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Introduction

In the present work we apply High-Performance Computing techniques to

two Big Data problems. The first one deals with the analysis of large graphs

by using a parallel distributed architecture, whereas the second one consists

in the design and implementation of a scalable solution for fast indexing and

searching of large datasets of heterogeneous documents.

In recent years, there has been a steadily growing interest in the study

of real-world networks [1], since a number of natural and artificial phenom-

ena may be described by using networks, i.e. sets of interconnected nodes.

The size of the networks under study has grown up to millions of nodes and

hundred-million or even billions of connections. Examples of such huge net-

works are the Web with a number of pages exceeding 45 billion, or social

networks like Facebook, Twitter, Google+ [2]. Large-scale networks can be

found also in biology: e.g., protein interaction networks, the human brain or

the metabolic interaction networks [3].

Networks are often represented as graphs having vertices connected by

edges. When applied to large graphs, even simple algorithms like Breadth

First Search (BFS) require significant computing resources to provide timely

results.

Most of the platforms in use to that purpose are based on parallel ar-

chitectures that can be grouped in two major categories: shared memory

and distributed memory architectures. Shared memory systems have many

advantages from the programming point of view but are limited both in the

size of the memory and in the number of processors. On the other end,
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distributed systems are more difficult to program but can include thousands

of computing nodes with a huge amount of total memory. In principle, by

leveraging a suitable distributed system, there is no limit to the size of the

network that can be studied.

Generally, a distributed system is a cluster of computing nodes intercon-

nected via a wired network. Communications are typically carried out by

using Message Passing Interface (MPI) primitives. Each computing node in

a distributed system can be equipped with a single- or a multi-core CPU. In

GPU clusters, each node hosts also one or more GPU devices.

If the size of a graph does not fit in the memory of one single node,

it is necessary to split the graph over multiple computing nodes in order to

analyze it. For the purpose of the present work, we designed and implemented

solutions for studying graphs on a cluster of computing nodes equipped with

Graphic Processing Units (GPUs): while each GPU provides shared-memory

based parallel computational power, interconnected computing nodes form a

distributed memory system in which cooperation is realized by exchanging

messages.

For the analysis of large networks, we developed Multi-GPUs imple-

mentations of three graph algorithms: Breadth First Search (BFS), ST-

Connectivity (ST-CON) and Betweenness Centrality (BC).

Breadth First Search is a fundamental building block for solving many

graph-related problems like computing the maximum-flow/minimum-cut, test-

ing a graph for bipartiteness and, more in general, for traversing a graph,

i.e., visiting all the vertices and edges from a given start vertex. Unfortu-

nately, parallel algorithms for the BFS are difficult to implement efficiently on

GPUs, due to the low arithmetic intensity and lack of spatial locality of the

algorithm. Furthermore, in a distributed system, computing nodes cooperate

exchanging data thus, a large fraction of the running time, is spent in com-

munication among nodes. Moreover, size and number of messages exchanged

may fluctuate during algorithm execution and communication patterns are

irregular. Therefore communication is both a performance bottleneck and
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inhibitor of scalability [4–6].

Starting from an existing Multi-GPU BFS implementation [7], in Chapter

1 we present our enhancements to that solution [8], improving both perfor-

mance and scalability by reducing data exchanges among nodes thanks to a

different communication pattern and a reorganization of internal data struc-

tures.

In the same Chapter, we also employ our Multi-GPU BFS to solve the

ST-Connectivity problem (ST-CON) which consists in deciding, for vertices s

and t in a graph, if t is reachable from s. Such problem may be simply solved

by executing a BFS starting from s and checking if t is reached. Nevertheless

a more efficient solution can be explored: starting two concurrent BFS, one

from s and the other from t and checking if they intersect at some point.

However, that approach opens also some issues: BFS data structures need

to be modified to cope with two concurrent independent searches and it is

necessary to check if and when the two searches intersect. We provide two

implementations to efficiently solve ST-CON [9] that highlight the impact of

atomic operations in GPU.

As already mentioned, BFS is a fundamental building block for solving

many graph-related algorithms and the Betweenness Centrality (BC) is one

of those. BC is, by now, one of the most popular metrics used to determine

the “relevance” (or the centrality) of a node in a network. It has been

used in many fields like the study of the interactions in social-networks [10,

11], lethality in biological networks [12], identification of leaders in terrorist

networks [13], and so on.

The betweenness centrality of a node is based on the number of all-pairs

shortest paths passing through that node. Exact computation of BC scores is

computationally-expensive, the fastest known algorithm for calculating BC

scores has O(nm) time-complexity for unweighted graphs [14]. Therefore

BC computation for a large scale graph is an extraordinary challenge that

requires high performance computing techniques to provide results in a rea-

sonable amount of time. Leveraging the knowledge acquired for the BFS and
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ST-CON, in Chapter 2 we present the techniques we developed to speed-up

the computation of the BC on Multi-GPU systems. In particular, time and

space complexity is reduced by using graph topology manipulations that,

although modify the graph, still guarantee a correct BC score calculation.

Then we resort to both coarse- and fine-grained parallelizations to squeeze

the highest computational power from the distributed system. Experimental

results on synthetic and real-world graphs show that the proposed techniques

are well suited to compute BC scores in graphs which are too large to fit in

the memory of a single computational node. In particular, the computation

time of a 117 million undirected edges graph is reduced to less than 2 hours.

In Chapter 3, we deal with the second problem faced in our work: how to

reduce the time required to index and search very large sets of heterogeneous

textual data [15]. Current digital forensics tools and mindsets are no longer

adequate to meet the scope and complexity of today’s threats. As a matter

of fact, due to the steadily growing size of data managed by IT centers and

the rapid growth of Cloud services providers, seizures, for forensic purposes,

of very large storage devices are expected in the next future. Therefore our

work aims at building a cost-effective solution for analyzing large unstruc-

tured data sets so providing the ability to quickly retrieve information to

investigators. We exploit High Performance Computing (HPC) techniques

to index and search huge amount of data that may include (but are not lim-

ited to) emails, documents, plain text files, web pages, etc. The final product

is a technology for indexing and searching digital forensics data and a “proof

of concept” browser-based search system that may be immediately used by

an investigator.



Chapter 1

Breadth First Search and

ST-Connectivity

An efficient Breadth First Search (BFS) is a fundamental building block

for solving many graph-related problems like finding the diameter or test-

ing a graph for bipartiteness as well as more sophisticated problems, such

as finding community structures in networks or computing the maximum-

flow/minimum-cut, problems that may have an immediate practical utility.

However, it is not easy to develop an efficient parallel implementation

of the BFS algorithm because of its spatial non-locality and low arithmetic

intensity.a On shared memory systems, a large fraction of the running time

is spent accessing memory while on distributed memory systems, it is spent

communications among computational nodes.

Despite these facts, many authors have demonstrated that, by carefully

addressing these problems, it is possible to implement high performance par-

allel and distributed BFS [6,16–21].

Optimization strategies strongly depends on the properties of the graph

under study. Regular graphs, with high diameter and regular structures (like

those used in physical simulations), present fewer difficulties with respect to

aArithmetic intensity is the ratio of floating point and/or integer operations to memory
accesses.
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graphs that have short diameter and skewed degree distributions. In the

latter case, a small fraction of vertices has a very high degree whereas the

majority has only few connections. This characteristic complicates load-

balancing among computational nodes because, in many graph algorithms,

like BFS, work units are associated with vertices degrees. Due to the limited

amount of memory available on a GPU, the graph size is constrained to

few millions of vertices, neverthless using recent K80 GPU with up to 24

GB shared memory if is possible to handle up to few hundreds millions of

vertices.

In this chapter we describe a parallel distributed implementation of BFS

algorithm over multiple GPUs, then we discuss how to use the BFS imple-

mentation to solve ST-Connectivity problem.

For the BFS on Multi-GPUs, we started from the solution proposed in [7];

in that work two main issues are tackled: imbalance of the workload among

threads and the communication of duplicated data. We enhanced that work

with the following main contributions:

1. the implementation of a modified Compressed Sparse Row (CSR) data

structure which allows for a faster and complete filtering of already

visited edges;

2. the optimization of data communication by using new communication

patterns;

3. testing our BFS solution over real-world graphs.

To understand the overall algorithm and its implementation on Multi-GPU,

in Section 1.1.3 we introduce the parallel and distributed BFS problem and

algorithms, while in Section 1.2 we review the Multi-GPU BFS implementa-

tion described in [7] whereas Sections 1.2.3 and 1.2.4 describe new proposed

implementation and its optimizations. In Section 1.2.5 performance on syn-

thetic and real graphs is reported.

After that, in Section 1.3 we discuss the ST-Connectivity problem and

how the BFS Multi-GPU solution can be efficiently used to solve it.
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1.1 Background and related work

1.1.1 Graph Definitions

A network can be represented using a graph G = (V,E) where vertices V

corresponds to network entities and edges E to their relations. Two vertices

u, v ∈ V are directly connected if ∃ e = (u, v) ∈ E, while N = |V | is the

number of vertices in G whereas, M = |E| is the number of edges.

G can be:

• directed: if the pair (u, v) is oriented, meaning there is a relation from

u to v

• weighted: if each edge e has associated a scalar value pe.

• multi-graph: if there are multiple distinct edges between two vertices.

• simple: unweighted, undirected graph containing neither graph loops

nor multiple edges, where a loop is an edge (u, u) .

Since our work is focused on simple graphs, whenever possibile a pre-

processing step is applied to transform the input graph into a simple one:

multiple edges or loops are removed and directed graphs are transformed into

indirected by adding required edges.

A path between two vertices s, t ∈ V is a sequence of edges 〈e0, e1, . . . , ed〉
such that e0 = (s, u1), ed−1 = (ud−1, t), where the path has length d. G is

said to be connected if there exist a path between any two vertices in

V . Two vertices s, t are reachable if there is a path between s and t in

G. The connected components of a graph are the equivalence classes of

vertices according to the relation “is reachable from”. A graph can have

many connected components, i.e., subsets of nodes that are connected. If

G is simple and every pair of distinct vertices is connected by a unique edge,

then G is complete. A closed path in which some vertices are repeated is
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called cycle. A tree is a connected graph with no cycle. The degree of a

vertex deg(v) is the number of edges incident on it.

The shortest path between two vertices s, t is a sequence of unique ver-

tices of minimum length. Given any two nodes s, t in G, the distance, is

measured as the length of shortest path between s and t. The diameter D of

a unweighted undirected graph G = (V,E) is the maximum pairwise distance

D = maxs,t∈V d(s, t) between reachable vertices, where d is the number of the

edges along the shortest path from s to v [22].

1.1.2 GPU

Graphics Processing Units (GPUs) are specially designed processors typically

used for computer graphics, that in recent years have been strongly employed

to perform parallel computations. GPUs have dedicated memory with many-

core processors specifically designed to perform data-parallel computation in

a shared memory system, so that can easily process naturally parallel tasks.

A programmer may choose to offload these parallel tasks to a GPU to free

up the CPU for more serial parts of an algorithm.

In 2006, NVIDIA launched CUDA, a general purpose parallel computing

architecture that allows using C programming language to code algorithm

for NVIDIA GPU devices. The Multi-GPU solutions described in this dis-

sertation have been realized using CUDA.

GPUs have been successfully used in accelerating many regular applica-

tions specially those involving dense matrix operations and, more recently,

irregular and low-arithmetic intensity applications like graph traversal-based

algorithms [23, 24]. Workload imbalance and uncoalesced memory accesses

are major bottlenecks for GPU-based traversal algorithms. However, in re-

cent years several authors have proposed efficient parallel and distributed

implementations for the Breadth First Search (BFS) [4, 16, 21, 25] because

it represents a building-block for the solution of more sophisticated prob-

lems on unweighted graphs like minimum-cut [22], ST-connectivity [9, 26]

and betweenness centrality as well [14].
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1.1.3 Level-synchronous parallel BFS

Given a simple graph G(V, E) with V vertices and E edges, the BFS algo-

rithm starts from a root vertex s ∈ V and traverses all the vertices that can

be reached from s, yielding a tree rooted in s.

In a classic queue-based BFS algorithm, a graph is traversed iteratively

where at each level the hop distance from the root increases. For each level,

a current queue CQ is used to store the current set of vertices (a.k.a. current

frontier), all its neighbors compose the so called Next Level Frontier Set

(NLFS). Among the vertices in the NLFS, only those not visited yet are

selected for the next level set of vertices and stored in a next level queue NQ.

At the end of the iteration the next level queue NQ becomes the current

queue CQ. Graph traversal terminates when no more vertices are added to

NQ.

To provide the resulting tree rooted in s, it is necessary to keep track of

parent-child relationships discovered during the graph traversal; this can be

accomplished by using a predecessors array to store the parent vertex. The

same array can also be used for checking if a vertex has already been visited.

Algorithm 1 Level-synchronous parallel BFS Algorithm
Input: graph G(V,E), starting vertex s
Output: array of predecessors pred
Data: CQ and NQ; nlfs array

1: pred[vj ] = −1,∀ vj ∈ V
2: CQ,NQ← ∅
3: enqueue s→ CQ
4: pred[s] = s
5: while CQ 6= ∅ do
6: for all ui in CQ in parallel do
7: for all vj neighbor of ui in parallel do . Expand the NLFS and visit all the neighbors
8: if p[vj ] == −1 then
9: pred[vj ] = vi
10: enqueue vj → NQ
11: end if
12: end for
13: end for
14: CQ← NQ
15: NQ← ∅
16: end while

This method is referred in literature as Level Synchronous BFS [6,26,27]
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because, to ensure the correctness of the computation in a parallel implemen-

tation, a synchronization is required at the end of each level. Algorithm 1

shows the pseudo-code for an implementation of a level-synchronous parallel

BFS.

In “real world” graphs, the number of levels is of the same order of the

diameter of the graph, that is short (∼ 10). As reported by various authors

[27,28] the computation is dominated by only two or three levels.

During the BFS visit, at each iteration, the size of both the queues and

the NLFS vary greatly. This irregular behavior makes it harder to correctly

balance the load among the concurrent working threads (on both the GPU

and multi-core CPU). The problem is exacerbated on real-world graphs with

skewed distributions of vertex degrees.

To address the work unbalance among threads, a good solution is to have

as many active threads as the number of elements in the NLFS. In this way,

each thread is in charge of only one vertex and the entire NLFS can be

processed in parallel.

In a distributed memory implementation, the graph G(V, E) is parti-

tioned among computational nodes, thus each node is in charge of only a

subset of the total number of edges and has direct access to them. Local

edges can be processed as in a shared memory based implementation: for

each local vertex in the NLFS it is easy to check if it has already been visited

or not, and the computation of the predecessor vertices array can be carried

out locally. However, information about edges belonging to other nodes have

to be explicitly exchanged.

As a matter of fact, most of the execution time is spent sending and re-

ceiving data as shown in [7]. Moreover, the communication patterns required

by graph algorithms are irregular and both the size of the messages and the

couples of senders/receivers vary during the execution.

It is not surprising therefore, that, as reported by many authors, [4–6],

the communication is the bottleneck of a distributed BFS.

Algorithm 2 shows the pseudo-code of a distributed BFS. Given the root
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Algorithm 2 Distributed memory BFS
Input: graph G(V,E), starting vertex s
Output: array of predecessors pred
Data: CQ and NQ; nlfs array; total number of vertices in the current queues totlen; arrays to
send/receive vertices sendarray, recvarray

1: CQ,NQ← ∅
2: pred[vj ] = −1,∀ vj ∈ V
3: if s is local then
4: pred[s] = s
5: enqueue s→ CQ
6: end if
7: while totlen > 0 do
8: sendarray ← []
9: recvarray ← []
10: for all ui in CQ in parallel do
11: for all vj neighbor of ui in parallel do
12: if vj is local then
13: if pred[vj ] == −1 then
14: pred[vj ] = ui
15: enqueue vj → NQ
16: end if
17: else
18: append (ui, vj)→ sendarray
19: end if
20: end for
21: end for
22: SEND(sendarray) . Send vertices to other nodes
23: RECV (recvarray) . Receive vertices from other nodes
24: for all (zk, wk) in recvarray in parallel do
25: if pred[wk] == −1 then
26: pred[wk] = zk
27: enqueue wk → NQ
28: end if
29: end for
30: CQ← NQ
31: NQ← ∅
32: totlen = allreduce(size(CQ))
33: end while

vertex s, the BFS starts locally on the computing node in charge of the root

and propagates to other computing nodes as the NLFS expands through

the graph. Computing nodes with vertices in the NLFS perform a local

frontier advancement, exchange information about other vertices with the

corresponding owner nodes and update parents, if needed.

The predecessors array update and the parallel enqueue operation (lines

13-15 and 24-26) have to be carefully implemented: the first gives rise to a

benign race condition, that is a race condition that cannot produce a harmful

result, whereas the latter requires special care to ensure correctness and to
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achieve good performance.

Note that on line 18 both the vertex vj and its parent ui are appended

to the sendarray so that each computing node can build the predecessors

array. This solution causes communication overhead since two vertices are

exchanged for each new vertex visited. Furthermore, if vj is visited again in

another iteration, it is sent again because the originating computing node

does not keep track of visited vertices it does not own.

1.1.4 Related work

On a single GPU, the main problem running algorithms like the BFS is to find

the best data-to-threads mapping so that the data-parallelism capabilities of

the GPU may be exploited at their best.

Another issue is the amount of global memory available on the GPU,

which on latest NVIDIA K80 GPU is limited to 24 GBytes divided into

12 GBytes memory pools (whereas commodity CPUs can have hundreds of

GBytes); this contraints the size of the graph that can be visited.

Furthermore the naive assignment, in which each thread is assigned to

one element of the BFS queue, may determine a dramatic imbalance and

poor performance [7]. It is also possible to assign one thread to each vertex

of the graph but, as showed by Harish et al. [24], the overhead of having a

large number of unused threads results in poor performance. To solve this

problem Hong et al. [17] proposed a warp centric programming model. In

their implementation each warp is responsible for a subset of the vertices in

the BFS queue. Another solution has been proposed by Merrill et al. in [28]

where a chunk of data is assigned to a CTA (a CUDA block). The CTA

works in parallel to inspect the vertices in its chunk.

While we inherit an original data mapping described by Bernaschi and

Mastrostefano in [7], to reduce the work, we use an integer map to keep track

of visited vertices.

Many papers on distributed systems rely on a linear algebra based rep-

resentation of graph algorithms [6, 20, 21, 25]. That approach, along with
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a 2-D partitioning of the graph among computational nodes, reduces the

overall communication time by limiting the number of nodes involved in the

communication.

Satish et al. [29] implemented independently a technique to exchange

predecessors very similar to our method presented in Section 1.2.4.1. They

also implemented a bitmap to exchange vertices during the BFS search that

reduces the amount of exchanged data.

Several authors ( [5,21,29,30]) propose to use compression during commu-

nication to achieve higher performance. We reduce the amount of exchanged

data as described in section 1.2.3.2. We ran some tests by compressing the

remaining exchanged data but the compression ratio is so low (not surprising

since we eliminated any data redundancy) that the time required for data

compression/ decompression is greater than the time saved by exchanging

compressed data.

Ueno et al. [30] presented a hybrid CPU-GPU implementation of the

Graph500 benchmark, using the 2-D partitioning proposed in [4]. Their

implementation uses the technique introduced by Merrill et al. [18] to create

the edge frontier and resort to a novel compression technique to shrink the

size of messages. They also implemented a sophisticated method to overlap

communication and computation in order to reduce the working memory size

of the GPUs.

A completely different algorithm that uses a direction-optimizing ap-

proach has been proposed by Beamer et. al [19] and extended in [25] for

a cluster of CPUs. The direction-optimizing method switches between the

top-down and the bottom-up traversal. The bottom-up search dramatically

reduces the number of traversed edges during the most expensive computa-

tional levels of the BFS by searching the parent in the frontier starting from

the sub-set of unvisited vertices. The predecessor search implies a serializa-

tion in order to minimize the required work. However, on shared memory

systems (including single GPUs [31,32]) the BFS performance increases sig-

nificantly.



20 Breadth First Search and ST-Connectivity

A recent work [33] demonstrates the chance of having an effective imple-

mentation of a distributed direction-optimizing approach on the BlueGene/P

by using a 1-D partitioning. That partitioning simplifies the parallelization

of the bottom-up algorithm but it may require a significant increase in the

number of communications. Their results show that the combination of the

underlaying architecture and the SPI interface is well suited to the purpose.

The authors report that replacing the SPI with MPI incurs a loss of per-

formance by a factor of nearly 5 although the MPI-based implementation

cannot be considered optimal. This suggests that the scalability of a dis-

tributed implementation may be worse on different network architectures.

1.2 BFS on a Multi-GPU system

Our work strictly follows the Graph 500 [34] benchmark specifications: here-

after, when necessary to explain our choices, we describe some of the features

and restrictions imposed by the benchmark but, for the full specifications,

we refer to the Graph 500 website www.graph500.org.

The benchmark requires to generate in advance a list of edges with a R-

MAT graph [35] generator. Then the actual benchmark consists of two parts:

i) Kernel1 corresponding to the generation of the data structure representing

the graph; ii) Kernel2 corresponding to the distributed BFS on the graph.

To double check the result of our algorithm, we resort to the same val-

idation function provided with the reference code of the Graph 500. The

validation ensures that: i) the BFS is a tree and does not contain cycles;

each tree edge connects vertices ii) whose BFS levels differ by exactly one or

iii) both vertices are out of the BFS tree; iv) the BFS tree spans all vertices

of an entire connected component, and v) a vertex and its parent are joined

by an edge of the original graph.
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1.2.1 Graph generation and data structure

To be compliant with the Graph 500 specs, each vertex of the graph is rep-

resented by a 64-bit integer. On GPUs, where memory is a limited resource,

this requirement imposes a severe limitation. More in detail, we generate

N = 2SCALE vertices and M = EF ×N edges, where EF is the edge factor

and is equal to 16; now, considering that a single NVIDIA GPU is equipped

with a maximum of 12 GBytes of global (i.e., main) memory, the theoretical

upper limit SCALE would be 24. However since additional data structures

are needed by the algorithm, the highest SCALE of the Graph 500 bench-

mark that we are able to run on each device is 21.

Vertices are partitioned across computing nodes using 1-D partitioning;

it consists in dividing the graph among computational nodes according to

the following rule: edge (ui, vj) ∈ Pk if (ui mod #P == k), where #P is the

number of nodes. With this decomposition each computational node holds a

vertex together with all its outgoing edges.

The data structure is created directly on the GPU. We use the well known

Compressed Sparse Row (CSR) data structure to represent the graph because

it is simple and has reduced memory requirements. The CSR data structure is

composed by two arrays, an array of offsets (Offset) and an array (Adjacency

Lists) that contains the adjacency list of all the vertices in the graph (see

Figure 1.1).

1.2.2 A first BFS implementation on Multi-GPU

Since our BFS implementation is grounded on the solution described by

Bernaschi and Mastrostefano in [7], here we quickly review it. They follow

the Algorithm 2, but provide a specific solution for building the NLFS and

the next level queue.

To solve the imbalance of the workload among threads on a single GPU,

they assume that a good solution is to have as many active threads as the

number of elements in the NLFS so that each thread is in charge of only one
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Figure 1.1. Compressed Sparse Row data structure for a toy graph with 10
vertices and 13 bidirectional edges. To obtain the adjacency list of vertex i, one
looks up the entry i of the Offset array which contains the starting index in the
Adjacency List array. E.g, for vertex 4 the adjacency list starts at offset 12.

vertex and the whole NLFS can be processed in parallel.

This data-thread mapping technique employs a prefix-sum operation and
a binary search: given the current queue array CQ[] = [u0, u1, . . . , un−1] and
their degrees degree[] = [d0, d1, . . . , dn−1] the first step consists in using a
prefix sum to calculate the cumulative degree array:

cumulDegree[] = [0, d0, (d0 + d1), (d0 + d1 + d2), . . . , (d0 + d1 + d2 + · · ·+ dn−2 + dn−1)]

In this way they determine m, the total number of elements in the NLFS,

which corresponds to the threads required to process in parallel all the

neighbors of vertices in CQ. This value is stored in the last element of

cumulDegree array.

In order to assign each thread to one NLFS vertex and its correspond-

ing parent, a binary search is executed over the cumulative degree array

cumulDegree: each thread uses its global thread identifier threadId (which
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is a number between 0 and m−1), and a binary search operation to determine

which is the index i in the cumulDegree array such that

cumulDegree[i] ≤ threadId < cumulDegree[i+ 1]

so the thread identified by threadId is in charge of processing one of the

neighbor of vertex ui = CQ[i]. To determine which is the specific neighbor

vertex vj assigned to the thread, the following formula is used:

vj = adj[offset[ui] + threadId− cumulDegree[i]]

where adj and offset are the CSR Adjacency List and Offset arrays respec-

tively. Note that adj[offset[ui]] corresponds to the first neighbor of vertex

ui, while threadId−cumulDegree[i] computes which is the specific neighbor

assigned to the thread. In this way each thread processes a specific edge

(ui, vj). Figure 1.2 shows how this data-thread mapping technique works for

a toy graph.

Since NLFS is explored in parallel, the same vertex may be enqueued

to NQ multiple times, this occurs when that vertex is connected to more

vertices in CQ. To remove vertex duplicates, a sort followed by a compact-

unique operation is performed. This solution can be very computing intensive

when the NQ is very large. In Section 1.2.3 we will show how our enhanced

solution solves this issue.

1.2.2.1 Results of the first BFS implementation

In figure 1.3 the sort-unique algorithm proposed in [7] is compared with

the reference Multi-CPU implementation. The results were obtained on the

CINECA PLX cluster that features 2 six-cores Intel Westmere 2.40 GHz and

two Tesla M2070 Fermi GPU for each computational node (with a total of

274 nodes and 548 GPUS). Nodes are connected by QDR Infiniband.

The algorithm and results described so far were presented in [7], and

are reported here to provide a comprehensive picture of our enhancements
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Figure 1.2. Example of data-thread mapping technique applied to a toy graph.
The BFS starts from vertex 4 and the frontier CQ refers to the second iteration.

and improvements with respect to that work. Hereafter we describe these

improvements and the new results we obtained.

1.2.3 Enhanced BFS

In the previous section we described how a combination of sort and unique

operations allows to reduce data exchange by pruning the NLFS. That proce-

dure, however, is very time consuming. In the following sections we describe

a new approach to reduce both computation and communication.

1.2.3.1 Marking visited vertices using modified CSR data struc-

ture

In a distributed memory system, the graph is partitioned among computing

nodes so that each node holds only a subset of the overall vertices and edges.

For instance, using the 1-D partitioning described in Section 1.2.1 each node

stores a CSR with N ÷#P vertices (where N is the total number of vertices
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Figure 1.3. Performance of the sort-unique algorithm. We report the harmonic
mean of the Traversed Edges Per Seconds (TEPS) over 64 runs.

in the graph and #P is the number of computing nodes in the distributed

memory system), while in the Adjacency List array, each node stores all the

vertices connected to the local vertices.

We observed that each computing node only deals with a subset of overall

vertices, namely, local and remote vertices that are stored in its Adjacency

List array. Therefore, it appears sufficient to allocate, on each computing

node, a mask array capable to keep track of those vertices only. Building such

data structure is not simple since: vertices stored on one computing node do

not form a contiguous set of labels, and, the same vertices may appear in

many adjacency lists.

To solve those issues and build a mask to keep track of visited vertices,

we need to set up a contiguous set of labels, without multiplicities, to rep-

resent all vertices that are in the Adjacency List , regardless if they are local

or remote. For that purpose, the CSR data structure is extended with an
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additional array as depicted in Figure 1.4.

(RCSR)

RCSR adj

RCSR labels

00 3 3 7 7 7 7 18 l MRCSR offsets

Figure 1.4. Relabeling of the CSR data structure that allows for the building of
an ordered local mask of visited vertices

The resulting data structure, Relabeled-CSR (RCSR), is composed by

three arrays: the array of offsets (RCSR→offsets), the array of adjacency lists

(RCSR→adj), and the relabeled array of edges (RCSR→labels); note that the

first two arrays corresponds exactly to the original Offset and Adjacency List

arrays defined in the CSR structure.

Each element of the RCSR→adj array corresponds to one element of the

RCSR→labels array but, while the first stores the original vertex identifiers,

the latter stores a label or index that is a number between 0 and VMAX −
1, where VMAX counts how many unique vertices are stored in the CSR.

The RCSR→labels array is used to access a visited mask array of VMAX − 1
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elements.

1.2.3.1.1 Building the modified CSR data structure

To build the RCSR data structure, we start from the Adjacency List array

of the CSR (see Figure 1.4).

First we sort the Adjacency List array in ascending order, then we assign

a label to each unique vertex in the array (Relabeled array in Figure 1.4). The

labels are consecutive numbers from 0 to VMAX−1, where VMAX corresponds

to the total count of unique vertices. Finally we build the RCSR→labels by

sorting back the Relabeled array to the original ordering, that is the same

order of the Adjacency List array from which we started.

At this point we can use a visited mask array with VMAX elements for

keeping track of the status (visited or not) of all vertices in the local adjacency

lists, indeed using the RCSR→labels array we can access the corresponding

element in the visited mask array.

1.2.3.2 Optimization of data communication

A careful analysis of the algorithm described in Section 1.2.2, shows that

a newly discovered vertex vl, that is local, is added to NQ only if it is

unvisited, whereas a newly discovered vertex vr, that is remote, is sent to

the destination computing node regardless if it has been already visited or

not because the computing node originating vr does not store information on

discovered vertices that are remote. In this way the same vertex vr may be

sent multiple times from the same computing node to its owner node; in the

worst case, this can happen once for each BFS level.

Using the RCSR data structure previously defined, it is possible to remove

this redundancy, indeed the visited mask array is used to keep track of all

visited vertices in the adjacency lists, regardless if they are local or remote,

thus a computing node sends the same vertex only at most once during

the whole BFS. This solution does not prevent the same vertex from being

received multiple times by the owner, since it may be discovered by different
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computing nodes and each of them will send it. If Nr is the mean number of

remote vertices included in an edge list (i.e., the number of remote vertices

connected with local vertices), and S is the mean number of computing nodes

that owns those vertices, than the total number of vertices received by a single

node will be S ×Nr.

This first improvement has been implemented modifying the solution de-

scribed in Section 1.2.2. In order to assign each thread to one vertex in the

NLFS and its corresponding parent, a binary search is executed over the

cumulative degree array cumulDegree and the index i is calculated, then

RCSR→offset is used to find the index vindex of the RCSR→adj to get the

value of the neighbor vj as described in the following code snippet:

i = binsearch(cumulDegree, threadId,m);

toff = threadId− cumulDegree[i];
ui = CQ[i]

vindex = RCSR− > offset[ui] + toff

vj = RCSR− > adj[vindex]

where threadId is the global thread identification index, m is the number of

elements in the cumulDegree array, vj and ui are respectively the neighbor

vertex and its parent. The binsearch function returns the index of the entry

in the cumulDegree array whose value is lower, or equal, to threadId.

At this point we need to determine if the neighbor vertex vj has al-

ready been visited (regardless if it is local or remote). To that purpose,

instead of checking if vj is local and if it has already been visited (lines 12-

19 of Algorithm 2), we use the RCSR data structure: the value stored in

RCSR→labels[vj] corresponds to the index in visited mask array, that needs

to be checked-and-set. Furthermore, if we store in the visited mask array a

flag that indicates if the owner of vj is local or remote, this can be used to

implement a new communication pattern to exchange vertex predecessors,

as described in Section 1.2.4.1.
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This solution prevents adding the same vertex (local or remote) multiple

times to NQ and also that the same remote vertex is transmitted multiple

times to its destination computing node. As a consequence, there is no more

the need for pruning the NLFS array by using the sort-unique operation as

described in Section 1.2.2.

1.2.4 Other optimizations

1.2.4.1 Predecessor vertices

In Algorithm 2 we already highlighted that on line 18 both the vertex vj

and its parent ui are appended to the sendarray so that each computing

node can build the predecessors array. This solution causes communication

overhead since two vertices are exchanged for each new vertex visited.

In this section we present a solution to exchange predecessors only after

the graph traversal terminates, thus reducing communication costs during

the search by (almost) a factor of two. This enhancement requires modifying

the algorithm in two different places: within each BFS iteration and at the

end of BFS. More in detail:

1. within each BFS iteration:

a) when a process sends a vertex vr, it stores the predecessor u locally

in the visited mask array

b) when a process receives vertex vr from process Pid, if vertex vr has

not been visited yet (pred[vr] == −1), then the identifier of the

sending process is stored into the pred array (pred[vr] = Pid);

where pred is the predecessors array. Note that the process identifier Pid

is stored because, later on, each process needs to recover predecessors

information asking to the process which first sent vr.

2. in the end of BFS, each process:
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a) sends the list of its own vertices for which predecessor’s data are

needed: this is done by looking into pred array where information

on process identifier is stored;

b) receives vertices for which it is asked to provide predecessor’s

data: for each vertex, its predecessor is retrieved by using the

visited mask array, those predecessors are then sent back to re-

quester processes;

c) each requester receives the predecessors and updates pred array;

To reduce communication latency, vertices destined to a single remote

process are aggregated locally, and are sent in one MPI send operation.

1.2.4.2 Exchange vertices by using 32-bits identifiers

According to Graph500 specs ”an implementation may use any set of N

distinct integers to number the vertices, but at least 48 bits must be allocated

per vertex number”. Therefore although vertices are identified by using 64

bits integers, only up to 48 bits are used. In a distributed memory system,

each process holds a portion of the full graph structure. We recall that we

use the 1-D partitioning described in Section 1.2.1:

if #P is the number of processes involved and they are numbered from 0

to #P−1, then ui ∈ Pk if ui mod #P == k. This partitioning scheme allows

to introduce a local representation or local index of the vertex = u÷#P . In

summary:

a) a vertex is identified by the 64-bits integer value u (called global rep-

resentation or global index);

b) Pk = (u mod #P ) is the process identifier that owns u;

c) loc(u) = (u÷#P ) is the vertex local index.

With, at least, 16 processes the vertex local index will never exceed 32-

bits. So, the local representation can be used for sending vertices among
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processes. This halves the amount of transmitted data. When required, it is

simple to calculate back the vertex global representation.

Vertices are transmitted both during each BFS iteration and in the end

of BFS. This optimization is applied in both cases. In detail, during each

BFS iteration

1. when next level vertices are discovered, we determine both their owner

processes (in order to send remote vertices to the owner processes), and

their 32-bits local values;

2. 32-bits representations are then used to send/receive vertices;

3. when vertices are received, they are already in local representation and

no specific action is required.

In the end of BFS, vertices are exchanged by using the same logic. How-

ever, before updating the pred array, it is necessary to recover the global

64-bits representation.

1.2.5 Performance analysis

Weak scaling experiments results shown in Figures 1.5 and 1.6 were obtained

on R-MAT graphs with edge factor (EF) 16 and scale from 21 (for 1 GPU)

up to 31 (for 1024 GPUs); results are in GTEPS (109 Traversed Edges Per

Second).

The results indicated as “Mask K20X Aries” were obtained on the “Piz-

Daint” Cray XC30 of the Centro Svizzero di Calcolo Scientifico (CSCS),

equipped with NVIDIA K20x GPUs interconnected by a Cray custom high

performance network (Aries routing and communications ASIC with Drag-

onfly network topology).

The results indicated as “Mask K20X Gemini” were obtained on the

“Todi” Cray XK7 of the Centro Svizzero di Calcolo Scientifico (CSCS),

equipped with NVIDIA K20x GPUs connected by the previous generation

Cray network (Gemini).
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Figure 1.5. Performance of the enhanced BFS solution. We report the harmonic
mean of the TEPS over 64 runs.

The results indicated as “Mask K20 Infiniband” were obtained on a clus-

ter of the University of Southern California with 264 nodes equipped with

two NVIDIA K20 GPUs while nodes are connected by FDR Infiniband.

The results labeled as “Mask Tesla PLX” were obtained on the same

system where we ran the first BFS solution based on “Sort-Unique” (results

already presented in Section 1.2.2.1) and are reported here for comparison.

It is apparent how the combination of our enhancements, new GPUs and

interconnection technology provides a dramatic advantage with respect to the

original “Sort-Unique” based implementation. On 64 GPUs the performance

increase by a factor 4 although we did not use any specific new feature of

the Kepler GPUs. Comparing the “Sort-Unique” series with the “Mask Tesla

PLX” series we can notice the performance improvement gained only with the

our enhancements (the hardware platform is the same) whereas the difference
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Figure 1.6. Performance of the enhanced BFS solution. We report the harmonic
mean of the TEPS over 64 runs.

between the “Mask K20 Infiniband” and the “Mask Tesla PLX” is due to the

different technology (Kepler vs. Fermi and FDR vs. QDR Infiniband) since

the implementation is the same. The main difference between “Mask K20X

Gemini” and “Mask K20X Daint” is the interconnection network. This result

shows clearly the impact of a better communication technology.

1.2.5.1 Real Graph

We also applied our BFS algorithm to some real-world graphs obtained from

the Stanford Large Network Dataset Collection [36]. Among them we selected

undirected graphs with the highest number of edges and nodes and Twitter

graph [37].

Results shown in Table 1.1 were obtained on the CSCS “Piz-Daint” sys-

tem: the first column reports the name of the data set; the second and third

columns are the scale and edge factor. Last two columns report the result
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obtained in terms of GTEPS and how many iterations are required to explore

the whole graph.

Data Set Name Scale EF GPUs GTEPS Levels

com-LiveJournal ∼ 22 ∼ 9 2 0.43 14
soc-LiveJournal1 ∼ 22 ∼ 14 2 0.47 13

com-Orkut ∼ 22 ∼ 38 4 1.43 8
com-Friendster ∼ 25 ∼ 27 64 5.55 24
Twitter-2010 ∼ 25 ∼ 35 64 5.83 16

Table 1.1. Results of BFS solution on real graphs.

Our solution provides good performance even on the com-Friendster data

set where we achieve 5.5 GTEPS on 64 GPUs, although 24 iterations are

required (while R-MAT generated graphs require 6-8 iterations). This con-

firms that GPUs can be a valid platform for the analysis of large-scale graphs

having practical relevance.

1.3 ST-Connectivity problem

ST-Connectivity (ST-CON) is the problem of deciding whether there is a

path between vertices s and t in a graph. Undirected ST-CON is the version

of ST-CON where the graph is undirected and it is known as U-STCON.

The BFS solution discussed in Section 1.2 can be clearly used to solve

the U-STCON problem: we can determine if there is a path from vertex s to

t by starting a BFS from s and terminating it when t is visited or the entire

graph is visited. Moreover the path found is a shortest path.

A different strategy would be to run two BFS concurrently, starting from

both vertices s and t and expanding their frontiers. The algorithm ends when

the same vertex is in both frontiers. Vertices on both frontiers represent the

ST-CON Matching Set (ST-CON MS).

Using the BFS algorithm in this way to solve the ST-CON problem poses

the following main issues:
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• in a BFS there is a single frontier, whereas in ST-CON there are two

frontiers: one of the vertices from s and another of the vertices from t.

This doubling increases the memory requirements;

• in a BFS, a vertex can be either unvisited or visited, whereas in ST-

CON, a vertex can be unvisited, visited from s, visited from t, or visited

from both s and t (in which case, a matching vertex is found and the

problem is solved);

• in a BFS, a vertex can have at most one predecessor, whereas in ST-

CON, vertices within the matching set have two predecessors, one from

the s path and another from the t path.

1.3.1 Solution to ST-CON on Multi-GPU

In order to cope with two frontiers, when building the NLFS, vertices coming

from s are colored RED whereas those coming from t are colored BLUE. The

coloring can be done by using a color mask to set the second Most Significant

Bit (MSB)b of the vertex to 1 for BLUE vertices and 0 for RED ones.

To keep track of vertices visited from s and t, we use RED and BLUE

colors both in the predecessor array pred and in the visited mask array. A

matching vertex can be found either when NLFS is expanded locally or when

the remote vertices are received. They are found locally if the new vertex has

been already visited from a parent with a different color; they are found

remotely, if the vertex received has been already visited from a parent with

a different color. In either cases, a matching vertex is found and we store it

and its two predecessors.

bWe use the second MSB because the first MSB is already used to mark a vertex as
visited.
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Algorithm 3 Parallel ST-CON with atomic operations

Input: graph G(V,E), s, t
Output: matching node v, its parents u and w, path s to t
Data: CQ and NQ; pred
Macro: GetColor(u) get the color of u, SetColor(c, u) set the color c to u

1: CQ,NQ← ∅
2: pred[vj ] = −1,∀ vj ∈ V
3: enqueue(CQ,SetColor(Red, s), SetColor(Blue, t)
4: pred[s] = s; pred[t] = t
5: while CQ 6= ∅ do
6: for all ui in CQ in parallel do
7: for all vj neighbor of ui (in parallel) do
8: —–critical section—–
9: if pred[vj ] == −1 then

10: pred[vj ] = ui
11: MyColor = GetColor(ui)
12: enqueue(NQ,SetColor(MyColor, vj))
13: else if GetColor(pred[vj ])! = GetColor(ui) then
14: return vj , ui, wi
15: end if
16: end —–critical section—–
17: end for
18: end for
19: end while

In Algorithm 3 we present the pseudo-code for the ST-CON. For the sake

of simplicity, the description is based on the original Level-synchronous BFS

(Algorithm 1), although the actual implementation uses the enhancements

discussed in Section 1.2

At the beginning of the algorithm, both s and t are enqueued in the same

queue, the first colored RED and the second BLUE, and their predecessors

are set (lines 3-4). The frontier is then expanded and each new vertex, for

which the predecessor is not set (line 9), is enqueued with the color of its

parent (lines 11-12). If a vertex has already been visited from another color,

then the algorithm ends, returning the matching vertex along with its parents

(lines 13-14).

The whole section between lines 8-16 is critical for concurrency. A straight-

forward way to maintain the coherence is based on the usage of atomic oper-

ations. More precisely, it can be implemented through the use of a compare

and swap operation that resolves the race condition among threads accessing

the predecessor array (we refer to this implementation as atomic-stcon). For

the simple BFS, this race condition is benign because the predecessors are
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idempotent.

Algorithm 4 Parallel ST-CON without atomic operations

Input: graph G(V,E), s, t
Output: Matching Node Set (MNS), each path from s to t
Data: CQ and NQ; preds, predt
Macro: GetColor(u) get the color of u, SetColor(c, u) set the color c to u, UnSetColor(u)
return u discolored

1: CQ,NQ,MNS ← ∅
2: preds[vj ] = predt[vj ] = −1, ∀ vj ∈ V
3: enqueue(CQ,SetColor(Red, s), SetColor(Blue, t))
4: preds[s] = s predt[t] = t
5: while CQ 6= ∅ & MNS == ∅ do
6: for all ui in CQ in parallel do
7: for all vj neighbor of ui (in parallel) do
8: if GetColor(ui) == RED then
9: if preds[vj ] == −1 then

10: preds[vj ] = UnSetColor(ui)
11: enqueue(NQ,SetColor(Red, vj))
12: end if
13: else if GetColor(ui) == BLUE then
14: if predt[vj ] == −1 then
15: predt[vj ] = UnSetColor(ui)
16: enqueue(NQ,SetColor(Blue, vj))
17: end if
18: end if
19: end for
20: end for
21: for all vi ∈ V in parallel do . Find matching node
22: if preds[vi] 6= −1 & preds[vi] == predt[vi] then
23: enqueue(MNS, vi)
24: end if
25: end for
26: CQ← NQ
27: NQ← ∅
28: end while

The need to control access to the critical section can be avoided by re-

moving the race condition. To that purpose, it is necessary to use distinct

memory locations to store the predecessors and visited vertices for the two

subset of vertices with additional usage of the GPU memory. We refer to

this implementation as no-atomic-stcon (see Algorithm 4).

More in detail, to keep track of vertices visited from s and t, we use dif-

ferent arrays. Predecessors and visited vertices from s are stored in preds

and masks, respectively, whereas predecessors and visited vertices from t are

stored in predt and maskt, respectively. Filtering already-seen vertices de-

pends on the vertex color (lines 8-17) and thus the critical section is removed.
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At the end of each BFS level (lines 21-25), we compare preds and predt

to determine whether a matching vertex has been found. In this way, we also

calculate all vertices in the matching set and all paths between s and t.

1.3.2 How to evaluate ST-CON performance

Most of recent work uses the TEPS metric to evaluate and compare BFS

performance. Papers dealing with different graph algorithms such as Be-

tweenness Centrality or All-Pairs Shortest-Path still use the running time

[24,38–40].

There is, at least, one major drawback to using the TEPS metric to

evaluate the performance of a solution to the ST-Connectivity problem and,

more generally, for other graph algorithms (as far as we know TEPS has

been used only for BFS). The problem is that it counts all the edges in the

connected component that includes the starting vertex (root) in addition to

those actually traversed by the algorithm. By doing this the TEPS metric

does not account for the actual work done.

We argue that for ST-CON, a simple but effective metric can be repre-

sented by the mean value of the number of s-t paths (NSTPS) found in one

second, averaged over a suitable set of extracted pairs:

< NSTPS >NE=
1

< s-t time >NE

where NE is the Number of Extracted pairs. The number NE and set

of s-t pairs must be selected carefully.

For the special case of R-MAT graphs, it turns out that it is possible

to choose at random a relatively small set compared to the total number of

nodes in the graph (NE << N). This is a consequence of two properties

of a R-MAT graphs: the power law distribution and small diameter. Such

properties give rise to a sharp distribution of the shortest path lengths. For

example, we computed the mean and variance of the shortest path lengths

found by extracting 100, 1000 and 10000 s-t pairs for different instances of an
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R-MAT graph (mean and variance were computed only for connected pairs).

The results are shown in Table 1.2.

R-MAT GRAPHS
S=25, NP=16, d=8 S=27, NP=64, d=9 S=29, NP=256, d=9

NE Mean Variance NE Mean Variance NE Mean Variance
9989 1.9994 0.0280 9946 2.110 0.1006 9983 2.022 0.0311
999 2.002 0.0240 995 2.110 0.1024 999 2.024 0.037
100 2.01 0.01 100 2.090 0.0827 100 2.01 0.01

Table 1.2. Mean and variance of the length of shortest paths for three different
instances of an R-MAT graph with different values of SCALE S. NP is the number
of GPUs and d the diameter of the graph. For each instance, NE is the number
of extracted vertices.

REAL GRAPHS
Live-journal1 S=22, EF 14, d=15 com-Orkut S=22, EF 38, d=8
NE Mean Variance NE Mean Variance

9988 3.027 0.298 10000 2.361 0.240
1000 3.021 0.302 1000 2.365 0.244
100 2.84 0.297 100 2.25 0.209

Table 1.3. As in Table 1.2, we report the mean and variance of the length of the
shortest paths for two real graphs.

It is apparent that the mean and variance are reasonably stable with

respect to the number of extractions. By invoking the Law of Large Numbers,

we can state that 1000 pairs are a representative set of the whole graph. We

can repeat the same argument for the real graphs that we analyzed. In those

cases, the variance is higher and thus we decided to increase the number of

pairs to 10000 (although 1000 would suffice, see Table 1.3).

1.3.3 Performance analysis

We report performance evaluation for both atomic-stcon and no-atomic-stcon

solutions for the ST-Connectivity problem on a Multi-GPU.
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Figure 1.7. Weak scaling plot of the number of ST-CON problems solved within
a second (NSTPS) for the two implementations described in the text: atomic-
stcon and no-atomic-stcon. For comparison, we also show the performance of the
naive (single BFS) implementation. The SCALE of the R-MAT graph ranges from
21− 27 for 1− 64 GPUs, respectively, with EF equal to 16.

Data Set Name V naive V atomic V no-atomic SCALE EF MV-lvl
R-MAT 31.59% <1% 1.94% 22 16 1.98

RANDOM 81.77% <1% 1.24% 22 16 2.76
soc-LiveJournal1 68.27% < 1% 6.05% ∼ 22 ∼ 14 3.0

com-Orkut 74.52% <1% 9.75% ∼ 22 ∼ 38 2.36

Table 1.4. Columns 2, 3, and 4 show, for different graphs, the percentage of
vertices in the graph visited by the naive, atomic, and no-atomic implementations,
respectively. Columns 4 and 5 specify the size of each graph in terms of SCALE
and EF (for real datasets, SCALE and EF are approximated from the number of
vertices and edges). Column 6 shows at which BFS level (MV-lvl) the matching
vertex is found. The level is computed as the average with respect to 10000 random
instances of the ST-CON problem for the same graph.

Figure 1.7 shows the performance, in NSTPS, of our implementations. For
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Weak scaling plot of NSTPS (Atomic)

Figure 1.8. Weak scaling plot of NSTPS using the atomic-stcon implementation
for three different values of EF. The SCALE of the R-MAT graph ranges from
19− 26 for 1− 128 GPUs, respectively.

comparison, the performance of a naive implementation is also plotted. The

naive implementation simply starts a BFS from s and stops if t is reached. As

expected, both the atomic-stcon and no-atomic-stcon outperform the naive

implementation (Figure 1.7). The weak scaling plot is consistent with our

basic intuition: the ST-Connectivity problem is harder when the scale of

the graph is larger. Searching a path within a larger component using a BFS

algorithm requires the traversal of more edges. This is also apparent in Figure

1.8, where by varying the EF parameter, we change the number of edges given

a number of vertices. The code performs better when there are fewer edges

to be traversed (the plot refers to the atomic-stcon implementation, but we

obtained the same behavior for the no-atomic-stcon implementation).

It is apparent that the atomic-stcon implementation performs better than

the no-atomic-stcon. This is mainly because the atomic-stcon implementa-
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Strong scaling plot of NSTPS (Atomic)

Figure 1.9. Strong scaling plot of NSTPS using the atomic-stcon implementation.

1

tion visits a very small fraction of the vertices in the graph, as shown in

Table 1.4. Moreover, atomic primitives have been significantly improved in

the latest Nvidia GPU “Kepler” ( [30]).

A strong scaling plot of the atomic-stcon implementation is shown in Fig-

ure 1.9. We gain some benefits only by using a small number of computing

nodes. This is because there is not enough work to be done in parallel, as

becomes apparent by looking at Table 1.4. For the graphs under investiga-

tion, the matching vertex (MV-lvl) is found after, at most, three levels. At

that level, hub vertices are usually enqueued but not yet visited [19, 28]. As

a consequence, only a small fraction of vertices are actually visited (columns

“V naive”, “V atomic”, and “V no-atomic”). This under-utilizes the CUDA

threads and, in turn, explains the lack of scalability.

Our implementation can also output the path (or the set of paths) be-

tween s and t. This part has been implemented in a straightforward way by
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collecting all the predecessors on one computing node and then traversing

the whole set backward from the matching vertex and its predecessors. We

did not include the time needed for that task in the reported NSTPS.

One of the first papers to deal with a parallel implementation for the

ST-Connectivity problem is [26]. The authors exploited the idea of starting

two BFS concurrently from both s and t. The proposed solution relied on

atomic operations and achieved a performance of 0.3s to solve an ST-CON

problem on a scale-free graph with 134 million vertices and 805 million edges

(EF ∼ 6) on a Cray MTA-2. On a problem of comparable size, an R-MAT

graph with 134 million vertices and 4 billion edges (EF=16), our atomic-

stcon implementation running on 64 GPUs is about 25 times faster (it takes

0.012s).

Figure 1.10. Time breakdown for no-atomic-stcon and atomic-stcon on 16 GPUs.
The scale of the R-MAT graph is equal to 25, and EF is equal to 16.

Figure 1.10 shows a time breakdown of the main computational and com-

munication components of the two implementations for a R-MAT graph,

while in Figure 1.11, we compare the overall computation and communica-

tion time for three different graphs. Data were collected, using 16 GPUs
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Figure 1.11. Computation and communication time breakdown for no-atomic-
stcon and atomic-stcon for three graphs. The scale of the R-MAT and RANDOM
graphs is equal to 25, and EF is equal to 16. The scale of the com-Orkut graph is
approximately 22, and EF is approximately 38.

to solve 2000 s-t pairs for an R-MAT graph and a RANDOM graph with

SCALE equal to 25 and EF equal to 16, and using only 4 GPUs for the

com-Orkut real dataset, since it is smaller than the synthetic graphs. Each

timing is averaged over the 2000 runs and over the number of GPUs.

We first discuss the computational parts: expand frontier, prepare arrays,

enqueue local, enqueue remote, and check match. The expansion of the fron-

tier, where the NLFS is built starting from the Current Queue, is the most

time consuming part. The atomic-stcon implementation performs better be-

cause it stops exactly when the first matching vertex is found. Thus, on

average, only a subset of the vertices in the frontier are actually visited. The

prepare array part, which organizes data for communications, is more expen-

sive in the no-atomic-stcon implementation, because of the redundancy of

the data structure used. However, at this point of the BFS, there are fewer
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elements to be processed, because of the filtering in the previous step, and

thus the time required by prepare array is only a small fraction of the time

required by expand frontier. Once again, as the number of visited vertices is,

on average, smaller in the atomic-stcon implementation, it is less expensive

to use atomic primitives to build the queue. The check matching is present

only in no-atomic-stcon, where the check for a matching node is performed

right before starting a new iteration, whereas in atomic-stcon, this check is

performed in both expand frontier and enqueue remote.

MPI communications can be further divided into collective and point-to-

point primitives. The first group includes the MPIallgather and MPIallreduce,

operations. Collective MPI operations require a significant amount of time

because they are implicit synchronization points, that is, all processes wait

for the slowest computing node. In the first BFS levels, computation may be

unbalanced among computing nodes because queues contain relatively few

elements not uniformly distributed among them. This unbalance occurs both

in the ST-Connectivity and BFS algorithms, but the former terminates after

very few levels (see Table 1.4), and therefore the unbalance is more evident.

1.4 Discussion

In this chapter we discussed the Breadth First Search algorithm and how it

can be used to solve the ST-Connectivity problem. We have seen the Multi-

GPU BFS solution described in [7] and we found how it can be enhanced. In

particular we described the following main improvements:

1. a modified CSR data structure that, along with a mask array, allows

to keep track of both local and remote vertices already visited, the use

of this array greatly reduces the computation and the communication

during the BFS;

2. a new communication pattern among computing nodes that allows to

send predecessors only once at the end of the BFS;
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3. exchanging 32-bits vertices instead of 64-bits, halving communication

message size.

Our experiments show that the ratio between the time spent in computa-

tion and the time spent in communication reduces by increasing the number

of tasks. When the graph size increases we use more GPUs and the number

of messages exchanged among tasks increases accordingly. To maintain a

good scalability by using, say, thousands GPUs we need to further improve

the communication mechanism that remains, in the present implementation,

quite simple. To that purpose, many studies propose a 2-D partitioning of

the graph to reduce the number of computing nodes involved in communica-

tion [41].

After the Breadth First Search, we discussed the ST-Connectivity prob-

lem, in particular we presented two solutions to ST-CON. Both are based on

concurrent BFS operations running on multiple GPUs. On a single GPU,

we can solve, in one second, about 340 ST-CON problems on a graph hav-

ing about 2 million vertices and 32 million edges using an implementation

that resorts to atomic operations for the control of critical sections where

data structures, shared by the concurrent BFS, need to be accessed. The

efficiency of the atomic primitives available using “Kepler” NVIDIA GPUs is

crucial from this viewpoint. Some tests we carried out on previous generation

(“Fermi”) GPUs show that atomic operations may have a dramatic impact

on performance when running on multiple GPUs, up to the point that, on

the Fermi architecture, the other solution we implemented, based on a du-

plication of some critical data structures, may provide better performance.

In this situation, our choice of a Relabeled-CSR for the data structure limits

the amount of additional memory required. In general, if the structure of the

graph is such that ST-CON is solved within the first few (say three) levels

of the BFS, the efficiency of a GPU implementation remains quite limited,

because only few threads are in use on each GPU.



Chapter 2

Betweenness Centrality

One of the main goals of network analysis is finding out the most “relevant”

nodes in a network according to a centrality measure. In general, central-

ity measures play an important role in several graph applications including

transportation [42], wireless sensor networks [43], beyond the aforementioned

social and biological networks [10, 44]. Regarding social networks, the cen-

trality of a node (often representing an entity or an individual) states a degree

of influence within a social domain. Several measures have been proposed in

literature in order to assess the influence of a node in a network [45,46].

In particular, one of the most popular metrics is the Betweenness Central-

ity (BC) [10]. The betweenness centrality of a node is based on the number of

all-pairs shortest paths passing through that node. Despite of the simplicity

of the definition, the computation of BC scores of all the nodes in a network is

expensive. The fastest known algorithm for calculating BC scores has O(nm)

time-complexity for unweighted graphs [14]. Serial implementation of Bran-

des’ algorithm takes too long for graphs like Twitter with 41.7 million user

profiles and 1.47 billion social relations [37]. Several authors [47,48] proposed

alternative algorithms based on the parallelization of Brandes’ algorithm for

the exact computation of BC score. However, in those solutions the size of

the graph is limited by the space complexity of Brandes’ algorithm.

Since BC computation on unweighted graphs employs BFS, parallel and
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distributed BC implementations present similar issues. On the other hand,

fast BFS implementations do not guarantee a fast BC computation due to

Brandes’ algorithm time-complexity.

Hereafter, we present two complementary solutions for the computation,

on distributed-memory parallel systems, of Betweenness Centrality for un-

weighted graphs. We propose a fully distributed solution based on a two-

dimensional (2-D) decomposition of the sparse adjacency matrix of the graph

on Multi-GPU systems. To the best of our knowledge, this is the first fully

distributed Betweenness Centrality implementation over a GPU cluster, since

in previous implementations the graph was replicated on each GPU. Addi-

tionally, we also support graph replication over multiple GPUs, in other

words we split the GPU cluster in sub-clusters of one or more GPUs, which

work on the same graph, so that each sub-cluster can process a disjoint subset

of all vertices independently.

Since computation of BC score can be really expensive, we apply graph

topology manipulations to reduce time and space complexity of BC com-

putation. In particular, our solution is enhanced by a distributed graph

preprocessing task based on 1-degree reduction technique [49, 50]. We also

provide an analysis of the impact of 1-degree reduction. Other contributions

are:

• we describe an efficient algorithm for betweenness centrality computa-

tion that in most cases outperforms previous single GPU implemen-

tations by exploiting a threads-data mapping technique already intro-

duced in [7, 18] based on prefix-sum operations;

• we introduce two optimizations: pipelining of network communication

with GPU-CPU data transfer, and reuse of data computation results

that reduces computation time to the price of an increase in memory

utilization;

• we extend 1-degree reduction to any vertex of a graph and not only to

the largest connected component, providing a distributed implementa-
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tion.

The rest of this chapter is organized as follows: in Section 2.1 and Section

2.1.2, we introduce a description of Brandes’s algorithm and the state-of-the-

art as well; our main contributions are described in-depth in Section 2.2. In

Section 2.3, we provide comprehensive experimental results to validate our

study. Finally, in Section 2.3 we discuss our results.

2.1 Background and related work

2.1.1 Betweenness Centrality in a nutshell

The first formal definition of the betweenness centrality metric was originally

introduced in [10] (see also [2] for further details).

Let σs,t be the number of shortest paths between vertices s, t whereas

σs,t(v) represents the number of those shortest paths that pass through v

with s, t, v ∈ V . We define the pair-dependency on v of a pair s, t, the ratio

δst(v) = σs,t(v)

σs,t
. The betweenness centrality of a vertex v is defined as the

sum of the pair-dependencies of all pairs on v,

BC(v) =
∑
s 6=t6=v

δst(v) (2.1.1)

Before Brandes’ work, a simple algorithm computed the BC score by solving

the all-pairs-shortest-path problem and then by paths counting. This solution

requires O(n3) time by using FloydWarshall algorithm and Θ(n2) space of

pair-dependencies. In order to remove the explicit summation of all pair-

dependencies and thus exploiting the natural sparsity of real-world graphs,

Brandes introduced the dependency of a vertex v with respect to a given

source vertex s:

δs(v) =
∑

w:v∈pred(w)

σsv
σsw
· (1 + δs(w)) (2.1.2)
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The 2.1.1 can be redefined as sum of dependencies:

BC(v) =
∑

w:v∈pred(w)

σsv
σsw
· (1 + δs(w)) (2.1.3)

Algorithm 5 Brandes’ algorithm
Input: graph G(V,E) . G is unweighted graph
Output: betweenness centrality values BC[v], v ∈ V
Data: Q, S, σ, δ, pred, d

1: BC[v]← 0
2: for s ∈ V do
3: S ← empty stack . Stack of visited vertices
4: pred[v]← NULL ∀v ∈ V
5: σ[v]← 0,∀v ∈ V, σ[s] = 1
6: d[v]← −1, ∀v ∈ V, d[s] = 0 . d array of distances from s
7: Q← ∅
8: enqueue s→ Q
9: while Q 6= ∅ do . Path counting via BFS
10: dequeue v ← Q
11: push v → S
12: for all w neighbor of v do
13: if d[w] < 0 then
14: enqueue w → Q
15: d[w]← d[v] + 1
16: end if
17: if d[w] = d[v] + 1 then
18: σ[w]← σ[w] + σ[v]
19: append v → pred[w]
20: end if
21: end for
22: end while
23: δ[v]← 0, ∀v ∈ V . Dependency
24: while S 6= ∅ do
25: pop v ← S
26: for v ∈ pred[w] do
27: δ[v]← δ[v] +

σ[v]
σ[w]

× (1 + δ[w])

28: end for
29: if w 6= s then . Update BC
30: BC[w]← BC[w] + δ[w]
31: end if
32: end while
33: end for

This makes it possible to determine the BC score by solving Single-Source-

Shortest-Paths (SSSP) problem for each vertex in the graph. Brandes’ algo-

rithm, shown in Algorithm 5, computes BC scores in O(nm) on unweighted

graphs [14] and consists in:

1. computing the single source-shortest-path σ from a single root vertex
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s (lines 9− 22);

2. summing all dependencies δ from s (lines 24-28) and update BC score

(line 30);

3. repeating steps 1. and 2. for each vertex in G.

Sometimes, in the rest of this chapter we refer to the first part as “forward

step” since it starts from a single root vertex s and traverses the whole graph,

while the second part is also called “backward step” since it starts from the

leaves and traverses back the graph till the root.

2.1.2 Related Work

Several authors have tackled the problem of speeding up the exact compu-

tation of betweenness centrality. A quite common strategy consists in the

parallelization of Brandes’ algorithm. This approach requires a fast and

memory-efficient traversal algorithm for unweighted graphs. As mentioned

above, BC computation on GPU suffers from both the irregular access pat-

tern and the workload unbalance due to traversal steps of the graph (counting

of shortest paths and dependency accumulation).

Jia et al. [51] evaluated two types of thread-data mapping: vertex-parallel

and edge-parallel. Briefly, the former approach assigns a thread to each vertex

during graph traversal. The number of edges traversed per thread depends

on the out-degree of the vertex assigned to each thread. The difference in

the out-degree among vertices causes a load imbalance among threads. In

particular, since the out-degree distribution of typical scale-free networks

(like the social networks) follows a power law [52], the load imbalance is

the main reason of poor performance obtained with that approach on GPU

systems.

The edge-parallel approach solves that problem by assigning edges to

threads during the frontier expansion. However, this assignment of threads

can also result in a waste of work because the edges that do not originate
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from vertices in the current frontier do not need to be inspected. The edge-

parallel approach is not well-suited for graphs with low average degree as well

as dense graphs [51]. Shi and Zhang presented GPU-FAN [53] and reported

a significant speed-up (11%-19%) with respect to Jia et al. by avoiding data

structure duplication and using a different distribution of threads to units

of work on graphs with a number of vertices in the range 10000-50000. The

vertex-based parallelism is affected by workload unbalance whereas the edge-

based parallelism uses more memory and more atomic operations [39,51].

In [48] and [39, 54] the authors proposed different strategies in order to

exploit the advantages of both methods. In detail, Mclaughlin and Bader

discussed two hybrid methods for the selection of the parallelization strategy.

Their sampling method performs 2.71 times faster, on average, with respect

to the edge-parallel approach by Jia et al.

Saryüce et al., in [39, 54] introduced the vertex virtualization technique

based on a relabeling of the data structure (e.g. CSR, Compressed Sparse

Row). The technique replaces a high-degree vertex v with nv = dadj(v)e/∆
virtual vertices having at most ∆ neighbors. In other words, the neighbors

of high-degree vertices are divided (according to the input parameter ∆)

in several groups and each of them is assigned to a virtual vertex. Vertex

virtualization technique is not very effective for graphs with low average

degree. Moreover, it requires a careful tuning of its parameters. The authors

also proposed a coarse-grained approach in which a single GPU executes

multiple BFSs at the same time with an increase of the memory requirements.

The strategy employed in [55] is based on [18] and [56]. In [18], the

workload due to a single vertex is mapped, depending on the number of its

outgoing edges, to a thread, a warp or a cooperative thread array (CTO).

Davidson et al. [56] introduced two strategies aimed at improving the

workload balance: the first one splits the frontier into chunks, then the neigh-

bor lists of the vertices in one chunk are assigned to one block of threads,

therefore all neighbors of a vertex are processed by the same block; the sec-

ond one splits the edge lists into chunks and assigns each chunk to one block
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of threads, therefore edges originated from the same vertex may be processed

by different blocks. In both cases the size of chunks is fixed.

Mastrostefano et. al. showed that prefix-sum and binary search operation

can be used to define a data-thread mapping that makes possible to achieve

a perfect load balancing among threads [7]. We described such approach

earlier in Section 1.2.2.

Madduri et al. [47] introduced a technique of checking successors instead

of predecessors in the dependency accumulation step. In this way, the de-

pendency accumulation procedure can start from one depth level closer to

the root vertex of the BFS tree. Moreover this technique does not require

atomic operations during dependencies update. Each predecessor can update

its own dependency based on its successors without the need for resolving race

conditions. Unfortunately, in an edge-parallel implementation the successor

approach still requires atomic operations because multiple threads could be

assigned to the same predecessor [48].

In [57], Green and Bader proposed a solution which reduces the memory

requirements of local data structures from O(m) to O(n) by discarding pre-

decessors array. In the dependency accumulation step, instead of traversing

the predecessors, all of the neighbors of a given vertex are traversed.

To speed-up computation of betweenness centrality a totally different

approach consists in approximating the values of BC by using extrapolation

and sampling methods [58–61]; our work is focused exclusively on exact BC

computation while vertex sampling and total time extrapolation is used in

some experiments (Section 2.3).

As sketched before, betweenness computations can be parallelized in two

ways: coarse- and fine-grained. The coarse-grained parallelism on distributed

memory is implemented by duplicating the entire graph, and additional data

structures, on each computational node where the computation is carried

out for a subset of the vertices. Since each root vertex can be processed

independently, this approach requires only one Reduce operation in order to

update the final BC scores.
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For graphs that have a single connected component, the amount of work

to perform will be balanced among computational nodes. In this case, a

nearly perfect scaling can be expected [48]. However, this approach does not

work in case of large scale graphs which cannot be stored in the memory of

a single processing unit.

On the contrary, in the fine-grained approach all processing units are

involved concurrently on the same computation starting from a single root

vertex. On distributed systems, this requires a partitioning of the graph and

data structures among the computational nodes. The inter-processor commu-

nication phase during shortest path counting and dependency accumulation

steps is, in general, the main performance bottleneck.

In [62] was proposed a space efficient distributed algorithm where vertices

are randomly partitioned; although such decomposition achieves a good load-

balance, it can dramatically reduce data locality increasing the communica-

tion costs. On unweighted R-MAT graphs [35], the authors showed a linear

scalability up to 8 nodes. Gunrock library also provided an implementation

of Brandes’ algorithm on an “one-node” Multi-GPU [63]. The authors also

evaluated several partitioning strategies. Their best BC implementation is

2.5 times faster than Single-GPU implemented in [55] by exploiting 6 GPUs.

2.1.3 2-Dimensional Decomposition

A careful decomposition of the graph is instrumental in order to increase per-

formance and achieve satisfactory scalability on parallel graph algorithms. In

Section 1.2.1 we describe the 1-D partitioning adopted for the BFS Multi-

GPU implementation, nevertheless on graph traversal algorithms this tech-

nique suffers for poor scalability since it requires all-to-all communications

among the P computing nodes [4, 6, 8]

In [4,6,29], authors proposed different strategies to reduce the communi-

cation cost. Hereafter we recall the 2-D partitioning strategy introduced by

Yoo et al. in [4] where the computing nodes are arranged as a logical grid

with R rows and C columns and mapped onto the adjacency matrix AN×N
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(partitioning it into blocks of edges). The processor grid is mapped once

horizontally and C times vertically thus dividing the columns in C blocks

and the rows in RC blocks, as shown in Figure 2.1.
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Figure 2.1. Two-dimensional partitioning of an adjacency matrix A with an R×C
processor grid. The matrix is divided into C consecutive groups of R×C blocks of
edges along the vertical direction. Each block is a N/(RC) ×N/C sub-matrix of
A. Different groups of blocks are colored with different yellow gradients. For each
block, the column of processors owning the corresponding vertices (row indexes)
are shown in blue. On the left part, it is shown the sequence of blocks, from top
to bottom, assigned to the generic processor (pi, pj). The colors correspond to the
blocks assigned to the processor in each group of blocks.

Processor Pij handles all the edges in the blocks (mR + i, j), with m =

0, ..., C − 1. Vertices are divided into RC blocks and processor Pij handles

the block jR + i. Considering the edge lists represented along the columns

of the adjacency matrix, this partitioning can be summarized as follows:

(i) the edge lists of the vertices handled by each processor are partitioned

among the processors in the same grid column;

(ii) for each edge, the processor in charge of the destination vertex is in the

same grid row of the edge owner.
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The 2-D partitioning is well-suited for graph traversal algorithms like the

BFS; in [41], authors describe an optimized implementation of BFS on GPUs

using 2-D decomposition. In details, 2-D BFS requires two communication

phases, called expand and fold. The first one involves the processors in the

same grid column whereas the second those in the same grid row. Algorithm

6 shows a pseudo code for a parallel BFS with 2-D partitioning.

Algorithm 6 Parallel BFS with 2-D partitioning

Input: graph G(V,E), starting vertex s, processor Pij
Output: array of predecessors pred

1: d[v]← −1,∀v ∈ V . Distance vector from root vertex
2: Q← ∅
3: lvl← 0 . BFS level or depth
4: pred← −1, ∀v ∈ V
5: bmap← 0,∀v ∈ V . Bitmap array
6: if s ∈ Pij then
7: d[s]← 0
8: pred[s]← s
9: bmap[s]← 1

10: enqueue s→ Q
11: end if
12: while true do
13: lvl← lvl+ 1
14: gather Q from column j . Expand vertical communication
15: Qr ← expandFrt (lvl, bmap,Q, d, pred) . Expand frontier
16: exchange Qr for row i . Fold horizontal communication
17: append updateFrt (lvl, bmap,Qr, d, pred)→ Q . Update frontier
18: if Q = ∅ for all processors then
19: break
20: end if
21: end while

At the beginning of each step, each processor has its own subset of the

frontier set of vertices (initially only the root vertex). The search entails the

scanning of the edge lists of all the frontier vertices so, due to property (i),

each processor gathers the frontier sets of vertices from the other processors

in the same processor-column (expand vertical communication, line 14). In

the expandFrt procedure, new vertices wi are discovered by inspecting all

outgoing edges (v, wi) of current frontier Q.

The unvisited vertices are marked visited using the bmap array, while

predecessors array pred and distance array d are updated with the predeces-

sor vertex and the current level lvl respectively. At the end, new discovered
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vertices wi are enqueued on a processor based queue Qr in order to be sent

to their owner processor.

Due to property (ii) this exchange only involves processors in the same

processor-row (fold horizontal communication, line 16). In the updateFrt

procedure, each received vertex w that has not been visited yet, is marked as

visited and its predecessor and distance are updated. Finally, it is enqueued

on the frontier Q for the next level expansion.

The graph traversal ends when the frontiers for all processors are empty,

meaning that the whole connected component of the root vertex has been

visited.

The main advantage of the 2-D partitioning is to reduce the number of

communications. For a given number of processors p, 1-D modulo-based

partitioning requires O(p) data transfers at each step whereas the 2-D par-

titioning only requires 2×O(
√
p) communications.

It is worth noting that in Algorithm 6 a bitmap is used to keep track of

visited vertices in order to reduce memory footprint as described in [29].

2.1.4 Compressing Networks

An exhaustive evaluation of betweenness centrality requires solving the SSSP

problem starting from each vertex. For large-scale graphs with millions of

vertices, finding all SSSPs is unfeasible. Nevertheless, in some cases the be-

tweenness centrality of defined sub-structures of the graph, or vertices with

specific properties can be analytically computed with no need of resorting to

Brandes’ algorithm [49,50,64]. For example, vertices with exactly one neigh-

bor (degree-1 vertices) have BC score 0, since they are endpoint and cannot

be crossed by any shortest path. As a matter of fact, a careful handling of

degree-1 vertices improves overall performance of Brandes’ algorithm

• by skipping the execution of Brandes’ algorithm rooted from degree-1

vertices;

• by reducing the number of vertices to explore.
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It is enough clear that the performance improvement depends on graph

characteristics, indeed the more degree-1 vertices are in the graph, the greater

will be the improvement (see for example Table 2.1). Since degree-1 vertices

“influence” the betweenness value of their neighbor, they cannot be just

removed from the graph, but it is necessary to calculate their contribution

to the BC values of other vertices.

Formally, let G = (V,E) be an undirected and unweighted graph with

N = |V | vertices and M = |E| unordered pairs, let (u, v) ∈ E : deg(u).

Since all the shortest paths terminating into a degree-1 vertex have to go

through its neighbor, the contribution δsv(w) could be not necessarily equal

to 0. From the algorithm point of view, 1-degree reduction extends Brandes’

algorithm by adding a preprocessing procedure and by employing a different

formulation for dependencies computation.

In detail, the preprocessing step computes ∀(u, v) ∈ E : deg(u) = 1:

ω(v) = ω(v) + 1

BC(v) = BC(v) + 2 · (N − ω(v)− 2)
(2.1.4)

where ω(v) represents the contribution of u to v and initially is set to

0. When a degree-1 vertex u is detected, the value ω(v) of its neighbor v

is incremented, and u is removed from the graph. When u is removed from

the graph, the value BC(v) needs to be updated in order to consider the

contribution of paths starting from all other vertices connected to v and

terminating in u (to be precise, in the formula 2.1.4, N does not correspond

to the number of vertices in the graph, but to the number of vertices in the

connected component of v).

After the preprocessing step, Brandes’ algorithm is executed over the

residual graph G′(V ′, E ′) obtained by 1-degree removal. Concerning depen-

dency accumulation, 2.1.2 and 2.1.3 can be re-defined as follows:
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δs(v) =
∑

w:v∈pred(w)

σsv
σsw

(1 + δs(w) + ω(w))

BC(v) =
∑

w:v∈pred(w)

δs(w) · (ω(s) + 1)
(2.1.5)

After applying a first time the 1-degree preprocessing, in the residual

graph G′(V ′, E ′) there may appear new degree-1 vertices due to the removal

process, therefore the preprocessing may be called iteratively until no addi-

tional vertex can be removed (tree vertices removal).

The 1-degree reduction algorithm described in [65] only enables skipping

the execution of Brandes’ algorithm rooted from degree-1 vertices, augment-

ing the BC contributions for degree-1 vertices during the accumulation stage

from its neighbor vertex: it does not remove the vertex from the graph,

therefore degree-1 vertices are still explored. In [49,50] is presented an algo-

rithm for 1-degree reduction that, by means of a preprocessing step, removes

degree-1 vertices from the graph reducing the number of vertices to explore.

Finally in [39,54] authors provided a GPU implementation of 1-degree reduc-

tion on the biggest connected component of the graph. If G is not connected,

the preprocessing step can be repeated for each connected component sepa-

rately [49].

Graph Scale EF 1-degree(%)
R-MAT 16 4 15.15
R-MAT 16 16 13.12
R-MAT 16 32 10.09
R-MAT 18 4 14.53
R-MAT 18 16 13.50
R-MAT 18 32 11.70

soc-LiveJournal1 [36] ∼ 22 ∼ 14 21.39

Table 2.1. Percent of degree-1 vertices on different graphs
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2.2 Betweenness Centrality Computation on

GPUs

Our Multi-GPU Betweenness Centrality implementation (MGBC) is based

on Brandes algorithm introduced in Section 2.1.1. Exactly as Brandes’ algo-

rithm, MGBC is composed by three main steps: (1)shortest paths counting,

(2)dependency accumulation and (3)update of BC scores.

The implementation reuses some techniques adopted for the Multi-GPU

BFS implementation described in Chapter 1, since shortest path counting

on unweighted graphs can be performed by using a BFS, whereas for the

dependency accumulation, the BFS tree is explored in reverse order from the

leaves up to the root. Furthermore we use the 2-D partitioning strategy as

described in 2.1.3.

2.2.1 Shortest Path Counting

Algorithm 7 describes our shortest path counting implementation on Multi-

GPU.

In lines 8-13 root vertex is enqueued and variables are initialized, after

that the BFS loop starts; at the beginning of each step, each processor has

its own subset of the frontier, due to 2-D partitioning, processors on the same

column exchange frontier vertices (vertical communication), so all processors

on the same column share the same frontier. Note that in Brandes’ algorithm,

σ (the shortest path counting) depends on the shortest path counting of

its predecessors (see line 18 in Brandes Algorithm), therefore σ values are

exchanged together with vertices (line 16).

Comparing the Algorithm 7 with Brandes’ Algorithm 5, we can notice

that predecessor array has been removed, this is because we use the tech-

nique known as neighbor traversal approach [57]: we keep track of all visited

vertices using one single array Q to store and accumulate the BFS frontiers,

and use Qoff to save the offset index at which each frontier starts per BFS
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Algorithm 7 Shortest Path Counting on Multi-GPU
Input: graph G(V,E), starting vertex s, processor Pij

1: BC[v]← 0, ∀v ∈ V
2: σ[v]← 0, ∀v ∈ V
3: d[v]← −1, ∀v ∈ V
4: Q← empty queue
5: lvl← 0 . BFS level or depth
6: nq ← 1
7: Qoff [0]← 0
8: if s belongs to Pij then
9: σ[s]← 1
10: bmap[s]← 1
11: d[s] = 0
12: enqueue s→ Q
13: end if
14: while true do
15: lvl← lvl+ 1
16: gather Q and σ from column j . Vertical communication
17: Qoff [lvl]← Qoff [lvl− 1] + nq
18: nq ← 0
19: Qr ← expandFrt (lvl, bmap,Q,Qoff , d, σ) . Expand frontier
20: exchange Qr and σ for row i . Horizontal communication
21: append Qj → Q
22: append updateFrt (lvl, bmap,Q,Qoff, d, σ)→ Q . Update frontier
23: nq ← number of vertices added to Q
24: if nq = 0 for all processors then
25: break
26: end if
27: end while

level. In the dependency accumulation part, instead of traversing the prede-

cessors, all the neighbors of a vertex are analyzed but only those discovered

in a previous level are considered.

Predecessor array removal brings another benefit for the Multi-GPU im-

plementation since it is not necessary to exchange predecessors information

at each level.

The expandFrt procedure implements frontier expansion, where all fron-

tier’s neighbors are traversed, mark as visited and σ values are updated

accordingly; after that, newly discovered vertices are sent to their owner

processes (horizontal communication) together with partial σ values. Notice

that in this case σ values are partial since they correspond to the number

of shortest paths counted on that processor, the final value is aggregated on

the processor which owns the vertex.

Finally, the updateFrt procedure is used to update both current frontier
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Algorithm 8 expandFrt
1: for all v ∈ CQ in parallel do . CQ is the current frontier
2: for all neighbor w of v in parallel do
3: if bmap[w] = 0 then
4: bmap[w]← 1
5: d[w]← lvl
6: r ← row of w’s owner
7: atomically enqueue w → Qr
8: end if
9: if d[w] = lvl then
10: atomically σ[w]← σ[w] + σ[v]
11: end if
12: end for
13: end for

and σ values: for all received vertices, those not visited yet are marked and

σ is updated according to the Brandes algorithm. If no more vertices have

been enqueued (line 24) for all processors, the loop ends.

The expandFrt function is described in Algorithm 8: for each vertex in

the frontier, all neighbors are visited by employing the data-thread mapping

technique described in 1.2.2 that uses as many CUDA threads as the number

of neighbors, with the main difference that σ[w] values need to be calculated

as well.

Starting from the vertices in the current frontier CQ, all their neighbors

are traversed and those not visited yet are marked, σ is updated according to

the Brandes algorithm. In this step, in addition to the above mentioned data-

thread mapping technique, we use the bitmask solution described in [41].

Note that in line 7 we use different queues to append newly discovered

vertices, one for each processor in a row.

Figure 2.2 provides an example of the data-thread mapping technique

described in 1.2.2 together with the BFS frontiers accumulation.

2.2.2 Dependency Accumulation

Algorithm 9 describes our dependency accumulation on Multi-GPU. After

the shortest path counting stage, processors on the same column share the

same accumulated frontier and corresponding offsets per BFS level respec-
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Figure 2.2. Example of data-thread mapping and BFS frontiers accumulation
technique

tively in Q[] and Qoff []. The accumulated frontier is used for the neighbor

traversal approach, furthermore we adopt also the checking successor tech-

nique developed by Madduri [47], which consists in checking successors rather

than the predecessors of each vertex.

Algorithm 9 Dependency Accumulation on Multi-GPU
1: exchange d and σ for row i . Horizontal communication
2: δ[v]← 0, ∀v ∈ V
3: depth← lvl− 1
4: while depth > 0 do
5: accumulateDep (depth,Q,Qoff , d, σ, δ) . Accumulate dependencies
6: all reduce δ among column j . Vertical communication
7: updateDep (lvl, Q,Qoff, d, σ) . Update dependencies
8: exchange δ among row i . Horizontal communication
9: depth← depth− 1
10: end while

Since leaves of the BFS tree do not have successors, we start our algorithm

one level closer to the root and since the root does not contribute to its BC

value, we stop the calculation at level 1. Note that on line 1 in Algorithm 9,
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both vertices depth d and sigma σ are exchanged among computing nodes in

the same row before starting the iteration steps.

According to Brandes algorithm, the dependency δ[w] is calculated from

the shortest path count σ[v] and dependency value δ[v] of all its predecessors.

With 2-D decomposition, each processor has to accumulate the contribution

to δ[w] from those predecessors v for which the processor holds the edge

(v, w): this first accumulation step is performed in the function accumulat-

eDep on line 5.

After that, the dependency contributions are exchanged and summed

up through the All Reduce MPI communication procedure involving the

processors on the same column (vertical communication line 6) since the pro-

cessors of the same column hold all the edges of w. This allows each processor

to calculate the final dependency for those vertices w it owns, multiplying

the accumulated dependency value by σ[w] (function updateDep).

Finally δ[w] values are exchanged among processors on the same row (hor-

izontal communication line 8) since they are required for the next iteration.

The kernel function accumulateDep is described in the pseudo-code

10: first we select the vertices in the accumulated frontier Q based on the

depth (line 1), then we check if their neighbors are successors, in which case

we update the accumulated dependency δ[w]. The data-thread mapping

technique employed in the expandFrt procedure is used here as well, so we

start one CUDA thread per neighbor.

Algorithm 10 AccumulateDep
1: CQ← Q[Qoff [depth]]...Q[Qoff [depth− 1]]
2: for all w ∈ CQ in parallel do
3: for all neighbor v of w in parallel do
4: if d[v] = d[w] + 1 then

5: atomically δ[w]← 1+δ[v]
σ[v]

6: end if
7: end for
8: end for
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2.2.3 1-Degree Reduction

Algorithm 11 1-Degree Preprocessing
Input: G(V,E) . G is undirected
Output: ω[v], G′(V ′, E′)

1: R← empty List
2: E′ ← empty List
3: if u mod #P == Pi : (u, v) ∈ E then . Pi is processor ith

4: assign (u,v) to Ei
5: end if
6: sorting Ei by u
7: for (u, v) ∈ Ei do
8: if 6 ∃(w, z) ∈ Ei : u == w then . (w,z) the successor or predecessor in E
9: append (v, u)→ R
10: ω[v] = ω[v] + 1
11: else
12: append (u, v)→ E′

13: end if
14: end for
15: if v mod #P == Pi : (v, u) ∈ R then
16: assign (v,u) to Ri
17: end if
18: sorting Ri by v
19: for (w, z) ∈ Ei do
20: if 6 ∃(v, u) ∈ Ri : v == w then
21: append (u, v)→ R
22: else
23: append (w, z)→ E′

24: end if
25: end for

In this Section, we discuss our algorithm for the removal of degree-1

vertices. Unlike previous approaches, we provide a distributed preprocessing

algorithm described by pseudo-code in Algorithm 11.

For the sake of simplicity we do not remove tree vertices from the graph

by calling repeatedly the preprocessing. Moreover, the algorithm is imple-

mented only on CPU because it is executed only one time prior the full BC

calculation, it operates directly on edge lists data structures which are not

shared on GPU, and finally computing time is already so short compared to

the overall process that it is not worth provide a GPU implementation.

Since 1-degree reduction increases the sparsity of the adjacency matrix, a

compaction of data structures is required. Alternatively, we can perform the

preprocessing before CSR building procedures in order to have more dense

data structures directly.
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One-degree reduction requires to identify vertices with degree one and this

task is easier to accomplish if each vertex, along with all its edges, is stored on

the same processor. This can be easily performed with 1-D partitioning using

modulo operator (see Section 1.2.1). More in detail, edges are distributed

among processors according to the naive rule: (u, v) ∈ Pi if the remainder

of the integer division u/#P (where #P is the number of processors) is

equal to i. After that, they are sorted by antecedent vertex u and processed

sequentially: if a degree-1 vertex u is discovered, ω[v] is incremented and

the edge (u, v) is added to the list R. Otherwise, all the edges from u are

appended to the new edge list E ′ of the residual graph.

In a undirected graph, for each edge (u, v) a symmetric edge (v, u) exists,

so if (u, v) is removed due to 1-degree processing, the symmetric edge has to

be removed as well; with 1-D partitioning the edge (v, u) needs to be sent to

the processor owning v for its removal. This task is illustrated in lines 15-24:

when the edge (u, v) is removed, its symmetric edge (v, u) is inserted into

the removed edges list R, then edges in R are distributed according to 1-D

partitioning so that each processor can remove them from E ′. At the end

of the procedure, the residual graph G′(V ′, E ′) is built. After preprocessing,

the BC score is computed over G′ only.

Unlike [39], our 1-degree preprocessing does not use the transpose of the

adjacency matrix, reducing in this way the memory requirements.

In order to support graphs with multiple connected components, the con-

tribution of degree-1 vertices to BC values cannot be computed during pre-

processing: observing the formula BC(v) = BC(v) + 2 · (N − ω(v)− 2), we

already highlighted that N corresponds to the number of vertices in the same

connected component of v including degree-1 vertices. It is apparent that N

is equal to |V | if G is composed by just one connected component.

For any vertex s, we can compute Ns, the number of vertices of its con-

nected component, during shortest path counting. When a new vertex v is

discovered during graph traversal from root vertex s, Ns is updated as fol-

lows: Ns = Ns +ω[v]. Computing Ns is required whenever ω[s] 6= 0, in other
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words, only if vertex s is connected to a degree-1 vertex.

There are two alternatives for the computation of Ns: a) using atomic

operations during shortest path counting; b)using a parallel reduction of the

distances array before betweenness score update. In the latter case, the pro-

cedure should not consider the contribution of unvisited vertices. Concerning

the performance, solution(a) is well-suited for a serial algorithm. On parallel

systems the best solution depends on the cost of atomic operations.

2.2.4 Optimizations

Besides the algorithms described in previous sections, we describe also three

different optimizations for both distributed and shared-memory systems.

On shared-memory systems the data-thread mapping described in Section

1.2.2 is used to balance workload among multiple CUDA threads during

graph traversal: a thread is assigned to each neighbor of the vertices in

the current frontier CQ this technique requires to build an array deg with

the degrees of the vertices in CQ and execute a prefix-sum operation to

calculate the offsets CD used to map the neighbor vertex to its parent. In

the BC algorithm, given a root vertex, graph traversal occurs twice: during

the shortest path counting and the dependency accumulation. Effectively,

we can observe that the latter is carried out along the BFS tree built in the

previous forward step.

Since the data-thread mapping requires the building of the offset array

CD from the vertices in the frontier and since the frontiers used during the

forward shortest path counting and the backward dependency accumulation

are the same, storing and accumulating the offset array CD in the same way

the frontier Q is stored and accumulated during the shortest path counting,

reduces computation time during dependency accumulation because the off-

set array is already available. By exploiting the symmetry between forward

and backward step, binary search results can be reused as well. Obviously,

this time-saving has an extra memory cost that is, at most, O(n).

The second optimization consists in combining fine- and coarse-grained
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approaches.

16 Processors

1 cluster in a 4x4 Mesh

16 Processors

4 sub-cluster in a 2x2 Mesh

Figure 2.3. Sub clustering

A set of processors is split into sub-clusters. Each sub-cluster, in turn,

is organized as a bi-dimensional grid of processors (see for example Figure

2.3). Processing nodes in the same sub-cluster work at the fine-grained level:

the graph is distributed among the nodes according to a 2-D partitioning,

and partial BC values are calculated starting from a subset of vertices. Inde-

pendent sub-clusters work at the coarse-grained level: the whole graph and

additional data structures are replicated in each sub-cluster. In the end a

reduce operation updates the final BC scores. We implement this solution

by creating a hierarchy among processes managed by different MPI commu-

nicators. Although the amount of work in each sub-cluster can be different

when processing graphs with multiple connected components, with the sub-

clusters solution it is possible to take advantage of both fine-grained and

coarse-grained approach. A comprehensive analysis concerning multi-sub-

cluster solution is also provided in Section 2.3.4.

Finally, the proposed distributed algorithm pipelines MPI communication

and CPU-GPU data transfer. Although Nvidia provides several techniques to
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reduce communication overhead such as GPUDirect RDMA [66], we adopt a

simple pipelining pattern between two consecutive communications, whereby

the cost of the communication through the PCI bus can be partially hidden.

In particular, right after the shortest path counting stage, both the distance

vector d and sigmas σ values are exchanged among processors in the same

grid row. Since the computation is totally delegated to GPU, usually two

consecutive independent communications comply with the following pattern:

1. synchronous-copy of σ from GPU to CPU;

2. exchange of σ among processors in the same grid row;

3. synchronous-copy of σ from CPU to GPU.

4. synchronous-copy of d from GPU to CPU;

5. exchange of d among processors in the same grid row;

6. synchronous-copy of d from CPU to GPU.

Figure 2.4. Pipelining GPU - CPU data transfer with MPI communication.

In this naive pattern, data transfer procedure ends after six synchronous

steps. However, by exploiting CUDA Asynchronous Copy and CUDA Streams,
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the two communications can be completed in four synchronous steps (see Fig-

ure 1reffig:overlap):

1. asynchronous-copy of σ from GPU to CPU; asynchronous-copy of d

from GPU to CPU;

2. exchange σ among processors in the same grid row;

3. asynchronous-copy of σ from CPU to GPU; exchange d among proces-

sors in the same grid row;

4. asynchronous-copy of d from CPU to GPU.

In general, MPI communication dominates host-device communication. As

a consequence, the benefit due to this pipelining is only partial.

2.3 Experimental Results

We start by comparing our Multi-GPU Betweenness Centrality (MGBC)

solution with other implementations on a single GPU, since most of them

do not offer full support for a distributed Multi-GPU configuration. Actu-

ally, the Gunrock library provides a Multi-GPU implementation but only for

GPUs connected to the same node. Other implementations, like [48], support

only the coarse-grained parallelism where each GPU works independently on

the same graph. All those solutions can not be used for very large graphs,

like Friendster or Twitter, which are too large to fit in the memory of a

single system. Our Multi-GPU solutions are then analyzed looking at their

weak and strong scalability, showing how communication and computation

change depending on the graph under study. Finally we consider the effect

of degree-1 removal and we measure the speed-up it offers with respect to

our heuristic-free implementation.
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2.3.1 Evaluation Platforms

Numerical experiments have been carried out on two different systems: Piz

Daint at Centro Svizzero di Calcolo Scientifico (CSCS) and on Drake, a server

equipped with two K80s GPU available at National Research Council of Italy.

Details of the two configurations are listed in Table 2.2. The code has been

built with the GNU C compiler version 4.8.2, CUDA C compiler version 6.5

and Cray MPICH version 7.2.2 on Piz Daint and OpenMPI 1.8.4 on Drake.

We employ the exclusive scan implemented in the Thrust Library [67]. The

code uses 32-bit data structures except for graph generation. When possible,

we report the time (in seconds) for total BC computation. However, for very

large graphs we measure the time only for a representative subset of source

vertices and then extrapolate the expected time for the whole graph (source

vertices are selected randomly among not isolated vertices).

Piz Daint Drake

System Cray XC30 −
Nodes 5272 1

Network Topology Aries Drangonfly −
Processor Xeon E5-2670 Xeon E5-2640v3

Cores 8 32
Clock (GHz) 2.60 2.60

Memory (GB) 32 128

GPU Nvidia K20x Nvidia K80
CUDA Cores 2688 2496
Clock (MHz) 732 875
Memory (GB) 6 DDR5 12 DDR5

Table 2.2. Hardware platforms.
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2.3.2 Data Sets

We measured the performance for both R-MAT [35] and real-world graphs.

R-MAT is a recursive graph generator that creates networks with high vari-

ance of degree distributions and low graph diameter. We generate R-MAT

graphs using parameters a, b, c, and d equal to 0.57, 0.19, 0.19, 0.05 respec-

tively [35]. The number of vertices of a R-MAT graph is defined by a scale

factor and it is equal to 2scale. The edge factor parameter (EF) is used to

set the number of edges that is equal to 2scale × EF. For the generation of

R-MAT graphs, we employ the routines available in the reference code for

the Graph500 benchmarka. In Table 2.3, we provide the dataset used for the

experiments.

Graph |V| |E| SCALE EF d 1-degree

com-amazon 334863 925872 18.35 2.76 44 4.68
RoadNet-CA 1965206 2766607 20.91 1.41 849 16.27
RoadNet-PA 1088092 1541898 20.05 1.41 786 17.13

com-LiveJournal 3997962 34681189 21.93 8.67 17 19.2
com-Orkut 3072441 117185083 21.55 38.14 9 2.21
Friendster 65608366 1806067135 25.97 27.53 32 1.2

Twitter-2010 41652230 1468365182 25.3 35.25 − 4.5

Table 2.3. Dataset of real-world graphs. |V | and |E| represent the number of
vertices and edges, respectively; d is the diameter of the graph; last column is the
percentage of degree-1 vertices.

Regarding real-world graphs, we selected instances with different proper-

ties from the SNAP collection [36] while Twitter graph from [37]. We use

only undirected graphs for all of our experiments except for Twitter.

Exact BC calculation requires execution of BC search starting from all

vertices in the graph, this may require a long time; for this reason, whenever

possible, we selected a subset of vertices and extrapolated linearly the time

for all the graph. Different strategies for vertex selection can be used [58,59],

awww.graph500.org
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we choose the most straightforward strategy that is uniformly at random

selection. More in detail:

• when comparing with other implementations on single GPU (Section

2.3.3), we selected the first 10000 vertices of the biggest connected

component, because those solutions do not support random selection;

• for sub-clustering (Section 2.3.4.3) and 1-degree reduction (Section

2.3.4.2) experiments, the BC algorithm was executed for all vertices,

otherwise it would be difficult to evaluate their benefits;

• for all other experiments, vertices were selected randomly among those

with positive degree, moreover, when comparing results for the same

graph, the random seed used is the same.

2.3.3 Single-GPU

The Single-GPU implementation is obtained from our distributed algorithm

by removing network and host-device communications. We compare our

solution on single GPU (without any heuristic and optimization) to those

proposed in Mclaughlin and Bader [48], Saryüce et al. [39] and Gunrock [55].

In Table 2.4, we report the mean time (seconds) for each implementation.

For this first group of experiments, since other solutions do not allow to select

vertices randomly, the mean time is computed over the first 10000 vertices

of the biggest connected component.

Graph Type Mclaughlin
Saryüce
mode-2

Saryüce
mode-4

Gunrock MGBC

RoadNet-CA Road Network 0.067 0.371 0.184 (0.023) 0.298 0.085
RoadNet-PA Road Network 0.035 0.210 0.114 (0.013) 0.212 0.071
com-Amazon Social Network 0.008 0.009 0.006 (0.007) − 0.005

com-LiveJournal Social Network 0.210 0.143 0.084 (0.120) − 0.100
com-Orkut Social Network 0.552 0.358 0.256 (0.269) − 0.314

Table 2.4. Comparison with other implementations on real-world graphs. On
Gunrock some executions do not terminate.
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Concerning Saryüce’s implementations, we evaluated two of their data-

mapping strategies. The first one, called mode-2 employs edge-based GPU

parallelism, instead the second one, mode-4, uses virtual-vertex based with

strode access [39]. Concerning mode-4, we also report in parentheses the vir-

tualization time. Experiments show that the hybrid approach of Mclaughlin

performs better with respect to others on graphs with a very small edge

factor like road networks. On the other hand, the vertex-virtualization tech-

nique achieves very good performance on more dense graphs. However, such

approach requires an a priori tuning of the virtual-vertex parameter. Al-

though the design is focused on distributed systems, our BC implementation

generally achieves very satisfactory performance without any specific tuning

compared to other implementations.

Figure 2.5. Weak scaling plot for R-MAT with SCALE from 20 to 26 and EF 4,
16, 32.
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2.3.4 Multi-GPU and Sub-Clustering

We study the scalability of the Multi-GPU implementation, looking at both

the weak and the strong scaling. For scaling experiments we did not exploit

the 1-degree reduction heuristic and we performed 10000 BC computations

selecting randomly the start vertices among those with positive degree; while

for Sub-clustering and 1-degree experiments we calculate full BC (i.e. running

the algorithm for all vertices in the graph).

Figure 2.6. R-MAT graphs SCALE 22 on 4 GPUs.

2.3.4.1 Scaling

Weak scaling experiments show how MGBC behaves as the problem size

increases. Figure 2.5 illustrates the capability to calculate betweenness cen-

trality for graphs that a single GPU can not handle due to memory and/or

time constraints.

Even if the amount of data remains the same for each computing node,

the time to compute BC is not constant for R-MAT graphs with different

EFs and SCALE that increases linearly from 20 up to 26. As a matter of

fact, both computation and communication time increase.
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Figure 2.7. R-MAT graphs SCALE 26 on 64 GPUs.

MGBC unveils better scalability for EF 4: unlike the BFS algorithm

where only one successor is considered, with BC all shortest paths need

to be considered and counted, therefore, when there are more neighbors,

more time is required to count shortest paths and to accumulate dependency

contributions.

Moreover, by comparing the time spent for computation and communi-

cation for the R-MAT graphs with equal scale but different edge factors (see

figures 2.6 and 2.7) we notice that while the communication time remains

almost the same between EF 4 and 32, computation time is more than twice

higher for EF 32.

By means of strong scaling experiments, we evaluate performance on

fixed-size graphs while increasing computational resources. Figure 2.8 shows

the strong scalability for R-MAT graphs at SCALE 24 and two different

partitioning: a 1-D partitioning with only one processors column and a 2-D

partitioning.

For the 1-D partitioning, scaling stops between 16 and 32 nodes, whereas

the 2-D partitioning continues to scale till 64 nodes. The reason is that with

a 1-D partitioning, the MPI overhead, due to the all-to-all communication

pattern increases more quickly with respect to the 2-D partitioning. When
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Figure 2.8. Strong scaling for R-MAT graphs with SCALE 24 and EF 16 using
1-D and 2-D partitioning

.

moving from 1 to 2 nodes, there is ∼ 40% improvement in spite of the

communication overhead introduced.

Figure 2.9 shows the strong scaling for a R-MAT graph (SCALE 22, EF

16) and for Orkut (SCALE 21.5, EF 38). Notice that the total time required

to compute the exact BC score of Orkut exploiting 64 GPUs is about 37

hours. Finally, in Figure 2.10, the strong scaling for Friendster and Twitter

graphs are also evaluated. Notice that the minimum number of GPUs needed

to store the graph is 16.

2.3.4.2 1-Degree

Finally, in this section we summarize the performance of the 1-degree re-

duction heuristic. Experiments in this section have been executed running

the BC algorithm for all vertices (full BC), otherwise it would be difficult to
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Figure 2.9. Strong scaling for a R-MAT graph with SCALE 22 and EF 16 and
Orkut graph.

determine the improvement over the algorithm without 1-degree.

First of all, we evaluated the strong scalability of the pre-processing step

on the Piz Daint system. Figure 2.11 illustrates the strong scaling of the

Algorithm 11 applied to a R-MAT graph with SCALE 22 and EF 16. The

algorithm exhibits a near-linear speedup, so that the communication does

not represent a bottleneck during preprocessing step.

To figure out the impact of the preprocessing and the 1-degree reduction

on exact BC computation, we computed the BC scores of all vertices for R-

MAT graphs with SCALE 20 and different EFs exploiting 2x2 grid of GPUs

and for some real graphs on single GPU. More in detail, Table 2.5 for R-MAT

graphs and Table 2.6 for real graphs show the total time, mean timeb, and

bThe mean time is computed by dividing the total time for the number of BC searches
executed which is less than the total number of vertices.
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Figure 2.10. Strong scaling for Friendster and Twitter graphs.

the 1-degree preprocessing time (in parenthesis the time obtained without

1-degree reduction).

On a R-MAT graph with EF 16, the impact of the preprocessing with

respect to the total time is less than 0.02% vs. a speed-up of 1.4 compared

to the execution without 1-degree. A greater improvement is achieved when

the edge factor decreases and consequently there are more degree-1 vertices.

Indeed the speed-up of the 1-degree reduction strongly depends on graph

characteristics, for instance com-Youtube graph has 53% of degree-1 vertices

and the speed-up grows up to 2.9.

While it is not possible to compare our 1-degree reduction results with

those in [65] since we are using different platforms, from a detailed analysis

we observed that for the RMAT graph with Scale 20 EF 16 the BFS depth

decreases by 1 for 99% of the vertices and, if we simply skip execution of BC

algorithm rooted from degree-1 vertices, the total time is 10% longer than
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Figure 2.11. Preprocessing: strong scaling for R-MAT graphs with SCALE 22
and EF 16.

fully removing degree-1 vertices.

Graph EF 1-degree Total time(hour) Mean time(sec) Preprocessing(sec) Speed-up
R-MAT 4 13% 1.06(1.86) 0.012(0.014) 0.312 1.7
R-MAT 16 13% 3.01(4.28) 0.021(0.023) 1.283 1.4
R-MAT 32 12% 5.38(7.29) 0.030(0.035) 2.449 1.4

Table 2.5. Impact on BC due to 1-degree reduction on RMAT graphs, running
the full BC on 4 GPUs in a 2x2 mesh (in parenthesis time obtained without 1-
degree reduction).

2.3.4.3 Sub-Clustering

While a Multi-GPU implementation makes possible to handle very large

graphs, the overall time required can still be quite long. However, by com-

bining coarse- and fine-grained parallelism a substantial time reduction can
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Graph 1-degree Total time(hour) Mean time(sec) Preprocessing(sec) Speed-up
com-Youtube 53% 1.46 (4.23) 0.0098 (0.013) 0.62 2.9x
roadNet-CA 16% 40.6 (49.5) 0.089 (0.090) 0.55 1.2x
com-DBLP 14% 0.41 (0.51) 0.054 (0.058) 0.19 1.2x

Table 2.6. Impact on BC processing time due to 1-degree reduction on real
graphs, running on single GPU (in parenthesis time obtained without 1-degree
reduction).

be obtained. For these experiments we ran a full BC calculation exploiting

the 1-degree reduction heuristic.

GPUs Mesh Time (hours)

1 1x1 ≈ 258
64 2x1 ≈ 6.5
128 2x1 ≈ 3.5
256 2x1 ≈ 1.7

Table 2.7. Total time to compute Betweenness Centrality for Orkut graph with
different numbers of GPUs in a sub-cluster configuration.

Table 2.7 shows the total time required to compute BC for Orkut graph

when the number of available GPUs increases: except for 1 GPU configu-

ration, all other configurations uses a 2x1 sub-cluster processor mesh. For

example in the 64 GPUs configuration, we are using 32 sub-clusters running

concurrently. Note that by exploiting 256 GPUs the time drops to less than 2

hours. In order to achieve a perfect scaling, the sub-clustering technique re-

quires that each sub-cluster had a balanced workload. The BC scores of local

copies are accumulated for all of the GPUs on each sub-clusters. Finally, the

scores at sub-cluster level are reduced into the global BC scores by a reduce

operation. Since Orkut is composed by only one connected component, the

workload among sub-clusters is pretty well balanced.
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2.4 Discussion

In this chapter we discussed the Betweenness Centrality algorithm and we

presented a Multi-GPU solution, to our knowledge this is the first distributed

Multi-GPU implementation. This solution leverages state-of-the-art tech-

niques to reduce computation and to achieve an optimal load balancing.

Novel optimization techniques have been added to make possible reach high

performance on both single and Multi-GPU systems, exploiting both fine-

and coarse-grained parallelism, thus allowing to reduce the computation time

of a 117 million undirected edges graph to less than 2 hours.

In order to furthermore reduce computation time, we are working on a

2-degree heuristic, more in detail if we suitably store intermediate results

of graph traversal when starting from the two neighbor of a 2-degree vertex,

then it is possible to compute the BC contributions from all three vertices ex-

ecuting only two dependency accumulation steps. With this heuristic instead

of removing vertices, we reduce computation time by avoiding BC algorithm

starting from 2-degree vertices.

Finally, we expect to release our code in the public domain to offer a tool

able to compute BC on very large scale graphs.



Chapter 3

Large Data Forensic Analysis

For any large scale analysis of digital data, a first necessary step is the cre-

ation of an inverted index [68, 69] of all items present on the systems under

scrutiny. The construction of an inverted index is a burdensome operation

that can take many hours or even days depending on the size of the data

and the available resources. Some previous work [70, 71] investigated on the

benefits of using the MapReduce paradigm to build inverted indexes. First

proposed in [72], MapReduce provides a simplified model to distribute work-

load over a cluster environment. It offers parallel processing of large amount

of data by distributing work tasks over multiple processing machines. The

core idea is that the overall processing algorithm can be split into many

smaller operations, more in detail it can be divided in a map operation,

which is a simple function over each record of the dataset emitting key/-

value pairs, followed by a reduce operation, which collects the outputs of the

map operations and merges them to build the desired result. Both map and

reduce operations can be distributed over different machines.

Apache Hadoop [73] is the most popular open source implementation of

the MapReduce paradigm. Hadoop requires the Hadoop Distributed File

System (HDFS) to store input datasets, intermediate data, and final results.

HDFS provides both high availability and data distribution, indeed data

are divided in chunks, stored on local disks on each processing node and
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replicated so the task can be executed on another node holding a replica, if

a node fails.

Hadoop and MapReduce provide significant benefits in terms of data relia-

bility, simplified workload distribution and use. Moreover, Hadoop performs

well when input data to map operation are already distributed. However,

when indexing disk image files, before unleashing the full power of the frame-

work, it is required to split and distribute the data source so that multiple

map operations can run in parallel.

Hereafter we present a more cost-effective solution for analyzing large

unstructured datasets that enables the user to quickly locate keywords in files

stored in disk image files. The system allows the user to narrow down searches

according to time-stamps, documents size, types and other attributes.

We rely on High Performance Computing (HPC) techniques to index and

search huge amount of data that may include (but are not limited to) e-mails,

documents, plain text files, web pages, etc. Our approach is scalable so, if

more computing resources are available, the time needed to create the index

decreases accordingly.

As proof-of-concept we implemented a system for indexing and searching

digital forensics data that may be immediately used by an investigator. This

may represent a real breakthrough since, in many investigations, time is a

key factor.

This chapter is organized as follows: after a short review of related work

(Section 3.1), in Section 3.2 we describe the problem of text searching; in

Section 3.3 we illustrate the architecture of our solution and its software

components; in Section 3.4 we focus on how data are processed by the first

three components of our architecture which form the Extract-Parse-Index

pipeline; in Section 3.5 we describe the optimizations applied during the

indexing stage. Section 3.6 describes ISODAC, the proof-of-concept tool we

developed for digital forensics investigation purposes. Finally, in Section 3.7

we discuss the results current and future perspectives.



3.1 Background and related work 85

3.1 Background and related work

Even if the proof-of-concept tool we present is focused on the digital forensics

area, we propose a general solution for indexing and searching of heteroge-

neous textual data. Therefore, in this Section we report related work on

Apache Hadoop, in-memory computing, and results previously obtained in

digital forensics research.

3.1.1 Apache Hadoop

The Apache Hadoopa is an open source framework for distributed processing

of large datasets. Hadoop mainly consists of MapReduce and HDFS modules,

inspired by Google’s work. Furthermore, several projects are built on top of

Apache Hadoop like Flume, HBase, Hive, Mahout, Pig, Spark and others.

Hadoop performance analysis is an emerging topic. We can group work

on MapReduce performance and HDFS performance in two categories.

The first category focuses on identifying the factors that affect Hadoop

performance. Jiang et al. [74] carried out an in-depth study identifying five

factors that affect MapReduce performance: I/O mode, indexing, data pars-

ing, grouping schemes, and block-level scheduling. This study investigated

alternative methods for tuning those factors showing that the overall perfor-

mance of Hadoop can be improved by a factor between 2.5 and 3.5 for the

same benchmark used in [75]. In [76], Zaharia et al. showed that Hadoop’s

scheduler may cause a severe performance degradation in heterogeneous en-

vironments, so they designed a new scheduling algorithm, called Longest

Approximate Time to End, that is highly robust to heterogeneity. In [77],

Rao et al. studied several issues that affect Hadoop performance at different

levels (Cluster Hardware Configuration, Application logic related, System

Bottlenecks, and Resource Under-utilization) and provided some guidelines

on how to overcome these bottlenecks. In [78], Shafer et al. analyzed the per-

ahttp://hadoop.apache.org



86 Large Data Forensic Analysis

formance of HDFS and uncovered several issues: architectural bottlenecks,

portability limitations, and portability assumptions. In [79], Xue et al. pro-

posed a performance monitoring tool for Hadoop Cluster named Hadoop

Monitor. In [80], Lin et al. addressed an inefficient aspect of Hadoop-based

processing: the need to perform a full scan of the entire dataset and showed

that is possible to leverage a full-text index to optimize selection operations

on text fields within records.

The second category of studies is oriented to build performance mod-

els for analyzing and optimizing Hadoop performance. For example, Lin et

al. [81] provided an accurate performance model for Hadoop MapReduce.

They defined the complexity metrics of Standard Process and Relative Com-

putational Complexity to easily estimate the cost of Map function or Reduce

function. In [82], the relationship between file size and HDFS Write/Read

throughput, i.e., the average flow rate of a HDFS Write/Read operation,

is studied to build HDFS performance models from a systematic view. For

simplicity, that study focused on the Single-Input Single-Output situation in-

stead of the more complex Multiple-Input Multiple-Output situation typical

of real-world scenarios.

Finally, Mishne et al. [83] presented a case study in which they replaced

a Hadoop-based system because it did not meet the latency requirements

necessary to generate meaningful real-time results in Twitter. The context

of their work is related to query suggestion and spelling correction in Twitter

search (search assistance). They solved the problem implementing a new

custom in-memory processing engine. That experience shows how Hadoop

may have troubles in the low-latency processing of big data.

3.1.2 In-Memory Computing

MapReduce [72], Dryad [84], and Ciel [85] are examples of data flow mod-

els for commodity clusters that provide data sharing abstractions through

permanent storage systems. For any kind of application with low-latency

requirements, they work inefficiently due to the cost of data replication, I/O
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and serialization. To overcome those issues, several emerging cluster com-

puting frameworks resort to in-memory processing. For example, Pregel [86]

and HaLoop [87] are systems that provide high-level interfaces for iterative

graph applications and iterative MapReduce runtime respectively. In par-

ticular, HaLoop extends MapReduce leveraging two simple intuitions: first

it caches the invariant data to reduce the I/O cost for loading and shuffling

them in subsequent iterations; then it caches and indexes the local output

for each reducer.

Piccolo [88] provides a data-centric programming model for writing par-

allel in-memory applications across multiple systems. In Piccolo, users can

run parallel functions using a set of in-memory tables whose entries reside in

the memory of different nodes.

M3R (Main Memory Map Reduce) [89] is a new implementation of the

Hadoop MapReduce API targeted at on-line analytics on high mean-time-to-

failureb clusters. M3R focused on in-memory execution by storing key-value

sequences in a family of long-lived JVMs, sharing heap-state among jobs. It

does not offer resilience, so it fails if any node goes down.

S4 (Simple Scalable Streaming System) [90] is a distributed stream pro-

cessing engine inspired by the MapReduce model. It uses a decentralized and

symmetric architecture and minimizes latency using local memory on each

processing node to avoid disk I/O bottlenecks. In S4, computation is per-

formed by Processing Elements and messages are transmitted among them

in the form of data events.

Most of the cluster programming models can be expressed efficiently us-

ing Resilient Distributed Datasets (RDDs) [91, 92] which are an abstraction

for performing in-memory computations on large clusters. The RDDs ab-

straction aims at enabling efficiently two types of applications: those that

reuse intermediate results across multiple computations (i.e., iterative ma-

chine learning and graph algorithms) and interactive data mining. RDDs

bMean Time To Failure (MTTF) is the time a system is expected to last during oper-
ation.
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are fault-tolerant, parallel data structures that allow users to control both

in memory persistence of intermediate data results and data partitioning.

RDDs provide an interface based on coarse-grained transformations that ap-

ply the same operation on multiple data items. This is different from ex-

isting abstractions based on fine-grained operations because RDDs provide

efficiently fault-tolerance logging only the transformations used to derive

an RDD from other datasets (its lineage). RDDs have been implemented

in Apache Sparkc, an open source cluster computing solution that aims at

speeding up data analytics. It was initially started as a research project at

UC Berkeley in the AMPLabd.

In recent years, Spark successfully inspired other projects. In [93, 94],

Zaharia et al. proposed a new processing model, discretized streams (D-

Streams), as an extension to the Spark framework called Spark Streaming,

which allows users to seamlessly intermix streaming, batch and interactive

queries. D-Streams enables a parallel recovery mechanism that improves ef-

ficiency over traditional replication and backup schemes, and tolerates strag-

glers. Shark (Hive on Spark) [95, 96] is built on top of RDDs memory ab-

straction. It is a new data analysis system that merges query processing

together with complex analytics on large clusters, and provides fine-grained

fault recovery across both types of operations.

In [97], Gu et al. reported about exhaustive experiments to evaluate

the system performance for iterative operations between Hadoop and Spark.

They have proven experimentally that Hadoop has better performance than

Spark when there is not enough memory to store newly created intermediate

results.

Spark can run on clusters managed by Apache Mesos [98]. Mesos is a

light-weight resource sharing layer that enables fine-grained sharing across

chttps://spark.apache.org
dThe AMPLab is a five-year collaborative effort at UC Berkeley, involving students,

researchers and faculty from a wide swath of computer science and data-intensive ap-
plication domains to address the Big Data analytics problem: https://amplab.cs.
berkeley.edu/
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diverse cluster computing frameworks, providing a common interface for ac-

cessing cluster resources. It is apparent how big data processing using com-

modity clusters has attracted many interests and new cluster computing

frameworks will continue to emerge. In this context, Mesos represents a

good solution for running multiple frameworks without either partitioning

the cluster and run one framework per partition, or allocating a set of vir-

tual machines to each framework.

However, all these frameworks perform an effective in-memory data pro-

cessing for specific applications when data is already distributed, whereas we

may operate in a different context, where data are not necessarily stored in

a distributed (e.g., HDFS) environment.

3.1.3 Digital Forensics

Despite the growing size of seized data storage, high performance solutions

for forensic analysis of large datasets have received limited attention. In

[99–101] authors describe distributed digital forensic solutions but none of

them provides document parsing and full text indexing capabilities.

Commercial forensic tools such as Forensics Toolkit (FTK)e and Encase

Enterprise Editionf run on a single workstation, whereas Encase may also

run in a distributed environment primarily to support remote investigation

operations, rather than to distribute the burden of analysis.

In [102], Garfinkel describes a disk forensic tool for processing disk im-

ages by using The Sleuth Kit (TSK)g, which works on a single workstation,

whereas The Sleuth Kit Hadoop Frameworkh is a project that incorporates

TSK into a Hadoop cluster.

Some recent work [103, 104] describe tools and solutions focused on an-

alyzing forensic data stored in cloud systems, whereas we describe, in the

ehttp://www.accessdata.com
fhttps://www.guidancesoftware.com
ghttp://www.sleuthkit.org
hhttp://www.sleuthkit.org/tsk_hadoop
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present work, a solution to distribute the work required for building the

index of a large set of forensic data.

Finally, [105,106] deal with high performance tools to triage large volumes

of forensic data, but they do not provide full text indexing capabilities.

3.2 Text searching over heterogeneous unstruc-

tured documents

A traditional search engine consists of three main components: a crawler,

an indexer and a query processor. The crawler follows web links, downloads

documents for further processing; the indexer processes the documents and

builds a specific data structure that can be easily queried; the query proces-

sors receives queries from the user, process them and presents the results to

the users.

Our solution for analyzing large unstructured datasets, does not download

documents from the web, since the documents are instead stored already into

the datasets, therefore the crawler process is substituted by two tasks: the

first to extract files from the dataset and the second to parse documents into

text files.

3.2.1 File extraction

If the disk image file has been created using the Unix dd command, a simple

but effective way to extract files on Unix systems is to use a loop device,

which is a pseudo-device that makes the image file accessible as a block

device. However the solution is limited in scope since it works only for ISO

files and dd created image files.

Another option consists in using TSK library which supports multiple

disk image file formats and provides C/C++ functions to go through the

image file and output both the raw files and their metadata (e.g., creation

time, file name, path, size, . . . ). The extraction of files from a disk image
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is basically a serial procedure, since it is necessary to walk through the file

system allocation table and reconstruct each file using its disk blocks.

3.2.2 Document parsing

Extracted files need to be analyzed to determine what kind of information

they contain, in particular they could include: only textual information (e.g.,

html, plain text, . . . ), metadata information (e.g., geo-localization coordi-

nates for image files), both textual and metadata information (e.g., pdf,

Office files, . . . ), or no readable information at all (e.g., binary data files).

Before proceeding with the actual file parsing, the file format has to be de-

tected by analyzing its content in order to select the most suitable parser.

While parsing documents, it is possible to skip specific file types, e.g. exe-

cutable files, by using filters. Nevertheless the file format needs to be detected

before applying the filter.

Among many free and commercial tools and libraries able to parse docu-

ment files, we chose Apache Tikai because it supports the most wide variety

of file formats. Tika leverages specific parsers to detect file format and to

extract both metadata and textual contents from documents.

3.2.3 Document indexing

The structure most commonly used for indexing is the inverted index (also

known as inverted file or posting file). After document parsing, the extracted

text and metadata are finally used to build an inverted index.

The inverted index is composed of two elements: the vocabulary and the

occurrences. The vocabulary contains the collection of all the different words

appearing in the text. Moreover, for each word in the vocabulary a list of all

the text positions where the word appears is stored; the set of all those lists

is called occurrences (Figure 3.1 shows an example of inverted index).

ihttp://tika.apache.org
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Figure 3.1. A sample text with the corresponding inverted index. The values in
the occurrences point to the word positions in the text.

The text is analyzed through a) Tokenization, the document is split

into a sequence of individual tokens; b) Stemming, each token is reduced to

its stem; c) Stop words removal, articles, conjunctions of a given language

(e.g., and, in, the, . . . ) are removed from text; Then the vocabulary and

the occurrences file are built using both the resulting set of tokens and the

extracted metadata. Over the years many solutions, both commercial and

free, have been developed for indexing and searching documents by building

an inverted index. For instance, the Apache Lucenej library, one of the most

widespread software for information retrieval, builds an inverted index from

plain text documents.

File extraction, document parsing, and index building are executed se-

quentially in a pipeline that we call EPI pipeline (Extract-Parse-Index). To

speed-up the operations in case of a large collections of documents, a paral-

lel architecture should be employed to execute the EPI pipeline. Recently,

the general purpose MapReduce paradigm has been often used for tasks like

jhttp://lucene.apache.org
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building an inverted index and at a first glance it could be used for the EPI

tasks as well. Nevertheless, we propose a different solution which turns out

to be more efficient in building the inverted index specially from a disk image

file.

3.2.4 Query processing

When a user submits a query, the inverted index is used to provide timely

response, in particular the query processor receives the query, pre-process it,

match it against the inverted index and provides back results to the user.

The already mentioned Apache Lucene library provides functions that can

be used to build up a query processor as well.

3.3 Architecture overview

Our solution for indexing and searching heterogeneous textual data runs on

a hierarchical infrastructure (see figure 3.2) made by one Coordinator node

and multiple Worker nodes. The nodes exchange control messages by using

the ZeroMQk API. As building blocks, we use the TSK library for raw files

extraction from disk images, the Tika library for text and metadata parsing,

and the Lucene library for text indexing and searching.

3.3.1 Coordinator node

Coordinator node is responsible for managing, coordinating and monitoring

Worker nodes. It is logically divided into the following components:

• Job Scheduler: determines which Workers are available to execute the

indexing of a disk image, allocates resources and starts required com-

ponents;

khttp://zeromq.org
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Figure 3.2. Architecture Overview.

• Status Manager: periodically monitors overall system status, in partic-

ular it checks when all tasks for a job are completed.

3.3.2 Worker nodes

Worker nodes respond to Coordinator commands carrying out the actual

extraction and indexing work. Each worker node hosts one or more compo-

nents coordinated by a Worker Agent, that is an agent daemon providing the

following basic services:

• Heart-beat functionalities (for checking that the infrastructure works

properly);

• Execution of commands issued by the Coordinator to start/stop com-

ponents;

• Services for updating configurations and uploading results;
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• Monitoring of components status: for each activated component, the

Agent periodically checks whether it is working properly or not.

Each Worker node can execute one or more tasks using the following

software components:

• Image-Extractor: extracts raw data and file metadata from forensic

copies and sends them to Docu-Parsers;

• Docu-Parser: extracts plain text and document metadata from raw

data and sends them to Docu-Indexers;

• Docu-Indexer: builds one or more indexes from text and metadata;

We now present these components in detail.

3.3.3 Image-Extractor

This component reads a disk image file, extracts raw files and sends them to

Docu-Parsers. It works in fire-and-forget model: the Image-Extractor does

not check if a Docu-Parser reports an error since error recovery is managed

in the end by the Coordinator.

Image-Extractor is a process forked off by the Worker Agent. Its execu-

tion terminates after processing the whole image file. It can process all files

within a single disk image or only a subset of those files as defined by the

Coordinator.

Image-Extractor uses the TSK library to walk through the disk image

and extract both raw files and file system metadata.

lfire-and-forget (i.e., One-Way or In-Only) is a message exchange pattern for asyn-
chronous communications. If the send operation (fire) completes successfully at the client
end, it does not wait (forget) for a response from remote endpoint.
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3.3.4 Docu-Parser

This component receives files that have been extracted by an Image-Extractor,

it extracts plain text and file metadata and finally provides them to a Docu-

Indexer along with file system metadata. This is a fire-and-forget operation

as well, and the Coordinator manages error recovery in the end of the whole

process. Docu-Parser is a Java process forked off by the Worker Agent.

The tasks carried out by the Docu-Parser are:

• reading a file and its metadata;

• extracting text exploiting the Tika library;

• sending file system metadata, plain text and metadata to a Docu-

Indexer;

• logging parsing errors;

• providing error reporting to Worker Agent.

3.3.4.1 Docu-Indexer

This component receives parsed text and metadata from a Docu-Parser and

creates a Lucene index for all documents received. This is also a fire-and-

forget operation, and error recovery is managed by the Coordinator node.

Docu-Indexer is a Java process forked off by the Worker Agent.

The Docu-Indexer is in charge of:

• reading the plain-text and metadata of each file;

• processing the text and metadata for indexing exploiting the Lucene

library;

• logging processed files information and errors;

• providing error reporting to Worker Agent.
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3.3.5 Docu-Searcher

This component is responsible for querying multiple Lucene indexes, present-

ing a single set of results to the user. Queries can be built according to the

following query models:

• Disjunctive-keyword query: search for documents containing at least

one of the words provided in the query;

• Conjunctive-keyword search: search for documents containing all the

words provided in the query (the order of the words is irrelevant);

• Sentence search: search for documents containing all the words pro-

vided in the query (the order of the words is kept);

• Regular expression query: the query is interpreted as a regular expres-

sion and documents are returned if containing words that match the

query (if the query is made of multiple words, they are managed with

the same approach of the Sentence search);

• Range query: the user can query an index by providing a suitable range

of values for the specific field (e.g., file size).

The user can browse query results and she can refine the search by ap-

plying a set of filters to prune the documentsm.

3.3.6 Database system

We use a database system to store information about:

• disk images and their indexes;

• infrastructure configuration and status;

mAs an example, suppose that the query foo is submitted to an index and a set of
documents D(foo) is returned; after a quick look at the results the user may decide to be
interested only in files whose size is greater than a certain threshold.
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• extraction, parsing and indexing jobs and their status.

We chose SQLiten as solution for database management due to its simplicity.

Unlike most other SQL databases, SQLite does not have a separate server

process. SQLite reads from and writes directly to ordinary disk files.

Coordinator Node, Worker Agents and Mediator communicate with the

Database system to store and retrieve information about indexed data.

3.3.7 WebGUI and Mediator

All the components and tasks just presented can be managed by using a Web-

based user interface that is part of the proof-of-concept prototype described

in Section 3.6. This user interface can interact with all the other components

by means of the Mediator which is responsible to mediate requests from GUI

to Searcher and Coordinator. The Mediator basically provides an abstraction

layer between the framework and the other components.

3.4 Extract - Parse - Index

Image-Extractor, Docu-Parser and Docu-Indexer are the components of the

EPI (Extract-Parse-Index) pipeline that provides a complete and reliable

index of all documents stored within a disk image. They process the data

stream in a pipe mode (see figure 3.3): Image-Extractor reads sequentially a

disk image and, for each file, it extracts both file system metadata (creation

date if present, last modification date, size, path, etc.) and raw data. Raw

files and metadata are distributed round-robin among multiple Docu-Parser

running in parallel. Image-Extractor keeps track of which files are sent to

each parser. In this way, once the pipeline has been executed, it is possible

to start a recovery procedure for those files whose indexing failed for any

reason or that require special processing (e.g., OCR processing).

nhttp://www.sqlite.org
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Docu-Parser, upon receiving raw file and its metadata, uses Tika library

to extract additional metadata information and plain text, and finally it sends

the output to a Docu-Indexer. Docu-Indexer, upon receiving file’s textual

content and metadata, uses Lucene library to build an inverted index.
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Figure 3.3. EPI Pipeline Overview. Image-Extractor extracts raw data from
disk images and sends them in a round-robin fashion to each pipe.

EPI activities are managed, monitored and scheduled by the Coordinator

that, based on user requests for disk images indexing, allocates required

resources; in detail the Coordinator:

1. looks in the database for available computer nodes;

2. schedules an EPI pipeline job through the Job Scheduler;

3. updates workers configuration, starts and monitors EPI jobs.

3.4.1 EPI Pipeline Setup

The Job-Scheduler determines which resources to use to execute an EPI job.

Currently all available Worker nodes are allocated on a best effort basis.

After that, the Job-Scheduler adds a new Job to the DB and sends distinct

messages to all worker agents involved, in particular:
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• To Image-Extractor: job ID and optionally a list of fileIDs to extract,

plus basic additional information;

• To Docu-Parser: job ID, Image-Extractor address to connect to and

Docu-Indexer address to connect to;

• To Docu-Indexer: job ID.

Both Image-Extractor and Docu-Indexer accept stream connections from

Docu-Parser: when all Docu-Parsers are connected to both ends of the

pipeline, the indexing procedure starts.

3.4.2 Monitoring and Recovery

Since files are extracted from the Image-Extractor and sent over to Docu-

Parsers and Docu-Indexers, something may go wrong causing the failure of

the indexing for one or more files. In order to determine for which files the

indexing failed, we employ the strategy described below.

Since a disk image file can include more than one file system, Image-

Extractor always processes the disk image starting from the first file within

the first file system until the last file within the last file system; during this

phase, it keeps track of how many files are extracted from each file system.

Image-Extractor uses an incremental integer number, fileId to count

how many files are extracted; furthermore it stores the total number of files

extracted from each file system within the same image file. In this way it is

possible to calculate which file system contains a file, given its fileId.

Image-Extractor sends files to parsers according to a round-robin policy;

each Docu-Parser P is assigned a number k from 0 to N − 1 , where N is

the number of available parsers, furthermore is assigned a number Ok that

corresponds to the order in which files are assigned to parsers within the

round-robin loop, at the beginning Ok = k, therefore, for instance, parser

number 2 is the third parser in a round.

For each parser Pk, the Extractor maintains an incremental counter Ck to

keep track of how many files are sent; this counter is sent to Pk and represents
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the localF ileId. Given a specific value M for the localF ileId on a parser

Pk, it is possible to calculate its fileId using the following formula:

fileId = M ×N +Ok (3.4.1)

Docu-Parsers forward the localF ileId to Docu-Indexers. In this way the

latter can determine which files are missing simply tracking if there are holes

in the sequence of localF ileIds received. When a job completes, each Docu-

Indexer uploads the Pk identifier and the list of missing localF ileIds to the

Coordinator; the Extractor, in turn, for each Pk managed, uploads Ok and

Ck values. Eventually the Coordinator, using Formula 3.4.1, determines the

list of missing fileIds and schedules an additional job to retry the indexing

process only for those files.

The solution described so far assumes that the number of Docu-Parsers

does not change during job execution; unfortunately this is not always the

case because parsers may stop working. To manage this situation, the pre-

vious solution has to be improved.

Each time a Docu-Parser stops working, a new round starts saving the

current status of the EPI job (i.e., number of processed files, old parsers’

order) and updating the round-robin schema accordingly to the number of

remaining parsers.

More in detail, for each round i the Image-Extractor stores the following

information:

• current number of extracted files (sent[i]);

• the number of remaining parsers (N [i+ 1]);

• the new parsers’ order in the round-robin loop (Ok[i]);

• the total number of files sent to each parser so far (Ck[i]).

Note that:

• when Image-Extractor starts, N [0] contains the number of parsers al-

located to the Job;
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• N [i + 1] < N [i] (we assume that the number of parsers can only de-

crease);

• the parsers’ order Ok changes when a new round starts.

When a localF ileId = M is missing from parser Pk, then the fileId can

be calculated using the following formula:

Let z = arg maxi : Ck[i] < M

fileId = sent[z] + (M − Ck[z])×N [z + 1] +Ok[z + 1] (3.4.2)

3.4.3 Communication

Image-Extractor sends extracted files to Docu-Parser through a network

stream organized according to the following format:

{<File_Metadata_1>}<Raw_Binary_Data_1>

{<File_Metadata_2>}<Raw_Binary_Data_2>

... ...

{<File_Metadata_N>}<Raw_Binary_Data_N>

File Metadata – written in JSON format – corresponds to metadata ex-

tracted from the image file or added by the Image-Extractor.

Docu-Parser sends extracted text and meta data to Docu-Indexer through

a network connection by using the following format:

{<File-Start 1+ metadata >}

<TEXT 1>

{<File-End 1 + metadata }

{<File-Start 2+ metadata >}

<TEXT 2>

{<File-End 2 + metadata }

......

{<File-Start N + metadata >}

<TEXT N>

{<File-End N + metadata }
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For example:

{

"file_start": {

"tika_uuid": "b904-e2dedf60711f",

"imx_meta": {

"imx:image_uuid": "D1810254CBAF",

"imx:partition_id": "0",

"imx:filename": "000578.pdf",

"imx:pathname": "000",

"imx:size": "351558",

"imx:nlink": "1",

"imx:atime": "2010-12-28T12:00:59Z",

"imx:chtime": "2013-12-13T07:15:21Z",

"imx:crtime": "1970-01-01T00:00:00Z",

"imx:mtime": "2008-10-14T18:55:38Z",

"imx:local_id": "0",

"imx:pipe_id": "0"

}

}

}

EXTRACTED TEXT

{

"file_end": {

"tika_uuid": "b904-e2dedf60711f",

"tika_meta": {

"xmpTPg:NPages": "75",

"Creation-Date": "2008-07-10T05:35:45Z",

"meta:creation-date": "2008-07-10T05:35:45Z",

"created": "Thu Jul 10 07:35:45 CEST 2008",

"dcterms:created": "2008-07-10T05:35:45Z",

"producer": "ECMP5",

"xmp:CreatorTool": "VERSACOMP R05.2",

"Content-Type": "application\/pdf"

}

}

}

Here:
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• Extracted text is enclosed between file start and file end sec-

tions since we do not know how much time is required to extract the

text before the extraction is completed;

• Metadata information are written both with the file start and file end:

the first correspond to those sent by the Image-Extractor, the latter

to those extracted by Docu-Parser which are available only when the

whole file has been processed;

• imx:local id and imx:pipe id are sent to the Docu-Indexer.

3.4.4 Test Environment and Preliminary Results

We ran our tests using two clusters. The first is a physical cluster composed

of four identical nodes, each one equipped with 4 six-core Intel Xeon X5650

CPU@2.67GHz, 48 GBytes RAM, CentOS 6.3, Management Network @ 100

Mbit/sec. (Fast Ethernet), dedicated Data Network @ 1 Gbit/sec. (Giga

Ethernet). The second one is a virtual cluster composed of four virtual

machines running on Amazon Cloud with 4 CPUs, 14GBytes RAM each and

a dedicated Data Network with about 64 Mbit/sec. of measured speed.

We carried out a large set of preliminary experiments and analysis before

starting the design of our architecture. First of all, we used the the Hadoop

Framework and MapReduce model to run the EPI pipeline on the physical

cluster. To do that, we had to preliminary copy disk image files into HDFS,

a task often called Data Ingress. Using a Hadoop cluster with three Data

Nodes and one Name Node, we found that uploading 64 GBytes of data

takes about 35 minutes, whereas, we anticipate that our solution takes, on

the same cluster, only 15 minutes to perform the whole EPI tasks.

After that, we built some disk images by using the Unix dd command over

disk partitions containing documents downloaded from the Digital Corpora

websiteo. Digital Corpora provides a corpus of (nearly) one million freely

ohttp://DigitalCorpora.org is a website of digital corpora for use in computer
forensics education research.
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Table 3.1. Disk image files used for testing: built using documents from Govdocs1
corpus, the first and second columns are the total size and number of files stored
within the disk image, respectively, the third column is the time required to build
the disk image file using the Unix dd command.

Image (GB) Num Files DD Time(hh:mm:sec)

32 58225 00:05:00
64 117282 00:14:50
100 186305 00:20:15
193 368856 00:33:21
296 586714 01:03:21

redistributable files named Govdocs1 [107]. The corpus is available in several

formats (ZIP files, subset “threads”, and archive of JPEG files). We used

the full version of Govdocs1 made by a set of 1000 directories, with 1000 files

in each directory. The total size of the dataset is about 471 GBytes.

We evaluated Tika’s performance against all Govdocs1’s files, checking if

files were correctly detected and parsed without any provision of metadata

(e.g., Content-Type). For that purpose, we used the simple miss ratio

metric:

MISS =
Nerr

Nfiles

(3.4.3)

where MISS is the Tika’s miss ratio, Nerr is the number of Tika errors in

parsing files and Nfiles is the total number of files. We found that, using

Tika 1.4 on Govdocs1 files, MISS is ∼ 10%.

We used the disk images listed in Table 3.1 for our tests. The time

to extract raw files and metadata from disk image files using one Image-

Extractor is almost the same time required to build them from the disk image

using the Unix dd command. Running one Docu-Parser on one computer

of the physical cluster, we found it takes about 3 hours to parse extracted

files and metadata from the 64 GBytes image. It appears that document

parsing is the first bottleneck in the EPI pipeline. Therefore we decided to

distribute the files extracted form one Image-Extractor over multiple Docu-
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Table 3.2. Time required to extract, parse, and index disk image files: the second
column is the time required for the whole EPI tasks, the third column is the size
of text after parsing, while the fourth column is the total size of all the indexes.

Image (GB) EPI Time Out Text (GB) Index (GB)

32 00:05:45 11 4
64 00:17:43 24 8.5
100 00:37:16 31 12
193 01:02:22 55 19
296 02:08:00 89 33

Parsers/ Docu-Indexer couples that run in parallel on multiple cores/systems

as shown in Figure 3.3.
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Figure 3.4. Time to Extract-Parse-Index compared to time to extract files using
the Unix dd command.

In the end we processed the disk image files through a pipeline formed

by one Image-Extractor and twelve Docu-Parsers/ Docu-Indexer couples

running on the physical cluster, where three nodes ran 4 instances of the

Docu-Parser/ Docu-Indexer couple each, whereas one node ran the Image-

Extractor; results are shown in Figure 3.4 and Table 3.2.
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Figure 3.5. Distribution of data in the 64 GB disk image and the size of the
corresponding extracted text and index.

3.4.5 Comparison with MapReduce based solutions

An interesting project that exploits both Hadoop parallel processing and

TSK library capability in extracting raw files from disk images, is the TSK

for Hadoop Framework.

The project, developed by Basis Technology, 42Six Solutions and Light-

box Technologies, aims at building an inverted index from a disk image file.

Since this is exactly our goal, we downloaded the code available on GitHub,

applied some changes and fixes, and finally tried to run it. To run TSK for

Hadoop, first of all, we had to copy the disk image file into HDFS, this task

requires too much time (about 35 minutes for a 64GB file), therefore we gave

up with this approach.

After that we decided to write into HDFS documents extracted from disk

image files and use MapReduce to run in parallel both document parsing

and indexing. Documents extracted from a disk image file are streamed into
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Hadoop using Flume (version 1.5) and, as soon as documents are available,

map/reduce tasks start to parse and index them.

Both our ISODAC solution (see Section 3.6) and the Hadoop based solu-

tion were executed on the virtual cluster: for Hadoop we used one machine

to run the Name Node and three to run the Data Nodes, whereas for the

ISODAC framework we used one machine to run the Image-Extractor and

three to run two Docu-Parser/ Docu-Indexer couples each (for a total of six

pipes).

On the machine running the Image-Extractor or the Name Node, two

disk image files, one of 40GB and the other of 100 GB, were available, both

containing documents from the Govdocs1 library.

ISODAC Framework was able to build the index in 20 and 45 minutes

respectively, whereas by using the Hadoop Framework it took about 38 min-

utes (for the 40 GB image) and 5 hours (for the 100 GB image). One of the

major issues of the Hadoop solution is that Flume does not support nested

directories. In that case, all files included in the image have been copied in a

single directory and this configuration slows down dramatically the process-

ing. Using a custom version of Flume it should be possible to overcome that

limitation. Preliminary tests show that the time required for indexing 100

GB should reduce to 1.5 hours that remains much higher (∼ a factor 2) with

respect to the time obtained by using our solution.

Our ISODAC Framework performs better that Hadoop because both file

extraction and parsing is performed in-memory without any time consuming

disk write operation. In the Hadoop framework intermediate results (like the

output of the file extraction or the result of the file parsing) are stored into

the HDFS. This feature of Hadoop may be considered an advantage only if

it is required to access again the output of the parsing phase.

In all situations where the final output consists only in the inverted in-

dex, our solution is much more efficient. Furthermore, storing intermediate

results may become an issue when dealing with large disk images since it

would require having as much disk space as the original disk image (consider
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also that the default configuration of HDFS replicate data 3 times). Figure

3.5 shows a comparison between the space used by a 64 GB disk image (bot-

tom bar) and the space required for text extraction (intermediate bar) and

indexing (top bar).

Building the inverted index through in-memory processing, without writ-

ing intermediate results to disk, saves both disk I/O time and space, but

it makes the solution both network and memory bound. To reduce those

burdens we added a buffer on each Docu-Parser that accumulates data from

Image-Extractor, the buffering technique has been implemented exploiting

Java Unsafe memory allocation to reuse memory and to avoid intensive

Garbage Collection.

3.5 Optimizations

3.5.1 Buffering between Image-Extractor and Docu-

Parser

The most time consuming task in the EPI pipeline is document parsing,

which transforms input document files into plain text and metadata. The

time to parse a document depends both on its size and type, indeed parsing

a PDF or Word file requires more time than parsing an HTML or text file.

The Image-Extractor extracts files from the disk image and distributes them

over multiple Docu-Parsers through a dedicated network stream for each

parser; if a parser consumes data at a rate slower to the rate by which

the Image-Extractor sends the data, then the network pipe fills up and the

whole indexing process slows down. Unfortunately this situation happens

frequently because files are distributed evenly among parsers, but the time

to parse each document may vary a lot. To reduce this issue, on each Docu-

Parser we added a buffer where data are written as soon as they available

from the network stream. The parser reads data from that buffer when it is

ready for the next text extraction.
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The buffer has been implemented using Java classes

PipedInputStream and PipedOutputStream, but in order to over-

come the JVM limitation of 2GB of memory allocation and to make mem-

ory management more efficient, we re-implemented those two classes using

sun.misc.Unsafe class that allows the allocation of memory by-passing

the JVM and the Garbage Collector.

3.5.2 CUDA tokenizer

Since extraction and parsing are typically I/O bound operations, we em-

ployed GPU devices to improve the indexing process, in particular the tok-

enization phasep.

We employ CLucene [108], a C++ port of (Java) Lucene search library

that represents a widely used solution for high-performance, scalable index-

ing and searching textual data. To fully understand its computational cost,

we started with an accurate analysis of CLucene algorithms by studying the

source code and by using several profilersq. Profiling allowed us to under-

stand where CLucene spends its time and to define the execution flow during

textual data indexing. We profiled and measured CLucene executions by us-

ing different configurations against various datasets. We found that even for

indexing, the most time-consuming functions are related to I/O operations,

about 60% of total time. The remaining time is used as follows: ∼ 32%

for text tokenization and analysis, ∼ 7% for indexing and merging of partial

indexes, and less than 2% for other operations (see fig. 3.6). Therefore, we

invested in efforts to develop a new efficient tokenizer by exploiting the par-

allelism and the huge computational power provided by Graphics Processing

Units (GPUs). CLucene scans character by character all the input text look-

ing for tokens. When a token is found, a new token object is created. The

pTokenization is the process of breaking a text into meaningful elements called tokens.
Tokens may be words, phrases, acronyms, e-mail, etc depending on type of analyzer used
during tokenization

qWe used three perfomance analysis tools: GNU gprof, Oprofile, and Callgrind (profil-
ing tool of Valgrind)
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new token passes through different filters and then it is added to the inverted
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Figure 3.8. CudaStandardAnalyzer: Tokenization And Filtering On Sample
Data
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As we mentioned above, CLucene spends most of its computing time

looking for tokens. The tokenization process can be parallelized, so we im-

plemented two solutions in CUDA, one of the most widely used solutions for

programming GPU, in order to improve tokenization and analysis processes

carried out by CLucene. We focused our work on the StandardAnalyzer and

related StandardTokenizer, defined in CLucene, for the English language.

This analyzer is the most widely used. The first solution, called CudaStan-

dardTokenizer (CudaST), performs on GPU only the tokenization process.

This solution supports plain-text files up to 2 Gbytes and provides a speed-up

up to 6 times compared to the original CLucene. The second solution, called

CudaStandardAnalyzer (CudaSA), performs both tokenization and analysis

processes on GPU. This approach requires a larger amount of memory (host

and device), but it allows for reaching a speed-up to 9 times (see fig. 3.7)

Figures 3.8 shows an example of tokenization and analysis against sample

text performed by our second solution.

3.6 The ISODAC tool

In this section we present the ISODAC (Indexing and Searching Of Data

Against Crime) tool, a prototype based on the architecture described in

Section 3.3 devoted to forensic investigation purposes that is able to:

• extract raw files and metadata from forensic disk images;

• distribute those files over multiple computer systems;

• extract from every file plain text and metadata;

• index resulting text and metadata;

• provide a user interface to query indexed data;

The tool supports two different class of users: Administrator and Inves-

tigator, for both a Web Interface is available.
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The main task of an Administrator is to set up investigation cases and

assign to each of them one or more disk images to be indexed.

While the main task of an Investigator is to search for evidences in the

seized disks.

3.6.1 Disk image add

In this use case, a new disk image is added for investigation. The disk image

file is directly available in a disk that is local to a particular Worker node,

or in a shared storage system, so it can be read by one or multiple Worker

nodes. When that happens the following operations are carried out:

1. A Worker node detects that a new disk image file has been uploaded,

reads file information and sends them to Coordinator node;

2. Coordinator stores image file information into the DB and schedules a

Job, in particular:

(a) determines one Worker to execute Image-Extractor;

(b) determines one or more Workers to execute Docu-Parser;

(c) determines one or more Workers to execute Docu-Indexer;

3. The Coordinator sets up the EPI pipeline and starts the Job;

4. When Job completes, information on Job execution is updated into the

DB system and the disk image is available for searching.

3.6.2 Investigation cases

Since forensic investigations typically include analysis on multiple disks, it is

possible to group together multiple disk image files. Later, the user can decide

to search in a particular disk or in a set of disks. To add an investigation

case the user connects to the UI and:

1. inserts the title and additional information;



3.6 The ISODAC tool 115

2. looks at disk images available in the UI and assigns them to the inves-

tigation.

Later on, the user can search over all disk images included in the case.

3.6.3 User search

Docu-Indexers produce multiple indexes distributed over the Workers. There-

fore the Coordinator needs to know where all indexes related to a disk image

are stored. When a user, through the Search UI, submits a query related to

an investigation case, the system:

1. queries the DB to determine where all indexes related to the investiga-

tion/disk image are stored;

2. submits the query string to each index distributed over Workers;

3. merges query results;

4. returns results to the user.

3.6.4 Results visualization

When an investigator submits a query to the system, the search results should

be presented in a way that makes it possible to quickly identify the most

relevant documents and, possibly, to interact with displayed data. Figure

3.9 shows the first visualization option we implemented: here the results are

displayed as a list of documents. Each column represents an attribute of the

correspondent file which can be used to sort the list. Even though presenting

results in a flat list it is certainly an efficient option when a user needs to

browse documents in a given order (e.g., lexicographical, by score value, etc.)

it is also important to take into account the response time and usability of

the interface.

The visualizations provided should be interactive, to enable the investi-

gator performing directly further operations on data. The same data should
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also be displayed in several layouts to highlight their different aspects. Fi-

nally, it is necessary to provide multiple filters for each visualization, to offer

the chance of a personalized interaction with the results.

For this reason we developed an alternative visualization layout relying on

D3.js [109], a JavaScript library which provides several graphical primitives

to implement visualizations and uses only web standards, namely HTML,

SVG and CSS. With D3.jsr it is possible to realize multi-stage animations

and interactive visualizations of complex structures.

Figure 3.9. The results of a search can be presented as a list

After the results for a specific query are collected, data are organized in

a JSON stream containing the following attributes:

• name: the name of the file;

• path: the path where the file is stored;

• diskimage id: ID of the disk image containing the file;

• type: the file format;

• size: the size of the file;

rTechnical documentation, as well as source code of D3.js, can be reached at http:
//d3js.org
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Figure 3.10. User Interface screenshot with the results of a search

• score: the score that Lucene assigns to the document according to the

search query.

Using this schema our system is able to produce, for instance, the lay-

out shown in Figure 3.10. The results correspond to a search that returns 8

documents divided in five different file types. Each type is represented by a

circle of a specific color, as an example the blue one contains all the pdf doc-

uments, so that users can quickly focus on a subset of files. The diameter of

the circles is proportional to the overall size of the documents of that specific

file type (e.g., the size of pdf files is more than 50% of the total size of the

results). The lighter and smaller circles depict the single documents of each

given type and their diameter is proportional to their size. This representa-

tion can help a user to identify that half of the files (i.e., exactly 4 files) are

pdf documents; if one looks at the size of raw data, the msword circle con-

tains approximately the same amount of data than the plain text one,

regardless of the higher number of files contained in the latter category.

If the user is interested in a specific kind of data (e.g., only pdf files) she
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can click on the corresponding circle to zoom into the desired circle as shown

in Figure 3.11. The names of the files are then displayed on top of the circles

and the user can obtain more information (basically retrieved by accessing

the corresponding metadata) on a specific file by moving the mouse over the

corresponding circle.

Figure 3.11. A zoom of the previous screenshot focused on pdf files

3.7 Discussion

We presented a solution for fast indexing of large sets of textual data whose

main, but non exclusive, goal is the reduction of the time required for the

analysis of seized storage devices or bodies of evidence.

We do not rely on Hadoop or similar frameworks since they usually per-

form well when data are already distributed whereas significant I/O issues af-
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fect the performance of the whole process if ingestion of large non distributed

data has to be carried out. Conversely our work aims at providing an effi-

cient and effective solution to index data that are not already distributed,

by exploiting in-memory processing.

More in detail, we implemented a new framework that performs streamed

in-memory processing writing on disks only the final results of the Extract

Parse Index pipeline. Our recovery mechanism is able to manage both single

file failures and components failures. The same mechanism supports ad-

hoc processing of special files (e.g. files requiring OCR). We introduced two

different optimizations to enhance data communication and text analysis.

In particular, the latter represents, to the best of our knowledge, the first

work that exploits the GPU computational power to enhance performance of

tokenization and text analysis. Finally we present some experimental results

obtained by using the proof-of-concept tool we developed for digital forensics

purposes.

In the near future we expect to test our framework with other sources of

data besides disk images, for instance data produced by web crawlers.
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Chapter 4

Conclusions

In the first part of this dissertation we presented three algorithms and their

implementations on a Multi-GPU system.

First of all, starting from an already existing Breadth First Search Multi-

GPU implementation, we improved both the data structures and the com-

munication patterns used, in particular we modified the Compressed Sparse

Row (CSR) data structure, used to store the graph, allowing to reduces both

memory utilization and determine an upper bound on memory requirements.

Furthermore we introduced specific communication patterns to exchange 32-

bits integers instead of 64-bits and to exchange predecessors information only

once at the end of the graph traversal. These optimizations allowed to per-

form 2 times faster than the previous implementation on a 64 GPUs cluster.

Then, our Multi-GPU BFS has been used to solve the ST-Connectivity

problem. The proposed solution was implemented through two concurrent

parallel BFS that are started from both terminals s and t. For this problem

we provided two solutions to solve race conditions due to the parallel exe-

cution of the two searches: one using atomic operations and the other not

using atomic operations. We found that the efficiency of the atomic primi-

tives available using Kepler NVIDIA GPUs makes the solution with atomic

operation performing better, some tests carried out on previous generation

(Fermi) GPUs show that atomic operations may have a impact on perfor-
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mance when running on multiple GPUs, up to the point that, on the Fermi

architecture, the solution not using atomic operations may provide better

performance.

Comparing BFS and ST-CON results, we observed that GPUs are ex-

ploited efficiently when lots of vertices are processed in parallel so that the

device is fully loaded, for R-MAT graphs this occurs between the third and

the fifth BFS level. When the ST-CON problem is worked out by using two

concurrent parallel searches on R-MAT graphs, the execution terminates af-

ter few iterations, therefore the efficiency of a GPU implementation remains

quite limited.

Finally we took on the Betweenness Centrality, which is particularly in-

teresting both for its relevance in many fields and for its computational com-

plexity. In our Multi-GPU implementation we capitalize on knowledge and

expertize acquired for BFS and ST-CON, nevertheless unlike the previous

two implementations, we opted for a 2-D graph partitioning since it revealed

to provide better performance and scalability. As far as we know this is

the first implementation of BC over distributed Multi-GPUs, it takes advan-

tage of multiple techniques to reduce overall computation time: fine- and

coarse-grained parallelism, 1-degree reduction, pipelining of CPU-GPU data

transfer with communication. All these techniques allowed to compute full

BC scores for a 117 million undirected edges graph in less than 2 hours. Even

if the main focus of our Multi-GPU BC was to analyze graphs too large to fit

into one single system memory, our implementation on a Single-GPU system

provides results comparable to other existing solutions.

In the second part of this dissertation we present a solution for fast index-

ing and searching of large datasets of heterogeneous documents whose main,

but non exclusive, goal is the reduction of the time required for the analysis

of seized storage devices or bodies of evidence.

Existing approaches are able to process huge amounts of data already dis-

tributed in a cluster environment, while provide limited performance when

data is not distributed. Our tool improves, with respect to those solutions,
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by providing a suitable combination of HPC techniques. In particular, we

implemented a new framework that performs streamed in-memory indexing,

writing on disk only the final results. We developed a proof-of-concept tool

for digital forensics purposes which has been successfully deployed at Rag-

gruppamento Carabinieri Investigazioni Scientifiche (RaCIS)a and has been

presented at the seminar ”Cybercrime and terrorism threat in the Mediter-

ranean Area” held at the Carabinieri Higher Institute for investigation tech-

niques.

The work described in this dissertation has been published in the following

papers:

• M. Bernaschi, G. Carbone, et. al., ”Forensic disk image indexing and

search in an hpc environment”. In High Performance Computing &

Simulation (HPCS), 2014 International Conference on, IEEE, 2014.

• M. Bernaschi, G. Carbone, E. Mastrostefano, F. Vella, ”Solutions to

the st-connectivity problem using a GPU-based distributed BFS”. J.

Parallel Distrib. Comput. (2014)

• M. Bernaschi, G.Carbone, et. al., ”Enhanced gpu-based distributed

breadth first search”. In Proceedings of the 12th ACM International

Conference on Computing Frontiers, 2015

• M. Bernaschi, G. Carbone, F. Vella, ”Betweenness centrality on Multi-

GPU systems.” In Proceedings of the 5th Workshop on Irregular Ap-

plications: Architectures and Algorithms. ACM, 2015

• G. Totaro, G. Carbone, M. Bernaschi, et. al., ”ISODAC: a High Per-

formance Solution for Indexing and Searching Heterogeneous Data”.

Accepted at The Journal of Systems & Software.

aDepartment of Carabinieri Corps police performing scientific investigations.
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