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Multiple sclerosis is themost common autoimmune disorder affecting the central nervous system. The heteroge-
neity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpre-
dictable response to therapies. The major focus of the research on MS is the identification of biomarkers in
biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the diffi-
culties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced,
the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However,
currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers
could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention
strategies that may prevent evolution to long-term neurological disability. This article provides an overview of
this research field and focuses on recent advances in blood-based biomarker research.

© 2015 Published by Elsevier B.V.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
2. MS biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
3. Peripheral blood versus CSF biomarkers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
4. Diagnostic biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
5. Biomarkers of conversion to clinically definite MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
6. Disease activity biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.1. Biomarkers specific for BBB damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
6.2. Biomarkers associated with BBB damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

6.2.1. Inflammation biomarkers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
6.2.2. Microvesicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
6.2.3. MicroRNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

7. Biomarkers of disease progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
8. Biomarkers of therapeutical response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Take-home messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
1. Introduction

Multiple sclerosis (MS) is an immune-mediated, inflammatory
demyelinating and neurodegenerative disease of the central nervous
, Cell Biology and Neuroscience
el.: +39 49902424.

al, Peripheral blood biomark
system (CNS).MS has a heterogeneous clinical presentation and course,
reflecting complexity in its pathophysiology, and is classified into three
main types of clinical courses: relapsing–remitting (RRMS), primary
progressive (PPMS), and secondary progressive (SPMS) [1]. In most
cases, RRMS turns at one point into a SPMS form, characterized by the
irreversibility of the deficits due to progressive neurodegeneration.
Meanwhile, PPMS is characterized by a gradual progression of disability
from the onset of the disease [1]. Although the etiology of MS is
ers in multiple sclerosis, Autoimmun Rev (2015), http://dx.doi.org/
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unknown, evidence suggests that the disease may result from a com-
plex interaction between the environmental factors, the genetic back-
ground that defines individual susceptibility, and the immunological
and physiological settings of the individual [2]. The pathological hall-
marks of MS are inflammation, demyelination, remyelination, neurode-
generation and glial scar formation, which occur either focally or
diffusely throughout the white and grey matter in the brain and spinal
cord [3]. These pathological features are present in both RRMS and
SPMS, as well as in PPMS, although they vary over time both quantita-
tively and qualitatively between these three forms of MS and among
individuals with the same form of the disease, thus contributing to
the heterogeneity in phenotypic expression of the disease and re-
sponse to therapies [4,5]. As supported by experimental evidence,
mainly derived from its principal model experimental allergic en-
cephalomyelitis (EAE), MS is generally considered a predominantly
T cell-mediated autoimmune disease. Indeed, inflammatory lympho-
cytes transmigrate into the CNS and initiate tissue damage and neu-
rological impairment [6]. Even though myelin specific Th1 and Th17
CD4+ T cells are involved in the disease, also other cell types like
CD8+ T cells, B cells, macrophages and natural killer (NK) cells con-
tribute to the pathogenesis of MS [7–9]. It is likely that inflammatory
responses are the key mediators of early disease in most cases and,
over time, there is incremental neurodegeneration correlating with
progressive disability. However, current evidence indicates that in
all forms and stages of the disease, inflammation seems to drive de-
myelination and neurodegeneration, and in the progressive stage, in
contrast to early stage with BBB compromise, inflammation is par-
tially trapped within the CNS behind the BBB, which makes the cur-
rent anti-inflammatory treatment to become ineffective [4]. Along
these lines, mechanisms of the pathophysiology of MS involve main-
ly three physiological compartments: 1) the peripheral blood, in
which immune processes mainly take place; 2) the blood brain bar-
rier (BBB), which breaks down to a point so that immune cells can
pass into the CNS; and 3) the CNS, in which lesions mark acute
sites of inflammation and neural damage, leading to the phenotypic
displayed symptoms of disability. In each of these compartments,
changes in gene expression of a certain set of proteins and cell
types are characteristic hallmarks of MS. The clinical disability of
MS patients is evaluated using the Expanded Disability Status Scale
(EDSS) [10], while the disease activity is evaluated using magnetic
resonance imaging (MRI) with gadolinium (Gd)-enhancing lesions,
providing the most objective and sensitive tool for assessing the pro-
gression and activity of the disease in MS patients.
2. MS biomarkers

Biomarkers are measurable indicators of normal biological and
pathogenic processes, or pharmacological responses to a therapeutic
intervention. A good biomarker should be precise and reliable, able
to distinguish betweenMS disease and control, can detect inflamma-
tory activity, as well as the degree of neurodegeneration and demy-
elination/remyelination, in order to get a more accurate picture of
the disease status [11]. Since for many years intensive efforts have
been directed toward the identification of biomarkers in body fluids
(CSF or blood) associated with various aspects of MS on different
levels of the organizational hierarchy of the human body (e.g. DNA,
RNA, proteins, cells) [12], the application of more advanced screen-
ing technologies has opened up new categories of biomarkers,
including gene expression and autoantibody arrays, microRNAs
(miRNAs), and circulating microvesicles (MVs). However, despite
the large sum of studies provided in a long list of candidate bio-
markers, most of them have not been validated, and therefore they
are not clinically useful at present. Moreover, the lack of validation
is a common problem with biomarkers of complex diseases such as
MS, reflecting a bias in statistical analysis or a lack of available data,
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but it may also indicate difficulties in performing clinical validation
studies [13].

3. Peripheral blood versus CSF biomarkers

In MS, most studies search for biomarkers within the CSF with
the view that this is more likely to reflect CNS disease. However,
blood-based biomarkers are of great clinical value, because of the ease
with which blood can be obtained in a minimally invasive manner.
Blood biomarkers may exist in MS if there is a systemic component of
the disease, or if peripheral changes mimic central disease [14]. The
biologic events associated with a focal active inflammatory cerebral le-
sionmay not be readily detectable in the peripheral blood. Furthermore,
immune abnormalities in the peripheral blood in MS patients may also
lack specificity because they may be altered by systemic events, such as
viral infections. Despite these limitations, peripheral blood biomarkers
can give important information regarding immune triggers of MS, as
well as therapeutic efficacy of drugs administered [15]. Additionally,
blood has two properties that make it attractive for the search for
biomarkers: 1) it is more easily accessible than other body tissues;
and 2) the perfusion of blood through different organs and tissues can
result in the addition of new proteins, or modification of existing pro-
teins, whichmay vary according to specific physiological or pathological
conditions [16]. Thus, the blood can carrymolecules derived from other
tissues, reflecting the biological status of the body [17]. Peripheral
biomarkers in MS can be categorized into five groups: diagnostic,
associatedwith the conversion to clinically definiteMS (CDMS), disease
activity, progression and treatment-response (Table 1).

4. Diagnostic biomarkers

Diagnostic biomarkers can be used to distinguish patients who have
MS from patients with other neurological or autoimmune disorders, or
from healthy individuals. Indeed, white-matter lesions typical of MS
can be seen in many other neuroinflammatory conditions, such as
neurosarcoidosis, neuroborreliosis, Sjögren Syndrome, and systemic
lupus erythematosus. For this reason, a set of diagnostic criteria (the re-
vised McDonald's criteria [18,19]) that incorporates clinical, radiologic,
and laboratory findings is used to establish a definitive diagnosis of
MS. The only validated biomarker for MS diagnosis in clinical practice
is the detection of oligoclonal IgG bands (OCGB) in the CSF. Thus, MRI
of the brain and spine together with OCGB formation in CSF reflects
the inflammatory and demyelinating nature of the disease and is an
important tool in the diagnosis of MS [18,20]. Autoantibodies have
been documented to be valuable diagnostic biomarkers for several
autoimmune diseases. Furthermore, serum antibodies against specific
antigens have been established also in several neuro-immunological
diseases, such as myasthenia (antibodies against acetylcholine
receptor) and paraneoplastic disorders (e.g. anti-Hu, anti-Yo) [21,22].
The importance of autoantibodies as diagnostic biomarkers has been
emphasized following the discovery of a serum pathogenic specific an-
tibody targeting the principal water channel of astrocyte aquaporin-4
(termed NMO-IgG or AQP4-Ab), distinguishing neuromyelitis optica
(NMO), also known as Devic's disease, from MS [23,24]. Initially, many
studies investigated the autoantibodies targeting myelin proteins as
biomarkers of the disease, well established in EAE, where anti-myelin
antibodies induce CNS demyelination [25]. However, the detection of
serum antibodies to myelin basic protein (MBP), myelin-associated
glycoprotein, and proteolipid protein has resulted in conflicting data,
which in all cases lacked specificity, sensitivity, and reproducibility
[26–28]. Among these myelin autoantigens, myelin oligodendrocyte
glycoprotein (MOG) has emerged as a promising autoantigen, especially
in autoimmune pediatric demyelination in both acute disseminated
encephalomyelitis andMS [29]. Meanwhile, the role of MOG antibodies
in adult MS patients is still speculative, thus more research is needed to
clarify if MOG antibodies can be used for prognosis or classification of
ers in multiple sclerosis, Autoimmun Rev (2015), http://dx.doi.org/
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Table 1
Potential peripheral blood biomarkers in MS.

Diagnostic biomarkers
Anti-KIR4.1 antibodies [59]
Anti-MOG antibodies [27,29–32]
Anti-EBNA-1 antibodies [46–49]
Anti-HHV-6 antibodies [55–57]
Anti-glycan IgM [38]
Anti-glycosylated MOG antibodies [35]

Biomarkers of conversion to CDMS
Anti-MOG antibodies [32]
Anti-MBP antibodies [32]
Anti-EBNA-1 antibodies [70]
Anti-glycan antibodies [67]
TOB1 [65]
Vitamin D [80,81,83,85]

Disease activity biomarkers
BBB damage biomarkers
S100β [91]
Soluble CAMS [94–96]
Zonuline [92]

Biomarkers associated with BBB damage
Inflammation biomarkers
Proinflammatory cytokines [97,98,104,107]
PTX3 [108]
OPN [115–117]
Soluble 4-1BBL [127–130]
PD-1/PD-L1 [126]
MMP-9/TIMP-1 [89,109]
Fas/FasL mRNA [138]
sTRAIL [135]
Survivin [140,141]
K2P5.1 [143]
Anti-EBNA-1 IgG [144]

Microvesicles
EMV [162,163,165]

miRNA
miRNA in PBMC [174,175,181,182]
Cell free miRNA in plasma [188]

Biomarkers of disease progression
NFL, NFM, NFH [206–209]
pNF-H [206,210]
Anti-NF-L-IgG [211,212]
Anti-tubulin IgG, MAP2 and tau [207,212,215]
Anti-glycopeptide antibodies [216]
Hsp [217]
Fas/FasL mRNA [220,221]
sTNF-RII [222]
Lactate [223]
miRNAs [225]

Biomarkers of therapeutic response
IFN therapy
Nabs [233,237]
MxA [238,239,242]
sTRAIL mRNA [247,248]
CXCL-10/IP-10 and CCL-2/MCP-1 [249]
MMP-9/TIMP-1 [251–255]
IFNARs [258,259]
Cytokine levels [103,264,271,272]
EMVs [274]
Genome wide expression profiles of PBMC [277,278]
miRNA expression in PBMC [280]

GA therapy
IL-10 [269]
miRNA expression in PBMC [281]
Natalizumab therapy
Anti-JCV antibody [291–293]
miRNA expression in B lymphocytes [284]
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adult MS patients [27]. The discrepancy in results about MOG antibody
detection is probably due to the use of different detection methods
(ELISA, western blot and immunohistochemistry) and different antigens
(native MOG, recombinant MOG or synthetic peptides) [30–32].
Growing evidences indicate that post-translational modifications
(i.e. acetylation, lipidation, citrullination, glycosylation), either native
or aberrant, may play a fundamental role for specific autoantibody
recognition in autoimmune diseases [33,34]. Thus, synthetic peptides
Please cite this article as: D'Ambrosio A, et al, Peripheral blood biomark
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can be specifically modified to mimic neo-antigens and to selectively
detect autoantibodies as disease biomarkers. A “chemical reverse
approach” to select synthetic peptides has been established, bearing
specific post-translationalmodifications, able to fish out autoantibodies
from the patients' body fluids. This approach is successfully applied for
the development of specific in vitro diagnostic/prognostic assays of
autoimmune diseases [34–37]. In line with these observations, an
increase of antibody reactivity against glycans composed of α-glucose
disaccharide anti-Glc(α1,4)Glc(α) IgM (anti-Gα4Gα IgM) was shown
in the serum of RRMS patients but not in the serum of patients with
other neurological diseases [38]. The biological importance of anti-
Gα4Gα IgM was further confirmed in another study, suggesting that
such antibodies would be considered as a diagnostic biomarker for its
role in distinguishing RRMS patients from thosewith other neurological
diseases [39]. Alpha-glucose-based polysaccharides are found in the
cell wall of several pathogenic fungi [40] and bacteria [41], suggesting
that IgM antibodies could arise through the mechanism of molecular
mimicry. The biological basis of a humoral response to α-glucose anti-
gen is still unclear, but it is of interest that this particular carbohydrate
(α-glucose) is found within the type IV collagen matrix of the BBB. It
has been hypothesized that in MS patients these carbohydrate antigens
may be released during an inflammatory response at the BBB [42].
Furthermore, the humoral response to post-translationally modified
components of myelin in serum patients was analyzed. In particular, it
was found that only the glycosylated analogue of the MOG immune-
dominant epitope [Asn31(Glc)] human MOG(30–50) was recognized
by antibodies in MS patients, but not in healthy subjects [35]. There is
considerable evidence that Epstein–Barr virus (EBV) infection is a
strong risk factor for the development of MS [43]. Most importantly,
MS risk is extremely low in individuals who are EBV negative, but it
increases several folds following EBV infection; thus, evidence of EBV
infectionmay have relevance forMS diagnosis [44]. The presence of an-
tibodies to EBV is not considered to be diagnostically relevant, because a
number of studies have shown the presence of antibodies against EBV in
99% of MS patients, but also in 90% of the general population [45].
Current investigations are focused on determiningwhetherMS patients
have antibodies to unique determinants of EBV. More recently, serum
antibody titer against EBV nuclear antigen-1(EBNA-1) has been sug-
gested to be associatedwith disease activity and presented as a possible
biomarker in MS [46]. Several studies have explored the antibody
response to specific segments of the EBNA-1 antigen [47,48]. Sera
fromMS onset pediatric patients recognized a broader range of distinct
epitopes within EBNA-1, particularly three unique regions [49]. Anti-
bodies specific to one of these epitopes (EADYFEYHQE, amino acids
411–420) were associated with the highest MS risk in an adult study,
in which the combination between HLA-DRB1*15 and antibody reactiv-
ity to epitope 411–420 was associated with a 24-fold increased risk for
MS [47]. Human herpes virus type 6 (HHV-6), like EBV, could be an
important causative factor in MS [50]. HHV-6 virtually infects all chil-
dren by the age of 2 years [51], so it has not been possible to compare
the MS risk for infected versus non-infected individuals. Evidence for
HHV-6 involvement in the pathogenesis of MS is based on pathological
data showing the presence of the virus in MS postmortem lesions
[52,53] and its neurotropic nature [54]. Recent studies have demon-
strated increased titers of IgM and IgG antibodies specific to a variant
of HHV-6 present in both serum and CSF of patients in the earliest
phases of MS [55–57]. Conversely, a treatment trial with anti-viral
agents effective against HHV-6 had no beneficial effect in patients
with MS [58], suggesting that different viruses may be responsible for
the same clinical entity across the population of MS patients. A very
recent discovery is the increased humoral immune response against
KIR4.1, a rectifying potassium channel expressed by astrocytes and oli-
godendrocytes found in different cohorts of MS patients. In particular,
serum levels of antibodies to KIR4.1 were higher in MS (46.9%) than
in other neurologic diseases and healthy subjects [59]. Based on these
data, it has been concluded that KIR4.1 is a CNS-specific target of the
ers in multiple sclerosis, Autoimmun Rev (2015), http://dx.doi.org/
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autoantibody response in a subgroup of patients withMS [59]. Further-
more, the injection of the specific IgG for KIR4.1 (derived fromMS sera)
into the cisterna magna of mice caused pathological changes like com-
plement deposition and loss of KIR4.1 antigen, suggesting a pathogenic
role for this kind of antibodies [59]. However, as regarding MOG, it re-
mains to be seen if the immune response against KIR4.1 will be useful
as a biomarker for diagnosis.

5. Biomarkers of conversion to clinically definite MS

Clinically isolated syndrome (CIS) is a term that describes a first
clinical episode with features suggestive of MS. It usually occurs in the
young. Approximately, one-third of CIS patients progresses to CDMS
within one year after diagnosis, and approximately half of them do so
after 2 years [60]. Up to now, lesion load in the initial MRI and the pres-
ence of OCGB in the CSF of CIS patients have been the best validated
prognostic paraclinical measures [61–63]. Overall, an earlyMRI can pre-
dict with high certainty whether a patient will develop MS, but cannot
accurately determinewhen thiswill occur. On the other hand, the utility
and predictive value of anti-myelin antibodies remain controversial [32,
64]. CIS patients represent a unique population for the study of early
molecular events that lead to demyelination and axonal degeneration.
In this vein, a microarray experiment was conducted to study gene ex-
pression in naïve CD4+ T cells in CIS patients at the time of diagnosis
and after one year, in order to identify genes correlating with conver-
sion toMS [65]. This study revealed amolecular signature that identified
a group of CIS patients with high risk of MS conversion with high accu-
racy. In particular, a gene encoding a transcription factor critical for
repression of T-cell proliferation, TOB1, was found to be significantly
down-regulated in the group of CIS patients who rapidly converted to
MS [65]. These results indicate that CIS patients with high risk of MS
conversion have impaired regulation of T cell quiescence, possibly
resulting in earlier activation of pathogenic CD4+ T cells [65]. In addi-
tion, genetic analysis in an independent cohort ofMS patients identified
a genetic association between specific TOB1 polymorphisms and clinical
progression to mild or severe MS phenotypes [65]. Further studies will
be needed to determine the predictive value of TOB1 expression as a
biomarker for CIS conversion to MS. Recently, it has been shown
that measuring anti-α-glucose IgM levels could provide not only a
possible diagnostic biomarker for MS, as reported below, but also an
independent and more specific predictive factor for early conversion
to CDMS. In particular, higher serum levels of a panel of anti-Gα4Gα
and α-glucose glycan seem to assist in the prediction of CIS patients
who are prone to an imminent relapse, within 24 months [66]. Thus, a
classification rule named gMS-Classifier2, an algorithm based on
the combination of polyclonal serum IgM antibody levels against P63
(a polymer based on Glc(α1–3)Glc(α) and Glc(α1–6)Glc(α)) and age
was developed after an exploration analysis of clinical data and anti-
glycan antibody levels in samples collected in the “Betaferon® in
Newly EmergingMS” [67]. It was shown that gMS-Classifier2 is an inde-
pendent predictor for the conversion of CIS patients to CDMS in the first
year of the disease course and therefore could be of clinical relevance to
determine which patients are at higher risk, particularly in cases in
which OCB is not available [67]. Several studies have shown elevated
frequencies of anti-MOG levels in MS patients, as reported in the previ-
ous section [32,68,69]. Although not universally confirmed, it has been
shown that the presence of serum anti-MOG and -MBP antibodies in
CIS patients significantly increased the conversion rate of CIS to RRMS
[32]. Furthermore, elevated immune responses toward EBNA1 are se-
lectively increased in CIS patients and suggest that EBNA1-specific IgG
titers could be used as a prognostic marker for disease conversion and
disability progression [70]. Epidemiological studies have linked vitamin
D status with autoimmune disease susceptibility and severity [71–74].
Experimental evidence suggests that high levels of vitamin D, a potent
immunomodulator, may decrease the risk of MS [75–77], suggesting a
protective role for vitamin D in MS development [78]. Several studies
Please cite this article as: D'Ambrosio A, et al, Peripheral blood biomark
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have shown that administration of the biologically active hormone
1,25-dihydroxyvitamin D prevents EAE onset and progression in mice
[79,80]. On the contrary, in some studies an inverse correlation between
vitamin D status and MS activity was reported [81–83]. However,
recently, a robust association between depressed vitamin D levels
and the development of more severe measures of MS was shown,
including time to diagnosis, new lesions, volume of lesions, and brain
volume [84]. These results provide evidence that low serum 25(OH)D
(25-hydroxyvitamin D) levels are an important risk factor for the
conversion from CIS to MS and for long-term progression, suggesting
that serum 25(OH)D level may be a prognostic biomarker for CDMS in
CIS patients [83,85,86].

6. Disease activity biomarkers

RRMS is defined by immune-mediated inflammatory demyelinating
attacks, causing lesions associated with a breakdown of the BBB and the
presence of blood-derived lymphocytes and monocytes in the CNS.
Resolution of the inflammation, restoration of the conduction block
and re-myelination contribute to the clinical recovery [87]. The current
gold standard as a marker of active disease is detection of Gd enhance-
ment of white-matter lesions on brain MRI. On the other hand, brain
MRI is not accurate for the assessment of subcortical grey demyelination
and for ameasure of axonal and neuronal loss and inflammatory white-
matter demyelination. Additionally, spinal MRI is less sensitive than
brain MRI in detecting lesions [20]. Furthermore, several factors may
limit the ability to use the presence of Gd enhancement as the ultimate
biomarker of BBB disruption, such as the dose of administered Gd, the
time elapsed between Gd injection and image acquisition, and the
severity of BBB disruption [20,88]. Ongoing research has led to find
out several disease activity biomarkers which can be divided into two
subsets: biomarkers specific for BBB damage and biomarkers associated
with BBB damage. In particular, the section of biomarkers associated
with BBB damage includes: inflammation biomarkers, MVs and miRNA.

6.1. Biomarkers specific for BBB damage

The BBB is present in a complex cellular system in which tight junc-
tions between endothelial cells play a crucial role. Cells that compose
the BBB in association with the basal laminae include endothelial cells,
pericytes, perivascular microglia and astrocyte processes. In particular,
astrocyte endfeet surrounding brain blood vessels contribute to induc-
tion and maintenance of the endothelial barrier [89]. Several bio-
markers have been studied for their ability to reflect BBB disruption
and brain damage in MS, but only a few studies report increased
serum levels of brain derived proteins, such as S100β after brain trauma
or stroke [90]. S100β is a protein primarily synthesized in the brain by
astrocyte processes and is quickly released from the brain into the
blood when the BBB is disrupted. Concentration of S100β was found
increased both in CSF and in serum of MS patients and correlated with
the activity of the disease [91]. Although S100β appearance in plasma
well correlatedwith an opening of the BBB, it has also been shown to in-
crease in the plasma or CSF as a consequence of other disease processes
not limited to the CNS, suggesting that it could not be a biomarker
specific for BBB damage [89]. The main biomarker of an opening of
endothelial tight junctions is zonulin. Although not specific for the
BBB, zonulin is a protein modulating tight junctions, therefore playing
a potentially crucial role in the modulation of BBB permeability in MS.
Elevated serum levels of zonulin have been reported in RRMS patients
who had Gd-enhancing lesions and SPMS compared to controls [92].
Further studies are needed to confirm the utility of this protein as a bio-
marker of BBB disruption in MS. Adhesion molecules are normally
expressed at very low levels on vascular endothelial cells, but after
cytokine stimulation they are upregulated and released as soluble
forms. Although several cell adhesion molecules (CAMs) have been
reported to be associated with BBB disruption, none are in fact specific
ers in multiple sclerosis, Autoimmun Rev (2015), http://dx.doi.org/
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or highly predictive of BBB damage [93,94]. Other soluble adhesion
molecules, such as PECAM-1, P-selectin and E-selectin, have been
shown to be upregulated in RRMS patients when compared to PPMS
and their levels are also upregulated during relapse, suggesting
that these molecules might be used as a biomarker for BBB disruption
[95,96].

6.2. Biomarkers associated with BBB damage

Multiple studies have evaluated the potential correlation of
biomarkers associated to BBB disruption, including inflammation bio-
markers, such as cytokines, chemokines and their receptors, immune
cell subsets, costimulatorymolecules, antibodies,matrixmetalloproteases
(MMPs) and their natural tissue inhibitors (TIMPs). These molecules that
regulate the integrity of the BBB and invasion of inflammatory cells into
CNS appear to have expression changes in patients with MS. Another
kind of biomarkers associated with BBB damage is endothelial-derived
MVs (EMVs), shedding fromcerebral endothelial cells, activated by proin-
flammatory cytokines and chemokines. Furthermore, changes in compo-
sition as well as function of miRNAs in body fluids or in different cell
populations of MS patients seem to be particularly accurate biomarkers
of MS activity.

6.2.1. Inflammation biomarkers
Several proinflammatory cytokines appear to be correlatedwith BBB

disruption. Elevated TNF-α, IL-1beta, receptor activator of nuclear factor
kappa-B ligand (RANKL) and C-reactive protein levels in serum and CSF
have been associated with onset of MS relapse [97,98]. Studies of MS
patients highlight that numerous aspects of their immune systems are
dysfunctional. Evidence supports abnormal activity of T and B cells, se-
creted antibodies and complement activation [99]. Recent evidence
also supports dysfunction of dendritic cells, macrophages and NK cells
[100]. CD4+ T cells can be divided intomain subsets, based on their pat-
terns of cytokine production: Th1 (proinflammatory activitywith IFN-γ,
IL-12 and TNF-α secretion), Th2 (immunoregulatory activity with IL-10
and IL-4 secretion), Th17 (inflammatory IL-17 and IL-6 secretion) and
Treg (TGF-beta and IL-10 secretion). Much attention has highlighted
the over-activity of Th1 and Th17 cells that secrete proinflammatory
cytokines [101]. IL-17F is one of the signature cytokines of Th17 cells
that play a key role in the defense against pathogens and autoimmunity
[102] and is a key determinant of aberrant immune responses in MS
[103]. IL-17 production is increased in relation to disease activity, and
decreased by IFN-β therapy [104]. In particular, IL-17 levels are higher
in patients recently diagnosed with MS compared to those with
longstanding disease, which may relate to recent or severe disease
activity [104]. It also appears to be loss of activity of regulatory T cells
that normally keep inflammation in check [105]. A population of
CD8+ T cells expressing FoxP3 that exert immunoregulatory effects on
activated T cells and DC has been described. The number and activity
of regulatory T cells are reduced in the serum and CSF during acute
MS relapse [106]. IL-6 serum levels were found to significantly correlate
with the relapse frequency in female MS patients and with age at onset
for all MS patients [107]. Since chemokines and their receptors are dif-
ferentially expressed on various cell types and under various conditions,
their regulation appears to drive the traffic of inflammatory cells to the
CNS and thereby could correlate with BBB disruption. In a recent study,
plasma levels of pentraxin 3 (PTX3), essential component of the innate
immune system whose blood level is low in normal conditions, were
significantly increased during the relapse stage, and had a borderline
significant correlation with EDSS scores [108]. In remission, plasma
PTX3 levels were lower and had no association with EDSS scores,
confirming that plasma PTX3 level can be a potential biomarker of dis-
ease activity [108]. In general, cytokine/chemokine levels inMS patients
also overlap with healthy subjects, as well as across disease types and
courses. This is likely explained by the fact that changes in cytokine
serum levels reflect a complex and intricate regulatory system for
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immune processes, rather than mere BBB disruption alone. Multiple
studies have evaluated the potential correlation of MMPs and TIMPs
involved in BBB disruption. The balance between MMPs and their
TIMPs tightly regulates the digestion of the extracellular matrix and
basement membranes, and thereby the migration of white blood cells
to the CNS and other organs. Higher levels of MMP-9 or lower levels
of TIMP-1 seemed to predict the presence of Gd-enhancing lesions
and thus BBB disruption [109]. Because MMP-9 and TIMP-1 levels
fluctuatewithin and between patient cohorts, and are affected by infec-
tions, their use for a monitoring of the disease course in MS is complex
[89]. Osteopontin (OPN) is a member of the small integrin-binding li-
gand N-linked glycoprotein family of non-collagenous matricellular
proteins [110] and plays a role in chemotaxis, leading to the migration
of macrophages and DC to sites of inflammation [111]. Since the identi-
fication of OPN as the most abundantly expressed cytokine in MS
lesions, several studies have confirmed the involvement of this mole-
cule in MS [112]. The role of OPN in inflammatory diseases of the
brain has been provided by work on EAE in mice [113], in which OPN
induced relapses and disease progression through enhanced survival
of activated T cells [114]. On the other hand, OPN-deficient mice were
resistant to developing severe EAE [112]. Plasma OPN levels were
found to be increased in active RRMS [115,116] just prior to the appear-
ance of Gd-enhancing lesions [117]. PlasmaOPNwas further elevated in
SPMS but not in PPMS [115], suggesting a role of OPN in acute and
chronic disease activities. Optimal T cell activation is a complex and
multistep phenomenon resulting from specific antigen recognition
and interaction between pairs of costimulatory molecules on the
surfaces of both APC and T lymphocytes [118]. Aberrant expression of
costimulatorymolecules and their receptors on peripheral bloodmono-
nuclear cells (PBMC) was found in MS patients and many studies
attempt to correlate their expression levels to the status of disease. A
pivotal role in T lymphocyte stimulation is played by the B7 family of
costimulatory molecules [119]. Levels of the Th1 stimulatory molecule
CD80 increase during active MS, while expression of the immunoregu-
latory CD86 molecule declines [120]. Several authors have reported
that autoreactive T cells in MS are less dependent on CD28-mediated
costimulation:MBP-reactive T cells fromMSpatientswere able to be ac-
tivated in the absence of CD28/B7 costimulatory pathway and blockade
of CD28 failed to inhibit MBP-specific T cell proliferation inMS patients,
but not in healthy subjects [121]. This evidence suggests that CD28
expression progressively declines with repeated stimulations, leading
to the generation of CD28− T cells. Other members of the B7 family
have been more recently described [122]. Among molecules that nega-
tively regulate immune responses studied in MS, a new member of the
B7-CD28 superfamily, termed programmed death (PD)-1 (CD279),
expressed on lymphocytes and macrophages, has been described
with its ligands (PD-L1 and PD-L2) on immune cells and non-
hematopoietic cells [123,124]. PD-1/PD-L1 or PD-1/PD-L2 interaction
inhibits T cell proliferation, cytokine production, and cytolytic function,
maintaining peripheral immune tolerance. It has been shown that in
EAE PD-1, PD-L1 and PD-L2 are expressed on cells infiltrating the
brain, andblockade of PD-1 causes augmentation of EAE [125]. Recently,
it was found that the increased expression of PD-1 and PD-L1 that
results in higher IL-10 production, lower proliferation, and increased
apoptosis of MBP-specific lymphocytes, is associated with disease
remission inMS patients, suggesting that the PD-1/PD-L1 costimulatory
molecule expression on immune cells may be an interesting inflamma-
tory biomarker [126]. In addition to CD28 costimulation, several
molecules belonging to the TNF receptor superfamily, including 4-1BB
(CD137; ILA/4) and its ligand 4-1BBL (CD137L), can function as
costimulatory molecules for the induction, differentiation and survival
of immune cells [127]. 4-1BB is a transmembrane protein receptor
expressed by a variety of different cells, including B cells, macrophages
and DC, activated T lymphocytes, NK cells and CD4+ CD25+ Treg cells
[127–129]. In a study, increased soluble 4-1BBL levels were found in
peripheral blood of RRMS patients compared with healthy subjects
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[130]. However, a significant correlation between soluble 4-1BBL
protein levels and 4-1BBL surface or mRNA expression levels in the
monocytes or PBMC was not found, suggesting that the soluble form
of the molecule is probably produced by proteolytic cleavage from the
cell surface form and more studies are required to establish its utility
as biomarker [130]. Many studies inMS also investigated the expression
of apoptosis-inducing ligand and receptor molecules, such as Fas and
FasL, involved in eliminating autoreactive lymphocytes by apoptosis,
to maintain the immune tolerance. There is a large body of evidence
suggesting that apoptosis is defective in MS, leading to inappropriate
persistence of autoreactive lymphocytes and continuing inflammation
in CNS tissue [131]. Increased expression of Fas and FasL has been re-
ported in MS lesions and on peripheral blood lymphocytes [132,133].
High systemic [134,135] and CSF [136] levels of soluble Fas protein
have been detected in MS patients. Furthermore, both activated T cells
and T cell lines derived from MS patients showed less spontaneous ap-
optosis and were less sensitive or even resistant to induced apoptosis,
which is suggestive of a defective functioning of Fas or its downstream
mechanisms in MS [137]. In RRMS patients, FasL mRNA level was
increased prior to the exacerbations, but it decreased during clinical ac-
tivity, while mRNA level of Fas increased. These findings suggest that
the imbalance between Fas and FasL is related to clinical activity [138].
Furthermore, the serum level of Fas, FasL and another pro-apoptotic
molecule belonging to TNF-α superfamily, tumor necrosis factor-
related apoptosis inducing ligand (TRAIL), in MS patients with different
clinical forms, RRMS, in remission and relapse phase, and PPMS has
been investigated [135]. Meanwhile serum levels of Fas and FasL did
not differ between MS patients and healthy controls, soluble TRAIL
levels were significantly decreased in RRMS during relapses [135].
These findings support a role of TRAIL in the pathogenesis of MS,
especially during the acute phases of the disease and as disease activity
biomarker. There is emerging evidence that the downstream anti-
apoptotic regulator survivin, a member of the inhibitor of apoptosis
family of proteins, is over-expressed in activated T lymphocytes from
MS patients [139]. Survivin was found to be increased during active
disease and down-regulated by IFN-β therapy, suggesting its potential
role as biomarker [140,141]. Lymphocyte function is regulated by a
network of ion channels and transporters in the plasma membrane of
B and T cells. Thesemoleculesmodulate the cytoplasmic concentrations
of diverse cations, such as calcium, magnesium and zinc ions, which
function as second messengers to regulate crucial lymphocyte effector
functions, including cytokine production, differentiation and cytotoxic-
ity [142]. In particular, the potassium channel K2P5.1 has been found to
be upregulated in T cells ofMS patients during acute relapse. Indeed, the
pharmacological blockade of K2P5.1 or knocking downwith short inter-
fering RNA (siRNA) resulted in reduced T cell functions [143]. These
results suggest that this potassium channel may represent a disease
activity biomarker. A very recent study indicates an association between
anti-EBNA-1 IgG levels andMS disease activity in addition to conversion
from CIS to RRMS [144]. In particular, an increasing level of anti-EBNA-1
IgG associated with increased MRI disease activity has been shown
[144].

6.2.2. Microvesicles
Much research has focused on the potential of MVs as biomarkers.

MVs are a heterogeneous population of membrane-derived vesicles re-
leased by a diverse cell types upon activation or apoptosis, particularly
under conditions of stress or injury. They express antigens specific of
their parental cells andmay be useful as biomarkers of endothelial dys-
function, coagulation, inflammation and other pathological processes
[145]. MVs may be distinguished in different classes of extracellular
vesicles (i.e. microparticles, exosomes, apoptotic bodies) on the basis
of size, content and mechanism of formation [146–148]. MVs play
a role in regulating various biological and physiological processes,
including cell–cell communication, cell proliferation, coagulation, and
inflammation [149]. Since MVs readily circulate in the vasculature,
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theymay serve as shuttle signaling transducers thatmodulate biological
processes not only in their local environment but also at remarkable dis-
tance from their site of origin. Furthermore, MVs have been implicated
to have pathological roles in many diseases, such as rheumatoid
arthritis, vascular diseases, cancer, diabetes, and Alzheimer's disease
[150–153]. In the CNS MVs, released by nearly all cell types, have been
detected in the CSF [154,155] and have been implicated in neuronal
development, synaptic activity, nerve regeneration, and protective
mechanisms [156]. It is becoming increasingly evident that CNS-
derived MVs may contribute to the onset and progression of some neu-
rodegenerative and neuroinflammatory diseases [157–159].MVs can be
isolated from the plasma or the CSF of patients suffering from several
different CNS diseases and can be used as biomarkers allowing earlier
detection and monitoring of the progression of diseases. To date, few
studies have examined MV populations in CSF during MS disease
onset and progression [155,160], meanwhile several studies have been
investigated circulating EMVs in blood fromMS patients, as biomarkers
for BBB damage, in particular during disease exacerbation [161–163]. In
particular, flow cytometric studies have been revealed that the concen-
tration of CD51+ (vitronectin receptor) EMV was higher in relapse
and remission, meanwhile CD31+ EMVs were higher in relapse and
returned to nearly control value during remission [162,163]. These
data suggest that a high rate of CD31+ EMVs in plasma, associated
with contrast-enhancing lesions on brain MRI, could be a biomarker of
exacerbation, reflecting acute endothelial damage. Furthermore, emerg-
ing evidence suggests that EMVs in MS patients promote the migration
of monocytes and lymphocytes through the BBB and assist with the for-
mation of demyelinating lesions [164]. Circulating MVs can be released
not only by endothelial cells but also by platelets, erythrocytes and by
immune cells and recently, MVs derived from these subtypes were
assessed with flow cytometry in MS [165]. It has been shown that
RRMS patients have the highest levels of MVs derived from three
subtypes (platelets, total leukocytes ormonocytes)while SPMS patients
presented similar levels to those of healthy subjects. These results sug-
gest that circulating MVs reflected disease status with an increment of
their shedding during inflammatory periods and turning to baseline
during chronic progressive degeneration [165]. Recently, we purified
blood-derived MVs by size-exclusion chromatography from RRMS pa-
tients, in active- or remitting-phase of the disease, and healthy subjects.
MV protein content has been undergone by a proteomic analysis and
classified according to Gene Ontology. A statistically significant enrich-
ment in proteins involved in synaptic transmission has been detected
only in MV from MS patients in the active phase, but no in MS patients
in remission phase and healthy subjects. Since many of these identified
MV proteins are typically of the CNS, these data indicate that the origin
of MVs reflects local CNS damage (personal communication). MVs can
carry numerous autoantigens implicated in autoimmune diseases,
including heat shock proteins (HSPs), histones, and α-enolase, that
they may be targets of autoreactive recognition. For this reason, MVs
may be capable of triggering or maintaining pathological autoimmune
responses [166] and constitute a useful biomarker of systemic cell acti-
vation in MS, as well as in other autoimmune diseases. In conclusion,
MVs are potentially vital contributors to inflammation, by carrying
autoantigens, danger signals, cytokines, lipid mediators and tissue-
degrading enzymes, having pivotal roles in the initiation, propagation
and regulation of inflammatory diseases. Despite the exciting potential
of MVs as a source of biomarkers in various clinical applications, many
challenges remain. In particular, a major limitation in this evolving dis-
cipline is the lack of standardization for already challenging techniques
to isolate, characterize and detect MVs [167].

6.2.3. MicroRNA
MicroRNAs, a class of non-coding single-stranded RNAs approxi-

mately 22 nucleotides in length, have recently been discovered to
be modulators of post-transcriptionally gene expression, either by
targeting mRNA degradation or by inhibition of protein translation.
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MiRNAs play important roles in various biologic processes such as cell
proliferation, development, differentiation, metabolism, apoptosis, an-
giogenesis, inflammation and immunity [168,169]. It was estimated
that about one-third of human genes are negatively regulated at post-
transcriptional levels by miRNAs [170], either through the inhibition
of translation initiation and elongation or by destabilization of target
mRNAs [171,172]. Aberrant miRNAs' expression and function are
associated with several human diseases, including cancer, neurodegen-
eration and autoimmunity and potentially serve as diagnostic, and
prognostic biomarkers or therapeutic targets [173]. miRNAs control
several aspects of immunity related to the function of granulocytes,
monocytes, macrophages, dendritic and natural killer cells, and to the
differentiation and activation of T and B cells. Several studies performed
miRNA profiling in MS patients and control subjects using PBMC
[174–176], whole blood [177,178] and brain lesions [179]. All reports
showed altered miRNA expression profiles in MS patients compared
to healthy subjects. In particular, analyzing the expression patterns of
364 miRNAs in PBMC from MS patients in the active phase of disease,
in the remission phase and in healthy subjects, a specific miRNA
signature of the relapse phase has been found [174]. This specific
miRNA signature consisted in a strong dysregulation of miR-18b and
miR-599, whereas a strong dysregulation of miR-96 levels, involved in
immunological pathways such as the interleukin signaling pathway,
was observed in the remission phase [174]. Another study focused
on immunologically relevant miRNAs, such as miR-21, miR-146a, miR-
146b, miR-150 and miR-155, investigating their respective levels in
PBMC from untreated MS patients compared with healthy subjects
[175]. A statistically significant increased expression of miR-21, miR-
146a and miR-146b in RRMS patients in the active phase has been
observed, compared with controls. In contrast, no differences were
found in the expression levels of bothmiR-150 and miR-155, highlight-
ing the possibility of defining different disease entities with specific
miRNA profiles [175]. There are growing evidences that Th17 cells are
key players in various autoimmune diseases, including MS [180]. In a
recent study, miR-326 expression in PBMC was shown to correlate
with disease severity in MS patients and mice with EAE [181]. In vivo,
silencing of miR-326 resulted in fewer Th17 cells and a milder EAE,
while its over-expression resulted in more Th17 cells and a severe EAE
[182]. In another study, it was found thatmiR-155 expressionwas high-
ly correlated with disease severity in MS patients and mice with EAE
[183]. In particular, it was found that the knockdown of miR-155 in
mice resulted in highly resistant to EAE development [183] suggesting
that this kind of miRNA, promoting inflammatory properties of T cells,
including Th17 and Th1 cells, is involved inMS pathogenesis. Therefore,
miR-326 and miR-155 may be useful as biomarkers of disease activity.
Cell-freemiRNA can be detected in several human body fluids including
plasma, serum, urine, and saliva [184,185]. Some miRNAs circulating in
the blood have been identified as biomarkers in different human
diseases such as cancer, cardiovascular diseases and brain injury [186,
187], because they correlate with disease activity and prognosis, partic-
ularly in cancer. Interestingly, circulating miRNAs are exceptionally
stable in biological fluids, suggesting that miRNAs are released from
cells in MVs (in particular exosomes) that protect them from blood
RNase activity [186]. Current knowledge of the biological significance
of cell-free miRNA, especially with respect to intracellular miRNA, is
still very limited. A preliminary study evaluated the expression of se-
lected microRNA (miR-let-7a, miR-92a, and miR-648a) in the plasma
of patients with MS during a relapse as well as in remission and healthy
subjects and attempt to correlate the acquired data with clinically
relevant parameters of the disease [188]. These results suggested that
more studies are necessary to define which miRNA subsets may be
potential biomarkers for MS. Furthermore, various studies analyzed
the expression of miRNAs in immune cells of RRMS patients without
distinguishing between active or remission phase. It was found that
miR-17-5p, miR-92, miR-193a and miR-497 were deregulated in
RRMS patients compared to the healthy subjects [189]. In particular
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MiR-17-5p, regulating different stages of lymphocyte development,
activation and survival [189] and having roles in the development of
autoimmune and lymphoproliferative diseases in mice [190], was up-
regulated in CD4+T cells but downregulated in B cells of RRMS
patients. Analysis of miRNAs in Treg CD4+ cells, that lose their capacity
to suppress the activation of the immune system, showed thatmiR-106,
miR-25, miR-19a and miR-19b significantly upregulated in RRMS
patients versus controls [191]. These miRNAs modulate the TGF-β
signaling pathway, silencing the cell cycle inhibitor CDKN1A (p21)
and the pro-apoptotic gene BCL2L11 (BIM) [192]. These results suggest
that the disruption of TGF-β pathway, involved in the maintenance
of self-tolerance and T cell homeostasis, may be one way by which
miRNA alteration promotes MS development [191].

7. Biomarkers of disease progression

Several years after the disease onset, when the RRMS patients have
reached a threshold level of irreversible neurological symptoms, and
when functional compensation may be exhausted, the clinical features
of the disease change, heralding the onset of SPMS [193,194]. Epidemi-
ological and MRI studies indicate that the RRMS to SPMS phase transi-
tion can be mainly driven by the prevalence of neurodegenerative
over inflammatory pathological features [195]. Thus, therapies that
target the adaptive immune response on SPMS show limited efficacy
[195,196] and at present, there are no useful disease-modifying treat-
ments for SPMS and PPMS. In the same time, some evidence suggests
that the other progressive course of the disease, PPMS, represents a
distinct, non-inflammatory or at least less inflammatory pathologic
form of the disease [197,198]. Multiple mechanisms contributing to
neurodegeneration in PPMS or SPMS are currently unresolved, includ-
ing exhaustion of functional compensation, lack of trophic support,
chronic microglial activation, mitochondrial injury, oxidative stress
and altered expression of ion channels in demyelinated axons [197,
199–201]. Following damaging processes, molecules released from
CNS cells are liberated into the extracellular compartment and finally
in the CSF and blood [202,203]. These released molecule debris may
be able to reach the peripheral lymphnodes, leading to autoimmune re-
sponses toward these antigens that might contribute to CNS damage
[204]. Indeed, IgG and IgM antibodies binding to the surface of a neuro-
nal cell line were found in 70% of sera from SPMS patients and in 25% of
sera from RRMS patients [205]. This finding may indicate the spreading
of autoimmunity to neuronal antigens as a consequence of CNS tissue
damage, and the expansion of pathology from moderate to marked
neuroaxonal loss associated with a transition from RRMS to SPMS
course. Promising biomarkers for monitoring neuro-axonal damage
and conversion to chronic progressiveMS are serumneurofilament pro-
teins and antibodies directed against the cytoskeleton. Neurofilaments
(NFs) are major components of the axonal cytoskeleton, which exist
as heteropolymers of low (NFL), medium (NFM), and high (NFH) mo-
lecularweight protein subunits. NFs represent candidates for prognostic
biomarkers of theMS course because their detection in blood or CSF re-
flects neuronal and axonal damage [206–208]. There are contrasting re-
sults regarding serum NFL in MS. The highly phosphorylated NFH
(pNFH) are normally found only in axonal NFs and this biomarker is
thought to indicate axonal injury [206], whereas NFL constitutes only
a minor part of the neuronal cell body and dendrites relative to axons
[209]. Recently, it has been shown that serum pNFH levels can be
detected more likely in SPMS than RRMS, indicating that the routine
measurement of serum pNFH should be a prognostic indicator of
disease outcome [210]. Furthermore, the presence of serum pNFH is
associated with higher disease severity scores and T2 cerebral MRI le-
sion load, supporting the hypothesis that serum pNFH levels are likely
to reflect CNS axonal injury [26,210]. Recent studies reported the
involvement of antibodies specific to NFL in axonal pathology in MS,
in which NFL antibodies correlated with clinical disability and progres-
sive disease course of MS, as well as with MRI markers of cerebral
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atrophy [211]. Furthermore, serum anti-NFL IgG levels were found to be
significantly increased in PPMS patients, compared to other neurologi-
cal diseases or healthy subjects [211,212]. In addition to NFs, the other
major component of the axonal cytoskeleton is the microtubule,
which mainly consists of α and β tubulin subunits [207], and
microtubule-associated proteins (MAPs), such as MAP2 and tau [213].
In one study, CSF antibodies to tubulin and the CSF/serum antitubulin
index correlated significantly with EDSS in one study [212], whereas
no similar correlations with disability were found in another study
[214,215]. As reported below, an aberrant N-glycosylation is a funda-
mental determinant of autoantibody recognition in MS. It was found
that the serum antibody titers against a synthetic glycopeptide termed
CSF114(Glc) paralleled clinical activity and brain lesions positive to
MRI, suggesting that CSF114(Glc)-based immunoassay on sera may
have a high prognostic value in detecting and monitoring disease
progression [216]. Recently, antigen microarray analysis was used to
characterize patterns of serum antibody reactivity in MS, against a
panel of CNS antigens and lipid autoantigens and HSPs [217]. This
approach revealed unique autoantibody signatures in clinical and
pathologic subtypes of MS, that distinguished RRMS, SPMS and PPMS
from healthy controls and other neurologic or autoimmune diseases
[217]. In particular, RRMS was characterized by autoantibodies to
HSPs, augmented in response to inflammation and upregulated in MS
lesions, that were not observed in PPMS or SPMS. In addition RRMS,
SPMS, and PPMS were characterized by unique patterns of reactivity
to CNS antigens [218,219]. These data suggest that antibody signature
appears to reflect immune processes in the CNS, thus antigen arrays
may provide promising tool for monitoring the progression of the
disease. Furthermore, many different immune mediators, such as
cytokines, chemokines, apoptotic molecules, may have a prognostic
value for the clinical evolution of MS. It has been reported that cell
surface Fas and FasL predict slower long-term disability progression in
MS [220]. In particular, high levels of Fas mRNA were associated with
a favorable disease course in RRMS, as measured by EDSS, meanwhile
high levels of FasL mRNA were associated with relatively mild disease
progression in SPMS [220]. The pro-inflammatory cytokine TNF-α has
been associatedwithMS disease activity and implicated in axon degen-
eration [221]. A selective increase of soluble TNF-receptor II (sTNF-RII)
levels in PPMS patients, was shown compared with patients with
other clinical forms of the disease and healthy subjects [222]. Although
TNF-RII levels significantly increased over a 2-year follow-up period in a
subgroup of PPMS patients, they could not discriminate between
patients with and without disability progression [222]. Compounds
deriving from overproduction of reactive oxygen, reactive nitrogen
species and metabolites generated by altered energy metabolism
might be detected in excess in blood samples from MS patients.
Great attention has been given to alterations in mitochondrial func-
tions. A recent multicenter study found a linear correlation between
serum lactate levels and EDSS [223], meanwhile in another study no
correlation between CSF lactate measure and the disease progression
on EDSS or with the clinical subtype (RR, SP, PP) was found [224].
Since impaired mitochondrial functioning has been hypothesized
to drive neurodegeneration increasing anaerobic metabolism in
MS, the lactate produced during anaerobic energy metabolism
might be a biomarker for neurodegeneration. Circulating miRNAs
are differentially expressed in RRMS and SPMS versus healthy
subjects and in RRMS versus SPMS and linked to EDSS and disease
duration [225]. In particular, let-7 miRNA family, potent activators
of toll-like receptor signaling in macrophages and microglia and reg-
ulating stem cell differentiation and neurogenesis, differentiated
SPMS from healthy subjects and RRMS from SPMS [225]. Interestingly
the same circulatingmiRNA (let-7), expressed both in SPMS and amyo-
trophic lateral sclerosis (ALS) patients but differentially expressed in
RRMS patients, suggests that similar neurodegeneration processes
may occur in SPMS and ALS [225]. Recently, a statistically significant
downregulation of miR-15b and miR-223 in PPMS patients, suggesting
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that the profiling of these miRNAs may be considered a biomarker
to distinguish patients with different subtypes and stages of MS, has
been shown.

8. Biomarkers of therapeutical response

The therapy ofMS is rapidly evolving. Several therapeutic agents are
available, andmanyothers are at an advanced stage of development. For
this reason, the discovery of biomarkers to identify non-responder
patients to drug therapy is essential in tailoring the best treatment.
Currently, several different treatments for MS patients with different
mechanisms of action and dissimilar side effect profiles exist, including
intramuscular IFN-β 1-a (Avonex®), subcutaneous IFN-β 1a (Rebif ®),
subcutaneous IFN-β 1b (Betaseron/Extavia®), glatiramer acetate
(Copaxone®), natalizumab (Tysabri®), fingolimod (Gilenya®),
teriflunomide (Aubagio®), dimethylfumarate (Tecfidera®),
alemtuzumab (Lemtrada®) and mitoxantrone (Novantrone®)
[226]. IFN-β (IFN) is one of the most widely used treatments for MS.
However, a major limitation with IFN is that MS patients, in a range be-
tween 30 and 50%, donot respond to the therapy [227], thus biomarkers
for monitoring of IFN therapy have recently been studied intensively.
The search for a biomarker of IFN response has proven evenmore diffi-
cult, since the precise mechanism of action in MS remains unclear. IFN
effectiveness is probably attributable to numerous immunomodulatory
activities, including altering the Th1/Th2 balance [228,229], anti-
proliferative effects on T-cell expansion, differentiation and increased
T cell apoptosis [230]. There is also evidence that IFN inhibits transmi-
gration of immune cells across the BBB [231]. IFN treatmentmay induce
immunogenicity reactions in the form of binding and neutralizing
antibodies (bAbs and nAbs, respectively) [232]. Between 2% and 45%
of people treated with IFN will develop nAbs, and this is dependent on
the specific drug and dosing. However, much controversy remains
regarding the loss of the clinical efficacy of the therapy induced by
these antibodies and thus the need for incorporation of nAbs testing
into clinical practice [233]. Gene-expression changes occurring in
response to IFN binding to its receptor have been useful in finding
biomarkers that explain IFN bioactivity. Among the different IFN-
responsive genes, myxovirus resistance protein A (MxA), a GTPase
protein encoded by the MX1 gene with potent antiviral activity [234],
has proven to be one of the most sensitive and specific biomarkers of
IFN bioactivity [234]. MxA expression is significantly reduced during
the development of nAbs [235,236], and its measurement has provided
the basis for in vitro and in vivo assays to determine the presence of
nAbs [237]. However, there is a lack of clear roles of MxA as a biomarker
on disease pathogenesis or in the therapeutic response to IFN
[238–241]. A recent study demonstrated that measurements of both
MxA and nAbs after one year of IFN treatment were predictive for the
risk of new relapses [242], suggesting that MxA may be useful as a
biomarker for the pharmacological response of IFN. Several serum
molecules involved in the mechanisms of IFN action have been
proposed as biomarkers for IFN therapy, although none have been
confirmed to date. Among them, soluble TRAIL (sTRAIL), which is able
to inhibit autoreactive and antigen specific T cells, has been shown to
be induced by IFN in T cells [243,244], NK cells [245] and monocytes
[246]. sTRAIL mRNA level has been proposed as a response biomarker
for IFN treatment, although its precise role is not completely understood
[247,248]. Other potential candidates as IFN therapy biomarkers are
CXCL-10/IP-10 and CCL-2/MCP-1 chemokines, both involved in the
recruitment of leukocytes (249). As well as MMP-9 and TIMP-1, in-
volved in regulation of leukocyte trafficking across the BBB [249,250,
251], IFN, decreasing the expression of MMP-9, leads to a reduction
of T-lymphocyte infiltration into the CNS [231,252]; on the other hand,
MMPs diminish the response to therapy through proteolytic cleavage of
the IFN peptide [253]. IFN has been shown to down regulate mRNA and
protein expression of MMP9 [254,255], and to upregulate the levels of
its physiological inhibitor TIMP1 [256]. These studies suggest that
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MMPs may be considered as potential biomarkers for response to IFN
treatment. Additional biomarkers of IFN bioactivity include IFN recep-
tors (IFNARs). Ligand binding to the two IFNRs (IFNAR1 and IFNAR2)
results in a ternary complex that becomes internalized and degraded
[257]; therefore, decreased IFNAR expression is indicative of the bio-
availability of IFN. In a study of 219 MS patients receiving IFN therapy,
patients responding to treatment showed significantly downregulated
IFNAR expression compared with non-responders or controls [258]. In
a study, examining IFNAR2 splice variants, the long-term treatment
with IFN significantly correlated with decreased mRNA levels of the
transmembrane isoforms (IFNAR2b and -2c) [259]. Another series of
studies on large-scale gene expression profiling have revealed that clin-
ical non-responders exhibit altered expression of IFN-response genes,
both at baseline and after IFN treatment [260,261]. In particular, these
studies have revealed that a number of genes related with the mito-
chondrial function and several processes such as protein synthesis and
antigen presentation were found to be differentially expressed in
monocytes from IFN non-responders [262]. Furthermore, the baseline
expression of the interleukin-1 receptor-associated kinase 3, a negative
regulator of TLR4 signaling primarily expressed in monocytes, was
found to be significantly decreased in IFN responders compared with
non-responders [263]. These differentially expressed genes during IFN
treatment may predict the therapy response. Other relevant signaling
pathways that were upregulated in IFN non-responders were related
with high serum levels of IL-17F at baseline that have been associated
with suboptimal response to IFN in RRMS patients [103,264]. In a series
of experiments, it was found that mice with Th1-EAE benefit from
IFN treatment with reduction in levels of disability, while mice with
Th17-EAE do not respond and disease worsens [265]. Indeed, in RRMS
patient studies, IFN non-responders had higher IL-17F concentrations
in serum compared to responders and non-responders had worse
disease with more relapse risk than did responders [103]. Hence, high
IL-17F concentration in the serum of RRMS patients is associated with
non-responsiveness to IFN therapy. Furthermore, these patients also
had high levels of endogenous IFN-β compared to responders. These
data suggest that high IL-17F and IFN-β concentrations may be consid-
ered as predictive biomarkers of IFN therapy's efficacy [103]. Sensitive
bioassays of the serum endogenous IFN-β may be used to identify
RRMS patients with low endogenous IFN-β levels that will likely opti-
mally respond to IFN treatment [260], whereas RRMS patients with
higher endogenous IFN-β levels may be stratified for other currently
available immunomodulatory therapies [266]. Recently, a novel study
about measure of serum IL-17 in MS showed discordant results [104],
probably because of different methodologies to detect serum cytokine.
In this study, the role of IL-17F in predicting treatment response to
IFN was investigated analyzing serum samples collected at baseline
and after 6 months of treatment [104]. The results showed that an in-
crease of IL-17F before and early after IFN treatment was not associated
with poor response, excluding patients with neutralizing antibodies.
These data suggest that the value of IL-17F is not a treatment response
indicator for therapy, although high levels of IL-17F greater than
200 pg/mL may predict non-responsiveness [104]. IL-10 is an immuno-
regulatory cytokine produced by Th2 cells. Systemic IL-10 decreases
prior to clinical andMRI relapse, and increases when disease activity re-
solves [267,268]. Treatment with IFN or glatiramer acetate, a random
polymer of four amino acids found in myelin basic protein working as
a decoy for immune system, augments systemic IL-10 activity [269,
270], thus lower baseline serum levels of IL-10 predict clinical response
to IFN [271]. Indeed, patients who continue to have clinical relapses and
MRI activity after IFN treatment had a paradoxical decrease in serum IL-
10 levels [272]. Multiple studies have also found that the ratio of IL-10/
IL-12 correlates with disease activity, and increases with IFN treatment
in patients who respond to therapy, suggesting that these cytokines
may be used as biomarker for therapy response [272]. As reported
below, endothelial-derived MVs are associated with BBB damage. A
first prospective study in a cohort of RRMS patients revealed a
Please cite this article as: D'Ambrosio A, et al, Peripheral blood biomark
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significantly reduction of plasma levels of CD31+ EMVs after IFN treat-
ment [273]. Findings in a second cohort of MS patients, treated with
high doses of INF and followed-up for one year, showed that the de-
crease in plasma levels of CD31+ and CD54+ EMV at 12monthswas as-
sociated with a significant decrease in the number and volume of
contrast enhancing T1-weighted lesions [274]. Many studies about
genome-wide expression profiles were carried out in peripheral im-
mune cells, comparingMS patients and healthy subjects. It has been re-
peatedly demonstrated that IFN-mediated gene-regulatory effects can
be accessed by expression profiling of peripheral blood cells using
DNA microarrays [275,276]. Few high-throughput analyses have been
completed in an attempt to characterize the transcriptional changes in
the blood that occur in response to IFN. In a study, after the first dose
and upon chronic dosing of IFN, nearly 4000 genes were measured, of
which about 1500 were identified as up- or down-regulated [277]. It
has been shown that IFN induces changes in the expression of many
genes, such as cytokines and cell adhesion molecules. In particular,
Jak-STAT, TNFRSF10B, IL6, TGF-β, retinoic acid and CDC42 pathways
were found to be modulated by the therapy [277]. In another study, ge-
nome-wide expression profiles of PBMC of 24 MS patients within the
first 4 weeks of IFN administration were obtained, by using Affymetrix
DNA microarrays [278]. About 121 genes were significantly up- or
down-regulated compared with baseline, with stronger changed ex-
pression at one week after start of therapy. A network region of genes
associated to therapeutic side effects was linked to NF-kB activity [278].
These genome-wide association studies have identified genes that may
be useful as biomarkers for therapy response. Additional studies have
used also miRNA profiling to better understand treatment effects,
with the hope of identifying biomarkers of therapeutic response [279].
In particular, the expression of several selected immunologically rele-
vantmiRNAs in PBMC derived fromRRMS patients and healthy subjects
to evaluate the impact of immunomodulatory therapy, such as GA and
IFN, on miRNA expression, has been analyzed. One of these studies
showed that the reduction of miR-29 was associated with IFN response
[280]. In RRMS patients treated with GA, two miRNAs (miR-146a and
miR-142-3p) appeared to be reduced with respect to control levels
when compared with those of untreated or IFN-treated MS patients
[281]. Recently, a study based on measuring the expression of 651
miRNAs and about 19,000 mRNAs in PBMC, reported that several
miRNAs, including miR-16-5p and miR-342-5p, were increased,
whereas 13 miRNAs, including miR-27a-5p and miR-29a-3p, were
decreased in PBMC, in particular in monocytes, from RRMS patients
after IFN therapy [280]. IFN did not restore the expression of
deregulated miRNAs, whereas GA treatment seemed to normalize
the levels of miR-146a and miR-142-3p [179,282], involved in the
regulation of Treg cell function, but not miR-155 and miR-326, in-
volved in T cell development and Th17 differentiation [186,281,
283]. A specific miRNA expression profile in B cells, mir-106b-25
and miR-17–92, after natalizumab (a humanized monoclonal anti-
body) treatment against α-4-integrin subunit of very late activation
antigen-4, was identified comparing treated and untreated RRMS pa-
tients, suggesting their potential utility as biomarkers for the disease
course and prognosis [284]. Natalizumab is involved in leukocyte
trafficking across the inflamed BBB into the CNS [285]. Nevertheless,
in clinical practice natalizumab treatment is complicated by its asso-
ciation with progressive multifocal leukoencephalopathy (PML),
which occurs in approximately 2/1000 treated patients [286,287].
This is a severe and often fatal demyelinating disorder of the CNS
caused by the reactivation of a latent JC virus (JCV) infection during
immunosuppression that leads to a lytic infection of oligodendro-
cytes with progressive damage of white matter [288,289]. In order
to identify natalizumab-treated patients at risk of developing PML,
the anti-JCV antibody levels were assayed in CSF and serum [290].
At present, it is not definitively known which patients are at greatest
risk for developing PML, although the risk appears to be greater in
serum anti-JCV antibody positive patients who have had treatment
ers in multiple sclerosis, Autoimmun Rev (2015), http://dx.doi.org/
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for more than 24 months and who have been exposed to previous
immunosuppressive therapy [291–293]. Whether JCV antibody
titers are helpful to determine the individual risk is currently under
investigation.

9. Conclusions

Pathophysiological and clinical complexity of MS inevitably leads
to a great variety of potential biomarkers specific for diagnostics, predic-
tion of disease course and optimization of therapeutic responses.
Measurements of biomarkers are based on the detection of specific
molecules in the body fluids that become altered as a consequence of
a biologic or pathologic process. In particular, biomarkers that are mea-
surable from the peripheral blood are of great clinical value because of
the non-invasive collection method. Recent advances in proteomics
along with microarray gene and antigen analysis have led to identify a
whole new list of biomarkers specific for MS in blood. Several of these
candidate biomarkers show promising potential both in reflecting
clinical disease status and in monitoring treatment response, but so
far none have the validated reliability necessary for widespread clinical
use. The lack of validation, reflecting a bias in statistical analysis or a lack
of available data, may also indicate difficulties in performing clinical
validation studies. Therefore, large, concerted, and collaborative efforts
will be needed to overcome the many obstacles that complicate the
validation and clinical application of biomarkers in MS.

Take-home messages

• Recent advances in proteomics along with microarray gene and anti-
gen analysis has led to identify a whole new list of biomarkers specific
for MS in blood.

• Circulating biomarkers in peripheral blood are of growing importance
in the field of diagnosis, prognosis, prediction and therapymonitoring
in MS.
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