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Abstract: Skeletal muscle represents one of the most plastic tissues of our body thanks to the presence 
of heterogeneous population of myofibers that confer to skeletal muscle the functional plasticity neces-
sary to modulate its morpho-fuctional properties in response to a wide range of external factors. Thus, 
alteration in fiber type composition represents a major component in muscle wasting associated with muscle diseases. 
Several mechanisms have been proposed to account for the alteration in the morpho-functional properties of skeletal mus-
cle under pathological conditions. In this review we will discuss the potential catabolic mediators of muscle atrophy and 
wasting. 

Keywords: Autophagy, calpain, caspases, muscle atrophy, muscle wasting, ubiquitin-proteasome system. 

INTRODUCTION 

 Skeletal muscle is composed of multinucleated myofi-
bers, arising from mononucleated precursor cells. Under 
physiologic conditions, such as exercise, change in hormone 
levels, oxygen and nutrient supply, skeletal muscle is able to 
change their morpho-functional properties and to adapt to 
external factors. Moreover, after development, skeletal mus-
cle maintains the capacity to regenerate in response to differ-
ent stimuli, recapitulating many aspects of development. 
However, The functional performance and the regenerative 
capacity of skeletal muscle tissues declines during post-natal 
life and they are compromised in different diseases. 
 In this review we will discuss the general basis of muscle 
development and the molecular mechanisms associated with 
muscle atrophy and wasting. 

MOLECULAR CONTROL OF MUSCLE DEVELOP-
MENT 

 Muscle development is the result of the combined action 
of several factors, emanating from neural tube, dorsal ecto-
derm and lateral mesoderm, ultimately leading to the genera-
tion of heterogeneous population of muscle fibers [1].  
 The myogenic determination factors (MDFs), namely 
Myf-5, MyoD, myogenin and MRF4, represent muscle-
restricted members of transcription factors that orchestrate a 
specific program of muscle gene expression in a temporally 
and spatially distinct pattern (Fig. 1) [2-9]. In particular, 
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MyoD and myf-5 are required for the commitment of precur-
sor proliferating cells to the myogenic lineage, whereas my-
ogenin and MRF4 control the differentiation of committed 
cells into mature myofibers. The myogenic program is com-
pleted with the innervation of myofibers by motor neurons 
during a period known as maturation, at the end of which the 
functional performance and the heterogeneity of skeletal 
muscle are modulated by nerve activity. It has been also re-
ported that the myogenic program is modulated at epigenetic 
level, suggesting the presence of molecular circuitry of tran-
scriptional regulation based on modulation of chromatin 
structure by reversible acetylation of histone tails [10].  

 Although the role of MDFs during embryonic develop-
ment has been extensively investigated, less is known about 
their role during post-natal life. MyoD, myf-5 and myogenin 
expression decline during the first week of post-natal life, 
whereas MRF4 is predominantly expressed in adult skeletal 
muscle. However under certain conditions, such as aging, 
diseases, and injury, the re-activation of MDFs expression 
recapitulate the myogenic program [11-13].  

MOLECULAR ORGANIZATION OF SKELETAL 
MUSCLE TISSUE 

 The cytoskeletal proteins, which can be subdivided in 
four major groups: the contractile sarcomeric, the intra-
sarcomeric, the peri-sarcomeric and the sub-sarcolemmal 
proteins [14], play important role in the maintenance of mus-
cle integrity and in the modulation of several signal transduc-
tion pathways; thus alteration in one or more cytoskeletal-
associated components leads to muscle diseases (Fig. 2). 
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Fig. (1). Schematic representation of muscle formation during embryonic development. Developmental myogenesis occurs in three dis-
tinct stages: commitment, differentiation and maturation. Skeletal muscles are derived from somites which receive signals from the neighbor-
ing tissues, which in turn induce the activation (blue arrows) of muscle-regulatory factors (MyoD, Myf5, myogenin, and MRF4). Sonic 
hedgehog Shh (Shh) (from the notochord) and Wingless-related integration site (Wnt) Wnt1/3, Wnt11 and insulin-like growth factors (IGFs) 
(from dorsal neural tube) signaling have been shown to regulate the expression of Myf5. Pax3 and Myf5 independently regulate MyoD ex-
pression, whereas Myf5 regulates the transient expression of MRF4. Myf5 and MyoD independently activates the expression of Myogenin, 
which promotes the expression of Myosin (modified from [13]). 
 

 
 
Fig. (2). The molecular organization of cytoskeleton protein. The dystrophin protein is associated with the dystroglycan complex and con-
nects the cytoskeleton of a muscle fiber to its surrounding extracellular matrix. Mutations in various members of these proteins are associated 
with different muscle disorders (text in red). 
 
 Actin and myosin myofilaments belong to the contractile 
sarcomeric cytoskeleton and represent the functional core of 
muscle contraction; titin, nebulin, tropomyosin and actinin 
are classified as intra-sarcomeric protein; desmin-intermediate 

filament is a component of the peri-sarcomeric cytoskeleton, 
whereas the sub-sarcolemmal cytoskeleton includes sar-
colemma-associated protein, such as dystrophin, vinculin, 
integrins, α-actinin, and ankyrin. Among the proteins that 
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are associated with the plasma membrane, the dystroglycan 
complex, formed by the subunits α and β dystroglycan, bind 
to the dystrophin protein and plays a critical role in the con-
nection of the cytoskeleton of a muscle fiber to its surround-
ing extracellular matrix [15] (Fig. 2).  
 Other structural components of skeletal muscle are the 
caveolins, the principal components of the caveolae, vesicu-
lar invaginations of the plasma membrane, which participate 
to trafficking events and signal transduction processes [16]. 
Among caveolin, caveolin-3 is localized to the sarcolemma 
where it forms a complex with cytoplasmic signaling mole-
cules (G-proteins and Src-like kinases), dystrophin and its 
associated glycoproteins, such as alpha-sarcoglycan and 
beta-dystroglycan [17] (Fig. 2). It has also been demon-
strated that deficiency of caveolin-3 is causally linked to 
limb girdle muscular dystrophy (LGMD) [18]. 
 The structural integrity of complex cytoskeleton molecu-
lar organization is therefore a prerequisite for the efficient 
mechanical function of skeletal muscle; thus alterations in 
cytoskeletal organization lead to muscle wasting and dis-
eases. 

THE MOLECULAR MECHANISMS OF MUSCLE 
WASTING 

 A general feature associated with several pathologic con-
ditions is the loose of adaptability of skeletal muscle leading 
to wasting, a process in which the delicate balance between 
anabolic and catabolic process is impaired [19, 20]. Among 
different signalling, Calcium (Ca2+) is an important intracel-
lular messenger, controlling numerous cellular processes, 
including proliferation, cell growth, differentiation, and gene 
transcription, through the activation of so called “toolkit”, 
which comprises an array of signalling, homeostatic and 
sensory mechanisms [21]. However, defects in signalling 
“toolkit” can compromise the functional performance of 
muscle and activate proteolytic systems, leading to muscle 
wasting [22]. For example, it has been demonstrated that in 
Duchenne muscular dystrophy, the absence of dystrophin 
causes alterations in intracellular Ca2+ leading to an imbal-
ance between muscle protein synthesis and protein degrada-
tion, culminating in necrosis, fibrosis, and shift in fiber con-
tent [23]. In other pathologic conditions, such as sarcopenia, 
the accumulation of free radicals promotes an increase in 
calcium concentration, which induces the activation of pro-
teolytic systems with the consequence of an increase in pro-
tein degradation and reduction in protein synthesis [24]. 
 Among proteolytic systems calpain-, ubiquitin- caspase- 
and autophagy-mediated protein and organelles degradation 
are the principal pathways activated in several pathologies, 
leading to myofiber degeneration, wasting and impaired 
muscle regeneration. 

THE CALPAIN PATHWAY 

 Calpains, which have been identified in many organisms 
[25], are calcium-activated cysteine proteases characterized 
by the presence of two subunits, an 80kDa large subunit that 
contains protease activity and a 30kDa smaller subunit, func-
tioning as a regulator of calpain activity [26]. Based on Ca2+ 

concentration dependence, two ubiquitous calpain isoforms, 

µ and m, are well characterized, and are commonly referred 
as the ubiquitous/conventional/typical calpains. Among the 
different subtypes, calpain 3 is predominantly expressed in 
skeletal muscle and it maintains proteolytic activity at 
physiological Ca2+ [27]. More recently, it has been demon-
strated that calmodulin (CaM), a known transducer of the 
calcium signal, binds and facilitates Calpain 3 autolytic acti-
vation, providing additional insights into the mechanisms of 
Calpain 3 regulation in skeletal muscle [28]. At physiologic 
levels, calpains participate in many cellular processes, in-
cluding cytoskeletal remodeling [29], cell mobility [30], 
myofibril maintenance [31], signal transduction [32] cell 
cycle progression [33], regulation of gene expression [34], 
apoptosis [35], and long term potentiation [36]. Calpains are 
also activated by several stimuli in which intracellular Ca2+ 
homeostasis is affected, causing sarcomeric alterations [37], 
mitochondrial swelling, sarcoplasmic reticulum vacuoliza-
tion [38, 39] and disruption of the contractile tissue [40] 
(Fig. 3). 
 Calpains are preferentially localized in the Z disk of the 
sarcomere [41] where they initiate the proteolytic cleavage 
of muscle proteins that anchor the sarcomere, including titin, 
nebulin, desmin, filamin, troponin and tropomyosin, causing 
the complete disassembly of myofibrils and loss of the Z 
disk [42, 43]. Fodrin, the non-erythroid spectrin protein and 
a major component of the cortical cytoskeleton of most eu-
karyotic cells including muscle cells, is another molecular 
target of calpains [42]. Cleavage of fodrin accompanies 
apoptosis induced by treatment of cells with staurosporine, 
glucocorticoid, or synthetic ceramide [43, 44], all factors that 
affect muscle physiology and myofibers survival. 
 The activity of calpains is regulated by the endogenous 
inhibitor calpastatin which prevents both enzyme activation 
and expression of catalytic activity [45] (Fig. 3). The interac-
tions between calpastatin and calpains are modulated by in-
tracellular Ca2+concentration [46].  
 In contrast to other proteolytic systems, calpains cleave 
target proteins at specific sites, leaving large polypeptide 
fragments with altered physiological properties. In addition, 
post-translational modifications provide a mechanism of 
“marking” specific proteins for calpain degradation, as for 
troponin T and I that are phosphorylated by protein kinase A 
and C, which alter the sensitivity of the protein to calpain 
degradation [47]. The activity of calpains is also associated 
with neutrophil accumulation during exercise [48] and can 
cause proteolysis and muscle fiber degradation in Duchenne 
and Becker muscular dystrophies (DMD/BMD) [49], sug-
gesting a role for calpains in muscle injury and in the patho-
genesis of muscle diseases. Of interest is the observation that 
calpain3 is associated with limb-girdle muscular dystrophy 
type 2A [50], and might control myoblast fusion and matura-
tion, suggesting a role in muscle function [51].  
 More recently, two sarcomeric tropomodulin (Tmod) 
isoforms, Tmod1 and Tmod4, have been characterized, 
which represent novel proteolytic targets of m-calpain [52]. 
The levels of m-calpain resulted elevated in dystrophic so-
leus muscle of mdx mice and were associated with loss of 
Tmod1 from the thin filament pointed ends, suggesting that 
Tmod proteolysis, by m-calpain, represents a novel mecha-
nisms that may contribute to DMD pathology [52].  
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 In other reports, the catabolic activity of calpains, along 
with the ubiquitin-proteasome pathway, has been associated 
with muscle atrophy induced by chronic hypobaric hypoxia 
and with sarcopenia [53]. 
 Sarcopenia is a pathologic consequence of aging, associ-
ated with loss of muscle mass and function. It has been dem-
onstrated that sarcopenia is greatly reduced by muscle-
specific overexpression of calpastatin. Of note, the activity 
of calpain can be regulated by nitric oxide (NO) through S-
nitrosylation. Interestingly, Samengo et al [54] demonstrated 
that neuronal nitric oxide synthase (nNOS), the primary 
source of muscle NO, is loss during aging, whereas expres-
sion of a muscle-specific nNOS transgene restores calpain S-
nitrosylation in aging muscle and prevents sarcopenia. 

 Other reports provided additional insights into the patho-
genic role of calpain in sarcopenia. One of the leading 
mechanistic theories for aging is the oxidative damage hy-
pothesis, based also on the evidences that age-related 
changes accelerate with elevated oxidative stress [55, 56]. It 
has been demonstrated that calpains activate the degradation 
of oxidated myofibrillar proteins [57], suggesting a mecha-
nistic link between oxidative stress and accelerated myofi-
brillar proteolysis in disuse muscle atrophy [57, 58]. In addi-
tion, it has been reported that the expression of a calpastatin 
transgene, the endogenous inhibitor of calpains, attenuates 
muscle wasting associated to muscle disuse and prevents the 
shift from slow to fast of muscle fiber type in muscle unload-
ing [59].  
 Collectively these studies demonstrate that calpains play 
a key role in both muscle homeostasis and diseases. Future 
study will be needed to test the feasibility of Calpains in 

gene therapeutic applications and to identify their in vivo 
substrates. 

THE UBIQUITIN-PROTEASOME SYSTEM 

 One of the signal transduction pathways that mediates the 
turnover of muscle protein is the ubiquitin-proteasome sys-
tem, which is also over-activated in several conditions lead-
ing to muscle wasting (e.g. glucocorticoid treatment, sepsis, 
fasting, cancer, and acidosis) [60-63]. The pathway involves 
an enzymatic cascade starting with the conjugation of protein 
substrates with ubiquitin and terminating with the degrada-
tion of targeted protein to small peptides and amino acids 
(Fig. 4). Activated ubiquitin is then transferred by E1 to a 
carrier protein E2 (ubiquiting-conjugating enzyme); in the 
last step the ubiquitin-protein ligases E3 recognize the pro-
tein which will be ubiquitinated and catalyze the covalent 
interaction between the carboxyl group of ubiquitin and the 
ε-amino group of lysine in the protein substrate (Fig. 4). 
These reactions are repeated to form an ubiquitin chain and 
finally the ubiquitin-conjugated proteins are transferred, in 
an ATP-dependent reaction, in the 26S proteasome complex 
where the proteins are degraded (Fig. 4). The ubiquitin itself 
is then released and reused for a new enzymatic reaction 
(Fig. 4).  
 It has been demonstrated that several pathologic condi-
tions, associated with muscle atrophy, over-activate an “at-
rophy program” in which the ubiquitin-proteasome pathway 
represents the major player [64-66]. The muscle-specific 
ubiquitin-ligases, atrogin-1 (MAFbx) and Muscle RING 
Finger 1 (MuRF1) are up-regulated in muscle atrophy [67-
69]. Indeed, knockout animals deficient in either MAFbx or 
MuRF1 are resistant to atrophy [68], whereas their overex-

 
 
Fig. (3). Schematic representation of the calpain-mediated alteration in skeletal muscle leading to atrophy and wasting. Calpains are 
Ca2+-activated cysteine proteases, which might target different intracellular components, causing disruption of the contractile tissue, mito-
chondrial swelling, sarcoplasmic reticulum vacuolization, and sarcomeric alterations, leading to muscle atrophy and wasting. Calpastatin 
represents the negative regulator of calpain activity. 
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pression produce atrophy and disrupts the integrity of sar-
comeric structure and alter the components of thick filaments 
[69]. Several factors affect muscle homeostasis [69]; among 
these, glucocorticoids stimulate muscle protein breakdown, 
activating the ubiquitin-proteasome proteolysis and promot-
ing muscle atrophy [69]. The reduction in anabolic factors, 
such as the insulin-like growth factors-1 (IGF-1), represents 
another potent stimulus for the activation of ubiquitin-
proteasome pathway and therefore protein degradation. IGF-
1 has been implicated in many anabolic pathways in skeletal 
muscle [70-73] and, considering that its expression declines 
with age, it has been suggested that this down regulation is 
likely to be causally linked to the progress of muscle atrophy 
in senescence, limiting the ability of skeletal muscle to sus-
tain regeneration and repair [72-76]. It has been reported that 
the decreased activity of the IGF-1/PI3K/AKT signaling 
pathway can lead to muscle atrophy [77], via the activation 
of the “atrophy program”. One downstream target of the 
IGF-1/PI3K/AKT pathway is the Forkhead box O (FoxO) 
class of transcription factors [78, 79]. AKT blocks, by phos-
phorylation, the function of FoxO factors, leading to their 
sequestration in the cytoplasm [80]. Reduction in anabolic 
factors, including IGF-1, causes the inhibition of the 
PI3K/AKT pathway. In such conditions, the dephosphory-
lated active form of FoxO factors enter to the nucleus where 
transactivate the expression of atrogin-1 and MuRF1 [79]. Of 
note, kinases downstream of AKT, including GSK3β, as well 
as the MEK and calcineurin systems, which have been im-
plicated in the regulation of muscle fiber size [77, 81, 82] do 
not have direct roles in the regulation of atrogin-1 expression 
[79]. More recently, two additional targets of FoxO activity 
have been identified: SMART (Specific of Muscle Atrophy 
and Regulated by Transcription) and MUSA1 (muscle ubiq-
uitin ligase of SCF complex in atrophy-1) [83, 84]. MUSA1 
is a novel ubiquitin ligase that plays a critical role for the 
induction of muscle atrophy during denervation and fasting 
[81, 82]. Inhibition of MUSA1, by RNAinterference, pre-
vents muscle atrophy, whereas excessive MUSA1 induction 
exacerbates muscle loss, causing muscle cachexia [81]. It has 
been also demonstrated that FoxO3 regulates another prote-
olytic pathways, namely autophagy (discussed below), coor-
dinating the proteasomal-dependent removal of proteins with 
the autophagy-dependent clearance of organelles. 

THE CASPASE PATHWAY 

 Caspases represent a central component of the proteolytic 
system and apoptotic machinery dysregulated in several dis-
eases, including cancer and muscular dystrophies [85]. 
Caspases are all expressed as inactive proenzymes and are 
activated after cleavage at specific aspartate residues, gener-
ating the active product having lower molecular weight [86]. 
Caspases are classified in two major groups: the initiator 
caspases, which include caspase-2, -8, -9 and -10, that initi-
ate the proteolitic cascade, and the effector caspases that 
include caspases-3, -6 and -7. Once activated, the effector 
caspases are responsible for the proteolytic cleavage of a 
broad spectrum of cellular targets, which ultimately leads to 
cell death [86] (Fig. 5). While the initiator caspases are auto-
activated, the activation of an effector caspase is carried out 
by an initiator caspase. The activation of caspases can be 
triggered by either extrinsic death stimuli in which specific 
ligands triggers a cascade of events leading to the activation 
of initiator caspases, or alternatively by intrinsic death stim-
uli inducing mitochondrial release of cytochrome c and for-
mation of the apoptosome upon cytochrome c binding to 
Apaf1 (Fig. 5) [85, 86]. 

 A key role of caspases is to inactivate proteins that pro-
tect living cells from apoptosis. It has been reported that the 
cleavage of ICAD [87, 88], an inhibitor of the caspase-
activated deoxyribonuclease (CAD), leads to DNA fragmen-
tation. In non-apoptotic cells, CAD is present as an inactive 
complex with ICAD. Under apoptotic stimuli, caspases inac-
tivate ICAD leaving CAD free to fragment DNA. Caspases 
also cleave structural proteins of the nucleus and cytoskele-
ton. Proteolysis of lamins promotes the destruction of nu-
clear lamina and allows chromatin condensation [89, 90], 
whereas the cleavage of desmin, by caspase 6, generates a 
small product (N-desmin) that activates apoptotic pathways 
[91]. Similarly, the caspase-dependent cleavage of other pro-
teins, such as gelsolin, which controls cell motility and mor-
phology, or β-catenin, generates fragments that might alter 
cell-cell contacts and cell-matrix focal adhesions, DNA re-
pair, mRNA splicing, and DNA replication, promoting apop-
tosis [85, 92, 93].  

 
 
Fig. (4). Schematic representation of the ubiquitin-mediated protein degradation. Ubiquitin is activated by the ubiquitin-activating en-
zyme-E1 and then transferred to a ubiquitin-conjugating enzyme-E2. The E2 enzyme and the protein substrate both bind to the ubiquitin-
protein ligase-E3. The protein substrate becomes polyubiquitinated; the polyubiquitin chain functions as a signal to target the polyubiquiti-
nated protein substrate to the 26S proteasome, which represents a multicompartmentalized protease formed by two subunits: 20S and 19S, 
for degradation, generating short peptides and free ubiquitin that can be further reused.  
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 Caspase-mediated apoptosis is also associated with dif-
ferent muscular diseases, including Duchenne and faci-
oscapulo-humeral dystrophies [94]. One of the proposed 
mechanisms that mediates the activation of caspase pathway 
in muscular dystrophy is the endoplasmic reticulum (ER) 
stress, caused by calcium dysregulation, hypoxia/ischaemia 
and oxidative stress [95-98]. ER stress causes alteration in 
protein folding; thus unfolded and misfolded proteins accu-
mulate in the ER lumen, triggering the apoptotic pathway 
(reviewed in [99]). Of note, ER stress activates the initiator 
caspases-12 and-4, which localized to the cytoplasmic face 
of the ER membrane [100, 101] and in turn activate caspase-
9 and caspase-3, leading to apoptosis [102, 103]. Activated 
caspase-12 can also translocates to the nucleus, and may 
carry out apoptotic events directly [104], whereas deleting 
caspase-12 preserves muscle function in the mdx dystrophic 
mouse model, resulting in recovery of both specific force 
generation and resistance to eccentric contractions [105]. 
 Caspases are also involved in the catabolic processes of 
skeletal muscle associated with cancer cachexia and in the 
inhibition of muscle differentiation [106]. The inflammatory 
cytokines tumor necrosis factor-alpha (TNFα) induces mus-
cle proteolysis associated with cancer and negatively modu-
lates skeletal muscle differentiation [107-109]. TNFα can 
activate NF-kB, one of the central players implicated in 
muscle wasting in different pathologic conditions [110], and 
can inhibit muscle differentiation upon the expression of 
PW1 [109, 111]. It has been suggested that the Jak2/Stat3 
singnaling pathway is involved in cancer cachexia [112-
114]. Accordingly, molecular inducers of this pathway, such 
as IL-6, oncostatin M, leukemia inhibitory factor (LIF), and 
ciliary neurotrophic factor (CNTF), have each been reported 
to cause loss of muscle mass [115, 116]. Moreover, pharma-
cological and/or genetic inhibition of Jak/Stat3 signaling, or 
IL-6 activity, counteract cancer-associated cachexia, age-
induced sarcopenia, and muscular dystrophy, stimulating 
muscle regeneration [112, 113, 117-120]. Silva and co-
workers [121] have demonstrated that p-Stat3, by binding to 

the caspase-3 promoter, stimulates caspase-3 transcription. It 
has been proposed that caspase-3 promotes muscle protein 
losses in two ways: it first cleaves the complex structure of 
actomyosin and myofibrillar proteins to produce substrates 
for the ubiquitin proteasome system and then caspase-3 
stimulates 26S proteasome activity by cleaving some regula-
tory subunits of the 19S particle [121-123]. Inhibition of 
Stat3 activation suppresses caspase-3 and the ubiquitin-
proteasome system, leading to preservation of muscle mass 
in cancer cachexia [121]. 
 Interestingly, the discovery that the activities of caspase-
3 and the ubiquitin-proteasome system work together to 
stimulate muscle wasting indicates how increased proteolysis 
can be achieved while maintaining specificity [124]. 

THE AUTOPHAGIC PATHWAY 

 Autophagy is a critical mechanism for all eukaryotic or-
ganisms, since it ensures specific cytosolic rearrangements 
needed for proliferation, death, and differentiation during 
embryogenesis and postnatal development [125]. Autophagy 
is activated as an adaptive catabolic process in response to 
different metabolic stress, including fasting, growth factor 
depletion, hypoxia, denervation, etc. Whereas basal level of 
autophagy is essential for physiological turnover of old and 
damaged organelles, the activation of autophagic pathway 
beyond a certain threshold may promote cell alterations by 
causing the collapse of cellular functions as a result of cellu-
lar atrophy [126, 127].  
 We recently demonstrated that autophagy plays a domi-
nant role in the promotion of muscle atrophy associated with 
local alteration in the activity of the antioxidant enzyme 
SOD1 [128, 129]. In particular, oxidative stress might acti-
vate the transcription factor FoxO3 that in turn promotes the 
transcriptional activation of autophagy-related genes, such as 
LC3, cathepsin L and Bnip3. In addition, our study docu-
mented how the T-tubule might be the potential donor of 
membranes forming the autophagic vesicles. In the auto-

 
 
Fig. (5). Schematic representation of the caspase-mediated cell death. Caspases can be activated by either extrinsic or intrinsic death 
stimuli. Extrinsic death signals promote the activation of initiator caspases, which in turn induce the effector caspases, responsible for the 
proteolytic cleavage of cellular targets. Intrinsic death stimuli, such as the cytosolic release of cytochrome c in response to mitochondrial 
damage. The cytochrome c binds to Apaf1 and promotes the recruitment of procaspases to form the apoptosome, resulting in the activation of 
initiator caspases and then to the induction of effector caspases and subsequently to cell death. 
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phagy-lysosome system, small ubiquitin-like molecules 
(among which LC3) are transferred to isolation membranes 
to trigger their growth and commitment degradation of the 
inner membranes of the autophagosome and of the engulfed 
proteins [130-133] (Fig. 6).  
 The search for muscle markers associated with protein 
breakdown has revealed that under pathologic conditions the 
increased expression of lysosomal cystein endopeptidase 
cathepsin L and LC3 is associated with skeletal muscle wast-
ing [134-136]. In fact, it has been reported that cathepsin L 
expression is up-regulated in skeletal muscle of animals 
bearing sepsis and cancer and in rat treated with the gluco-
corticoid analogue dexamethasone [134]. On the other hand, 
cathepsin L expression decreases in tumor-bearing animals 
treated with an inhibitor of tumor necrosis factor-alpha 
(TNF-α). These studies suggest that cathepsin L expression 
represents an early marker of muscle wasting associated with 
the activation of proteolytic pathways. 
 As mentioned above, FoxO3 is necessary and sufficient 
for the induction of autophagy in skeletal muscle under dif-
ferent pathologic conditions [79, 137]. Interestingly, a major 
effector of FoxO3-mediated autophagy in skeletal muscle is 
Bnip3, since Bnip3 expression is induced by FoxO3, 
whereas Bnip3 knockdown blocks FoxO3-induced auto-
phagy [135, 137]. 
 An alternative pathway that has been described to induce 
autophagy independently of FoxO3 is the p38 αβ MAPK 
[138], although the specific transcription factors downstream 
of p38MAPK remains unclear. 
 Recently, we published a set of guidelines for the exami-
nation of macroautophagy and related processes [139]. This 
because there is a difference between measurements that 
monitor the numbers or volume of autophagic elements vs. 
those that measure flux through the autophagy pathway. 
Thus, the appearance of more autophagosomes does not nec-
essarily equate with more autophagy. In fact, in many cases, 
autophagosomes accumulate because of a block in traffick-
ing to lysosomes without a concomitant change in auto-
phagosome biogenesis, whereas an increase in 
autolysosomes may reflect a reduction in degradative activity 
[139]. 

CONCLUSIONS 

 The continual synthesis and degradation of cell proteins 
are the result of normal intracellular metabolism and repre-
sent an important homeostatic function of muscle tissue. 
Muscle wasting, in contrast, is a process in which the deli-
cate balance between anabolic and catabolic process is im-
paired. In this review we described the major proteolytic 
systems that are over-activated in muscle pathologies, al-
though the identification of the exact signaling cascades that 
regulate muscle wasting is only at the initial step. Different 
studies indicate that the development of muscle wasting is a 
multifactorial process and believed to be the result of both 
intrinsic factors, involving changes in molecular and cellular 
levels, and extrinsic ones, such as nutrition and exercise. 
Modulation of these pathways therefore comprises an attrac-
tive target for drug intervention. Therefore, it is of funda-
mental importance to gain greater knowledge about the mo-
lecular processes controlling the debilitating conditions to 
find effective countermeasures. 
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Fig. (6). Schematic representation of the autophay-mediated degradation. Autophagy involves the formation of a cytosolic double-
membrane vesicle, an autophagosome, which sequesters and degrades components of the cytoplasm. The formation of autophagosome oc-
curs in different steps: a portion of cytoplasm is first enclosed in a double structure, that surrounds cytoplasmic cargo, forming an autophagic 
vacuole that docks and fuses with the lysosome. The lysosomal hydrolases degrade proteins, organelles and cellular components. The purple 
circle in the figure represents LC3. 
 



8    Recent Advances in DNA and Gene Sequences, 2015, Vol. 9, No. 1 Scicchitano et al. 

[6] Wang Y, Sassoon D. Ectoderm-mesenchyme and mesenchyme-
mesenchyme interactions regulate Msx-1 expression and cellular 
differentiation in the murine limb bud. Dev. Biol. 1995; 168: 374-
382.  

[7] Yang XM, Vogan K, Gros P, Park M. Expression of the met recep-
tor tyrosine kinase in muscle progenitor cells in somites and limbs 
is absent in Splotch mice. Development 1996; 122: 2163-2171.  

[8] Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M. Redefining 
the genetic hierarchies controlling skeletal myogenesis: Pax-3 and 
Myf-5 act upstream of MyoD. Cell, 1997; 89: 127-138. 

[9] Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Pe-
terson CA. Selective accumulation of MyoD and myogenin 
mRNAs in fast and slow adult skeletal muscle is controlled by in-
nervation and hormones. Development 1993; 118: 1137-1147. 

[10] McKinsey TA, Zhang CL, Olson EN. Control of muscle develop-
ment by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 2001; 
11: 497-504. 

[11] Musarò A, Cusella De Angelis MG, Germani A, Ciccarelli C, Mo-
linaro M, Zani BM. Enhanced expression of myogenic regulatory 
genes in aging skeletal muscle. Exp Cell Res. 1995; 221:241-8. 

[12] Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM. MyoD 
and myogenin protein expression in skeletal muscles of senile rats. 
Cell Tissue Res. 2003; 311:401-16. 

[13] Musarò A. The basis of muscle regeneration. Advances in Biology 
2014; 2014: 1-16 

[14] Berthier C, Blaineau S. Supramolecular organization of the subsar-
colemmal cytoskeleton of adult skeletal muscle fibers. A review. 
Biol. Cell 1997; 89: 413-434. 

[15] Durbeej M, Campbell KP. Muscular dystrophies involving the 
dystrophin-glycoprotein complex: an overview of current mouse 
models. Curr. Opin. Genet. Dev. 2002; 12: 349-361. 

[16] Smart EJ, Graf GA, McNiven MA, et al. Caveolins, liquid-ordered 
domains, and signal transduction. Mol. Cell. Biol. 1999; 19: 7289-
7304. 

[17] Song KS, Scherer PE, Tang Z, et al. Expression of caveolin-3 in 
skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a compo-
nent of the sarcolemma and co-fractionates with dystrophin and 
dystrophin-associated glycoproteins. J. Biol. Chem. 1996; 271: 
15160-15165.  

[18] Minetti C, Sotgia F, Bruno C, et al. Mutations in the caveolin-3 
gene cause autosomal dominant limb-girdle muscular dystrophy. 
Nat. Genet. 1998; 18: 365-368. 

[19] Bonaldo P, Sandri M. Cellular and molecular mechanisms of mus-
cle atrophy. Dis Model Mech. 2013; 6:25-39. 

[20] Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: 
molecular mechanisms and promising therapies. Nat Rev Drug 
Discov. 2015; 14:58-74. 

[21] Berridge MJ, Lipp P, Bootman MD. The versatility and universal-
ity of calcium signalling. Nature Reviews 2000; 1:11-21. 

[22] Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: 
the calcium–apoptosis link. Nature reviews 2003; 4:552-565 

[23] Gillis JM. Membrane abnormalities and Ca homeostasis in muscles 
of the mdx mouse, an animal model of the Duchenne muscular dys-
trophy: a review. Acta Physiol Scand 1996; 156:397-406. 

[24] Barbieri E, Sestili P. Reactive Oxygen Species in SkeletalMuscle 
Signaling. Journal of Signal Transduction 2012; 2012:1-17. 

[25] Joyce PI, Satija R, Chen M, Kuwabara PE. The atypical calpains: 
evolutionary analyses and roles in Caenorhabditis elegans cellular 
degeneration. PLoS Genet. 2012;8:e1002602. 

[26] Sorimachi H, Ishiura S, Suzuki K. Structure and physiological 
function of calpains. Biochem. J. 1997; 328: 721-732. 

[27] Sorimachi H, Imajoh-Ohmi S, Emori Y, et al. Molecular cloning of 
a novel mammalian calcium-dependent protease distinct from both 
m- and mu-types. Specific expression of the mRNA in skeletal 
muscle. J. Biol. Chem. 1989; 264: 20106-20111. 

[28] Ermolova N, Kramerova I, Spencer MJ. Autolytic activation of 
calpain 3 proteinase is facilitated by calmodulin protein. J Biol 
Chem. 2015; 290:996-1004. 

[29] Lebart MC, Benyamin Y. Calpain involvement in the remodeling 
of cytoskeletal anchorage complexes. FEBS J 2006; 273: 3415-
3426. 

[30] Franco SJ, Huttenlocher A. Regulating cell migration: calpains 
make the cut. J Cell Sci 2005; 118: 3829-3838. 

[31] Goll DE, Neti G, Mares SW, Thompson VF. Myofibrillar protein 
turnover: the proteasome and the calpains. J Anim Sci 2008; 86: 
E19–35. 

[32] Evans JS, Turner MD. Emerging functions of the calpain superfa-
mily of cysteine proteases in neuroendocrine secretory pathways. J 
Neurochem 2007; 103:849–859. 

[33] Janossy J, Ubezio P, Apati A, et al. Calpain as a multi-site regula-
tor of cell cycle. Biochem Pharmacol 2004; 67: 1513-1521. 

[34] Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011) The 
calpain system and cancer. Nat Rev Cancer 11: 364–374. 

[35] Johnson JD, Han Z, Otani K, et al. RyR2 and calpain-10 delineate a 
novel apoptosis pathway in pancreatic islets. J Biol Chem 2004; 
279:794-802. 

[36] Tomimatsu Y, Idemoto S, Moriguchi S, Watanabe S, Nakanishi H. 
Proteases involved in long-term potentiation. Life Sci 2002; 72: 
355-361. 

[37] Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle 
injury: a calpain hypothesis. Mol. Cell. Biochem. 1998; 179: 135-
145. 

[38] Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-
induced muscle fibre injury. Sports Med. 1991; 12: 184-207. 

[39] Friden J, Sfakianos PN, Hargens AR. Blood indices of muscle 
injury associated with eccentric muscle contractions. J. Orthop. 
Res. 1989; 7: 142-145. 

[40] Cannon JG, Meydani SN, Fielding RA, et al. Acute phase response 
in exercise. II. Associations between vitamin E, cytokines, and 
muscle proteolysis. Am. J. Physiol. 1991; 260: R1235-1240. 

[41] Kumamoto T, Kleese WC, Cong JY, Goll DE, Pierce PR, Allen 
RE. Localization of the Ca(2+)-dependent proteinases and their in-
hibitor in normal, fasted, and denervated rat skeletal muscle. Anat. 
Rec. 1992; 232: 60-77. 

[42] Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein 
degradation. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 12100-
12105. 

[43] Martin SJ, O'Brien GA, Nishioka WK, et al. Proteolysis of fodrin 
(non-erythroid spectrin) during apoptosis. J. Biol. Chem., 1995, 
270: 6425-6428. 

[44] Planey SL, Litwack G. Glucocorticoid-induced apoptosis in lym-
phocytes. Biochem. Biophys. Res. Commun. 2000; 279: 307-312. 

[45] Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. 
Physiol Rev 2003; 83: 731-801 

[46] Saido TC, Sorimachi H, Suzuki K. Calpain: new perspectives in 
molecular diversity and physiological-pathological involvement. 
FASEB J. 1994; 8: 814-822. 

[47] Di Lisa F, De Tullio R, Salamino F, et al. Specific degradation of 
troponin T and I by mu-calpain and its modulation by substrate 
phosphorylation. Biochem. J. 1995; 308: 57-61. 

[48] Kunimatsu M, Ma XJ, Ozaki Y, Marita M, Mizokami M, Sasaki M. 
Neutrophil chemotactic N-acetyl peptides from the calpain small 
subunit are also chemotactic for immunocytes. Biochem. Mol. Biol. 
Int. 1995; 35: 247-254. 

[49] Spencer MJ, Croall DE, Tidball JG. Calpains are activated in ne-
crotic fibers from mdx dystrophic mice. J. Biol. Chem. 1995; 270: 
10909-11094. 

[50] Baghdiguian S, Martin M, Richard I, et al. Calpain 3 deficiency is 
associated with myonuclear apoptosis and profound perturbation of 
the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular 
dystrophy type 2A. Nat. Med., 1999; 5: 503-511. 

[51] Spencer MJ, Guyon JR, Sorimachi H, et al. Stable expression of 
calpain 3 from a muscle transgene in vivo: immature muscle in 
transgenic mice suggests a role for calpain 3 in muscle maturation. 
Proc. Natl. Acad. Sci. U.S.A., 2002; 99: 8874-8879. 

[52] Gokhin DS, Tierney MT, Sui Z, Sacco A, Fowler VM. Calpain-
mediated proteolysis of tropomodulin isoforms leads to thin fila-
ment elongation in dystrophic skeletal muscle. Mol Biol Cell. 
2014; 25:852-65.  

[53] Chaudhary P, Suryakumar G, Prasad R, Singh SN, Ali S, Ilavazha-
gan G. Chronic hypobaric hypoxia mediated skeletal muscle atro-
phy: role of ubiquitin-proteasome pathway and calpains. Mol Cell 
Biochem. 2012; 364:101-13.  

[54] Samengo G, Avik A, Fedor B, et al. Age-related loss of nitric oxide 
synthase in skeletal muscle causes reductions in calpain S-
nitrosylation that increase myofibril degradation and sarcopenia. 
Aging Cell. 2012; 11:1036-45.  

[55] Barja G. Free radicals and aging. Trends Neurosci. 2004; 27:595-
600. 

[56] Musarò A, Fulle S, Fanò G. Oxidative stress and muscle homeosta-
sis. Curr Opin Clin Nutr Metab Care. 2010; 13:236-42.  



Mechanisms of Muscle Wasting Recent Advances in DNA and Gene Sequences, 2015, Vol. 9, No. 1    9 

[57] Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK. 
Oxidation enhances myofibrillar protein degradation via calpain 
and caspase-3. Free Radic Biol Med. 2010; 49:1152-60.  

[58] McClung JM, Judge AR, Talbert EE, Powers SK. Calpain-1 is 
required for hydrogen peroxide-induced myotube atrophy. Am J 
Physiol Cell Physiol. 2009; 296:C363-71.  

[59] Tidball JG, Spencer MJ. Expression of a calpastatin transgene 
slows muscle wasting and obviates changes in myosin isoform ex-
pression during murine muscle disuse. J. Physiol. 2002; 545: 819-
828. 

[60] Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role 
of the ubiquitin-proteasome pathway. N. Engl. J. Med. 1996; 335: 
1897-1905. 

[61] Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR. 
Evaluation of signals activating ubiquitin-proteasome proteolysis in 
a model of muscle wasting. Am. J. Physiol. 1999; 276: C1132-
1138. 

[62] Mitch WE, Price SR. Mechanisms activating proteolysis to cause 
muscle atrophy in catabolic conditions. J. Ren. Nutr. 2003; 13: 149-
152. 

[63] Zamir O, Hasselgren PO, Kunkel SL, Frederick J, Higashiguchi T, 
Fischer JE. Evidence that tumor necrosis factor participates in the 
regulation of muscle proteolysis during sepsis. Arch. Surg. 1992; 
127: 170-174. 

[64] Jagoe RT, Goldberg AL. What do we really know about the ubiq-
uitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr 
Metab Care. 2001; 4:183-90. 

[65] Jagoe RT, Lecker SH, Gomes M, Goldberg AL. Patterns of gene 
expression in atrophying skeletal muscles: response to food depri-
vation. FASEB J. 2002; 16:1697-712. 

[66] Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal 
muscle atrophy involve a common program of changes in gene ex-
pression. FASEB J. 2004; 18:39-51. 

[67] Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. 
Atrogin-1, a muscle-specific F-box protein highly expressed during 
muscle atrophy. Proc Natl Acad Sci U S A. 2001; 98:14440-5.  

[68] Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiq-
uitin ligases required for skeletal muscle atrophy. Science. 2001; 
294:1704-8.  

[69] Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role 
of the ubiquitin-proteasome pathway. N. Engl. J. Med. 1996; 335: 
1897-1905. 

[70] Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis, A. Mice 
carrying null mutations of the genes encoding insulin-like growth 
factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993; 75: 59-
72. 

[71] Coleman ME, DeMayo F, Yin KC, et al. Myogenic vector expres-
sion of insulin-like growth factor I stimulates muscle cell differen-
tiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem. 
1995; 270: 12109-12116. 

[72] Scicchitano BM, Rizzuto E, Musarò A. Counteracting muscle 
wasting in aging and neuromuscular diseases: the critical role of 
IGF-1. Aging (Albany NY). 2009; 1:451-7. 

[73] Musaro A, McCullagh K, Paul A, et al. Localized Igf-1 transgene 
expression sustains hypertrophy and regeneration in senescent 
skeletal muscle. Nat. Genet. 2001; 27: 195-200. 

[74] Rosen CJ, Pollak M. Circulating IGF-I: New Perspectives for a 
New Century. Trends Endocrinol. Metab. 1999; 10: 136-141. 

[75] Rudman DM, Kutner MH, Rogers CM, Lubin MF, Fleming GA, 
Bain RP. Impaired growth hormone secretion in the adult popula-
tion: relation to age and adiposity. J. Clin. Invest. 1981; 67: 1361-
1369. 

[76] Grounds MD. Reasons for the degeneration of ageing skeletal 
muscle: a central role for IGF-1 signalling. Biogerontology 2002; 
3: 19-24. 

[77] Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a 
crucial regulator of skeletal muscle hypertrophy and can prevent 
muscle atrophy in vivo. Nat Cell Biol. 2001; 3:1014-9. 

[78] Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in 
FOXO's road. Sci STKE. 2003; 2003(172):RE5. 

[79] Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors 
induce the atrophy-related ubiquitin ligase atrogin-1 and cause 
skeletal muscle atrophy. Cell. 2004;117:399-412. 

[80] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival 
by phosphorylating and inhibiting a Forkhead transcription factor. 
Cell. 1999; 96:857-68. 

[81] Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, 
Schiaffino S. Ras is involved in nerve-activity-dependent regula-
tion of muscle genes. Nat Cell Biol. 2000; 2:142-7. 

[82] Musarò A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. IGF-1 
induces skeletal myocyte hypertrophy through calcineurin in asso-
ciation with GATA-2 and NF-ATc1. Nature. 1999; 400:581-5. 

[83] Sartori R, Schirwis E, Blaauw B, et al. BMP signaling controls 
muscle mass. Nat Genet. 2013; 45:1309-18. 

[84] Milan G, Romanello V, Pescatore F, et al. Regulation of autophagy 
and the ubiquitin-proteasome system by the FoxO transcriptional 
network during muscle atrophy. Nat Commun. 2015; 6:6670. 

[85] Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 
1998; 281: 1312-1316. 

[86] Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation dur-
ing apoptosis. Nat Rev Mol Cell Biol. 2004; 5:897-907. 

[87] Enari M, Sakahira H, Yokoyama H. Okawa K, Iwamatsu A, Nagata 
S. A caspase-activated DNase that degrades DNA during apoptosis, 
and its inhibitor ICAD. Nature 1998; 391: 43-50. 

[88] Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein 
that functions downstream of caspase-3 to trigger DNA fragmenta-
tion during apoptosis. Cell 1997; 89: 175-184. 

[89] Takahashi A, Alnemri ES, Lazebnik YA, et al. Cleavage of lamin 
A by Mch2 alpha but not CPP32: multiple interleukin 1 beta-
converting enzyme-related proteases with distinct substrate recog-
nition properties are active in apoptosis. Proc. Natl. Acad. Sci. 
U.S.A. 1996; 93: 8395-8400. 

[90] Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The 
CED-3/ICE-like protease Mch2 is activated during apoptosis and 
cleaves the death substrate lamin A. J. Biol. Chem. 1996; 271: 
16443-16446. 

[91] Chen F, Chang R, Trivedi M, Capetanaki Y, Cryns VL. Caspase 
proteolysis of desmin produces a dominant-negative inhibitor of in-
termediate filaments and promotes apoptosis. J. Biol. Chem. 2003; 
278: 6848-6853. 

[92] Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998; 12: 1551-
1570. 

[93] Rheaume E, Cohen LY, Uhlmann F, et al. The large subunit of 
replication factor C is a substrate for caspase-3 in vitro and is 
cleaved by a caspase-3-like protease during Fas-mediated apopto-
sis. EMBO J. 1997; 16: 6346-6354. 

[94] Sandri M, El Meslemani AH, Sandri C, et al. Caspase 3 expression 
correlates with skeletal muscle apoptosis in Duchenne and faci-
oscapulo human muscular dystrophy. A potential target for phar-
macological treatment? J. Neuropathol. Exp. Neurol. 2001; 60: 
302-312. 

[95] Brostrom MA, Brostrom, CO. Calcium dynamics and endoplasmic 
reticular function in the regulation of protein synthesis: implica-
tions for cell growth and adaptability. Cell Calcium. 2003; 34:345-
363. 

[96] Hotokezaka Y, van Leyen K, Lo EH, et al. [alpha]NAC depletion 
as an initiator of ER stress-induced apoptosis in hypoxia. Cell 
Death Differ. 2009; 16: 1505-1514. 

[97] Sawada N, Yao J, Hiramatsu N. et al. Involvement of hypoxia-
triggered endoplasmic reticulum stress in outlet obstruction-
induced apoptosis in the urinary bladder. Lab Invest., 2008; 88: 
553-563. 

[98] Tang C, Koulajian K, Schuiki I. et al. Glucose-induced beta cell 
dysfunction in vivo in rats: link between oxidative stress and endo-
plasmic reticulum stress. Diabetologia 2012; 55: 1366-1379. 

[99] Rutkowski DT, Kaufman RJ. That which does not kill me makes 
me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 
2007; 32: 469-476. 

[100] Nakagawa T, Yuan J. Cross-talk between two cysteine protease 
families. Activation of caspase-12 by calpain in apoptosis. J. Cell 
Biol. 2000; 150: 887-894. 

[101] Li C, Wei J, Li Y. et al. Transmembrane protein (TMEM214) 
mediates endoplasmic reticulum stress-induced caspase 4 enzyme 
activation and apoptosis. J. Biol. Chem. 2013; 288: 17908-17917. 

[102] Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. 
An endoplasmic reticulum stress-specific caspase cascade in apop-
tosis. Cytochrome c-independent activation of caspase-9 by 
caspase-12. J. Biol. Chem. 2002; 277: 34287-34294. 

[103] Yukioka F, Matsuzaki S, Kawamoto K, et al. Presenilin-1 mutation 
activates the signaling pathway of caspase-4 in endoplasmic reticu-
lum stress-induced apoptosis. Neurochem. Int. 2008; 52: 683-687 



10    Recent Advances in DNA and Gene Sequences, 2015, Vol. 9, No. 1 Scicchitano et al. 

[104] Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T. 
Caspase-12 processing and fragment translocation into nuclei of 
tunicamycin-treated cells. Cell Death Differ. 2002; 9: 1108-1114. 

[105] Moorwood C, Barton ER. Caspase-12 ablation preserves muscle 
function in the mdx mouse. Hum Mol Genet. 2014; 23:5325-41.  

[106] Belizario JE, Lorite MJ, Tisdale MJ. Cleavage of caspases-1, -3, -6, 
-8 and -9 substrates by proteases in skeletal muscles from mice un-
dergoing cancer cachexia. Br. J. Cancer 2001; 84: 1135-1140. 

[107] Tisdale MJ. Biomedicine. Protein loss in cancer cachexia. Science 
2000; 289: 2293-2294. 

[108] Tisdale MJ. Cachexia in cancer patients. Nat. Rev. Cancer 2002; 2: 
862-871. 

[109] Coletti D, Yang E, Marazzi G, Sassoon D. TNFalpha inhibits skele-
tal myogenesis through a PW1-dependent pathway by recruitment 
of caspase pathways. EMBO J, 2002; 21: 631-642. 

[110] Israel A. The IKK complex: an integrator of all signals that activate 
NF-kappaB? Trends Cell. Biol. 2000; 10: 129-133. 

[111] Relaix F, Weng X, Marazzi G, et al. Pw1, a novel zinc finger gene 
implicated in the myogenic and neuronal lineages. Dev. Biol. 1996; 
177: 383-396. 

[112] Bonetto A, Aydogdu T, Kunzevitzky N, et al. STAT3 activation in 
skeletal muscle links muscle wasting and the acute phase response 
in cancer cachexia. PLoS One. 2011; 6:e22538.  

[113] Gilabert M, Calvo E, Airoldi A, et al. Pancreatic cancer-induced 
cachexia is Jak2-dependent in mice. J Cell Physiol. 2014; 
229:1437-43.  

[114] Watchorn TM, Dowidar N, Dejong CH, Waddell ID, Garden OJ, 
Ross JA. The cachectic mediator proteolysis inducing factor acti-
vates NF-kappaB and STAT3 in human Kupffer cells and mono-
cytes. Int J Oncol. 2005; 27:1105-11. 

[115] Tisdale MJ. New cachexic factors. Curr Opin Clin Nutr Metab 
Care. 1998; 1:253-6. 

[116] Johns N, Stephens NA, Fearon KC. Muscle wasting in cancer. Int J 
Biochem Cell Biol. 2013; 45:2215-29.  

[117] Bonetto A, Aydogdu T, Jin X, et al. JAK/STAT3 pathway inhibi-
tion blocks skeletal muscle wasting downstream of IL-6 and in ex-
perimental cancer cachexia. Am J Physiol Endocrinol Metab. 2012; 
303:E410-21.  

[118] Price FD, von Maltzahn J, Bentzinger CF, et al. Inhibition of JAK-
STAT signaling stimulates adult satellite cell function. Nat Med. 
2014; 20:1174-81.  

[119] Pelosi L, Berardinelli MG, De Pasquale L, et al. Functional and 
Morphological Improvement of Dystrophic Muscle by Interleukin 
6 Receptor Blockade. EBioMedicine. 2015; 2:285-93.  

[120] Tierney MT, Aydogdu T, Sala D, et al. STAT3 signaling controls 
satellite cell expansion and skeletal muscle repair. Nat Med. 2014; 
20:1182-6.  

[121] Silva KA, Dong J, Dong Y, et al. Inhibition of Stat3 activation 
suppresses caspase-3 and the ubiquitin-proteasome system, leading 
to preservation of muscle mass in cancer cachexia. J Biol Chem. 
2015; 290:11177-87.  

[122] Du J, Wang X, Meireles C L. et al. Activation of caspase 3 is an 
initial step triggering muscle proteolysis in catabolic conditions. J. 
Clin. Invest. 2004; 113: 115-123 

[123] Wang XH, Zhang L, Mitch WE, LeDoux JM, Hu J, Du J. Caspase-
3 cleaves specific 19 S proteasome subunits in skeletal muscle 
stimulating proteasome activity. J. Biol. Chem. 2010; 285: 21249-
21257 

[124] Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic 
kidney disease. Nat Rev Nephrol. 2014; 10:504-16.  

[125] Cecconi F, Levine B. The role of autophagy in mammalian devel-
opment: cell makeover rather than cell death. Dev Cell 2008; 
15:344-57. 

[126] Sandri M. Autophagy in skeletal muscle. FEBS Lett. 2010; 
584:1411-6.  

[127] Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroe-
mer G. To die or not to die: that is the autophagic question. Curr 
Mol Med 2008; 8:78-91 

[128] Dobrowolny G, Aucello M, Rizzuto E, et al. Skeletal muscle is a 
primary target of SOD1G93A-mediated toxicity. Cell Metab 2008; 
8:425-36. 

[129] Aucello M, Dobrowolny G, Musarò A. Localized accumulation of 
oxidative stress causes muscle atrophy through activation of an 
autophagic pathway. Autophagy. 2009; 5:527-9.  

[130] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. 
Cell 2008; 132: 27-42. 

[131] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy 
fights disease through cellular self-digestion. Nature 2008; 451: 
1069-1075. 

[132] Tanida I, Ueno T, Kominami E. Human light chain 3/MAP1LC3B 
is cleaved at its carboxyl‑terminal Met121 to expose Gly120 for 
lipidation and targeting to autophagosomal membranes. J Biol 
Chem 2004; 279: 47704‑47710. 

[133] Tanida I, Ueno T, Kominami E. LC3 conjugation system in mam-
malian autophagy. Int J Biochem Cell Biol 2004; 36:2503‑18. 

[134] Deval C, Mordier S, Obled C, et al. Identification of cathepsin L as 
a differentially expressed message associated with skeletal muscle 
wasting. Biochem. J. 2001; 360: 143-150. 

[135] Mammucari C, Schiaffino S, Sandri M. Downstream of Akt: 
FoxO3 and mTOR in the regulation of autophagy in skeletal mus-
cle. Autophagy 2008; 4:524-526. 

[136] Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. 
In vivo analysis of autophagy in response to nutrient starvation us-
ing transgenic mice expressing a fluorescent autophagosome 
marker. Mol. Biol. Cell 2004; 15: 1101-1111. 

[137] Mammucari C, Milan G, Romanello V, et al. FoxO3 controls auto-
phagy in skeletal muscle in vivo. Cell Metab. 2007; 6:458-71. 

[138] McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links 
oxidative stress to autophagy-related gene expression in cachectic 
muscle wasting. Am J Physiol Cell Physiol. 2010; 298:C542-9.  

[139] Klionsky DJ, Abdalla FC, Abeliovich H, et. Guidelines for the use 
and interpretation of assays for monitoring autophagy. Autophagy 
2012; 8:445-544. 

 
 
 
 

 


