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18 SUMMARY
;g An unstructured, shock-fitting algorithm, originally déweed to simulate steady flows, has being further
21 developed to make it capable of dealing with un-steady fldis. present paper discusses and analyses the
additional features required to extenduizsteadylows the steady algorithm. The properties of the unsteady
22 version of this novel unstructured shock-fitting technique tested by reference to the inviscid interaction
23 between a vortex and a planar shock: a comparative assessisbnck-capturing and shock-fitting is made
24 for the same test problem, using nearly identical grids.y@ight © 2010 John Wiley & Sons, Ltd.
25
26 Received ...
27
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29
30
31
32 1. INTRODUCTION
gi When shock-capturing schemes are used to model the interaction ofighee& with compressible
35 turbulence or sound waves, the discretization errors generated akbicgptured shock wave can
36 severely degrade the fidelity of the flow simulation within the entire shock-dtream regionl, 2].
37 These limitations appear to be rooted in the fundamental ingredients of shptkring
38 discretizations, namely the existence of intermediate shock points, locatethviedpethe pre- and
39 post-shock states, that are a mere numerical artefact and have notkiogvith the true internal
40 structure of the shock-wav8,[4]. This observation points to a fundamental weakness of the shock-
41 capturing paradigm, so that it is not surprising that PirozzolPiraffirms that: “These limitations
42 .... can only be overcome by some form of shock-fitting”.
43 Shock-fitting algorithms on structured grids, which still nowadays find thay iw compressible
44 DNS, see e.g.g, 6], are limited to simple flow configurations. Indeed, two different shock-§ttin
45 approaches have been developed since the late 60s in the structdrédugrework: boundary
46 shock-fitting [/] and floating shock-fitting §, 9]. In the former, the shock is made to coincide
47 with a boundary of the grid and it moves, thus deforming the overall meghelfatter approach,
48 the mesh is fixed and the shock is free to move independently of the gride Thiesapproaches
49 have intrinsic limitations that reduce their applicability. In the boundary stiittikg approach, the
50 shock plays the role of a boundary condition and this significantly simplifiegipeementation;
51 nevertheless, the constraint of using grid-block boundaries as fitbettsHimits the applicability of
52 the technique to simple flows in which the shocks do not change in numbeirahdfknteractions,
53
54 -
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i.e. the flow topology, during the transient. The floating shock-fitting amtroalthough more
versatile than the former from a topological point of view, becomes algoritidipicery complex
when high order scheme are used, see 4@, pnd the implementation of this technique in an
existing gas-dynamic solver requires significant modifications of its compngtiernel.

In the attempt to relieve most of the algorithmic difficulties encountered by sfiibicig methods
when used on structured grids, the authors have recently developetsanctured shock-fitting
algorithm capable of simulatingteadyflows in two [L1, 12, 13] and three 14] spatial dimensions.
The unstructured, shock-fitting algorithm has features of both the lzoyraahd floating variants of
the shock-fitting technique that had been proposed and used in the itdigtid framework over
the last fifty years: the fitted shocks are treated as intémamdariesof zero thickness that are
free tofloat throughout a triangular/tetrahedral mesh that covers the entire compatatmmain
and locally adapts to follow the shock motion. The Rankine—Hugoniot jump retatice used to
compute the Lagrangian motion of the discontinuities and an unstructureeix-oentred, shock-
capturing solver is used to discretise the governing PDEs in the smoothsegitre flow-field.

The aforementioned methodology is here being further developed to madkgaible of dealing
with un-steady flows. This can be accomplished by introducing three neediegtsi) the shock-
capturing code must be made capable of working in an Arbitrary Lagraigikerian (ALE) setting;
i) the temporal accuracy of the Lagrangian shock motion must be raiseddndserder; andii)
the algorithm must be capable of automatically detecting changing flow topolcgiels as those
that may occur when a shock meets another shock or a solid wall.

The former two issues are addressed in this paper, whereas the lattefas fiefure work.

The paper is organised as follows. Sextlescribes the numerical method: the un-steady shock-
fitting algorithm is described in details in Se2tl, whereas the discretization adopted in the shock-
capturing code is only briefly summarised in S@c?. The numerical results are presented in S&ct.
a smooth flow case is used in Se8tl to confirm that the ALE shock-capturing discretization
is second-order-accurate in both space and time, whereas a classiol@np that involves the
interaction between a vortex and a steady planar shock is used in3S&tb. demonstrate the
current capabilities of the un-steady, unstructured, shock-fitting igeénalso by comparison with
shock-capturing calculations.

2. THE NUMERICAL METHOD

The numerical method we propose consists in the loose coupling betweemnstinectured shock-
fitting algorithm that is used to model the discontinuities (both shocks and slig-ered an
unstructured shock-capturing code that is used to discretise the gay&DESs in smooth regions
of the flow-field.

The two codes are loosely coupled in the sense that the shock-captodiegsinvoked as a black
box by the shock-fitting one. This has obvious consequences in termgaitlamic simplicity,
since it allows to re-use any existing shock-capturing code, as long aséretization is vertex
centred. Recent worKLp] has indeed shown that modularity can be a key feature of the proposed
unstructured shock-fitting technique.

The unstructured shock-fitting algorithm consists of two key ingredienta:l@cal re-meshing
technique that constructs a time-dependent mesh in which the fitted discongirargienternal
boundaries of zero thickness and 2) an algorithm for solving the RarHungoniot jump relations
that provides the Lagrangian velocity of the discontinuity and an updated dependent variables
within the downstream side of the fitted shock. The shock-fitting algorithmaighes a moving,
internal boundary of zero thickness to the unstructured shock-dagteolver that is used to
discretised the governing PDEs away from the fitted discontinuities.

In the next two sections we will describe the shock-fitting algorithm andkshapturing code.

2.1. Shock fitting algorithm
The unstructured shock-fitting algorithm can handle both shocks atdat@iscontinuities, or slip-

lines. Hereafter we will refer to shock waves, because this is the onlydfidscontinuity that has
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been modelled in the numerical examples of S&dDetails concerning the numerical modelling of
contact discontinuities as well as interacting discontinuities can be fountiinl 4.

In order to illustrate the algorithmic features of proposed algorithm, let usidena two-
dimensional domain and a shock front crossing this domain at time d€geke Fig.1(a)). In two
space dimensions, the fitted shock fronts are made of a connected $diessegments (which
we call the shock edges) that join the shock points (marked by squarés ih(&). These shocks
are free to move throughout a background triangular mesh (whoses aoelelenoted by circles in
Fig. 1(a)), that covers the entire computational domain. It is worth underlining thgtdkgion of
the shock points is completely independent of the location of the nodes ohtkgiound grid.
Moreover, two sets of values, corresponding to the upstream andstteam states, are assigned
to each shock point, whereas each node of the background meshastehiaed by a single set of
dependent variables.

We assume that at timethe solutionZ and nodal grid velocityw is known at all grid and
shock points. Within the shock points the grid velocity coincides with the shpe&ds within the
grid-points of the background triangulation the grid velocity is zero, urtlesgrid moves and/or
deforms.

The process that leads from timéo an updated mesh and solution at time At can be split
into several steps that will be described in detail in the following paragraph

2.1.1. Cell removal around the shock frofhe first step consists in removing cells around the
shock front. As shown in FidL(b), all cells of the background mesh that are crossed by the shock
line are removed along with the mesh points that are located too close to thefehrdckVe call

Q T O O T Q0

Phanton Cells enclosin
nodes phantom node

Cells crosse
by shock

Co————— o O

(a) Shock front moving over the background triangulatb) Dashed lines mark the cells to be removed; dashed
mesh at time. circles denote the phantom nodes.

Figure 1. Background triangulation and shock front.

“phantom” those grid-points of the background mesh (shown using dastutes in Fig.1(b)) that

are removed due to their proximity to the shock front; moreover, all cells patileast one phantom
node among their vertices are also removed from the background triinguthese are the cells
shown using dashed edges in Figb). Further details concerning the criterion used to remove the
phantom nodes can be found i].

2.1.2. Local re-meshing around the shock frédllowing the cell removal step, the background
triangulation has been split into two or more disjoint sub-domains, as showg.i@(g). The hole
dug by the fitted front is then re-meshed using a constrained Delaunaguiggion (CDT): both
the shock segments and the edges belonging to the boundary of the hotmstr@ined to be part
of the final triangulation. No further mesh point is added by the CDT, whichiigently performed
using thet r i angl e [17] code.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
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(a) The background mesh is splitinto disjoint sub-domaing(b) The triangulation around the shock has been rebuilt.
by a hole which encloses the shock.

Figure 2. The shock front digs a hole in the mesh which is laeneshed.

Upon completion of this stage, the computational domain is discretised by a mesticin tive
shock points and the shock edges are part of the triangulation. This iswsttall the “shock-fitting
mesh”, it differs from the background triangulation only in the neighboadhof the shock front:
compare figsl(a)and2(b).

2.1.3. Computation of the tangent and normal unit vector®rder to be able to apply the jump
relations, tangent and normal unit vectors are needed within each gbimtkThis is accomplished
using finite-difference (FD) formulae which involve the coordinates ofsieck point itself and
those of its neighbouring shock points. When the shock-downstreamidl@ubsonic, the FD
formula is centred about the shock point where the normal has to be cainpuien the shock-
downstream flow is supersonic, however, the FD formulae have to bsideé in order to respect
the domain of dependence and thus avoid that geometrical instabilities arigetladoshock front.
Details concerning the criterion used to select the shock points to be used anéhsided FD
formulae are given in11] and one-sided formulae that are second-order accurate for Sk
made up of un-evenly spaced shock nodes are givelgin [

2.1.4. Solution update using the shock-capturing ctt#éng the shock-fitting mesh as input, a
single time step calculation is performed using the unstructured shock-cgpsalver which
provides updated nodal values within all grid and shock points at time leveht. Since the
discontinuities are seen by the shock-capturing code as internal brestlzat move with the
shock speed, the solution for the mesh points located on the upstreamanstr@dam sides of
a discontinuity will be updated using information coming only from the computdtgradomain
that is attached to that side of the discontinuity.

If we consider the upstream state of a shock wave, the update prowdie Ishock-capturing
solver attime level + At is entirely correct. Indeed, within the supersonic, upstream (low-prelss
region, all waves (acoustic, entropy and vorticity) propagate towardshbck so that no boundary
condition is required on this side of the internal boundary. The situation fierelift within the
subsonic region attached to the downstream (high-pressure) side sifidbok. Here the entropy,
vorticity and forward moving acoustic wave propagate away from the disudty. Therefore,
the provisional values computed by the shock-capturing code for thepgiids located on the
downstream side of the shock are wrong. The downstream flow is leowsabsonic in the shock-
normal direction and the backward moving acoustic wave conveys the foliasignal:

At oatpar , YL A
RT b= afﬁ bty 5 (Un)g s (1)
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
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from the downstream region towards the downstream side of the shoekc&h assume that the
Riemann variable defined by Ed.)(s correctly computed by the shock-capturing code.

InEq. (1) a,"*" andu’;"" are the values of the acoustic and flow velocity of the downstream state
of the shock nodes computed by the shock-capturing solver. Thesedt@ables have been marked
with a “tilde” to emphasise the fact that these are the provisional (incowaicis computed at time
t + At by the shock-capturing code before enforcing the jump relation acresdigbontinuity, as
described in SecR.1.5 By contrast, the Riemann variab‘léﬁ“ in Eq. (), even if computed using
the provisional values, is correct and, therefore, it has not beekechay the tilde.

2.1.5. Enforcement of the jump relatioffie missing pieces of information that are needed to
correctly update the solution within all grid-points located on the discontinuiteepravided in the
current step, which consists in enforcing the Rankine-Hugoniot rembetween the upstream and
downstream states.

For notational convenience, we introduce the flow velocity relative to tledisuity:

T =i —w )

wherew is the velocity of the discontinuity relative to an inertial reference frame.xfsgained in
Sect.2.1.4 the shock upstream staté,( a., p.,) has been correctly updated at time level A¢
by the shock-capturing solver. Within the downstream state, only the Riem'mbleRﬁﬁAt is
correctly computed by the shock-capturing solver.

The “correct” downstream state and the shock speed companantmal to the discontinuity
are then obtained by solving a system of five non-linear algebraic egsakonr of these are the
Rankine-Hugoniot jump relations:

’ A A
/0;+At (vn)ff f= pil+At (Un)f;r ! (38.)

A A
piFAL |yttt (UZ)T t_ pZJrAt _|_ptd+At (Ui)fj t (3b)
(ur), 2 = ) (3¢)
HZJrAt _ H:;JrAt (3d)

—1

R;*At _ af;rm + v (un)ffAt (3¢)

2

while the fifth equation uses the only “correct” information, given by Eq, ¢omputed by the
shock-capturing solver on the downstream side of the shock. In B¢/ (s the specific total
enthalpy of the relative motion:

7P, vt
y—1p 2
Observe that all variables in the RHS of Eg3) &re unknown, whereas all values on the LHS
(except the shock speeg are those “correctly” updated by the shock-capturing solver at timé leve
t 4 At. The five unknown quantities as&™", p' 2%, the two Cartesian components of the velocity
vectorit At and the shock speed! ™!, since pressure can be expressed as a function of sound
speed and density. A Newton-Raphson algorithm is used to solve the syfsEers. ) within each
shock point.

2.1.6. Shock displacemeiiihe enforcement of the jump relations described in S2&t5provides
the speed at which the points located on both the upstream and downsitlearfhitie discontinuity
move along the local normal vector. The position of the discontinuity at time leyel\t can
therefore be computed by displacing all the points located along the disapytihis is shown in
Fig. 3(b) where the dashed and solid lines represents the discontinuity at time,lexgp.t + At.
When simulating steady flows, this can be accomplished using the followingfdst-accurate
integration formula:

P = P wl, At (4)

i,sh

Copyright© 2010 John Wiley & Sons, Ltd.
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The low order-of-accuracy of Eg4) does not affect the spatial accuracy of the steady state solution

which depends on the spatial accuracy of the gas-dynamics solver aindftthe tangent and

normal unit vectors. Therefore, Egl)(can be safely used for steady computations in conjunction

with second-order-accurate (in space) flow solvers and the starokah calculation described in
Sect.2.1.3

On the contrary, when dealing with unsteady flows, the temporal accofabg shock motion
has to be the same as that of the shock-capturing solver, i.e. secarehoodirate in our case.
The order of accuracy of the shock trajectory has been raised tagecder by implementing a
predictor-corrector type temporal integration scheme. More specifittadiyredictor step estimates
the position of the shock at time levek 1/2 using the explicit Euler scheme:

P7z+1/2 _ Pz‘n + win,shn?At/z (5a)

7

n+1/2

The shock spet—:v(zifjhl/2 and the normal unit vectar, attime level + 1/2 are then computed

using the intermediate shock positid?j”“/2 and, finally, the position of each shock point is
updated at time level + 1 in the corrector step:

Pl = pro 22 Ay (5b)

i,sh v

In practice, the seven steps (described in S2dt.1to 2.1.7) that make up the shock-fitting

(a) Calculation of the shock-tangent and shock-normal(b) The shock displacement induces mesh deformation.
unit vectors.

Figure 3. Mesh topology in the neighbourhood of the discuities.

algorithm are repeated twice per physical time step: once for the predictaree for the corrector
stage.

Figure3(b) also shows that even when the background mesh is fixed in space, tigelaiacells
that abut on the shock front have one of their edges that moves with tio&, sthus deforming
the cell. This implies that the shock capturing solver that is used in Biepmust be capable of
dealing with moving meshes.

Finally, the choice of the physical time stéy to be used in the shock-capturing code and in
Egs. 6) to move the shock, is not only constrained by the stability criterion of theksbapgturing
solver, but it is also chosen in such a way that during the time intérvak- At] the shock will
remain within the hole that it has dug in the background mesh, se@igBy doing so, none of
the grid-points of the shock-fitting mesh will be overcome by the moving disaghtjras shown in
Fig. 3(b).

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
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17 vertices. the surrounding cells.

18

19 Figure 4. Residual distribution concept.

20

21

22 2.1.7. Interpolation of the phantom nodés the previous steps all nodes of the shock-fitting
23 mesh have been updated at time lewel At. However, the phantom nodes, which belong to the
24 background mesh but do not belong to the shock-fitting mesh, have eotupslated. During the
25 current time step, the shock front might have moved sufficiently far avesy its previous position,
26 that some of the phantom nodes may re-appear in the shock-fitting meshrextntme step. It
27 follows that also the phantom nodes need to be updated to timetlevélt. The update of the
28 phantom nodes is easily accomplished by transferring, using an interpothtib preserves the
29 spatial order-of-accuracy of the discretization, the solution at time level\¢ from the current
30 shock-fitting mesh to the grid-points of the background one.

31 Once the phantom nodes have been updated, the shock-fitting mesh ubkedcinrent time
32 interval has completed its task and can be removed. At this stage the nureeliti@in has correctly
gi been updated at time level- At, taking into account the shock front displacement. The next time
35 level can be computed re-starting from the first step1of the algorithm.

36

37 2.2. Shock-capturing

gg Theeul f s code is an in-house, unstructured shock-capturing CFD solver thdtgmm developed
40 over the last fifteen years; seEd for a detailed description of its basic features aad for more
a1 recent developments. It relies on Fluctuation Splitting (FS), or Residuaiititison [21, 22, 23]
42 schemes for the spatial discretisation. In the FS approach the depeadabtes are stored at the
43 vertices of the computational mesh which is made up of triangles in the 2D spatéctrahedra
44 in 3D and are assumed to vary linearly and continuously in space. Theithflisc balanced®
45 (also referred to as the cell residual or cell fluctuation) is evaluatedeaeh triangular/tetrahedral
46 elemente by means of a conservative linearisatid][ based on the parameter vectdf:=
47 (\/ﬁ, VPH, \/pu, ﬁfu)T, and scattered to the element vertices using sig@élssee Fig.4(a).
48 Within a celle, the signals have to sum up to the net flux for conservafion., & = ®°. The
49 nodal residual is then assembled by collecting fractibfief the net fluxesb¢ associated with all
50 the elements by which the nodes surrounded, as schematically shown in Bi@p). The various FS
51 schemes proposed in the literature differ by the way cell residuals aregpktignals. It is possible
52 to construct schemes that depend linearly upon the solution (when solNiimgga PDE) and are
53 either monotonicity preserving, but limited to first order of accuracy oredosid order accurate,
54 lead to oscillatory behaviour in the neighbourhood of captured discontisiiitiee N scheme2f|
55 belongs to the former class, whereas the FS versiénZ7] of the popular Lax-Wendroff (LW)
56 scheme to the latter. The LW scheme is the shock-capturing scheme usepliimction with shock-
g; fitting throughout this paper, since it allows to achieve second-orderacy in both space and
59 Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
60 Prepared usindldauth.cls DOI: 10.1002/fld
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time while retaining an explicit time stepping. Other explicit schemes that might lokwigte the
proposed shock-fitting algorithms are the Runge-Kutta schemes desorifigf]. Using the LW
scheme, the signals sent to veriexf cell e are:

g [ L g, 1At
P ld+1 2T

Ke| e (6)

wherel is the identity matrix of orded + 2 and K¢, the so-called inflow parameter, is a matrix that
depends upon the cell-averaged Jacobian matrix of the inviscid fluxethambrmal to the edge
opposite vertex, see [L9] for details. When the grid moves and/or deforms, malfjxalso depends
upon the cell-averaged grid velocity.

The following explicit update formula is obtained for the ALE-LW scheme:

G UM = (U + A P 7

e

where|C;| denotes the area of the median dual cell centred about grid-paee Fig4(b), and
U is the vector of the conserved variables which can be computed froompravector using the

following identity:
1 /oU
V=3 (az) 7

The Geometric Conservation Law is satisfied as long as the signals ig)Eare(evaluated on the
mesh at time level + 1 and the telescoping property of the fluxes is guaranteed using the approa
described in29].

3. NUMERICAL RESULTS

3.1. Verification of the ALE formulation

The spatial and temporal accuracy of the ALE-LW scheme has beeredarging an exact solution
of the un-steady Euler equations which consists in a vortex (charactdyis¢he perturbation
velocity field, @), convected by a uniform stream of magnityde, |. More precisely, using a polar
coordinate system with the origin attached to the centre of the vortex and meiwiegstant speed
|lu|, the perturbation velocity field, which is a particular solution of the steadyrEggations,
consists in a clockwise vortex characterised by a purely tangential vetasitponent:

iy = —e|use| e (8a)

i = 0 (8b)

In Eq. @) 7 = r/r. is the non-dimensional radial distance from the pole of the moving referenc
frame and;, « andr,. are parameters that control the shape and magnitude of the perturbatien. O
kinematic features of this particular solution of the Euler equations areeagdiuce-free velocity
field, which implies that density is constant along the streamlines and a novazgaity field. Since

the free-stream flow is isentropic, the thermodynamic variables are eatdiyet from the linear
momentum equation. Moreover, Crocco’s form of the steady momentuntiegjiraplies that there
must be a gradient of the perturbation total enthalpy in the radial directidhastotal enthalpy also
changes across the streamlines. Making the following choice of constdBjsdn= 0.3, a = 0.204
andr./L = 0.05, the maximum velocity perturbation is about 0.35 % of the free-stream velocity
magnitude and the radius of the vortex ab@@b L, L being the reference length scale. The uniform,
background flow is supersonig?., = 1.8 and the reference time scalefig|u..|.

The time-dependent computational domdir(t) is a rectangle; its initial size i$)(0) =
[-0.5L,1.5L] x [-0.5L,0.5L]. Starting from a coarse Delaunay grid, five levels of nested
triangulations have been created by recursive subdivision of theesiawvne; their characteristics
are summarised in Tah.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
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Table I. Inviscid vortex convected by a supersonic stredraracteristics of the various nested grid levels.

level grid-points triangles

892 1688
3471 6752
13693 27008
54393 108032
216817 432128

GO WNE

Each mesh deforms according to the following analytical mapping:

(x]' — %) = (x?fxv) {1 — By [cos (wt) — 1]} n=0,.,N 9

In Eq. ©) w = 27/T is the angular frequency; ~ .355 is the final non-dimensional time;* the
location of grid-point; at time leveln andx, the initial location of the vortex core, which is set
equal to the origin of the Cartesian reference frame. ChooBing (1.5w)~! in Eq. Q) makes

the maximum grid velocity of the same order of magnitude of the un-disturbeesfream flow.
Figures5(a) and5(b) show the grid velocity magnitude and the coarsest (level 1) triangulation at
t =T/4 andt = T, respectively. At these two time instants the grid velocity attains its maximum,
resp. minimum value (different contour levels are used in the two frames).

One calculation has been conducted for each of the five grid levels ofl T&ahe simulation
settings are reported in Tablle observe that the time step lengtht, has been recursively halved
when passing from the coarsest grid level to the finer one and the nwinirae steps/V, doubled.
Figures5(c) and5(d) show the density iso-contours on grid level 4 whien T'/2, T', respectively.
These two time instants correspond to the minimum, resp. maximum size of the compaltatio
domain.
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(a) Grid velocity magnitude and level 1 triangulation afb) Grid velocity magnitude and level 1 triangulation at
t="1T/4. t="1T/2.
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(c) Density iso-contours on the level 4 triangulation afd) Density iso-contours on the level 4 triangulation at
t=T/2. t="T.

Figure 5. Inviscid vortex convected by a supersonic stream.
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Table Il. Inviscid vortex convected by a supersonic streaganorm of the discretization error and measured
order of convergence.

NG VrH Vpu Vv
level At N L P L P L P

p

2 2 2 Lo
1 .0098601 36| 0.9065E-02 - 0.2258E-01 - 0.1747E-01 - 0.2241E-01 -
2 .0049300 72| 0.3159E-02 1.52| 0.7871E-02 1.52| 0.6082E-02 1.52 0.7831E-02 1.52
3 .0024650 144|| 0.8820E-03 1.84| 0.2180E-02 1.85 0.1702E-02 1.84) 0.2273E-02 1.79
4 .0012325 288|| 0.2329E-03 1.92] 0.5678E-03 1.94] 0.4335E-03 1.97| 0.5867E-03 1.95
5 .0006163 576|| 0.6144E-04 1.92] 0.1451E-03 1.97| 0.1092E-03 1.99 0.1481E-03 1.99

\ 2L |
| 07L !

; | inviscid wall
4
[5]
2
05L <
I —
z g
= >
= o
o
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- o 15
2 U 3
[ Qo
Qo . >
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o
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Figure 6. Shock-vortex interactionfs = 1.21, M,, = 0.3): computational domain and boundary conditions.

Denoting byu, andug, the exact, resp. numerical solution (on grid lekglof the governing
PDEs, a global measure of the rate at which the discretization @teru, — ux decreases as the
mesh is refined can be estimated as follows:

p =log (Iry1/1Ix) /1og (hk+1/hx) (10)

wherel} is an integral measure of thHg-norm of the discretization error (at the final tiri@ over

the computational domain (7):
1 1/2
Iy= | —— / e? dQ> (11)
' (|Q<T>| o "

and the ratioh 11 /h;, takes the constant value 2 when triangular meshes are refined byivecurs
subdivision as described above. Tablshows thelL,-norm of the discretization error at the final
time for each component of Roe’s parameter vector along with the globalinegesf the order-of-
convergence computed according to E) (for each pair of consecutive grid levels; it can be seen
that design order is recovered.

3.2. Shock-vortex interaction

This second test case consists in the interaction between a stationaraskackortex and provides

a useful testbed for comparing shock-capturing versus shock-fittings been frequently reported
in the literature, not only as a code verification c&® P7], but primarily as a tool for understanding
the fundamental mechanisnl| 32, 33, 34] that account for noise generation due to the interaction
between a shock-wave and a turbulent flow. The computational domaich wgtsketched in Figs
along with the boundary conditions applied on its boundaries, is the rect@nglg x [0, L]. The
computational domain has been discretised using a sequence of nestaddyetangulation. The
coarsest mesh has been generated using the Triangle ddmf all other grid levels have been
obtained by recursive subdivision of the coarsest one. THbdemmarises the characteristics of the
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Table Ill. Shock-vortex interactiom{s = 1.21, M, = 0.3): characteristics of the various meshes used.

Grid level,k  Grid points ~ Triangles h/L At
1 3481 6776 0.025 2.0 10
2 13737 27104 0.0125 1.016
3 54577 108416 0.00625 0.519

various meshes that have been used both in the shock-capturing caitalada@s “background”
triangulations in the shock-fitting calculation; the symbakfers to the linear mesh spacing along
each of the boundaries.

A uniform, supersonic stream, characterised by a shock-upstreaimmdatber)/; = 1.21, carries

a vortex, from the left to the right of Fig, towards a stationary normal shock. At the initial time,
t = 0, the vortex is centred i, /L, y,, /L) = (0.5,0.5) and the shock is located2. downstream
of the vortex centre. We have used the same vortical structure alreadsilbd®l in Sect3.1 and
defined by Eq. §). Using the following choice of parametens;/L = 0.15, a = 0.204, € ~ 0.21
(which are different from those used in Segtl) gives a vortex Mach number:

max (g)

M, = = Mye(20) 7% e(®7%) ~ 0.296, (12)

Qoo

wherea,, is the sound speed of the free-stream, shock-upstream flow.

The topological pattern that arises once the vortex impinges on the shpekdie upon the
shock and vortex strengths. We shall hereafter refer to the taxonoopterti by Grasso and
Pirozzoli [34], who defineweakshock-vortex interactions as those that do not exhibit any shock
reflection andstrongshock-vortex interactions as those that feature reflected and diffrsloteks;
strong interactions can be further classified depending on whetheeati@fl or Mach reflection
occurs. The same authors identify in thié, M, ) couple the dimensionless parameters that govern
the interaction: when the vortex Mach number is sufficiently low, weak intierzs always occur;
however, at a given shock strength, an increase in the vortex Machenabove thé/, ~ 0.1 - 0.2
threshold causes the shock to fold thus producing reflected and tiffrabocks that yield either a
regular or a Mach reflection, depending upon the valu&/of

According to the aforementioned classification, a Mach reflection is exppéatesketched in
Fig. 7) for the (M, = 1.21,M, = 0.3) couple used in the present numerical calculation.

Simulations have been advanced up to a final, non-dimensionalZtimé.5, when the vortex
has travelled about two vortex radii downstream of the standing shock.

A pointwise grid convergence analysis was carried out, as describe@fin[3®], using the
solutions computed on the three mesh levels. Denoting the order of the leading error term
in the series representation of the discretization efgor

er = ug — up = gphj + O (hz"'l) , (13)
the measured ordercan be estimated pointwise as follovas]:

_ log (1/R)
P= g2 (14)

within all grid-points of the coarsest mesh level 1, using the numerical sotitigailable on all
three grid levels of Tahll. In Eq. (14), R is the so-called grid convergence monitor:

U2 — Uy €1 — €2
R= = (15)
U3z — u2 €2 — €3
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1 ______,:_
) Tof <>

© ©

time

Figure 7. Evolution of the shock wave following the interantwith the vortex:1 and2 are the reflected
shocks, 1} andT> the triple points and the dashed lines represent the caditaintinuities; time increases
from left to right.

which allows to classify the convergence behaviour within the grid-poinfsliasvs:

Monotone convergence 0 < R <1
Oscillatory convergence—1 < R < 0
Oscillatory Divergence R < —1
Monotonic Divergence R>1

(16)

The convergence analysis was limited to those regions shown i,Rigorder to exclude areas of
uniform flow, both upstream and downstream of the shock, where theetlimation error is of the
order of machine accuracy.

TablelV summarises the results of the pointwise grid convergence analysis; its calepans
the percentage of monotonically converging grid-points, followed by tlezage measured order
< p> and its standard deviation (p), both calculated only within the subset of monotonically
converging grid-points; the percentage of grid-points that experi@scélatory convergence,
followed by the averaged measured ordep* >, computed by taking the absolute value of the
convergence rati® in Eq. (15); finally, the last two columns report the percentage of grid-points in
which the discretization error increases as the mesh is refined.

The following observations can be made:

e Atthe earliest time = 0.3, nearly half of the grid-points experience monotonic convergence
at design order.

e As time progresses, the percentage of grid-points where convergenceonotonic
slightly decreases and, correspondingly, the percentage of gritcpeiere convergence is
oscillatory increases. The standard deviatidip) also increases with time. These behaviour
is probably due to the appearance of the secondary reflected shpeksl T, of Fig. 7 that
are captured, rather then fitted.

o At all times, the discretization error increaséB|(> 1) with mesh refinement within about
30% of the grid-points.

The spatial distribution of the observed order-of-convergence ®rdépendent variable/p is
displayed in Fig8 for all three time levels. Figur8 clearly shows the presence of wide regions
where the observed order-of-convergence matches design drderegions where the observed
order is larger or smaller than design order form circular patterns ckemir¢he vortex core.
These patterns can be viewed as the footprint of the acoustic wavesggehly the shock-vortex

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
Prepared usindldauth.cls ) ) DOI: 10.1002/fld
http://mc.manuscriptcentral.com/fluids



Page 13 of 18 International Journal for Numerical Methods in Fluids

1 UNSTEADY SHOCK-FITTING FOR UNSTRUCTURED GRIDS 13
2
3 Table V. Shock-vortex interactions = 1.21, M, = 0.3): pointwise convergence analysis for the shock-
4 fitting calculation using the LW scheme at three time ingant
2 t=0.3
7 0<R<1l <p> o) —-1<R<0 <p"> R>1 R<-1
8 /P 46.8 % 1.851 1.376 247 % 2190 155% 13.0%

N 47.6 % 1.871 1.349 26.1 % 2152 136% 12.7%
9 \/PU 53.9 % 2.015 1522 20.7 % 2.037 147% 10.7%
10 NG 53.0 % 1.815 1.286 23.4% 2353 154% 82%
1
13 0<R<1 <p> o) -1<R<0 <p°> R>1 R<-1
14 N/ 38.9 % 1.937 1.545 35.2 % 2171 13.0% 13.0%

VoH 40.0 % 1.923 1.560 36.4 % 2282 121% 115%
15 N 49.3% 2112 1.592 31.0% 2267 11.8% 79%
16 NG 45.9 % 1.938 1.573 34.3 % 2501 115% 82%
17
19 0<R<1l <p> o(p) -1<R<0 <p*> R>1 R<-1
20 N/ 35.3% 1.877 1.643 34.2 % 2114 165% 13.9%

VoH 38.3% 1.969 1.630 33.4% 2130 16.0% 12.3%
21 N 38.3% 2.123 1.639 33.4% 2306 156% 12.7%
22 NG 42.0 % 1.968 1.552 30.6 % 2346 17.8% 9.6%
23
24
25
26
27
ég interaction at previous times. This observation is in line with the same kind of §nadiade in
30 Ref. [35] in connection with steady supersonic flows. Indeed, in the supersaséthe iso-contour
31 lines of the observed order-of-convergence approximately followlheacteristic lines whereas in
32 the present unsteady case they follow the intersections between thetehatia cone (in the:, y, ¢
33 space) and planes at constant time.
34 A qualitative comparison between the capturing and fitting modelling practicesnall be
35 given. Figured shows the pressure iso-contours at three different time levels commitedilithe
36 explicit, shock-capturing LW scheme (LW-S@), the same scheme, but with the main shock fitted
37 (LW-SF) andiii) the time-implicit shock-capturing MM-PG-LDA scheme (LDA-SC) described
33 in Ref [20]. The two shock-capturing solutions were computed on the same stationdry g
39 identical to the background mesh used in the shock-fitting calculation. Tieartson between
40 the shock-capturing and shock-fitting solutions using the same LW schemes she significant
a1 improvement in solution quality that shock-fitting allows to achieve for a giviscretization
42 scheme. In particular, shock-fitting makes second-order-accuragar,linon-monotone schemes,
43 such as the LW scheme, usable in the simulation of flows with shocks.
44 A considerably better shock-capturing solution, see Fi¢s)9(i), has been obtained using the
45 time-implicit MM-PG-LDA scheme; even so, the quality of the MM-PG-LDA solutismot as
46 good as that computed by shock-fitting and the LW scheme. Indeed, the>@MBA solution
47 shows oscillations in the iso-lines whose origin is clearly numerical and ysigdi. It should be
48 mentioned that the coupling between this scheme and the shock-fitting algoritimingessible at
49 present because the current shock-fitting implementation is explicit in time.
50 The entropy iso-contours shown in Fi) turn out to be particularly revealing in highlighting the
51 differences between the shock-fitting and shock-capturing calculafitresshock-fitting solution,
52 displayed in Figs10(d)-10(f), shows entropy variations only in the region where the vortex impinges
53 on the shock. These entropy gradients are caused by the spatiallyleafidique shock angle and
54 hence shock intensity. By contrast, spurious entropy disturbancesesent in the shock-capturing
55 solutions also in regions where the shock is straight. These disturbaolbé® phe downstream
56 region in the MM-PG-LDA calculation, Figs.0(g)10(i), and both the upstream and downstream
57 regions, Figs10(a)10(c), in the LW solution, since the latter scheme is not entirely upwind.
58
59 Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§2010)
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4. CONCLUSIONS

The shock-fitting technique for unstructured grids that the authors leee developing over the
last few years has so far been successfully applied to two- and thmesmsional steady flows
featuring interacting shocks; in the present paper it has been sfidhesstended to unsteady
flows characterised by a fixed shock topology.

In all applications tested so far, this new technique has shown huge pblbemigdits with respect
to the shock-capturing approach and a reduced algorithmic complexity vspleceto the shock-
fitting techniques developed in the 70s and 80s within the structured gridviranielndeed, the
present shock-fitting technique has completely bypassed the dichotonghtratterised the two
different shock-fitting approaches used in the structured mesh cotitextoundary shock-fitting
approach, easy to implement, but limited to simple flow topologies and the floating-§tting
approach, more versatile, but extremely complex to code. In an unsedatuid framework all
fitted shocks and all interaction points are treated as interior boundaggerdiess of the flow
complexity.

In spite of this success, we are aware that much more work is neede@émmabtain an unsteady
shock-fitting solver can be as general-purpose as any common shpttking solver. The major
challenge that needs to be faced to further pursue the development prfojh@sed unstructured
shock-fitting technique consists in managing the topological changes thealtypccur in an
unsteady flow, such as the formation of new shocks due to the coalesseoempression waves
or the interaction of shocks with solid surfaces or other shocks. Ttekditting technique must be
capable of explicitely modeling all these topological changes, a capabilityhvigicot needed at
all when using a shock-capturing approach. This striking differentteeikey feature that allows to
understand in which respect these two modeling approaches aremifiehy shock-fitting always
gives better performance and, finally, why shock-fitting is very experis terms of modelling and
programming effort. Put it simply, “fitting” means: understanding, modelirdy &inally, simulating,
whereas “capturing” means simulating, then, eventually, understanding.

This work is dedicated to the memory of Gino Moretti, the great

researcher who has largely contributed to the development and popularity

the shock-fitting technique. Gino Moretti passed away on March 15th .2015
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Figure 8. Shock-vortex interactionfs = 1.21, M, = 0.3): pointwise measured order Qfp at different

time levels, Lax-Wendroff shock-fitting calculation.
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Figure 10. Shock-vortex interactiod/; = 1.21, M, = 0.3): entropy iso-contours at different time levels
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