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Retrieval capabilities of hierarchical networks: From Dyson to Hopfield
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We consider statistical-mechanics models for spin systems built on hierarchical structures, which
provide a simple example of non-mean-field framework. We show that the coupling decay with spin
distance can give rise to peculiar features and phase diagrams much richer than their mean-field
counterpart. In particular, we consider the Dyson model, mimicking ferromagnetism in lattices, and
we prove the existence of a number of meta-stabilities, beyond the ordered state, which become
stable in the thermodynamic limit. Such a feature is retained when the hierarchical structure is
coupled with the Hebb rule for learning, hence mimicking the modular architecture of neurons,
and gives rise to an associative network able to perform single pattern retrieval as well as multiple
patterns retrieval, depending crucially on the external stimuli and on the rate of interaction decay
with distance; however, those emergent multitasking features reduce the network capacity with
respect to the mean-field counterpart. The analysis is accomplished through statistical mechanics,
Markov chain theory, signal-to-noise ratio technique and numerical simulations in full consistency.
Our results shed light on the biological complexity shown by real networks, and suggest future
directions for understanding more realistic models.
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In the last decade, extensive research on complexity in
networks has evidenced (among many results [1, 2]) the
widespread of modular structures and the importance of
quasi-independent communities in many research areas
such as neuroscience [3-5], biochemistry [6] and genet-
ics [7], just to cite a few. In particular, the modular,
hierarchical architecture of cortical neural networks has
nowadays been analyzed in depths [8], yet the beauty
revealed by this investigation is not captured by the sta-
tistical mechanics of neural networks, nor standard ones
(i.e. performing single pattern retrieval) [9, 10] neither
multitasking ones (i.e. performing multiple patterns re-
trieval) [11, 12]. In fact, these models are intrinsically
mean-field, thus lacking a proper definition of metric dis-
tance among neurons.

Hierarchical structures have been proposed in the past
as (relatively) simple models for ferromagnetic transi-
tions beyond the mean-field scenario -the Dyson hierar-
chical model (DHM) [13]- and are currently experiencing
a renewal interest for understanding glass transitions in
finite dimension [14, 15]. Here we investigate their re-
trieval capabilities when performing as associative net-
works: we start studying the DHM mixing the Amit-
Gutfreund-Sompolinsky ansatz approach [10] (to select
eligible retrievable states) with the interpolation tech-
nique (to check their thermodynamic stability) and we
show that, as soon as ergodicity is broken, beyond the
pure ferromagnetic state (largely discussed in the past,
see e.g., [16, 17]), a number of metastable states suddenly
appear and become stable in the thermodynamic limit.
The emergence of such states implies the breakdown of
classical (mean-field) self-averaging and stems from the
weak ties connecting distant neurons, which, in the ther-
modynamic limit, effectively get split into detached mod-

FIG. 1: Sketch of the hierarchical topology underlying the
model (here k =4, N = ok = 16). Nodes represent spins; the
larger the distance between two spins and the weaker their
coupling. On the right we highlight how the graph breaks
down in two equivalent components (referred to as “left” and
“right”) as the weakest link J(k, k, p) (see Eq. 2) is cut.

ules (see Fig. 1). As a result, if the latter are initialized
with opposite magnetizations, they remain stable.

This is a crucial point because, once implemented the
Hebbian prescription [9, 10] to account for multiple pat-
tern storage, it allows proving that the system not only is
able to retrieve any single pattern at a time as a standard
Hopfield model [9, 10], but its communities can perform
autonomously, hence making the simultaneous retrieval
of multiple patterns feasible too. We stress that this fea-
ture is essentially due to the notion of metric the system
is endowed with, differently from the multiple retrieval
performed by the mean-field multitasking networks which
require blank pattern entries [11, 12].

Therefore, the hierarchical neural network is able to
perform both as a serial processor and as a multitasking
processor. We corroborate this scenario merging results



from statistical mechanics, Markov chain theory, signal-
to-noise ratio technique and extensive numerical simula-
tions as explained hereafter.

In the DHM the mutual interaction between 2*+! Ising
spins 0; = +1, with 4 = 1,...,2¢"1 is described by the
following Hamiltonian, defined recursively as
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Hy41(6) = Hy (1) + Hy(02) —

where J > 0 and p € (1/2 1[ tune the interaction
strength; o7 = {J’L}l<1<2k 03 = {0j}ar11<j<or+1 and
Hy(d) = 0. This model is explicitly non-mean-field as
we implicitly introduced a distance: Two spins 7 and j
turn out to be at distance d;; = d if, along the recursive
construction, they first get connected at the d-th itera-
tion; of course d ranges in [1, k] (see also Fig. 1). It is
possible to re-write the Hamiltonian (1) in terms of d;;
as Hi41(6) = — qu Jijoi0;, where
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(2)
Set the noise level 5 = 1/T in proper units, we are inter-
ested in an explicit expression of the infinite volume limit
of the mathematical pressure «(g,J,p) = —Bf(8,J, p),
(where f is the free energy) defined as

. 1 5
a(B,J,p) = Jim —=rlog y | exp[—FH41 (7)),

whose maxima return the equilibrium states of the sys-
tem. The latter are expressed in terms of the global

magnetization mypy; = ﬁ Z?Hl o; and of the set of
k magnetizations i1, ..., My, which quantify the state of
each community, level by level; for instance, the two mag-
netizations related to the two largest modules (see Fig.1)
read off as

2k 2k+1

We approach the investigation of the DHM meta-
stabilities exploiting the interpolative technology intro-
duced in [15], that allows obtaining bounds beyond the
mean-field paradigm (as fluctuations are not completely
discarded). This procedure, assuming the homogeneity
of the sub-magnetizations (i.e., Mief = Myighy = M), Te-
turns the following expression (see [15, 20] for details)

BJm

a(B, J, p) > sup |log 2 + log cosh(BJmCs,) —
3)

where C, = 2Y/[(2¥ — 1)(2¥ — 2)]. However, if we re-
move the hypothesis that the two main modules display
the same magnetization, namely if we call independently
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FIG. 2: Left panel: Schematic representation of the free en-
ergy for the DHM, where minima correspond to equilibrium
states. At finite size the pure ferromagnetic state (denoted by
aligned arrows) is a global minimum, while the mixed state
(denoted by misaligned arrows) is a local minimum. In the
thermodynamic limit both states are global minima and the
system can relax to any of them (although the latter displays a
smaller attraction basin). Right panel: Representation of the
eigenstates of W for a system with k = 4 and p = 0.75. Each
column represents a different eigenstate, eigenstates pertain-
ing to the same degenerate eigenvalue are highlighted. Dif-
ferent colors represent different entries in the eigenstate, as
shown by the colormap on the right.

k finite k — oo

Miege = M1 and Myight = M2, under the ansatz of mized
state (i.e., Miefy = —Muright), formula (3) is generalized as

o(B,J.p) = sup {1n2_5‘702p(M)

mi,m2 2

%[L(ﬁmchp) + L(5m202p)}}a (4)

where L(x) = Incosh(z); of course, posing m; = my =
m, we recover (3). Requiring thermodynamic stability,
and using brackets for Boltzmann averages, we obtain
the following disentangled self-consistencies

<tanh(ﬁJm1,gCgp)>, (5)

whose solution is different from the trivial paramagnetic
one (i.e., (my,2) = 0) below the critical temperature T, =
JCs3,. The main idea underlying the derivation of Eq. 4,
representing the behavior of two quasi-non-interacting
sub-communities, is that the interaction term in Eq. 1 is
bounded by 2~ *+1(2p=1) that is vanishing in the ther-
modynamic limit [20]. As a consequence, the meta-stable
mixed state and the stable ferromagnetic state display
an (intensive) energy gap AF 2~ (k+1)(2p=1) guch that,
as k — oo, both states become stable sharing the same
intensive free-energy (see Fig. 2, left): as the paramag-
netic solution becomes unstable, while thermodynamics
is dominated by the ferromagnetic behavior, both the
ferromagnetic (i.e. Mier, = Myight) and the mixed, (i.e.
Mieft = —Mright) solutions appear. We can use this ar-
gument iteratively splitting the system in smaller and
smaller blocks: after M iterations, we need a set of dif-
ferent magnetizations (one for each 2™ emerging com-
munities) until the ¥ + 1 — M level. The procedure
keeps on working as far as the interaction term, bounded
by Zfiklﬂ_M 2l(1=20) remains vanishing, hence at most
M(k)/k — 0. The existence of states different from the

(m1,2) =
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FIG. 3: (Color on line) Left panel: Magnetizations obtained
by MC simulations of the DHM for different sizes (main fig-
ure) and by the theoretical curves given by Eq. 5 (inset) hold-
ing in the thermodynamic limit. In the main plot, the spon-
taneous switch between serial and mixed state is a finite-size
effect. Right panel: Mattis magnetizations obtained by MC
simulations of the HHM for k = 12 and p = 4. Consistently
with the analytical picture (Eq. 13 and Eq. 5 give analogous
solutions), the simultaneous retrieval of multiple patterns ex-
ists and is stable.

purely ferromagnetic one is confirmed by Monte Carlo
simulations (see Fig. 3, left).

This point can be further understood from a differ-
ent perspective: the DHM can be looked at as a ferro-
magnet embedded in a fully-connected topology, where
the link connecting two arbitrary nodes, ¢ and j, dis-
plays a weight J;; decaying with the distance between 4
and j, and defined according to a suitable metric (e.g.,
the one based on recursion described above or the 2- adlc
metric dlj = 27ord2(i=9) " in such a way that Jij ~ d
[21]). Moreover, the set of nodes is countable and Welghts
are finite, i.e. Jpm = 4~ FtDr < Jij < Jmax =
(1 — 4=(+1p) /(47 — 1), thus, upon proper normaliza-
tion of weights J;; — W;; = J;;/w;, where w; = Zj Jijs
the graph describes a Markov chain, where each node
represents a state and W is the transition matrix [18].
The evolution of the random process is therefore pro-
vided by the master equation p(t+ 1) = Wp(t) — p(t) =
Wp(t)—p(t), whose stationary distribution, referred to as
w, satisfies m = W, that is, m coincides with the eigen-
vector ¢y, of W corresponding to eigenvalue A\g = 1 (that
is just the Perron-Frobenius eigenvalue of W) and it is
uniformly distributed as 7 = e/2(*1)/2. The second-
largest eigenvalue \; and the related eigenstate are, re-
spectively,

2k
A= ZWU — "W igrsr — 1 — (’)(2_(2P—1)(k+1)),
j=1
dr, = (1,1,...,1,—1,—1,...,—1)/20-+D/2,
—_— —————
2(k+1)/2 o(k+1)/2

As \; converges to 1 in the thermodynamic limit, ergod-
icity breaking for the stochastic process is expected. In
fact, ¢, and ¢, generate a subspace where any vector
is an eigenvector of W with the same eigenvalue A\ = 1.

In particular, we see that

Org + Ox, = (1,1,...,1,0,0,...,0)4/2/2k+1 (6)
—_—— ——
2(k+1)/2 2(k+1)/2
Org — Ox; = (0,0,...,0,1,1,...,1)4/2/2k+1 (7)
N——
2(k+1)/2 2(k+1)/2

correspond to stationary states localized on the left and
on the right branch of the graph, respectively. Otherwise
stated, there is no flow between the two main modules
as if they were autonomous. The same holds as we split
each branch in smaller sub-units iteratively (see Fig. 2,
right), and mirrors the genesis of metastable states in the
thermodynamics counterpart.

As a final perspective, we check the robustness of states
through a signal-to-noise ratio analysis. To this aim we
express the fields acting on the spins in (1) by writing

Hy11(6) = =32, hi(3, p, k)oi, being
k41 K+l
0’p7 Z{Z(ZQZp)zd ! f(dl):| (8)

where m;lc(_d{i) is the normalized magnetization of spins at
distance d from the i-th one. The microscopic law gov-
erning the evolution of the system is a stochastic align-
ment with the local field h;(&, p, k), that is, o;(t + 0t) =
sign{tanh[Bh;(&(t), p, k)] + n:(t)}. In the noiseless limit,
the stochasticity captured by the independent random
numbers 7;(¢) (uniformly distributed over the interval
[—1,+1]) is lost, and

Jim ot + 1) = sign{hi(#(1). p. k). 9)

Thus, if o;hi(¢,p,k) > 0,Vi € [1,2*F1], the config-
uration ¢ is dynamically stable. Hereafter, we focus
on the ferromagnetic/single pattern case and on the
mixed/multitasking case only, referring again to [21] for
an extensive treatment.

In the former case, o; = +1,Vi € [1,281] =
hi(&,p, k) > 0 Vk,p € (1/2,1]. Therefore, the ferromag-
netic/single pattern case state is stable for 8 — oo.

In the latter case, o; = +1,Vi € [1,2¥] and
o = —1,Vi € 28 + 1,2") = limp_oo hi(G, p, k) =
/(21720 + 47 —3) > 0 Vp € (1/2,1]. Therefore, the
mixed/multitasking case is stable for § — co.

Now, retaining the outlined perspective, we recursively
define the hierarchical Hopfield model (HHM) by the fol-
lowing Hamiltonian

p ok+1

2 22p<k+1> Z Z §'&j0i0;

p=11,5=1
(10)
with Ho(5) = 0, p € (1/2,1]; beyond 2F+! dichotomic
neurons oy, also p quenched patterns &#, u € (1,...,p)
are introduced. Their entries ¢! = £1 are drawn with
the same probability 1/2 and are averaged by E;.

Hi4+1(5) = Hi(01) + Hi (02



Again, we can write the Hamiltonian of the HHM
in terms of the distance d;;, obtaining Hyi1(¢) =

- Zi<j Jijomj, where
— gp—dijp _ g4—kp P

Jij = 40 — 1 nggfv (11)

p=1

hence the Hebbian kernel Eﬁzl /&) is tuned by the
distance-dependent weight J(d;;, k, p).
Once introduced suitably Mattis overlaps, both global

2ls:+l
My =

oy / 2k+1 and community restricted, as

2k+1

Z oj,  (12)

=2k+1
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the statistical-mechanical route, as in the Dyson
model, returns a non-mean field approximation for
the pressure of the single pattern retrieval state
as (B, p, ) ~  sup,,{log2 — gzp 1m202p +
E¢ log cosh[> ) _; (Bm,Csp)€"]}. Assuming two different
families of Mattls magnetizations {m{ ,}/_,
largest communities (left and right), we get a non-mean-
field approximation for the multiple patterns retrieval
pressure

for the two

a(8,p,p) ~ sup {In2 - ﬂ@pzw

m12 n=1
p
Z B Csp))]

whose disentangled optimal order parameters satisfy

1 P
+§]E5[L(; Bk Co, + €M)

p
= E¢(¢" tanh[5 ) Copmi €], (13)

v=1

<m’1‘72>

returning again T, = Cs,. The behavior of (mf ,) re-
sulting from Eq. 13 is consistent with the simulation out-
comes (see Fig. 3, right panel). Again, we can iteratively
repeat the procedure as far as the interaction term among
the sub-communities remains vanishing, hence getting
M (k) = o(k). Therefore, if we want the system to handle
p patterns simultaneously, we need p blocks and this, for
k — oo, establishes the bound p = o(2%).

This picture is confirmed by the signal-to-noise ratio
analysis: we start from the single pattern state, i.e., o; =
¢!, and check its stability writing o;h;(7, p, k) as a signal
term S plus a noise term R and then comparing their
amplitudes:
£"hi(G §“Z§ZZJdkp D gret =S+ R(9),

v=1 jidiz=d
(14)
where § = Y5 J(d, k, p)2?~1 > 0, while

P k
=&y &Y Jdkp) Yo g
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FIG. 4: Left panel: Phase diagram for the DHM as derived
from the signal-to-noise ratio analysis. The curves separating
different phases are obtained by solving numerically the tran-
scendental equation tanh[Bh; (&, p, k)] = 1 as a function of 3
and p. Here we fixed £ = 7 and we focused on four different
configurations (single pattern state, multitasking state and
states where sub-communities made of four and eight spins,
respectively, are misaligned with respect to the bulk). Right
panel: pzirri‘fle (solid line) and pm¥* (dashed line), as a func-
tion of p and for several choices of k, as explained by the
legend. Notice that as p increases the capacity of the system
(for both single and multiple retrieval) decreases, in fact, the
magnitude of couplings decreases exponentially with p, hence
the overall storage capacity is also reduced [19, 20].

As clearly (R(£))e = 0, we need to evaluate when the ra-
tio S/[\/(R(§)?)¢ — 1: the latter returns the maximum

single

load p ¢ (k, p) storable by the network before the noise
prevails over the signal and retrieval fails.

As for the stability of the multiple patterns retrieval, forc-
ing o; = &' Vi € [1,2%] and 0, = & Vi € [2F + 1,2FF)]
for p # v, and splitting again o;h;(, p, k) in a sig-
nal plus a noise term, we can check again the maxi-
mum load p®W4(k, p) storable by the network. Both

crit
pi‘rrfle(k,p) and p2ulti(k p) are monotonically decreas-
ing functions of p, and they converge to the finite value
(4P —1)(4%° —2)/(4% — 3 x 4 +2)% + 1 as k gets larger

(see also Fig. 4 and [21]).

Summarizing, beyond classical retrieval, the network
is able to safely handle multiple patterns too. Unlike
multitasking mean-field networks [11] (where multiple
retrievals are independent), here the weak ties connect-
ing different modules may account also for correlated re-
trieval (as the retrieved pattern of one module may drive
retrieval in other modules), better mimicking the behav-
ior of biological systems. However, there is a cost in terms
of capacity: as we can neglect links among upper levels
- those that become effectively negligible in the thermo-
dynamic limit - globally the network loses a significant
amount of bit-storing synapses. Thus a new compromise
appears in non-mean-field cognitive systems: increasing
multitasking capabilities diminishes the processor capac-
ity, the trigger between them being ruled mainly by the
rate of interaction decay p.
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