The Observer Error Linearization Problem
via Dynamic Compensation

C. Califano, C.H. Moog

DOI:10.1109/tac.2014.2308606. In IEEE TRANSACTIONS ON AUTOMATIC CONTROL - ISSN:0018-9286.
(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other
works.

Abstract

Linearization by output injection has played a key role in the observer design for nonlinear control systems for almost
three decades. In this paper, following some recent works, geometric necessary and sufficient conditions are derived
for the existence of a dynamic compensator solving the problem under regular output transformation. An algorithm
which computes a compensator of minimal order is given.

Index Terms

Linearization by output injection, nonlinear systems, state and output transformations, dynamic compensator.

I. INTRODUCTION

In the early 80’s, the transformation of a nonlinear system into a linear canonical observer form was obtained
and geometric conditions were derived in [22]. This so-called static solution has been widely investigated both in
the continuous and discrete time context (see for example the early works of [6], [23], [21], [33], right to [13],
[12], [29], [5], [14], [24], [31], [30], [32] where more general transformations were considered for continuous
time systems, and to [26], [11], [37] for continuous systems with delay; [25], [4], [20], [15], [19], [9], [27], [10]

deal with discrete—time and sample—data systems). Whenever those conditions are not fulfilled, the problem may
be still solvable by using a dynamic compensator. This kind of solution was first considered in the discrete time
context in [15] where it was first shown that for autonomous systems, differently from the continuous time case,
the observability condition was enough to guarantee the reconstruction of the state through a sufficiently large
buffer. The problem was further investigated in [36] and [18] where nonautonomous systems were considered.
In continuous time, starting from [17], where a dynamic solution was proposed for the first time by considering
the characteristic equation, several dynamic compensators have been proposed in the literature based on different
approaches leading to sufficient conditions: in [28] and [35] the problem was addressed by considering chains of
integrators connected to the outputs of the system; in [3] a more general setting of the problem was given, while
the solution was sought within a special class, consisting of chains of integrators, or linear stable systems; finally
in [2] a constructive procedure was proposed for autonomous systems based on the relative degree of the output,
while more recently in [7], [8] a geometric approach was used for single output autonomous systems. Despite
the numerous works on the topic, the existence of a dynamic solution in continuous time is far from being fully
characterized.

In the present paper, given a SISO observable system, necessary and sufficient conditions are given for the existence
of a dynamic compensator such that the extended system is equivalent under change of coordinates and regular
output transformation to a linear observable system up to input and output injection. Such necessary and sufficient
conditions, being algorithm based, are constructive, and lead to the computation of a solution of minimal order
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whenever it exists. The effective design of an observer, which is beyond the aim of the present paper, is then notably
simplified: in fact the state can be estimated through the Kazantzis-Kravaris/Luenberger observer [20] provided the
extended system and the coordinates transformation satisfy appropriate assumptions as discussed in detail in [1].
We end this Section by stating exactly the problem under study.

Problem formulation: Given the single output observable system

& = [flz)+g(@)u 1)

y = h(x) )
with z €e R" (n > 1), y € R, u € R, h, f and g analytic functions in their argument, find, if possible, an integer
¢ € IN, a compensator '

E=my ) +m(y,u,  (eR’ 3

and/-+1 independent functiong = ¢;(y, &), ¢ € [1,£+ 1] whereny, n2 and ¢;, i € [1, £+ 1] are smooth functions
in their arguments, such that the extended system (1), (3), with output function

ge = (gia e 7@Z+I)T: (901 (ya 6)3 Ty 905+1(y3 6))T:<p(ya 6)3 (4)
with rank [aa@(;yg)] = ¢+ 1, is equivalent under change of coordinates= ®(¢, ) to the observable canonical
form

2 = Az+1U1(T°) +2(8°)u 5)
o= ey,§) =0z

with (A, C') an observable pair of the form
A = diag(Ay---Apyr), C =diag(Cy---Cry1),

0 0
(1 0), Ci=(01)
Vi (§°) = (Wj1(59), -+, ¥j.e11(5°))T, j € 1,2 and 4;, C; of dimensionk; x k;, 1 x k; respectively foi € [1,¢+1].

(6)
A;

The paper is organized as follows. Standard results for multi-output systems are recalled in Section Il since the
search for a dynamic post-compensator will transform the single—output problem into a multi-output problem.

Section Il is devoted to the main results. Practical computations are made through an algorithm in Section IlI-C

and concluding remarks are stated in Section IV.

Il. RECALLS AND PRELIMINARY RESULTS

The following notation will be used. Given a functioX(z), its differential isd\(z) =
derivative along a vector field(z), is given byL \(z) := a)\(I)T Accordingly Li \ ( )
the vector fieldsr; (x), 72(z), their Lie bracket is defined 6{31,7-2] = ad;, (T2) = 5271 —

the binomial coefficient, that i€/ := (7) = #Ll),

A. Equivalence under change of coordinates for multi-output systems

( e, 22, Its Lie
= (Ll "\(x)). Given
%’1 5. CJ will denote

The problem formulation recalled in the Introduction underlines that the given single—output system (1), (2) is

transformed into the multi—output system (1), (3), (4). Hereafter we thus recall the general result stated in [33]
concerning the equivalence of a multi—output system to the linear observer canonical form up to input and output
injection, since it will be used to characterize the conditions for the existence of the compensator (3) as well as its
computation. Consider then the nonlinear continuous time system

& = f(z)+g(x)u
y = h(z)

with z € R", y € R, u € R™, f(x), ¢i(x), for ¢ € [1,m] and h;(z) for j € [1, p] analytic functions in their
arguments. Without loss of generality, it is assumed that the origin is an equilibrium point for the system, that is
f(0) =0 andh(0) = 0.

(7)
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Definition 1: The multl—output system (7) is said to be locally observable aratine 0, ug = 0 with observability
indicesk;, i € [1,p], if >F_, k; = n and the observability matrix

0= ((dhl)T o @dLE T )T (dhy)T (dL‘;flh,,)T)T
has full rankn locally aroundzy = 0.

The problem of defining a diffeomorphism = ®(z) which transforms (7) into the linear observable canonical
form up to input and output injection ([16]),

z = Az+Ui(y) + Ya(y)u
y = Cz

where A andC' are of the form (6) witté + 1 = p (and, for: € [1, p], A; andC; of dimensionk; x k; andk; x 1
respectively), is linked to the existence pfvector fieldsr;1(x), i € [1, p] solutions of
d(Lj

d(th,j)Tﬂ = O, 12 S [O, /{1 — ] 1 lhj)T“ = 5“', (9)

Vi € [1,p]. In (9), §;; denotes the Kronecker index which is equalltdf ¢ = j and 0 otherwise. The following
theorem is shown in [33], using the notatio@s= {dh,; - - ~dL’;ﬁ’1hi, i€[1,p]},

Oi ={dhi, - ,dL}2hi dhy - -dLy " hy, j # 1,5 € [1,p]}t andrj, = —ady(rj k1) = [rj k-1, f]-

Theorem 1:[33] There exists a diffeomorphism = ®(x) which transforms system (7) into the linear observable
canonical form up to input and output injection (8) if and only if

(8)

i) The system is observablednk O = n) with observability indices:;, i € [1, p]
i) span®; = span(0; N O)
I") [Tjkarin] =0 V_],’L € [Lp]a k€ [1 k]] [Lkl]
V) [gj,7Tin) =0 Vi e [l,m], Vie[l,p], n €l k—1]

B. A preliminary technical result

Next result will be instrumental in the characterization and computation of a solution if it exists.

Proposition 1: Assume that for the given observable dynamics (1), (2), there exists a dynamic compensator of di-

mension? and of the form (3), such that the extended system (1), (3) can be rewritten in appropriate coordinates
®(x,¢) in the form (5), with respect to the+ 1 fictitious independent functiong® = (1 (v, €), -+, wer1(y, €))7,

with mnk(%";y;))) = ¢+ 1. Let, without loss of generality, the first output sat@ﬁ% # 0. Then the extended

dynamics (1), (3) admits the observer canonical form up to input and output injection also with respect to the

extended outpuf® = (1 (y, &), &1, -+ -, &) with observability indicegn, 1, - -, 1).

Proof: Since the system admits the observer canonical form up to input and output injection then it satisfies
Theorem 1. Sincepan{dy®} = span{dy,d{} and the observability indek; = n (since p;(y,£) depends on
y), one immediately verifies that ii) of Theorem 1 is satisfied onlyif(y, {) = ¢;(§) for j € [2,¢+ 1], since
otherwisespan(O;) # span(O; N O). As a consequence, the output functigh = (<p1(y,§),¢>(§)T), where
@(€) : R* — R’ is invertible and has observability indicés:, ko, - - -, key1) = (n,1,---,1). Let (x7, 21)T =
(do(z, )T, p1(z,)T)T, be the associated change of coordinates wﬂhkM =nandgy; = Cz1 The
proof ends by taking® = (¢1(y, ), &1, - - ,@) and by considering the coordmate& (€7, 2T, in which the
system reads (5). ]

Ill. M AIN RESULTS

Since according to Proposition 1, if a solution exists then we can take as output fungtiens(y, §), 45, = §;

J € [1,4], we will first investigate the relationship between thgx)'s i € [1 n] defined on the original system

with respect to the single outpyt = h(x) and thers;(z,£)’s i € [1,£+ 1], j € [1, k;] defined on the extended

system with respect to the transformed output funcUg‘ﬁsjefmed above. ThIS will yield the characterization of
the output transformation and the dynamic compensator. The following holds true:

INote that fork; = 1, O; reduces ta0; = {dh;, j #1i,j € [1,p]}
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Proposition 2: Given system (1-2), let;(z) be the vector field solution of equation (9) with respect to the given
output functiony = h(z). Consider the extended system (1), (3), with dift(z,&) = (nf (y, ) fT(:c))T and
output functionsj; = h$ = o(y, £), i1 = ﬁfﬂ =&, 1€ [1,4], where%ﬁj’f) # 0 with observability indices

k1 =mn, kiy1 = 1 for i € [1,¢4]. Then the vector fields§, (z,&), ¢ € [1,¢+ 1], solutions of the corresponding
equations (9Vj € [1, ¢+ 1] exist and are given by

e 00y, )" 70 9
(2, §) = [Ty TlTa—x = Oé(yai)ﬁTa—x (10)
7= 9 + i (x f)r(x)T2 €[2,0+ 1] (11)
w1l 86#—1 P 7#*171 ) T 8:6 /’[’ ’

-1

with v, 1., = — [8“"53;’5)] %ﬁyf). Accordingly, forj € [2,n],
-t o 9
71 (,8) = g ¢ T T L g el )l (2) 5 (12)
Proof: Since the original single output system is observablér) exists and is unique; moreovey(z), - - - , 7, ()

are independent ([23]). They can thus be used as a baslB"in Consider now the extended system (1), (3)
with extended outpuf® = (¢(y, £), &1, - -, &)Y, which has, by Proposition 1, observability indices 1,-- -, 1).
The corresponding vector field;,, 4 € [1,£ + 1], solution to (9), if they exist can be expressedigs =

¢ . .
Z?:l oz, f)Tl(ZC)Ta% + ijl B, (z, f)%, in the baSIS(TlT(:c)a%, e ,Tg(:c)aa—m, 6%1’ cee 6%[)

Since k§ = n, d(Ly.7°)75 (x,€) = 0 for 0 < v < n — 2, which implies immediately tha,;(z,&) = 0 for
J € [1,4] and thatay;(z,§) = 0 for i € [2,n]. Finally, since forj € [2,(+ 1], v € [1,n — 1], d(L.75) €
span{d¢, dif§, - - - ,d(L'.'§5)} the previous relation ensures also ol . 75 )7 (7,6) = 0, j € [2,0+ 1], v €
[1,n — 1] while d(Lp: '), = 1 implies that 228413~ h(x))ry (w)ons (2, €) = 2880y (2,€) = 1. As

-1

a consequence;(z,§) = [%Z’f)} that is 7§, exists and is given by (10), where(z,§) = ai1(z,&) =
—1

[Bsa(yyf)

dy
In a similar way, fory € [2,¢+ 1] sincek;, = 1, then it is easily verified thafy, (z, &) exists and must satisfy
dij;7 (2, §) = 6,5. Then necessarilg,,; (z,§) =0 for p # j+1 andB;41 ; = 1. Moreover sincelg{7;,; = 0 then

-1
%@Z/f)dh(:c)rn(:c)a#n(:c,i) + % = 0 so thata,,(z,§) = — aﬂgg’f)} aaiiyf) which proves (11). Finally
(12) is proven iteratively by using the fact the;(z,§) = —adpe (275 ;1 (2, ). ]

Proposition 2 generalizes and includes the particular cases treated in [3], [8].
Next result characterizes the link between the given system and the dynamic compensator solving the problem.

Theorem 2:Assume that the observable system (1), (2), can be transformed into the canonical observer form up to
input and output injection through the compensator (3) with respect to the extended @utplto(y, £), &1, - - -, &) 7,
Where%z’f) #0.LetFe = (nf', f1)T andG® = (nT, g7)T be the vector fields characterizing the extended system
(1), (3), and consider the output vectél(z, &) = (h(z), &, - - -, &)Y, Denote by

0
and by 8 = (L. 87)T. Then the following properties hold true
.)[Tl(fc),rj(fc)] =0 Vj<n-—-1 (14)
1. -1 -
[rj(@),ra(@)] = Y T (@)rj-i(x), Vi€ [l,n—1] (15)
1=0
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where, forj > i,

%

D)_i=(=1)' Y c/mip N Qi(re, 1), (16)

=
QT H) = ()" € AT V)T (L ) an
ii.) [r Zcﬂ YO, (x)rj_i(z), ¥j € [1,n—1] (18)
whae 0, {_;HILG% (100 (2221 as)

Proof: By assumption, the extended system (1), (3), with output functigns ¢(y, &), andgs, , = & fori
[1, 4], is equivalent under change of coordinates to the observable canonical form up to input and output injection. As
a consequence the vector fields(x, €), j € [1,n] given by (10) and (12) must satisfy the conditigi{,, 7, = 0,

Vj, u € [1,n]. According to Proposition 2, by construction denotingdy, &) = [a(y, £)]~* 6“"(3’ 3
0 0
n@ e = | 200 it = (4,74, 0.) (20)
=
ri(@) o =D T =) T L T o, 7 i (9:€) (21)
1=0

As a consequence, one gets that settthg- (h(:c),gl, e ,&)T, considerings(y, £) given by (13) and denoting
by ) = (L},. 67)T, standard computations lead to

[ T 0 Ti]
J dx’ ,ua -
p—1 p
Zorffpa%e yPeri_, Z crpe=Ra(rk,. Hyrt 2 (22)
= prt
j—1 4
= XD X G H )

Since by constructiod (L. H)r Eaﬁ‘ = 0 for p+ k < n we immediately get thalr,7;] =0 Vj <n—1thatis
(14), while specifying (22) forn = n and considerin@f(Fe, H) given by (17), one get¥j < n,

j—1 [
[rjora] = D (=D y CILTEBOTMQE (R H)
i=0 k=0

that is (15), withT"_,(x) given by (16).
As for ii.), by assumption forj € [1,n — 1], [F{;, G| = 0, so that one immediately gets that fpie [1,7n — 1],

S () (e Wl 6] — Lo (6, yrie) =0 23)

=0
that is ([Tla g]a Ty [Tnfla g]) Q= (Tla e 7T7l*1) II
with © andII two upper triangular matrices of dimensien— 1 whose generic coefficient in positiof, ;) is
respectivelyQ;; = (—1)"*7C]” L aly,€) and I = (—1)i+jC§:i1LGcL%?a(y,5). Q being invertible since
det(Q) = a(y,&)"~t # 0, one gets that
([Tlag]a"' 7[7”717179]) = (Tla"' 7T7l*1)Hﬂil =T

with T again an upper triangular matrix with generic coefficient in positioni) given byt,; = (—l)iﬂcj;-lLGeL{{eiLog(a);
ii.) follows being

1—1
gl = S ot (1o (22
7=0
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Equations (15)-(16) and (18)-(19) are at the basis of the computation of the output transformation and the dynamic
compensator solving the problem as highlighted in the following paragraphs.

A. The output transformation properties

Proposition 3: Assume that there exists a compensator of dimenéifrthe form (3), and an output transformation
o(y, &), with %Z’f) # 0, such that the extended system (1), (3) can be put in the canonical observer form (5), with

respect to the extended outpift = (¢(y, &), &1, -+, &) 7. Let B(y, &) = [By, Bers -+ -, Be,] be the vector satisfying
(15). Then there exists &y(£) such that5(y, &) satisfies

9 .
5,19 = B,0). and e 0.6) = e = T2 i 1,0, (2
and settings;,, = [ B,(y)dy, the output transformation(y, £) satisfies the relation
90y, €) _ BrvW)+60(6) ¢ (25)
dy
Proof: Setting H = (h(x), &1, -+, &)7, ALy HyP 2 =(1 0 - O)T, so that in (15), the coefficient
of 5, F;-, depends only on: and is given by
Di(x) = By, [(-D)"Cpz} —1] (26)
As a consequence, (y, &) = B, (y) = (Log (3“"(9 5))) Denoting bys; , (v) = [ 3,(y)dy, we thus have that
Log (3“"(3’ 5)) = Bry(y) + Bo(&) +c WhICh implies (25). n

B. The dynamic compensator properties

In this section, it is shown that whenever the problem is solvable, the post-compensator can always be chosen to
be (almost) linear.

Proposition 4: Assume that there exists a compensator of dimenéiointhe form (3) and an output transformation
o(y,€), with 6“" yg) # 0, y = h(x) € IR, such that the extended system (1), (3) can be put in the canonical

observer form, Wlth respect to the extended output= (p(y, ), &1, -+, &)T. Then there exists also a dynamic
compensator of dimensioh< ¢, with / < n — 1, and of the form B
Xi = Xt +7u(y) +iy)u, i=1,-- 01 (27)
Xe = 10,e0X) + Miy) + i,i(y)u
which solves the problem with respect to the extended outpet (&(y, x), X1, X7) ., Whereg—f = %Z’f) © =
Bo(&)=x1

eﬁf,y(y)exl co-

The proof, detailed in the Appendix, is based on the computation of an appropriate change of coordinates such
that the dynamic compensator solving the problem is split into a subsystem necessary to solve the problem, and an
additional part which can be neglected. In these coordinates the first subsystem has the structure (27).

Remark.The proof of Proposition 4 shows also that the presence of the control in the dynamics may influence the
dimension of the compensator. For instance it is sufficient to consider second order systems: in the autonomous
case (see [8], [34]) if the problem can be solved then a static solution surely exists whereas this is not true anymore
in the nonautonomous case. As an example consider the syistemrs + x1z2u, ©2 = 1 + x2u, y = x2, Which

does not admit any static solution but can be put in the canonical observer form by considering the compensator
x = —yu and taking as extended outpiit= (eXy, x)', computed by applying the algorithm in Section I1I-G.
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C. The computation of the solution

Based on Theorem 2 and Propositions 3 and 4, an algorithm is now given for the computation of the desired
compensator, if it exists.

Step 0. Solve equations (9) and checKif;, ;] = 0 for j < n—1. If not go to step exit, else setfor< ! < p <i < j
Ll(pl)y=n"er = e irdwy My~ AL B, (28)

n—j+i-n—j+l
and go to Step 1.
Step 1. Let j be the smallest index such that;,r,,] # 0 and £}(0, O) # 0. Verify that T /£3(0,0) = B, (y). If
it isn't a function ofy only, then go to step exit, else compute ,(y) = [ 3,(y)dy; seta(y) = e A1) and

considerr () = a(y)r1(x), which corresponds to consider the new output (y) [ eP1vWdy. Compute the
corresponding’; ¢ € [2,n], accordingly the correspondlngz p,1), for0 <! <p<i<j, and go to Step 2.

Step 2. Check if for allj € [1,n — 1], [;,7,] = 0 and [7;, g] = 0. If the conditions are satisfied then the system
can be transformed into the canonical observer for up to input output injection with a compensator of order 0, else
if for somej € [1,n — 1], FJ = 0 then go to step exit else sefy, x1) = e X*, k =0, and go to Step 3.
Step 3. Seti = k + 1; update the compensator adding the dynamics

Xi = m0i(X) +mi(y) + 7721'(5)” (29)
Accordingly setF® = (xz +m1(g), - noi(x) +mi(@), 7 ()", n1(9), s ma(@), g7 ()"

= (
Step 3a For the computation ofyy;(g): for some; > ¢ such thatﬁJ(O 0) # O verlfy that

i—1>1

( Z ZLP 1(3771Z » (7 )>£](p, ))/53(070):732@)

p=1 1=0

if it isn’'t a function of § only, go to Step exit, else se;tl 7)
Q%(F°, x1), defined by (17), for allj € [i +1,n — 1], T}_,(-) =
exit.

fP ()dg. If with such a choice, considering
1)'Q%(F*, x1) go to Step 3b, else go to Step

(=
Step 3b For the computation ofj;;(3): compute[r;, g]; check if

1—1

[Tu ] ch 17:1 J@Ja @ —( )JJrlLGCLFeXla .7 € [Oai_l]
7=0

i—1>1
and compute)y; = (—1)° 9,1 — Z Lg(m)Lj(m) mg(y)
If n2; := n2;(g) then go to Step 4, else go to Step exit.
Step 4. Verify if there existsno i(x) such that with the new compensatey € [i + 1,n — 1], I € [0,5 — 1],

F; = (=1)!QL(F¢, x1) with Q% (F¢, x1) defined by (17), and

[Fj, 9 ZC 7;-10;, with ©; = (— D LaeLhox1

If yes go to Step 5, else if < n — 2, setny; = xs+1, £ =4 and go back to Step 3, else go to Step exit.
Step 5. Let

Xi = Xit1+nmi(9) +n2(@u, i€ [1,L-1]
Xe = m0,e(x) + (@) + n2e(F)u
& = f(z)+g(z)u

2The assumption thayy, 72 and¢ in (2) are smooth , guarantees that if a solution exists thgy), P1(y) andP2(y) in the algorithm
are integrable.
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be the extended system computed above. Consifler= e~ X! 1T§—Z which is the solution to (9) with respect
to the set of outputg$ = eX'g, y11; = Xxi, ¢ € [1,¢]. By construction(r§,,---,r§,) = (15) Compute then

independent functions(z, x) = (A1(z, x), -+, Au(z, X)) T, WhereaA(” X) — R-1. Inthe coordinatesy?, z7)7 =
(X", Ma, x)T)T the extended system is in the canonlcal observer form up to input and output injection.

Step exit The system does not admit the canonical observer form up to input output injection under regular
compensator and regular output transformation.

The main result can now be stated in terms of a necessary and sufficient condition under which the problem can
be solved.

Theorem 3:Given the observable system (1), (2), there exists a dynamic compensator of diménsiorof the

form (3) and a regular output transformation of the form (4) such that the extended system (1), (3) is equivalent to
the canonical observer form up to input and output injection if and only if the algorithm ends at Step 5. Furthermore
the computed compensator is of minimal dimension.

Proof: If the algorithm ends at Step 5, then a compensator has been computed together with the appropriate
change of coordinates which transforms the extended system in the canonical observer form up to input and output
injection, thus proving the sufficiency part. As for the necessity the algorithm is based on the necessary conditions
enounced in Theorem 2 with the compensator already written in the form (27). At Step 3, the compensator is
updated by adding a dynamics of the form (29), wherg(y) andn.;(y) are computed in order to satisfy the
conditions on the coefficientﬁj-fi and ©,_; respectively given in Theorem 2, as a consequence the algorithm
cannot end at step exit if a compensator exists. Step 4 guarantees that the computed compensator is of minimal
order by checking each time the compensator is updated, if there exisis (&) which guarantees that Theorem

2 is satisfied. [ |

Example 1:Consider the following system
T1 = @2, Tz =3, T3 =24 + 272U

3
—T5 t+x3u, Y=

5

. 2
Ty = T1T4+ ToT3 —

Step 0. Standard Computations lead to, = 6%4, ry = 5= +:c%8%4, ry = 6%2 +x%8%3 + (2t 4 29 — 2:c1:c2)3%4
andry = 6 -+ x3 0 3 T (f 4+ 29 — 4x1x2)8i13 + (2§ + 22322 — 6222 + 223 + 2x1x3)6iz4.
Since[ry, r2] = [r1, 73] = 0, we go to next step
Step 1. [r1,r4) = [ra,74) = 0, £§(0,0) = —2 andT'} = 0, so that3(y) = 0 which implies thatj = y = z;, and
we go to next step.
Step 2. [r3,74] = (1 —6x1)7r2 + —:c2r1 Consequently'} =T'2 =T'3 = 0 and we set(g, x1) = e X, andk = 0.
Moreoverls = 1 — 6z, while I'; = :c2, wheread? = 0.
Step 3. We seti = 1 and x; = 7701()() +m1(9) + 1921(9)u.
Step 3a. £3(0,0) = —5. Accordingly

P1=—T5/L5(0,0) = (1 —6x1)/5 = (1 —67)/5

so thatn;, = [ Pi1dy = (z1 — 327)/5

Step 3b. Sinceg = (0,0, 229, x3)7, [r1, 9] = 0, so that®, = 0 and consequently,; = 0.
Step 4. There doesn't exist &o1(x1) Which ensures thaf$ = Q3(F¢, x1). In fact it should satisfy the equation
%glix(f“) x2. We thus go back to Step 3 with= 1 andng; = xa.

Step 3. We seti; = 2 and )'(2 = 7’]02()() + 7’]12(:&) + 7’]22(:&)’&
Step 3a. £3(0,0) = —2. Accordingly

Po= <r3 ZLl 1(3”” )53(1 z)) /£30,0) =~ 003

DRAFT



so thatno(g f’PQdy = 10 — %x:{’
Step 3b. Since [r2, gl =r1, we get thato, = 1. Consequently we have thagt, = ©1 — Lyni1 =1
Step 4. [r3, g] = 2ra—x3r = 20172+ 6571, ConsequentlP, = —z2. We have to check if there exisiga(x1, x2)

such thatLGenOQ = —0y — LyLym1 — Lgni2. Such a function doesn't exists since it should satisfy the relation
%’;’f o1 + 3’;?; TNoo = %’Q’; = x2. We thus go back to Step 3 with= 2 andng2 = x3.

Step 3. We seti = 3 and x5 = n03(x) + 713(3) + 123(§)u

Sincei+ 1 =4 > n— 1 = 3 all the conditions concerning the autonomous part are satisfiedyaiig) = 0. From
O2 = —z} we get thatyes(§) = —O2 — Lyme — LyLgm1 = 3. Since the compensator has dimensioa 1 we
can sety3 = 0.2

Step 5. The computed compensator is then

3

10 15
Accordingly the associated change of coordinates is

X1 =x2+ (z1—327)/5, X2 = —af+u, X3=ziu

1 2
21 = e (xq — x2w3 — FT1s — gﬁxa + x3T2 + X5%2 — 3x2X321)

1, 3 4 2 1 8 4
+ XN (ol s — —— X377 + —oX3TT + SX2T1T2 — = X2T T2 — T3 T2)

25 10 15 5 5 75
+eX (iatx 202+ 20002 + St + it — ] 1)
50712 T FTR T ETIR T qpXeT T gapTt T gppX2 T T X2
4 157 12 3 1 1
X1 3 6, 12 7 3 2 o 3 4
te (15 X2y~ 1eag @1 grs Tl T g2t~ 552l — 5557)

2 1
2o = €X' (23 + 3321 — 2x2%2 — @1T2 + 2522 + 3X5T1)

5 5
pea(lag 134 B 8 39 0
9571~ Too 7t T pX2%1 T TN T oa,
3 4 .
23 = X (w2 — 3x2x1 — 1—0517? + 1—590?),

za =z, Xi = x5, 1 € [1,3].

In these coordinates the system is in the form (5). The algorithms in [28], [34], [8] fail in determining a solution.

IV. CONCLUSIONS

In the present paper we have given necessary and sufficient conditions for the existence of a dynamic compensator
such that the extended system is equivalent under change of coordinates and regular output transformations to a
linear observable system up to input output injection. The given conditions are constructive and allow to characterize
completely the structure of the controller, thus leading to the computation of a solution. An algorithm has also been
proposed for the computation of a solution of minimal dimension if it exists. Further investigations will concern
non regular solutions.
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APPENDIX
Proof of Proposition 4. Assume that the problem admits a solution. By Proposition 3 let the dynamic compensator
(3) with extended outpui® = (¢(y,&),&1,---,&)7, be a possible solution Wher%“"(y—g = Pra+ho©) ey
If Bo(¢) = 0 then the system admits the canonical observer form up to mput—output injection with respect to
the transformed outpuj; = feﬁf)y(wcody + cost, so thatl = O In fact, by Proposition 2 and egs. (10), (12),
a(y,€) = a(y) = e P+® /¢y and denoting byR:;(z) = Y1-) ¢/~ (=1)7 1L} a(a)riq (x) the vector

fields associated tgj, 7{;(v,§) = RlTj(:c)aa—m. By assumption[r{;(z),7{;(z)] = [R i )M,R J(x )Bm} =0,

Vi,j € [1,n]. Moreover,Vj € [1,n — 1], [¢°(z,&),75;(x)] = [nQT(g,y)a%JrgT( )BI,R (x )—} = 0, which
implies thatvj € [1,n — 1], [g(z), R1j(z)] = 0, thus proving that the problem is solvable by output tranformation
only.

Assume now thap,(£) # 0 and assume without loss of generality, = g—ﬁi’ # 0 (this can be achieved after a
possible renaming of the variables). Then setting= 5,(£), one gets that in the coordinatég;, &3, - - - , &) the
dynamic compensator reads

Xl = ﬁll(thQ' o agfay) +ﬁ21(X17§2' o 7§an)u
(30)

& = Malx, &, &0 y) +M2i(xn, &2+, o y)u, i € 2,4,
with output functionsjs = o(y, x1, &2, - &), 95 = By ' (X1, &2, -+ &), 54, = & for i € [2,/]. Due to Proposition
1, the system admits the canonical form (5) also with respect to the output fun@ioﬁs o(y, x1,&2, &),
Jo = X1, 14 = & for i € [2,4]. Take thenH; = (h(z), x1,&, -+, &)T as output functions and note that since
in the new coordinates the output transformation satisﬁ%%’zf#f) = efrvWexic, then the associated vector
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By, x1.&2, - &) = [By,1,0---0]. As a consequence for > 0, 819) = (857,0,0---0]. Since Theorem 2 is
satisfied, in (15)I;-71- which depends on the variableonly, reads

_=(- Zc; LrBITRQk(f, h>+Q;‘-<Fe,xl>> (31)

with Q¥ (f, h) andQ’ (F*°, x1) deflned by (17). Foi = 1, d(Lp." " xa)rl 2 = d(Lpexa)rl 2 = %@w
since 3, is known, we can obtauziiy and conS|der|ngC§ (p, 1) defined by (28), we get from (31)

87711() J ZC] 1— kﬁ(l k)Q (f’ )

J
5 T £9(0,0) =

Since the right-hand side depends on theariable only, choosing g > 1 such thatﬁ{(o, 0) # 0, necessarily
Dyt &) — )y (y). Consequenlyii(xi, €, €ny) = fon(x1, &, &) + fa(y) with 711 (y) =
J(y)dy
Analogously®, in (19) reads

Oo(z) = Lge Log(a(y, x1)) = —Lge (Br.y + x1) = —Lge (Bry) — N1 (")
so thatno(-) = —Lg(8r,y) — ©o(x). Since the right handside depends only necessarilyja (-) = 721 (y). If
7o1(-) depends o1}, j > 1, we can sefjy; = x2, and, assuming without loss of generality tI%l‘;—1 # 0, consider
the coordinate$x1, x2,&s, - -+ , &) in which the dynamic compensator reads

X1 = x2 +71(y) + f21(y)u

X2 = fa(x1x2,83 & y) + 22Xt x2,83 -+ €, y)u

& = Mi(x1,x2,E& &0 y) + 725 (X1, x2, &+, €6, y)u, § € [3,4]
and we can take as outpiit; = (h(z), x1, x2,&3 -, &) 7.

Consider noij;2 the coefficient ofr;_, in equation (15). From (31) denoting bﬁe the drift in the new
coordinates, one gets

I7_o( ZCJ s EBETRQE(f, h) + QF(FC, xa)

k=0
Developing the previous expression, we have that

2

= TP TRQE (1 h)

k=0

)aﬁ12(y7 X ) _F]

£3(0,0 oy -2

n— n n— a
—|(=1nicn= ]1+2d(L I i)t a——cf 1d(Lf7711)rn }

Choosing a value of > 2 such thatﬁg(o,o) # 0, allows the computation ofj12(, y), and since the right—
hand side depends an only then %;’y) = 12(y) so that denoting byji2(y) = [¢2(y)dy thennia(-,y) =

Tl02(X1, X2: &35+ &) + T2(y).
Let g°(x, x, &) be g¢(-) in the new coordinates. From (19),

©1 = Lg-Lp.(Bry+x1) = LgeLpe (Bry) + Lge (X2 + 1h1(y))

= Lg-Lpe(Bry) + Lge (M1(y)) + M22(")

Thus, 7j22(-) = ©1 — Lge L. (Br,y) — Lge (M11(y)) = 722(y). Iterating the reasoning one gets that there exists an
index ¢ < ¢ such that the dynamic compensator can be written as

Xi = Xit+1 +Ti(y) + 2i(y)u, ie1,0-1]

Xz ="10,6(X) + h(y) + Taz(y)u

& =506 &1 > ) Fii2j (X &gy -+ 5 0w, J € [0+ 1, (33)

where fori € [1, /], the 7j;;(y)’s can be computed by integrating the functign(y) defined from the coefficient
F;ﬂ. given by (16), while theje;(y)'s are defined by the coefficiei®; given by (19).

(32)
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We show now that i < ¢, the dynamics (33) can be neglected, thus reducing the dimension of the dynamic com-
pensator front to ¢. Consider the extended system (32)-(7), and consitler a(y, Xl)rlT%, with a(y, x1) andrq
computed above. Accordingly, computg; for j € [1,n]. By construction[7y;, 7{,] = 0 for 4, j € [1,n]. Since the
distributionA® = span {7, - - ,7¢,} is nilpotent, define the change of coordinafes’, zT)T = (X" A\T(z, X))T
such thatdx A° = 0 while d\(z, x) A® = I. In these new coordinate*(x, z) = (72 (x) + 7¥ (v), X (X, z))T

s ~ ~ s T . “(X,z ~e el ~e
and G°(x.z) = (i (y), §"(X.2) . Then, fori € [1,n — 1], % = [/, F(%.2)] = 71 = 520,
%;f’z) = [7;, G°(X,2)] = 0 and z,, = 9§ = eX'§ + ¢o(x2,- -, xz), Which proves that in the new coordinates
the system reads

X = 7o(X)+my) +5yu
z o= Az+i(y, x) 2y, )u, G =0y, X) = zn

Finally since the dynamics of the compensator is defined byD;hq’s je[l,n—1] and the®;’s | € [0,n — 1],
then its maximum necessary dimensiomis- 1.
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