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Finite topological spaces are in bijective correspondence with preorders on finite 
sets. We undertake their study using combinatorial tools that have been developed 
to investigate general discrete structures. A particular emphasis will be put on recent 
topological and combinatorial Hopf algebra techniques. We will show that the linear 
span of finite spaces carries generalized Hopf algebraic structures that are closely 
connected with familiar constructions and structures in topology (such as the one of 
cogroups in the category of associative algebras that has appeared e.g. in the study 
of loop spaces of suspensions). The most striking results that we obtain are certainly 
that the linear span of finite spaces carries the structure of the enveloping algebra 
of a B∞-algebra, and that there are natural (Hopf algebraic) morphisms between 
finite spaces and quasi-symmetric functions. In the process, we introduce the notion 
of Schur–Weyl categories in order to describe rigidity theorems for cogroups in the 
category of associative algebras and related structures, as well as to account for the 
existence of natural operations (graded permutations) on them.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Finite topological spaces, or finite spaces, for short, that is, topologies on finite sets, have a long history, 
going back at least to P.S. Alexandroff [2]. He was the first to investigate, in 1937, finite spaces from 
a combinatorial point of view and relate them to preordered sets. Indeed, finite spaces happen to be in 
bijective correspondence with preorders on finite sets and it is extremely tempting to undertake their study 
using the combinatorial tools that have been developed to investigate general discrete structures. However, 
quite surprisingly, such an undertaking does not seem to have taken place so far, and it is the purpose of 
the present article to do so.
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A particular emphasis will be put on recent topological and combinatorial Hopf algebra techniques. We 
will show that the set of finite spaces carries naturally (generalized) Hopf algebraic structures that are closely 
connected with usual topological constructions (such as joins or cup products) and familiar structures in 
topology (such as the one of cogroups in the category of associative algebras, or infinitesimal Hopf algebras, 
that have appeared e.g. in the study of loop spaces of suspensions and the Bott–Samelson theorem [8,7]). 
Let us mention that the operation underlying the Hopf algebra coproduct is less standard and amounts 
to the “extraction” of open subsets out of finite spaces (Definition 18). The most striking results that we 
obtain are certainly that, first, the linear span F of finite spaces carries the structure of the enveloping 
algebra of a B∞-algebra (Theorem 19). Second, that there is a (surjective, structure preserving) Hopf 
algebra morphism from F to the algebra of quasi-symmetric functions (Theorem 21). In the process, we 
introduce the notion of Schur–Weyl categories to describe rigidity theorems for cocommutative cogroups in 
the category of associative algebras (or, equivalently, infinitesimal bialgebras) and related structures such as 
shuffle bialgebras or their dual bialgebras. Here, rigidity has to be understood in the sense of Livernet [20]: 
a generalized bialgebraic structure, such as a cogroup in the category of associative algebras, is rigid if it is 
free as an algebra and cofree as a coalgebra.

Let us point out that operations such as cup products are usually defined “locally”, that is, inside a 
chain or cochain algebra associated to a given topological space, whereas the structures we introduce hold 
“globally” over the linear span of all finite spaces. Although we will not investigate systematically in the 
present article this interplay between “local” and “global” constructions, it is certainly one of the interesting 
phenomena showing up in the study of finite topological spaces.

From the historical perspective, a systematic homotopical investigation of finite spaces did not occur 
till the mid-60s, with breakthrough contributions by R.E. Stong [34] and M.C. McCord [23,24]. These 
investigations were revived in the early 2000s, among others under the influence of P. May; we refer to [3]
for details. These studies focused largely on problems such as reduction methods (methods to remove points 
from finite spaces without changing their strong or weak homotopy type and related questions such as the 
construction of minimal spaces, see e.g. [5,13]), as such they are complementary to the ones undertaken in 
the present article.

The article is organized as follows: in the next two sections, we review briefly the links between finite 
spaces and preorders, introduce the Com −As structure on finite spaces and study its properties (freeness, 
involutivity, compatibility with homotopy reduction methods). Sections 4 and 5 revisit the equivalent notions 
of free algebras and cofree coalgebras, cocommutative cogroups in the category of associative algebras and 
infinitesimal bialgebras [7,21,20]. We extend in particular results of Livernet and relate these algebras to 
shuffle bialgebras and their dual bialgebras. In the following section, we show how these ideas apply to finite 
spaces, showing in particular that their linear span carries the structure of a cofree connected coalgebra and, 
more precisely, is the enveloping algebra of a B∞-algebra. The last section investigates the links between 
finite topologies and quasi-symmetric functions.

In the present article, we study “abstract” finite spaces, that is, finite spaces up to homeomorphisms: 
we identify two topologies T and T ′ on the finite sets X and Y if there exists a set map f from X to Y
inducing an isomorphism between T and T ′. The study of “decorated” finite spaces (that is, without taken 
into account this identification) is interesting for other purposes (e.g. enumerative and purely combinatorial 
ones). These questions will be the subject of another article [14].

All vector spaces and algebraic structures (algebras, coalgebras. . . ) are defined over a field K of arbitrary 
characteristic. By linear span of a set X, we mean the vector space freely generated by X over this ground 
field. Unless otherwise stated, the objects we will consider will always be N-graded (shortly, graded) and 
connected (connectedness meaning as usual that the degree 0 component of a graded vector space is the null 
vector space or is the ground field for a graded algebra, coalgebra or bialgebra). Because of this hypothesis, 
the two notions of Hopf algebras and bialgebras will agree (see e.g. [19]); we will use them equivalently and 
without further comments.
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2. Topologies on finite sets

2.1. Notation and definitions

Let X be a set. Recall that a topology on X is a family T of subsets of X, called the open sets of T , 
such that:

(1) ∅, X ∈ T .
(2) The union of an arbitrary number of elements of T is in T .
(3) The intersection of a finite number of elements of T is in T .

When X is finite, these axioms simplify: a topology on X is a family of subsets containing the empty set 
and X and closed under unions and intersections. In particular, the set of complements of open sets (the 
closed sets for T , which is automatically closed under unions and intersections) defines a dual topology T ∗

as T ∗ := {F ⊂ X, ∃O ∈ T , F = X−O}. We will write sometimes σ for the duality involution, σ(T ) := T ∗, 
σ2 = Id.

Two topologies T , T ′, on finite sets respectively X and Y , are homeomorphic if and only if there exists a 
bijective map f between X and Y such that f∗(T ) = T ′ (where we write f∗ for the induced map on subsets 
of X and Y ). We call finite spaces the equivalence classes of finite set topologies under homeomorphisms and 
write T for the finite space associated to a given topology T on a finite set X. In order to avoid terminological 
ambiguities, we will call a finite set X equipped with a topology a finite topological set (instead of finite 
topological space).

Every finite space T can be represented by a (non-unique) topology T n on the set [n] := {1, . . . , n} (in 
particular, [0] = ∅); we call T n a standard representation of T . The duality involution goes over to finite 
spaces, its action on finite spaces is still written σ (or with a ∗).

Let us recall now the bijective correspondence between topologies on a finite set X and preorders on X

(see [12]).

(1) Let T be a topology on the finite set X. The relation ≤T on X is defined by i ≤T j if any open set of 
T which contains i also contains j. Then ≤T is a preorder, that is to say a reflexive, transitive relation. 
Moreover, the open sets of T are the ideals of ≤T , that is to say the sets I ⊆ X such that, for all 
i, j ∈ X:

(i ∈ I and i ≤T j) =⇒ j ∈ I.

(2) Conversely, if ≤ is a preorder on X, the ideals of ≤ form a topology on X denoted by T≤. Moreover, 
≤T≤ = ≤, and T≤T = T . Hence, there is a bijection between the set of topologies on X and the set 
of preorders on X. A map between finite topologies (i.e. topologies on finite sets) is continuous if and 
only if it is preorder-preserving.

(3) Let us define for each point x ∈ X the set Ux to be the minimal open set containing x. The Ux form a 
basis for the topology of X called the minimal basis of T . The preorder that has just been introduced 
can be equivalently defined by x ≤T y ⇔ y ∈ Ux. Notice that the opposite convention (defining a 
preorder from a topology using the requirement x ∈ Uy) would lead to equivalent results.

(4) Let T be a topology on X. The relation ∼T on X, defined by i ∼T j if i ≤T j and j ≤T i, is an 
equivalence relation on X. Moreover, the set X/ ∼T is partially ordered by the relation defined on 
the equivalence classes ī by ī ≤T j̄ if i ≤T j. Consequently, we shall represent preorders on X (hence, 
topologies on X) by the Hasse diagram of X/ ∼T , the vertices being the equivalence classes of ∼T .
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(5) Duality between topologies is reflected by the usual duality of preorders: i ≤T ∗ j ⇔ j ≤T i. In particular, 
the Hasse diagram of T ∗ is obtained by reversing (turning upside-down) the Hasse diagram of T .

(6) A topological space is T0 if it satisfies the separation axiom according to which the relation ∼ is trivial 
(equivalence classes for ∼ are singletons, that is, for any two points x, y ∈ X, there always exists an 
open set containing only one of them). At the level of ≤T , this amounts to requiring antisymmetry: the 
preorder ≤T is then a partial order. In other terms, finite T0-spaces are in bijection with isomorphism 
classes of finite partially ordered sets (posets).

For example, here are the topologies on [n], n ≤ 3:
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The two topologies on [3], �
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2 3 , are dual.

A finite space will be represented by an unlabeled Hasse diagram. The cardinalities of the equivalence 
classes of ∼T are indicated on the diagram associated to T if they are not equal to 1. Here are the finite 
spaces of cardinality ≤ 3:

1 = ∅; � ; � � , �

�

, �2 ; � � � , �
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� , �

��∨ ,
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The (minimal) finite space realization, up to weak homotopy equivalence, of the circle and of the 
2-dimensional sphere (see e.g. [4])

• • • •

• • • •

• •

are examples of self-dual finite spaces.
The number tn of topologies on [n] is given by the sequence A000798 in [31]: 

n 1 2 3 4 5 6 7 8 9 10
tn 1 4 29 355 6942 209 527 9 535 241 642 779 354 63 260 289 423 8 977 053 873 043

The set of topologies on [n] will be denoted by Tn, and we put T =�
n≥0

Tn.

The number fn of finite spaces with n elements is given by the sequence A001930 in [31]: 

n 1 2 3 4 5 6 7 8 9 10
fn 1 3 9 33 139 718 4535 35 979 363 083 4 717 687

The set of finite spaces with n elements will be denoted by Fn, and we put F = �
n≥0

Fn. The vector space 

with basis given by the set of all finite spaces is written F and its (finite dimensional) degree n component, 



2438 L. Foissy et al. / Journal of Pure and Applied Algebra 220 (2016) 2434–2458
the subspace generated by finite spaces with n elements, Fn. We will be from now on interested in the fine 
structure of F in relation to classical topological properties and constructions.

2.2. Homotopy types

The present section and the following survey the links between finite spaces and topological notions such 
as homotopy types. We refer to Stong’s seminal paper [34] and to Barmak’s thesis [3] on which this account 
is based for further details and references.

For a finite topological set, the three notions of connectedness, path-connectedness and order-
connectedness agree (the later being understood as connectedness of the graph of the associated preorder).

For f , g continuous maps between finite topological sets X and Y , we set

f ≤ g ⇔ ∀x ∈ X, f(x) ≤ g(x) for the order of Y.

This preorder on the (finite) mapping space Y X is the one associated to the compact-open topology. It 
follows immediately, among others, that two comparable maps are homotopic and that a space with a 
maximal or minimal element is contractible (since the constant map to this point will be homotopic to any 
other map – in particular the identity map).

For the same reason, given a finite topological set X, there exists a homotopy equivalent finite topological 
set X0 which is T0 (the quotient space X/ ∼T considered in the previous section, for example). Therefore, 
since [2], the study of homotopy types of finite spaces is in general restricted to T0-spaces. Characterizing 
homotopies (inside the category of finite topological sets) is also a simple task: two maps f and g are 
homotopic if and only if there exists a sequence:

f = f0 ≤ f1 ≥ f2 ≤ . . . ≥ fn = g.

In the framework of finite topological sets, a reduction method refers to a combinatorial method allowing 
the removal of points without changing given topological properties (such as the homotopy type). Stong’s 
reduction method allows a simple and effective construction of representatives of finite homotopy types [34]. 
Stong first defines the notions of linear and colinear points (also called up beat points and down beat points 
in a later terminology): a point x ∈ X is linear if ∃y ∈ X, y > x and ∀z > x, z ≥ y. Similarly, x ∈ X is 
colinear if ∃y ∈ X, y < x and ∀z < x, z ≤ y. It follows from the combinatorial characterization of homotopies 
that, if x is a linear or colinear point in X, then X is homotopy equivalent to X − {x}.

Together with the fact that any finite topological set is homotopy equivalent to a T0-space, the charac-
terization of homotopy types follows. A space is called a core (or minimal finite space) if it has no linear 
or colinear points. By reduction to a T0-space and recursive elimination of linear and colinear points, any 
finite topological set X is homotopy equivalent to a core Xc that can be shown to be unique up to homeo-
morphism [34, Thm. 4].

2.3. Simplicial realizations

Another important tool to investigate topologically finite spaces is through their connection with simpli-
cial complexes. We survey briefly the results of McCord, following [24,3].

Recall that a weak homotopy equivalence between two topological spaces X and Y is a continuous map 
f : X → Y such that for all x ∈ X and all i ≥ 0, the induced map f∗ : πi(X, x) �−→ πi(Y, f(x)) is an 
isomorphism (of groups for i > 0). The finiteness requirement enforces specific properties of finite spaces: for 
example, contrary to what happens for CW-complexes (Whitehead’s theorem), there are weakly homotopy 
equivalent finite spaces with different homotopy types.
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The key to McCord’s theory is the definition of functors between the categories of finite topological sets 
and simplicial complexes (essentially the categorical nerve and the topological realization). Concretely, to 
a finite topological set X is associated the simplicial complex K(X) of nonempty chains of X/ ∼T (that is, 
sequences x1 < . . . < xn in X/ ∼T ). Conversely, to the simplicial complex K(X) is associated its topological 
realization |K(X)|: the points x of |K(X)| are the linear combinations x = t1x1 + . . . + tnxn, 

n∑
i=1

ti = 1, 

ti > 0. Setting Sup(x) := x1, McCord’s fundamental theorem states that:

Sup : |K(X)| �−→ X/ ∼T

is a weak homotopy equivalence. In particular, |K(X)| is weakly homotopy equivalent to X. Notice also 
that K(X) and K(X∗), resp. |K(X)| and |K(X∗)| are canonically isomorphic: a finite space is always weakly 
homotopy equivalent to its dual.

3. Sums and joins

We investigate from now on operations on finite spaces. Besides their intrinsic interest and their con-
nections to various classical topological constructions, they are meaningful for the problem of enumerating 
finite spaces (see e.g. [32,30,12]). They will also later underly the construction of B∞-algebra structures.

Notation. Let O ⊆ N and n ∈ N. The set O(+n) is the set {k + n | k ∈ O}.

Definition 1. Let T ∈ Tn and T ′ ∈ Tn′ be standard representatives of T ∈ Fn and T ′ ∈ Fn′ .

(1) The topology T .T ′ is the topology on [n +n′] for which open sets are the sets O�O′(+n), with O ∈ T
and O′ ∈ T ′. The finite space T .T ′ is T .T ′.

(2) The topology T � T ′ is the topology on [n + n′] for which open sets are the sets O � [n′](+n), with 
O ∈ T , and O′(+n), with O′ ∈ T ′. The finite space T � T ′ is T � T ′.

We omit the proof that the products T .T ′ and T � T ′ are well-defined and do not depend on the choice 
of a standard representative.

The first product is the sum (disjoint union) of topological spaces.
The second one deserves to be called the join. Recall indeed that the join A ∗B of two topological spaces 

A and B is the quotient of [0, 1] × A × B by the relations (0, a, b) ∼ (0, a, b′) and (1, a, b) ∼ (1, a′, b). For 
example, the join of the n and m dimensional spheres is the n + m + 1-dimensional sphere. When it is 
defined that way, the join is not an internal operation on finite spaces. However, recall that the join of two 
simplicial complexes K and L is the simplicial complex K ∗L := K

∐
L 
∐
{σ ∪ β, σ ∈ K, β ∈ L} and that 

the join operation commutes with topological realizations in the sense that (up to canonical isomorphisms) 
|K ∗L| = |K| ∗ |L|. It follows therefore from McCord’s theory that, up to a weak homotopy equivalence, the 
product � is nothing but (a finite spaces version of) the topological join.

We extend linearly the two products defined earlier to F . Note that these products define linear maps 
from Fm ×Fn to Fm+n for all m, n ≥ 0.

By a slight abuse of notation, we will allow ourselves to denote finite spaces using the notation (X, Y, . . .)
that was reserved till now for finite topological sets. Similarly, we will not discuss systematically the fact 
that some constructions on finite spaces have to be done by choosing finite topological sets representatives 
of the corresponding finite spaces, performing the construction on these representatives, and then moving 
back to the corresponding homeomorphism classes.
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Examples.
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The join of two circles (see in the previous section the minimal finite space representation of a circle) is 
a 3-sphere:

• •

• •

• •

• •

Proposition 2. These two products are associative, with ∅ = 1 as a common unit. The first product is also 
commutative. They are compatible with the duality involution:

X∗.Y ∗ = (X.Y )∗, Y ∗ � X∗ = (X � Y )∗.

The proof is left to the reader.

Definition 3. Let X ∈ F, different from 1. Notice that X is connected (or .-indecomposable) if and only if 
it cannot be written in the form X = X ′.X ′′, with X ′, X ′′ �= 1.

(1) We shall say that X is join-indecomposable if it cannot be written in the form X = X ′ � X ′′, with 
X ′, X ′′ �= 1.

(2) We shall say that X is irreducible if it is both join-indecomposable and connected.

Examples. Here are the irreducible spaces of cardinality ≤ 4:

� ; �2 ; �3 ; �4 , � �

� �

� .

The triple (F , ., �) is a Com − As algebra, that is an algebra with a first commutative and associa-
tive product and a second, associative, product sharing the same unit. This is a particular example of a 
2-associative algebra [21], that is to say an algebra with two associative products sharing the same unit.

From now on, unless otherwise stated, space means finite space.

Theorem 4.

(1) The commutative algebra (F , .) is freely generated by the set of connected spaces.
(2) The associative algebra (F , �) is freely generated by the set of join-indecomposable spaces.
(3) The Com − As algebra (F , ., �) is freely generated by the set of irreducible spaces.

Proof. Notice first the important property that the join-product of two nonempty spaces is a connected 
space.
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1. Any space can be written uniquely as a disjoint union of connected spaces.
2. Let X be an arbitrary space, and let us choose one of its representatives (still written X). Notice first 

that X = Y � Z if and only if Y <T Z (in the sense that, for arbitrary y ∈ Y , z ∈ Z, y <T z). That is,

X = Y � Z ⇔ X = Y
∐

Z and Y <T Z.

Let us assume that X = X1 � X2 � . . . � Xn = Y1 � Y2 � . . . � Ym with the Xi and the Yj

join-indecomposable. Then, X1 ∩ Y1 is not empty (this would imply for example that Y1 ⊂ X2 � . . . �
Xn >T X1, and similarly X1 >T Y1, which leads immediately to a contradiction). Moreover, X1 ∩ Y1 <T

X1 ∩ (Y2 � . . . � Ym). A contradiction follows if X1 ∩ Y1 �= X1, Y1 since we would then have

X1 = (X1 ∩ Y1) � (X1 ∩ (Y2 � . . . � Ym)).

We get X1 = Y1 and X2 � . . . � Xn = Y2 � . . . � Ym, and the statement follows by induction.
3. Let us describe briefly the free Com −As algebra CA(S) over a set S of generators (we write . and �

for the two products). A basis B = S
∐

BC

∐
BA of CA(S) with BC =

∐
n≥2

BC,n, BA =
∐
n≥2

BA,n can be 

constructed recursively as follows (in the following BA,1 = BC,1 := S and the . product is commutative so 
that a.b = b.a):

• BC,n :=
∐

n1+...+nk=n
{a1. . . . .ak, ai ∈ BA,ni

},

• BA,n :=
∐

n1+...+nk=n
{a1 � . . . � ak, ai ∈ BC,ni

}.

Now, let X be a space, then one and only one of the three following cases holds:

(1) X is irreducible.
(2) X is .-indecomposable and join-decomposable, and then it decomposes uniquely into a product X =

X1 � . . . � Xk of join-indecomposable spaces.
(3) X is .-decomposable and join-indecomposable, and then it decomposes uniquely into a sum X = X1 ∪

. . . ∪Xk of connected spaces.

It follows by induction that the set of spaces identifies with the basis of the free Com − As algebra over 
irreducible spaces: writing S for the latter set, the first case in the previous list corresponds to the case 
X ∈ S; the second to X ∈ BA with the Xi in BC or S; the third to X ∈ BC with the Xi in BA or S. �

As an application, it is possible to obtain the numbers pn, qn and rn of, respectively, connected, join-
indecomposable and irreducible spaces of cardinality n, by manipulating formal series. This gives:

n 1 2 3 4 5 6 7 8 9 10
pn 1 2 6 21 94 512 3485 29 515 314 474 4 255 727
qn 1 2 4 14 62 373 2722 24 591 275 056 3 860 200
rn 1 1 1 2 17 167 1672 18 127 226 447 3 398 240

The sequences (pn), (qn) and (rn) are A001928, A046911 and A046909 of [31], see also [35].
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4. Schur–Weyl categories

We will show, in forthcoming sections, that F carries various bialgebraic structures. Rigidity theorems 
in the sense of [20] apply, making F a cofree Hopf algebra and the B∞-enveloping algebra of a B∞-algebra 
(see Theorem 19).

There are various ways to give an algebraic and combinatorial characterization of cofree Hopf algebras, 
following ideas that are scattered in the literature and seem to originate in the Bott–Samelson theorem, 
according to which H∗(ΩΣX; K) = T c(H∗(X; K)), where Σ is the suspension functor acting on topological 
spaces and Ω the loop space functor, and in the work of Baues on the bar/cobar construction [6], [18, 
p. 48]. The paper [21] addresses the problem explicitly, but other approaches follow from [7,16,27,20], and 
no unified treatment seems to have been given up to date. We take the opportunity of the present article 
and the existence of such structures on finite spaces to present such a short and self-contained treatment. In 
the process, we extend the results of Livernet [20] on cocommutative cogroups in the category of associative 
algebras and infinitesimal bialgebras and our study in [15] of natural operations on shuffle bialgebras.

In the present section, we focus on free associative algebras and cofree coassociative coalgebras. Recall 
that we work with graded connected structures: in the following, Vect stands for the category of connected 
graded vector spaces V =

⊕
n∈N

Vn, where V0 = 0 is the null vector space; if V and W are two objects of Vect, 

a morphism f : V −→ W in Vect is a linear map, homogeneous of degree 0, that is to say f(Vn) ⊆ Wn

for all n ≥ 0. We write |v| = n if v is a (non-zero) homogeneous element of degree n in V . The category 
of connected graded vector spaces augmented with the ground field K in degree 0 will be written Vect+

(i.e., for V =
⊕
n∈N

Vn ∈ Vect+, V0 = K); if V and W are two objects in Vect+, a morphism f : V −→ W

is a linear map, homogeneous of degree 0, such that f|K = IdK . We write ε for the canonical projection to 
V0 = K, T (V ) =

⊕
n∈N

Tn(V ) :=
⊕
n∈N

V ⊗n ∈ Vect+, T (V ) :=
⊕

n∈N∗
V ⊗n ∈ Vect and call T (V ) the tensor space 

over V (resp. Tn(V ) the space of tensors of length n over V ). We use the shortcut notation v1 . . . vn for 
v1 ⊗ . . .⊗ vn ∈ V ⊗n and will call sometimes v1 . . . vn a word (of length n) over V . Notice that the grading 
of T (V ) by the length differs from the grading T (V ) =

⊕
n∈N

Tn(V ) canonically induced by the grading of V

(Tn(V ) being generated by words v1 . . . vk where the vis are homogeneous with |v1| + . . . + |vk| = n).
We are now in the position to recall the definition of the algebra of graded permutations. This algebra 

plays the role, for the categories of bialgebras that we are going to study, that the descent algebra plays for 
usual bialgebras (graded connected commutative or cocommutative bialgebras), see [26]. This point of view 
was developed in [15] for shuffle bialgebras and is extended here to other, naturally equivalent, categories. 
We write Sk for the symmetric group on k elements.

Definition 5. Let us fix k ∈ N. Let σ ∈ Sk and d : [k] −→ N>0. We define a linear endomorphism of T (V )
by:

Φ(σ,d) :
{

v1 . . . vl −→ vσ(1) . . . vσ(l) if k = l and |vσ(i)| = d(i) for all i,
−→ 0 if not.

The composition of graded permutations is given as follows: for all (σ, d) ∈ Sk × Hom([k], N>0) and 
(τ, e) ∈ Sl × Hom([l], N>0),

Φ(σ, d) ◦ Φ(τ, e) =
{

Φ(τ ◦ σ, d) if k = l and d = e ◦ σ,
0 if not.

Notations. We put S =
∐
k≥0

Sk × Hom([k], N>0), and S = Vect(S), the vector space generated by S. The 

composition of S, linearly extended, makes S an algebra.
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Following the method used in [25] to study nonlinear Schur–Weyl duality, we want to characterize natural 
transformations of the functor

T (V ) :=
⊕
n∈N

Tn(V ) :=
⊕
n∈N

V ⊗n (1)

viewed as a functor from Vect to Vect+. Concretely, we look for V ∈ Vect-indexed families of graded linear 
maps μV from Tn(V ) to Tn(V ) where n is an arbitrary integer such that, for any map f of graded vector 
spaces from V to W ,

Tn(f) ◦ μV = μW ◦ Tn(f). (2)

Let us say that such a family μV satisfies graded Schur–Weyl duality in degree n (by extension of the classical 
case, where the ground field is of characteristic 0 and the problem is restricted to invertible endomorphisms 
f of a given non-graded vector space V ).

Proposition 6. Let SW be the vector space spanned by families of linear maps that satisfy the graded Schur–
Weyl duality in degree n, where n runs over N>0. Then SW is canonically isomorphic to S, via the linear 
map:

Φ :
{

S −→ SW
(σ, e) ∈ Sk × Hom([k],N>0) −→ Φ(σ, e).

Moreover, the composition of natural transformations makes SW an algebra, and the canonical isomorphism 
from S to SW is an algebra isomorphism.

Proof. The action of S on the tensor spaces T (V )s is natural (it commutes with an arbitrary T (f)): S is, 
as an algebra, canonically embedded in SW via the map Φ.

Let μ be a family of linear maps satisfying the graded Schur–Weyl duality in degree n. For any finite 
sequence d = (d1, . . . , dn) of elements of N>0, let us put Xd = Vect(x1, . . . , xn), where |xi| := di for all i. 
For an arbitrary family a1, . . . , an of elements of a graded vector space V with |ai| = di for all i, the map 
f(xi) := ai extends uniquely to a linear map from Xd to V . Then:

μV (a1 . . . an) = μV ◦ T (f)(x1 . . . xn) = T (f)(μXd
(x1 . . . xn)),

so the knowledge of the elements xd := μXd
(x1 . . . xn) for any d determines entirely μ.

Let us fix d and put D = d1 + . . . + dn. As xd ∈ TD(Xd), we can write:

xd =
∞∑
k=1

∑
σ:[k]−→[n],

dσ(1)+...+dσ(k)=D

aσ,dxσ(1) . . . xσ(n).

Let i ∈ [n]. We define fi : Xd −→ Xd by fi(xj) = xj if i �= j and 0 if i = j. Then:

0 = μXd
◦ Tn(fi)(x1 . . . xn) = Tn(fi)(xd) =

∞∑
k=1

∑
σ:[k]−→[n],

dσ(1)+...+dσ(k)=D,
i/∈σ([n])

aσ,dxσ(1) . . . xσ(n).

Hence, if σ([k]) � [n], aσ,d = 0: the sum runs only on surjective σ. Moreover, if aσ,d �= 0 then:
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d1 + . . . + dn = d1|{i ∈ [k] | σ(i) = 1}| + . . . + dn|{i ∈ [k] | σ(i) = n}|.

As all the elements appearing here are nonnegative integers, for all j ∈ [n], |{i ∈ [k] | σ(i) = j}| = 1: σ is 
injective. Finally:

xd =
∑

σ∈Sn

aσ,dxσ(1) . . . xσ(n) =
∑

(σ,e)∈S

aσ,eΦ(σ,e◦σ)(x1 . . . xn),

which implies that:

μ =
∑

(σ,e)∈S

aσ,e◦σ−1Φ(σ,e),

and finally SW = Φ(S). �
Building on these results, we define Schur–Weyl categories.

Definition 7. A Schur–Weyl category is a category C with a forgetful functor F to Vect+ (i.e. whose objects 
are naturally equipped with a structure of graded vector spaces), with a functor P to Vect, and with natural 
isomorphisms:

∀C ∈ C, I(C) : T ◦ P (C) ∼= F (C)

(i.e. the objects of C are naturally isomorphic to tensor spaces). In particular, due to Proposition 6, the 
objects of C are naturally equipped with an action of S.

Recall now the definition of various algebraic structures on the tensor spaces T (V ). We point out that
Proposition 6 shows that these structures (which can be described as the composite of natural endomor-
phisms of the functors Tn with the natural isomorphisms Tm+n

∼= Tm ⊗ Tn) are naturally defined. More 
generally, the proposition shows that the definition of natural (graded) algebraic structures on the ten-
sor spaces is constrained by the graded Schur–Weyl duality phenomenon: in concrete terms, one has to 
use permutations to define such structures. At last, notice that these structures will lift automatically to 
Schur–Weyl categories.

• The tensor algebra over V is the tensor space over V equipped with the concatenation product:

v1 . . . vn · w1 . . . wm := v1 . . . vnw1 . . . wm,

the tensor algebra is the free associative algebra over V .
• The tensor coalgebra over V is the tensor space over V equipped with the deconcatenation coproduct Δ, 

so that

Δ(v1 . . . vn) :=
n∑

i=0
v1 . . . vi ⊗ vi+1 . . . vn,

it is the cofree connected coassociative coalgebra over V (the general structure of cofree coalgebras is 
more subtle, see [19]).

• The shuffle algebra over V is the tensor space over V equipped with the shuffle product:

v1 . . . vn �� w1 . . . wm :=
∑

xσ−1(1) . . . xσ−1(n+m),

σ
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where x1 . . . xn+m := v1 . . . vnw1 . . . wm and σ runs over the (n, m)-shuffles in Sn+m, that is over the 
permutations such that: σ(1) < . . . < σ(n), σ(n + 1) < . . . < σ(n + m). It is the free shuffle algebra 
over V (see below for a definition).

• The unshuffle coalgebra over V is the tensor space over V equipped with the unshuffle coproduct:

δ(v1 . . . vn) :=
∑
I,J

vi1 . . . vik ⊗ vj1 . . . vjn−k
,

where I = {i1, . . . , ik}, J = {j1, . . . , jn−k} run over all partitions of [n] into two disjoint (and possibly 
empty) subsets. It is the cofree unshuffle coalgebra over V (see below for a definition).

Recall that, given an arbitrary coproduct map Δ from X to X ⊗ X in Vect+, the associated vector 
space of primitive elements is defined by Prim(X) := {x ∈ X, Δ(x) = x ⊗ 1 + 1 ⊗ x}. For the deconcate-
nation coproduct on T (V ), we have Prim(T (V )) = V , whereas for the unshuffle coproduct, over a field of 
characteristic 0, Prim(T (V )) = Lie(V ), the free Lie algebra over V , see e.g. [28].

5. Schur–Weyl categories of bialgebras

The objects of a Schur–Weyl category C are naturally equipped with these four algebra and coalgebra 
structures. Let us go now one step further and investigate tensor spaces from the point of view of bialgebras. 
The four algebra/coalgebra maps give rise to three interesting bialgebra structures.

5.1. Shuffle bialgebras

Recall first from [29] that the shuffle product �� is characterized abstractly in Vect by the identity 
involving the left and right half-shuffles ≺, � (with �� = ≺ + �):

x ≺ y = y � x, (x ≺ y) ≺ z = x ≺ (y ≺ z + y � z). (3)

This definition is extended to Vect+ by requiring x ≺ 1 = x, 1 ≺ x = 0, see e.g. [15] for details.

Definition 8.

(1) A shuffle bialgebra is a commutative Hopf algebra whose product, written �� is a shuffle product (that 
is, can be written �� = ≺+� in such a way that ≺ and � satisfy the identities (3)) and, for x, y ∈ Ker ε, 
the extra axiom:

Δ(x ≺ y) = x ≺ y ⊗ 1 + 1 ⊗ x ≺ y + x⊗ y + x ≺ y′ ⊗ y′′

+ x′ ≺ y ⊗ x′′ + x′ ⊗ x′′ �� y + x′ ≺ y′ ⊗ x′′ �� y′′,

where we use Sweedler’s notation Δ(x) = x1 ⊗ x2 = x ⊗ 1 + 1 ⊗ x + x′ ⊗ x′′. We shorten this axiom as:

Δ(x ≺ y) = x1 ≺ y1 ⊗ x2 �� y2.

(2) If A and B are two shuffle bialgebras, a morphism of shuffle bialgebras f : A −→ B is a Hopf algebra 
morphism from A to B, homogeneous of degree 0, such that for all x, y ∈ Ker ε:

f(x ≺ y) = f(x) ≺ f(y), f(x � y) = f(x) � f(y).
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The tensor space T (V ) is equipped with the structure of a shuffle bialgebra by the deconcatenation 
coproduct Δ and the left and right half-shuffle maps ≺, � (they add up to ��) defined recursively by:

x1 ≺ y1 := x1y1, x1 . . . xn ≺ y1 . . . ym := x1(x2 . . . xn �� y1 . . . ym),

x1 � y1 := y1x1, x1 . . . xn � y1 . . . ym := y1(x1 . . . xn �� y2 . . . ym).

Theorem 9. A shuffle bialgebra B is isomorphic as a shuffle bialgebra to T (Prim(B)), where Prim stands 
for the functor of primitive elements from the category SB of shuffle bialgebras to Vect. Furthermore, the 
category SB is a Schur–Weyl category.

The first part of the theorem is a rigidity theorem (recall that T (V ) is free as a shuffle algebra and 
cofree as a coassociative coalgebra in Vect+) and a consequence of a more general result [10, Prop. 15]. 
Another, direct, proof of this result, based on compositions in the free magmatic algebra, was obtained 
in [9, Appendix A]. Unfortunately, in spite of many important insights on the behavior of shuffle bialgebras, 
the proof is not entirely conclusive (the composition of formal power series argument at the end of the 
Appendix does not apply). As the author pointed out recently to one of us, an alternative strategy of proof 
can however be developed sticking inside her magmatic approach.

The precise form of the theorem, as stated here (including a construction of a natural isomorphism from 
T (Prim(B)) to B, as required in a Schur—Weyl category) is obtained in [15, Thm. 6.7] (the proof contains 
the effective construction of the natural isomorphism).

5.2. Unshuffle bialgebras

Dually, one can split the unshuffle coproduct δ = δ≺ + δ� on T (V ): for xX = xx1 . . . xn, x, . . . , xn ∈ V ,

δ≺(x) := x⊗ 1, δ�(x) := 1 ⊗ x;

δ≺(xX) := xX1 ⊗X2, δ�(xX) := X1 ⊗ xX2,

where we use Sweedler’s notation δ(X) = X1 ⊗X2. Notice that V = Prim≺(T (V )), where

Prim≺(T (V )) := {b ∈ T (V ), δ≺(b) = b⊗ 1}.

The left and right half-unshuffles δ≺, δ� satisfy the identities:

δ≺ = τ ◦ δ�, (δ≺ ⊗ Id) ◦ δ≺ = (Id ⊗ δ) ◦ δ≺, (4)

where τ stands for the switch map τ(x ⊗ y) = y ⊗ x, and, on Ker(ε),

(ε⊗ Id) ◦ δ≺(x) = 0, (Id ⊗ ε) ◦ δ≺(x) = x, (5)

where we recall that ε stands for the augmentation (the canonical projection to the ground field) in Vect+.

Definition 10.

(1) Using the shortcut δ≺(x) = x≺
1 ⊗ x≺

2 (and similarly for δ�), an unshuffle bialgebra is a bialgebra 
equipped with a coassociative cocommutative coproduct δ = δ≺ + δ� satisfying the above identities and 
an associative product · such that furthermore, for x, y ∈ Ker ε:

δ≺(x · y) = x≺
1 · y1 ⊗ x≺

2 · y2. (6)
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(2) If A and B are two unshuffle algebras, a morphism of unshuffle algebras f : A −→ B is a bialgebra 
morphism from A to B, homogeneous of degree 0 such that:

δ≺ ◦ f = (f ⊗ f) ◦ δ≺, δ� ◦ f = (f ⊗ f) ◦ δ�.

The tensor space equipped with the concatenation product and the two half-unshuffles δ≺, δ� described 
previously is an unshuffle bialgebra.

The two notions of shuffle bialgebras and unshuffle bialgebras are strictly dual (in the graded sense – the 
graded dual of a vector space V =

⊕
n∈N

Vn in Vect+ being the direct sum of the duals V ∗ =
⊕
n∈N

V ∗
n ).

The rigidity theorem for unshuffle bialgebras follows by duality (this was first observed in [9, Ap-
pendix B]): they are isomorphic to free associative algebras and cofree unshuffle coalgebras. The natural 
isomorphisms defining Schur–Weyl duality can be obtained by dualizing the constructions in [15], in par-
ticular Corollary 3.3 on which the later proof of the structure theorem for shuffle bialgebras relies in that 
article. Let us sketch the proof of the analogue of this corollary – the rest of the construction of the natural 
isomorphisms is left to the reader, we refer to [15] for details.

Let f , g be two endomorphisms of T (V ) in Vect+. We set:

f ≺ g(x) := f(x≺
1 )g(x≺

2 ), f � g(x) := f(x�
1 )g(x�

2 ),

f �� g(x) := f ≺ g(x) + f � g(x).

The two half-products ≺ and � define the structure of a noncommutative shuffle algebra (or dendrimorphic) 
algebra on End(T (V )), that is they satisfy the identities

(f ≺ g) ≺ k = f ≺ (g �� k), (f �� g) � k = f � (g � k),

(f � g) ≺ k = f � (g ≺ k).

The first of these identities follows directly, for example, from (δ≺ ⊗ Id) ◦ δ≺ = (Id ⊗ δ) ◦ δ≺, and similarly 
for the others. Let us write now π for the projection from T (V ) to V orthogonally to the other components.

Lemma 11. We have, in End(T (V )),

Id = ε +
∑
n∈N∗

π ≺ (π ≺ (. . . (π ≺ π) . . .)). (7)

Indeed, for X := v1 . . . vn ∈ V ⊗n, δ≺(X) equals v1 ⊗ v2 . . . vn plus a remainder term R such that 
π⊗ Id(R) = 0. We get: Id = ε + π ≺ Id, from which the lemma follows by a perturbative expansion. Let us 
mention that the latter equation can be investigated systematically, see for example [11].

When written in End(B), for B an arbitrary unshuffle bialgebra, the equation (7) defines (implicitly) π. 
The iterated products π ≺ (π ≺ (. . . (π ≺ π) . . .)) are then the analogues, on B, of the projections from 
T (V ) to the summand V ⊗n orthogonally to the other components.

Theorem 12. An unshuffle bialgebra B is isomorphic as an unshuffle bialgebra to T (Prim≺(B)). Further-
more, the category UB of unshuffle bialgebras is a Schur–Weyl category.

5.3. Infinitesimal bialgebras

The coproduct ∗ in the category As of (unital) associative algebras in Vect+, or free product, is obtained 
as follows: let H1 = K ⊕H1, H2 = K ⊕H2 be two such algebras, then:
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H1 ∗H2 := K ⊕
⊕
n∈N∗

(H1 ∗H2)(n) := K ⊕
⊕
n∈N∗

[(1, H⊗n) ⊕ (2, H⊗n)],

where (1, H⊗n) (resp. (2, H⊗n)) denotes alternating tensor products of H1 and H2 of length n starting with 
H1 (resp. H2). For example, (2, H⊗4) = H2 ⊗H1 ⊗H2 ⊗H1. The product of two tensors h1 ⊗ . . .⊗hn and 
h′

1 ⊗ . . .⊗h′
m in H1 ∗H2 is defined as the concatenation product h1 ⊗ . . .⊗hn ⊗h′

1 ⊗ . . .⊗h′
m when hn and 

h′
1 belong respectively to H1 and H2 (or to H2 and H1), and otherwise as: h1 ⊗ . . .⊗ (hn · h′

1) ⊗ . . .⊗ h′
m.

When H1 = T (V1) and H2 = T (V2), one gets H1 ∗H2 = T (V1 ⊕ V2). Moreover, by universal properties 
of free algebras, the linear map ι from V to T (V ) ∗ T (V ) defined by

ι(v) := (1, v) + (2, v) (8)

induces an algebra map from T (V ) to T (V ) ∗ T (V ) which is associative, unital (ι(x) = (1, x) + (2, x) + z

with z ∈
⊕
n≥2

(H1 ∗H2)(n)) and cocommutative. Equivalently, T (V ) is a cocommutative cogroup in As.

Definition 13.

(1) An infinitesimal bialgebra is, equivalently:
• A cogroup in the category of associative unital algebras in Vect+;
• An associative unital algebra with product · and a coassociative counital coalgebra with coproduct 

Δ in Vect+ such that furthermore, with the notation Δ(x) = x1 ⊗ x2,

Δ(x · y) = x · y1 ⊗ y2 + x1 ⊗ x2 · y − x⊗ y. (9)

(2) If A and B are two infinitesimal bialgebras, a morphism of infinitesimal bialgebras f : A −→ B is a 
linear map from A to B, homogeneous of degree 0, both an algebra and a coalgebra morphism.

The equivalence between these two definitions is not widely known: it is due to Livernet [20]; it is similar 
(in all respects) to the equivalence between cocommutative cogroups in the category of commutative algebras 
in Vect+ and bicommutative bialgebras. The equivalence follows from the observation that the structure 
map φ : H −→ H ∗ H of such a cocommutative cogroup is entirely determined by its restriction Δ to its 
image on the component (1, H ⊗H) ∼= H ⊗H of H ∗H. Namely,

φ(a) =
∑
n≥1

(1,Δ[n−1](a)) + (2,Δ[n−1](a)), (10)

where Δ[n−1] stands for the iterated (coassociative) coproduct from H to H⊗n. Using the notation Δ(x) =
x1 ⊗ x2 (and more generally Δ[n−1](x) = x1 ⊗ . . .⊗ xn), the coproduct Δ satisfies the identity

Δ(x · y) = x⊗ y + x · y1 ⊗ y2 + x1 ⊗ x2 · y (11)

so that, for Δ(x) := Δ(x) + x ⊗ 1 + 1 ⊗ x, with the notation Δ(x) = x1 ⊗ x2 we get the identity (9). Note 
that in the case of T (V ), Δ is the deconcatenation coproduct.

Conversely, the identity (11) is enough to ensure that (with the notation Δ[0](x) = x = x)

Δ[k](x · y) =
k∑

i=1
x1 ⊗ . . .⊗ xi ⊗ y1 ⊗ . . .⊗ yk+1−i +

k+1∑
i=1

x1 ⊗ . . .⊗ xi · y1 ⊗ . . .⊗ yk+2−i,

from which it follows that φ, as defined by the equation (10) defines a cogroup structure on H.
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Theorem 14. An infinitesimal bialgebra B is isomorphic as an infinitesimal bialgebra to T (Prim(B)). Fur-
thermore, the category IB of infinitesimal bialgebras is a Schur–Weyl category.

The first rigidity statement is Berstein’s structure theorem for cocommutative cogroups in categories of 
associative algebras [7, Cor. 2.6] and Theorem 2.6 of [21]. It implies that an infinitesimal bialgebra is free as 
an associative algebra and cofree as a coassociative coalgebra. The second statement follows from the proof 
of Theorem 2.6 in [21].

5.4. Equivalence between Schur–Weyl categories of bialgebras

We already noticed that any object of a Schur–Weyl category is naturally equipped with the structures 
of an associative algebra, of a shuffle algebra, of a coassociative coalgebra and of an unshuffle coalgebra. The 
same arguments show that it is naturally equipped with the structure of a shuffle bialgebra, of an unshuffle 
bialgebra and of an infinitesimal bialgebra.

The three structure theorems for shuffle, unshuffle and infinitesimal bialgebras imply the fundamental 
structure theorem:

Theorem 15. The categories of shuffle bialgebras, unshuffle bialgebras and infinitesimal bialgebras are iso-
morphic over Vect+. They are all equipped with a natural action of the algebra of graded permutations S.

By isomorphic over Vect+, we mean that the three categories are equivalent, and that the natural 
equivalences can be realized as natural isomorphisms of graded vector spaces (concretely, an object of any 
of the three categories viewed as an element of Vect+ can be equipped naturally with the other two bialgebra 
structures).

Proof. Let us define for example the equivalence between the category of infinitesimal bialgebras and the 
category of shuffle bialgebras. Let A be an infinitesimal bialgebra. Denoting by V the graded space of 
primitive elements, there exists a unique morphism of infinitesimal bialgebras fA : A −→ T (V ). As T (V )
is also a shuffle bialgebra, via the bijection fA, A becomes an infinitesimal bialgebra in a unique way. This 
defines the image of A by the equivalence. �

Let us show concretely how this process can be realized in practice on the example of infinitesimal 
bialgebras and unshuffle bialgebras – we will explain later on how this example allows an improvement of 
the understanding of one of Berstein’s key notions: the one of the underlying algebra of a cocommutative 
cogroup in the category of associative algebras in Vect+.

Let H be such a cocommutative cogroup. The structure map φ : H −→ H ∗H gives rise to two “half-
coproducts” δ≺, δ� from H to H ⊗H defined as follows. Let h1 ⊗ . . .⊗ hn ∈ (H ∗H)(n), we set:

π1(h1 ⊗ . . .⊗ hn) := 1h1⊗...⊗hn∈(1,H⊗n)h1 · h3 · . . . · hn−1 ⊗ h2 · h4 · . . . · hn,

π2(h1 ⊗ . . .⊗ hn) := 1h1⊗...⊗hn∈(2,H⊗n)h2 · h4 · . . . · hn ⊗ h1 · h3 · . . . · hn−1

if n is even and otherwise

π1(h1 ⊗ . . .⊗ hn) := 1h1⊗...⊗hn∈(1,H⊗n)h1 · h3 · . . . · hn ⊗ h2 · h4 · . . . · hn−1,

π2(h1 ⊗ . . .⊗ hn) := 1h1⊗...⊗hn∈(2,H⊗n)h2 · h4 · . . . · hn−1 ⊗ h1 · h3 · . . . · hn.

Then,

δ≺(h) := π1 ◦ φ(h), δ�(h) := π2 ◦ φ(h).
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Maps πi, i = 1, 2, 3 from H ∗H ∗H to H ⊗H ⊗H are defined similarly. That is, distinguishing notationally 
between the three copies of H by writing H ∗H ∗H = H1 ∗H2 ∗H3, π1 acts non-trivially on h1 ⊗ . . .⊗hn ∈
H1 ∗H2 ∗H3 if and only if h1 ∈ H1, and so on.

Proposition 16. The half-coproducts δ≺, δ� together with the associative product define (functorially) on H
the structure of an unshuffle bialgebra.

The identity δ≺ = τ ◦δ� follows from the cocommutativity of φ. The identity (δ≺⊗Id) ◦δ≺ = (Id⊗δ) ◦δ≺
follows by observing that both maps act as π1 ◦ φ[3] on H, where φ[3] is the iterated coproduct from H to 
H ∗H ∗H. The identity (6) follows from the fact that φ is a morphism of algebras.

Berstein’s notion of underlying Hopf algebra of a cogroup in As [7] is obtained by composing this functor 
with the forgetful functor from unshuffle bialgebras to classical bialgebras. Proposition 16 unravels why this 
notion of underlying Hopf algebra of a cogroup could prove in the end instrumental in his work (compare 
our approach to Berstein’s original one).

6. B∞-algebras and finite spaces

The notion of B∞-algebra was introduced by Getzler and Jones in the category of chain complexes [18], 
we consider here the simpler notion of B∞-algebra in the subcategory Vect.

A B∞-algebra structure on V is, by definition, a Hopf algebra structure on T (V ) equipped with the 
deconcatenation coproduct. That is, an associative algebra structure on T (V ) such that the product is a 
coalgebra map [18, p. 48]. Since T (V ) is cofree as a counital coalgebra in Vect+ for the deconcatenation 
coproduct, the product map from T (V ) ⊗ T (V ) to T (V ) is entirely characterized by its projection to the 
subspace V . This yields another, equivalent, but less tractable and transparent, definition, of B∞-algebras 
in terms of structure maps Mp,q : V ⊗p ⊗ V ⊗q �−→ V , p, q ≥ 0 satisfying certain compatibility relations 
that can be deduced from the associativity of the product – we refer again to [18] for details. It is natural 
to call the cofree Hopf algebra T (V ), for V a B∞-algebra, the B∞-enveloping algebra of V . The following 
corollary shows how Theorem 15 induces automatically various characterizations of B∞-enveloping algebras 
(compare with [21], where the third characterization was obtained).

Corollary 17. The following statements are equivalent (as usual all underlying vector spaces belong to Vect+):

(1) H is a Hopf algebra, cofree over the space of its primitive elements V = Prim(H).
(2) H is the B∞-enveloping algebra of a B∞-algebra V .
(3) H is a Hopf algebra and can be equipped with the structure of an infinitesimal bialgebra whose coproduct 

is the coproduct of H.
(4) H is a Hopf algebra and can be equipped with the structure of a shuffle bialgebra whose coproduct is the 

coproduct of H.

Let us show now how these ideas apply to finite topologies.

Notations. Let X be a finite set, and T be a topology on X. For any Y ⊆ X, we denote by T|Y the topology 
induced by T on Y , that is to say:

T|Y = {O ∩ Y | O ∈ T }.

Definition 18. Let T ∈ Tn, n ≥ 1. For T ∈ Fn, the equivalence class of T in F, we put:

Δ(T ) :=
∑

T|[n]\O ⊗ T|O ∈ F ⊗ F .

O∈T
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We let the reader check that this definition does not depend on the choice of a representative of T in T. 
The coproduct extends linearly to F , the linear span of finite spaces.

Theorem 19.

(1) (F , ., Δ) is a commutative Hopf algebra.
(2) (F , �, Δ) is an infinitesimal bialgebra.
(3) F is the B∞-enveloping algebra of a B∞-algebra; more precisely it is a commutative cofree Hopf algebra.
(4) It can be equipped with the structure of a shuffle bialgebra or of an unshuffle bialgebra.

Proof. In the theorem, all structures are defined in Vect+.
The last two assertions follow from Theorem 15 together with Corollary 17.
Let T ∈ Tn, n > 0. The coassociativity of Δ follows from the observations that:

• if O is open in T , then the open sets of O are the open sets of T contained in O,
• if O ∈ T and O′ ∈ T|[n]\O, then O �O′ is an open set of T ,
• if O1 ⊆ O2 are open sets of T , then O2 \O1 ∈ T|[n]\O1 .

We get then:

(Δ ⊗ Id) ◦ Δ(T ) =
∑

O∈T , O′∈T|[n]\O

(T|[n]\O)|([n]\O)\O′ ⊗ (T|[n]\O)|O′ ⊗ T|O

=
∑

O∈T , O′∈T|[n]\O

T|[n]\(O
O′) ⊗ T|O′ ⊗ T|O.

Putting O1 = O and O2 = O �O′:

(Δ ⊗ Id) ◦ Δ(T ) =
∑

O1⊆O2∈T
T|[n]\O2 ⊗ T|O2\O1 ⊗ T|O1 = (Id ⊗ Δ) ◦ Δ(T ).

This proves that Δ is coassociative. It is obviously homogeneous of degree 0. Moreover, Δ(1) = 1 ⊗ 1 and 
for any T ∈ Tn, n ≥ 1:

Δ(T ) = T ⊗ 1 + 1 ⊗ T +
∑

∅�O�[n]

T|[n]\O ⊗ T|O.

So Δ has a counit.
Let T ∈ Tn, T ′ ∈ Tn′ , n, n′ ≥ 0. By definition of T .T ′:

Δ(T .T ′) =
∑

O∈T ,O′∈T ′

(T .T ′)|[n+n′]\O.O′ ⊗ (T .T ′)|O.O′

=
∑

O∈T ,O′∈T ′

T|[n]\O.T ′
[n′]\O′ ⊗ T|O.T|O′

=
∑

O∈T ,O′∈T ′

(
T|[n]\O ⊗ T|O

)
.
(
T ′
|[n′]\O′ ⊗ T|O′

)

= Δ(T ).Δ(T ′).

Hence, (F, ., Δ) is a graded connected commutative Hopf algebra.



2452 L. Foissy et al. / Journal of Pure and Applied Algebra 220 (2016) 2434–2458
By definition of T � T ′:

Δ(T � T ′) =
∑

O∈T ,O �=∅
(T � T ′)|[n+n′]\(O�[n′]) ⊗ (T � T ′)|O�[n′]

+
∑

O′∈T ′,O′ �=[n′]

(T � T ′)|[n+n′]\O′(+n) ⊗ (T � T ′)|O′(+n)

+ (T � T ′)|[n+n′]\[n′](+n) ⊗ (T � T ′)[n′](+n)

=
∑

O∈T ,O �=∅
T|[n]\O ⊗ T|O � T ′

+
∑

O′∈T ′,O′ �=[n′]

T � T ′
|[n′]\O′ ⊗ T ′

|O′ + T ⊗ T ′

=
∑

O∈T ,O �=∅

(
T|[n]\O ⊗ T|O

)
� (1 ⊗ T ′)

+
∑

O′∈T ′,O′ �=[n′]

(T ⊗ 1) �
(
T ′
|[n′]\O′ ⊗ T ′

|O′

)
+ T ⊗ T ′

= (Δ(T ) − T ⊗ 1) � (1 ⊗ T ′) + (T ⊗ 1) � (Δ(T ) − 1 ⊗ T ′) + T ⊗ T ′

= Δ(T ) � (1 ⊗ T ′) + (T ⊗ 1) � Δ(T ) − T ⊗ T ′.

Hence, (F, �, Δ) is an infinitesimal Hopf algebra. �
7. A family of morphisms to quasi-symmetric functions

7.1. The Hopf algebra of quasi-symmetric functions

Let us give some reminders on quasi-symmetric functions. Let A = K[[x1, x2, . . .]] be the algebra of 
commutative formal series in the infinite countable set of indeterminates xn, n ≥ 1. A formal series f ∈ A

is quasisymmetric [17,33] if for all strictly increasing maps f : N>0 −→ N>0, the coefficients of xa1
1 . . . xan

n

and xa1
f(1) . . . x

an

f(n) in f are equal, for all a1, . . . , an ∈ N. The subalgebra of quasisymmetric formal series is 
denoted by QSym. For example, if a = (a1, . . . , an) is a composition, that is to say a finite sequence of 
elements of N>0, then the following formal series is quasisymmetric:

Ma =
∑

i1<...<in

xa1
i1

. . . xan
in
.

By convention, M∅ = 1. These elements form a basis of QSym, called the monomial basis. Moreover, QSym
is a Hopf algebra [22] for the coproduct defined by:

Δ(M(a1,...,an)) =
n∑

i=0
M(a1,...,ai) ⊗M(ai+1,...,an),

for all compositions (a1, . . . , an).

7.2. Linear extensions of a finite topology

In this section, we will write without further comment T for a representative of the finite space T .
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Definition 20. Let T be a topology on a finite set E.

(1) A linear extension of T is a map f : E −→ N>0 such that for all i, j ∈ E,

(i ≤T j) =⇒ (f(i) ≤ f(j)).

The set of linear extensions of T is denoted by Lin(T ).
(2) Let f be a linear extension of T .

(a) We shall say that f is standard if f(E) = [k] for a certain integer k. The set of standard linear 
extensions of T is denoted by LinStd(T ).

(b) We denote f(E) = {i1, . . . , ik}, with i1 < . . . < ik. We put:

P (f) = (|f−1(i1)|, . . . , |f−1(ik)|).

Note that P is a map from Lin(T ) to the set of compositions.
(c) We put:

α(f) = |{(i, j) ∈ E × E | i <T j and f(i) = f(j)}|.

Recall that i <T j if i ≤T j and not i ∼T j. Note that α is a map from Lin(T ) to N.

Remarks.

(1) In other words, linear extensions of T are continuous maps from E to N>0, with the topology induced 
by the usual total order on N>0.

(2) If T and T ′ are homeomorphic, any homeomorphism induces a bijection from Lin(T ) to Lin(T ′), which 
preserves α and P .

(3) If f ∈ Lin(T ) and g : N>0 −→ N>0 is strictly increasing, then g◦f ∈ Lin(T ). Moreover, α(g◦f) = α(f)
and P (g ◦ f) = P (f).

(4) For all f ∈ Lin(T ), there exists a unique f ′ ∈ LinStd(T ), such that there exists a strictly increasing 
g : N>0 −→ N>0 with g ◦ f ′ = f . This f ′ is denoted by Std(f).

Theorem 21. Let q ∈ K. We put:

φq :

⎧⎪⎨
⎪⎩

F −→ QSym

T −→
∑

f∈Lin(T )

qα(f)
∏

i∈E(T )

xf(i),

where E(T ) is the set underlying T . This defines a surjective Hopf algebra morphism from (F , ., Δ) to 
QSym. Moreover, for all finite spaces T :

φq(T ) =
∑

f∈LinStd(T )

qα(f)MP (f).

Proof. By the second remark above, φq(T ) does not depend on the choice of the representative T of T , so 
φq(T ) is well-defined, with values in K[[x1, x2, . . .]]. By the third remark above, if T is a finite space:

φq(T ) =
∑

f∈LinStd(T )

qα(f)
∑

g:[max(f)]−→N>0,

∏
i∈E(T )

xg◦f(1) . . . xg◦f(max(f))
strictly increasing
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=
∑

f∈LinStd(T )

qα(f)M(|f−1(1)|,...,|f−1(max(f))|)

=
∑

f∈LinStd(T )

qα(f)MP (f).

So φq takes indeed its values in QSym.
Let T1, T2 be representatives of two finite spaces T 1, T 2 such that E(T1) ∩E(T2) = ∅. The set underlying 

T1.T2 is E(T1) �E(T2). If fi : E(Ti) −→ N>0 for i = 1, 2, we put:

f1 ⊗ f2 :

⎧⎪⎨
⎪⎩

E(T1.T2) −→ N>0

i −→
{
f1(i) if i ∈ E(T1),
f2(i) if i ∈ E(T2).

Then:

Lin(T1.T2) = {f1 ⊗ f2 | (f1, f2) ∈ Lin(T1) × Lin(T2)}.

Moreover, α(f1 ⊗ f2) = α(f1) + α(f2), as, if i ≤T1.T2 j, then (i, j) ∈ E(T1)2 or (i, j) ∈ E(T2)2. We obtain:

φq(T 1.T 2) =
∑

f1∈Lin(T1),f2∈Lin(T2)

qα(f1)+α(f2)
∏

i∈E(T1)
E(T2)

xf1⊗f2(i)

=
∑

f1∈Lin(T1),f2∈Lin(T2)

qα(f1)+α(f2)
∏

i∈E(T1)

xf1(i)
∏

i∈E(T2)

xf2(i)

=

⎛
⎝ ∑

f1∈Lin(T1)

qα(f1)
∏

i∈E(T1)

xf1(i)

⎞
⎠

⎛
⎝ ∑

f2∈Lin(T2)

qα(f2)
∏

i∈E(T2)

xf2(i)

⎞
⎠

= φq(T 1)φq(T 2).

This shows that φq is multiplicative.
Let T be a finite space. We put:

A = {(I, f1, f2) | I open set of T , f1 ∈ LinStd(T|E(T )−I), f2 ∈ LinStd(T|I)},

B = {(f, k) | f ∈ LinStd(T ), 0 ≤ k ≤ max(f)}.

We put:

F :
{

B −→ A

(f, k) −→ (f−1({k + 1, . . . ,max(f)}),Std(f|[k]),Std(f|{k+1,...,max(f)})).

This is well-defined: we put F (f, k) = (I, f1, f2).

• Let i ∈ I and j ≥T i. Then f(i) ≥ k + 1. As f ∈ Lin(T ), f(j) ≥ f(i), so f(j) ≥ k + 1 and j ∈ I: I is 
an open set of T .

• By restriction, f1 is a linear extension of T|E(T )−I and f2 is a linear extension of T|I .

Moreover, F is injective: if F (f, k) = F (g, l) = (I, f1, f2), then k = l = max(f1). As f is standard, for all 
i ∈ E(T ):
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• if i /∈ I, f(i) = g(i) = f1(i),
• if i ∈ I, f(i) = g(i) = f2(i) + k.

Finally, F is surjective: if (I, f1, f2) ∈ A, let f : E(T ) −→ N>0, defined by:

• if i /∈ I, f(i) = f1(i),
• if i ∈ I, f(i) = f2(i) + max(f1).

Let us prove that f ∈ Lin(T ). If i ≤T j in E(T ), then:

• If i ∈ I, as I is an open set of T , j ∈ I. As f2 ∈ Lin(T|I), then f2(i) ≤ f2(j), so f(i) ≤ f(j).
• If i /∈ I and j ∈ I, then f(i) ≤ k < f(j).
• If i, j /∈ I, as f1 ∈ Lin(T|E(T )−I), f(i) = f1(i) ≤ f1(j) = f(j).

f is clearly standard, and F (f, max(f1)) = (I, f1, f2).
As a conclusion, F is bijective. Moreover, if F (f, k) = (I, f1, f2), as if i ∈ I and j /∈ I, f(i) �= f(j), then 

α(f) = α(f1) + α(f2), and P (f) is the concatenation of P (f1) and P (f2). So:

(φq ⊗ φq) ◦ Δ(T ) =
∑

(I,f1,f2)∈A

qα(f1)+α(f2)MP (f1) ⊗MP (f2)

=
∑

(f,k)∈B

qα(f)M(|f−1(1)|,...,|f−1(k)|) ⊗M(|f−1(k+1)|,...,|f−1(max(f))|)

=
∑

f∈LinStd(f)

qα(f)Δ(MP (f))

= Δ ◦ φq(T ).

So φq is a Hopf algebra morphism.
Let (a1, . . . , ak) be a composition. Let T be the topology on a set A1 � . . . �Ak, with |Ai| = ai for all i, 

defined by x ≤T y if, and only if, x ∈ Ai and y ∈ Aj , with i ≤ j. Then:

φq(T ) = M(a1,...,ak) + R,

where R is in the linear span of the Mb, with length(b) < k. By a triangularity argument, φq is surjective. �
Examples. Let a, b, c ≥ 1.

φq( �a) = M(a),

φq( �

�

a
b ) = M(a,b) + qabM(a+b),

φq( �a � b ) = M(a,b) + M(b,a) + M(a+b),

φq( �

�

�

a
b
c

) = M(a,b,c) + qabM(a+b,c) + qbcM(a,b+c) + qab+ac+bcM(a+b+c),

φq( �

��∨a
cb ) = M(a,b,c) + M(a,c,b) + M(a,b+c) + qabM(a+b,c)

+ qacM(a+c,b) + qab+acM(a+b+c),

φq(
�∧��

c
a b ) = M(a,b,c) + M(b,a,c) + M(a+b,c) + qacM(b,a+c)

+ qbcM(a,b+c) + qac+bcM(a+b+c),
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φq( �

�

a
b

�c ) = M(a,b,c) + M(a,c,b) + M(c,a,b) + M(a,b+c)

+ M(a+c,b) + qabM(a+b,c) + qabM(c,a+b) + qabM(a+b+c),

φq( �a � b �c ) = M(a,b,c) + M(a,c,b) + M(b,a,c) + M(b,c,a) + M(c,a,b) + M(c,b,a)

+ M(a+b,c) + M(a+c,b) + M(b+c,a)

+ M(a,b+c) + M(b,a+c) + M(c,a+b) + M(a+b+c).

Proposition 22. We define a product �q on QSym by:

M(a1,...,ak) �q M(b1,...,bl) = M(a1,...,ak,b1,...,bl) + qakb1M(a1,...,ak−1,ak+b1,b2,...,bl).

Then (QSym, �q, Δ) is an infinitesimal bialgebra and φq is a morphism of infinitesimal bialgebras from 
(F , �, Δ) to (QSym, �q, Δ).

Proof. Let T 1, T 2 be two nonempty finite spaces in Tn, resp. Tm. Let us prove that φq(T 1 � T 2) =
φq(T 1) �q φq(T 2). We choose standard representatives T1, T2. Let f ∈ Lin(T1 � T2). We put f1 = f|[n]
and f2 = f|{n+1,...,n+m}. If i ∈ [n] and j ∈ {n + 1, . . . , n + m}, then i ≤T1�T2 j, so f(i) ≤ f(j). Hence, 
max(f1) ≤ min(f2). We then define:

A< = {f ∈ LinStd(T1 � T2) | max(f1) < min(f2)},

A= = {f ∈ LinStd(T1 � T2) | max(f1) = min(f2)}.

We deduce from the preceding remark that LinStd(T1 � T2) = A< � A=. Let us consider the maps F< :
LinStd(T1) × LinStd(T2) −→ A< and F= : LinStd(T1) × LinStd(T2) −→ A= defined by:

F<(f1, f2) :

⎧⎪⎨
⎪⎩

[n + m] −→ N>0

i −→
{
f1(i) if i ≤ n,

f2(i− n) + max(f1) if i > n;

F=(f1, f2) :

⎧⎪⎨
⎪⎩

[n + m] −→ N>0

i −→
{
f1(i) if i ≤ n,

f2(i− n) + max(f1) − 1 if i > n.

Both are clearly bijections. Moreover, if (f1, f2) ∈ LinStd(T1) × LinStd(T2):

• α(F<(f1, f2)) = α(f1) + α(f2) and:

α(F=(f1, f2)) = α(f1) + α(f2) + |f−1
1 (max(f1))||f−1

2 (min(f2))|,

the last term corresponding to the pairs (i, j) ∈ [n] × {n + 1, . . . , n + m}, with f1(i) = max(f1) and 
f2(j − n) = min(f2), as for such a pair (i, j), f(i) = f(j) and i <T1�T2 j.

• If P (f1) = (a1, . . . , ak) and P (f2) = (b1, . . . , bl), then P (F<(f1, f2)) = (a1, . . . , ak, b1, . . . , bl) and 
P (F=(f1, f2)) = (a1, . . . , ak + b1, . . . , bl), so:

MP (F<(f1,f2)) + qakb1MP (F=(f1,f2)) = MP (f1) �q MP (f2).

This gives:



L. Foissy et al. / Journal of Pure and Applied Algebra 220 (2016) 2434–2458 2457
φq(T 1 � T 2) =
∑

f∈A<

qα(f)MP (f) +
∑

f∈A=

qα(f)MP (f)

=
∑

(f1,f2)∈LinStd(T1)×LinStd(T2)

qα(f1)+α(f2)MP (f1) �q MP (f2)

= φq(T 1) �q φq(T 2).

As φq is surjective and (F , �, Δ) is an infinitesimal bialgebra, we obtain that (QSym, �q, Δ) is also an 
infinitesimal bialgebra. �
Remark. Theorem 4.1 of [1] gives an interpretation of the pair (QSym, ζQSym) as a final object in the 
category of graded, connected Hopf algebras together with a character, where ζQSym is the character of 
QSym defined by ζQSym(M(a1,...,ak)) = δk,1 for all composition (a1, . . . , ak) of length k ≥ 1. With this 
formalism, φq is the Hopf algebra morphism in this category associated to the character ζq = ζQSym ◦ φq

of F . For any finite space T , of degree n,

ζq(T ) = qα((n)) = q|{(i,j)∈E(T )|i<T j}|.

In particular, ζ1(T ) = 1 for all T ; and for q = 0,

ζ0(T ) =
{

1 if T = �a1 . . . �ak for a certain (a1, . . . , ak),
0 otherwise.

Remark. The map φq is not injective. For example, if T and T ′ are the following two finite spaces:

• • • •

• • • •

• • • •

then T �= T ′ but φq(T ) = φq(T ′) (this is a linear span of 204 terms). However, it is possible to prove that 
if T and T ′ are two topologies on the same set E, they are equal if, and only if, Lin(T ) = Lin(T ′).
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