results of [10]. Precisely, it is proven that there exists
a solution z ∈ W 1,p

0 (�) ∩ L∞(�) in the following sense∫
�

|∇z|p−2∇z∇ψ =
∫

�

a(x)vθ zq−1ψ ∀ ψ ∈ C1
0(�).

Moreover, since z ∈ W 1,p
0 (�) and because of Theorems 2.1 and 2.2, we deduce that the previous formulation can

be extended to W 1,p
0 (�) test functions and that z is unique, namely z is the unique weak solution to (3.3).

By similar computations, since 0 �≡ b(x)zq ∈ Lm(�) with m > N
p , we obtain the existence of a unique weak

solution u ∈ W 1,p
0 (�) ∩ L∞(�) to (3.4).

Clearly, in order to prove that K is invariant, we need to choose R such that u ∈ BR(Ls(�)), being v ∈
BR(Ls(�)); also, we need to estimate from below u with εϕa

1 , and this goes through an estimate on z. Precisely,
by taking (εϕa

1 − z)+ as a test function in the equation solved by the difference εϕa
1 − z, we get the following

inequality ∫
�

(|∇εϕa
1 |p−2∇εϕa

1 − |∇z|p−2∇z
) ∇(εϕa

1 − z)+ (3.5)

≤
∫

�

(
a(x)vθ (εϕa

1 )q−1 − a(x)vθ zq−1
)
(εϕa

1 − z)+,

that is satisfied if we choose ε such that εϕa
1 is a subsolution to

−�pz = a(x)vθ zq−1.

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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242 L. M. De Cave, F. Oliva, and M. Strani: Singular elliptic system with unbounded weights

Precisely we ask for

λa
1a(x)ε p−1(ϕa

1 )p−1 ≤ a(x)vθ (εϕa
1 )q−1,

and this holds true if we choose ε such that

ε ≤ 1

(λa
1)

1
p−q−θ

· 1

‖ϕa
1 ‖L∞(�)

, (3.6)

where we recall that p − q − θ > 0 by assumption (1.3). Since the right hand side in (3.5) is nonpositive (and,
trivially, the left hand side is nonnegative), we deduce εϕa

1 ≤ z almost everywhere in �.
We want to show that u ≥ εϕa

1 in �. Taking (εϕa
1 − u)+ as a test function in the problem solved by the

difference between εϕa
1 and u, we find out that∫

�

(|∇εϕa
1 |p−2∇εϕa

1 − |∇u|p−2∇u
) ∇(εϕa

1 − u)+ (3.7)

=
∫

�

(
λa

1a(x)ε p−1(ϕa
1 )p−1 − b(x)zquθ−1

)
(εϕa

1 − u)+

≤
∫

�

(
λa

1a(x)ε p−1(ϕa
1 )p−1 − b(x)(εϕa

1 )q+θ−1
)

(εϕa
1 − u)+.

Since θ + q < p, if we choose

ε ≤
(

β

λa
1‖a(x)‖L∞(�)

) 1
p−θ−q 1

‖ϕa
1 ‖L∞(�)

, (3.8)

being β as in (1.2), the right hand side of (3.7) is nonpositive. Hence if ε satisfies both (3.6) and (3.8), that is if

ε = min

{(
β

λa
1‖a(x)‖L∞(�)

) 1
p−θ−q 1

‖ϕa
1 ‖L∞(�)

,
1

(λa
1)

1
p−θ−q ‖ϕa

1 ‖L∞(�)

}
, (3.9)

we can conclude that

u ≥ εϕa
1 a.e. in �.

In order to prove the invariance of K, the last step is to choose R such that u ∈ BR(Ls(�)). From [10, Theorem
4.1], since q > 0, we have, for the solution to (3.3)

‖z‖L∞(�) ≤ C1‖a(x)‖
1

p−1

L∞(�)‖vθ‖
1

p−1

Lr (�) = C1‖a(x)‖
1

p−1

L∞(�)‖v‖
θ

p−1

Ls(�), (3.10)

where C1 is a positive constant independent of z, v, a, r > N
p while s > Nθ

p as usual. Analogously, since θ > 0

and m > N
p , it holds

‖u‖L∞(�) ≤ C2‖b(x)zq‖
1

p−1

Lm(�) (3.11)

≤ C2‖b(x)‖
1

p−1

Lm(�)‖z‖
q

p−1

L∞(�)

≤ C
q

p−1

1 C2‖b(x)‖
1

p−1

Lm(�)‖a(x)‖
q

( p−1) 2

L∞(�)‖v‖
θq

( p−1) 2

Ls(�)

≤ C
q

p−1

1 C2C3 R
θq

( p−1) 2 ,

where C2 > 0 is a constant independent of z, u, b and C3 = ‖b(x)‖
1

p−1

Lm(�)‖a(x)‖
q

( p−1) 2

L∞(�) . If we impose

C
q

p−1

1 C2C3 R
θq

( p−1) 2 = R, using the second assumption on p in (1.4) we find

R =
(

C
q

p−1

1 C2C3

)− 1(
θq

( p−1) 2 −1

)
. (3.12)
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By choosing ε and R as in (3.9) and (3.12) respectively, the set K is invariant.

Remark 3.2 We underline that, in this case, the assumption (1.4) can be weakened requiring

θ + q < p < N and p �= 1 +
√

qθ.

3.2.2 The invariance of the set K in the case q ≥ 1

If q = 1, by the classical theory for nonlinear elliptic equations, we immediately obtain the existence of a solution
z ∈ W 1,p

0 (�) ∩ L∞(�) to (3.3).
Conversely, if 1 < q < p − θ , in order to prove the existence of a solution to (3.3), we proceed by a

sub/supersolution argument. To this end, let us look for ε such that εϕa
1 is a subsolution to (3.3), namely we

require

−�p(εϕa
1 ) = λa

1a(x)ε p−1(ϕa
1 )p−1 ≤ a(x)vθ (εϕa

1 )q−1 in �.

In particular, the previous inequality holds true if ε satisfies

ε p−(θ+q)(ϕa
1 )p−(θ+q) ≤ 1

λa
1

which, since θ + q < p, leads to

ε ≤ 1

(λa
1)

1
p−θ−q ‖ϕa

1 ‖L∞(�)

. (3.13)

Let now h ∈ W 1,p
0 (�) ∩ L∞(�) be the solution to the following problem{−�ph = a(x)vθ in �,

h = 0 on ∂�,

and let us choose T ∈ R
+ such that T h is a super-solution to (3.3), that is we impose

−�p(T h) = T p−1a(x)vθ ≥ (T h)q−1a(x)vθ in �.

In particular, this inequality holds true if we require

T ≥ ||h||
q−1
p−q

L∞(�) . (3.14)

In order to prove the existence of a solution to (3.3), we need to show that there exist ε and T , satisfying (3.13)
and (3.14) respectively, such that εϕa

1 ≤ T h in �. To this purpose, we choose (εϕa
1 − T h)+ as a test function in

the equation solved by the difference between εϕa
1 and T h, obtaining∫

�

(|∇εϕa
1 |p−2∇εϕa

1 − |∇T h|p−2∇T h
)∇(εϕa

1 − T h)+

=
∫

�

(
λa

1a(x)ε p−1(ϕa
1 )p−1 − T p−1a(x)vθ

)
(εϕa

1 − T h)+

≤
∫

�

(
λa

1a(x)ε p−1(ϕa
1 )p−1 − T p−1a(x)(εϕa

1 )θ
)
(εϕa

1 − T h)+

=
∫

�

(εϕa
1 )θa(x)

(
λa

1(εϕ
a
1 )p−1−θ − T p−1) (εϕa

1 − T h)+.

The right hand side of the previous equality is nonpositive if

λa
1(εϕ

a
1 )p−1−θ − T p−1 ≤ 0,

that is we have to ask T p−1 ≥ λa
1

(
ε‖ϕa

1 ‖L∞(�)
)p−1−θ

. We underline that p − 1 − θ is positive because of assump-
tion (1.3).

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

 15222616, 2017, 2-3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.201600038 by U
niversity D

i R
om

a L
a Sapienza, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



244 L. M. De Cave, F. Oliva, and M. Strani: Singular elliptic system with unbounded weights

Gathering all the above as q > 1, if we choose

T ≥ max

(
||h||

q−1
p−q

L∞ , λa
1

1
p−1

(
ε‖ϕa

1 ‖L∞(�)
) p−1−θ

p−1

)
and ε ≤

(
1

λa
1

) 1
p−( θ+q) 1

‖ϕa
1 ‖L∞(�)

,

there exists a solution z ∈ W 1,p
0 (�) to (3.3) such that εϕa

1 ≤ z ≤ T h. In particular z ∈ L∞(�).
Once a solution z to (3.3) is given, we look for a solution to (3.4) with b(x)zq as a datum. As before, since

0 �≡ b(x)zq ∈ Lm(�) with m > N
p , from [10] we can conclude that there exists a positive distributional solution

u ∈ W 1,p
0 (�) ∩ L∞(�) to (3.4); also, reasoning as in the case 0 < q < 1, we deduce that u ∈ W 1,p

0 (�) is a weak
solution and that it is unique.

Moreover, if ε satisfies both (3.13) and (3.8), namely if

ε = min

{(
β

λa
1‖a(x)‖L∞(�)

) 1
p−θ−q 1

‖ϕa
1 ‖L∞(�)

,
1

(λa
1)

1
p−θ−q ‖ϕa

1 ‖L∞(�)

}
(3.15)

proceeding as in (3.7) we obtain

u ≥ εϕa
1 a.e. in �.

Once again, in order to conclude the proof of the invariance of K, we need to choose R such that u ∈ BR(Ls(�)).
In this case we have

‖z‖L∞(�) ≤ T ‖h‖L∞(�) ≤ T C1

∥∥a(x)vθ
∥∥ 1

p−1

Lr (�) = T C1‖a(x)‖
1

p−1

L∞(�)‖v‖
θ

p−1

Ls(�), (3.16)

where C1 is a positive constant independent of z, v, a, r > N
p , s > Nθ

p . Since m > N
p , using once again [10,

Theorem 4.1] we deduce

‖u‖L∞(�) ≤ C2‖b(x)zq‖
1

p−1

Lm(�) = C2‖b(x)‖
1

p−1

Lm(�)‖z‖
q

p−1

L∞(�) (3.17)

≤ (T C1)
q

p−1 C2‖b(x)‖
1

p−1

Lm (�)‖a(x)‖
q

( p−1) 2

L∞(�)‖v‖
θq

( p−1) 2

Ls(�)

≤ (T C1)
q

p−1 C2C3 R
θq

( p−1) 2

where, as before, C2 is a positive constant independent of z, u, b and C3 is given by ‖b(x)‖
1

p−1

Lm(�)‖a(x)‖
q

( p−1) 2

L∞(�) .
Finally, if we impose

(T C1)
q

p−1 C2C3 R
θq

( p−1) 2 = R,

using once again the second assumption on p in (1.4) we find

R =
(
(T C1)

q
p−1 C2C3

)− 1(
θq

( p−1) 2 −1

)
. (3.18)

The choice of ε and R as in (3.15) and (3.18) respectively makes K an invariant set.

Remark 3.3 We stress that the map S is well defined. Indeed, if 0 < q < 1, the solution z ∈ W 1,p
0 (�) ∩ L∞(�)

to (3.3) is unique so that the source of problem (3.4) is well identified. If q = 1, the uniqueness of z follows by the
classical theory for nonlinear elliptic equations. Finally, if q > 1, we find z through a sub/supersolution argument
and it can be uniquely identified as the unique solution to (3.3) found by monotone iterations starting from the
given subsolution.

3.2.3 Continuity of S

Let us suppose that vn ∈ K is such that vn → v in Ls(�) and let un := S(vn), being S defined in (3.2). We want
to prove that there exists u ∈ Ls(�) such that, up to subsequences, un → u ∈ Ls(�) and that u = S(v).

From now on all the convergences results must be intended up to subsequences.

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Starting from vn , for each n ∈ N we can construct zn and un in W 1,p
0 (�) ∩ L∞(�), sequences of solutions to

(3.3) and to (3.4) respectively.
Thanks to (3.10) and (3.16), we conclude that

‖zn‖L∞(�) ≤ C‖vn‖
θ

p−1

Ls(�) ∀ q > 0, (3.19)

where C is a positive constant independent of n ∈ N. Hence zn is bounded in L∞(�) and, in particular, there exists
z ∈ Lr (�) for all 1 ≤ r < ∞ such that zn → z almost everywhere and zn → z in Lr (�) for all 1 ≤ r < ∞.

Moreover, thanks to (3.11) and (3.17), there exists a positive constant C independent of n ∈ N such that

‖un‖L∞(�) ≤ C‖zn‖
q

p−1

L∞(�) ∀ q > 0. (3.20)

As before, there exists u ∈ Lr (�) for all 1 ≤ r < ∞ such that un → u in Lr (�) for all 1 ≤ r < ∞. In particular
un strongly converges to u in Ls(�).

To conclude, we need to prove that u = S(v). At first, we check that we can pass to the limit in the following
equality ∫

�

|∇un|p−2∇un∇ψ =
∫

�

b(x)zq
n uθ−1

n ψ ∀ ψ ∈ W 1,p
0 (�), (3.21)

where we use test functions in W 1,p
0 (�) because, from Theorem 2.1, it holds

b(x)zq
n uθ−1

n ∈ W −1,p′
(�) ∀n ∈ N .

Since un ∈ K for all n ∈ N, we get

b(x)zq
n uθ−1

n ≤ b(x)zq
n(εϕ1)θ−1 a.e. in �.

In particular b(x)
zq

n

u1−θ
n

is bounded in Lm(�) with respect to n ∈ N, being zn bounded in L∞(�). Moreover, taking

un as a test function in (3.21), we find∫
�

|∇un|p ≤ ‖b(x)‖L1(�)‖zn‖q
L∞(�)‖un‖θ

L∞(�) meas(�) = C,

where the constant C > 0 is independent of n ∈ N; in particular un ⇀ u in W 1,p
0 (�). Then, if we take un − u as

a test function in (3.21) we obtain∫
�

(|∇un|p−2∇un − |∇u|p−2∇u
) ∇(un − u) (3.22)

=
∫

�

b(x)zq
n uθ−1

n (un − u) −
∫

�

|∇u|p−2∇u∇(un − u),

and we can conclude that the right hand side of (3.22) goes to zero as n → ∞. Indeed un strongly converges to
u in Lr (�) for all 1 ≤ r < ∞, implying that it converges to u in Lm ′

(�). Then, since b(x)zq
n uθ−1

n is bounded in
Lm(�) with respect to n ∈ N, the first term of the right hand side of (3.22) goes to zero.

Going further, because of the weak convergence of un to u in W 1,p
0 (�), also the second term on the right hand

side of (3.22) goes to zero and we can apply [2, Lemma 5] to deduce that

un → u in W 1,p
0 (�).

This implies that we can pass to the limit in the left hand side of (3.21) with W 1,p
0 (�) test functions.

Finally, since the sequence of L1(�) functions b(x)zq
n uθ−1

n ψ is bounded in L1(�) with respect to n ∈ N for
each ψ ∈ W 1,p

0 (�) and converges almost everywhere to b(x)zquθ−1ψ , by the Lebesgue Theorem we can pass to
the limit also in the right hand side of (3.21), obtaining the desired result.

In order to ensure that u = S(v), it remains only to prove the uniqueness of the solution to our problem. To this
aim we start noticing that, if limn→∞ vn = v ∈ K, the function z, source of (3.4), is well identified (see Remark
3.3). Moreover the solution u ∈ W 1,p

0 (�) to (3.4) with b(x)zq as a datum is unique, since we can take test functions

www.mn-journal.com C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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246 L. M. De Cave, F. Oliva, and M. Strani: Singular elliptic system with unbounded weights

in the whole W 1,p
0 (�) (see Theorem 2.2). Due to the uniqueness of u, it follows that limn→∞ S(vn) = S(v) and

the map S is continuous.

3.2.4 Compactness of S

If vn ∈ K is bounded in Ls(�) and un = S(vn), we can construct zn such that (3.19) and (3.20) hold. Hence,
proceeding as in the first part of the proof of the continuity of S, we can conclude that there exists u ∈ Ls(�)
such that un strongly converges to u in Ls(�) up to subsequences. This ensure that S(C) is compact for every
C ⊂ Ls(�) bounded.

We complete the proof of Theorem 1.1 by applying Theorem 1.3. We thus obtain the existence of at least one
couple (u, z) ∈ W 1,p

0 (�) ∩ L∞(�) that solves (1.1) in the sense of (1.7).

Remark 3.4 Let us observe that the condition a(x) ∈ L∞(�), assumed in (1.2), is needed in order to find a
suitable value of ε such that the last term in the right hand side of (3.7) is nonpositive, both for 0 < q < 1 and
for q ≥ 1. However we underline that, alternatively to (1.2), for any q > 0 we can also require

0 < β ≤ a(x) ≡ b(x) ∈ Lm(�) for some m >
N

p
. (3.23)

In this case the negativity of the last term in (3.7) is preserved by choosing

ε ≤
(

β

λa
1

) 1
p−θ−q 1

‖ϕa
1 ‖L∞(�)

,

while a straightforward computation shows that, under the assumption (3.23), the invariant set K has to be
defined as

K := {
v ∈ Ls(�) s.t. v ≥ εϕa

1

} ∩ BR (Ls(�)),

where now s > Nθm
mp−N .
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