
Cytokine xxx (2015) xxx–xxx
Contents lists available at ScienceDirect

Cytokine

journal homepage: www.journals .e lsev ier .com/cytokine
Review Article
Fetal and early neonatal interleukin-6 response
http://dx.doi.org/10.1016/j.cyto.2015.03.015
1043-4666/� 2015 Elsevier Ltd. All rights reserved.

Abbreviations: AUC, area under the curve; CI, confidence interval; CRP, C reactive
protein; EONS, early-onset neonatal sepsis; FIRS, fetal inflammatory response
syndrome; gp130, glycoprotein 130; IL-6, interleukin-6; IL-6R, interleukin-6
receptor; NICU, neonatal intensive care unit; IVH, intraventricular hemorrhage;
NEC, necrotizing enterocolitis; PPROM, preterm premature rupture of the
membranes; PVL, periventricular leukomalacia; sgp130, soluble glycoprotein 130;
sIL6-R, soluble interleukin-6 receptor; STARD, Standards for Reporting of Diagnostic
Accuracy; TLRs, Toll-like receptors; WMI, white matter injury.
⇑ Corresponding author at: Institute of Translational Pharmacology, National

Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy. Tel.: +39 06 4997
9215; fax: +39 06 4997 9216.

E-mail address: claudio.chiesa@ift.cnr.it (C. Chiesa).

Please cite this article in press as: Chiesa C et al. Fetal and early neonatal interleukin-6 response. Cytokine (2015), http://dx.doi.org/1
j.cyto.2015.03.015
Claudio Chiesa a,⇑, Lucia Pacifico b, Fabio Natale b, Nora Hofer c, John F. Osborn d, Bernhard Resch c

a Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
b Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, 00161 Rome, Italy
c Research Unit for Neonatal Infectious Diseases and Epidemiology, Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz,
AT–8036 Graz, Austria
d Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy

a r t i c l e i n f o
Article history:
Received 15 January 2015
Received in revised form 23 March 2015
Accepted 24 March 2015
Available online xxxx

Keywords:
Interleukin-6
Fetal inflammatory response syndrome
Early-onset neonatal sepsis
Reference intervals
Diagnostic accuracy
a b s t r a c t

In 1998, a systemic fetal cytokine response, defined as a plasma interleukin-6 (IL-6) value above 11 pg/mL,
was reported to be a major independent risk factor for the subsequent development of neonatal morbid
events even after adjustments for gestational age and other confounders. Since then, the body of literature
investigating the use of blood concentrations of IL-6 as a hallmark of the fetal inflammatory response
syndrome (FIRS), a diagnostic marker of early-onset neonatal sepsis (EONS) and a risk predictor of white
matter injury (WMI), has grown rapidly. In this article, we critically review: IL-6 biological functions;
current evidence on the association between IL-6, preterm birth, FIRS and EONS; IL-6 reference intervals
and dynamics in the early neonatal period; IL-6 response during the immediate postnatal period and
perinatal confounders; accuracy and completeness of IL-6 diagnostic studies for EONS (according to the
Standards for Reporting of Diagnostic Accuracy statement); and recent breakthroughs in the association
between fetal blood IL-6, EONS, and WMI.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Interleukin-6 (IL-6) is a pleiotropic cytokine that is produced by
a variety of cells in response to infection and tissue injury. In the
last two decades, the body of literature concerning the use of blood
concentrations of IL-6 as a hallmark of the fetal inflammatory
response syndrome (FIRS), a diagnostic marker of early-onset
neonatal sepsis (EONS) [1] and a risk predictor of white matter
injury (WMI) has grown rapidly, leading to improved understand-
ing as well as new questions about the role of this cytokine in the
perinatal period. In this article, we comprehensively review: (1)
IL-6 biological functions; (2) current evidence on the association
between IL-6, preterm birth, FIRS and EONS; (3) IL-6 reference
intervals and dynamics in the early neonatal period; (4) IL-6
response during the immediate postnatal period and perinatal con-
founders; (5) accuracy and completeness of IL-6 diagnostic studies
for EONS [including the design, conduct, analysis and results of
such studies according to the Standards for Reporting of
Diagnostic Accuracy (STARD) statement]; and (6) recent break-
throughs in the association between fetal blood IL-6, EONS, and
brain injury.
2. IL-6 biological functions and signaling pathways

Systemic inflammatory response syndrome, which is character-
ized by an excessive proinflammatory response, is a hallmark of
sepsis [2]. Many proinflammatory cytokines including IL-6 have
been implicated in the pathogenesis of sepsis [2]. Until recently,
it was not known how the cytokine-driven inflammatory process
is initiated. It is now known that microorganisms interact with a
family of toll-like receptors (TLRs) belonging to the innate immune
system, which trigger intracellular activation of nuclear factor
kappa B and various kinases, leading to the production and release
of cytokines [3]. Among these, IL-6 has been reported to be pro-
duced in the early phase of infectious inflammation by monocytes
and macrophages immediately after the stimulation of TLRs, with
distinct pathogen-associated molecular patterns [4]. In
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noninfectious inflammatory conditions, such as tissue injury, dam-
age-associated molecular patterns from damaged or dying cells
stimulate TLRs to produce IL-6 [5]. This acute IL-6 expression plays
a central role in the body’s defense against infection or injury by
stimulating various cell populations [6].

IL-6 is produced by various cells, such as T-cells, B-cells, mono-
cytes, fibroblasts, keratinocytes, endothelial cells, mesangial cells,
adipocytes, and some tumour cells [7]. While serum concentra-
tions of IL-6 in healthy donors are hardly detectable or in the
low pg/mL range [8,9], during an inflammatory episode IL-6 is
highly expressed, and circulating levels can rise dramatically
from 1–5 pg/mL to several lg/mL in extreme cases [10,11].
Consequently, IL-6 is one of the most highly expressed mediators
of inflammation [11].

IL-6 is a multifunctional cytokine involved in regulating the
immune response, hematopoiesis, the acute phase response and
inflammation. Its many biologic activities are at the root of its
pathogenic properties. IL-6 engages in two distinct downstream
signaling pathways to achieve these activities: classic and trans-
signaling.

In classic signaling, IL-6 first binds to its specific membrane-
bound a–receptor (IL-6R), which in turn associates with and
activates the signal-transducing b-receptor chain gp130. Whereas
gp130 is expressed by most, if not all, cells in the body [12],
IL-6R is only expressed on a limited number of cell types including
epathocytes, megakaryocytes and some leukocytes, namely
monocytes, macrophages, B cells and subtypes of T cells [12,13].
In hepatocytes, IL-6R expression is essential for the production of
acute phase response proteins including C reactive protein(CRP)
and fibrinogen. Being transiently expressed on lymphocytes,
macrophages, and megakariocytes, the IL-6R also orchestrates
phases of the immune response [12]. All other cells, which do
not express membrane-bound IL-6R, obtain IL-6 signals by trans-
signaling. IL-6 binds to the soluble form of IL-6R (sIL-6R), and this
complex not only protects IL-6 and prolongs its circulating half-life
[14], but also acts as an agonist capable of directly activating many
cell types via the ubiquitously expressed gp130 in a process
termed trans-signaling [11]. It has been shown that sIL-6R strongly
sensitizes target cells [14]. Embryonic stem cells, early hematopoi-
etic progenitor cells, T cells, many neural cells, smooth muscle
cells, mesothelial cells, and endothelial cells, among others, are
only responsive to IL-6 in the presence of sIL-6R [12]. sIL-6R is
present in the sera of healthy subjects at high concentrations
(25–145 ng/mL), and these levels increase during inflammation
[15–17]. sIL-6R in humans is generated through differential
mRNA splicing but primarily through proteolytic cleavage and sub-
sequent shedding of membrane-bound IL-6R [18,19]. In contrast to
classic signaling, comprising the anti-inflammatory or regenerative
activities of IL-6, evidence suggests that IL-6 trans-signaling via
soluble IL-6R accounts for the proinflammatory properties of
IL-6 [20]. In fact, while IL-6 classic signaling plays a role in
developmental processes, tissue homeostasis, and acute phase
response [21], trans-signaling is involved in many processes that
are important in sepsis: activation of endothelial cells and smooth
muscle cells [22,23], mononuclear cell recruitment [24], and
apoptosis of neutrophils and T cells as well as the expression of
chemokines [12,25,26].

Since the cellular responses to the IL-6/sIL-6R complex can be
dramatic, ranging from the induction of hepatocyte proliferation
to a massive increase in hematopoiesis [27,28], there must be a
‘‘buffer’’ acting as a control mechanism to prevent excessive IL-6
trans-signaling [8]. The soluble form of gp130 (sgp130), which is
found at concentrations between 100 and 400 ng/mL in the sera of
healthy humans [17], has been suggested to be the natural antago-
nist of the IL-6/sIL-6R complex in vivo [21], probably to prevent
systemic IL-6 trans-signaling during inflammatory diseases [29].
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The concentrations of IL-6, sIL-6R and sgp130 have to be consid-
ered. Under steady state conditions, levels of sIL-6R and sgp130 are
roughly 1000 times higher than IL-6 levels [8]. However, during
inflammatory conditions, IL-6 levels can increase up to a million-
fold [10], whereas serum concentrations of sIL-6R and sgp130
show much smaller differences between healthy and diseased
and in most cases do not rise by more than a factor of 2 [15].
These concentrations imply that IL-6, once secreted, will bind to
sIL-6R in the serum and this complex will associate with sgp130,
and thereby be neutralized [8]. Only when IL-6 levels exceed the
levels of sIL-6R and sgp130, IL-6 can act systematically-as seen
under septic conditions [10]. Because IL-6 alone does not interact
with sgp130, with a molar excess of IL-6 over sIL-6R, sgp130 would
only be able to block trans-signaling because free IL-6 will not, or
will only, be partially trapped in IL-6/sIL-6R/sgp130 complexes.
In contrast, under physiologic conditions, IL-6 is thought to act in
a paracrine fashion [30]. Physiological conditions are a molar
excess of serum sIL-6R over IL-6 characterized by free IL-6
and IL-6 found in IL-6/sIL-6R complexes. Under these conditions,
the sgp130 protein can block both classic and trans-signaling
because sgp130 would be able to trap all the free IL-6 molecules
in IL-6/sIL-6R/sgp130 complexes [21].
3. Preterm birth and interleukin-6

Subclinical intrauterine infection and/or inflammation, repre-
sented by chorioamnionitis, is the most firmly established trigger
of preterm delivery [31–33]. The etiology of preterm birth is com-
plex but previous data indicate that chorioamnionitis induces an
intra-amniotic inflammatory response involving the activation of
a number of cytokines and chemokines which, in turn, may trigger
preterm contractions, cervical ripening and rupture of the mem-
branes [34]. Numerous studies have found that IL-6 is the most
predictive and best candidate as a diagnostic tool for detecting
pre-clinical chrioamnion inflammation and intra-amniotic inflam-
mation leading to preterm birth [35–40]. Elevated levels of IL-6 in
mid-trimester amniotic fluid have been associated with increased
risk for spontaneous preterm birth (before 32 weeks), acute
chorioamnionitis and funisitis [41]. In the recent Pregnancy
Outcomes and Community Health cohort study, IL-6 levels in
vaginal fluid at midtrimester had the greatest sensitivity for
detecting spontaneous delivery at <35 weeks’ gestation and
preterm delivery accompanied by chorioamnionitis [42]. Studies
in tissue extracts from term and preterm deliveries have shown
that IL-6 concentrations in the extraplacental membranes are
modestly elevated with spontaneous term labor, but are dramati-
cally elevated in preterm deliveries [43].

IL-6 is a proinflammatory cytokine known to be expressed by
stimulated leukocytes [44]. In the tissues from preterm deliveries
(with and without intrauterine infection), IL-6 concentrations
correlate with the extent of leukocyte infiltration [45]. At the
inflammatory site, leukocytes (predominantly neutrophils and
macrophages) are recruited into the gestational membranes and
activated, and eventually secrete proinflammatory cytokines
including IL-6 [45,46]. Neutrophil infiltration to the chorionic plate,
choriodecidua, and umbilical cord can be measured through IL-6
concentrations of the amniotic fluid and cord blood [47]. The
association between high IL-6 levels in the amniotic fluid and
pregnancies complicated by premature rupture of membranes is
especially strong when infection is present [48,49]. Elevated mater-
nal serum IL-6 concentrations have been reported to be diagnostic
for intrauterine infection-associated preterm labor, giving indirect
evidence of a placental involvement in some instances of
infection-associated preterm deliveries [45]. However, a decidual,
or even cervical, source of this cytokine cannot be discounted [45].
atal interleukin-6 response. Cytokine (2015), http://dx.doi.org/10.1016/
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The human amnion, choriodecidua, and fetus have been pro-
posed as potential sites of IL-6 synthesis and probable sources of
IL-6 in the amniotic fluid [38,50,51]. Therefore, a relevant question
is whether targeting amniotic fluid IL-6 signaling could be a
promising option for the prevention of preterm delivery [31,38].
In a recent study, Lee et al. suggested that the IL-6 trans-signaling
pathway plays a critical role in preterm birth and premature
rupture of membranes by demonstrating an increase in amniotic
fluid concentration of IL-6 and sIL-6R in women with intra-
amniotic inflammation, and a decrease in the amniotic fluid
concentration of sgp130 in women with preterm premature
rupture of membranes (PPROM) [38]. In the same article, Lee
et al. also showed that in physiologic gestations, amniotic fluid
levels of sgp130 decline with gestational age [38]. These findings
suggest that targeting the IL-6 trans-signaling pathway may
prevent complications such as premature rupture of membranes
and preterm birth.

4. Fetal inflammatory response, early-onset neonatal sepsis,
and interleukin-6

FIRS is a systemic activation of the fetal innate immune system
and was originally reported in pregnancies complicated by preterm
labor (with intact membranes) and PPROM [52,53]. Affected
fetuses had evidence of multisystemic involvement; they had a
higher rate of adverse neonatal morbidity after adjustment for
gestational age, and had a higher risk of subsequent spontaneous
preterm delivery in cases of PPROM [53,54].

FIRS was originally defined as a level of IL-6 >11 pg/mL in sam-
ples of fetal plasma obtained by cordocentesis [52,53]. Following
this precept, Hofer et al. have recently demonstrated that in
preterm neonates FIRS is an independent predictor of adverse
neonatal outcome and some primary outcome parameters
including EONS [55]. In an observational study of 176 consecutive
preterm neonates admitted to the neonatal intensive care unit
(NICU) [62 (35%) with FIRS (cord blood IL-6 > 11 pg/mL), and 114
without], Hofer et al. [55] demonstrated that FIRS was significantly
associated with EONS [odds ratio 10.26, 95% confidence interval (CI)
2.95–35.68; P < 0.001)] independently of gestational age and
idiopathic respiratory distress syndrome. The receiver operating
characteristic curve analysis for cord blood IL-6 showed an area
under the curve (AUC) 0.75 (95% CI 0.68–0.84; P < 0.001) for the
prediction of overall adverse neonatal outcome, and specifically
an AUC 0.80 (95% CI 0.70–0.90; P < 0.001) for the prediction of
EONS [55].

In view of the clinical importance of FIRS (defined by a fetal
blood IL-6 concentration) as a predictor for morbidity in preterm
neonates, a major topic to be addressed is whether the level of
IL-6 depends on the severity of intra-amniotic inflammation. Also
the paper by Buhimschi et al. [56] may be of great interest. This
addressed the issue in a prospective observational cohort involving
132 consecutive mothers [median gestational age (interquartile
range): 29.6 (24.1–33.1) weeks] who had clinically indicated
amniocentesis to rule out infection. The intensity of intra-amniotic
inflammation was graded on the presence of four inflammatory
proteomic biomarkers (neutrophil defensins 2 and 1 and calgran-
ulins C and A) in the amniotic fluid that have been previously
[57,58] reported as highly predictive of histologic chorioamnioni-
tis, funisitis and EONS. The three grades used were: none of the 4
biomarkers, ‘‘no inflammation’’; 1-2 biomarkers, ‘‘minimal inflam-
mation’’; and 3-4 biomarkers,’’ severe inflammation’’. Results
showed that neonates with severe intra-amniotic inflammation
had significantly elevated cord blood IL-6 levels but not those
delivered by women with no or minimal inflammation. Because
the level of IL-6 was highly associated with the degree of placental
histological chorioamnionitis, one can conclude that at the stage of
Please cite this article in press as: Chiesa C et al. Fetal and early neona
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no or minimal amniotic fluid inflammation, the fetus is usually
protected. However, detection of a positive blood culture and
umbilical cord IL-6 levels well above the mean in several neonates
delivered by women with no or minimal intra-amniotic inflamma-
tion [56], suggested that the hematogenic infection of the human
fetus and increasing fetal inflammatory response, in the absence
of concurrent amniotic fluid colonization and inflammation, are
possible. Thus, the early and accurate recognition of neonates
who have already had in utero a robust inflammatory response in
the context of minimal intra-amniotic inflammation remains a
major clinical concern. Additional studies of the genetic and peri-
natal factors accounting for the differential maternal and fetal
inflammatory response are needed.

5. IL-6 reference intervals and dynamics in the early postnatal
period

As a prerequisite for analyzing the IL-6 neonatal response asso-
ciated with early-onset sepsis, there is a need to establish the IL-6
reference intervals and dynamics in the healthy neonate during the
early postnatal period, counterbalanced by a greater awareness of
the potential confounding factors that may affect them.

In a longitudinal study to assess upper reference limits for IL-6
in 148 healthy babies (113 term, 35 near-term) during the early
postnatal period, Chiesa et al. [59] showed that gestational age
was negatively associated with IL-6 values obtained at three fixed
neonatal ages (0, 24, and 48 h after birth). In fact, the geometric
mean IL-6 concentration in the healthy near-term babies at birth
and at 24 and 48 h of life was 6.40 (95% CI 3.61–11.50;
P < 0.0001), 2.38 (95% CI 1.41–3.99; P = 0.001), and 2.40 (95% CI
1.49 –3.88; P < 0.001) times higher, respectively, than the concen-
tration observed in the healthy term babies [59]. They also showed
that the kinetics of IL-6 during the first 48 h of life in healthy
infants, are different in the near-term infant compared with the
term neonate, suggesting different physiologic processes [59].
Among the term babies, the geometric mean IL-6 values were sig-
nificantly lower at birth [1.69 pg/mL (95% CI 1.28–2.23)] than at
24 h [4.09 (3.13–5.33)] of life, with no significant change from 24
to 48 h [3.45(2.70–4.43)] of life. In the term neonate, the surge of
IL-6 at 24 h of age probably reflects a physiological stress reaction
induced at birth. Similar data regarding IL-6 dynamics in healthy
term neonates have also been reported by other investigators
[60]. In contrast, within the subgroup of near-term babies, the geo-
metric mean IL-6 concentrations were already increased at the
time of birth [10.9 (6.53–18.4)] being not significantly different
from those found at 24 [9.3 (6.2–14.1)] and 48 h [8.4 (5.97–11.9)]
of life, therefore suggesting that a physiological stress reaction had
already begun before birth. Taken together, these data demonstrate
the effects of development on IL-6 reference intervals and dynamics
during the 48-h period after birth. Different gestational age- and post-
natal-dependent physiologic processes may be potential confounding
factors when interpreting IL-6 reference intervals and dynamics
throughout the early postnatal period.

In view of the latest advances in neonatal care, these reference
intervals derived from only 35 near-term and 113 term newborns
need additional refinement in a larger sample of healthy neonates
including, in particular, those born before 35 weeks of gestation,
that is, those that now populate most NICUs [61].

6. Studies of IL-6 diagnostic accuracy for early-onset neonatal
sepsis: quality of reporting

6.1. Data sources

We systematically reviewed PubMed, Scopus, and the Cochrane
Library databases up to June 1, 2014. The PubMed combined search
tal interleukin-6 response. Cytokine (2015), http://dx.doi.org/10.1016/
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term used was: (Interleukin-6 OR IL-6) AND (neonatal sepsis OR
neonatal infection OR sepsis). The search terms applied to the
Scopus and the Cochrane Library were ‘‘Interleukin-6 and sepsis’’
and ‘‘Interleukin-6’’, respectively.

6.2. Study selection criteria

Articles were eligible for inclusion in our review if they pro-
vided measures of IL-6 accuracy for diagnosing EONS, defined by
the National Institute of Child Health and Human Development
and Vermont Oxford Network, as sepsis with onset at 63 days of
age. We excluded studies that used IL-6 measurements that were
made only on maternal blood samples. We also excluded duplicate
articles. Conference abstracts or studies written in languages other
than English were also excluded.

6.3. Data extraction

Data extraction included the country of the research, year of
publication, journal, reference standard employed, the type of
study design, the number and specific characteristics of the
patients in the septic and non-septic groups (Table 1), and items
related to the quality of the methods and reporting (Table 2).
Specific data regarding the IL-6 cut-off level used, the sensitivity,
specificity, and AUC for the diagnosis of EONS were also extracted
(Table 1). In cases in which estimates of uncertainties around
the observed values of sensitivities and specificities were not
calculated using Wilson’s method [62], we calculated them.

6.4. Quality assessment of the included studies

In 2003, the STARD statement was published in 13 biomedical
journals [63–65]. The STARD initiative was developed in response
to accumulating evidence of poor methodological quality.
Therefore, a data extraction form based on the STARD checklist
and adapted for neonates with EONS was used to appraise the
overall quality of the included studies. All articles were closely
examined on the extent to which they adhered to the STARD
checklist by assigning a yes or no response to each item.

Twenty-five items make-up the STARD checklist. When the
papers considered in this study were assessed, only those STARD
items that have been empirically shown to have a potentially
biasing effect on diagnostic accuracy [66–69] and those items we
deemed may account for variation between estimates of diagnostic
accuracy for neonatal sepsis, were evaluated.

The checklist of STARD items we used is shown in Table 2.
Adequate reporting of three key domains, that is, descriptions of
participant recruitment, reference standard and index test, and
study population, was considered essential for capturing the global
and integrative quality of the estimated accuracy of the diagnostic
tests. As these were used for ruling in or for ruling out a multifa-
ceted clinical entity such as EONS, they were split into various
complementary items. Two investigators (CC, BR) independently
assessed the methodological quality of all eligible studies.

6.5. Methodological quality of the included studies

We found 19 articles which were eligible for inclusion in our
review [61,70–87]. Papers were published between 1995 and
2014. All were studies of diagnostic accuracy, and stated this as
the research objective in the introduction. Most studies were per-
formed in single perinatal centers. The IL-6 accuracy for the
diagnosis of EONS yielded discrepant results (Table 1). Potential
sources of the wide variation in IL-6 sensitivity and specificity
include the lack of consistent IL-6 cut-off values regardless of the
time of sampling; and differences in study sample sizes, patient
Please cite this article in press as: Chiesa C et al. Fetal and early neon
j.cyto.2015.03.015
demographic and clinical characteristics, and participant
recruitment.

We therefore evaluated the extent to which IL-6 accuracy
studies adhered to the STARD initiative. Agreement between the
two reviewers was almost perfect with an overall agreement
percentage of 98.8%. The kappa statistic had a value of 0.98
(95% CI 0.96–0.99), indicating very good agreement.

Overall, the quality of IL-6 diagnostic accuracy studies on EONS
over the last two decades was sub-optimal. Information on the key
elements of design, conduct, analysis, and interpretation of test
accuracy were frequently missing. The importance of describing
how eligible subjects were identified cannot be overemphasized.
It is crucial to describe the populations from which patients and
patient controls originated, as it allows an assessment of the
‘‘spectrum of disease’’, which is likely to influence the diagnostic
performance of the test. Reported estimates of diagnostic accuracy
may have limited clinical applicability (generalizability) if the
spectrum of tested patients is not similar to the patients for whom
the test will be used in practice. While some IL-6 accuracy studies
enrolled neonates who were suspected of having the disease
because of presenting symptoms, other studies recruited neonates
who were (initially asymptomatic and) only at risk of developing
the disease because of a history of maternal risk factors. Other
studies included neonates already diagnosed with sepsis and those
in whom sepsis had been already excluded. Finally, there were also
designs starting with: two separate selection processes to sample
patients with sepsis and patients without sepsis (a case-control
design with limited spectrum [66,88]); non-consecutive sampling
of patients (a method leading to the ‘‘limited challenge bias’’
[89]); retrospective data collection; and identification of patients
by searching hospital records. These alternative study designs are
likely to influence the spectrum of disease. Spectrum bias also
results from differences in the severity of sepsis/EONS between
populations. Clinical and birth characteristics (as proxy measures
of morbidity) of the septic and non-septic neonatal populations
were reported in only half of the IL-6 diagnostic accuracy studies.
As individual clinical and demographic attributes, such as gesta-
tional age and birth weight, do not capture the overall morbidity
status, it is of greater concern that reporting of the distribution
of scores of the major measures of illness severity was remarkably
poor in neonates with and without sepsis.

Differential verification bias is a key issue in any diagnostic
accuracy study. It occurs if some patients receive a different refer-
ence standard. Studies that relied on 2 or more reference standards
to verify the results of the index test, have reported estimates of
diagnostic accuracy on average 60% higher than those found in
studies that used a single reference standard [68]. The origin of this
difference probably resides in differences between the reference
standards in how they define sepsis, or in their quality. Reference
standards are not interchangeable. They may not have the same
degree of error, and may not identify the same segment of the dis-
ease spectrum. Thus it is worrying that in most of the included IL-6
diagnostic accuracy studies, different reference standards were
used to diagnose (or exclude) EONS and verify index test results.

A further step in the critical appraisal of the reference standard
is whether the index test or the comparator of the index test
formed part of the reference standard [90,91]. Unfortunately, in
six of the 19 included studies the comparator of the index test such
as CRP test was also a component of the reference standard (incor-
poration bias). In such situations it is likely that the person inter-
preting the results of the comparator will have knowledge of the
results of the other test (index test and reference standard).

In order to make a valid comparison between the index test and
the standard test, it is essential that the criteria (cut-off values etc)
are defined before the start of the study. If the cut-offs are decided
after the results are obtained, the likelihood that another study will
atal interleukin-6 response. Cytokine (2015), http://dx.doi.org/10.1016/
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Table 1
Characteristics of IL-6 accuracy studies (1995-2014) for diagnosing early (6 72 h) -onset neonatal infection.

Country, year [reference] Recruitment Reference standard in infected
neonates

Reference standard in
control neonates

Sample studied IL-6 Cutoff
(pg/mL)

Sensitivity,
% (95% CI)

Specificity,
% (95% CI)

AUC

Germany, 1995 [72] 46 NICU preterm and term
babies: 13, infected; 33,
uninfected

1) P3 categories of clinical signs, and
positive blood culture; or

NA Cord blood 150 69 (42–87) 91 (76–97) NA

2) P3 categories of clinical signs,
and P 2 abnormal laboratory results
in the first 48 h of life

Switzerland, 1996 [73] 199 preterm and term babies
(enrolled from the Obstetric
Unit, or the NICU): 18, infected;
181, unifected

1) Positive culture of blood and/or
CSF, abnormal WBC and CRP, and
clinical signs; or

Neither clinical nor
biological signs of
infection

61 h 100 100 (82–100) 92.3 (87–95) NA

2) P3 categories of clinical signs

USA, 1997 [71] 23 preterm and term babies with
suspected EONS: 8, infected; 15,
uninfected

1) Positive blood or CSF culture; or NA UA >7 87.5 (52.9–97.8) 66.7 (41.7–84.8) NA

2) clinical signs and positive
laboratory (WBC, I:T ratio, or spinal
tap) results

UV >7 87.5 (52.9–97.8) 93.3 (70.2–98.8) NA

Italy, 1997 [74] 60 NICU preterm and term
babies: 13, infected; 47,
uninfected

Positive blood culture, clinical signs,
and/or radiographic evidence of
pneumonia

Babies with various types
of distress who were well
within 48–72 h

624 h 70 69 (42–87) 36(24–51) NA

>24 h to 648 h 50 92 (67–99) 98 (89–100) NA

USA, 1999 [75] 28 preterm babies with either
spontaneous preterm

1) Autopsy; or NA UV blood 25 92.9 92.9 NA

labor or PPRM: 14, infected; 14,
uninfected

2) clinical signs and P2 laboratory
(WBC, I:T ratio, PC, spinal fuid)
abnormalities

(68.5–98.7) (68.5–98.7)

USA, 2000 [76] 43 NICU singleton, very preterm
babies: 21, infected; 22,
uninfected

1) Positive culture of blood and/or
CSF; or

Negative blood culture,
and <3 maternal/neonatal
risk factors for infection

UV blood 100 81 90.9 NA

2) P3 maternal/neonatal risk factors
for infection, clinical signs, and
abnormal hematologic findings

(60–92.3) (72.2–97.5)

Norway, 2001 [77] 24 NICU preterm neonates: 11,
infected; 13, uninfected

1) Clinical signs, and a positive blood
culture; or

Clinical conditions
apparently noninfectious

Cord blood 33 82 (52–95) 69.2 (42–87) 0.86
(0.66 –0.96)

2) P3 categories of clinical signs, and
CRP P3 mg/dL; or
3) radiographic evidence of
pneumonia and CRP P3 mg/dL

Sweden, 2001 [78] 32 NICU preterm and term
babies with suspected sepsis: 20,
infected; 12, uninfected

1) Positive culture of blood and/or
CSF; or

Clinical conditions
apparently noninfectious

624 h >160 100 (84–100) 69(42–87) NA

2) abnormal CRP, WBC, and P1
category of clinical signs (i.e. oliguria,
metabolic acidosis, or hypoxemia)

Spain, 2001 [79] 31 preterm and term babies: 10,
infected; 11, uninfected; 10,
healthy controls

P2 categories of clinical signs, P1
abnormal laboratory finding, and a
positive blood culture

Clinical conditions
apparently noninfectious;
and normal postnatal
course through the 1st
month of life

Cord blood 100.8 50 (24–76) 91 (62–98) �0.5
90 (60–98)

(continued on next page)
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Table 1 (continued)

Country, year [reference] Recruitment Reference standard in infected
neonates

Reference standard in
control neonates

Sample studied IL-6 Cutoff
(pg/mL)

Sensitivity,
% (95% CI)

Specificity,
% (95% CI)

AUC

Germany, 2001 [80] 136 preterm and term babies:
68, infected;68, uninfected. Of
the 136 babies, 77 were
preterm:40, infected;37,
uninfected

1) Clinical signs and positive blood
culture; or

Noninfectious clinical
conditions

Cord blood 80 87(77–93) 90(80–95) NA

2) clinical signs, and abnormal
laboratory (CRP, I:T ratio) results,
biological fluids positive for bacteria,
or signs of inflammation in placenta

Cord blood 80 95(84–99) 95(82–99) NA

Italy, 2003 [81] 134 NICU preterm and term
babies:19, infected; 115,
uninfected

1) Positive blood culture and clinical
signs; or

Symptomatic babies who
had negative body fluid
cultures, and were
apparently well within
24–48 h

At birth P200 74 (51–88) 89 (82–93) NA

2) P3 clinical signs prompting P5 d
of antibiotic therapy, and historical
and clinical risk factors for EONS

24 h P30 63 (41–81) 71 (63–79) NA

48 h P30 53 (32–73) 70 (62–78) NA

Austria, 2003 [82] 68 NICU preterm and term
babies with suspected sepsis:41,
infected;27, uninfected

1) Positive blood culture; or Negative blood culture,
negative sepsis screen,
and antibiotic therapy
63 d

612 h P10 71(56–82) 67(48–81) NA

2) P3 categories of clinical signs,
positive sepsis screen and/or risk
factors, and antibiotic therapy P7 d

P60 54(39–68) 100(88–100) NA

P150 46(32–61) 100(88–100) NA

Denmark, 2008 [83] 123 NICU babies with at least 1
clinical sign suggesting EONS:29,
infected;94, uninfected

1) Positive blood culture; or Clinical signs, CRP 65 mg/
dL, and antibiotic therapy
for 3 days; or clinical
signs, but no antibiotic
therapy

0 h a 250 59(41–75) 94(87–97) 0.77

2) clinical signs and CRP >5 mg/dL

Brazil, 2010 [84] 144 NICU preterm babies
presenting RDS during the first
24 h of life:44, infected;100,
uninfected

In addition to RDS, No clinical signs, and
a haematologic sepsis
score <3

636 h >36 82(68–91) 44(35–54) 0.72
(0.62 –0.83)

1) P2 categories of clinical signs, or
clinical chorioamnionitis, and
positive blood or CSF culture; or
2) P2 categories of clinical signs, or
clinical chorioamnionitis, and a
haematologic sepsis score >3; or
3) radiographic evidence of
pneumonia and a haematologic
sepsis score >3
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France, 2011 [61] 213 NICU preterm babies with a
presumptive diagnosis of
EONS:31, infected;182,
uninfected

1) Positive culture of blood or CSF,
and clinical signs; or

Positive superficial
culture without abnormal
CRP; alternative diagnosis
(obstetrical trauma,
perinatal asphyxia,
meconium aspiration
syndrome,
pneumothorax, etc);
neither positive
superficial culture nor
abnormal CRP

66 h 300 87.1(71.1–94.9) 81.9(75.6–86.8) 0.89
(0.84–0.95)

2) clinical signs, CRP >10 mg/L,
positive superficial or placental
cultures, and no alternative diagnosis

Iran, 2012 [85] 65 NICU preterm and term
babies with clinical signs of
sepsis or maternal risk factors
for EONS:49, infected;16,
uninfected

1) Positive blood culture; or Negative blood culture, <3
categories of clinical signs,
and a negative sepsis
screen

612 h P60 53 (39–66) 100 (81–100) NA

2) P3 categories of clinical signs, and
positive sepsis screen or maternal
risk factors

24 h P10 71 (58–82) 62.5 (39–82)

36 h P150 46.9 (34–61) 100 (81–100)

Spain, 2012 [86] 128 preterm and term babies
with prenatal risk factors for
EONS (77% asymptomatic at
birth):10, infected;118,
uninfected

1) Positive blood culture and clinical
signs; or

NA Cord blood 255.87 90 87.3 0.88

2) P3 categories of clinical signs (94–96) (80.1–92.3) (0.70 –1.06)(sic)

Spain, 2013 [70] 176 preterm babies born to
mothers with PPROM:12,
infected;164, uninfected

1) Positive blood culture; or NA Cord blood 38 83 (55–95) 82 (75–87) 0.91 (0.85–0.97)

2) clinical signs and P2 abnormal
hematological laboratory (WBC, PC,
I:T ratio) results

Austria, 2014 [87] 218 NICU preterm babies with
risk factors for EONS:30,
infected;188, uninfected

1) Positive blood culture; 2) P3
categories of clinical signs; or

NA Cord blood 15.85 73.3 (56–86) 84 (78–89) 0.81 (0.67–0.95)

3) P1 category of clinical signs, and
P2 laboratory (WBC, I:T ratio, CRP)
abnormalities

AUC = Area under the curve; CSF = Cerebrospinal Fluid; CRP = C reactive protein; EONS = Early-onset neonatal sepsis; I:T = Immature-to-total neutrophil; NA = Not available; NICU = Neonatal Intensive Care Unit; PC = Platelet
count; PPROM = Preterm Premature Rupture of Membranes; RDS = Respiratory Distress Syndrome; UA = Umbilical artery; UV = Umbilical Vein; WBC = White Blood Cells.

a At the time of suspicion of EONS.
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Table 2
Quality of reporting of IL-6 accuracy studies (1995–2014) for diagnosing early
(672 h)-onset neonatal infection.

Category and Item No. YES NO

METHODS-PARTICIPANTS
Describe the study population:
1A. the inclusion and exclusion criteria, 13 6
1B. setting, and locations where data were collected 14 5
Describe participant recruitment:
2A. Was enrollment of patients based only on clinical signs

suggesting infection?
6 13

2B. Were such patients consecutively enrolled? 4 2
2C. Was enrollment of patients based only on maternal risk

factors for infection?
4 15

2D. Were such patients consecutively enrolled? 0 4
2E. Were patients identified by searching hospital records? 1 18
2F. Did the study include both patients already diagnosed with

sepsis and participants in whom sepsis had been excluded?
4 15

Describe data collection:
3. Was data collection planned before the index test and

reference standard were performed (prospective study)?
6 13

TEST METHODS
Methods pertaining to the reference standard and the index test:
4A. Was a composite reference standard used to identify all

newborns with sepsis, and verify index test results in infected
babies?

18 1

4B. Was a reference standard used to exclude sepsis? 13 6
4C. Was a composite reference standard used to identify all

newborns without sepsis, and verify index test results in
uninfected babies?

6 7

4D. Did the index test or its comparator form part of the reference
standard?

6 13

5. Were categories of results of the index test (including cut-offs)
and the reference standard defined after obtaining the results?

19 0

6. Did the study report the number, training and expertise of the
persons executing and reading the index tests and the
reference standard?

1 18

7. Was there blinding to results of the index test and the
reference standard?

4 15

STATISTICAL METHODS
8. Describe the statistical methods used to quantify uncertainty

(i.e. 95% confidence intervals)?
7 12

9. Describe methods for calculating test reproducibility 2 17

RESULTS-PARTICIPANTS AND TEST RESULTS
10A. Describe when the study was done, including beginning and

ending dates of recruitment
16 3

10B. Did the study report clinical and demographic (postnatal
hours or days, gestational age, birth weight, gender) features
in those with and without sepsis?

10 9

10C. Did the study report distribution of illness severity scores in
those with and without sepsis?

3 16

11. Report the number of participants satisfying the criteria for
inclusion that did or did not undergo the index tests and/or
the reference standard; describe why participants failed to
receive either test

11 8

12. Report a cross-tabulation of the results (including
indeterminate and missing results) by the results of the
reference standard; for continuous results report the
distribution of the test results by the results of the reference
standard

10 9

RESULTS-ESTIMATES
13. Report measures of statistical uncertainty (i.e. 95% confidence

intervals)
7 12

14. Report how indeterminate results, missing responses and
outliers of index tests were handled

2 17

15. Report estimates of test reproducibility 10 9

8 C. Chiesa et al. / Cytokine xxx (2015) xxx–xxx
replicate the findings is reduced. Apparently all studies defined
cut-offs post hoc.

We also determined whether the interpretation of the index
test or reference standard was influenced by knowledge of the
results of the other test. Review biases, including test review bias
(knowledge of the outcome of the reference standard when
reviewing the index test) and diagnostic review bias (knowledge
Please cite this article in press as: Chiesa C et al. Fetal and early neon
j.cyto.2015.03.015
of the outcome of the index test when reviewing reference stan-
dard) can lead to inflation of the measures of diagnostic accuracy.
Information about masking was reported in a minority of reports
(4/19). Information regarding methods for calculating IL-6 test
reproducibility, as well as the number, training and expertise of
the persons executing and reading the index test and the reference
standard were among the least commonly reported items from the
STARD guidelines. There may be a lack of understanding of the
effects of poor reproducibility or low level of expertise on the final
outcome of the diagnostic accuracy of a test.

Measures of diagnostic accuracy will be biased if the result of
the index test influences the decision to order the reference stan-
dard [90]. It is therefore important to state how many participants
satisfying inclusion criteria failed to undergo the index tests and/or
the reference standard and the reasons for failing to do so. This
item was reported in over half of the publications included (11/
19). A flow diagram is highly recommended to illustrate the design
of the study and provide the exact number of participants at each
stage of the study [63,64]; none of the 19 IL-6 diagnostic accuracy
studies had a flow diagram.

As the absolute values of diagnostic accuracy are only
estimates, when evaluations of diagnostic accuracy are reported
the precision of the sensitivity and specificity should be reported.
Reporting of CIs is critical to allow a physician to know the range
within which the true values are likely to lie [92]. Only 7 (37%)
of the 19 included studies reported CIs.

Intermediate, indeterminate, and uninterpretable results may
not always be included in final assessment of the diagnostic
accuracy of a test. The frequency of these results, by itself, is an
important pointer of the overall usefulness of the test. Only two
of the 19 included studies reported this item.

Since the technology for existing tests is rapidly improving, it is
important to report the actual dates when the study was per-
formed. This will allow the reader to consider any technologic
advances since the study was done. Fortunately, most publications
provided this information.

In general, the results of our analysis show that over the last
two decades the quality of reporting on IL-6 diagnostic accuracy
studies for EONS was sub-optimal leaving ample room for
improvement. Studies of the same test can produce different
estimates of diagnostic accuracy depending on the design, conduct
and data analysis. Authors should be aware of the STARD criteria
before starting a study in this field.

7. IL-6 response in the early postnatal period and perinatal
confounders

Previous studies have suggested that interpretation of the IL-6
response in early life may be affected and confounded by concur-
rent factors associated with stress, systemic injury and infection
[74,79,93]. Absent from most publications on IL-6 accuracy studies
for the diagnosis of EONS, however, are data on how the
interpretation of the IL-6 response in the infected and uninfected
neonates might have been hampered by the severity of the under-
lying illnesses (and their extent of inflammatory reaction). Clinical
severity was described in only half of these publications, and most
of them used gestational age and birth weight as simple proxies for
more elaborate measures of illness severity (Table 2). Although
birth weight and gestational age may be adequate for some pur-
poses, they do not completely account for variations in the severity
of illness. Previous reports have emphasized apparent variations in
morbidity and mortality among NICUs despite controlling for birth
weight and gestational age. Substantial residual variation is still
evident after such adjustments [94]. Hence, it is worrying to think
that Cobo et al. have considered prematurity and related factors,
such as the use of maternal steroids and antibiotics, as the only
atal interleukin-6 response. Cytokine (2015), http://dx.doi.org/10.1016/
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possible confounding factors to be adjusted for when assessing the
independence of umbilical cord IL-6 in predicting EONS [70].
Moreover, risk factors such as antenatal corticosteroid and
antimicrobial use are influenced by the interval between maternal
presentation and delivery and by access to care [95]. In a few IL-6
accuracy studies, Apgar scores have also been used as simple
proxies for measuring illness severity in neonates with and with-
out early-onset sepsis [76,77,80,83,86]. However, Apgar scores
are known to be dependent on gestational age [96], and may
actually reflect intrapartum obstetric or anesthesia practices. Low
Apgar scores may also suggest a pattern of suboptimal resus-
citation or of greater antecedent fetal sedation or compromise
[95]. Thus the use of appropriate measures of illness severity is
essential for assessing clinical severity in the comparison of results
of diagnostic accuracy studies [94,97,98]. To this end, in a study on
IL-6 accuracy in diagnosing sepsis in critically ill neonates admit-
ted to the NICU during the first 48 h of life [81], Chiesa et al. used
two objective, validated measures of neonatal illness severity, the
Score for Neonatal Acute Physiology and its perinatal extension
[94,97]. They found that IL-6 levels increase at birth and at 24
and 48 h of life in the presence of bacterial infection, and that
the increases are independent of illness severity [81]. They also
found that illness severity has the potential to confound IL-6
concentrations in that, among newborns without infection, the
higher the illness severity and risk indices, the greater the IL-6
response at birth.

Previous studies have sought to identify which prenatal and
perinatal variables would mimic or mask alterations in the IL-6
response caused by infection. Prolonged exercise has been asso-
ciated with increased production of IL-6 from the stimulated blood
monocytes [99]. This observation can possibly explain the higher
IL-6 levels during vaginal delivery, where the parturient makes a
stronger effort than that during an elective cesarean section.
Thus, IL-6 has been consistently found to increase in the fetal
circulation in response to labor or other labor-related events both
with and without histologic chorioamnionitis [100–104].

Other noninfectious causes can lead to an increase in IL-6. Cord
serum or cerebrospinal fluid levels of IL-6 have been reported to
be elevated during the immediate postnatal period in infants with
perinatal asphyxia in the presence as well as absence of infection
[81,105–110], and have been correlated to the degree of
encephalopathy and neurodevelopmental outcome [106]. In a group
of 20 infants with fetal acidemia, respiratory depression, and low
Apgar scores, cerebrospinal fluid levels of IL-6 were higher among
infants with more severe neonatal encephalopathy [105]. This
elevation of IL-6 levels could be attributable to brain damage mani-
festing as neonatal encephalopathy and/or antecedents (including
chorioamnionitis) of encephalopathy [111]. The association
between elevated IL-6 levels and encephalopathy was found even
among infants born to mothers without the diagnosis of chorioam-
nionitis [112]. Thus, antecedents of neonatal encephalopathy
other than chorioamnionitis (that is, hypoxia-ischemia) might lead
to elevated levels of IL-6 in the neonatal blood [113].

8. Association of FIRS and EONS with brain injury

Brain injury in the premature infant consists of multiple lesions,
principally germinal matrix/intraventricular hemorrhage(IVH),
posthemorrhagic hydrocephalus, and periventricular leukomalacia
(PVL) [114]. The last of these now appears to be the most impor-
tant determinant of the neurologic morbidity observed in survivors
with birth weight <1500 g, of whom about 10% later exhibit cere-
bral palsy, and about 50%, suffer cognitive and behavioral deficits
[115,116].

The pathogenesis of PVL is multifactorial and probably involves
damage, either related to ischemia/reperfusion injury in the
Please cite this article in press as: Chiesa C et al. Fetal and early neona
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critically ill premature infant with impaired regulation of cerebral
blood flow, or to inflammation-induced brain injury associated
with infection [117]. Relating to the latter, a recent study has
shown that maternal intrauterine infection and fetal systemic
inflammation play a role in the pathogenesis of PVL [118]. An
association between WMI and/or cerebral palsy and maternal,
placental, or fetal infections [119–121] with high levels of IL-6 in
the amniotic fluid and cord blood, has been demonstrated [122].
Martinez et al. showed that mothers of neonates who developed
PVL and IVH within the first week of life had higher median amnio-
tic fluid IL-6 levels (42,795 pg/ml versus 8,020 pg/mL; P = 0.009),
more positive amniotic fluid cultures (64% versus 21%; P < 0.003),
and a shorter median amniocentesis-to-delivery interval (16 h
versus 24 h; P = 0.045) than women who delivered neonates
without PVL or IVH [123]. The hypothesis is that the fetal systemic
inflammatory response leads to WMI. Indeed, neuropathologic
examination has shown that an inflammatory reaction is detected
at the early stage of PVL in the brain that persists until the late
phase of cystic cavitation [124]. This process is characterized by
the presence of active astroglial and microglial proliferation in
the brains of infants with PVL and cytokine production [124,125].
The intensity of cytokine production observed in the brains of
infants with PVL is higher than in anoxic lesions without PVL,
particularly at the early stage of PVL [124]. Whether this brain
inflammatory response is secondary to systemic inflammation,
hypoxia-ischemia, or both, remains unclear.

Surprisingly, what is emerging is that a significant increase of
WMI, including a progressive form of WMI that is more readily evi-
dent on magnetic resonance imaging scans at term-equivalent age
[126], may arise from postnatal infections through a systemic
inflammatory response [127–129]. Postnatal infections have been
linked to altered development of white matter pathways [130]
and widespread impairments in brain development. The increased
risk of early WMI with postnatal infection is consistent with the
observation that recurrent postnatal sepsis is a risk factor for pro-
gressive WMI [126,129]. A few studies have observed that during
the immediate postnatal period WMI in preterm infants is asso-
ciated with an altered equilibrium in the inflammatory IL-6
response to early-onset sepsis and that proinflammatory cytokines
such as IL-6 act as part of a larger systemic response. In a prospec-
tive cohort study examining the association between cytokines
including IL-6 and WMI in 84 very-low-birth weight infants with
early-onset sepsis and necrotizing enterocolitis (NEC), Procianoy
and Silveira [131] showed that neonates with proven early-onset
sepsis, NEC, and high plasma levels of IL-6 were at high risk for
WMI. Proven EONS and NEC carried a high risk for WMI even after
adjustment for gestational age and birth weight [relative risk, 3.04
(95% CI 1.93-4.80) and relative risk, 2.2 (95% CI 1.31-3.74), respec-
tively]. IL-6 levels obtained during the first 24 h of life were higher
in infants with WMI than in control subjects. Using ROC analysis, a
plasma level of IL-6 P 116 pg=mL was a good risk predictor for
WMI with sensitivity, specificity and negative predictive value
being 96%, 77%, and 98%, respectively. Thus these data support
the hypothesis that neonatal sepsis leads to an extracerebral
inflammatory stimulus and WMI in the immature brain, without
bacterial antigen gaining access to the brain. More recently, in an
observational study of 176 preterm infants, Hofer et al. [55] showed
that elevated cord blood IL-6 concentrations were significantly
associated with EONS as well as neonatal mortality, respiratory
morbidity, and neurologic morbidity including IVH and PVL.

9. Conclusions

IL-6 has consistently been found to be the best candidate as a
diagnostic tool for detecting pre-clinical chrioamnion inflamma-
tion and intra-amniotic inflammation leading to preterm birth.
tal interleukin-6 response. Cytokine (2015), http://dx.doi.org/10.1016/
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Determination of FIRS (and fetal blood IL-6 concentration) provides
a means to recognize neonates who are at risk for adverse neonatal
outcome, in particular EONS. Physiologic processes and perinatal
confounders in the early life should be taken into account to
optimize use of IL-6 in the diagnosis of EONS. The reliability of this
cytokine for the differential diagnosis of infectious versus
noninfectious systemic inflammatory response during the immedi-
ate postnatal period has yielded variable results. Some of this
variation reflects differences in reporting quality of IL-6 diagnostic
accuracy for EONS. Future well-reported studies showing informa-
tion on key elements of design, conduct, and analysis would be
useful resources to guide decisions on the use and interpretations
of IL-6 test results in the diagnosis of neonates with early-onset
sepsis. Future studies are also needed to clarify how systemic
inflammatory IL-6 response in utero and postnatally, may increase
the risk of WMI in postnatal sepsis.
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