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Abstract

Let FG be the group ring of a group G over a field F of characteristic
different from 2, and let FG have an involution induced from one on G.
Assuming that G has no elements of order 2 and no dihedral group in-
volved, we determine the conditions under which the set of skew elements
of FG is bounded Lie Engel. Furthermore, we make the determination
with no restrictions upon G when the involution on FG is classical.

1 Introduction

Let R be a ring with involution ∗. Write R− for the set of skew elements of R.
That is, R− = {r ∈ R : r∗ = −r}. It is a natural question to ask if properties of
R− are inherited by R. For instance, a famous result due to Amitsur states that
if R− satisfies a polynomial identity, then so does R. Along this line, a general
problem of interest is to discover if Lie properties of R− are also satisfied by R.

In particular, let G be a group with involution ∗, and let F be a field of
characteristic different from 2. Extending ∗ linearly to the group ring FG, we
observe that (FG)− is the set of linear combinations of terms of the form g−g∗,
with g ∈ G. We define the Lie product on FG via

[x1, x2] = x1x2 − x2x1

and, inductively,
[x1, . . . , xn+1] = [[x1, . . . , xn], xn+1].

A subset S of FG is said to be Lie nilpotent if there exists an n such that

[s1, . . . , sn] = 0
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di Roma “La Sapienza”, and while both authors were visiting the Università del Salento and
the University of Alberta. The authors thank the members of the mathematics departments
at these institutions for their warm hospitality.

1



for all si ∈ S. On the other hand, S is Lie n-Engel if

[s1, s2, . . . , s2︸ ︷︷ ︸
n times

] = 0

for all s1, s2 ∈ S, and bounded Lie Engel if it is Lie n-Engel for some n.
The conditions under which FG satisfies these properties were determined

in classical papers. Passi, Passman and Sehgal classified the groups such that
FG is Lie nilpotent, and Sehgal did the same for bounded Lie Engel group rings.
These results are discussed in Chapter V of [16].

Quite a few papers have considered the classical involution on FG, induced
from the map given by g∗ = g−1 for all g ∈ G. For example, in [8], Giambruno
and Sehgal showed that if (FG)− is Lie nilpotent, and G has no 2-elements,
then FG is also Lie nilpotent. Lee proved the analogous result for the bounded
Lie Engel property in [11].

In recent years, other involutions on the group ring have begun to be consid-
ered. In [2], for instance, Broche Cristo, Jespers, Polcino Milies and Ruiz Maŕın
determined when the skew elements of FG commute, for any involution induced
from an involution on G. Subsequently, in [6], Giambruno, Polcino Milies and
Sehgal determined when (FG)− is Lie nilpotent, if G is a torsion group having
no elements of order 2. Catino, Lee and Spinelli [3] proved the corresponding
result for the bounded Lie Engel property. It should be noted that these results
turned out to be more involved than those for the symmetric elements (that is,
those fixed by the involution). There are exceptional cases even when the group
has no 2-elements.

In a recent paper, [7], Giambruno, Polcino Milies and Sehgal showed, using
a different method of proof, that the hypothesis of [6] can be weakened from
G being torsion to G having no dihedral group involved; that is, G has no
subgroup H having a nonabelian dihedral group as a homomorphic image. (The
assumption that G has no 2-elements must remain in place.) It seems only
natural to ask if such a result holds true for the bounded Lie Engel property
as well. The purpose of this paper is to show that it does. Our main theorem
is the following. Recall that a group G is said to be p-abelian if G′ is a finite
p-group, and that 0-abelian means abelian.

Theorem 1. Let F be a field of characteristic p 6= 2 and G a group having
no elements of order 2, such that no dihedral group is involved in G. Let ∗ be
an arbitrary involution on G, and extend it F -linearly to FG. Then (FG)− is
bounded Lie Engel if and only if either

1. FG is bounded Lie Engel, or

2. p > 2, G has a p-abelian normal subgroup of finite index, and G has
a normal ∗-invariant p-subgroup N of bounded exponent such that the
induced involution on G/N is trivial.

In the final section, we add a footnote to our result by classifying the groups
G such that the set of skew elements of FG, with respect to the classical invo-
lution, is bounded Lie Engel, without any restriction upon G.
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2 Background results

Let us gather some necessary results. Throughout, let G be a group with invo-
lution and F a field of characteristic p ≥ 0. Let FG have the induced involution.
First, we need to know the conditions under which a group ring is bounded Lie
Engel. These were determined by Sehgal in [16, Theorem V.6.1].

Lemma 1. If p = 0, then FG is bounded Lie Engel if and only if G is abelian.
If p > 0, then FG is bounded Lie Engel if and only if G is nilpotent and G
contains a p-abelian normal subgroup of p-power index.

If R is an F -algebra, then R is said to satisfy a polynomial identity if there ex-
ists a nonzero polynomial f(x1, . . . , xn) in the free algebra F{x1, x2, . . .} on non-
commuting indeterminates x1, x2, . . . such that f(r1, . . . , rn) = 0 for all ri ∈ R.
The conditions under which FG satisfies a polynomial identity were determined
by Isaacs and Passman.

Lemma 2. The group ring FG satisfies a polynomial identity if and only if G
has a p-abelian normal subgroup of finite index.

Proof. See [14, Corollaries 5.3.8 and 5.3.10].

Now, if R is an F -algebra with involution, then we say that R satisfies a ∗-
polynomial identity if there exists a nonzero polynomial f(x1, x

∗
1, . . . , xn, x

∗
n) in

the free algebra with involution F{x1, x∗1, . . .} such that f(r1, r
∗
1 , . . . , rn, r

∗
n) = 0

for all ri ∈ R. For our purposes, (FG)− will be Lie n-Engel. Thus, FG will
satisfy

[x1 − x∗1, x2 − x∗2, . . . , x2 − x∗2︸ ︷︷ ︸
n times

].

By a theorem of Amitsur (see [1]), if R satisfies a ∗-polynomial identity, then R
satisfies a polynomial identity. Thus, our group G will always have a p-abelian
normal subgroup A of finite index. By replacing A with A∩A∗, we may assume
that A is ∗-invariant.

The starting point of our investigations will be the following lemma.

Lemma 3. Let G be a group without 2-elements and such that no dihedral is
involved. Suppose that (FG)− is bounded Lie Engel. If p = 0, then G is abelian.
If p > 2, then the p-elements of G form a subgroup P , and G/P is abelian.

Proof. In view of [3, Lemma 4], the p = 0 case follows just as in [7, Corollary
2.2]. When p > 2 and G is torsion, the fact that P is a subgroup comes from
the main result of [3]. With this in mind, the proof of [7, Lemma 2.5] can be
used for the bounded Lie Engel property as well.

Thus, the p = 0 case is done, so we need only concern ourselves with fields of
odd prime characteristic. Let us continue to write P for the group of p-elements
in G. Since G′ is a p-group, we see that the torsion elements of G form a
subgroup, T . As we will need to restrict the form of T , let us state a result from
the torsion case.
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Lemma 4. If G is a torsion group without 2-elements, then our main theorem
holds. In particular, if (FG)− is bounded Lie Engel and p > 2, then P is
nilpotent, and if FG is not bounded Lie Engel, then the subgroup of P/P ′ upon
which ∗ acts as the classical involution has bounded exponent.

Proof. See the main theorem as well as Lemmas 10 and 11 of [3].

We also need a few group-theoretic lemmas concerning dihedral involvement.
Write ζ for the centre of G.

Lemma 5. Let p be an odd prime. Suppose that G = P oX is a finite group,
where P is a p-group and X is an abelian p′-group of even order. Then either
a dihedral group is involved in G, or there exists an element z ∈ X ∩ ζ with
o(z) = 2.

Proof. See [7, Lemma 2.10].

Lemma 6. Let p be an odd prime. Suppose that G′ is a p-group, G has no
2-elements and (G : ζ) < ∞. If no dihedral is involved in G, then (G : ζ) is
odd.

Proof. See [7, Corollary 2.12].

The next fact is mentioned in the discussion following Theorem 2.1 of [7].

Lemma 7. Suppose that G is a group without 2-elements having an abelian
subgroup of index 2. Then either G is abelian or there is a dihedral involved in
G.

Two lemmas concerning involutions on groups will be very helpful.

Lemma 8. Let A be an abelian group without 2-elements, having an involution.
Then A2 ≤ A1×A2, where A1 = {a ∈ A : a∗ = a} and A2 = {a ∈ A : a∗ = a−1}.
In particular, if A2 = 1, then ∗ acts trivially upon A.

Proof. The first part is Lemma 2.9 of Giambruno, Polcino Milies and Sehgal
[5]. For the second part, suppose that A2 = 1. Then A2 ≤ A1; that is, ∗ acts
trivially upon A2. But take any a ∈ A. Then a2 = (a∗)2, hence (a∗a−1)2 = 1.
As A has no 2-elements, a∗a−1 = 1, and hence ∗ acts trivially upon A.

We will use the notation A1 and A2 throughout the paper.

Lemma 9. Let G have an abelian normal ∗-invariant torsion subgroup A with-
out 2-elements. Suppose that x ∈ G satisfies x∗ ∈ x−1A. Then there exists
c ∈ A1 such that (xc)∗ = (xc)−1.

Proof. See [5, Lemma 2.11].

One additional result is required. If g ∈ G has finite order, then write

ĝ =
∑o(g)

i=1 g
i.
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Lemma 10. Suppose that 0 6= α ∈ FG and 1 6= d ∈ G. If α(1 − d) = 0, then

d has finite order, α ∈ FGd̂, and the support of α consists of a multiple of o(d)
elements. In particular, if p 6= 2, G has no 2-elements, and α = [a, b − c], for
some a, b, c ∈ G, then p = o(d) = 3 and b−1c ∈ 〈d〉.

Proof. The first part is [7, Lemma 2.7]. In the case where α = [a, b − c], since
only four group elements appear, we must have o(d) = 3 and the support of α
consists of precisely three group elements. In particular, either α = 2ab−ac−ba,
where ab, ac and ba are distinct, or α = ab + ca − 2ac, where ab, ca and ac are
distinct. Either way, since α ∈ FGd̂, we can only have p = 3 and α = ±gd̂, for
some g ∈ G. In particular, letting ab = gdi and ac = gdj , we have b−1c = dj−i,
as required.

3 The case where ∗ is trivial on G/P

Let G be a group without 2-elements such that no dihedral is involved in G.
Let G have an arbitrary involution ∗, and extend it linearly to FG. As the
characteristic zero case is finished, let char F = p > 2. We have already
observed that if (FG)− is bounded Lie Engel, then the p-elements of G form
a subgroup P , the torsion elements form a subgroup T , and G has a p-abelian
∗-invariant normal subgroup A of finite index. In this section, we will dispose
of the situation where ∗ acts trivially upon G/P .

It should not be surprising that certain arguments from [3, 5, 7] will be useful
to us here. Where we can cite lemmas from these papers, we will do so, but
in some cases, we will use the arguments and adapt them to our purposes. In
these instances, we will tend to give a full proof, in order to make the paper
more readable.

We begin with a special case.

Lemma 11. Let G be a group without 2-elements such that no dihedral group
is involved in G. If ∗ is trivial on G/P , (P/P ′)2 has bounded exponent and
(FG)− is bounded Lie Engel, then G has a ∗-invariant normal p-subgroup N of
bounded exponent such that ∗ is trivial on G/N .

Proof. We claim that P ′ has bounded exponent. By Lemma 4, either FP is
bounded Lie Engel or P has a ∗-invariant normal subgroup M of bounded
exponent such that ∗ is trivial on P/M . In the first case, we note that FP
satisfies the identity

[x1, x2, . . . , x2︸ ︷︷ ︸
pm times

] = [x1, x
pm

2 ],

for some suitable m. That is, [u, vp
m

] = 0 for all u, v ∈ P . In particular, P is
a p-group of bounded exponent modulo its centre. By Lemma 4, P is nilpotent
as well. Thus, by a theorem of Schur (see [16, Corollary I.4.3]), P ′ has bounded
exponent, as claimed. In the second case, we simply note that if ∗ is trivial on
P/M , then P ′ ≤M , and the claim is proved here as well.
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Thus, let us factor out P ′. Then P is abelian, and by assumption, P2 has
bounded exponent. As P is abelian and normal, this implies that the ∗-invariant
normal subgroup N of G generated by P2 is also a p-group of bounded exponent.
Therefore, we factor it out as well, and conclude that ∗ is trivial on P . Of course,
∗ also acts trivially on G/P .

Take any g ∈ G. Then g∗ ∈ gP , so let us say that g∗ = gc, with c ∈ P . But
then

g = (g∗)∗ = (gc)∗ = c∗g∗ = cgc.

Therefore, g−1cg = c−1. It now follows that 〈c, g2〉 is an abelian subgroup of
index at most 2 in 〈c, g〉. By Lemma 7, either 〈c, g〉 is abelian or a dihedral group
is involved. As the latter option is impossible, cg = gc. Therefore, g = gc2, and
hence c = 1. That is, g∗ = g for all g ∈ G.

The following lemma was proved for torsion groups in [3], but by modifying
the proof, we can allow an arbitrary group (even with 2-elements or a dihedral
group involved). It also works for the set of symmetric elements in FG.

Lemma 12. Let G have a central subgroup H of unbounded exponent upon
which the involution is classical. If (FG)− is Lie pm-Engel, then FG is Lie
pm-Engel.

Proof. We know that FG satisfies

[x1 − x∗1, x2 − x∗2, . . . , x2 − x∗2︸ ︷︷ ︸
pm times

].

As this identity is linear in x1, we see from [8, Theorem 2] that FG satisfies the
∗-polynomial identity

[x1, x2 − x∗2, . . . , x2 − x∗2︸ ︷︷ ︸
pm times

];

that is,
[x1, (x2 − x∗2)p

m

].

Suppose the theorem fails, and fix α, β ∈ FG such that [α, βpm

] 6= 0. Let gi,
1 ≤ i ≤ r, be the group elements appearing in the support of [α, βpm

]. Now,

[α, (β − β∗)p
m

] = 0.

The left-hand side of this last equation is a linear combination of group elements.
Naturally, they must all cancel, but let hj , 1 ≤ j ≤ s, be all of the group
elements appearing in this linear combination. Surely each gi is equal to some
hj . Furthermore, for any z ∈ H,

0 = [α, (zβ − (zβ)∗)p
m

] = [α, (zβ − z−1β∗)p
m

].

Now, [α, (zβ)p
m

] = zp
m

[α, βpm

] 6= 0, and we see that each zp
m

gi is equal to some
zkhj , with −pm ≤ k ≤ pm. But this means that zp

m−k = hjg
−1
i . However, there
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are only finitely many hj and gi, so since H has unbounded exponent, we can
choose z in such a way that zp

m−k 6= hjg
−1
i for all i and j unless k = pm. Thus,

the group elements in the support of zp
m

[α, βpm

] cannot cancel with any other
terms in our calculation. Since [α, βpm

] 6= 0 but [α, (zβ − (zβ)∗)p
m

] = 0, we
have a contradiction.

In any group, write (g, h) = g−1h−1gh and gh = h−1gh. The main result
for this section is

Lemma 13. Let G have no 2-elements and suppose that no dihedral group is
involved in G. If ∗ is trivial on G/P , then our main theorem holds.

Proof. Suppose that (FG)− is bounded Lie Engel. By Lemma 4, either FT is
bounded Lie Engel or (P/P ′)2 has bounded exponent. In the latter case, we are
done, by Lemma 11 (since G has a p-abelian normal subgroup of finite index
whenever FG satisfies a polynomial identity), so assume that FT is bounded
Lie Engel. Then we know from Lemma 1 that T is nilpotent. Furthermore, we
have [u, vp

m

] = 0 for all u, v ∈ T , hence T is a p-group of bounded exponent
modulo its centre. By Schur’s Theorem, T ′ is a p-group of bounded exponent.
Suppose that we can prove our result for G/T ′. If G/T ′ has a ∗-invariant normal
p-subgroup N/T ′ of bounded exponent, and ∗ is trivial on (G/T ′)/(N/T ′), then
obviously ∗ is trivial on G/N , and since T ′ is a p-group of bounded exponent,
so is N . As FG satisfies a polynomial identity, we have our p-abelian normal
subgroup of finite index as well, hence our result holds for G.

If, on the other hand, we find that F (G/T ′) is bounded Lie Engel, then we
know that G/T ′ and T are both nilpotent. Hence, by Hall’s criterion (see [15,
5.2.10]), G is nilpotent. Furthermore, since FG satisfies a polynomial identity,
G has a p-abelian normal subgroup A of finite index. Also, since F (G/T ′)
is bounded Lie Engel, we see as before that (G/T ′)′ is a p-group of bounded
exponent, and therefore, so is G′. By Lemma 18 of [13], F (G/A′) is bounded
Lie Engel. Thus, G/A′ has a p-abelian normal subgroup B/A′ of p-power index,
and therefore B is a p-abelian normal subgroup of p-power index in G. Thus,
in this case, FG is bounded Lie Engel. Therefore, it costs us nothing to factor
out T ′ and assume that T is abelian.

As we mentioned above, we are done if P2 has bounded exponent, so let P2

have unbounded exponent. We claim that there is a fixed n such that ap
n ∈ ζ

for all a ∈ P2. Since P pn

2 also has unbounded exponent, this claim combined
with Lemma 12 will complete the proof.

Since FG satisfies a polynomial identity, G has a ∗-invariant p-abelian nor-
mal subgroup A of finite index, say |A′| = pk. Letting Ḡ = G/A′, if we can

show that (ā)p
m

is central in Ḡ, then for any g ∈ G, (ap
m+k

, g) = (ap
m

, g)p
k

(since P is abelian and normal), and as (ap
m

, g) ∈ A′, this is 1. Thus, we are
free to factor out A′ and assume that A is abelian.

Choose A in such a way that (G : A) is minimal. Suppose that (G : A) is
even. Now, G′ is a p-group and therefore, so is (G/A)′. Thus, in view of Lemma
5, either a dihedral group is involved in G/A (which is not allowed), or G/A has
a central element gA of order 2. If g∗ ∈ g−1A, then let h = g. Otherwise, let
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h = gg∗. Either way, hA is a central element of order 2 in G/A, and 〈A, h〉 is
a ∗-invariant normal subgroup of G having A as a subgroup of index 2. Again,
since dihedral groups are not permitted, Lemma 7 says that 〈A, h〉 is abelian.
But this contradicts the minimality of (G : A). Therefore, (G : A) is odd.

As G/A is finite, choose r such that P pr

2 ⊆ A2. Let (FG)− be Lie pm-Engel.

We claim that P pr+m

2 is central. Fix any c, d ∈ P2, and let a = cp
r

and b = dp
r

.
Take any y ∈ G. Then by assumption, y∗ ≡ y (mod P ), say y∗ = yc, with
c ∈ P . We must show that (bp

m

, y) = 1. Let x = yy∗ = y2c. If (bp
m

, x) = 1,
then since P is abelian, (bp

m

, y2) = 1. But yk ∈ A for some odd k. Thus,
(bp

m

, yk) = 1, and therefore bp
m

commutes with y. Thus, we need only show
that (bp

m

, x) = 1. Of course, x is symmetric.
As in the proof of [7, Key Lemma], we write

0 = [xa− a−1x, bp
m

− b−p
m

] = [x, bp
m

− b−p
m

](1− (a−1)xa−1)a.

In particular,
[x, bp

m

− b−p
m

](1− (a−1)xa−1) = 0.

If (a−1)xa−1 = 1 for all such a, then (a−1)x = a, hence (x2, a−1) = 1. But
xk ∈ A for some odd k, hence (xk, a−1) = 1 as well, and therefore (x, a) = 1.

That is, P pr

2 centralizes x, and so (b, x) = 1. Otherwise, Lemma 10 tells us that
either [x, bp

m − b−pm

] = 0 or p = 3, o((a−1)xa−1) = 3 and [x, bp
m − b−pm

] has
precisely three elements in its support. In the first case, since b2p

m

= 1 implies
bp

m

= 1, we can only have xbp
m

= bp
m

x, as required. In the second case, we
must have either xbp

m

= b−p
m

x or xb−p
m

= bp
m

x. Either way, (x2, bp
m

) = 1.
But as xk ∈ A for some odd k, we once again conclude that (x, bp

m

) = 1.
The sufficiency follows just as in [3].

4 The case where ∗ is not trivial on G/P

As before, we let F be a field of characteristic p > 2, G a group with involution
∗ having no 2-elements and no dihedral involved, P the set of p-elements of G
and T the set of torsion elements of G. Assuming that (FG)− is bounded Lie
Engel, we know that P and T are subgroups of G, G/P is abelian and G has
a ∗-invariant p-abelian normal subgroup A of finite index. Also write Q for the
set of p′-elements in T . In this section, we handle the case where ∗ is not trivial
on G/P . Our goal is to prove that FG is bounded Lie Engel. This will certainly
involve showing that G is nilpotent. Let us begin by assuming that fact and
prove

Lemma 14. Let G be a nilpotent group without 2-elements such that no dihedral
is involved in G. Suppose that (FG)− is bounded Lie Engel. Then G′ is a p-
group of bounded exponent.

Proof. Clearly, factoring out a ∗-invariant normal p-group of bounded exponent
will not harm our conclusion, so we will do so freely. In particular, we know from
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Lemma 4 that T ′ is a p-group of bounded exponent (as we have seen before,
this follows from Schur’s Theorem when FT is bounded Lie Engel), so we factor
it out and assume that T is abelian. In particular, T = P × Q. As G′ is a
p-group, we see that (G/Q)′ = G′Q/Q ' G′/(G′ ∩ Q) = G′. Thus, we may
factor out Q and assume that T = P . If ∗ is trivial on G/P = G/T , then we
already know the answer. Therefore, by Lemma 8, we may assume that there
exists a nontrivial bP ∈ G/P (necessarily of infinite order) upon which ∗ acts
classically. In view of Lemma 9, we may assume that b∗ = b−1. Replacing b
with a suitable power, we may take b ∈ A.

Factoring out A′, we assume that A is abelian. For the moment, suppose
that G/A is an abelian p-group. In view of Schur’s Theorem, it suffices to show
that G/ζ is a p-group of bounded exponent. Since G/A is a finite p-group, it is
sufficient to show that Apn ≤ ζ, for a fixed n.

Let (FG)− be Lie pn-Engel. Take x ∈ G, a ∈ A. We claim that if ap
n+1 6=

(a∗)p
n+1

, then (x, ap
n

) = 1. Write x = x1x2 with xiA ∈ (G/A)i. It will suffice to
show that ap

n

commutes with each xi. That is, we may assume that G = 〈A, xi〉.
Let x = x1. Now, if (xc)∗ = xc for all c ∈ A, then c∗x = xc for all c ∈ A, so
xcx−1 = c∗. Therefore, c = (c∗)∗ = x(xcx−1)x−1 = x2cx−2. But then 〈A, x2〉
is an abelian subgroup of index at most 2 in G. Since no dihedrals are allowed,
it now follows from Lemma 7 that G is abelian, and we are done. Therefore,
some xc is not symmetric. Replacing x with xc, we have x∗ = xd, for some
1 6= d ∈ A.

Now,
0 = [x− x∗, ap

n

− (a∗)p
n

] = [x, ap
n

− (a∗)p
n

](1− d).

By Lemma 10, either [x, ap
n−(a∗)p

n

] = 0 or p = o(d) = 3 and (xap
n

)−1(x(a∗)p
n

) ∈
〈d〉. In particular, the latter case gives us (a∗a−1)p

n ∈ 〈d〉, and hence (a∗)p
n+1

=

ap
n+1

, which is a contradiction. Thus,

[x, ap
n

− (a∗)p
n

] = 0.

In particular, either xap
n

= ap
n

x (as desired) or ap
n

= (a∗)p
n

(which contradicts
our assumption on a).

Now let x = x2. Once again, we have

[x− x∗, ap
n

− (a∗)p
n

] = 0.

But xA and x∗A are different cosets of A. Hence,

[x, ap
n

− (a∗)p
n

] = 0.

Therefore, either x commutes with ap
n

(as desired), or ap
n

= (a∗)p
n

(which is
not allowed).

On the other hand, suppose that ap
n+1

= (a∗)p
n+1

. In this instance, by

choice of b, we see that bp
n+1 6= (b∗)p

n+1

and (ab)p
n+1 6= ((ab)∗)p

n+1

. Thus, x
commutes with both bp

n

and (ab)p
n

, and hence with ap
n

. This case is complete.
Therefore, let us drop the assumption that G/A is an abelian p-group. Pro-

ceed by induction on |G/A|. As G/A is nilpotent, take a nontrivial yA in the
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centre of G/A. If y∗ does not lie in y−1A, then let x = yy∗. Otherwise, let
x = y. Replacing x with a suitable power, we may assume that o(Ax) = q is
prime. Let H = 〈A, x〉. Suppose that q 6= p. We notice that xq ∈ A, hence xq

is central in H. Letting H̄ = H/〈xq〉, we note that for any h ∈ H, (x, h) is a
p-element (since G′ is a p-group), but also, since H̄ is nilpotent and x̄ has order
q, (x̄, h̄) is a q-element. That is, (x̄, h̄) = 1, which means that (x, h) ∈ 〈xq〉.
But again, (x, h) is a p-element. Since G contains only p-elements and elements
of infinite order, and xq is in A but x is not, we see that xq has infinite order.
Therefore, either (x, h) = 1 or (x, h) has infinite order. The latter gives a con-
tradiction, so x centralizes A and H is abelian. Furthermore, H is ∗-invariant
and normal in G, and as |G/H| < |G/A|, by our inductive hypothesis, we are
done.

Now, let q = p. Then by our above considerations, H ′ is a p-group of
bounded exponent. Again, since H is normal and ∗-invariant, we notice that
G/H ′ has H/H ′ as an abelian normal ∗-invariant subgroup of index smaller
than |G/A|, and by our inductive hypothesis, (G/H ′)′ has bounded exponent.
Therefore, G′ has bounded exponent. The proof is complete.

Our remaining task is to show that G is nilpotent. Let us make some re-
ductions. By Lemma 4, P is nilpotent. Thus, by Hall’s criterion, it suffices to
show that G/P ′ is nilpotent. We may therefore let P be abelian. As a first
step, let us show that we may assume that ∗ is nontrivial on A/A ∩ P . We will
need to insist that ζ ≤ A, but as we can always replace A with Aζ, this is not
a problem.

Lemma 15. Let G be a group without 2-elements or dihedral involvement, and
let P be abelian. Suppose that (FG)− is bounded Lie Engel and A is a ∗-
invariant p-abelian normal subgroup of finite index in G, containing ζ. If ∗ is
not trivial on G/P , then ∗ is not trivial on A/A ∩ P .

Proof. Suppose that ∗ is trivial on A/A ∩ P . Take any x ∈ G. We claim that
x∗ ≡ x (mod P ). As xA has finite order, write x = yz, where yA is a p-element
and zA a p′-element. If we can show that y∗ ≡ y (mod P ) and similarly for z,
then since G is abelian modulo P , we obtain our conclusion. Therefore, we may
assume that o(xA) = q, where q is either a power of p or relatively prime to p.

By assumption, since xq ∈ A, we have (xq)∗ ≡ xq (mod P ). Again, since
G/P is abelian, this means (x∗x−1)q ∈ P . If q is a p-power, then x∗x−1 ∈ P ,
so x∗x−1 ≡ 1 (mod P ). If q is relatively prime to p, then x∗x−1 ≡ w (mod P ),
where w ∈ Q. As the former case is contained in the latter, we assume the
latter. Thus, in any case, x∗ ≡ xw (mod P ).

Now, x = (x∗)∗ ≡ w∗xw ≡ xww∗ (mod P ), as G/P is abelian. That is,
w∗ ≡ w−1 (mod P ).

There are two cases to consider. If T is nilpotent, then as G′ is a p-group,
Q is central. By our assumption, Q ≤ A. Therefore, by hypothesis, w∗ ≡ w
(mod P ). Thus, w2 ∈ P ∩ Q = 1, and as G has no 2-elements, w = 1. If, on
the other hand, T is not nilpotent, then by Lemma 4, ∗ is trivial on T/P , and
we obtain the same conclusion. We are done.
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Let us make another useful reduction by showing that A is nilpotent. If
so, then by another application of Hall’s criterion, we can assume that A is
abelian. To this end, we must adapt some arguments from [7] to our purposes
and incorporate them into the next proof.

Lemma 16. Let G be a p-abelian group without 2-elements or dihedral involve-
ment, such that ∗ is not trivial on G/P . If (FG)− is bounded Lie Engel, then
G is nilpotent.

Proof. By Lemma 4, P is nilpotent. Therefore, in view of Hall’s criterion, it
is sufficient to consider G/P ′. Thus, P is abelian. Since G′ is finite, another
theorem of Hall (see [10]) tells us that the second centre, H, is of finite index in
G. Now, (H,G) is a central p-group, so we can factor it out without harming
our hypotheses or conclusion. Thus, we assume that H is a central subgroup of
finite index. In particular, (G : ζ) < ∞. By Lemma 6, (G : ζ) is odd. Now, if
G/ζ is nilpotent, then we are done, so suppose otherwise. Then by Lemma 4
and the Schur-Zassenhaus Theorem, G/ζ = (N/ζ) o (X/ζ), where N/ζ is the
group of p-elements of G/ζ and X/ζ is a group of odd p′-order. Furthermore, ∗
is trivial on (G/ζ)/(N/ζ) = G/N .

Now, if ∗ is trivial on ζ/(ζ ∩ P ), then the preceding lemma gives us a con-
tradiction. Therefore, by Lemma 8, we may choose a ∈ ζ\P such that a∗ ≡ a−1
(mod ζ ∩ P ). By Lemma 9, we may as well assume that a∗ = a−1. Now, if
o(a) = ∞, then by Lemma 12, we are done. Therefore, replacing a with a
suitable power, we may assume that o(a) = q, where q is an odd prime different
from p.

Take any x ∈ X\ζ. Then x∗ = xu, for some u ∈ N . Letting y = xx∗, we
have y = x2u. Now, if (FG)− is Lie pm-Engel, then yp

m

= x2p
m

v, for some
v ∈ N . Let us say that o(yp

m

ζ) = plr, where r is odd and relatively prime to p.

Then letting k = m+ l, we see that yp
k

is a p′-element modulo ζ. Furthermore,

working in Ḡ = G/ζ, we see that (ȳ)p
k

= (x̄)2p
k

w̄, for some w ∈ N , and as x̄ is

a nontrivial p′-element, we find that (ȳ)p
k 6= 1; that is, yp

k 6∈ ζ.

Therefore, choose h ∈ G with which yp
k

does not commute. First of all,
suppose that h is not symmetric. As y is symmetric and a is central, we have

0 = [h− h∗, (ya− a−1y)p
k

] = [h− h∗, yp
k

](ap
k

− a−p
k

).

In particular,

[h− h∗, yp
k

](a2p
k

− 1) = 0.

Now, o(a2p
k

) = o(a) = q. Taking into account Lemma 10 and the fact that

q 6= p, we can only have [h − h∗, ypk

] = 0. As h 6= h∗, we obtain [h, yp
k

] = 0,
contradicting our choice of h.

Finally, let h be symmetric. Then

0 = [ha− a−1h, (ya− a−1y)p
k

] = [ha− a−1h, yp
k

](ap
k

− a−p
k

).

As above, this implies that

0 = [ha− a−1h, yp
k

] = [h, yp
k

](a− a−1),

11



and applying the same argument again, we get [h, yp
k

] = 0. Thus, we conclude
that no such x exists; that is, X/ζ is trivial. In particular, G/ζ is a finite
p-group, and hence nilpotent. Thus, G is nilpotent.

We need to handle one more special case before proving the main theorem.

Lemma 17. Suppose that G = 〈A, x〉 where A is an abelian ∗-invariant normal
subgroup, and o(xA) = q is prime. Further suppose that P is abelian and ∗ is
not trivial upon G/P . If G has no 2-elements, no dihedral group is involved in
G, and (FG)− is Lie pm-Engel, then Apm ≤ ζ.

Proof. If x∗ 6≡ x−1 (mod A), then replacing x with xx∗, we may assume that
x∗ = x. If q = 2, then by Lemma 7, G is abelian, as no dihedrals are involved.
Thus, let q be odd. Also, by Lemma 15, ∗ does not act trivially upon A/(A∩P ).
Lemma 8 therefore allows us to choose a ∈ A\P such that (aP )∗ = a−1P . By
Lemma 9, we may assume that a∗ = a−1.

We need to show that (bp
m

, x) = 1 for all b ∈ A. But we have

0 = [x− x∗, bp
m

− (b∗)p
m

].

If x∗ ≡ x−1 (mod A), then x and x∗ belong to different cosets of A, hence

[x, bp
m

− (b∗)p
m

] = 0.

That is, bp
m

commutes with x unless bp
m

is symmetric. But if bp
m

is symmetric,
then noting that neither ap

m

nor (ab)p
m

is symmetric, we see that x commutes
with ap

m

and (ab)p
m

, hence with bp
m

, as required.
Therefore, we may assume that x∗ = x. Suppose that (xc)∗ = xc for all

c ∈ A. Then c∗x = xc, hence c∗ = xcx−1 for all c ∈ A. Therefore, c = (c∗)∗ =
xc∗x−1 = x2cx−2. Thus, x2 commutes with c, and since xq does as well, we
conclude that (x, c) = 1 for all c ∈ A. That is, G is abelian, and we are done.
Thus, choose c ∈ A such that (xc)∗ 6= xc. Replacing x with xc, we have x∗ = xd,
with 1 6= d ∈ A.

We claim that if bp
m+1 6= (b∗)p

m+1

, then x commutes with bp
m

. Indeed, we
have

0 = [x− xd, bp
m

− (b∗)p
m

] = [x, bp
m

− (b∗)p
m

](1− d).

In view of Lemma 10, we have either [x, bp
m − (b∗)p

m

] = 0 or p = o(d) = 3 and

(xbp
m

)−1(x(b∗)p
m

) ∈ 〈d〉, and hence (b∗b−1)p
m+1

= 1. But this contradicts the
choice of b. Therefore,

[x, bp
m

− (b∗)p
m

] = 0

and proceed precisely as before.
If, on the other hand, bp

m+1

is symmetric, then noting that ap
m+1

and
(ab)p

m+1

are not symmetric, we find that x commutes with ap
m

and (ab)p
m

,
hence with bp

m

. The proof is complete.

We are now in a position to prove our main result.
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Proof of Theorem 1. Suppose that (FG)− is bounded Lie Engel. If p = 0, then
Lemma 3 does the job, so let p be an odd prime. By Lemma 3, G′ is a p-group.
If ∗ is trivial on G/P , then by Lemma 13, we are finished. Therefore, assume
that ∗ is not trivial on G/P . Since FG satisfies a polynomial identity, let A be
a normal ∗-invariant p-abelian subgroup of finite index.

We claim that G is nilpotent. By Lemma 4, P is nilpotent. Hence, by Hall’s
criterion, it suffices to show that G/P ′ is nilpotent. We therefore assume that
P is abelian. Replacing A with Aζ if necessary, assume that ζ ≤ A. By Lemma
15, ∗ is not trivial on A/(A ∩ P ). Thus, combining Lemmas 8 and 9, we know
that there exists a ∈ A\P such that a∗ = a−1. If o(a) < ∞, then replacing a
with a suitable power, we may assume that a ∈ Q.

By Lemma 16, A is nilpotent. Again applying Hall’s criterion, we see that
it suffices to assume that A is abelian. We prove our claim by induction on
(G : A). Of course, if this index is 1 there is nothing to do. Otherwise, we note
that since (G/A)′ is a finite p-group, G/A is solvable. Therefore, let H/A be
the last nontrivial term in the derived series of G/A. If we can show that H is
nilpotent, then it suffices to show that G/H ′ is nilpotent. But G/H ′ has H/H ′

as an abelian normal ∗-invariant subgroup of index (G : H) < (G : A). Thus,
in this case, we are done. Therefore, it suffices to assume that G/A is abelian.

Furthermore, take xA ∈ G/A of prime order. If x∗ 6∈ x−1A, then replace x
with xx∗. Let K = 〈A, x〉. Then K is a ∗-invariant normal subgroup of G. If K
is nilpotent, then it suffices to show that G/K ′ is nilpotent, and once again, by
induction, we are done. Thus, we may assume that G = 〈A, x〉, where o(xA) = q
is prime. If q = 2, then by Lemma 7, G is abelian. Therefore, q is an odd prime.
By Lemma 17, if (FG)− is Lie pm-Engel, then Apm ≤ ζ. Now, if o(a) = ∞,
then by Lemma 12, we are done. Therefore, we may assume that a ∈ Q.

We have two cases to consider. If q = p, then we have gp
m+1 ∈ ζ for all

g ∈ G. That is, G/ζ is a p-group of bounded exponent, and F (G/ζ) satisfies a
polynomial identity. Therefore, by [12, Lemma 3.2.7], G/ζ is nilpotent. Hence,
G is nilpotent.

Now suppose that q 6= p. We claim that, in fact, G is abelian. To see this,
we proceed in a similar manner to [5, Proposition 3.4]. If G is not abelian,
then choose noncommuting g, h ∈ G. We may assume that G = 〈g, h, g∗, h∗, a〉.
Thus, G is finitely generated, and as A has finite index, A is finitely generated
abelian. Of course, g and h cannot both lie in A. Without loss of generality,
say g 6∈ A. As |G/A| is prime, it suffices to show that (g,A) = 1. Take any
v ∈ A. Let us write A = C × D, where C is a direct product of finitely
many infinite cyclic groups, and D is finite, say |D| = prs, where s is an odd
number relatively prime to p. Let B = Aprs = Cprs. Now, B is ∗-invariant
and normal in G, and G/B is a torsion group with no 2-elements. Also, since
we are only factoring out elements of infinite order, aB is still a nontrivial p′-
element satisfying (aB)∗ = (aB)−1. Thus, by Lemma 4, F (G/B) is bounded
Lie Engel. In particular, G/B is nilpotent, and therefore p′-elements are central.
Now, gqp

rs ∈ B. Thus, the order of gp
r

B divides qs, so it is a p′-element, and
therefore central. That is, (gp

r

, v) ∈ B. But also gq ∈ A, hence (xq, v) = 1. As
q and pr are relatively prime, (g, v) ∈ B. But B is torsion-free and G′ is torsion.
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Therefore, (g, v) = 1, completing the proof of the claim.
We now know that G is nilpotent. By Lemma 14, G′ is a p-group of bounded

exponent. But then by [13, Lemma 18], F (G/A′) is bounded Lie Engel. Thus,
by Lemma 1, G/A′ has a p-abelian normal subgroup L/A′ of p-power index. We
now see that L is a p-abelian normal subgroup of p-power index in G. Thus,
FG is bounded Lie Engel.

The sufficiency follows just as in [3].

5 Group rings with the classical involution

Supose that FG has the classical involution induced from g∗ = g−1 for all g ∈ G.
In this section, we classify the groups such that (FG)− is bounded Lie Engel,
without any restrictions upon G. This can be done by making simple modi-
fications to the proofs in Giambruno and Sehgal [9], where the corresponding
results for Lie nilpotence were proved. We will omit the details contained in [9]
that apply directly to our situation. Throughout this section, ∗ is classical. The
result is

Theorem 2. Let F be a field of characteristic p 6= 2 and G a group. With
respect to the classical involution, the set of skew elements of FG is bounded
Lie Engel if and only if one of the following occurs:

1. G has an elementary abelian 2-subgroup of index 2,

2. G has a normal subgroup H such that FH is bounded Lie Engel and o(g) =
2 for all g ∈ G\H, or

3. p > 2, G has a p-abelian subgroup of finite index, the p-elements of G form
a normal subgroup P of bounded exponent, and G/P is an elementary
abelian 2-group.

We need to consider some special cases.

Lemma 18. Suppose that p > 2 and the p-elements of G form an abelian sub-
group P of unbounded exponent. Furthermore, let (G : P ) = 2. If P intersects
the centre of G nontrivially and (FG)− is bounded Lie Engel, then G is abelian.

Proof. Take any x ∈ G of order 2. As in Lemma 8, let us write P = P1 × P2,
where we consider the involution to be the conjugation action of x on P . Let
1 6= a ∈ P1 be central in G and let (FG)− be Lie pn-Engel. Then for any b ∈ P2,
we have

[ax− xa−1, bp
n

− b−p
n

] = 0.

If axbp
n

= axb−p
n

, then b2p
n

= 1, hence bp
n

= 1. If axbp
n

= xa−1bp
n

, then
a2 = 1, which is impossible. If axbp

n

= bp
n

ax, then (bp
n

)x = bp
n

. But bx = b−1,
so we can only conclude that bp

n

= 1. If axbp
n

= b−p
n

xa−1, then (bp
n

a)x =
(bp

n

a)−1. However, (bp
n

)x = b−p
n

and ax = a 6= a−1, so this is impossible.
The only other possibility is that p = 3 and axbp

n

agrees with two added
terms in our equation. But if axbp

n

= xa−1b−p
n

, then a = ax = a−1b−2p
n

, and
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hence a2 = b−2p
n ∈ P1 ∩ P2 = 1. Once again, bp

n

= 1. If axbp
n

= bp
n

xa−1,
then b−p

n

= (bp
n

)x = a−2bp
n

, and we reach the same conclusion.

Therefore, we know that P pn

2 = 1. Since P has unbounded exponent, this
means that P1 (which is central) has unbounded exponent. By Lemma 12, FG
is bounded Lie Engel, and therefore G is nilpotent, hence abelian.

This can easily be extended to

Lemma 19. Suppose that p > 2, P is a subgroup of unbounded exponent and
(G : P ) = 2. If G/P ′ has a nontrivial centre and (FG)− is bounded Lie Engel,
then G is nilpotent.

Proof. By the previous lemma, G/P ′ is abelian. But Lemma 4 tells us that P
is nilpotent. We are done.

Lemma 20. Suppose that p > 2, P is a subgroup of unbounded exponent and
(G : P ) = 2. Let (FG)− be bounded Lie Engel. If G/P ′ has a trivial centre,
then G = P o 〈x〉, where P is abelian, o(x) = 2 and x acts dihedrally on P .

Proof. Take x ∈ G of order 2, and let Ḡ = G/P ′. Writing P̄ = P̄1 × P̄2, where
we regard the action of x̄ on P̄ as the involution, we see that by assumption,
P̄1 = 1. That is, x̄ acts dihedrally upon P̄ . We are done if we can show that P
is abelian.

Supposing that P ′ 6= 1, we observe that just as in the proof of [9, Lemma
13], we may assume that P ′ is central in G. (Note that (P ′, P ) gets factored
out here. This is fine, because we know from our work with p-groups that P is
nilpotent, and P ′ has bounded exponent.) Also, since bx ≡ b−1 (mod P ′), for
all b ∈ P , we see that x normalizes ζ(P ). Therefore, ζ(P ) is a normal subgroup
of G.

Let H = 〈ζ(P ), x〉. Then ζ(P ) contains a nontrivial central subgroup, P ′.
By Lemma 18, H is abelian. Thus, x centralizes ζ(P ). But x inverts P modulo
P ′. We conclude that ζ(P ) = P ′. However, we know from [11, Theorem 3] that
FP is bounded Lie Engel, and therefore, as we have seen before, P/ζ(P ) has
bounded exponent, and so does P ′. But then P has bounded exponent. This
contradicts our assumption and completes the proof.

Finally, we have the

Proof of Theorem 2. Let us verify the necessity. As in [9], the proof breaks
down into cases.

Case I: G has an element of infinite order. Follow the proof of [9, Theorem
1] verbatim, replacing the reference to [8, Corollary] with an appeal to Lemma
12. We conclude that part 2 of the theorem must hold.

Case II: G is torsion and FG is semiprime. By [3, Lemma 4], in this case,
if (FG)− is bounded Lie Engel, then it is commutative. In particular, (FG)−

is Lie nilpotent, and we can apply Theorem 3 of Giambruno and Polcino Milies
[4] to conclude that either part 1 or part 2 of our theorem holds. (In particular,
the characteristic zero case is done, so assume now that p > 2.)
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Case III: G is torsion, FG is not semiprime, and G has an element of order
4 or an odd prime different from p. Here, the proofs of [9, §2] carry over to the
bounded Lie Engel property without change. The conclusion is that either we
are in part 2 of our theorem, or G = P × Q, where P is a p-group and Q is
abelian. In the latter case, from [11, Theorem 3] we know that FP is bounded
Lie Engel. In view of Lemma 1, so is FG, and again, part 2 of our theorem
applies.

Case IV: Every element of G has order either a power of p or twice a power of
p. By [3, Lemma 6], the p-elements of G form a subgroup P . (The assumption
that G has no 2-elements was not needed for that part of the proof.) Thus,
G/P is an elementary abelian 2-group. If P has bounded exponent, then we are
in part 3 of our theorem, since FG satisfies a polynomial identity. Therefore,
assume that P has unbounded exponent.

In view of the preceding lemmas, we apply the proof of [9, Proposition 14]
to show that in this case, either G = P × K, where K is abelian, or G =
L × (P o 〈x〉), where L is an elementary abelian 2-group, P is an abelian p-
group, o(x) = 2 and x acts dihedrally upon P . In the first case, since we
already know that FP is bounded Lie Engel, so is FG, and we are in part 2 of
our theorem. In the second case, letting H = L × P , we observe that we are
again in part 2.

Let us prove the sufficiency. The first part is the same as in [9], so there is
nothing to do. For the second part, we note that (FG)− = (FH)− and again,
we are finished. For the third part, we observe that (FG)− ⊆ ∆(G,P ), where
∆(G,P ) is the kernel of the natural homomorphism FG → F (G/P ). But in
this case, by [12, Lemma 1.3.14], ∆(G,P ) is a nil ideal of bounded exponent,
say pk. Thus, if α, β ∈ (FG)−, then

[α, β, . . . , β︸ ︷︷ ︸
pk times

] = [α, βpk

] = 0.

The proof is complete.
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