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We consider a particle performing a stochastic motion on a one-dimensional lattice with jump lengths distributed
according to a power law with exponent μ + 1. Assuming that the walker moves in the presence of a distribution
a(x) of targets (traps) depending on the spatial coordinate x, we study the probability that the walker will eventually
find any target (will eventually be trapped). We focus on the case of power-law distributions a(x) ∼ x−α and
we find that, as long as μ < α, there is a finite probability that the walker will never be trapped, no matter
how long the process is. This result is shown via analytical arguments and numerical simulations which also
evidence the emergence of slow searching (trapping) times in finite-size system. The extension of this finding to
higher-dimensional structures is also discussed.
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I. INTRODUCTION

Two-species reaction-diffusion processes provide a model
for a number of physical, chemical, biological, and even
social phenomena [1]. In particular, biological encounters and
random searches typically involve a mobile component and
a reactive component, the latter being a prey, a mate, or a
convenient place where settling [2]. In this context, the kind
of motion performed by the “searcher” plays a crucial role
and, as evidenced by extensive experiments in the last two
decades, anomalous diffusion seems to be widespread among
real organisms [2]. In fact, many animals, ranging from birds
(e.g., albatross [3]), to arthropods (e.g., bees [4], butterflies
[5]), to aquatic animals (e.g., sharks, sea turtles, and penguins
[6]), and even to mammals (e.g., deer [3], goats [7]) rarely
display Gaussian probability functions for displacement with
a variance scaling linearly with time, as prescribed by normal
diffusion. Rather, they display Lévy walk movement patterns
[8,9]. Also, many other natural systems beyond animals (e.g.,
pollen [10] and seeds [11]), exhibit this kind of anomalous
movement.

The prevalence of such a behavior may be related to the
fact that this turns out to be the optimal strategy for locating
sparse resources in a wide range of environments [5,12,13].
Notably, also humans have been shown to move according to
Lévy walks and this kind of superdiffusion plays an important
role in pandemics [14].

One usually distinguishes between Lévy walks and Lévy
flights. Both are stochastic motion characterized by jump
lengths distributed according to a power law with exponent
μ + 1 [experimental studies have shown that these exponents
are very close to μ = 1 (e.g., for snails μ is between μ = 1.2
and 1.7 [15], for deer μ = 1.16 [16], and for humans μ = 0.75
[17])], yet in the former case the walker moves with a typical,
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or sometimes constant, velocity, namely the step length is
proportional to the elapsed time, while in the latter case the
time taken by any jump is independent of its length. Lévy
walks are modeled by assuming a coupling between jump
length and jump time (see e.g., [18,19]) and are regarded as
the appropriate tool for describing superdiffusion [20,21].

Here, we focus on Lévy flights, as they can be more easily
approached analytically, and we check numerically that the
emerging features also hold for Lévy walks. In particular, we
study encounter processes between a searcher (e.g., forager,
predator, parasite, pollinator, or the active gender in the mating
search) and a target (e.g., prey, food, or the passive gender in
the mating activity) [22]. The searcher is modeled as a particle
performing a stochastic motion on a d-dimensional lattice,
while the target(s) is assumed to be spread along the underlying
space. The encounter occurs when the particle reaches any site
occupied by a target.1 Otherwise stated, here the searcher and
the targets do not interact along the jump but only at the end
of this, namely, at the (possible) turning point. In fact, in many
contexts (e.g., as for pollination or fishing) this is a realistic
hypothesis.

Moreover, here we allow for nonuniform distributions of
targets. More precisely, starting from a given position r0, the
searcher performs a Lévy flight in a space where each site
at a distance r from r0 is potentially occupied by a target
with a probability a(r). Otherwise stated, one can think that
the particle is moving in the presence of dense traps whose
absorbing rate is spatially inhomogeneous as ruled by a(r).
Thus, we wonder under which conditions, if any, there exists a
finite probability that the particle is not able to reach any target
or, equivalently, that it will never be trapped.

We especially focus on a searcher whose step lengths are
distributed according to p(r) ∼ 1/|r|1+μ in the presence of
targets or traps effectively distributed according to a power

1As remarked in [2], in statistical models of many biological
processes the “microscopic” details are often essentially irrelevant
to the averages and can be neglected. Of course, this implies some
limitations about the applicability of such models.
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law a(r) ∼ 1/|r|α . This means that the distribution of, say,
food, potential mates, or predators follows a gradient or that
the encounter has a rate of success which decreases with the
distance from the origin. The problem is first investigated
for the one-dimensional substrate finding that, when μ � 1,
namely, when the searcher performs a recurrent diffusion
process (i.e., it is certain to visit all sites), the target is
eventually found with probability equal to 1. On the other
hand, when μ < 1, namely, when the searcher performs a
transient diffusion process (i.e., it is not certain to visit all sites),
and α > μ there is a finite probability that the searcher will
never find the target. For higher-dimensional lattices analogous
regimes emerge. Numerical simulations also allow getting
some insights for the case of finite structures and of truncated
Lévy flights.

The paper is organized as follows: In Sec. II we provide
a streamlined description of Lévy flights and in Sec. III we
introduce a formulation of the problem in terms of a fractional
diffusion equation. Then, in Secs. IV and V we present our
numerical simulations and the related results. A discussion
about the general d-dimensional case can be found in Sec. VI,
while Sec. VII contains further arguments corroborating our
results. Section VIII is left for our conclusions and perspectives
and, finally, the Appendix contains some technical tools
concerning fractional calculus.

II. LÉVY FLIGHTS

Let us consider a mobile agent on a line that, at each time
step t , jumps in random direction to a distance |x|, taken from
a power-law distribution:

p(x) ∼ 1

|x|1+μ
. (1)

It can be shown (e.g., see [1]) that, for μ < 2 and for asymptotic
times, the probability density ρ(x,t) of the searcher being at
x at time t follows the Lévy distribution,2 which for |x|μ � t

(considering dimensionless units) scales as

ρ(x,t) ∼ t

|x|1+μ
. (2)

The resulting mean-square displacement 〈x2〉 ≡∫ ∞
−∞ x2ρ(x,t)dx is therefore divergent. More generally,

when embedded in a d-dimensional lattice, a mean-square
displacement 〈r2〉 scaling with time faster than linearly can
be accomplished by taking a distribution for step lengths
scaling like p(�r) ∼ 1/rμ+d , with 0 < μ < 2 (e.g., see [23]).
As a result, the fractal dimension df of the sites visited by
this Lévy flight on a line is df = μ for μ < 1 and df = 1
for μ � 1 [24], and, in general, on d-dimensional lattices is
df = μ for μ < d and df = d for μ � d [25,26]. Thus, when
the mean displacement [averaged over the distribution p(x)]
diverges algebraically (μ < 1) the agent does not visit every
site of the line and the process is transient. A formal proof

2When μ � 2 the motion displays (for asymptotic times) a Gaussian
probability function with a variance scaling linearly with time,
namely, a normal diffusion.

about transition between transience and recurrence depending
on μ can be found in [27].

Lévy flights can be effectively approached via the so-
called fractional calculus which provides a generalization
of classical diffusion equations using fractional derivatives,
especially fractional Laplacian operators (see also [28] and
Appendix). More generally, we mention that the description
of superdiffusion can be accomplished in terms of fractional
material derivatives (see [29,30]) which, as far as a dimensional
analysis is carried out, give the same scalings as fractional
derivatives.

III. POWER-LAW ABSORPTION PROBABILITY ON
ONE-DIMENSIONAL STRUCTURES

The Lévy flight embedded in an infinite chain can be
described by the following free-propagation equation

∂ρ(x,t)

∂t
= ∂μρ(x,t)

∂|x|μ , (3)

where the information on the heavy-tailed distribution of
jumps [see Eq. (1)] is fully defined in the fractional derivative
with respect to the variable x [31–34] encoded by the Riesz
operator ∂μ

∂|x|μ ; the latter is defined in the Appendix and it
recovers the standard μth order derivative for integer μ.

As anticipated, here we study a Lévy flight in an inhomoge-
neous absorbing medium where at each site x the walker has
a probability a(x) to be absorbed. Therefore, the equation for
free propagation (3) is perturbed by adding a term proportional
to −ρ(x,t)a(x) (see e.g., [35]), namely,

∂ρ(x,t)

∂t
= ∂μρ(x,t)

∂|x|μ − a(x)ρ(x,t). (4)

This system actually models different kinds of phenomena.
For instance, we can have a space completely filled by partially
absorbing traps whose absorbing rate depends on x as a(x),
or we can have a space where targets are distributed in space
according to a density a(x). In any case, the probability that,
being the searcher on site x, the encounter (or the absorption)
effectively occurs is a(x). For this encounter (or absorbing)
rate, here we adopt a general power-law distribution given by

a(x) = K

|x|α + 1
, (5)

being K a positive, real constant, hereafter set equal to 1
without loss of generality.

Now, the differential equation (4) has no general analytical
solution, but is is useful to discuss two limit cases for Eq. (4),
corresponding to a negligible diffusion term (e.g., the time
scale for diffusion is much longer than the time scale for
absorption) and to a negligible absorption term (e.g., the time
scale for absorption is much longer than the time scale for
diffusion).

In the former case ∂ρ(x,t)/∂t = −a(x)ρ(x,t) < 0, so that
the distribution ρ(x,t) tends to zero exponentially with time
with rate a(x). In the latter case, we recover the pure
(fractional) diffusive equation (3) whose solution is known
[see Eq. (2)], and for large x it is

ρ(x,t) ∼ t

|x|μ+1
. (6)
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Further, we notice that, as mentioned in Sec. II, when μ �
1, the motion is recurrent, that is, the particle visits any site
infinite times on average; this holds in particular also for sites
belonging to the neighborhood of the origin where a(x) is
finite and this ensures, eventually, the absorption. On the other
hand, when μ < 1, the process is transient, that is, the number
of returns to any site is finite and the particle spends most of
its time on sites where a(x) is vanishing. Consistently, when
μ � 1 the step distribution is less spread and we expect that
the emerging motion is closer to the classical random walk.
Indeed, a simple random walk on a one-dimensional lattice
visits any site an infinite number of times and, in the presence
of a distribution a(x), is therefore eventually absorbed.

One can therefore wonder whether the encounter is in-
eluctable upon the introduction of the encounter rate (5),
whatever the value of α and μ, or there exists a choice for
these parameters such that survival can take place. This point
is investigated numerically in the next section.

IV. NUMERICAL RESULTS FOR LÉVY FLIGHTS

We now check the asymptotic behavior of the solution
ρ(x,t) of Eq. (4) for different values of α via numerical
simulations, following two distinct routes. In the former, we
study the asymptotic probability of being eventually absorbed.
In the latter, we analyze the asymptotic behavior of the mean-
square distance covered and compare it with the asymptotic
behavior expected without absorption. For both routes, we
simulate a Lévy flight in a one-dimensional space and whose
step length x is extracted from the probability distribution
p(x) = N (μ)[|x|μ+1 + 1]−1, being N (μ) = [2�( μ

1+μ
)�(1 +

1
1+μ

)]−1 the proper normalization factor. After each jump, the
searcher has a probability a(x) of being absorbed, where x is
its current position. The time t is given by the number of jumps
accomplished.

Let us start with the first route, where we explore the
asymptotic behavior of the absorption probability F (α,μ)
defined as

F (α,μ) = 1 − lim
t→+∞

[∫ ∞

−∞
dx ρα,μ(x,t)

]
, (7)

where we have highlighted the dependence on α and on μ of
the distribution function ρα,μ(x,t).

The integral of Eq. (7) is estimated with Monte Carlo
simulations, as described hereafter. For every μ and α we run
Lévy flights and we measure the number of absorbed flights
divided by the total number of simulated flights. An example of
this quantity, referred to as A(α,μ; t), is reported in Fig. 1. This
quantity is then fitted with a power law y = a − bt−c, which
is the typical time saturation law for this kind of process [1].
In fact, for all the cases analyzed, such a power law provides
a successful description for the behavior of A(α,μ; t) with
respect to time t . The fit coefficient a, corresponding to the
asymptotic value of A(α,μ; t), just provides our estimate for
F (α,μ).

In Fig. 2, we show the asymptotic behavior of the absorption
probability F (α,μ) versus α. As long as α � μ, we get that
F (α,μ) = 1, meaning that absorption is certain, while when
α > μ, we get that F (α,μ) < 1, meaning that there is a finite
probability of surviving.
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FIG. 1. (Color online) Absorption probability A(α,μ; t) for the
case μ = 0.7, α = 1.1. Data from numerical simulations (bullets)
are fitted by the function y = a − bt−c (solid line). The best fit,
corresponding to a goodness parameter R2 = 0.99, is given by the
coefficient a = 0.854 ± 0.009, b = 0.534 ± 0.008, and c = 0.348 ±
0.014. In particular, a provides an estimate for the asymptotic
probability of being absorbed, that is, F (α,μ). Inset: We plotted the
difference a − A(α,μ; t), where A(α,μ; t) is derived from numerical
simulations and a is the best-fit coefficient. In a log-log scale,
this quantity depends linearly in time, corroborating the expected
power-law behavior of A(α,μ; t).

However, the condition α > μ is not sufficient to avoid
the certainty of the absorption: recalling what was stated in the
previous section, in addition one has to require that the process
is not recurrent, namely, that μ < 1. Summarizing, the particle
can escape absorption or, analogously, has a finite probability
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FIG. 2. (Color online) The asymptotic absorption probability
F (α,μ) found from Monte Carlo simulations. For the cases analyzed,
the absorption is certain when μ = 1.1 and when α � μ with
μ = 0.5, 0.7, and 0.9. The solid line is a guide for the eye. The dashed
vertical lines correspond to α = 0.5, 0.7, and 0.9. The number of
replicas is 107 and the asymptotic regime is reached typically around
tf = 106. The errors on F (α,μ) are of order 10−4.
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FIG. 3. (Color online) Phase diagram on a line in the parameter
space (α,μ). The white region corresponds to a finite surviving
probability, that is, F (α,μ) < 1, while the colored region corresponds
to certain trapping, that is, F (α,μ) = 1.

of never finding the target as long as

α > μ, (8)

μ < 1. (9)

This result is depicted in a phase diagram, highlighting the
regions of the plane (α,μ) where the particle is either certain
or not certain to be trapped (see Fig. 3). A corroboration of
this picture via analytical arguments can be found in Sec. VII.

In the second route of numerical investigations we analyze
the asymptotic behavior of the mean-square displacement. In
one dimension, the asymptotic behavior of the distribution
(without absorption) ρ(x,t) is a power law [see Eq. (6)]
such that (for μ < 2) the mean-square displacement 〈x2(t)〉
diverges for any t . Therefore, 〈x2(t)〉 is not a suitable quantity
to characterize the scaling of the process. Alternatively, one
could consider an imaginary growing box and measure the
related mean-square displacement 〈x2(t)〉L given by [29]

〈x2(t)〉L ∼
∫ L2t

1/μ

L1t1/μ

x2ρ(x,t) dx ∼ t2/μ, (10)

where L1 and L2 are proper finite constants. More precisely,
the boundaries of the box (i.e., the extremes of the integral) are
chosen in order to ensure that the asymptotic behavior ρ(x,t) ∼
t/xμ+1 [see Eq. (6)] is reached; indeed, the asymptotic regime
is valid only for |x|μ � t . Moreover, for μ > 1, the squared
absolute mean 〈|x|〉2 = [

∫
dx|x|ρ(x,t)]2 is proportional to

〈x2(t)〉L. For this reason, the integral (10) is also called pseudo
or imaginary mean-squared displacement [29].

Now, having an analytical estimate of 〈x2(t)〉L in the
absence of traps, we measure 〈x2(t)〉L through numerical sim-
ulations accounting also for absorption. The density ρ(x,t) is
numerically estimated by counting the number of realizations
where the moving agent has survived and is in x at time t ,
divided by the overall number of realizations (including those
where the agent has been trapped or is outside the imaginary
box). Also, for simulations, the values of L1 and L2 are chosen
large enough so that the asymptotic regime is ensured and in

t
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y t2/μ = t4

FIG. 4. (Color online) Mean-square displacement 〈x2(t)〉L ob-
tained from Monte Carlo simulations performed on one-dimensional
structures for fixed μ = 0.5 and different values of α (as explained
by the legend). The parameters of the simulations are L1 = 40 and
L2 = 100 and results shown here stem from averages over 107

realizations. The lines are just guides for the eyes.

order to produce good statistics for all values of α.3 During
the simulation, long jumps leading the process outside the box
are not discarded, but the resulting density ρ(x,t) will not
contribute to the integral.

Now, we compare the analytical expression (10) with the
estimate from numerical simulations looking for the values
of α for which the two results converge. In Fig. 4, we
show numerical data for 〈x2(t)〉L, having posed μ = 0.5. In
agreement with the previous numerical result, we see that
for α � 0.5 = μ the power-law behavior (10) is lost because
the absorption can not be neglected. On the other hand,
when α > μ the asymptotic behavior allowing for absorption
recovers the solution obtained for free diffusion. In fact, in
this case ρ(x,t) gets largely broad and absorption on the tails
(corresponding to large values of x) is vanishing.

Before concluding, a few remarks are in order. The simula-
tions described so far have a cutoff in the jump length and in
the size of the underlying chain because of the implementation
on a computer (every data type has a maximum value) which
transforms the motion into a truncated Lévy flight on a finite
chain. The latter is known to converge to a Gaussian statistics
[36] after suitably long times. Therefore, to study the Lévy
flight regime we have to consider only finite times. But, this
limitation is useful to get insights about finite-size systems,
where the cutoff is the natural constraint of the process. In
fact, if the cutoff is large with respect to the interval of time,
the walker actually does not perceive the finiteness of the
system as if it effectively were in the thermodynamic limit.
This allows us to understand that even in finite-size systems the
case α > μ with μ < 1 can lead to a dilation of trapping times.
In fact, in the time spanned in our simulations, there is a finite

3We stress that here we say that the asymptotic regime is reached at
time tf as long as the variation of ρ(x,t) over a time interval spanning
an order of magnitude, i.e., (tf ,10tf ), is numerically negligible.
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LÉVY FLIGHTS WITH POWER-LAW ABSORPTION PHYSICAL REVIEW E 92, 042156 (2015)

probability of never being trapped when μ < α. Inevitably,
this feature brings to a dilation of the mean trapping time also
in finite structures.

V. NUMERICAL RESULTS FOR LÉVY WALKS AND
COUPLED CONTINUOUS-TIME RANDOM WALKS

As explained in the Introduction, animals often perform
Lévy walks. We now check numerically if the results obtained
for Lévy flights can also be applied to Lévy walks which
interact with the absorbing substrate only at the end of each
jump. For instance, having in mind a bird exploring a given
environment in the presence of a distribution a(x) of targets,
it can actually find the target while alighting on a given site
between two consecutive flights.

From a naive point of view, this kind of process could
be seen as a Lévy flight with absorption, the only difference
being the way time is running: for Lévy flights the interval
between two jumps (that is, between two interactions with
the environment) is 1, conversely for Lévy walks the interval
depends on the jump length.

We therefore simulate a Lévy walk in a one-dimensional
space by extracting x from the probability distribution p(x) =
N (μ)[|x|μ+1 + 1]−1 and by assuming the time taken to
perform a jump x, to be proportional to x itself. After each
jump, the walker has a probability a(x) of being absorbed,
where x is its current position. Numerical simulations are
performed following the same technique described in the
previous section (first route) in such a way that we can derive
the asymptotic probability of absorption F (α,μ), shown in
Fig. 5. Results are analogous to those obtained for Lévy flights
and evidence that also for Lévy walks (with unitary velocity)
the absorption is certain for μ � α.

We now check if this property is true also for coupled
continuous-time random walk. In particular, we introduce a
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FIG. 5. (Color online) The asymptotic absorption probability
F (α,μ) found from Monte Carlo simulations for Lévy walks. The
cases analyzed are the same as Fig. 2 and, again, absorption is certain
for μ = 1.1 and for α � μ with μ = 0.5, 0.7, and 0.9. The solid
lines are guides for the eye. The dashed vertical lines correspond
to α = 0.5, 0.7, and 0.9. The number of replicas is 107 and the
asymptotic regime is reached typically around tf = 106. The errors
on F (α,μ) are of order 10−4.

coupled continuous-time random walk (e.g., see [37]), whose
stochastic behavior converges to the one of the Lévy flights
we are interested in. More precisely, we first extract a waiting
interval τ according to the power law ψ(τ ) ∼ τ−β with β > 1.
The next jump will have a length x depending on τ , being
drawn from the Gaussian distribution N (x; 0,τ ) with average
0 and variance τ , thus, the longer the waiting time and the
broader the distribution for the next jump length. The overall
jump distribution turns out to be

h(x) ∼
∫

ψ(τ )N (x; 0,τ ) dτ =
∫

dτ τ−β 1

τ 1/2
e− x2

2τ

∼ x1−2β . (11)

Therefore, the exponent β characterizing the waiting time τ

rules the emerging Lévy motion. By tuning β we can recover
different power-law distributions for the jump lengths, being
μ = 2β − 2. The simulations are run long enough in order to
reach the asymptotic regime, which is analyzed as previously
done for Lévy flights and Lévy walks, finding the same phase
diagram and the same asymptotic absorption probability.

VI. HIGHER DIMENSIONS

Physical systems are often embedded in two or three
dimensions. In these cases, Eq. (4) takes the form

∂ρ(�r,t)
∂t

= ∇μρ(�r,t) − a(�r)ρ(�r,t). (12)

The asymptotic behavior of the solution of the previous
equation without absorption is known (e.g., see [1]) and reads
as

ρ(r,t) ∼ t

rμ+1
, (13)

which is analogous to Eq. (6). This suggests that the analogy
can be further extended to the absorbing case as long as
the radial symmetry is retained, that is, a(�r) ≡ a(r). Indeed,
Eq. (13) shows that the jump length along the radial direction
has a power-law distribution as in the one-dimensional case.
Therefore, considering the motion along the radial direction
and a power-law absorption a(r) = K/(rα + 1), we realize
that the condition provided by Eq. (8) for a non-null surviving
probability is still valid.

On the other hand, Eq. (9) holds only on a line. In fact, on a
two-dimensional lattice, the condition for transience of a Lévy
flight process is μ < 2 [27], in such a way that now avoiding
absorption is feasible as long as

α > μ, (14)

μ < 2. (15)

This picture is confirmed by the numerical results shown in
Fig. 6.

Regarding the three-dimensional case, we recall that this
structure is transient, differently from the previous cases.
Therefore, we expect that, for large values of α, the absorption
behaves like a finite-size absorbing sphere in such a way
that the walker has a finite probability not to be absorbed. In
particular, a(x) has a finite average size when α > 2. Indeed,
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FIG. 6. (Color online) The asymptotic absorption probability
F (α,μ) found from Monte Carlo simulations on a two-dimensional
lattice. The data shown here are obtained according to the procedure
explained in Sec. IV. Notice that the absorption is certain for μ = 2.1
and when α � μ with μ = 0.9, 1.1, and 1.3. The solid lines are
guides for the eye. The dashed vertical lines correspond to α = 0.9,
1.1, and 1.3. The number of replicas is 107 and the asymptotic regime
is reached typically around tf = 106. The errors on F (α,μ) are of
order 10−4.

as successfully checked numerically (Fig. 7), the conditions to
avoid the absorption are

α > μ, μ < 2. or α > 2. (16)

Finally, the phase diagrams for the two- and three-
dimensional cases are shown in Fig. 8 (left and right panels,
respectively).
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FIG. 7. (Color online) The asymptotic absorption probability
F (α,μ) found from Monte Carlo simulations on a three-dimensional
lattice. The data shown here are obtained according to the procedure
explained in Sec. IV. Notice that the absorption is certain either with
α � μ when μ < 2 (e.g, with μ = 1.8) or with α < 2 when μ > 2
(e.g, with μ = 2.2 and 2.6). The solid lines are guides for the eye.
The dotted vertical lines correspond to α = 1.8 and 2. The number of
replicas is 107 and the asymptotic regime is reached typically around
tf = 106. The errors on F (α,μ) are of order 10−4.
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FIG. 8. (Color online) Phase diagram in the parameter space
(α,μ) for the asymptotic absorption probability of a Lévy flight em-
bedded in a two-dimensional (left panel) and in a three-dimensional
(right panel) lattice. The white region corresponds to a finite surviving
probability, that is, F (α,μ) < 1, while the colored region corresponds
to a certain trapping, that is, F (α,μ) = 1.

VII. VELOCITY OF THE PEAKS

In this section, we provide some analytical arguments to
corroborate the picture obtained in Sec. IV. In the absence
of trapping, the concentration ρ(x,t), with initial condition
ρ(x,t) = δ(x,0), evolves in time spreading out, yet remaining
peaked at the origin [28]. In the presence of the absorption
term a(x), the above description is changed as the absorption
is certain in the origin. Even in the neighborhood of the origin
the absorption is fast because a(x) is relatively large in this
region. At the same time, for |x| → ∞ the distribution ρ(x,t)
decreases [see Eq. (2)]. Then, after a short time, instead of a
bell shaped curve, we expect a bimodal distribution with the
two peaks propagating one on the right and one on the left (see
Fig. 9).

The distribution is always symmetric with respect to the
origin, thus we will consider only the peak located at x > 0

x
-1000 -500 0 500 1000

ρ
(x

)

0

0.01

0.02

0.03

0.04

Xpeak−|X|peak

FIG. 9. (Color online) The two expected peaks of the probability
distribution ρ(x,t). This plot is obtained from Eq. (17) by fixing
μ = 0.5, α = 1, and t = 102.
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and try to estimate how its position, denoted with Xpeak(t),
evolves in time. In particular, we distinguish two regions:

(1) 0 < x � Xpeak(t), where the distribution is dominated
by the absorption; in this region, a good approximation
for ρ(x,t) must decrease exponentially in time. In fact, the
solution of Eq. (4) neglecting the diffusion term is ρ(x,t) ∼
exp(− t

xα+1 );
(2) x � Xpeak(t), where the distribution is dominated by

diffusion, that is, ρ(x,t) ∼ t/(δ + xμ+1). Notice that δ is a
positive number added in order to avoid the divergence of the
power law in x = 0 without changing the asymptotic behavior
for x → ∞.

Merging these remarks, we can argue that a good approxi-
mation for the particle distribution may be

ρ̃(x,t) ∼ exp

(
− t

xα + 1

)
t

δ + xμ+1
. (17)

In fact, Eq. (17) recovers the two above-mentioned regimes
for x ∼ 0 (where ρ̃ decreases exponentially in time) and
x → ∞, respectively. We also notice that, checking the
normalization,

∫ ∞

0
exp

(
− t

xα + 1

)
t

δ + xμ+1
dx ∼ t

α−μ

α , (18)

the approximation (17) can be used only for α < μ to avoid
divergences.

From Eq. (17) we can find the position Xpeak of the peak by
requiring

∂ρ̃

∂x
∼ ∂

∂x

[
exp

(
− t

xα + 1

)
t

δ + xμ+1

]
(19)

= t

δ + xμ+1

[
αtxα−1

(xα + 1)2
− xμ

δ + xμ+1

]
= 0. (20)

This leads to

αtxα−1

(xα + 1)2
= xμ

δ + xμ+1
, (21)

and, solving for t , we get

t = 1

α

xμ

δ + xμ+1

(xα + 1)2

xα−1
. (22)

When x and t go to infinity,

Xpeak(t) ∼ t
1
α . (23)

The scaling of Eq. (23) is confirmed by simulations (see Fig. 10
where we show the cases α = 0.3, 0.4, and 0.5). Therefore,
in order to find the position of the peak, it is sufficient to
impose the behavior of the distribution near the origin and for
x → ∞ without a detailed information of the distribution in
intermediate values of x.

When α < μ, the velocity of the peak is larger than the
velocity characterizing the expansion of the asymptotic region,
that is, x ∼ t1/μ [28]. Thus, in this case absorption prevails.
On the other hand, when α > μ, the velocity of the peak is
smaller than that of the asymptotic region, in such a way that
the particle can escape without being absorbed.

t
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p
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α = 0.5
Xpeak t2

FIG. 10. (Color online) The position of the peak with α = 0.3,
0.4, and 0.5. The graph is obtained by a Monte Carlo simulation and
it confirms that Xpeak(t) ∼ t

1
α .

VIII. CONCLUSIONS

In this paper, we investigated Lévy flights and Lévy walks
in the presence of a power-law distribution of traps (or targets).
Different from the simple random walk, in this system trapping
is, under proper conditions, not certain, no matter how long
the process is. In fact, what matters is the interplay between
the exponent μ, ruling the distribution of step lengths, and the
exponent α, ruling the distribution of traps. Due to the great
number of applications of the Lévy model, the result can be
exploited in several different contexts. For instance, when μ

is small (i.e., μ < 1 in one-dimensional lattices and μ < 2
in higher-dimensional lattices), as long as α > μ, a disease
vector cannot prompt an epidemic.

Also, the differential equation studied in this paper may
find interesting applications in finance. In fact, it is well known
(see, e.g., [38]) that stock prices follow a stochastic behavior,
describable by Lévy flights. Being a(x) (not necessarily power
law) the agent inclination to sell a stock upon a variation x of
its original value, then the equation considered here could
describe the temporal evolution of the probability that the
stock is sold. To better mimic the evolution of the financial
time series, it is possible to include the truncated Lévy motion
directly in the fractional equation [39]. Time correlations can
also be included replacing the time derivative with a fractional
derivative in time [40].

Lévy walks and Lévy flights have also been used to study
models of foraging, usually considering a uniform distribution
of traps (e.g., see [12]). The case of a uniform distribution
of traps can be described in our model by setting α → 0. In
this limit, the particle is sure to be trapped for every value of
μ. For this reason, the power-law trapping probability can be
viewed as a generalization case which includes the uniform
one. Further analyses should be done in order to understand
what is the optimal strategy for locating sparse resources
(as done in [12]) varying μ and α. Indeed, the decreasing
absorption probability could be the origin of the Brownian
motion performed by some species, which do not follow Lévy
flights. Finally, this work may be a starting point to study the
best strategy with a generic distribution of targets.
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APPENDIX: FRACTIONAL CALCULUS AND
DIFFUSION EQUATION

Fractional calculus is a natural extension of the differential
and integral classical calculus. It has proved to be very useful
in the study of diffusion processes; for instance, fractional dif-
ferential equations are used to describe anomalous diffusion.
In particular, when the jump distribution is p(x) ∼ |x|−1−μ,
the probability distribution ρ(x,t) can be described by [29,41]

∂ρ(x,t)

∂t
= ∂μρ(x,t)

∂|x|μ , (A1)

where μ ∈ R and ∂μρ(x,t)
∂|x|μ is a derivative of fractional order μ.

We recall that, while classical derivation [for a generic function

f (x)] is expressed through the symbols

dnf (x)

dxn
; . . .

d2f (x)

dx2
;

df (x)

dx
; f (x), (A2)

where the order of derivation is denoted by the index n ∈ N,
the fractional calculus allows extending the definition of the
above mentioned operators to the case of real order; in fact,
the operators of arbitrary real order can be obtained with a
sort of interpolation of the sequence of operators. Not like
classical derivatives, there are several options for computing
fractional derivatives (e.g., Riemann-Liouville, Caputo, Riesz,
etc.). Diffusion equations with fractional derivatives on space
are usually written in terms of the symmetric Riesz derivative
on space, whose operator is typically referred to as ∇μ.
Now, this operator has a relatively simple behavior under
transformations and, in fact, it is often defined in terms of
its Fourier transform F[f ] [28,42] as

∂μf (x)

∂|x|μ = F−1{−|k|μF[f (x)]}. (A3)
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