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WEIGHTED ESTIMATES ON FRACTAL DOMAINS

RAFFAELA CAPITANELLI AND MARIA AGOSTINA VIVALDI

Dedicated to Professor V. G. Maz’ya

Abstract. The aim of the paper is to establish estimates in weighted Sobolev
spaces for the solutions of the Dirichlet problems on snowflake domains, as well
as uniform estimates for the solutions of the Dirichlet problems on pre-fractal
approximating domains.

§1. Introduction. In a previous paper [5], we established uniform estimates
in weighted Sobolev spaces for the solutions of the Dirichlet problems on
polygonal domains approximating the snowflake domain. In the present article,
we deduce from the aforementioned estimates a regularity result for the Dirichlet
problem on snowflake domain �3. More precisely, we prove that the second
derivatives of the solution belong to the weighted space L2(�3, δ

µ), µ > µ∗ =
2
3 +

1
6 log3 4, where by δ = δ(x) we denote the distance of the point x to

the boundary ∂�3 of �3 (see Theorem 3.1). These results were presented by
one of the authors at the meeting organized at the Department of Mathematical
Sciences of the University of Liverpool in honour of Professor V. Maz’ya on the
occasion of his 75th birthday. We are deeply grateful to Professor V. Maz’ya for
having highlighted, in this meeting, Brennan’s conjecture. Indeed, the regularity
result of Theorem 3.1 could be greatly improved if Brennan’s conjecture were
shown to be true. As far as we know, Brennan’s conjecture remains elusive,
with only partial results having been established. In §4, we consider a larger
class of fractal domains of the snowflake type constructed by means of the
generalized Koch curves Kα, α ∈ (2, 4) (see §2) and we prove, using the upper
bound found by Hedenmalm and Shimorin [10], that the first derivatives of the
solution to the Dirichlet problem on snowflake domain �α belong to the space
Lq(�α), and the second derivatives belong to the weighted space L2(�α, δ

µ),

µ > µα = (2/q)+ ((q − 2)/2q) logα 4, q < q0 = 3.752 (see Theorem 4.1). We
note that the exponent µ∗ is strictly greater than µ3 and the following inclusion
holds for the weighted spaces L2(�α, δ

µ′) ⊂ L2(�α, δ
µ′′) if µ′ < µ′′. Hence,

Theorem 4.1 improves Theorem 3.1 also for the case α = 3. In §5, by combining
the tools and methods of the paper [5] with the results of §4, we establish
uniform estimates that are more accurate than those established in [5], (compare
Theorems 5.1 and 3.2). Lastly, in §6 we briefly discuss how we can extend the
results of previous sections to the solutions of obstacle problems.
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WEIGHTED ESTIMATES ON FRACTAL DOMAINS 371

§2. Snowflakes. We recall the definition of the Koch curve with endpoints
A = (0, 0) and B = (1, 0). We consider the family 9α = {ψα1 , . . . , ψ

α
4 } of

contractive similitudes ψαi : C→ C, i = 1, . . . , 4 with contraction factor α−1,
2 < α < 4:

ψα1 (z) =
z
α
, ψα2 (z) =

z
α

eiθ(α)
+

1
α
,

ψα3 (z) =
z
α

e−iθ(α)
+

1
2
+ i

√
1
α
−

1
4
, ψα4 (z) =

z − 1
α
+ 1,

where θ(α) = arcsin(
√
α(4− α)/2).

By the general theory of self-similar fractals (see [12]), there exists a unique
closed bounded set Kα which is invariant with respect to 9α , that is,

Kα =
4⋃

i=1

ψαi (Kα). (2.1)

Moreover, the Hausdorff dimension of the set Kα is df = lnα 4. Let K 0 be the
line segment of unit length that has as endpoints A = (0, 0) and B = (1, 0). We
set, for each n in N,

K 1
α =

4⋃
i=1

ψαi (K
0), K 2

α =

4⋃
i=1

ψαi (K
1
α), . . . , K n+1

α =

4⋃
i=1

ψαi (K
n
α); (2.2)

K n
α is the so-called nth pre-fractal curve. Moreover, the iterates K n

α converge to
the self-similar set Kα in the Hausdorff metric when n tends to infinity (see [12]).
Let �0 be the triangle with vertices A = (0, 0), B = (1, 0), and C = ( 1

2 ,−
√

3
2 ).

We construct on the side with endpoints A and B the pre-fractal Koch curve
defined before, which will be denoted by K n

1,α , and the Koch curve defined
before, which will be denoted by K1,α . In a similar way, we construct on the
other sides the analogous pre-fractal Koch curves (the Koch curves) denoting
by K n

2,α and K n
3,α (by K2,α and K3,α) the curves with endpoints B and C , and

C and A, respectively. We denote by �n
α the pre-fractal domain that is the set

bounded by the pre-fractal Koch curves K n
j,α , j = 1, 2, 3. Moreover, we denote

by�α the snowflake that is the set bounded by the Koch curves K j,α , j = 1, 2, 3.
We consider the homogeneous Dirichlet problem in the snowflake domain�α as
well as in the pre-fractal domains �n

α:{
−1u = f in �α,
u = 0 on ∂�α,

(2.3){
−1un = f in �n

α,

un = 0 on ∂�n
α.

(2.4)

As is well known for any datum f ∈ L2(�α), there exists a unique solution u ∈
H1

0 (�α) of (2.3) by Lax–Milgram theorem. Analogously for any f ∈ L2(�n
α)
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372 R. CAPITANELLI AND M. A. VIVALDI

there exists a unique solution un ∈ H1
0 (�

n
α) of (2.4) and the estimate

‖un‖|H1
0 (�

n
α)

6 c‖ f ‖L2(�n
α)

(2.5)

holds with the constant c independent of n. The previous estimate (2.5) follows
from the following Poincaré-type inequality where the relevant fact is that the
constant CP is independent of n.

PROPOSITION 2.1. There exists a constant CP independent of n such that

‖u‖L2(�n
α)

6 CP(‖∇u‖L2(�n
α)
+ ‖u‖L2(∂�n

α)
) (2.6)

for all u ∈ H1(�n
α).

The proof can be achieved as in [4, Theorem 7.3] by making some natural
changes.

In the following sections we establish regularity results in weighted Sobolev
spaces for the Dirichlet problem on snowflake domain�α and uniform estimates
(in weighted Sobolev spaces) for the solutions of the Dirichlet problems on
polygonal domains approximating the snowflake domain. From now on, by c
we denote (possibly different) positive constants independent of n.

§3. First regularity result. We introduce the weighted Lebesgue space
L2(�α, δ

µ), where by δ = δ(x) we denote the distance of the point x to the
boundary ∂�α of �α . The space L2(�α, δ

µ) is the completion of the space
C0(�α) with respect to the norm

‖u‖L2(�α,δµ)
=

(∫
�α

|u|2δ2µ dx
)1/2

. (3.1)

In this section, we choose α = 3 (and hence θ = π/3); in this case, the self-
similar fractal K3 is the so-called equilateral Koch curve and we prove the
following theorem.

THEOREM 3.1. Let u ∈ H1
0 (�3) be the solution of (2.3) with f ∈ L2(�3).

Then, for every µ > µ∗ = 2
3 +

1
6 log3 4,∑

|β|=2

∫
�3

|Dβu|2δ2µ dx 6 c‖ f ‖2L2(�3)
. (3.2)

In order to prove Theorem 3.1, we consider the solutions of the Dirichlet
problems on polygonal domains �n

3 approximating the snowflake domain �3
and we use the uniform estimates in weighted Sobolev spaces established
in [5]. We recall that as the domain �n

3 is not convex, then the solution un of
problem (2.4) does not belong to the space H2(�n

3). The second derivatives
|Dβun| (β = (β1, β2), |β| = 2) actually belong to the weighted Lebesgue space
L2(�n

3, ρ
µ
n ) for some positive exponent µ. Here ρn = ρn(x) denotes the distance
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WEIGHTED ESTIMATES ON FRACTAL DOMAINS 373

function from the set Rn of the vertices of re-entrant corners of �n
3 , and L2(�n

3,

ρ
µ
n ) is the completion of the spaces C0(�n

3) with respect to the norm

‖u‖L2(�n
3,ρ

µ
n )
=

(∫
�n

3

|u|2ρ2µ
n dx

)1/2

. (3.3)

In our setting, the domains �n
3 are polygonal, non-convex, and with an

increasing number of corners, where the amplitude of the re-entrant corners is
equal to 4

3π . Hence, the celebrated Kondratiev result implies that

∑
|β|=2

∫
�n

3

|Dβun|
2ρ2µ

n dx 6 c(n)
∫
�n

3

f 2ρ2µ
n dx (3.4)

with µ ∈ (1
4 , 1), (see [8, 14]).

As the boundaries are the union of an increasing number of graphs and
develop at the limit a fractal geometry, then the sharp regularity result (3.4)
involves constants that might diverge as the number of graphs becomes infinite.
In [5] we proved that there exists a suitable value of µ∗ depending on the
structural parameter of the limit fractal domain �3 for which uniform weighted
estimates hold. More precisely, the following result holds.

THEOREM 3.2. Let un ∈ H1
0 (�

n
3) be the solution of (2.4) with f ∈ L2(�n

3).
Then, for every µ > µ∗ = 2

3 +
1
6 log3 4,

∑
|β|=2

∫
�n

3

|Dβun|
2ρ2µ

n dx 6 c‖ f ‖2L2(�n
3)

(3.5)

with the constant c independent of n.

Here, as before, ρn denotes the distance function from the set Rn of the
vertices of re-entrant corners of �n

3 . It is well known that the solution un of
the Dirichlet problem (2.4) realizes the minimum of the following functional Fn

in L2(�3):

Fn
[u] =


∫
�n

3

|∇u|2 dx − 2
∫
�n

3

f u dx if u|�n
3
∈ H1

0 (�
n
3),

+∞ otherwise in L2(�3).

(3.6)

It is easy to prove that the sequence of the functionals Fn M-converges to the
functional

F[u] =


∫
�3

|∇u|2 dx − 2
∫
�3

f u dx if u ∈ H1
0 (�3),

+∞ otherwise in L2(�3),

(3.7)

(see [15, 16] for definition and properties).
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374 R. CAPITANELLI AND M. A. VIVALDI

From now on, we denote by the same symbol un the extensions of the
functions un to zero outside�n

3 . As a consequence of M-convergence we deduce
that the sequence of the function un strongly converges in H1

0 (�3) to the function
u that minimizes the functional F[u] defined in (3.7), and u is the solution
of (2.3).

We are now in a position to prove Theorem 3.1.

Proof. For any fixed N, we consider regular open sets Gm approximating
�N

3 , that is, Ḡm ⊂ Gm+1 ↑ �
N
3 , Ḡm ⊂ �N

3 . We have, for any n > N ,
D2un ∈ L2(Gm) and D2u ∈ L2(Gm). We start by proving that, for a fixed m,
the sequence D2un weakly converges to D2u in L2(Gm). Indeed, for x ∈ Gm ,
we have that, for any n > N ,

ρn(x) > δm,N

where δm,N denotes the distance of the set Gm from the boundary ∂�N
3 of �N

3 .
From (3.5) we obtain∫

Gm

|D2un|
2 dx 6 δ

−2µ
m,N

∫
�n

3

|D2un|
2ρ2µ

n dx 6 c, (3.8)

with c independent of n.
Then, there exists w ∈ L2(Gm) such that, up to passing to a subsequence,

D2un weakly converges to w in L2(Gm). Now we prove that

w = D2u almost everywhere in Gm, (3.9)

that is, ∫
Gm

(w − D2u)ϕ dx = 0

for any ϕ ∈ C1
0(Gm). In fact,∫

Gm

(w − D2u)ϕ dx

=

∫
Gm

wϕ dx +
∫

Gm

Du Dϕ dx =
∫

Gm

wϕ dx + lim
n

∫
Gm

Dun Dϕ dx

=

∫
Gm

wϕ dx − lim
n

∫
Gm

D2unϕ dx = 0.

From (3.9) we deduce that (for any fixed m) the sequence D2un weakly
converges to D2u in L2(Gm, δ

µ), that is,∫
Gm

(D2un − D2u)ϕδ2µ dx → 0

for any ϕ ∈ L2(Gm). We show that D2u ∈ L2(�, δµ). We recall that δ = δ(x)
denotes the distance of the point x to the boundary ∂�α of �α . We set, for
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WEIGHTED ESTIMATES ON FRACTAL DOMAINS 375

n > N , wn
m = χGm D2un , where by χGm we denote the indicatrix function of the

set Gm . Then we have that limm w
n
m = D2un almost everywhere in �N

3 . Hence,∫
�N

3

|D2u|2χGmδ
2µ dx =

∫
Gm

|D2u|2δ2µ dx

6 lim inf
∫

Gm

|D2un|
2δ2µ dx

6 lim inf
∫
�n

3

|D2un|
2ρ2µ

n dx 6 c.

As limm |D2u|2χGm d2µ
= |D2u|δ2µ almost everywhere in �N

3 , we obtain, by
Fatou’s lemma,∫

�N
3

|D2u|2δ2µ dx 6 lim inf
∫
�N

3

|D2u|2χGmδ
2µ dx 6 c.

Finally, as the sets �N
3 tend to �3 analogously, we have∫

�3

|D2u|2δ2µ dx 6 c.

This concludes the proof of Theorem 3.1, and §3.

§4. Brennan’s conjecture. We point out that estimate (3.2) (with the same
exponent µ∗) was established by Nyström in the more general framework of
the class Domain(2,M, r0, q). We recall that an open, connected, and bounded
subset D of R2 belongs to the class Domain(2,M, r0, q) if D is a non-
tangentially accessible (NTA) domain with parameters M and r0, supporting
the reverse Hölder inequality (see (4.1) below). We say that a set D supports
a reverse Hölder inequality if for all P ∈ ∂D, r < r0,

J (P, r, D, x0, q) 6 C J (P, r, D, x0, 1), (4.1)

where

J (P, r, D, x0, a) =
(

1
|B(P, r) ∩ D|

∫
B(P,r)∩D

∣∣∣∣ G(x)
distance(x, ∂D)

∣∣∣∣a dx
)1/a

for a ∈ [1,∞). Here B(P, r) denotes an open ball, centred at P and of radius r ,
and G(x) = G(x, x0) the Green function of D with fixed pole x0, such that the
quotient of distance(x0, ∂D) and diameter(D) is bounded from above and below
by absolute constants. By |B(P, r) ∩ D| we denote the 2-dimensional Lebesgue
measure of the set. We now recall the definition of NTA domains (see [13]).

Definition 4.1. A bounded domain D ⊂ R2 is an NTA domain when there
exist constants M and r0 > 0 such that:
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376 R. CAPITANELLI AND M. A. VIVALDI

(i) Corkscrew condition. For any P ∈ ∂D, r < r0, there exists A = Ar (P) ∈
D such that M−1r < |A − P| < r and dist(A, ∂D) > M−1r ;

(ii) Dc satisfies the corkscrew condition (where Dc denotes the complement
of D); and

(iii) Harnack chain condition. If ε > 0, P1 and P2 belong to D, dist(Pj , ∂D) >
ε, and |P1 − P2| < Cε, then there exists a sequence of M-non-tangential
balls (B(A, r) is an M-non-tangential ball if M−1r < dist(B(A, r),
∂D) < Mr ) such that the first ball contains P1, the last contains P2, and
such that consecutive balls have a non-empty intersection, whose length
depends on C , but not ε.

We stress the fact that estimate (3.2) could be greatly improved if Brennan’s
conjecture were shown to be true.

More precisely, Brennan (see [2, Theorem 1]) proved that∫
D
|φ′|q dx < +∞ for all q, 4/3 < q < q0 (4.2)

where the upper bound q0 is strictly larger than three. Here, D denotes a simply
connected domain in R2 with at least two boundary points and φ is a conformal
map to the open disk B. Moreover, Brennan postulated that q0 = 4 was indeed
the correct upper bound for all domains D.

In our setting, we choose D = �α , where �α is the fractal domain of the
snowflake type constructed by means of the generalized Koch curves Kα, α ∈ (2,
4) (see §2). Hence, if Brennan’s conjecture were shown to be true, we could
prove that the second derivatives of the solution to the Dirichlet problem on
snowflake domain�α belong to the weighted space L2(�α, dµα ), µα > µB,α =
1
2 +

1
4 logα 4. We note that the exponent µ∗ is strictly greater than µB,3 and the

following inclusion holds for the weighted spaces L2(�α, δ
µ′) ⊂ L2(�α, δ

µ′′)

if µ′ < µ′′.
Unfortunately, as far as we know, Brennan’s conjecture remains elusive, and

there are only partial results (see e.g. [7, 11]). More precisely, the upper bound
for which (4.2) is known to hold has been increased by Pommerenke [19] to
q0 = 3.399 and by Hedenmalm and Shimorin [10] to q0 = 3.752. We use the
result of Hedenmalm and Shimorin to improve the results of Theorem 3.1.

THEOREM 4.1. Let u ∈ H1
0 (�α) be the solution of (2.3) with f ∈ L2(�α).

Then, for every µα > µP,α = (2/q0)+ ((q0 − 2)/2q0) logα 4, q0 = 3.752,∑
|β|=2

∫
�α

|Dβu|2δ2µα dx 6 c‖ f ‖2L2(�α)
. (4.3)

We note that the exponent µ∗ is strictly greater than µP,3, hence Theorem 4.1
improves Theorem 3.1 also for the case α = 3.

In order to prove Theorem 4.1, we need to introduce notation and
preliminaries. An important key tool is the Whitney decomposition W�α of
the snowflake �α by means of closed cubes whose sides are parallel to a fixed
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WEIGHTED ESTIMATES ON FRACTAL DOMAINS 377

system of coordinate axes. By xQ we mean the centre of the cube Q and by H Q,
H > 0, the cube Q dilated with respect to xQ by a factor H ; by `(Q) we mean
the side length of Q (see, for instance, [20]). The decomposition W�α of �α has
the following properties:

(a) �α =
⋃
+∞

j=1 Qj ;

(b) Q◦j ∩ Q◦k = ∅ if j 6= k; and

(c) there exist constants C1 and C2 such that

C1`(Qj ) 6 distance (Qj , ∂�α) 6 C2`(Qj ). (4.4)

Associated with the decomposition, we consider cut functions φj ∈ C∞(R2)

such that:

(d) φj = 1 on Qj ;

(e) suppφj ⊂ H Qj with 1 < H < C1 + 1; (4.5)

(f) |Dβφj | 6
c(H)
`(Qj )|β|

; and (4.6)

(g) Locally finite covering condition. For any fixed j , (suppφj )
◦
∩ (suppφk)

◦

6= ∅ only for a number M0 (depending on H but not on j) of indices k.

PROPOSITION 4.1. Let u ∈ H1
0 (�α) be the solution of (2.3) with f ∈ L2(�α,

δµ). Then, for every µ > 0,∑
|β|=2

∫
�α

|Dβu|2δ2µ dx

6 c
(∫

�α

f 2δ2µ dx +
∫
�α

|∇u|2δ2µ−2 dx +
∫
�α

u2δ2µ−4 dx
)
. (4.7)

Proof. We extend the functions u and f to zero outside�α denoting them by
the same symbols. By using the decomposition of the domain �α we obtain∫

�α

|Dβu|2δ2µ dx =
+∞∑
j=1

∫
Qj

|Dβu|2δ2µ dx . (4.8)

We consider uj = uφj ; then we have{
−1uj = χH Qj fj in H Qj ,

u = 0 on ∂H Qj ,
(4.9)

where fj = f φj −2∇u∇φj −u1φj . By the classical results [6, 20] and also [8],∑
|β|=2

∫
H Qj

|Dβuj |
2 dx 6 c

∫
H Qj

|1uj |
2 dx,
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378 R. CAPITANELLI AND M. A. VIVALDI

we obtain with the properties (4.6) and (4.4)∑
|β|=2

∫
Qj

|Dβu|2 dx =
∑
|β|=2

∫
Qj

|Dβuj |
2 dx

6 c
(∫

H Qj

f 2 dx +
∫

H Qj

|∇u|2δ−2 dx +
∫

H Qj

u2δ−4 dx
)
.

(4.10)

By multiplying (4.10) by `2µ
j where ` j = `(Qj ) and by using (4.4) and (4.5) we

obtain∑
|β|=2

∫
Qj

|Dβu|2δ2µ dx

6 (C2 + 1)2µ
∑
|β|=2

∫
Qj

|Dβu|2`2µ
j dx

6 c
(∫

H Qj

f 2δ2µ dx +
∫

H Qj

|∇u|2δ2µ−2 dx +
∫

H Qj

u2δ2µ−4 dx
)
. (4.11)

From (4.8), and (4.11), we obtain the inequality (4.7) for every µ > 0.

We evaluate the last term in estimate (4.7) by means of the Hardy inequality
and we refer to [17, Theorem 5.1] for the proof (see also [22]).

PROPOSITION 4.2. Let u ∈ H1
0 (�α); then there exists a constant c such that,

for s < 2− logα 4, ∫
�α

u2δs−2 dx 6 c
∫
�α

|∇u|2δs dx .

We can now prove Theorem 4.1.

Proof. From Proposition 4.1, we have that∑
|β|=2

∫
�α

|Dβu|2δ2µ dx

6 c
(∫

�α

f 2δ2µ dx +
∫
�α

|∇u|2δ2µ−2 dx +
∫
�α

u2δ2µ−4 dx
)
. (4.12)

By Proposition 4.2 with s = 2µ− 2 we obtain∫
�α

u2δ2µ−4 dx 6 c
∫
�α

|∇u|2δ2µ−2 dx .

Hence, we only need to evaluate the Lq -norm of the gradient of the Green
potential. At this point, we combine the estimate of the upper bound in Brennan’s
conjecture due to Hedenmalm and Shimorin (see [10]) with consequences for the
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WEIGHTED ESTIMATES ON FRACTAL DOMAINS 379

Green potential shown by Hedenmalm (see [9, Theorem 4.2 and Corollary 4.5])
to obtain (∫

�α

|∇G f |q dx
)1/q

6 C(q)
(∫

�α

| f |2 dx
)1/2

(4.13)

with 2 < q < q0, q0 = 3.752.
We use estimate (4.13) and we have∫
�α

|∇u|2δ2µ−2 dx 6

(∫
�α

|∇u|q dx
)2/q(∫

�α

δ(q/(q−2))(2µ−2) dx
)(q−2)/q

6 c
(∫

�α

f 2 dx
)(∫

�α

δ(q/(q−2))(2µ−2) dx
)(q−2)/q

.

Then
∫
�α
δ(q/(q−2))(2µ−2) dx is bounded as (q/(q − 2))(2µ− 2) + 2 − df > 0

where df = logα 4 is the Hausdorff dimension of ∂�α . This concludes the proof
of Theorem 4.1 and §4.

§5. Uniform estimates. In this section, we establish uniform estimates for
solutions of the homogeneous Dirichlet problem in the approximating domains
�n
α that improve those established in [5] (compare Theorems 5.1 and 3.2). Our

approach combines tools and methods of the paper [5] with the result of §4. In
order to use the decomposition of the pre-fractal snowflake constructed in [5]
we focus our attention only on the case α = 3 (and hence on �n

3). We could
obviously construct a suitable decomposition for any pre-fractal snowflake �n

α ,
but as doing this with appropriate details would require some extra work, we
prefer to address this tool in a forthcoming article. Moreover, as long as we
consider the same framework of the paper [5], we can skip the details and
highlight the main differences, referring to [5] for the complete proofs.

More precisely, we state the following result.

THEOREM 5.1. Let un ∈ H1
0 (�

n
3) be the solution of (2.4) with f ∈ L2(�n

3).
Then, for every µ > µP,3 = (2/q0)+ ((q0 − 2)/2q0) log3 4, q0 = 3.752,∑

|β|=2

∫
�n

3

|Dβun|
2ρ2µ

n dx 6 c‖ f ‖2L2(�n
3)

(5.1)

where the constant c is independent of n.

We recall that ρn = ρn(x) denotes the distance function from the set Rn of
the vertices of re-entrant corners of �n

3 .
Before proving Theorem 5.1, some remarks on the results of §4 are needed.

Remark 5.1. For a domain D in the class of self-similar domains SF(q)
(see [18, Definition 12.1]) the validity of estimate (4.13) is equivalent to
boundedness of the term

Iq(D) =
∑
j>4

2 j (q−2)
∑

Q∈Wj

G(xQ)
q (5.2)
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where Wj := {Q ∈ WD, `(Q) = 2− j
}, G(x) = G(x, x0), denotes the Green

function and distance(x0, ∂D) ∼ diameter(D). We recall that xQ means the
centre of the cube Q, `(Q) means the side length of Q, and WD denotes
the Whitney decomposition of D mentioned in §4. Moreover, for a domain
D ∈ SF(q) it is possible to rephrase the reverse Hölder inequality condition (4.1)
in terms of the sum over the Whitney cubes (5.2) (see [18, §12]).

In conclusion, as any domain �3 belongs to the class SF(q) for any q > 1
(see [18, §12]), then from (4.13) we deduce that any domain �α supports the
reverse Hölder inequality for any exponent q < q0 = 3.752.

Remark 5.2. We stress the fact that any domain �α is an NTA domain (see
e.g. [18]) and from Remark 5.1 we deduce that any domain �α belongs to the
class Domain(2,M, r0, q) for any exponent q < q0 = 3.752.

Remark 5.3. A peculiar property of the NTA domains is that if D is an NTA
domain with parameters M , r0, then D ∈ Domain(2,M, r0, 1+1/(1−β))where
β = β(M) > 0 is a constant describing the boundary behaviour of the Green
function (see [18]). More precisely, the constant β is the constant appearing in
the inequality (see [18])

G(x, y) 6 C(M)
dist(y, ∂D)β

rβ
w(x, B(Q, r) ∩ ∂D, D) (5.3)

where x ∈ D\B(Q0,Cr), Q0 ∈ ∂D, Cr < r0, and y ∈ B(Q0, r) ∩ D. Here
w(x, F, D) is the harmonic measure of F ⊂ ∂D relative to D at x ∈ D. From
Remark 5.2, we deduce that �α ∈ Domain(2,M, r0, 1 + 1/(1 − β)) with β =
(q − 2)/(q − 1). Moreover, the value of β in (5.3) is the same as the one that
appears in the following inequality (see [13, Lemma 4.1]):

u(x) < c(M)
(
|x − P|

r

)β
C(u), (5.4)

for all P ∈ ∂D, r < r0, and for every positive harmonic function u in D such that
u vanishes continuously on B(P, r) ∩ ∂D. Here x ∈ B(Q, r) ∩ D and C(u) :=
sup{u(y) : y ∈ ∂B(Q, r) ∩ D}.

We are now in a position to prove Theorem 5.1.

Proof. By proceeding as in the proof of [5, Theorem 4.1], we establish the
estimate for every µ > 1

4 :

∑
|β|=2

∫
�n

3

|Dβu|2ρ2µ
n dx

6 c
(∫

�n
3

f 2ρ2µ
n dx +

∫
�n

3

|∇u|2ρ2µ−2
n dx +

∫
�n

3

u2ρ2µ−4
n dx

)
(5.5)
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with the constant c independent of n. We evaluate the last term in estimate (5.5)
by means of the Hardy-type inequality established in [5, Theorem 5.1]:∫

�n
3

u2ρs−2
n dx 6 c

∫
�n

3

|∇u|2ρs
n dx

for any u ∈ H1
0 (�

n
3), s < 2, with the constant c independent of n and of u. Hence,

we only need to establish uniform Lq -estimates for the gradient of the Green
potential and we achieve this aim by using estimate (4.13) in §4, the geometry
of the approximating domains �n

3 , a monotonicity argument, and the peculiar
properties of a particular class of NTA domains mentioned in the previous
remark (see also [13, 18]). Indeed, Nyström proves that (see [18]) for any
D ∈ Domain(2,M, r0, q) where q > 2 there exists a constant C = C = C(M,
r0, q) such that if 1/q = 1/p − 1/2 then the following inequality is valid for all
f ∈ L p(D):(∫

D
|∇G f |q dx

)1/q

6 C(M, r0, q)
(∫

D
| f |p dx

)1/p

. (5.6)

A peculiar fact is that the constant in (5.6) depends only on the parameters M , r0,
and q (appearing in the definition of the class Domain(2,M, r0, q)). Therefore,
in order to prove uniform bounds, we only have to show that all domains �n

3
belong to the class Domain(2,M, r0, q) with the same values M, r0 and q .
In [3, Lemma 2.3], it is proved that all domains �n

3 satisfy the Ahlfors three-
point condition with the same Ahlfors constant A (independent of n). From [1,
Lemma 2.5], we deduce that all domains �n

3 are NTA domains with the same
constants M and r0 and from Remark 5.3,�n

3 ∈ Domain(2,M, r0, 1+1/(1−β))
where β = β(M) > 0 is the constant appearing in (5.4). We note that the
value of β in (5.4) can be expressed in terms of the capacity of the set B(P,
r) ∩ (�n

3)
c (where (�n

3)
c denotes the complement of �n

3). In our setting, the
sequence of domains�n

3 increases and converges to the snowflake�3; moreover,
the boundary of�3 contains all the vertices of�n

3 . Then B(P, r)∩(�n
3)

c
⊃ B(P,

r)∩ (�3)
c for any P vertex of �n

3 and for any point P∗ of ∂�n
3\Rn the capacity

of the set B(P, r) ∩ (�n
3)

c is greater than or equal to the capacity of the set
B(P, r) ∩ (�n

3)
c for some P ∈ Rn . Hence, the value β = (q0 − 2)/(q0 − 1),

q0 = 3.752 being a lower bound for the snowflake�3 (see Remarks 5.2 and 5.3),
provides a uniform lower bound for �n

3 . In conclusion,∫
�n

3

|∇u|2ρ2µ−2
n dx 6

(∫
�n

3

|∇u|q dx
)2/q(∫

�n
3

ρ
(q/(q−2))(2µ−2)
n dx

)(q−2)/q

6

(∫
�n

3

f 2 dx
)(∫

�n
3

ρ
(q/(q−2))(2µ−2)
n dx

)(q−2)/q

.

Finally, to show the uniform boundedness of the term
∫
�n

3
ρ
(q/(q−2))(2µ−2)
n dx ,

we note that for any x ∈ �n
3 , we have that ρn(x) > δ(x) where δ(x) denotes the
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distance of the point x from the boundary of �3. Then∫
�n

3

ρ
(q/(q−2))(2µ−2)
n dx 6

∫
�n

3

δ(q/(q−2))(2µ−2) dx

6
∫
�3

δ(q/(q−2))(2µ−2) dx < +∞

as (q/(q − 2))(2µ − 2) + 2 − df > 0 where df = log3 4 is the Hausdorff
dimension of ∂�3. This completes the proof of Theorem 5.1 and §5.

§6. Obstacle problems. In this section, we briefly discuss how we can extend
the results of the previous sections to the solutions of obstacle problems. In the
notation of the previous section, we consider the problem: find a function u ∈ K
such that ∫

�α

∇u(∇u −∇v) dx 6
∫
�α

g(u − v) dx for all v ∈ K (6.1)

where K = {v ∈ H1
0 (�α) : ϕ1 6 u 6 ϕ2}, ϕi ∈ H1(�α), i = 1, 2, 1ϕi ∈

L2(�α), i = 1, 2, ϕ1 6 ϕ2 in �α , and ϕ1 6 0 6 ϕ2 on ∂�α .
Moreover, we consider the sequence of obstacle problems in the sets�n

α: find
a function u ∈ Kn such that∫

�n
α

∇u(∇u −∇v) dx 6
∫
�n
α

g(u − v) dx for all v ∈ Kn (6.2)

where Kn
= {v ∈ H1

0 (�
n
α) : ϕ

n
1 6 u 6 ϕn

2 }, ϕ
n
i ∈ H2(�n

α), ϕ1 6 ϕ2 in �n
α , and

ϕn
1 6 0 6 ϕn

2 on ∂�n
α .

As is well known for any datum g ∈ L2(�α), there exists a unique solution
u ∈ H1

0 (�α) of (6.1) by the Lax–Milgram theorem. Moreover, for any g ∈
L2(�n

α) there exists a unique solution un ∈ H1
0 (�

n
α) of (6.2) by the Lax–Milgram

theorem and the following estimate holds:

‖un‖|H1
0 (�

n
α)

6 c(‖g‖L2(�n
α)
+ ‖4ϕn

1‖L2(�n
α)
+ ‖4ϕn

2‖L2(�n
α)
) (6.3)

with the constant c independent of n.
We state the following results.

THEOREM 6.1. Using the previous notation and assumptions, let u be the
solution of (6.1) with g ∈ L2(�α). Then, for every µα > µP,α = (2/q0) +

((q0 − 2)/2q0) logα 4, q0 = 3.752,

∑
|β|=2

∫
�α

|Dβu|2δ2µα dx 6 c(‖g‖2L2(�α)
+‖4ϕ1‖

2
L2(�α)

+‖4ϕ2‖
2
L2(�α)

). (6.4)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579314000400
Downloaded from https://www.cambridge.org/core. University of Ronme, on 26 Sep 2018 at 10:13:12, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579314000400
https://www.cambridge.org/core


WEIGHTED ESTIMATES ON FRACTAL DOMAINS 383

THEOREM 6.2. Using the previous notation and assumptions, let un be the
solution of (6.2) with g ∈ L2(�3) Then, for every µ > µP,3 = (2/q0) +

((q0 − 2)/2q0) log3 4, q0 = 3.752,

∑
|β|=2

∫
�n

3

|Dβun|
2ρ2µ

n dx 6 c(‖g‖2L2(�n
3)
+‖4ϕn

1‖
2
L2(�n

3)
+‖4ϕn

2‖
2
L2(�n

3)
) (6.5)

where the constant c is independent of n.

We recall that ρn = ρn(x) denotes the distance function from the set
Rn of the vertices of re-entrant corners of �n

3 . The proofs follow from
Theorems 4.1 and 5.1 by using the so-called Lewy–Stampacchia inequality
(see [21, Theorem 4.35] and the reference quoted there). More precisely, we
use the following.

PROPOSITION 6.1. In the previous assumptions the solution u of (6.1)
satisfies in �α the inequality

(−4ϕ2) ∧ g 6 (−4u) 6 (−4ϕ1) ∨ g. (6.6)

Analogously, the solution un of (6.2) satisfies in �n
α

(−4ϕn
2 ) ∧ g 6 (−4un) 6 (−4ϕn

1 ) ∨ g. (6.7)

Proof of Theorem 6.1. By Proposition 6.1 the solution u of (6.1) is the
solution of the Dirichlet problem (2.3) with datum f ∈ L2(�α); in fact, from
inequality (6.6) we obtain

(−4ϕ2) ∧ g 6 f 6 (−4ϕ1) ∨ g.

Using Theorem 4.1 we thus conclude the proof.

Proof of Theorem 6.2. By Proposition 6.1 the solution un of (6.2) is the
solution of the Dirichlet problem (2.4) with datum f ∈ L2(�n

α); in fact from
inequality (6.7) we obtain

(−4ϕn
2 ) ∧ g 6 f 6 (−4ϕn

1 ) ∨ g.

Using Theorem 5.1 we thus conclude the proof and §6.
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