
Research Article

Defective PITRM1 mitochondrial peptidase is
associated with Ab amyloidotic neurodegeneration
Dario Brunetti1,†, Janniche Torsvik2,†, Cristina Dallabona3, Pedro Teixeira4, Pawel Sztromwasser5,6,

Erika Fernandez-Vizarra1, Raffaele Cerutti1, Aurelio Reyes1, Carmela Preziuso7, Giulia D’Amati7,

Enrico Baruffini3, Paola Goffrini3, Carlo Viscomi1, Ileana Ferrero3, Helge Boman8, Wenche Telstad9,

Stefan Johansson5,8, Elzbieta Glaser4, Per M Knappskog5,8, Massimo Zeviani1,* & Laurence A Bindoff2,10,**

Abstract

Mitochondrial dysfunction and altered proteostasis are central
features of neurodegenerative diseases. The pitrilysin metallopep-
tidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests
oligopeptides, including the mitochondrial targeting sequences
that are cleaved from proteins imported across the inner mito-
chondrial membrane and the mitochondrial fraction of amyloid
beta (Ab). We identified two siblings carrying a homozygous
PITRM1 missense mutation (c.548G>A, p.Arg183Gln) associated
with an autosomal recessive, slowly progressive syndrome charac-
terised by mental retardation, spinocerebellar ataxia, cognitive
decline and psychosis. The pathogenicity of the mutation was
tested in vitro, in mutant fibroblasts and skeletal muscle, and in a
yeast model. A Pitrm1+/� heterozygous mouse showed progressive
ataxia associated with brain degenerative lesions, including accu-
mulation of Ab-positive amyloid deposits. Our results show that
PITRM1 is responsible for significant Ab degradation and that
impairment of its activity results in Ab accumulation, thus provid-
ing a mechanistic demonstration of the mitochondrial involvement
in amyloidotic neurodegeneration.
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Introduction

Mitochondrial dysfunction, whether primary or secondary, is

increasingly recognised as a hallmark of neurodegeneration (Johri &

Beal, 2012; Moran et al, 2012). Not only is the brain a major target

in primary, genetically determined mitochondrial disease, but mito-

chondrial dysfunction is also a prominent feature in many of the

most prevalent neurodegenerative diseases including Parkinson’s

disease (PD) and Alzheimer’s dementia (AD) (Manczak et al, 2006;

Morais & De Strooper, 2010; Friedland-Leuner et al, 2014). For

instance, AD is characterised by the accumulation of the amyloid

beta (Ab) peptide as plaques in the neuropil, and recent work

has suggested that Ab is present in the inner compartment of

mitochondria (Falkevall et al, 2006; Manczak et al, 2006; Hansson

Petersen et al, 2008). The mitochondrial fraction of Ab is quantita-

tively digested by the pitrilysin metallopeptidase 1 (PITRM1)

(Hansson Petersen et al, 2008; Pagani & Eckert, 2011; Pinho et al,

2014). PITRM1 (also known as presequence peptidase, PreP) is a

117 kDa mitochondrial matrix enzyme. In addition to its role in

the disposal of mitochondrial Ab, PITRM1 is deemed responsible

for digesting the mitochondrial targeting sequence (MTS) of

proteins imported across the inner mitochondrial membrane (Stahl

et al, 2002; Alikhani et al, 2011a,b; Teixeira & Glaser, 2013),

which are cleaved from the mature polypeptides by the mitochon-

drial matrix peptidase (MMP). Interestingly, the accumulation of

Ab peptides has been shown to inhibit the activity of Cym1, the

PITRM1 orthologue in yeast, leading to impaired MTS processing

and accumulation of precursor proteins (Mossmann et al, 2014).

We report here a family carrying a missense mutation in PITRM1
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associated with a slowly progressive neurodegenerative pheno-

type. Investigations in vitro as well as in yeast and mouse

models allowed us to clarify the mechanism of the disease and

shed new light on the relationship between mitochondria and

neurodegeneration.

Results

PITRM1 is mutated in patients with a neurodegenerative
phenotype

We studied a single index family (Fig 1A) coming from a small

Norwegian coastal community comprising < 200 individuals. Of five

siblings, two are definitely affected (II-2, II-4); one unaffected sibling

has a peripheral neuropathy (II-1); another has psychiatric symp-

toms, but refuses investigation (II-5); and one died of cancer (II-3)

before we ascertained the family. Our study was approved by the

Regional Committee for Medical and Health Research Ethics,

Western Norway. The index case (II-2), now 68 years old, was diag-

nosed as a child with mild mental retardation and later developed

gradual spinocerebellar ataxia (SCA), obsessional behaviour with

psychotic episodes and hallucinations. Brain MRI (Fig 1B) showed

marked cerebellar atrophy and unilateral signal changes in the

thalamus. Routine blood profile was unremarkable, but CSF exami-

nation showed low Ab1–42 (363 ng/l; n.v. > 550), similar to that

seen in idiopathic AD (Motter et al, 1995; Andreasen et al, 1999).

Total and phosphorylated Tau and 14-3-3 proteins were normal. A

muscle biopsy showed some scattered COX-negative fibres (Fig 1C).

Her brother (II-4) was also described as mildly mentally retarded

from an early age, had obsessional behaviour and episodes of

psychosis, and early onset ataxia. His CT scan showed cerebellar

and some cerebral atrophy. Respiratory chain (RC) complex assays

in muscle homogenate from individual II-2 showed low specific

activities of all complexes, and a concomitant decrease in citrate

synthase (CS), an index of mitochondrial mass (Fig 1D). When

specific activities were normalised to CS, no significant changes were

observed relative to controls, except for a trend towards complex I

decrease. No abnormality was seen in an enriched mitochondrial

fraction from mutant immortalised fibroblasts. Combined homozy-

gosity SNP-based mapping and whole exome sequencing (WES)

were carried out in II-2 based on an autosomal recessive mode of

inheritance. WES resulted in 20,436 genetic variants, of which 240

were coding and not found in our in-house frequency database or

in the 1000 Genomes database at > 0.5% allele frequency. A total

of 13 genes contained rare variants consistent with autosomal

recessive inheritance, and of these, only one gene, PITRM1, was

located within a homozygous region on chromosome 10p shared

by both affected siblings. The mutation NM_014889.2:c.548G>A,

verified by Sanger sequencing (Appendix Fig S1), was absent in

the clinically unaffected brother (II-1), in > 300 normal control

individuals from Western Norway and in the ExAc database (http://

exac.broadinstitute.org). It predicts the synthesis of a p.R183Q

variant. The R183 residue is conserved in both humans and

baker’s yeast.

PITRM1R183Q is unstable and impairs mitochondrial function

To evaluate the pathogenic effect of the p.R183Q mutation, we first

investigated skin fibroblasts and a skeletal muscle biopsy taken

from subject II-2.

PITRM1 RNA expression measured by qPCR was similar in

PITRM1R183Q vs. PITRM1wt cells (not shown). However, Western

blot analysis of proteins separated by SDS–PAGE showed marked

reduction of PITRM1 amount in II-2 fibroblasts and skeletal muscle

(Fig 1E), suggesting protein instability.

To test the effect of the PITRM1R183Q mutation on catalytic activ-

ity, we expressed recombinant PITRM1R183Q and PITRM1wt in

Escherichia coli. Both affinity-purified protein variants showed equal

ability to cleave either of two fluorogenic peptides (Fig 1F), or Ab
(Fig 1G). Taken together, these results demonstrate that

PITRM1R183Q is catalytically active in vitro, but highly unstable

in vivo.

To characterise the cellular pathophysiology associated with

PITRM1R183Q, we studied immortalised fibroblasts from subject II-2.

These cells showed a significant growth defect on respiration-obliga-

tory galactose medium, but not on glycolytic-permissive glucose

medium, compared to PITRM1wt cells (Fig 2A). Interestingly, similar

▸Figure 1. Clinical and molecular studies on PITRM1R183Q mutant patients.

A Family tree. Affected subjects are represented by filled shapes. The index case is II-2 (arrow).
B Brain MRI images of II-1 (FLAIR). A: (a) sagittal interemispheric sequence showing profound cerebellar atrophy (arrow); (b) transverse sequence showing involvement

of the dentate nuclei of cerebellum; (c) coronal sequence revealing cortical atrophy, a wide third ventricle, and high signal changes in the thalami, particularly on the
left (arrow); (d) the thalamic lesion is indicated by an arrow.

C Histochemical staining of skeletal muscle from II-2. Combined COX/SDH staining shows scattered COX-negative (blue) fibres (arrows). Scale bar corresponds to
100 lm.

D Respiratory chain complex activities in skeletal muscle. Specific activities (nmol/min/mg) of complex I, II and IV are reduced in II-2 (red) compared to the controls
mean (blue); CS activity is also low (< 50% of controls), suggesting a reduction in mitochondrial mass (see main text for further details). Each activity was measured
in triplicate.

E Western blot analysis of PITRM1 in primary fibroblasts (left) and skeletal muscle (right) of controls (CTR) and subject II-2. Densitometric quantification using the
Genetools software is shown below the blots. In blue is PITRM1WT and in red PITRM1R183Q.

F Proteolytic activity on two fluorescent oligopeptides (AnaSpec), reported at the bottom of each histogram, by 6-His-tagged PITRM1WT and PITRM1R183Q proteins
expressed in E. coli and affinity-purified by Ni-agarose chromatography. Values are expressed as arbitrary units per sec per lg of protein (a.u./s/lg). Experiments were
performed in duplicate.

G Degradation rate of Ab1–42 by purified 6-His-tagged PITRM1WT and PITRM1R183Q proteins. Quantification of these experiments is displayed below the blots.
Experiments were performed in duplicate.

Data information: Data are presented as mean � SD.

Source data are available online for this figure.
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results were obtained in control immortalised fibroblasts stably

expressing a PITRM1-specific shRNA, which decreased its protein

levels to approximately 40% of the amount found in cells transfected

with the empty vector (Fig 2A and B). The mitochondrial localisation

of PITRM1 was confirmed using immunofluorescence (Fig 2C).

Mitochondrial DNA (mtDNA) levels were similar in PITRM1R183Q vs.

PITRM1wt cells, and there was no evidence of mtDNA depletion or

significant amount of multiple deletions (not shown).

The mitochondrial membrane potential (DP) was significantly

lower in PITRM1R183Q vs. PITRM1wt, but higher than that measured in

PITRM1wt cells treated with the DP dissipator carbonyl cyanide-

p-trifluoromethoxyphenylhydrazone (FCCP). Likewise, DP was signifi-

cantly lower than normal in shRNA-silenced PITRM1wt cells (Fig 2D).

In order to further ascertain the functional significance of

PITRM1R183Q, we modelled the mutation in the yeast Saccharomyces

cerevisiae, whose PITRM1 orthologue is CYM1 (Alikhani et al, 2011a).

The CYM1 null mutant, cym1D, was transformed with the cym1R163Q

allele, carrying a mutation equivalent to that found in our family.

When cultures were grown at standard temperature (28°C),

hardly any difference was observed (Appendix Fig S2). At 37°C,

however, the cym1D strain displayed impaired oxidative growth

(Fig 3A), the O2 consumption rate (OCR) was as low as 25% of the

wild-type (Fig 3B), and cytochromes content was profoundly

reduced (Fig 3C). All subsequent experiments were, therefore,

carried out at 37°C. In these conditions, the transformation of the

cym1D strain with CYM1wt restored OCR and cytochrome content,

whereas transformation with the cym1R163Q variant gave intermedi-

ate but clearly defective results (Fig 3A–C). The enzymatic activities

of complexes II, III and IV of the yeast strains paralleled the results

of the OCR (Fig 3D). Western blot analysis of the cym1R163Q yeast

strain showed reduced amount of cym1 protein compared to the

CYM1wt strain, whereas no protein was present in the cym1D strain,

as expected (Fig 3E). By overexposing the blot (Fig 3F), a low

molecular weight band (arrow) was consistently observed below

the cym1R163Q band, likely corresponding to a cym1R163Q degrada-

tion product. These results indicate that the cym1R163Q mutant

protein is unstable and prone to accelerated degradation, similar to

the human PITRM1R183Q mutant protein.

Finally, to test whether the cym1R163Q mutation affected the

stability of mitochondrial Ab1–42, we expressed a modified Ab1–42
fused with the mitochondrial signal peptide of Sod2. This fusion

protein is targeted to mitochondria and could be identified by an

anti Ab1–42 antibody. Whilst this Ab1–42 was almost completely elim-

inated in the CYM1wt, no degradation occurred in the cym1D strain,

and incomplete digestion of Ab1–42 was observed in the cym1R163Q

strain (Fig 3G). Taken together, our results in yeast demonstrate the

pathogenic role of the cym1R163Q mutation equivalent to human

PITRM1R183Q.

◀ Figure 2. Characterisation of immortalised cells.

A Cell growth in glucose (GLU) and galactose (GAL). C29V, C47V and TpLV: immortalised fibroblast cell lines from control individuals; PITRM1V: immortalised fibroblasts
from subject II-2, carrying the PITRM1R183Q mutation. pLKO.1: empty vector; sh38: shRNA38; sh41: shRNA41. Each cell line was measured six times. Statistical analysis
was performed using two-way ANOVA post hoc Bonferroni test, ***P < 0.001.

B Western blot analysis of PITRM1 in C29V cells transduced with the empty vector plKO.1 and the two shRNAs, sh38 and sh41. SDHB and b-actin are used as loading
controls.

C Co-localisation of PITRM1 (red) with TOM20 (T20, green) in human fibroblast cells from a control (CTR) and subject II-2. Note that the intensity of PITRM1
immunofluorescence is much lower in II-2 cells than in CTR cells (see main text for further details). Nuclei are stained in blue by DAPI. Scale bar corresponds to 10 lm.

D Mitochondrial membrane potential (DP). In healthy cells with high mitochondrial DP, JC-1 forms complexes known as J-aggregates that show an intense red
fluorescence. On the contrary in unhealthy cells with low DP, JC-1 remains in the monomeric form, showing only green fluorescence. Values are referred to as % of
those of the control means, taken as 100%. The results are the mean of three independent experiments. Statistical analysis was performed using two-way ANOVA,
**P < 0.01; ****P < 0.0001.

Data information: Data are presented as mean � SD. Exact P-values are reported in Table EV1.

Source data are available online for this figure.

▸Figure 3. Modelling the cym1R163Q mutation in Saccharomyces cerevisiae.

A Oxidative growth. W303-1B cym1D strains harbouring the wild-type CYM1 allele (CYM1wt), the cym1R163Q mutant allele or the empty vector were serially diluted from
107 to 104 cells/ml. Five microlitres of each dilution was spotted on SC agar plates without uracil, supplemented with 2% glucose, 2% glycerol or 2% ethanol. Plates
were incubated at 37°C for 3–7 days.

B Oxygen consumption rate (OCR). Cells grown at 37°C SC medium without uracil were supplemented with 0.5% glucose. Values were normalised to the OCR of the
CYM1wt strain (49 nmol O2/min/mg) and represented as the mean of at least three values � SD.

C Reduced versus oxidised cytochrome spectra. Peaks at 550, 560 and 602 nm correspond to cytochromes c, b and aa3, respectively. The height of each peak relative to
the baseline is an index of cytochrome content.

D Respiratory chain complex activities. Biochemical activities of succinate quinone DCPIP reductase, SQDR (CII), NADH-cytochrome c oxidoreductase activity NCCR (CIII)
and cytochrome c oxidase (CIV) were measured on a mitochondrial enriched fraction from cells grown at 37°C as in (B). Values were normalised to that of CYM1wt

strain and represented as the mean of three independent experiments � SD.
E Western blot on total protein extract using an anti-HA monoclonal antibody visualising the CYM1wt and cym1R163Q recombinant proteins both fused in frame with

the HA epitope on the C-terminus. Total protein extracts were obtained by strains expressing HA-tagged CYM1wt and cym1R163Q. PGK was used as a loading control,
and signals were normalised to the wt. The quantification was performed on five independent blots.

F Prolonged exposure of a Western blot containing the CYM1wt and cym1R163Q recombinant proteins reveals the presence of a band corresponding to a degradation
product in the cym1R163Q lanes (arrow).

G Western blot of Ab1–42
myc monomer and dimer incubated with purified mitochondrial extracts from cells grown at 37°C in SC medium supplemented with 0.15%

glucose and 2% galactose. VDAC was used as a loading control. Each experiment was performed in triplicate.

Data information: Statistical analysis was performed using unpaired, two-tailed Student’s t-test. **P < 0.01; ***P < 0.001. Exact P-values are reported in Table EV1.

Source data are available online for this figure.
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Pitrm1+/� mice develop a neurodegenerative phenotype, with
accumulation of Ab1–42 and signal peptides

Next, a Pitrm1 knock-out C57BL/6n-Atm1Brd mouse line was

obtained from the Wellcome Trust Sanger Institute, Cambridge, UK.

Whilst the constitutive Pitrm1�/� genotype is associated with

embryonic lethality, Pitrm1+/� heterozygotes survive to adulthood.

In 4-month-old (mo) Pitrm1+/�, Pitrm1 levels were well under 50%

in brain and liver, and approximately 60% in skeletal muscle,

compared to Pitrm1+/+ littermates (Fig 4A), thus replicating the

molecular lesion found in PITRM1R183Q patients (reduced amount of

a catalytically normal enzyme). Mice were monitored weekly for

onset of postural abnormalities, weight loss and general health. No

significant weight differences were found between the two groups.

The first evidence of abnormality was the development of hindlimb

clasping in heterozygous Pitrm1+/� male mice from the age of

2 months. The neurological phenotype was evaluated further with a

set of different coordination and sensorimotor tests in 4-mo males.

The Pitrm1+/� heterozygous mice (n = 7) showed hindlimb clasp-

ing reflex (Brunetti et al, 2014) (Fig 4B) and performed poorly on

tests of coordination, that is rotarod (Hickey et al, 2005), (Fig 4C)

and negative geotaxis (Rogers et al, 1997) (Fig 4D); spontaneous

rearing, that is cylinder test (Fleming et al, 2004) (Fig 4E); and basal

ganglia-related movement control, that is pole test (Fig 4F). Meta-

bolic assessment showed significantly reduced O2 consumption and

CO2 production, and reduced heat production over 36 h of observa-

tion in animals housed in a comprehensive laboratory animal moni-

toring system (CLAMS, Columbus Instruments, Columbus, OH,

USA) (Appendix Fig S3). Next, we carried out post-mortem analysis

of Pitrm1+/� vs. Pitrm1+/+ mice. We first performed Western blot

analysis on 4-mo brain homogenates, using an antibody specific

against the amyloid precursor protein (APP) and observed an

approximately 2.5-fold increase of APP cross-reacting material in

Pitrm1+/� vs. Pitrm1+/+ specimens (Fig 5A). This result was

concordant with immunohistochemical analysis of formalin-fixed

and paraffin-embedded brains of same age, using the same anti-APP

antibody (Appendix Fig S4A). In order to characterise the

neuropathology of our Pitrm1+/� animals, we then carried out

histological and immunohistochemical analysis on brain tissue.

Three brains from 6-mo male Pitrm1+/� mice showed normal histo-

chemical reactions to COX and SDH, two respiratory chain activities

(not shown), and were then analysed for amyloid detection on

formalin-fixed, paraffin-embedded specimens, using Congo red and

Thioflavin T stainings. Congo red staining was viewed under

polarised light, while Thioflavin T staining was evaluated by fluo-

rescence microscopy. This analysis revealed scattered Thioflavin

and Congo red-positive areas, indicating the presence of amyloid

deposits (Fig 5B). The Congo red-positive areas also showed apple-

green birefringence under polarised light, another characteristic

reaction of amyloid. Finally, the presence of immunofluorescence-

positive areas was confirmed using an anti Ab1–42 antibody. Similar

findings were also obtained in 4-mo and 12-mo male Pitrm1+/�

animals (not shown). Additionally, 12-mo Pitrm1+/� brains under-

went systematic histological and immunohistochemical analysis.

Pitrm1+/� specimens showed increased gliosis (Appendix Fig S4B),

and accumulation of ubiquitin-positive material in the neuropil and

neurons (Fig 5B), with mild neuronal loss (not shown). The number

of Ab1–42-immunoreactive areas was increased in 12-mo Pitrm1+/�

brains, suggesting age-dependent accumulation (Fig EV1). No such

lesions were ever found in any brain specimen from Pitrm1+/+

littermates. In Pitrm1+/� female individuals of various ages, we

found essentially the same clinical and neuropathological alterations

as in males (not shown), indicating that the neurodegenerative

process of the mouse model is not gender specific.

To further test the mechanistic consequences of impaired Pitrm1

activity on mitochondrial Ab disposal, we then performed a time

course for the import of Ab1–42 into isolated mitochondria from

Pitrm1+/+ and Pitrm1+/� mice. Isolated liver and brain mito-

chondria were incubated with Ab1–42 for 5 to 90 min. The levels

of Ab1–42 interacting with mitochondria increased with incubation

time in liver and brain, in both Pitrm1+/+ and Pitrm1+/� mice

(Fig 6A). However, in trypsin-digested samples, where the extra-

mitochondrial proteins had been eliminated, Ab1–42 was decreasing

over time in Pitrm1+/+, whereas it accumulated in Pitrm1+/�,
clearly indicating impaired Ab1–42 degradation rate. Hence, we

performed an Ab1–42 chase experiment by incubating the mitochon-

dria with Ab1–42 for 15 min followed by treatment with trypsin and

extensive washing. Imported Ab1–42 was almost fully degraded

within 30 min of chase in both liver and brain from Pitrm1+/+ mice,

whereas a significant amount of Ab1–42 was still detected after

90 min of chase in both Pitrm1+/� tissues (Fig 6B). These results

demonstrate limited capacity of Pitrm1+/� brain and liver mitochon-

dria to eliminate Ab1–42, causing this peptide to accumulate.

Since PITRM1 is also responsible for digesting the MTS of

proteins imported across the inner mitochondrial membrane (Stahl

et al, 2002; Alikhani et al, 2011a,b; Teixeira & Glaser, 2013), we

analysed the levels of a MTS in Pitrm1+/+ and Pitrm1+/� mice.

TFAM is a mitochondrial matrix protein, whose MTS serves as a

substrate of PITRM1, whereas MPV17 is an inner membrane bound

protein, which is not cleaved upon import into mitochondria. Radio-

labelled TFAM was imported in a time-dependent fashion and at the

same levels in Pitrm1+/+ and Pitrm1+/� liver mitochondria

◀ Figure 4. Behavioural studies of Pitrm1+/� mouse.

A Western blot analysis of Pitrm1 protein in brain, muscle and liver of two 4-mo male Pitrm1+/� mice and two Pitrm1+/+ littermates. Densitometric analysis is
reported in the histograms below the blots. Pitrm1+/+ is in blue and Pitrm1+/� in red.

B Representative hindlimb clasping phenomenon is shown in a 4-mo Pitrm1+/� male mouse, consisting in strong adduction of the hindlimbs when the animal is
suspended by the tail; a littermate Pitrm1+/+ control displays the normal reflex, consisting in wide abduction of the limbs. All examined Pitrm1+/� animals displayed
this abnormal reflex from 2 months of age.

C Rotarod test. Blue and red lines refer to Pitrm1+/+ (n = 9) and Pitrm1+/� (n = 7) 4-mo animals, respectively.
D–F Negative geotaxis (D), cylinder (E) and pole (F) tests. The experiments were carried out on the same group of animals as in (B).

Data information: Data are presented as mean � SD. Statistical analysis was performed using unpaired, two-tailed Student’s t-test. *P < 0.05; **P < 0.01; ***P < 0.001.
Exact P-values are reported in Table EV1.

Source data are available online for this figure.
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A

B

Figure 5. Molecular and morphological analysis of Pitrm1+/� mouse brain.

A Western blot analysis of amyloid precursor protein (APP) in 6-mo male mice. GAPDH was used as a loading control. Densitometric analysis on a total of five
independent samples is shown in the histogram on the right. ***P = 0.00058. Data are presented as mean � SD. Statistical analysis was performed using unpaired,
two-tailed Student’s t-test.

B Morphological analysis of an AD subject and of Pitrm1+/� and Pitrm1+/+ mouse brains. TF: thioflavin T (thalamus); CR: Congo red (brain cortex); PL: polarised light
(same sections as those stained with CR); Ab1–42 immunostaining (pons); Ub: ubiquitin immunohistochemistry shown as brownish staining (brain cortex). Scale bar
indicates 20 lm.

Source data are available online for this figure.
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B

Figure 6. Ab1–42 mitochondrial import and degradation.

A Upper panel: import of Ab1–42 into mitochondria. Lower panel: relative quantification from two independent experiments. Values of Ab1–42 signal were normalised to
HSP60 signal, and the resulting value at 5 min without trypsin was arbitrarily set as 1.

B Upper panel: pulse and chase experiment to assess clearance of Ab1–42; lower panel: quantification from three independent experiments. Values of Ab1–42 signal were
normalised to HSP60 signal, and the pulse value was arbitrarily chosen as 1.

Data information: Data are presented as mean � SD. Statistical analysis was performed using unpaired, two-tailed Student’s t-test. *P < 0.05, **P < 0.01. Exact P-values
are reported in Table EV1.
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(Appendix Fig S5). However, a band migrating in the region where

the MTS is expected to localise was detected in Pitrm1+/� mitochon-

dria in significantly higher amount than in Pitrm1+/+ mitochondria.

In support that this band was indeed the TFAM MTS stands the

observation that no band corresponding to the average MTS size

(approximately 3–5 kDa) was detected in both Pitrm1+/+ and

Pitrm1+/� mitochondria in the experiments carried out with radiola-

belled MPV17. This result suggests that impaired Pitrm1 activity

causes the accumulation of free MTS species in vivo.

Fibroblasts from Pitrm1+/� mice and patients have reduced
capacity to degrade Ab peptides

Our data provide strong evidence that reduced Pitrm1 activity is

associated with accumulation of Ab plaques in the Pitrm1+/� brain,

possibly in an age-dependent manner. This suggests that Ab does

enter mitochondria and that the activity of PITRM1 is biologically

important for its removal.

To further explore this issue, we exposed to a fluorescent-labelled

Ab1–40 peptide a number of cell lines, including immortalised

PITRM1R183Q fibroblasts from subject II-2, normal human immor-

talised fibroblasts, Pitrm1+/� mouse embryonic fibroblasts (MEFs),

control MEFs and MEFs from mitofusin 1 or 2 ko lines (Mfn1�/�,
Mfn2�/�). Mfn1 and Mfn2 are two proteins of the outer membrane

of mitochondria, both promoting mitochondrial fusion, whereas

Mfn2 also mediates interactions between mitochondria and the

endoplasmic reticulum (ER) (Mishra & Chan, 2014). They were

included in the experiment as “positive controls” to test whether Ab
accumulation could be associated with mitochondrial fragmentation

or with reduced contacts between mitochondria and the ER. After

18 h of incubation, fluorescent-labelled Ab1–40 was almost comple-

tely removed in normal and Mfn1�/� or Mfn2�/� controls, whereas

it persisted at highly significant levels in Pitrm1+/� MEFs and

PITRM1R183Q (Fig 7A), as quantitatively ascertained by fluorescent

cell sorting (Fig 7B). Taken together, these results clearly demon-

strate that reduced levels of PITRM1 due to either haploinsufficiency

or destabilising mutations significantly impair the disposal of Ab1–40.

Discussion

We have shown that Ab accumulation participates in the neurode-

generation and neurological derangement seen in the Pitrm1 mouse

model and, possibly, in our PITRM1R183Q mutant subjects as well.

Ab plaques were, however, sparse in the brain of young Pitrm1+/�

mice, suggesting that the disease mechanism may not be limited to

Ab pathology. The main role of PITRM1 is deemed to be the elimi-

nation of cleaved mitochondrial targeting peptides after protein

translocation (Koppen & Langer, 2007). Typically, these peptides,

located at the N-terminus of mitochondrion-targeted proteins, are

amphiphilic species, with a polar, positively charged, arginine-rich

side, opposite to an apolar side (Roise & Schatz, 1988). The electro-

static features of these peptides allow them to both guide the inser-

tion of the precursor proteins into the TIM23 translocon and drive

their internalisation within the inner mitochondrial compartment,

by exploiting the electrostatic component (DΨ) of the mitochondrial

DP (Roise & Schatz, 1988). Due to their amphiphilic nature,

however, these peptides, when released from the mature proteins

by MMP, may act as detergent-like, toxic agents, forming pores in

the membranes and resulting in uncoupling and dissipation of DP
(van ‘t Hof et al, 1991; Zardeneta & Horowitz, 1992; Nicolay et al,

1994). Such toxicity may explain the embryonic lethality associated

with the complete ablation of PITRM1 activity in the Pitrm1�/�

mouse genotype. Furthermore, accumulation of cleaved signal

peptides may also affect maturation of mitochondrial proteins by

inhibiting the mitochondrial matrix peptidase, resulting in decreased

activity or instability of imported, but unprocessed, proteins (Moss-

mann et al, 2014). The same backlogging mechanism, due to

impaired degradation machinery of oligopeptides, can determine

reduced rate of APP processing and explain its accumulation, as

detected in the brains of Pitrm1+/� animals.

In summary, we have identified a human neurodegenerative

disease combining impaired motor coordination, cognitive and

psychotic features, caused by a hypomorphic pathogenic mutation

in the mitochondrial protease PITRM1 associated with protein insta-

bility. A heterozygous Pitrm1+/� mouse model replicated several of

the neurological symptoms found in humans, and showed the pres-

ence, amongst other neuropathological features, of Ab aggregates

similar to AD amyloid plaques. Our findings offer a mechanistic link

between mitochondrial dysfunction and misfolded protein aggre-

gates in the pathogenesis of neurodegeneration. Future work is

warranted to test whether PITRM1 variants are associated with

amyloidotic neurodegeneration, including AD. Interestingly, the

observation that the hemizygous Pitrm1+/� mouse displays slowly

progressive, multisystem neurological impairment suggests that

not only recessive variants, but also dominant or sporadic loss-of-

function mutations in PITRM1 could be associated with adult-onset

neurodegeneration, possibly characterised, as in the mouse, by

accumulation of APP and Ab deposits.

In conclusion based on medical genetic evidence (a mutant

family), a yeast model, in vitro assays and a mouse recombinant

model, we demonstrate that partial impairment of a metallopeptidase

contained within the inner compartment of mitochondria not only

causes neurodegeneration, but is clearly associated with accumula-

tion of amyloid precursor protein APP and Ab1–42.
This wealth of independent observations leads to important

conclusions, for both basic biological knowledge and translational

research. First, our results conclusively resolve a long-standing

debate about the presence of Ab within mitochondria, a hypothesis

that has so far remained controversial. Second, we provide genetic

evidence that confirms that PITRM1 is the peptidase specifically dedi-

cated to Ab clearance within mitochondria and that even partial

impairment of this function, caused by either instability of a mutant

variant (our family) or hemizygosity (the Pitrm1+/� mouse), can

determine neurodegeneration with accumulation of amyloidotic Ab,
directly linking the latter with abnormal mitochondrial proteostasis.

This has potentially relevant implications in the etiopathogenesis of

AD, a prominent cause of chronic neurological disability in the

Western world. Finally, the embryonic lethality of the Pitrm1�/�

genotype underscores the essential role of the PITRM1 protein in

cellular homoeostasis and, together with the proof that PITRM1 acts

on both Ab and MTS clearance, gives mechanistic support to the idea

that conditions characterised by either reduced PITRM1 activity (as in

our family and mouse model) or increased Ab production (e.g. chro-

mosome 21 trisomy) can cause saturation of the clearance pathway

centred on PITRM1, resulting in accumulation of toxic peptides,
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A

B

Figure 7. Degradation of Ab1–40 peptide in fibroblasts and MEFs.

A MEFs from Pitrm1+/+, Pitrm1+/�, Mfn1�/� and Mfn2�/�, as well as h-PITRM1R183Q and h- PITRM1WT, were exposed to Ab1–40 peptide for 18 h. Note that Ab1–40 signal
was still evident in Pitrm1+/� and h-PITRM1R183Q cells.

B Quantification of three independent experiments similar to those shown in (A). Data are presented as mean � SD. Statistical analysis was by unpaired, two-tailed
Student’s t-test. **P < 0.01, ***P < 0.001. Exact P-values are reported in Table EV1.
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including free MTS’ and Ab, as well as backlogging of precursors, for

example APP and mitochondrial unprocessed proteins, which can

eventually lead to progressive brain derangement.

Materials and Methods

Additional methods for DNA and RNA purification, cell cultures,

Western blot, biochemical assays, yeast and mouse studies are

available in the Appendix Supplementary Methods.

Genetics

Our study was approved by the Regional Committee for Medical and

Health Research Ethics, Western Norway (2014/330/REK vest).

Informed consent was obtained from the subjects and all the experi-

ments conformed to the WMA Declaration of Helsinki.

Whole exome sequencing was performed at HudsonAlpha Insti-

tute for Biotechnology (Huntsville,AL) using Roche-NimbleGen

Sequence Capture EZ Exome v2 kit and paired-end 100 nt sequenc-

ing on the Illumina HiSeq. The reads were mapped using v6.2

aligner, PCR duplicates removed with Picard v1.118 (http://broadin-

stitute.github.io/picard), and the alignment refined using Genome

Analysis Toolkit (GATK) v3.2-2 and called using GATK Haplo-

typeCaller requiring a minimum coverage of 8 reads, and 5 reads for

the variant allele. Filtering and annotation of variants were done in

ANNOVAR (Haugarvoll et al, 2013). Coding and putative splice sites

(defined as 2 bps flanking coding exons) were filtered against vari-

ants with MAF > 0.8% in an in-house database of more than 300

Norwegian exomes, and variants present at > 0.5% allele frequency

in the 1000 Genomes database (phase 1 release v3 called from

20101123 alignment).

Mitochondrial membrane potential

Detection of mitochondrial transmembrane potential (DP) change

was performed using the lipophilic, cationic dye JC-1 (ChemoMetec)

and Nucleo Counter NC-3000 according to manufacturer instructions.

In healthy cells with high mitochondrial DP, JC-1 forms complexes

known as J-aggregates that show an intense red fluorescence. On the

contrary in unhealthy cells with low DP, JC-1 remains in the mono-

meric form, showing only green fluorescence. Red vs. green fluores-

cence intensity ratio was quantified, and differences between cell

lines were analysed statistically using two-way ANOVA.

Indirect immunofluorescence

Fibroblasts were seeded on glass coverslips and grown for 48 h. The

cells were fixed for 30 min with 3% paraformaldehyde (PFA) in

0.1 M phosphate buffer, pH 7.2 at room temperature and stained as

described (Sannerud et al, 2008).

In vitro protein modelling

Purification of recombinant human PITRM1

Production and purification of PITRM1 (wild-type and R183Q vari-

ant) were performed as previously described (Teixeira et al,

2012). The PITRM1R183Q variant was constructed by site-directed

mutagenesis using the QuikChange II kit (Agilent Technologies) and

appropriate primers and confirmed by sequencing.

PITRM1 activity

For the analysis of Ab degradation, PITRM1 samples (wt or R183Q,

1 lg) were incubated with 1 lg of Ab 1–42 (Alexotech) for the indi-

cated time in degradation buffer (50 mM HEPES-KOH pH 8.2,

10 mM MgCl2) at 37°C (experiments performed in duplicate). After

incubation, the reactions were resolved on NuPAGE 4–12% Bis-Tris

gels and stained with Coomassie brilliant blue (Sigma).

In the fluorescence-based assays, PITRM1 samples (wt or R183Q,

0.2 lg) were mixed with either 1 lg Substrate V (sequence

RPPGFSAFK, R&D Systems) or 4 lg F1b 43–53 presequence frag-

ment (sequence KGFLLNRAVQYK, custom synthesis), and the

increase in fluorescence (excitation 327 nm; emission 395 nm) was

recorded on a plate reader (SpectraMax Gemini). Experiments were

performed in duplicate, and the results are shown as substrate

degradation rates.

Yeast studies

Strains and oligos used in this work are reported in

Appendix Tables S1 and S2, respectively. Strain W303-1B cym1D
was obtained by one-step gene disruption with a KanMX4 cassette

amplified from the corresponding BY4742 deleted strain, using

primers CYM1DCFw and CYM1DCRv. All experiments, except trans-

formation, were performed in synthetic complete (SC) media

(0.19% YNB without amino acids and NH4SO4 powder (ForMedium,

Norfolk, UK), 0.5% NH4SO4) supplemented with 1 g/l dropout mix

without amino acids or bases necessary except those necessary to

keep plasmids. Media were supplemented with various carbon

sources as indicated below (Carlo Erba Reagents, Milan, Italy) in

liquid phase or after solidification with 20 g/l agar (ForMedium).

Growth was performed with constant shaking at 37°C. Transforma-

tion with suitable recombinant plasmids was used to express

CYM1wt and cym1R163Q protein variants, each carrying an HA

epitope on the C-terminus for immunovisualisation. Additional

details are reported in Appendix Supplementary Methods.

Mouse studies

All animal experiments were carried out in accordance with the UK

Animals (Scientific Procedures) Act 1986 and EU Directive 2010/63/

EU for animal experiments. The C57BL/6n-Atm1Brd Pitrm1+/� mice

used in this study were kindly provided by the Sanger Institute

(http://www.informatics.jax.org/ allele/MGI:5085349). Animals

were housed two or three per cage in a temperature-controlled

(21°C) room with a 12-h light–dark cycle and 60% relative humid-

ity. The experimental design included two groups of male mice of

3–6 months of age (9 Pitrm1+/+ vs. 7 Pitrm1+/�).

Morphological analysis of mouse brain

Histological and immunohistochemical analyses were performed on

formalin-fixed and paraffin-embedded brain tissues. Five-lm-thick

serial sections were stained with haematoxylin–eosin and viewed by

light microscopy. For histochemical studies, tissues were frozen in

liquid-nitrogen precooled isopentane and serial 8-lm-thick sections

were stained for COX, SDH and NADH as described (Sciacco &

ª 2015 The Authors EMBO Molecular Medicine

Dario Brunetti et al Role of PITRM1 in neurodegeneration EMBO Molecular Medicine

13

Published online: December 23, 2015 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
http://www.informatics.jax.org/allele/MGI:5085349


Bonilla, 1996). Congo red and Thioflavin T stainings were

performed as described (Puchtler & Sweat, 1962; Burns et al, 1967).

Congo red-positive areas were viewed under polarised light, while

Thioflavin T staining was evaluated by fluorescence microscopy.

Mitochondrial import and degradation of Ab
For import experiments, Ab1–42, human TFAM and MPV17 radio-

labelled proteins were obtained via coupled transcription and

translation (TNT) in a reticulocyte system in the presence of

[35S]-metionine. Liver and brain mitochondria were isolated by

differential centrifugation (Reyes et al, 2011) and incubated with

0.36 mg/ml Ab1–42, for 5 to 90 min in import buffer (Petruzzella

et al, 1998). Then, half of the reaction was treated with trypsin for

15 min, and mitochondrial pellets were resolved on 10–20% PAGE

gels. Ab1–42 and HSP60, used as loading control, were analysed by

Western blot.

For degradation experiments with Ab1–42, liver and brain mitochon-

dria were incubated with 0.36 mg/ml Ab1–42 for 15 min (pulse)

followed by trypsin digestion and incubation for 15 to 90 min (chase).

Exposure of human and mouse cells to fluorescent Ab

MEFs (Pitrm1+/+ and Pitrm1+/�) and human immortalised fibrob-

last (PITRM1WT and PITRM1R183Q) were grown for 24 h on glass

slides and then exposed for 18 h to fluorescent Ab1–40 peptide (Ab1–40
HiLite fluor 488-labelled, AnaSpec), freshly dissolved in PBS and

added to culture medium at a final concentration of 1 lM for 18 h

at 37°C. Subsequently, the medium was changed and MitroTracker

Red (Invitrogen) was added for 30 min at 37°C. Cells were washed

with PBS and fixed with 2% PAF for 20 min. Cells were washed

with PBS and mounted using Prolong Gold antifade reagent with

DAPI. The samples were visualised by an inverted laser scanning

microscope (Axio Observer.Z1).

Statistics

Unless differently indicated in the figure legends, statistical analysis

was performed using unpaired, two-way Student’s t-test. Data are

presented as mean � SD. Exact P-values for all experiments are

reported in Table EV1.

Expanded View for this article is available online.
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