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This paper deals with the problem of linearization of systems with constant commensurable delays
by input-output injection using algebraic control tools based on the theory of non-commutative rings.
Solutions for the problem of linearization free of delays, and with delays of an observable nonlinear
time-delay systems are presented based on the analysis of the input-output equation. These results are
achieved by means of constructive algorithms that use the n-th derivative of the output expressed in
terms of the state-space variables instead of the explicit computation of the input-output representation
of the system. Necessary and sufficient conditions are established in both cases by means of an invertible
change of coordinates.
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1. Introduction

The importance of the study of time-delay systems in control theory lies in the large number of
dynamical systems that are affected by the delay phenomenon. This kind of systems can be found
in several fields such as mechanics, optics, medicine, chemistry, economy, electronics, computer
science, among others, as it is addressed in Erneux (2009); Kolmanovskii & Myshkis (1999);
Smith, & Thieme. (2012); L. Yang, & X. Yang (2012), and other references.
The state-space observers are of fundamental importance in applications like monitoring and control
of dynamical systems. In Zheng, Barbot, Boutat, Floquet, & Richard (2010a,b, 2011) conditions
are given to transform a time-delay system into a canonical form as well as for causal and non causal
observability. Furthermore, the problem of linearization via input-output injection is investigated
in Márquez-Mart́ınez, Moog, & Velasco-Villa (2002) where an algorithm for the linearization
free of delays is proposed together with sufficient conditions for the design of an observer. Using
the geometric framework proposed in Califano, Márquez-Mart́ınez, & Moog (2011), necessary and
sufficient conditions for the existence of a bicausal change of coordinates that takes a nonlinear time-
delay system into a linear weakly-observable time-delay system, modulo input-output injection, are
presented in Califano, Márquez-Mart́ınez, & Moog (2013).
In the present paper, the problem of linearization of a time-delay system up to input and output
injection is addressed in an algebraic context. The problem is investigated both starting from its
input-output equation and its state-space representation. More precisely, the results obtained are
the following:
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With respect to the input-output equation,

• it is shown, as a direct consequence of the results presented in Halás and Anguelova (2013),
that the input-output representation of a system linearizable up to input-output equation is
of retarded type;
• necessary and sufficient constructive conditions are given for a system represented through

its input-output equation to admit a linear delay state-space representation up to input and
output injection.

With respect to the state-space representation,

• the class of changes of coordinates considered is the invertible one as defined in Definition
3. The bicausality property of the change of coordinates is dropped in this context since the
equivalence to such a structure is useful in the observer design procedure. It should be noted
that if the given dynamics is linked to the dynamics

ż(t) =

µ∑
i=0

Aiz(t− i) + Φ(y(t), · · · , y(t− µ), u(t), · · · , u(t− µ))

y(t) =

µ∑
i=0

Ciz(t− i),

through an invertible transformation of the form

x(t) = φ(z(t+ p), . . . , z(t− j)), p, j ≥ 0,

then, extending the arguments in Andrieu, & Praly (2006) to time-delay systems, if the
linear part is stabilizable through output injection, and φ satisfies proper conditions, z(t) of
the stabilized system can be used to estimate x(t− p). In this sense the results presented in
this paper are more general than those presented in Califano, Márquez-Mart́ınez, & Moog
(2013), and Zheng, Barbot, Boutat, Floquet, & Richard (2011).
• Necessary and sufficient conditions are given to transform a state-space representation into a

linear delay one, up to a non linear input and output injection, through an invertible change
of coordinates. A constructive procedure is given to obtain it. The case in which the linear
part is delay-free is discussed in detail.

The paper is organized as follows. In Section 2, notations and definitions of the algebraic framework
used throughout the paper are recalled, as well as some basic results about input-output real-
izations of time-delay systems. The main problems covered in this paper are stated. Preliminary
new results are given in Section 2.3. In Section 3, necessary and sufficient conditions are given for
a system represented through its input and output equation to admit a linear delay state-space
representation up to input and output injection. Section 4 is devoted to the solution of the
linearization problem up to input and output injection through invertible changes of coordinates.
Examples show the main issues in solving the proposed problems.
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2. Definitions and algebraic setting

Consider the nonlinear dynamical causal time-delay system with constant commensurable delays
represented by the equations

ẋ(t) = F (x(t), x(t− 1), . . . , x(t− s)) +
s∑
j=0

Gi(x(t), x(t− 1), . . . , x(t− s))u(t− j)

y(t) = H(x(t), x(t− 1), . . . , x(t− s)).
(1)

The state variable x(t) ∈ Rn, the output y(t) ∈ R, and the input u(t) ∈ R. The initial condi-
tion χ : [−s, 0] → Rn is assumed to be smooth. The following notation is taken from Califano,
Márquez-Mart́ınez, & Moog (2011): K denotes the field of meromorphic functions of the symbols
{x(t− i), u(t− i), . . . , u(k)(t− i), i ∈ Z, k ∈ Z+}; d is the differential operator that maps elements
from K to E = spanK{dx(t− i), du(t− i), . . . , du(k)(t− i), i ∈ Z, k ∈ N}; δ is the time-shift operator
defined as follows: if a(·), f(·) ∈ K, then δ(a(t)df(t)) = a(t− 1)δdf(t) = a(t− 1)df(t− 1). Using the
time-shift operator δ as indeterminate, the non-commutative Euclidean (left) ring of polynomials
with coefficients over K is denoted as K(δ]; R[δ] is the ring of polynomials in δ with coefficients in
R. M is the defined as the left-module over the ring K(δ]: M = spanK(δ]{dξ | ξ ∈ K}. Denoting
by deg(·) the polynomial degree in δ of its argument, the elements of K(δ] may be written as
α(δ] =

∑rα
i=0 αi(t)δ

i, with αi ∈ K, and rα = deg(α(δ]). Addition and multiplication on this ring are

defined by α(δ]+β(δ] =
∑max{rα,rβ}

i=0 (αi(t)+βi(t))δ
i, and α(δ]β(δ] =

∑rα
i=0

∑rβ
j=0 αi(t)βj(t− i)δi+j .

Let us define for p, s ≥ 0, by (x[p,s]) = (x(t + p), . . . , x(t − s)); (z[p,s]), and (u[p,s]), are defined

similarly. We will use x[s] for x[0,s]. Define ū = (u(t), u̇(t), . . . , u(n−1)(t))T , and ȳ is defined in
a similar way. For simplicity y(t), x(t), and u(t) will stand for y[0], x[0] and u[0]. A matrix

M(x[p,s], δ) ∈ Kn×n(δ] is called unimodular if it has a polynomial inverse. It is called polymodular if

there exists a polynomial matrix M ′(x[p,s], δ) such that M(x[p,s], δ)M
′(x[p,s], δ) = diag{δk1 , . . . δkn},

for some ki ∈ Z+. Consider also f̄(x[l]) |x[l](−j):= f̄(x(t− j), x(t− j − 1), . . . , x(t− j − l)). Then, it
is possible to rewrite equation (1) as

ẋ(t) = F (x[s]) +
s∑
j=0

Gj(x[s])u(t− j)

y(t) = H(x[s]).
(2)

The corresponding differential-form representation is given by

dẋ(t) = f(x[s],u[s], δ)dx(t) + g(x[s], δ)du(t) (3)

where

f(x[s],u[s], δ) =
s∑
i=0

(
∂F (x[s])
∂x(t−i) +

∑s
j=0 u(t− j)∂Gj(x[s])

∂x(t−i)

)
δi

g(x[s], δ) =
s∑
j=0

Gj(x[s])δ
j

(4)

dy(t) =
s∑
i=0

∂H(x[s])
∂x(t−i) δ

idx(t) = h(x[s],u[s], δ)dx(t). (5)
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Ω = spanK(δ]{ωi(x, δ), i = 1, . . . , p} is the module spanned over K(δ] by the row vectors
ω1(x, δ), ω2(x, δ), . . . , ωp(x, δ) ∈ Kn(δ].
Let us consider the definition of the extended Lie derivative for nonlinear time-delay systems, given
in the framework of Xia, Márquez-Mart́ınez, Zagalak, & Moog (2002), and expressed in Zheng,
Barbot, Boutat, Floquet, & Richard (2011) as

LFH(x[s]) =

s∑
i=0

∂H(x[s])

∂x(t− i)
δiF (x[s]), (6)

LlFH(x[s]) the l-th extended Lie derivative, and the observability matrix

O(x[s], δ)dx =


dH(x)

dLFH(x[p])
...

dLn−1
F H(x[p])

 =


dy
dẏ
...

dy(n−1)

 . (7)

The characterization of the algebraic observability property is stated by the next definitions (Cal-
ifano, Márquez-Mart́ınez, & Moog (2013))

Definition 1: System (2) is said to be weakly-observable if the matrix O has full rank around
x(0).

Definition 2: System (2) is said to be strongly observable if the matrix O is unimodular around
x(0).

Definition 3: Given the system defined by (2), z(t) = φ(x[p,s]) is an invertible change of

coordinates if there exists a differentiable function φ̄(z[p′,s′]) ∈ K, p, s, p′, s′ ∈ N, such that

φ̄(z[p′,s′]) |z(t)=φ(x[p,s])= x(t).

To the invertible change of coordinates z(t) = φ(x[p,s]) we can associate a list of integers ri =

max{l ∈ Z | ∂φi(x[p,s])
∂x(t+l) ≡ 0}. Its differential representation can be written as

δr1 0 . . .

0
. . . . . .

... δrn

 dz(t) = N(x[0,s̄], δ)dx(t)

For the inverse transformation, the corresponding indexes are defined by ki = max{l′ ∈ Z |
∂φ̄(z[p′,s′])

∂z(t+l ′) ≡ 0}. The differential representation is

dx(t) = Ñ(z[p′,s′], δ)

dz(t+ k1)
...

dz(t+ kn)
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Consequently
δr1 0 . . .

0
. . . . . .

... δrn

 dz(t) = N(x[0,s̄], δ)|x=ψ(z[p′,s′])Ñ(z[p′,s′], δ)

dz(t+ k1)
...

dz(t+ kn)

 .

It follows that 
δr1+k1 0 . . .

0
. . . . . .

... δrn+kn

 = N(x[0,p̄], δ)|x=ψ(z[p′,s′])Ñ(z[p′,s′], δ)

If p = j = 0 the transformation is a bicausal change of coordinates and the associated differential
representation is characterized by a unimodular matrix.

Remark 1: Note that the use of a bicausal transformation allows to keep invariant the strong and
weak observability properties of the dynamical system. A non bicausal change of coordinates can
modify these properties. Consider, for instance, next example:

Example 1: The strong observable system

ẋ(t) = ax(t),
y(t) = x(t).

The change of coordinates z = x(t+ 1) takes the system into the form

ż(t) = az(t),
y(t) = z(t− 1),

which is weakly-observable.

Let us end this section with the notion of normalized vector which will be used in the sequel.

Definition 4: Let λ(x, u, δ) = [λ1, · · · , λn] ∈ Kn̄(δ]. λ is called a normalized covector if λi = 0,
for i ∈ [1, j − 1] and λj = 1.

2.1 Problem statement

As well known a dynamical system can be represented either through its input-output equation or
through its state-space representation. Accordingly in this context the following problems can be
set:

Problem 1: Given the input-output equation

ψ(y
(n)
[s] ,y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s]) = 0, (8)
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where the differential ideal generated by ψ is prime, find, if possible, a realization of the form

ż(t) =
s∑
i=0

Aiz(t− i) + ϕ(y[s],u[s]),

y(t) =
s∑
j=0

Cjz(t− j).
(9)

where z ∈ Rn, u ∈ R, y ∈ R, Ai ∈ Rn×n for i = 0, . . . , s, and Cj ∈ R1×n for j = 0, . . . , s.

Starting from the state-space representation of the system then we have the following problem

Problem 2: Given the observable time-delay dynamical system (2) find, if possible, an invertible
change of coordinates z(t) = φ(x[p,s]) such that (2) is transformed into (9).

Remark 2: As an important remark note that, while in the delay-free case Problem 1 and Problem
2 are equivalent, this does not happen in the same way for nonlinear time-delay systems, as shown
by next example

Example 2: The dynamical system defined by the delay differential equation

ẋ1(t) = x2(t)x2(t− 2) + (x1(t− 1) + x1(t− 2))2,
ẋ2(t) = 0,
y(t) = x1(t) + x1(t− 1),

(10)

has an input-output equation

ÿ(t) = 2y(t− 1)ẏ(t− 1) + 2y(t− 2)ẏ(t− 2). (11)

Note that setting z1(t) = y(t) and z2(t) = ẏ(t) − y(t − 1)2 − y(t − 2)2 it is possible to take the
input-output equation (11) into the linear state-space representation

ż1(t) = z2(t) + z1(t− 1)2 + z1(t− 2)2,
ż2(t) = 0,
y(t) = z1(t).

(12)

Nevertheless, (10) and (12) are not related by an invertible change of coordinates.

2.2 Recalls on the Input-Output representation

Let us consider the input-output representation of the dynamical system (1) which is of the form

ψ(y
(n)
[s] ,y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s]) = 0. (13)

The next notation and results are issued from Halás and Anguelova (2013).

Let us define the r dimensional vector (ν1, . . . , νr) := (ν1 . . . νr)
T ∈ Kr, and let ∂(ν1,...,νr)

∂x ∈ Kr×n(δ]
denote the matrix with entries(

∂(ν1, . . . , νr)

∂x

)
j,i

=

s∑
ι=0

∂νj
∂xi(t− ι)

δι ∈ K(δ] (14)
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The observability index d̄ is defined as the least nonnegative integer that fulfills

rankK(δ]
∂(H, . . . ,H(d̄−1))

∂x
= rankK(δ]

∂(H, . . . ,H(d̄))

∂x
, (15)

with d̄ ≤ n.

Definition 5: Let d̄ be the observability index. Then, the input-output equation (13) is said to
be retarded if

∂ψ(·)
∂y(d̄)(t− i)

= 0

for all i ≥ 1.

Definition 6: (Halás and Anguelova (2013)) Let d̄ be the observability index then, the input-
output equation (13) is said to be neutral if there exist i1 6= i2 such that

∂ψ(·)
∂y(d̄)(t− i)

6= 0, for i = i1, i = i2

In the rest of this paper we assume d̄ = n. Considering Definition 6, the next example is presented.

Example 3: Let us consider the system defined by the set of equations:

ẋ(t) = x(t− 1)u(t)
y(t) = x(t) + x(t− 1),

(16)

which has an input-output representation that is written as

ẏ(t)− ẏ(t− 1)α(u[s]) = y(t− 1)u(t)− y(t− 2)u(t− 2)α(u[s]) (17)

with α(u[s]) = u(t−1)−u(t)
u(t−1)−u(t−2) . According to Definition 6, the input-output equation (17) is of neutral

type. /

Examples like the one defined by equation (16) show that it is possible to find systems which
have a retarded state-space representation with a neutral input-output representation. Consider
the next theorem taken from Halás and Anguelova (2013).

Theorem 1: It is possible to find a retarded type input-output representation for system (2) if and
only if

∂H(d̄)

∂x
∈ spanK(δ]

{
∂(H, . . . ,H(d̄−1))

∂x

}
, (18)

Note that, due to Theorem 1, it is possible to find out that system (16) does not have an input-
output equation of retarded type.

2.3 Preliminary results on the Input-Output realization

In the present section, a preliminary result is presented which shows that any system which admits
a linear state-space representation up to input and output injection, must be characterized by an

7
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input-output equation of retarded type. Such a result is fundamental in the solution of any of the
problems investigated.

Lemma 1: Problem 1 and Problem 2 are solvable, only if the given system admits an input-output
equation of retarded type, and of the form

y(n)(t) =

n∑
i=1

Φi(y[s],u[s])
(i−1). (19)

Proof. Consider the differential form of (9) which is given by

dż(t) = A(δ)dz(t) + dϕ(y[s],u[s])
dy(t) = C(δ)dz(t).

(20)

Consider the differential form for the first derivative of the output given by

dẏ = C(δ) ·
(
A(δ)dz(t) + dϕ(y[s],u[s])

)
(21)

and iteratively

dy(k) = C(δ)Ak(δ) · dz(t) +
k−1∑
i=0

C(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1) (22)

with k = 0, . . . n. Because of the commutativity of R[δ], the use of the Cayley-Hamilton’s theorem
is allowed, so it is possible to find σi ∈ R[δ], i = 0, . . . n such that

n∑
i=0

σiC(δ)Ai(δ) = 0, (23)

with σn = 1. Then the differential form of the input-output representation of (9) can be written as

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1), (24)

which has the structure (24), with dΦk+1(y[s],u[s]) = −σkdy(t) +∑n−k−1
j=0 σn−jC(δ)An−k−j−1(δ)dϕ(y[s],u[s]) for all k = 0, . . . , n− 1.

The effective computation of the functions Φi (y[s],u[s]) can be performed using the linearization
algorithm presented in Márquez-Mart́ınez, Moog, & Velasco-Villa (2002).

To check whether a given system can be characterized by an input-output equation of retarded
type, the following result can be used.

Lemma 2: Assume that the given system has an input-output equation of the form

ψ(y
(n)
[s] ,y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s]) = 0

where the differential ideal generated by ψ is prime. Then it can be represented also by an equation of

retarded type, if and only if there exist a normalized covector λ(y[s], · · · ,y
(n−1)
[s] ,u[s], · · · ,u

(n−1)
[s] , δ),

8
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as defined in Definition 4, and a coefficient α(y[s], · · · ,y
(n−1)
[s] ,u[s], · · · ,u

(n−1)
[s] , δ), such that

dψ = α(ȳ, ū, δ)λ



dy(n)

...
dy

du(n−1)

...
du


= 0. (25)

Proof. The differential of the input-output equation ψ is given by

dψ(y(n), · · · , y, u(n−1) · · · , u) =

n∑
j=0

`j(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

χj(ȳ, ū, δ)du
(j) = 0

On the other hand, since the system admits an input-output equation of retarded type then

y(n) = ψ̄(y(n−1), · · · , y, u(n−1) · · · , u)

so that

dy(n) = dψ̄(y(n−1), · · · , y, u(n−1) · · · , u) =
n−1∑
j=0

qj(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

pj(ȳ, ū, δ)du
(j).

Consequently

`n(ȳ, ū, δ)dy(n) =

n−1∑
j=0

`n(ȳ, ū, δ)qj(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

`n(ȳ, ū, δ)pj(ȳ, ū, δ)du
(j),

which shows that

`j(ȳ, ū, δ) = −`n(ȳ, ū, δ)qj(ȳ, ū, δ)

χj(ȳ, ū, δ) = −`n(ȳ, ū, δ)pj(ȳ, ū, δ).

Accordingly α = `n and

λ = [1,−qn−1(ȳ, ū, δ), · · · ,−q0(ȳ, ū, δ),−pn−1(ȳ, ū, δ), · · · ,−p0(ȳ, ū, δ)]

is the desired normalized covector.
Assume that the input–output equation satisfies (25). Dividing both sides by α, one immediately

gets, due to the structure of λ, that

dy(n) =

n−1∑
j=0

pj(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

qj(ȳ, ū, δ)du
(j)

Since the left side is an exact differential, such is also the right hand side. Since the differential of ψ
generates a prime ideal, then we can compute a retarded type equation to describe the input-output
relation.

9
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If instead we are starting from the state-space representation of the given system the following
result can be stated

Lemma 3: Assume that the given system is given in its state-space representation, and let
Ā(x[s],u[s], δ) ∈ K(2n+1)×2n(δ] be

Ā(x[s], ū[s], δ) =
(
Â(x[s],ū[s],δ) B̂(x[s],ū[s],δ)

0 I

)
(26)

where setting ū = (u, u̇, · · · , u(n−1)),

Â(x[s], ū[s], δ) =
s∑
i=0

∂(H(n),H(n−1),...,H)
∂x(t−i) δi, B̂(x[s], ū[s], δ) =

s∑
i=0

∂(H(n),H(n−1),...,H)
∂ū(t−i) δi. (27)

Then the given system admits an input-output equation of retarded type, if and only if the left-
annihilator of the matrix Ā(x[s], ū[s], δ) is generated by a normalized covector λ(x[s], ū[s], δ), as
defined in Definition 4.

Proof. Consider the set of equation

0 = λ(x[s],u[s], δ)



dy(n)

dy(n−1)

...
dẏ
dy

du(n−1)

...
du̇
du


= λ(x[s],u[s], δ)Ā(x[s],u[s], δ)

(
dx
dū

)
(28)

Since the dimension of the columns of Ā(x[s],u[s], δ) is 2n + 1, and the system is claimed to be

observable, rank(Ā(x[s],u[s], δ)) = 2n, so that there is one solution in the left kernel. If the system
admits an input-output equation of retarded type, then there exists a λ = [χn, · · · , χ0, µn−1, · · · , µ0]
with χn = 1 satisfying equation (28). Conversely if λ is a normalized vector, then χn = 1 6= 0

dy(n) =
n−1∑
j=0

pj(ȳ, ū, δ)dy
(j) +

n−1∑
j=0

qj(ȳ, ū, δ)du
(j)

which, as before, ensures that the input–output equation is of retarded type.

3. Linear realization up to input-output injection of a nonlinear input-output
equation

Let us now discuss a solution to Problem 1, which consists in finding a linear delay state-space
realization, up to injections of nonlinear time-delay functions of the input, and the output, from
the input-output equation that describes the system dynamics.

Before entering in the details of the solution of the problem, let us recall that in Márquez-
Mart́ınez, Moog, & Velasco-Villa (2002) Problem 1 was addressed and solved in the particular
case in which the required state-space realization had a delay free linear part, that is Ai = 0 and
Ci = 0 for i ∈ [1, s] in (9).

10
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Define

E0 = 0

Ek = spanK(δ]{dy(t), . . . , dy(k−1)(t), du(t), . . . , du(k−1)}

and assume that dimK(δ]E
n = 2n.

Algorithm 1:
STEP 0: Set ψ1 = ψ, and compute the differential form of equation (8)

dy(n)(t) = d
(
ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])(t)

)
(29)

STEP 1: By assumption dy(n) ∈ En. Compute λ0
n−1 =

∑s
i=0

∂ψ1(·)
∂y(t−i)(n−1) δ

i (the coefficient of

dy(n−1)(t)) and µ0
n−1 =

∑s
i=0

∂ψ1(·)
∂u(t−i)(n−1) δ

i (the coefficient of du(n−1)(t)). Now Set

ω1 := λ0
n−1dy + µ0

n−1du,

if dω1 6= 0 then STOP! there is no solution,
Compute Φ1(y[s],u[s]) such that ω1 = dΦ1(y[s],u[s]). Set

ψ2(y
(n−2)
[s] , . . . ,y[s],u

(n−2)
[s] , . . . ,u[s]) := ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])−

Φ
(n−1)
1 (y[s],u[s]),

Compute the differential form of equation ψ2(·)

d
(
ψ2(y

(n−2)
[s] , . . . ,y[s],u

(n−2)
[s] , . . . ,u[s])

)
= d

(
ψ1(y

(n−1)
[s] , . . . ,y[s],u

(n−1)
[s] , . . . ,u[s])−

Φ
(n−1)
1 (y[s],u[s])

) (30)

Check: dψ2(t) ∈ En−1?
NO: Stop, YES: Continue to the next step

STEP k: Define λk−1
n−k =

∑s
i=0

∂ψk(·)
∂y(t−i)(n−k) δ

i and µk−1
n−k =

∑s
i=0

∂ψk(·)
∂u(t−i)(n−k) δ

i as the coefficient of

du(n−k)(t) from the last equation in step k − 1. Now Set

ωk := λk−1
n−kdy + µk−1

n−kdu,

if dωk 6= 0 then STOP! there is no solution,
if dωk = 0 then compute Φk(y[s],u[s]) such that ωk = dΦk(y[s],u[s]), and set

ψk+1(y
(n−k+1)
[s] , . . . ,y[s],u

(n−k+1)
[s] , . . . ,u[s]) := ψk(y

(n−k)
[s] , . . . ,y[s],u

(n−k)
[s] , . . . ,u[s])−

Φ
(n−k)
k (y[s],u[s])

d
(
ψk+1(y

(n−k+1)
[s] , . . . ,y[s],u

(n−k+1)
[s] , . . . ,u[s])

)
= d

(
ψk(y

(n−k)
[s] , . . . ,y[s],u

(n−k)
[s] , . . . ,u[s])−

Φ
(n−k)
k (y[s],u[s])

)
(31)

11
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Check: dψk+1(t) ∈ En−k?
For k = 2, . . . , n. /

If Algorithm 1 can be completed for each step k, for k = 1, . . . , n, then it is possible to estab-
lish necessary and sufficient conditions for the solution of Problem 1, as it is stated in the next
proposition.

Proposition 1: Problem 1 with Ai = 0 and Ci = 0 for i ∈ [1, s] in (9), is solvable if and only if
ωi, as defined in the Algorithm 1, are exact for all i = 1, . . . , n.

We include the proof of Proposition 1 considering that it is not presented in Márquez-Mart́ınez,
Moog, & Velasco-Villa (2002).

Proof. Since the algorithm is constructive, we only need to prove the necessity. To this end, note
that if the system admits the form (9) with Ai = 0, Ci = 0 for i ∈ [1, s], then at step k.

ψk = y(n)(t)−
k∑
j=1

Φk−j
j (y[s],u[s]),

consequently

ωk =
s∑
i=0

∂Φk(y[s],u[s])

∂y(t− i)
dy(t− i) +

s∑
i=0

∂Φk(y[s],u[s])

∂u(t− i)
du(t− i) = dΦk(y[s],u[s]).

which proves the necessity of the exactness of the ωi i = 0, . . . n− 2.

The following result can now be stated

Theorem 2: The input-output equation (8) admits a linear state-space representation up to input-
output injection of the form (9) if and only if

i) The system can be represented by an input-output equation of retarded type.
ii) The linearization Algorithm 1 ends with n exact one-forms ωi

Then the state-space representation is obtained by setting

z1(t) = y(t)

z2(t) = ẏ(t)− Φ1(y[s],u[s])

... (32)

zn−1(t) = yn−1(t)−
n−1∑
i=1

Φ
(n−i−1)
i (y[s],u[s])

Proof. Since the procedure is constructive, we only need to prove the necessity. To this end, recall
that if the given system represented through its input-output equation can be written in the form
(9) then, due to Lemma 1, necessarily the system must admit an input-output equation of retarded
type given by

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1)

12
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which proves the necessity of i). Applying the linearization algorithm, one gets that at the generic
step k ≤ n− 1

ωk = dΦk+1(y[s],u[s]) = −σkdy(t) +

n−k−1∑
j=0

σn−jC(δ)An−k−j−1(δ)dϕ(y[s],u[s])

which shows that the algorithm ends up with n exact differentials ωk, that is, ii) must be satisfied.
With the position (32), one thus gets that the state-space representation is given by

ż1(t) = z2(t) + Φ1(y[s],u[s]),

ż2(t) = z3(t) + Φ2(y[s],u[s]),

... (33)

żn(t) = Φn(y[s],u[s]),

y(t) = z1(t),

which ends the proof.

As a corollary, one gets the following result.

Corollary 1: If the input-output equation (8) admits a retarded linear state-space representation,
up to input-output injection, then it can be written in the form (33).

Example 4: This example illustrates the use of Algorithm 1 in the solution of Problem 1. Let us
consider the input-output equation

ÿ(t) = y(t− 1)u(t− 3) + y(t)ẏ(t− 1) + ẏ(t)y(t− 1) (34)

dÿ(t) = y(t− 1)du(t− 3) + u(t− 3)dy(t− 1) + y(t)dẏ(t− 1)+
ẏ(t− 1)dy(t) + ẏ(t)dy(t− 1) + y(t− 1)dẏ(t)

Following the algorithm, we define

ω1 = y(t)dy(t− 1) + y(t− 1)dy(t) = d(y(t)y(t− 1))
ω2 = u(t− 3)dy(t− 1) + y(t− 1)du(t) = d(y(t− 1)u(t− 3)),

then a realization of the equation (34) is

ż1(t) = z2(t) + y(t)y(t− 1)
ż2(t) = y(t− 1)u(t− 3)
y(t) = z1(t)

(35)

which is in the form (9). /

4. Equivalence to a linear system up to input-output injections through invertible
changes of coordinates

In this Section given the state-space equations of a given system, the problem of its equivalence
to a linear system up to input and output equation through an invertible change of coordinates is

13
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addressed.
Differently to the previous case it is not always possible to get a state-space equation linear up

to input and output injection, and whose linear part is not affected by the delay. This can be easily
understood through the following example.

Example 5: Let us consider the dynamical system

ẋ1(t) = x2(t) + x1(t− 2) + y(t)2

ẋ2(t) = y(t)y(t− 1)
y(t) = x1(t)x1(t− 1)

(36)

The given system is already in the form (9). There doesn’t exists an invertible change of coordinates
which transforms the given system into the form (9) with Ai = 0, Ci = 0 for i ∈ [1, s].

Examples like Example 5 show that weaker conditions are needed for testing the existence of
a solution for the problem of linearization with delays. In the rest of this Section, necessary and
sufficient conditions are discussed for the existence of a solution to this problem.

Now the solution of Problem 2 is discussed. To this end, an Algorithm is proposed which does not
need the computation of the input-output representation but is based on the normalized covector
λ(x, ū, δ) satisfying Lemma 3.

Algorithm 2:
Let λ(x, ū, δ) := [1, χ0

n−1, · · · , χ0
0, µ

0
n−1, · · · , µ0

0] be a normalized covector satisfying Lemma 3.
Set

Ψ1 := −
n−1∑
i=0

χ0
i (x, ū, δ)dy

(i)(t)−
n−1∑
i=0

µ0
i (x, ū, δ)du

(i)(t). (37)

and set

dh0 := dH(x[s]) (38)

STEP 1. Set ω1 := −χ0
n−1(x, ū, δ)dy(t)− µ0

n−1(x, ū, δ)du(t)
Check: dω1 = 0?
NO: Stop, YES: Compute Φ1(x,u, δ) such that ω1 = dΦ1(x,u, δ), and set

dh1(x) := dḢ(x(t))− dΦ1(x,u, δ) (39)

and

Ψ2 := −
∑n−2

i=0 χ
1
i (x, ū, δ)dy

(i)(t)−
∑n−2

i=0 µ
1
i (x, ū, δ)du

(i)(t). (40)

with

χ1
i (x, ū, δ) = χ0

i (x, ū, δ)−
(

n− 1

n− 1− i

)
(χ0
n−1(x, ū, δ))(n−1−i)

µ1
i (x, ū, δ) = µ0

i (x, ū, δ)−
(

n− 1

n− 1− i

)
(µ0
n−1(x, ū, δ))(n−1−i)

STEP k. Set ωk := −χk−1
n−k(x, ū, δ)dy(t)− µk−1

n−k(x, ū, δ)du(t)
Check: dωk = 0?

14
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NO: Stop, YES: Compute Φk(x,u, δ) such that ωk = dΦk(x,u, δ). Set

dhk(x) := dH(x(t))(k) −
k−1∑
j=0

dΦk−j(x, ū, δ)
(j), (41)

and

Ψk+1 := −
∑n−k−1

i=0 χki (x, ū, δ)dy
(i)(t)−

∑n−k−1
i=0 µki (x, ū, δ)du

(i)(t), (42)

with

χki (x, ū, δ) = χk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(χk−1
n−k(x, ū, δ))

(n−k−i)

µki (x, ū, δ) = µk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(µk−1
n−k(x, ū, δ))

(n−k−i)

/

Proposition 2: Assume that for ωi in Algorithm 2 is an exact differential, i = 1, · · · k. Then

i) ωi = dΦi(y(t), · · · , y(t− s), u(t), · · · , u(t− s))
ii) Ψi = y(n)(t)−

∑i−1
l=1 Φ

(n−l)
l (ȳ, ū)

Proof. By construction

ωi = −χi−1
n−i(x, ū, δ)dy − µ

i−1
n−i(x, ū, δ)du

Since ωi is an exact differential, then necessarily it is only a function of y(t), u(t) and their delays,
which proves i).

As for ii), the proof is iterative. Ψ1 is computed starting from the normalized covector λ and
thus Ψ1 = y(n)(t). Assume that ii) is true from k, then

ωk = −χk−1
n−k(x, ū, δ)dy − µ

k−1
n−k(x, ū, δ)du = dΦk(y, u)

Accordingly

dΦ
(n−k)
k = −

n−k∑
`=0

(
n− k
`

)[(
χk−1
n−k(x, ū, δ)

)(`)
dy(n−k−`) −

(
µk−1
n−k(x, ū, δ)

)(`)
du(n−k−`)

]
.
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It follows that

Ψk+1 = −
n−k−1∑
i=0

χki (x, ū, δ)dy
(i)(t)−

n−k−1∑
i=0

µki (x, ū, δ)du
(i)(t)

= −
n−k−1∑
i=0

(
χk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(χk−1
n−k(x, ū, δ))

(n−k−i)
)
dy(i)

−
n−k−1∑
i=0

(
µk−1
i (x, ū, δ)−

(
n− k

n− k − i

)
(µk−1
n−k(x, ū, δ))

(n−k−i)
)
du(i)

= Ψk +

n−k∑
i=0

((
n− k

n− k − i

)
(χk−1
n−k(x, ū, δ))

(n−k−i)dy(i) +

(
n− k

n− k − i

)
(µk−1
n−k(x, ū, δ))

(n−k−i)du(i)

)

= Ψk − dΦ
(n−k)
k = y(n)(t)−

k∑
j=1

dΦ
(n−j)
j

Accordingly, the following result can be stated

Theorem 3: Problem 2 is solvable if and only if

i) the system admits an input–output equation of retarded type
ii) The one-forms ωi defined by Algorithm 2 are exact for all i = 1, . . . , n.

iii) There exists a polymodular matrix T (x[p,j], δ) and a full rank matrix Q(δ) ∈ R[δ] such that

Q(δ)T (x[p,j], δ)dx(t+ p) = P (x[s], δ)dx(t) = (dhT0 , . . . , dh
T
n−1)T from Algorithm 2.

Proof. From Lemma 1, it follows that system (2) is linearizable by additive input-output injections
only if i) stands. Assume now that the system is already in the form (9), and apply Algorithm 2.
Because of its structure, the differential of its input-output equation is given by (24), that is,

dy(n) = −
n−1∑
i=0

σidy
(i)(t) +

n∑
k=1

k−1∑
i=0

σkC(δ)Ai(δ)dϕ(y[s],u[s])
(k−i−1),

Accordingly one gets that, starting from dh0 = C(δ)dz, at the first step

ω1 = −σn−1dy + C(δ)dϕ = dΦ1

dh1 = C(δ)A(δ)dz + σn−1dy

and at step k

ωk = −σn−kdy +

k−1∑
j=0

σn−k+1+jC(δ)Aj(δ)dϕ = dΦk

dhk =

k∑
j=0

σn−jC(δ)A(δ)jdz(t)

which proves that the ωi’s must be exact one-forms. Furthermore, in the x coordinates one thus
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gets

dĥ =


1 0 0 . . . 0

σn−1 1 0 . . . 0
σn−2 σn−1 1 . . . 0

...
...

...
. . .

...
σ1 σ2 σ3 . . . 1




C(δ)

C(δ)A(δ)
C(δ)A(δ)2

...
C(δ)A(δ)n−1

 dz(t) = Q(δ)dz(t). (43)

Since by assumption z(t) = φ(x(t+ p), · · · , x(t− j)), dz(t) = T (x[p,j], δ)dx(t+ p), we have that

dĥ = Q(δ)T (x[p,j], δ)dx(t+ p) = P (x[0,s], δ)dx(t)

which proves the necessity of iii).
For the sufficiency, according to iii) there exists z(t) = φ(x(t + p), · · · , x(t − j)), such that

dz(t) = T (x[p,j], δ)dx(t + p). Since conditions i) and ii) are verified, in the z–coordinates the
output of the Algorithm 2 is given by

dy
dẏ − dϕ1(y, u)

dy(2) − dϕ̇1(y, u)− dϕ2(y, u)
...

dy(n−1) − dϕ(n−2)
1 (y, u)− . . .− dϕn−1(y, u)

 = Q(δ)dz. (44)

Differentiating equation (44) and denoting by qi(δ) the i-th row of the matrix Q(δ)

Q(δ)dż =


dẏ

dÿ − dϕ̇1(y, u)

dy(3) − dϕ̈1(y, u)− dϕ̇2(y, u)
...

dy(n) − dϕ(n−1)
1 (y, u)− . . .− dϕ̇n−1(y, u)

 =


q2(δ)dz + dϕ1

...
qn(δ)dz + dϕn−1

dϕn



=


q2(δ)

...
qn(δ)

0

 dz + dϕ = Ā(δ)dz + dϕ

(45)

Multiplying by the adjunct matrix Q(a)(δ) we getq̄1(δ)
. . .

q̄n(δ)

 dż = Â(δ)dz + dϕ̂

Using the identity of polynomials one thus gets that

dż = A(δ)dz + dΨ(y, u)

which ends the proof.
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5. Conclusions and open questions

In the present paper necessary and sufficient conditions under which a nonlinear time-delay system
can be transformed into a linear time-delay system up to input and output injection were derived.
Moreover, it is proven that if an observable system has an input-output equation of retarded type,
a normalized left annihilator, as defined in Section 2.3, exists. This normalized vector allowed
to develop a linearization algorithm that does not need the explicit computation of the input-
output equation. The linearization algorithm was used to settle conditions for the existence of
solutions for Problems 1 and 2. Sufficient and necessary conditions, established by Theorem 3, for
the equivalence up to input and output injection to a linear system with delays were presented
based on the computation of an invertible change of coordinates. The results presented can be
successfully used in the observer design context. Further investigation will concern the wider class
of neutral systems.
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