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Abstract The authors study the problem of the small
oscillations of a system viscous liquid- barotropic gas
in a fixed container. From the equations of motion and
using two auxiliary problems, they reduce the problem
to a system of two operatorial equations in a
suitable hilbertian space. By means of the methods
of the functional analysis, they prove the existence of
the spectrum and study its properties.
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1 Introduction

The problem of the small oscillations of an incom-
pressible inviscid liquid in a container by means of the
methods of the functional analysis was a subject of a
pioneering work by Moiseyev [1] and has been
extensively studied afterwards. We can find these
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works in the books [2—4]. The more difficult case of
the viscous fluid has been also the subject of many
papers, see [5].

The problem of the small oscillations of a system
homogeneous inviscid liquid—gas has been studied in
the work [6], that is presented in the book [3], but with
simplified equations for the gas. The case of hetero-
geneous inviscid liquid with the general equations for
the gas was treated in [7].

In this work, the authors study the problem of the
small oscillations of a system viscous liquid-baro-
tropic gas.

At first, they obtain the equations of motion of the
system, using the general equations for the gas.
Introducing two auxiliary problems that generalize
the problems considered in [3, 6], they replace the
equations and the boundary conditions for the gas by
an operatorial equation and can reduce the problem to
two operatorial equations in a suitable hilbertian
space.

They prove the existence of the spectrum formed by
zero, that is an eigenvalue with infinite multeplicity
and by isolated eigenvalues, with real part positive, so
that the system is stable and they show that there exists
a set of positive real eigenvalues having zero as point
of accumulation.

Finally, they reduce the problem to a Krein—Langer
quadratic pencil [8], so that the non real eigenvalues
can have as only one point of accumulation: the
infinity.
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2 Position of the problem

In the equilibrium position, the viscous liquid (resp.
the gas) occupies a domain Q (resp. ) bounded by a
part X (resp. Xo) of the wall of the container and by
horizontal interface I', the equation of which with
respect to the orthogonal axes Ox x,x; (Ox; vertical
directed upwards) is x3 = 0.

Their position at the instant ¢ is modified by the
index ¢, example I;.

We denote by g the constant acceleration due to the
gravity.

We want to study the small oscillations of this
system about its equilibrium position, obviously in
linear theory.

3 Equations of motion
3.1 Viscous liquid

Let x3 be the unit vector in the x3 direction, vertical
upwards.

If p is the constant density of the liquid , and P its
pressure in equilibrium position,

Pt =—pgx,

we denote by u its constant viscosity coefficient, p =
‘P — P° the dynamic pressure (the difference between
the pressure P and P¢) and u(x;,xz,x3,¢) the (small)
displacement of a particle of the liquid with respect to
its equilibrium position, the equations of motion are:
pu=—grad p+ 1 Au,

(Navier — Stokes equation) in Q, (1)

div i = 0 (incompressibility) in Q,

or, after integration between the datum of the equilib-
rium and #:

divu=0 inQ, (2)
and the kinematic condition on X

ul = 0. 3)
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3.2 Gas

If p§(x1,x2,x3,¢) and pg(xi,x2,x3,¢) are the density
and the pressure of the gas, we have the state equation

Py = Ppo) (4)

where P is a given smooth increasing function.

The density p, and the pressure py in the equilib-
rium position must verify the Eq. (4) and the equilib-
rium equation

1
— grad py = —g x3,
Po

so that p, and py are function of x3 with

dpo
dX3

or, if po(0) =0,

= —po(x3)8

Po(x3) = — /0"3 po(w)g dw.

The equations of the motion of the gas are (4) and, if
uo(x1, x2,x3, 1) is the (small) displacement of a particle
with respect to its equilibrium position,

po tig = —pg g x3 — grad pj(Euler’s equation),

(5)

a *
Z -+ div (i tio) = 0 (continuity equation).  (6)

The kinematic conditions on X are, after integration,

uo-nly, =0, (7)

unO‘]‘ :un|r :Oa (8)

where n is the unit vector normal to I', directed
upwards.

Since the volumes of the liquid and of the gas are
constant, we get:

/un|r d'=0; /Mon|r dl' = 0. 9)
r r
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3.3 Boundary conditions on the moving interface
I

If we denote by o;; (resp.e;;) the stress (resp.strain)
tensor of the viscous liquid, we must have
oinj = —pon; on Iy,

or, if P= —pgxs+p+--- is the pressure of the
liquid,

(=P + 2u &)n; = —poni on I';.

Introducing the dynamic pressure p; of the gas by

X3

PSZPO(X3)+[53+-~:—/) po(w)g dw+pg+---,
(
we obtain

= [ poie o 51+ sl = e
+2puegni=0o0n I

and, consequently,

eslr =0, exnlp =0, (10)

Polr — Plr + (p — po(0))g un|r +2u &33|1- = 0.

(11)

3.4 Transformation of the equations of the motion
of the gas

We set, besides pj; = po(x3) + pj(x1, x2,%3,1) + - - -,
pé = pO(x3) + ﬁ(*)(xlvx%x%t) +eeey

where p;; and g are of the first order with respect to
amplitude of the oscillations; we use the method
presented in ([9], pp. 62-64).

From (4) and (6) and setting classically ¢3(x3) =
P (py(x3)), we obtain

po = — div(py(x3)uo), (12)
Py =~ cp(x3) div]po(x3)uo]
and, using the Euler’s equation (5),
2
. cglxs) .
tig = grad div[py(x3)uo] | . (13)
pols) ol

In conditions of the Lagrange’s theorem, we introduce
the displacement potential ¢, defined by

uy = grad ¢,
so the (13) can be rewritten

P ﬁ divlpo(xs)grad oo + C(o).

So, we have

/ Poco” o dQ = / div(p, grad ) dQ

o Q

+ C(l)/ PoCo > dQy.
Q

From the Green formula and (7), (9), we have

/ div(py grad ¢q) dQy =0
Q

and then

[ i doo=c) [ poci? d
Q) Q

@, being determined up to an additional function of #;
we can suppose that

def
(ﬂoeHglo(Qo) = {(pOEHl(QO);A p06'62(p0d00:0}.
o

Then C(7) =0 and the equations of motion of the gas
take the form

2

.. C .

by = p_o div [po(x3)grad o), (14)
0

09, 0p,

le" =0, EH = —y|r. (15)
Besides, we have, using (12):

Po = —PoPo

and the dynamic condition (11) can be rewritten

Plr=(p = po(0))g tnlr + Pr2p e33] = po(0) ol r ),
(16)

where Pr is the orthogonal projector of L*(I") on
*(T) = {f € LX(T); [.f dT = 0}.
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4 An operatorial equation for the viscous liquid
4.1 Variational equation
Let zz(x1, x2, x3) be a smooth function defined in Q and

satisfying div # = 0 and #|y = 0 and # its conjugate.
From the Eq. (1), multipling by #, we have

/pijﬁdQ:f/gradp~ﬁdQ+,u/Ali'lidQ-
o Q Q

Using the Green formula for the vectorial laplacian
formula ([3], p. 128), we get

/pa-ﬁdgz—zu/eij(u)-g,-j(ﬁ) 40
Q Q

+ /(2ﬂ £33 — plp)iin|dT
T

and taking into account (16), the variational equation
of the problem is:

/Pﬁ-ﬁdQ+2u/s[j(d)-sU(ﬁ) dQ
Q Q

+ / (0 po(0))gttaly-— Prpo (0| il I =0,
Y u admissible. (17)

4.2 Operatorial equation

We seek u in the space

def
J('),Z(Q) = {u € HI(Q)’/:\[Hl (Q)r7 divu=0, uls 0},

equipped with the scalar product

(u,@),= /QZSU(u) . sij(ﬁ) dQ

and we introduce the space

def
jwun_{ueﬁun<>u%mf¢wu_m Mz_o}

equipped with the scalar product of £*(Q). For the
meaning of the differential operators, we refer to ([3],
n. 22).

It is well-known that the embedding 7 ,(Q) C

Jo,z(2) is continuous, dense and compact, see [3]. Let
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A be the unbounded operator of 7 5(£2) associated to
the pair ([7(1)’2(9), Jo.x(R)) and to the scalar product
(u7 ﬁ)l '

We remark that, for each ¢ e 1:2(1")7 using a
classical trace theorem in H'(Q) :

‘/ré s dr\sd|é||p(r)||ﬁ||h

so that there exists a bounded operator T from L*(T")
into 7§ 5 (Q) such as

/ré Uyl dU = (TE, u),.

Then, the variational Eq. (17) takes the form, setting

Y
V—;,

/ i i dQ + V(i @), &~ (T(p — po(0))g unly
O P

— Prpo(0)@o|r],u),= 0,V u € j(l),z(Q)-

We can replace it ([10], pp. 10-12) by the following:
the operatorial equation is:

. | .
i+ vAu + ;A T[(p — po(0))g tnlr — po(0)Pro|r]

=0, Vu € J5(Q). (18)

5 Equations of the small oscillations of the system
5.1 Solutions

We seek the solutions of the Egs. (14), (15) and (18)
that depend on time according to the law u(x,t) =
e Mu(x), @y(x,t) = e “py(x), 1 € C. We obtain

1
Pu— JvAu + ;A T[(p — po(0))g un|r

(19)
- )vzpo(O)Pl“<Po|r] =0,
2
oo == div [p, grad ¢, (20)
Po
%| — %o, _ _, |
on, ' * On, 3T
(21)

(/ PoCo > PodQ = 0);
Qo
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where n, is the unit vector normal to the boundary of
Qy, directed to the exterior of €.

5.2 Auxiliary problems

We are going to replace the equations for ¢, (20) and
(21), by a single operatorial equation, using two
auxiliary problems generalizing problems considered
in [3].

5.2.1 Problem I

Let uz € L*(T). We shall find ®y; € Hy, (Q), gener-
alized solution of the Neuman problem,

div [py grad ®y;] =0 in Q,
0D, 0Q,

on Iz, =0, on

It is easy to see that the variational formulation of
this problem is

Ir = —us.

/ po grad Oy, - grad (I:)m dQy

Q
= —/p()(O)(I:)()1M3 ar, v (f)()l S H;ZO(QQ)
r
(22)

As the left-hand side is classically a scalar product in
ngo(QO), the problem has only one solution by the
Lax—Milgram theorem.

Therefore, we can set

(I)()l = Tou3, (23)

where T is a bounded operator from L*(T") into
Hy, ().

If 7, is the trace operator from H'(Qy) into L*(T),
we have

Oo; | = yoTous.

Now, let (1301 be the solution of the Problem I for the
datum ii; € L*(T); then we have easily

/ po grad ®y; - grad (I:)m dQy =
Q

—/po(o)uspr(VoTob:%) dr.
r

Now, we introduce

Co = —po(0)PryoTo, (24)

which is an operator from L?(T") into L?(T"). It is easy
to see that Cy is self-adjoint, positive definite and, like
0, cOmpact.

5.2.2 Problem II

Let f be an element of the space

def
L?zo(QO)/_\{fGLZ(QO); /Q poco2fdsz<)—0},
0

equipped with the scalar product
(fafN)L?) Q) :/ pocy ffdQy.
0 Q
To find g € Hp, (Q), generalized solution of the
Neuman problem,
— div[p, grad ®p) = pycy’f in Q,

0D,

=0
ane |F+ZO ’

the variational formulation of this problem is

- / div(p, grad®y,) - grad(l:)oz a

0
= / oo f Poz dQ, ¥ Doy € Hpy, ()
Q
(25)

and the problem has only one solution by the Lax—
Milgram theorem.

The embedding Hg, (Q) C Lg, () is classically
continuous, dense and compact.

Let us call Aq the unbounded operator of Lg, (o)

associated to the pair (HSIEO(QO)’LSZ)O (Qp)) and to the
scalar product

(q)oz,(ﬁoz)H;)O(QU): /Q po grad®y; - grad®g, dQ.
0

The Eq. (25) can be rewritten

= = = 1
(o2, q)OZ)ngU @)= (f, (DOZ)LéO @) 7 P2 € Ho, (),

so that we have

A()(I)()z :f or (1)()2 :Aalf (26)
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5.2.3 General solution
From (23) and (26), the solution of the Egs. (20) and
21) is
o = Do + D2,
taking uz = u,|p and f = 7/12(/)0‘

Moreover,
Dy, =Ay'f = —2%4," 9,

= — AZA(;I (T()Lt3 — (D()z)7

and applying A, ' :
f == (Tous + A 'f), (27)

that is an unique equation replacing the Egs. (20), (21)
for the gas.

5.3 Small oscillations

Let us calculate the term Prog|, = Pryo@ of the
Eq. (19). We obtain easily
=po(0)Prolr = —po(0)Pryg [Tus + A f]

= Couz — po(0)PrypA, f,

where Cj is defined in (24). We introduce also 7y, the

normal trace operator from H'(Q) into
L2(T) : uz = y|p = p,u.

Therefore, the equations of the small oscillation of
the system (19) and (27) become the following for the

unknown u and f :

1
22u —viAu +—AT[(p — py(0))g 7,u
SAT L0 = po(0)g 7 (28)

+ 22(Copuu — po(0)PrygAq 'f)] =0,
FH2(Topu+Ay' ) =0ue Ty (Q); €Ly ().
(29)

We get equations the equations with bounded coeffi-
cient, by setting

u=A""’U | UeJ};(Q)

and by applying A~'/? to the Eq. (28). We obtain

@ Springer

gAY’y A7'2 U

2aty_viu g PPl
p

1
+ ;;?AI/ZTCW"A*W U

_ p0£0) ;LZAI/ZTP["V()AEI‘]C — 0’

(30)

PTop, A~V U + 2PAJf +f =0,

31
Ue Jox(Q); f €Ly () ey

5.4 Properties of the operators

(a) The operators 7,A~'/? (from 7, (1) +(Q) into L*(T))
and A'/2T (from L*(T)) into Jé,Z(Q)) are mutually

adjoint and compact.
We have, by definition of T:

(@%“)L‘Z(r) = (T¢,u),

and then

(&) = (AVPTEAu) 5 o)

or  (&9,A7 Uy = (APTEU) 4, o)

On the other hand, since y, is compact, also 7,4 ~'/? is
and, by Schauder theorem, AT is compact.

(b) The operators Ty (from L?(T) into L3, (Q)) and
—po(0)PrygAy " (from L3, (Q) into L*(I')) are mutu-
ally adjoint and compact. We have

(T0u37f)L320 (@) :((I)OlvAOCDOZ)LéO(QO)

= (Por, (DOZ)H;%(QU)v

(3, =Po(0)PryoAy iz = — /l_/’o(o)%q)oz\rdr-

But we have ®; corresponding to the datum i3 of the
problem I:

/ grad®, ~gradd301 dQy = — /pU(O)u373py0Toﬁ3 dr.
Joy Jr

Replacing <1301 arbitrary in Hglzo(Qo) by @y, and then
Tous by ®¢,, we obtain
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/ po grad @y, - grad Oy, dQ

0

:/pO(O)uﬂ?Fyod_)ong: —/Po(o)uﬂ_)oﬂr dr,
r r

or ((D017(D02)H§‘20(QU) = —‘/Fpo(O)I/B@OZ‘F dF7

or, finally,
(Tous,f) 1z, (@) = (43, =Po(0)PrioAg Fiary,
0

the compactness of all operators is a consequence of
the compactness of y, and the Schauder theorem.

(c) From the precedent results it follows that the
operators

K = —py(0)A"2TPryAy’ (32)

(from L3, (Qo) into Jo(2)) and Toy,A~"/? (from
Jox(Q)) into LéO(Qo)) are mutually adjoint and
compact.

5.5 Matricial form of the equations

We set

def
y= (;’) e H ™ T0x(Q) @ L (Q), (33)

the Eq. (30), multiplied by p, and (31) can be
rewritten:

72 pA~ +AV2TCyy, A7 K
Toy,A~'/2 Ay!

/1(/11.70.2(9) 0>
0 0/

(p—po(0))gA 2Ty, A2 0
L?;O(QO)

(34)
where K is defined by (32).

6 First properties of the spectrum
6.1 Properties

Proposition 1 1 =0 is an eigenvalue with infinite
multiplicity.

Proof Replacing A by 0 in the Eq. (34), we obtain
ATy ATVPU =0; f=0.
If U # 0, we have

0= (A"2Ty,A7' U, U) Tor@

_ 2
= [[1mA™ 20| .

Then U € Ker(y,A~"/?) and the corresponding eigen-
space is formed by the elements

_[Uc Ker(y,A™'/?)
- P )
O

Proposition 2 The spectrum is symmetric with
respect to the real axis.

Proof The property of the spectrum is verified as the
coefficients in (34) are self-adjoint. O

6.2 Existence of the spectrum

Discarding 4 = 0, we multiply the Eq. (34) by —4~!,
and we write the Eqs. (30), (31) in the form:

(H%;(Q) 0) L[ PAT HAPTC, AT K
0 0 0 0

[ (p=po(0)gAY2Ty,A71 20
! +
0 o)

I, (
/0 0\,
1yt agt) 77

As the operator

7_ :ulj(;,z(ﬂ) , 0
Ly, (Q)

is self-adjoint and strongly positive, it has an inverse.
Setting

I'%y =z eH,

where H is defined by (33), and applying Z~!, we
obtain
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AL+ AV2TCyy, ATV K
L(z) {IH— iIl/z(P + . Covn . 7172

B iII1/2((p—p()(ongA‘/ZT«/nA-W 0)
0 0

0 0
—HZI’I/Z( >I"/2}z:0.
TOVnA—l/Z AEI

Except Iy, all operators are compact and we have a
Fredholm pencil, (see [3], p. 66).

We are going to prove that this pencil is regular, see
[3], by showing that £(—1) has an inverse, where
L(—1) is the value of the operator £ for A = —1. We
can write,

2
(L(=1)(2), )= llzllz; + (Aoy, ¥)ns
with
(Aoy,y)y =p(A'UU) 4, |
+(p—po(0))g(A*Ty,A7 U0 4,
+(AVPTCoy, AT PUU) 4 + (A5 fof )z, (@)

+2R(Top, A~ U )1z 0y

We have:
(AilU’ U)Jo.z >0,

(A'*Ty,A 20, U0) ;= ‘ 7, ATV2U >0

()
and
(,0 - pO(O))g(Al/zTynA71/2U7 U)jm; + (Aalfaf)Lf)U (o)

+ 2R<TOVnA_1/2U1f)L§ZO(QO)

=H(Dm+q)02‘

>0,

2
Hg]10 (Qo)

where @y, and @y, are defined in (23) and (26),
respectively. Finally, we obtain

(L)@, = Izl VzeH;

as L£(—1), self-adjoint and strongly positive, it has a
bounded inverse.
So, (see [3], p. 66), we have the following:

Theorem 3  The Fredholm pencil L1(z) is regular in
the domain C\{0}\{oc}. Its spectrum consists of
isolated points that are eignvalues and its

@ Springer

accumulation points may be only 0 and oo. All points
of the spectrum are eigenvalues. The eigenelements
have finite multiplicities. O

7 Stability of the system liquid—gas
We shall prove that the eigenvalues are located in the

half-plane R4 > 0.
The Eq. (34) divided by —/ takes the form

(Zo—2A-1"'B)y=0 (35)
with

Iy :(N 1702 O)»

0 0
A pA~' + AV2TCyy, A2 K
- Toy, A"/ At )
O Y
0 Iz @) )’

A and B are self-adjoint, 4 is compact, but 5 is not.
Taking the scalar product by y in H, we deduce

U7, @) = AAY,¥)y + 27 (By,y)y,
and then

1

U1, @ = R [(A%)’)H + P (By,y)H] :

By direct calculations, we have

) 2

(By,y)y=[p— P(o)]g (52 lU||L2(r) + |V||L§20(QO) >0,
- 2

(Ay,y)y =p(A~'U,U) 4+ ||®o; +‘D02||H;]0(90> >0;

so that
RA>O0.

Consequently, the eigenvalues are located in the right
plane RA>0.

We are going to prove that R4 > 0. We can have
R4 =0 (then A = iy, y real number) if U = 0. Then,
the Egs. (30) and (31) become

AVPTPrAf =0 5 Adf = 7. (36)

Let us denote by wf, j=1,2,... the eigenvalues of
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Ap. If y # fw;, the second equation of (36) gives f =
0, so that 4 = iy cannot be eigenvalues of the problem.
If y = £wj, the second equation of (36) is verified by
f =1, eigenfunction corresponding to a)j2 But f;
depends on the gas and A, T on the liquid, so that the
first equation of (36)

AVPTPryAy =0

is not satisfied, in general. As R4 > 0, we have proved
the following:

Theorem 4 The system liquid—gas is stable in linear
approsimation. O

8 Ecxistence of a sets of positive real eigenvalues

The Eq. (31) can be written as

<1ng @) T iZASI)J‘ = —2’Toy, AU
0
If |2] is sufficiently small, setting
_ 24-1
m(}) = IL?!U(QO) + )\4 AO 5

it has an inverse m(A)"' that is self-adjoint and
holomorphic in the vicinity of 4 = 0. Consequently,
we have

f==2m(5) " Toy,A7V?U.
Carrying out the Eq. (30), we obtain

def
Z‘,(X)U = [}va_l - V)‘IJO.Z(Q)

L (2= po(0)
I

Po(0)
0

2K m(3) ' Toy, A7V U = 0.

Obviously, £(4) is holomorphic in the vicinity of A =
0 and self-adjoint. Moreover

ﬁ(O) _ (p— ’Op()(o))gAl/zTynAl/z;

L£(0) is compact, and not negative, indeed

E A2y A7V2 4 J2AV2TCyy, ATV,

(2(0)U, U) _(p=p(0)s

P A71/2U 2
Jox(Q) 1Y "

LA(n)

>0

)

but it is equal to zero for U € Ker (A=1/%y,).
Moreover, it results

Al

L (0) = 7‘)1.70);(9)

and it is strongly negative.
Consequently, using a well-known theorem ([3], p.
74), we have the following:

Theorem 5 For each ¢ > 0 sufficiently small, there
exists in | — ¢, ¢| a set of positive real eigenvalues 12
having zero as point of accumulation. The corre-
sponding eigenelements US and an orthogonal basis of

Ker(y,A~'/?) form a Riesz basis in a subspace of
Jo.x(Q) with finite defect. 0

9 Reduction to a Krein—Langer pencil

The Eq. (35) can be written as
(PA-LIo+B)y=0, yeH,

where H is defined in (33). Setting 1 = ) —k, k
positive and constant, we obtain

774+ 2 (T + 2KA) + (RA+ KTy + B)|y = 0.

By direct calculations, we have

(R A+kZo+B)y,y)y, =k illUN G, 0+ I @

so that the operator

def
F=VWKA+kIy+B

is bounded, self-adjoint and strongly positive, then it
has an inverse. Putting

F'ly=zeH,
we obtain the equation
(77co+ 7By + 1)z =0,

with
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Co =F '2PAF~'? and
By =F *(To+ 2k A)F/?

We recognize that the operator Cy is self-adjoint,
compact like .4 and positive definite; indeed

(COZa ZA)H = (Ayay)H 2 07

and equal to zero only for y = 0.
The operator By, is self-adjoint and positive definite,
as

A A 2
(Boz, 2)y = 1 U|| 7, ,(0) + 2k(AY, ¥)3

but it is not compact.
Therefore, for each positive real k, the pencil

Lo(Z) = 2"Co+ 7By + In

is a Krein—Langer operator pencil.

The theoretical study of the operator pencil can be
found in the book ([8], pp. 295-309). For our problem,
we restrict ourselves to the following new result:

Theorem 6 Since By is self-adjoint, the nonreal
eigenvalues can have as point of accumulation only
the infinity. O
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