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Abstract

Let G be a nonabelian free group with involution *. In the present
note, we show that GG satisfies a *-group identity if and only if * is the
classical involution, given by g* = ¢g~! for all g € G.
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1 Introduction

Let G be a group. We say that G satisfies a group identity if there ex-
ists a nontrivial word w(z1,...,x,) in the free group (1, xs,...) such that
w(g1, ..., gn) = 1 for all g; € G. For instance, an abelian group satisfies the
identity z;'w, 2125 = 1, whereas a nonabelian free group cannot satisfy a
group identity.

Recall that an involution on G is a function x : G — G satisfying
(gh)* = h*g* and (¢g*)* = g for all g,h € G. One example that is always
present is the classical involution, given by ¢g* = ¢! for all ¢ € G. The free
group (x1,Zs,...) has an involution given by z] = z9, 2} = 24, and so on.
Renumbering, we obtain the free group with involution, (zy,x7, z2, 23, ...).
We say that a group G with involution satisfies a *-group identity (or *-GI)
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if there exists a nontrivial word w(xy,x7,..., 2., 2)) € (21,27, ...) such that
w(g1, 97, -, 9n,95) = 1 for all g; € G.

Inspired by the work of Amitsur [1], where it was shown that if a ring
with involution satisfies a x-polynomial identity, then it satisfies a polyno-
mial identity, Giambruno, Polcino Milies and Sehgal [3] looked at the group
ring F'G of a torsion group with involution GG over an infinite field F'. They
demonstrated that if the unit group of F'G satisfies a x-GI (under the involu-
tion linearly extended from the one on G), then the symmetric units of F'G
satisfy a group identity. Here, an element g is said to be symmetric if g* = g.
This does not, in general, imply that the entire unit group satisfies a group
identity.

Let us now consider the case of a nonabelian free group G with involu-
tion. As the composition of two involutions is an automorphism, and ev-
ery automorphism of G' commutes with the classical involution, we see that
the involutions of G are found by composing the classical involution with
an automorphism of order at most 2. For example, if G = (xy, z9, x3, 24),
then we can obtain an automorphism o of order 2 by letting o(z1) = =1,
o(ry) = 23", o(x3) = 74 and o(x4) = x3. Composing with the classical invo-
lution, we get 2% = x7 ', 25 = x9, 25 = x; " and 2} = x5 . Then, for instance,
(z123)* = 3 o7 In fact, Dyer and Scott [2, Theorem 3] have classified the
automorphisms of prime order of a free group.

If the involution on G is classical, then it is immediately obvious that G
satisfies the *-GI z127. Our purpose here is to demonstrate that the classical
involution is rather special in that sense, for if the involution is anything else,
then G will not satisfy any %-GI at all. In analogy to the main theorem of
[3], we obtain the following result.

Theorem. Let G be a nonabelian free group having an involution x. Then
the following are equivalent:

1. G satisfies a -G,
2. the symmetric elements of G satisfy a group identity, and

3. * 1s the classical involution.

2 Proof of the theorem

Throughout, let G be a nonabelian free group with involution x.



Lemma 1. If G has noncommuting symmetric elements a and b, then G
does not satisfy a *-G1.

Proof. We may as well let G = (a, b), which is a free group of rank 2. If G
satisfies a *-GI, then by [3, Lemma 1], it satisfies one of the form w(z, 2*) = 1.
Notice that (ab)* = ba, (ab)™' = b~'a™! and ((ab)*)™! = a~'b7!. Letting
x = ab, we note that no cancellation is possible, since z and 2~ do not occur
together in w, and neither do z* and (z*)~!. Therefore, w(ab, (ab)*) #1. O

Lemma 2. If G has noncommuting elements a and b satisfying a* = a,
b* = b1, then G does not satisfy a *-G1.

Proof. We can assume that G = (a,b), a free group of rank 2. Then we note
that a and bab~! are symmetric and do not commute. Apply Lemma 1. [J

Lemma 3. Suppose that x is not the classical involution. If x is in any free
generating set of G, and v* = 7%, then G does not satisfy a *-GI.

Proof. As * cannot act as the classical involution upon the entire free gen-
erating set, let y be another generator such that y* # y~!. If x and yy* do
not commute, then Lemma 2 finishes the proof. Therefore, assume that they
do commute. Then, since z is part of the generating set, yy* = z*, for some
integer i. However, x fixes yy* and inverts z*. Therefore, yy* = 1, which is
impossible. O

Let us now prove the main result.

Proof of Theorem. If % is the classical involution, then since G is torsion-
free, its only symmetric element is the identity. Therefore, in this case, the
symmetric elements of G satisfy every group identity, so (3) implies (2). To
show that (2) implies (1), we note that if the symmetric elements satisfy
w(zy,...,x,) = 1, then G satisfies w(z127, ..., z,2)) = 1. Thus, it remains
only to show that (1) implies (3). To this end, suppose that G satisfies a
x-GI, but * is not the classical involution.

Taking any element x of a free generating set, Lemma 3 tells us that
x* # 271, Let y be any element of G that does not centralize zx*. If zz* and
yy* do not commute, then Lemma 1 finishes the proof, so assume that they
do commute. Then there exists z € G such that zz* = 2™ and yy* = 2",
for some integers m and n. By choosing z judiciously, we may assume that
m and n are relatively prime. Then, since z™ and z" are symmetric, so is



z. Furthermore, y* = y~'2". Therefore, the group (y, z) is *-invariant. If y
commutes with z, then it commutes with 2™ = xx*, giving us a contradiction.
Recalling that z is symmetric, we may therefore assume that G = (y, z), a
free group of rank 2.

If z and y?*(y*)* do not commute, then by Lemma 1, we are done, so
assume that they commute. As z is part of the free generating set, y?(y?)* =
2, for some integer i. But also,

V() =ylyy )y (") = y"y 2"

Therefore, yz"y~'2"% = 1. As y and z are free generators, this can only
happen if n = 0. But in this case, yy* = 2° = 1, hence y* = y~!. Lemma 3
completes the proof. n
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