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On-orbit servicing missions often include a final propulsive phase where a spacecraft 

pushes the other one towards a different orbit. Specifically this is the case of the debris 

grasping mission where the chaser, after capturing the target by means of robotic arms, has 

to perform a de-orbit operation. The large thrust involved needs a perfect alignment with 

respect to the center of mass or the system composed by chaser and target, in order to avoid 

attitude changes. Such accurate alignment is quite difficult to achieve especially when the 

characteristics of the target are not perfectly known. A procedure is proposed in this paper, 

allowing a complete estimation of the center of mass position and of the moments of inertia 

of the system, starting from the data obtained by the gyros mounted on board of the 

spacecraft. The output is used to design a maneuver for correcting the target and chaser 

relative position by moving the robotic arms. Numerical simulations show the proficiency 

and the applicability of the estimation algorithm and of re-alignment maneuver to a selected 

mission scenario. 

I. Introduction 

OBOTIC missions involving the docking of two spacecraft quite often include a phase during which the 

grasping satellite pushes the target platform. This action happens either during the contact/berthing or at the 

release phase. The thrust can be related to the attitude dynamics of the composite of the two satellites, or to the 

translational dynamics of both the spacecraft, intended to re-boost the cluster or to push away a platform from the 

other one
1
. The common issue for such a kind of maneuvers is represented by the fact that their effects will depend 

on the mass and inertia of the platforms as well as on the location of the thrusting point(s) with respect to the centers 

of mass. These characteristics are poorly known or unavailable, and the designer needs to consider these 

uncertainties, as they will strongly affect their resulting dynamics. 

A non-cooperative rendez-vous and docking maneuver, as the one involved in the grasping of the debris, is a 

clear example of these issues
2
. In fact, the mass and the geometrical characteristics of the debris and its kinematic 

state could be unknown.  Of course, these parameters must be evaluated in advance before defining any details of 

the grasping mission, but this is not always possible. Another aspect that must be considered is that, after the 

grasping, part of target’s momentum is transferred to the chaser. A sequence of attitude maneuvers could be needed 

to complete the operations and re-gain the desired attitude configuration
3-5

. To be also reminded that the final step of 

a grasping mission could be represented by the chaser transfer maneuver in order to move the composite set of the 

two platforms in a graveyard orbit or to dive them into the atmosphere for the burn out. 

One of the possibilities to perform a transfer maneuver is to use on board thrusters. The correct maneuver 

requires an accurate orientation of the thrust. In this paper a re-orientation maneuver, involving a servicing platform 

attached to a spent final stage of a launcher, will be investigated.  
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This paper aims to analyze first the estimation of the inertia parameters, such as the center of mass location and 

the moments of inertia of the coupled system (chaser plus target), once the chasing and grasping phases are 

accomplished. The problem of the in orbit estimation of these parameters has been investigated in the past
6-11

. In 

particular, Bergman et al.
6 

developed a filter to extract the rigid body inertia parameters by neglecting the gyroscopic 

terms and in presence of known thrusters pulses, Wilson et al.
7
 realized analogous filters and batch estimators which 

also include the gyroscopic terms. The problem of the inclusion of gyroscopic terms on the system plant was by-

passed by Tanygin and Williams
8
 using a relation directly connected to the kinetic energy of the system and, by 

Norman et al.
9
 using the balance of the angular moments of the system. Other approaches, which involve the use of 

the unscented Kalman filters, were developed by VanDyke et al.
10

 and by Sekhavat et al.
11

. The present work 

proposes the use of an extended Kalman filter, assuming that the whole system, composed by the chaser, the target 

and the grasping mechanisms, is a rigid body. The full set of the equations of motion are included in the estimation 

and the partial derivatives, related to the Kalman filter, are evaluated numerically. This procedure allows a complete 

estimation of the center of mass position and of the moments of inertia, by using only the gyros mounted on board of 

the chaser.          

The second objective of this work is to study a re-alignment maneuver of the thrust direction with respect to the 

system center of mass. This maneuver is performed by using the arms mounted on the chaser that will be re-aligned 

to reduce the attitude deviations produced by the misalignment of the line of action of the thrust. The motion of the 

arms will be performed maintaining the clamping of the end effectors on the target.  

The paper presents the theory and the simulation findings beginning (Section II) with the description of the 

overall mission scenario considered. Then the focus shifts on the mission phases requiring a specific attention with 

respect to analysis and modeling issues: Section III faces the problem of the estimation of dynamics parameters of 

the chaser and target system by means of an Extended Kalman Filter, which formulation and implementation’s 

details for the specific application are reported. Following Section IV discusses the realignment maneuver before the 

large de-orbiting pulse. Section V is devoted to the numerical results, which are presented with respect to the 

estimation (this part is completed by an insightful robustness analysis) to the realignment and to the de-orbit phase. 

After the conclusions, the appendix shortly report some details on the specific procedure implemented to control the 

arms with the aim to provide the interested reader with a global sketch of the approach followed. 

II. Mission Scenario  

The sample mission exploiting the grasping and pushing phases considered in this paper refers to the removal of 

a launcher’s exhausted upper stage performed by a service platform equipped with three robotic arms, as represented 

in Fig. 1. 

 
Fig. 1 Chasing spacecraft grasping an upper stage with its robotic manipulator 

  

The overall operations can be divided in a sequence of five steps, involving different aspects and requirements in 

terms of guidance and control needs
1
: 

1) Approach and coordination: the chaser reaches a position close to the target stage and coordinates its attitude 

motion with respect to the one of the (non-maneuvering) stage. Only the attitude control system of the chaser and 

the relevant thrusters are used in this phase, while the robotic manipulators remain in their stowed configuration. 

2) Arms deployment: when the desired relative kinematic state of the chaser with respect to the stage is attained, 

the robotic arms are deployed, bringing the end effectors in close proximity of the selected grasping zones. 

3) Grasping: the robotic arms and end effector are commanded in order to catch - and firmly maintain - the 

stage at the selected points. 

4) Post-grasping: the arms are strengthened (solidification) by blocking their joints and the de-tumbling 

maneuvers are performed in order to avoid any residual relative motions between the bodies and to stabilize 

(tranquillization) the system, which can be considered as a single, rigid body from this time on. 
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5) De-orbit: the maneuver is performed by using a dedicated, powerful engine accommodated onboard the 

chaser, oriented opposite to the V-bar direction, in order to decrease the orbital altitude of the system leading to re-

entry. 

The mission definition – and above all the grasping phase – should take into account the details of the geometry 

of the target. In order to allow a firm grasping, a clamping mechanism capable to perform the maneuver with respect 

to capture points in a thin aluminum gauge was considered. Referring to real possible targets (i.e. launcher stages’ 

structures) a three-part tool has been designed, with two pincers to clamp the wall and a piston to block (hold) the 

grasp. 

The arms, composed by two longer links, two joint elements (at the shoulder and at the elbow) and the end 

effector (the grasping mechanism outlined above) have 6 degrees of freedom each. The length of the links ensures 

safe operations by keeping the chaser and the target sufficiently far, as shown in Fig. 2. The adopted configuration 

also provides enough dexterity, needed when the target tumbling with respect to the chaser, while allowing a 

compact stowed configuration during the non-operational phases.    

 

 
 

Fig. 2 The selected design of the robotic arm 

 

III. Estimation of the Position of the Centre of Mass and Inertia Parameters 

When the grasping phase and the following tranquillization are completed, the preparation of the large (in the 

order of 500N) de-orbiting thrust begins. Also with respect to possible, long duration of the de-orbit pulse, the 

direction of the thrust should be precisely enforced. Within this maneuver, it is easy to understand the need of an 

accurate estimation of the overall system center of mass and inertia. In fact, if the thrust is not perfectly aligned with 

the system’s center of mass, the resulting torque will change the attitude of the system during the maneuver, leading 

to a wrong thrusting direction (Fig. 3 depicts such a possible undesired occurrence). At the same time, the values of 

the moments of inertia are needed to characterize the system, providing the capabilities to design eventually required 

reorientation maneuvers.   

On the other hand, these values are practically unknown, as the characteristics of a long term orbiting body are 

difficult to assess. In such a concern, the case of real debris, originated by an explosion, is of course even worst with 

respect to a reasonably undamaged stage. Furthermore, these values are depending on the exact location of the 

grasping point, and on the grasping arms’ configuration, so that – at best - their values can be only estimated.  

 
Fig. 3 Thrust misaligned with respect to the center of mass, producing a pitch motion  

 

An estimation process, based only on the cluster of three gyros accommodated onboard the platform is therefore 

needed and proposed. The resulting estimates will be adopted to align the thrust to the desired direction. 

D
ow

nl
oa

de
d 

by
 L

IC
O

SA
/4

90
46

/R
M

 o
n 

Se
pt

em
be

r 
10

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

43
41

 



 

 

American Institute of Aeronautics and Astronautics 
 

 

4

Specifically, the proposed process involves an extended Kalman filter
12

, which is designed on the basis of the 

hypothesis that the compound is solid, i.e. there is no relative motion between the chaser and the target. 

 
Fig. 4 Reference frames, position vectors and forces applied to the system considered as rigid body  

 

Let us consider a rigid body system and let us associate an arbitrary reference frame
O

Σ , centered in a point O  

attached to the body, as depicted in Fig. 4.  The position of the center of mass of the system is given by position 

vector 
CoM

D
r

. The position vector
iF

D
r

 . represents the vector identifying the point where a thrust 
i

F
r

 is applied to the 

body. Considering the center of mass of the system as the pole to compute inertias and torques, the rotational 

dynamics reads as: 
1

( )
iF CoM iD D Fω ω ω−= × − × ⋅− +I I

r r r
&

r r r

 (1) 
 

where ω
r

 is the angular velocity and I is the moment inertia matrix of the body, defined as: 
 

xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I

 
 

=  
 
 

I  (2) 

 

Scalar quantities 
xx

I , 
yy

I , 
zz

I , 
xy yx

I I= ,
xz zx

I I=  and 
yz zy

I I=  represent the moments of inertia of the body 

referred to the axes of 
O

Σ  frame. For a rigid body the following differential relations hold: 

 

0 0

0 0

0 0

xx xy yx

yy yz zy

zz zx xz

I I I

I I I

I I I

= = =

= = =

= = =

& & &

& & &

& & &

 (3) 

and 

0CoMD =
r
&  (4) 

 

By introducing the state vector X  as follows: 
 

X T
T

T

xx yy xyCoM z zxzz yD I I I I I Iω =  
r r

 (5) 
 

and the control input vector as: 

U
i

T
T

F

T

D F =
 

r r
 (6) 

 

the equations (1), (3) and (4) can be rearranged in the following form: 
 

( )X F X, U, t w= +&  (7) 
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where w  is the process noise vector, including the uncertainties of the model and the inaccuracies in the actuators’ 

behavior. As an additional hypothesis this process noise has a mean value ( ) 0E w = , while, for the covariance matrix 

the relation ( )TE ww = Q  holds. 

The angular velocities, provided by gyros mounted on board of the chaser, are the only measurements available 

and required for the estimation. They can be included in the filter by means of the following measurement equation: 
 

Z X v= +H  (8) 
 

where Z is the measurement vector and H is the measurement matrix: 
 

[ ]3 3 3 3 3 6× × ×=H E 0 0  (9) 
 

with E the identity matrix, 0 the null matrix, while  the indexes represent the relevant dimensions. Measurements are 

assumed as affected by white noise (v) , with a mean value ( ) 0E v =  and the covariance matrix (vv )TE = R .  

A. Extended Kalman Filter Implementation 

At each time step
1( )

kk
t t t−= + ∆ , the filter predicts the state Xk

%  by means of the 4
th
 order Runge-Kutta 

integration algorithm
13

, starting from the state estimate at the previous step 
1X̂

k −
: 

( )

( )

( )

1 1 1 1

1 1 1 1

1 1 1

1 1 1

1 1

2

3 2

4 3

2 3 4

ˆK F X , U ,

ˆK F X K , U ,

ˆK F X K , U ,

ˆK F X K , U ,

1ˆX X

2 2

2 2

K + 2 K + 2 K + K
6

k k k

k k k

k k k

k k k

k k

t t

t

t

t

t

t

t

t

t t

− − −

− − −

− − −

− − −

−

=

 ∆ ∆

∆ ∆

∆

= + + 
 

 
= + +

∆

 
 

= + +

= + ∆%

 
(10) 

 

The prediction of the covariance matrix associated to the state is computed as follows: 

1
ˆ T

k k k k−= +P Φ P Φ Q%  (11) 

where 
k

Φ  is the transition matrix, approximated as: 

[ ]12 12 12 12k t× ×≅ + ∆JΦ E  (12) 

The Jacobian matrix 
12 12×J   is evaluated numerically, with the approximation of each element 

ij
J  (i-th row, j-th 

column) by the following finite difference: 

1
j ˆ j

1
ˆ ˆ ˆ ˆF (X X , U, ) F (X , U, )F

x x
k

ki

ij

X

j i ii
t t

J

−

− ∆+ −
=

∂ ∆

∂
=  (13) 

 

where 
jx∆  is the increment of the j-th variable of the state space. The resulting X

j
∆  is the associate incremental 

vector, with all components void except that the j-th one, like: 

j
X 0 0 x 0 0

T

j
∆ ∆ =  L L  (14) 

 

The following estimate update reads as: 

( )ˆ
k k k k kX ZX X+= −K H% %  (15) 

where 
k

K  is the Kalman gain computed at the relevant step: 

( )
1

T

k k k k

−

= +K P PH H H R% %  (16) 
 

and the update of the covariance matrix is given by: 
 

( )12 12
ˆ

k k k×= −P KE H P%  (17) 
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B. Application of the Filter to the Selected Scenario 

The procedure outlined allows an estimation of all the state space variables: angular velocity ω
r

, position of the 

center of the mass 
CoM

D
r

, and inertia matrix I  of the system composed by the chaser, with the robotic arms in the 

extended configuration, and the target. 

To apply the filter there is the need to define a unique reference frame, and to assume some initial values for the 

involved quantities. Let assume the center O  of the reference frame
O

Σ  located in the geometrical center of the 

chaser bus, as shown in Fig. 4. The servicing platform holds the upper stage by means of three end effectors in three 

different points that, due to the uncertainness related to the previous grasping maneuvers, should not be located 

symmetrically. As a result of the grasping maneuver, a misalignment of the target with respect to the chaser is likely 

to occur. 

  With respect to the coarse, initial values of the variables it is reasonable to assume that the contribution related 

to the chaser will be known far better than the ones relevant to the target. The cylinder-like shape assumed for the 

latter allows to assume that its center of mass has to be close to its axis of symmetry, about half of the length, and 

that the two transverse moments of inertias must be higher than the axial one, leading for the target inertia matrix to  
 

2

0 0 2

2

/ 2 0 0

ˆ ˆ 0 /12 0

0 0 /12

T

T T T

T

R

m L

L

 
 

=  
 
 

I  (18) 

 

where 
T

R and 
T

L are the radius and the length of the upper-stage.  

The initial estimation of the system center of mass position can be obtained as: 
 

0 0 0 0
0

ˆ ˆ
ˆ ˆˆ

ˆ ˆ
T CoM T C CoM C

CoM

CT

m D m D
D

m m

− −+
=

+

r r
r

 (19) 

where 0ˆ
CoM CD −

r

 and 0ˆ
CoM TD −

r

 are the initial estimate positions of the center of mass of the chaser 0ˆ
C

m and of the target 

0ˆ
T

m . 

The initial estimate of the inertia matrix can be given by applying the Huygens-Steiner theorem
14

 in order to 

report all the inertias to the system center of mass pole, as follows: 
 

( ) ( )

( ) ( )

0 0 0 0 0 0 0

0 0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

T

T T CoM CoM T CoM CoM T

C C CoM CoM C CoM C C

T

oM

m D D D D

m D D D D

− −

− −

   
= + − × − × +      

   + + − × − ×
      

I I

I

r r r r

r r r r

 (20) 

 

where the notation ( )D ×
 

r

 is used for indicating the skew symmetric matrix form of the vector D
r

 which has the 

following expression: 

( )
0

0

0

z y

z x

y x

D D

D D D

D D

 −
  × = −  
 − 

r
 (21) 

 

It is worth to notice that Eqs. (19) and (20) do not include any parameters of the manipulator, as it has been assumed 

that the mass of the robotic arms are negligible with respect to the masses of the two main bodies. 

The estimation can be obtained by observing the dynamical behavior of the system to a sequence of small pulses 

provided by the attitude control system of the chaser.  As indicated by Eq.(1), each pulse allows to estimate only the 

components of the center of mass position vector normal to the trust direction. So, in order to have a fully 3D 

reconstruction of the inertia properties of the system it is necessary to have a sequence of thrust pulses acting along 

different directions and applied to different points of the system(T1 to T6 in Fig. 5). 
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7

 
Fig. 5 Positions and directions of the thrusters 

       

IV. Realignment Maneuver  

Once the estimates of the inertia matrix ˆ fI and of the position of the system center of mass 
ˆ f

CoMD
r

 are available, it 

is possible to correct the configuration of the system. This alignment maneuver, aimed to have the large  T0 de-orbit 

thrust along a direction which passes through the center of mass of the system, is performed by means of the robotic 

arms.   
 

 
Fig. 6 Thrust alignment maneuver by means of a reconfiguration of the robotic arms 

 

The arms are commanded to attain a desired position of their end-effectors  
 

0d

ee ee eeD D= + ∆
r r r

 (22) 
 

starting from their initial position 0

ee
D
r

 , maintained along the estimation process. The term 
ee

∆
r

 is evaluated as the 

one that produces the “relative motion” between the chaser and the stage able to compensate the misalignment of the 

system center of mass with respect to the T0 thrust direction (axis
0F̂  , see Fig. 6). Such a misalignment, having only 

components normal to 
0F̂ , is given by: 

 

( )0 0
ˆ ˆ

CoM CoM CoM

T
F FD D− ⋅∆ =

r r r
 (23) 
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8

 and 
ee

∆
r

can be computed as: 

ee CoM

T

T

C

m

m m
≅

+
∆ ∆−
r r

 (24) 

where the sign reflects the fact that  – as in the Fig. 6 example - the arms shall push down to move up the chaser.  

   

The inverse control problem can be effectively solved by means of the Jacobian transpose approach
15

.  For each 

manipulator the control takes as input the relative motion of the end effector with respect to the base of the 

manipulator (
ee

D
r
&

) and the difference between its current position and the desired one. These contributions, with 

purposely selected weighting matrices 
p

K  and 
d

K  are then projected along the manipulator’s joints space by 

means of the Jacobian matrix associated J , in order to obtain the control torques C  commanded to the joints 

actuators: 

( )C
d

ee ee

T

dp eeD D D = − − −  
J K K

r r r
&  (25) 

 

The Jacobian matrix of a manipulator can be computed on the basis of the characteristics of the links and joints. 

A suitable procedure exploiting the Denavit-Hartenberg
16

 homogenous matrices associated to each link of the 

multibody is reported in the Appendix.  

V. Numerical Results 

The implemented numerical simulations refer to a system (see previous Fig. 1) given by a chaser modeled as 

1.5 1.5 3m m m× ×  bus equipped with three robotic arms, and a target of cylindrical shape (10m length and 

4m diameter).  Table 1 reports mass and inertia of the two bodies. The characteristics of the robotic arms 

(represented in Fig. 2) are listed in Table 2, together with the Denavit-Hartenberg parameters adopted to represent 

their geometrical configurations. 

 

Table 1 Masses and moments of inertia of the chaser and of the target 
 

Chaser Target 

Mass ( )kg  Mass ( )kg  

1000 2500 

Moments of Inertia 2( )kg m⋅  Moments of Inertia 2( )kg m⋅  

xx
I  yy

I  
zz

I  
xx

I  yy
I  

zz
I  

1500 1500 500 3000 28000 28000 

xy
I  

xz
I  yz

I  
xy

I  
xz

I  yz
I  

0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 2 Denavit-Hartemberg parameters for the m anipulator and mass properties of the links 
 

 Denavit – Hartemberg parameters Mass properties of the links 

No. 
i

a  (m) 
i

α  (deg) 
i

d  (m) 
i

ϑ  (deg) 
i

m  (kg) 
xx

I  [ 2
kg m ] 

yy
I  [ 2

kg m ] 
zz

I [ 2
kg m ] 

1 0.0 90 0.2 
1ϑ  10.0 0.075 0.075 0.013 

2 0.0 90 0.1 
2ϑ  30.0 2.500 2.5 0.038 

3 0.2 -90 1.05 
3ϑ  10.0 0.075 0.075 0.013 

4 0.0 90 0.1 
4ϑ  30.0 2.5 2.5 0.038 

5 0.2 -90 1.05 
5ϑ  10.0 0.075 0.075 0.013 

6 0.0 90 0.1 
6ϑ  10.0 0.075 0.075 0.013 

 

The large de-orbit thrust is provided by a single motor (position T0 in Fig. 5) while the small pulses used for the 

estimation procedure are given by attitude correction thrusters (located in T1-T6). Table 3 reports the position, the 

thrusting direction and the magnitude of the pulses adopted in the simulation for all these components (these 
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characteristics are considered perfectly known and ideally implemented). To notice that the magnitude of the small 

attitude correction pulses, even if limited to save propellant, must be high enough to produce effective gyro’s 

measurements. The sequence of thruster fires has been chosen in order to have torques on orthogonal directions with 

respect to the body axis, with a duration of 150
b

t s∆ = . 

 

Table 3 Location, action direction and module of the thrusters 
 
 

Thruster Position ( )m  Direction Module ( )N  

T0 [ ]0.75 0 0+  [ ]1 0 0−  500 

T1 [ ]0 0.75 0−  [ ]0 1 0+  0.5 

T2 [ ]0 0.75 0+  [ ]0 1 0−  0.5 

T3 [ ]0 0 1.50−  [ ]0 0 1+  0.5 

T4 [ ]0 0 1.50+  [ ]0 0 1−  0.5 

T5 [ ]0 0.75 1.5− +  [ ]0 1 0+  0.5 

T6 [ ]0 0.75 1.5− +  [ ]0 1 0−  0.5 

 

The measurement of the angular velocity of the system is performed by gyroscopes mounted on board of the 

chaser. The measurements are affected by white noise with a standard deviation 3
10 /rad sωσ −= , with a sampling 

time 0.05
s

t s=∆ on each of the three axes.  

A. Center of Mass Estimations Results 

The estimation procedure outlined in Sec. III, is based on the application of the sequence of thruster fires 

followed by an additional no-thrust phase of 300
c

t s∆ = , as shown in Fig. 7. The sequence is repeated for three 

times, in order to improve the convergence of the estimation. In each phase, the filter continues to estimate the 

extended state space by taking the last estimation results obtained in the previous phase.   

After a trial and error process, the covariance matrix of the process noise has been selected as: 
 

12

3 3

16

3 3

16

6 6

10 0 0

0 10 0

0 0 10

−

×

−

×

−

×

 
 

=  
 
 

E

Q E

E

 (26) 

 

while the covariance matrix of the measurement noise, taking into account the characteristics of the adopted gyros, 

reads as:   
6

3 310−

×=R E  (27) 
 

The filter is initialized by the following initial guess: 
 

[ ]0ˆ 0 0 0 /
T

rad sω =
r

        [ ]0ˆ
3 0 0CoM

T
D m= −
r

 
 

50 2

5

35 10 0 0

ˆ 0 1.1 10 0

0 0 1.1 10

kg m

 ⋅
 

= ⋅ ⋅ 
 ⋅ 

I     
(28) 

 

with an initial covariance matrix like: 
 

0

00

0

ˆ 0 0

ˆ ˆ0 0

ˆ0 0

CoM

ω
 
 

=  
 
  I

P

P P

P

r

  ,  (29) 

where:   
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0 2

3 3
ˆ 10ω

−

×=P Er         0

3 3
ˆ

CoM ×=P E  

 

6

1 1

8

6

0

2 2

3 3

10 0 0

ˆ 0 10 0

0 0 10

−

×

−

×

−

×

 
 

=  
 
 

I

E

P E

E

 
(30) 

 
 

 
Fig. 7 Sequence of the thrust pulses and their application points on the chaser bus 

 

The results of the estimation algorithm are reported in the following figures. In particular the angular rates measured 

by the gyroscopes and the estimated angular velocity of the system during the maneuver are shown in Fig. 8. The 

Kalman filter identifies all the changes in the attitude motion of the platform. The attitude of the system during the 

estimation maneuver is represented in Fig. 9. 

 

 
Fig. 8 Measured and estimated angular velocity during the thrust sequences operations 
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Fig. 9 Euler angles representing the system’s attitude during the thrust sequences operations 

 

The results of the estimation of the position of the center of mass are shown in Fig. 10. It is worth to notice that 

the component along the x-axis decreases rapidly towards the correct value, represented by a faded blue line in the 

plot. The same behavior is evident looking at the trend of the standard deviation of the associated error, which 

decreases until it reaches a steady value.  

The estimation of the z-component of the center of mass position follows a different behavior as it remains 

constant during the first 300s . This initial trend is due to the fact that the thrust is first applied along the z-axis of 

the chaser reference frame, leading to the impossibility of an estimation of the component along this direction (see 

the cross product in Eq.(1)). After 300t s= , the thrust direction changes and the filter actually begins to evaluate 

also this component of the state. Similarly, the standard deviation of the error on the z-direction remains constant to 

its initial value to quickly decrease towards a steady value when thrust pulses act along a different direction. 

The results of the estimation of the moments of inertia are plotted in Fig. 11. With respect to the previous 

evaluation of the center of mass, this process clearly shows a slower convergence. During the first phases of the 

thrust sequence, the estimation of the moment of inertia about the x-axis is not correct. When a roll torque is applied 

to the system, by means of the activation of the T5 and T6 thrusters (which are misaligned with respect to the roll 

axis), the estimation of that moment of inertia occurs. In fact the covariance related to this moment of inertia begins 

to decrease rapidly after 600t s= . The estimation of the other moments of inertia takes a longer time to converge 

towards the correct values, which are reported in Table 4 for the specific case of this simulation. The associated 

standard deviations decrease with steps that occur at every change of the thrust directions, remarking the importance 

of the switching among the thrusters.   

 

 

Table 4 True center of mass position and moments of inertia of the whole system 
 

Center of Mass Position (m) 

x
P  

y
P  

z
P  

-6.452  0.284  0.014 

Moments of Inertia ( 2
kg m⋅ ) 

xx
I  

yy
I  

zz
I  

xy
I  

xz
I  

yz
I  

4951.8 112272.3 111232.5 -2862.9 305.7 39.1 
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Fig. 10 Center of mass estimation and related standard deviation 

 

 
Fig. 11 Estimated moments of inertia and related standard deviations 

B. Estimation Robustness 

The previous results have been obtained by assuming the availability of a reasonable initial guess of the center of 

mass position and of the inertia properties of the system that is not always true. Moreover, due to the intrinsically 

non-linear nature of the system plant (see Eq.(1)), the convergence of the filter on the actual values cannot be 

ensured. The time required to converge, also with respect to the three-impulse strategy, is an additional aspect to 

consider.    

 A parametric study has been therefore performed in order to analyze the robustness and the convergence of the 

proposed extended Kalman filter. That analysis takes into account different center of mass positions, both along the 

axial direction of the system (x-axis) and along the two transversal directions (y-axis and z-axis) with respect to the 

O
Σ reference frame. The findings of this parametric analysis are reported in Table 5 and Table 6, with the process 

starting as before from (wrong) initial guesses in Eq.(28) and, after a thrust sequence, producing as output the 

updated estimates for the center of mass position 
ˆ f

CoM
D
r

 and the moments of inertia of the system ˆ fI .  
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13 

 Table 5 lists, with respect to the initial error on the effective center of mass location the differences between its 

final estimate and its true position (
ˆ f f

CoM CoMDe D D= −
r rr

) and the standard deviations computed by the filter: the cases 

that do not satisfy the condition 3
D D

e σ<
r

 are highlighted in gray. As expected, there is a limit on the initial 

estimate error (9 m along the axis) to have the filter working successfully. The same analysis, leading to similar 

findings, is reported, in Table 6, with the errors on the final estimates of the moments of inertia ( ˆ f

iI i
e I I= − ) and 

the relevant standard deviations. The larger errors are related to 
yy

I  and 
zz

I , also due to the fact they are the largest 

moments of inertia.  

 

Table 5 Analysis of the convergence of the filter (center of mass estimation) 
 

CoM
D
r

   Dx
e    Dy

e  
Dz

e  
Dx

σ  Dy
σ  

Dz
σ  

[ ]0 0 0  -0.022 0.002 -0.000 0.047 0.004 0.003 

[ ]3 0 0−  -0.030 0.003 -0.001 0.180 0.007 0.005 

[ ]6 0 0−  0.144 0.010 -0.001 0.309 0.011 0.008 

[ ]9 0 0−  0.743 0.027 -0.003 0.407 0.014 0.011 

[ ]12 0 0−  0.888 0.030 0.001 0.265 0.012 0.010 

[ ]15 0 0−  1.284 0.039 -0.000 0.249 0.011 0.007 

[ ]20 0 0−  4.601 0.126 -0.017 0.430 0.019 0.014 

[ ]6.45 0.5 0−  0.177 0.011 -0.002 0.323 0.011 0.009 

[ ]6.45 1.0 0−  0.137 0.008 -0.002 0.223 0.009 0.008 

[ ]6.45 1.5 0−  0.045 0.003 -0.002 0.130 0.008 0.005 

[ ]6.45 2.0 0−  0.085 0.005 -0.002 0.101 0.008 0.005 

[ ]6.45 0 0.5−  0.210 0.018 -0.002 0.344 0.015 0.014 

[ ]6.45 0 1.0−  0.218 0.016 -0.002 0.284 0.014 0.012 

[ ]6.45 0 1.5−  0.265 0.012 -0.004 0.330 0.011 0.009 

[ ]6.45 0 2.0−  0.182 0.008 -0.004 0.263 0.008 0.006 

 

Table 6 Analysis of the convergence of the filter (moments of inertia) 
 

CoM
D
r

 Ixx
e  Iyy

e  
Izz

e  Ixy
e  

Ixz
e  Iyz

e  
Ixx

σ  Iyy
σ  

Izz
σ  Ixy

σ  
Ixz

σ  Iyz
σ  

[ ]0 0 0  -16.4 -8211.6 3720.2 287.7 -27.9 134.4 18.1 9355.8 8362.9 269.1 138.9 995.8 

[ ]3 0 0−  -9.7 274.2 532.5 72.5 -7.8 -18.1 17.6 6488.4 6489.0 204.6 144.5 180.3 

[ ]6 0 0−  -9.5 -2909.8 -2888.9 148.8 -7.1 -7.6 17.5 5821.5 5822.3 191.0 144.2 53.4 

[ ]9 0 0−  -12.7 -9308.3 -9299.8 303.5 -30.8 -2.6 17.5 5153.0 5154.2 174.9 134.0 25.7 

[ ]12 0 0−  -10.1 -8198.6 -8203.3 241.9 21.4 2.7 16.9 2520.1 2521.4 105.0 90.6 5.8 

[ ]15 0 0−  -10.1 -9394.8 -9402.5 264.8 6.0 0.6 16.9 1894.3 1894.9 81.2 51.5 3.2 

[ ]20 0 0−  -24.3 -25748.7 -25764.6 688.3 -97.3 -2.3 17.1 2445.9 2447.1 106.7 78.6 6.5 

[ ]6.45 0.5 0−  -6.7 -3298.5 -3314.6 143.5 -22.7 -1.7 18.0 5723.7 5725.9 195.7 152.0 63.1 

[ ]6.45 1.0 0−  -2.2 -2657.8 -2664.6 78.6 -26.4 1.2 17.7 4078.8 4080.5 156.9 123.4 22.9 

[ ]6.45 1.5 0−  -0.1 -934.5 -933.6 -2.5 -12.4 0.2 17.7 2173.9 2174.9 81.4 73.9 3.8 

[ ]6.45 2.0 0−  -1.6 -1472.7 -1474.4 20.8 -27.1 -0.7 17.0 1617.5 1618.1 66.0 64.4 3.8 

[ ]6.45 0 0.5−  -16.5 -3839.4 -3869.5 263.2 -30.9 -4.3 18.9 6027.9 6027.9 260.2 244.6 74.6 

[ ]6.45 0 1.0−  -11.2 -3955.3 -3972.7 223.7 -28.9 4.0 19.9 4977.1 4979.4 238.4 211.2 21.3 

[ ]6.45 0 1.5−  -10.7 -4732.1 -4745.6 164.0 -45.2 -2.9 17.7 5749.0 5750.6 191.2 142.0 33.6 

[ ]6.45 0 2.0−  -7.7 -3238.5 -3237.4 90.0 -35.7 -0.0 16.6 4458.7 4459.8 135.2 78.3 20.7 
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C. Realignment Maneuver Results 

Once correctly estimated the position of the overall system’s center of mass, the required realignment maneuver 

can be performed. The configuration of the manipulators before and after the realignment maneuver is sketched in 

Fig. 12, clearly showing the relative motion produced between the target and the chaser. The effectiveness of the 

simulated maneuver is presented in Fig. 13, where it is possible to notice that the initial misalignment of the center 

of mass is corrected in about 30s .   

During this alignment, the end effectors do not lose their clamping point on the fairing, and the motion is 

obtained only by means of the changes in the links’ configuration. The manipulator joints’ behavior for the three 

robotic arms and the torques applied to the joints during the maneuver are shown in Fig. 14 and in Fig. 15, 

respectively. 

 

 
Fig. 12 System configuration before (on the left) and after (on the right) the alignment maneuver 

 

 

 
Fig. 13 Center of mass misalignment with respect to the thrust direction 

 

 

 
Fig. 14 Manipulator joint angles during the alignment maneuver 
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Fig. 15 Torques applied to the joints during the alignment maneuver  

D. Propulsive phase results 

Once that the stabilization, de-tumbling and the realignment maneuvers have been accomplished, the de-orbit 

phase can take place by means of a 500N  thrust applied in the T0 position in Fig. 5. To gain some insights about 

the effects of the misalignment of the center of mass with respect to the thrust direction, a comparative analysis has 

been done between aligned- and not aligned-thrusting cases. In both the cases, the reference frame associated to the 

system of bodies 
O

Σ  is completely aligned with the inertial reference frame and the thrust is applied at time 5
b

t s= .  

Fig. 16 reports the Euler angles representing the attitude of the system during the non-aligned propulsive phases. 

The main effect of the misalignment of the center of mass, which is located above the thrust direction 

( [ ]0.0 0.30 0.02
CoM

m m m∆ =
r

), is to decrease the pitch angle down to 20deg− in 30s . The roll and yaw angles 

diverge with quite limited rates: during the 30s of the burning phase, the roll angle increase its value up to 1.5deg  

and the yaw angle up to 2.7deg . It is possible to suppose that these two last rates can be compensated by some 

limited thrust pulses along directions normal to the main thrust or by limited attitude corrections applied to the 

chaser. On the other hand, the larger pitch motion rate does not allow this kind of solution and the only way to solve 

the problem is to perform a re-alignment maneuver by means of the robotic manipulator. 

 
Fig. 16 Euler angles representing the system’s attitude during the propulsive phase (misaligned case) 

 

The results of the re-alignment maneuver are evident in the Euler angles behavior represented in Fig. 17. In 

particular the thrust, which starts at 5
b

t s= , produces limited rates about all the three directions: the roll angle does 
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not changes, while the pitch and yaw angles have variations of about 0.2deg in 30s , essentially due to the remaining 

misalignment after the maneuver.  

 
Fig. 17 Euler angles representing the system’s attitude during the propulsive phase (aligned case) 

 

VI. Conclusion 

The paper discusses the issue of the alignment between the center of mass and the thrust direction arising after 

the grasping phases of an on-orbit servicing (or debris removal) mission, in preparation for further maneuvers.  

The problem of the estimation of the a-priori unknown moments of inertia and the center of mass position of the 

resulting multibody has been first analyzed. Measurements of the angular rates produced by a sequence of perfectly 

known thrust pulses are considered as available data. The extended Kalman filter has been identified as suitable 

estimation tool, and numerical simulations show that this method produces reliable results. A specific aspect of the 

estimation process is that only the components of the center of mass position vector normal to the thrust direction 

can be evaluated. The necessity of having different thrust directions is therefore mandatory, in order to reconstruct 

completely the mass distribution on the system. The estimation of the moments of inertia is more challenging, with 

the Kalman filter converging slowly with respect to the case of center of mass.  

A numerical robustness analysis has been also numerically performed in order to investigate the sensitivity of the 

filter in presence of greater misalignment with respect to the nominal case. The obtained results show that the 

estimation is successful when the error on the initial guess is not too large. 

The correct knowledge of the position of the center of mass and of the moment of inertia of the system is 

mandatory for the success of the following re-alignment maneuver. This maneuver can be performed by a 

reconfiguration of the links of the manipulator that operated the grasping, while the end effectors of the same arms 

do not lose their clamping point on the target. The actions to be commanded to the motors of the robotic arms are 

computed via the Jacobian transpose control approach. Numerical simulations proofing the suitability of the 

proposed technique are presented. 

As a result of this method, every following maneuver involving a thrust and operated by the servicing platform 

can be correctly exploited, neglecting any risk coming from the misalignment, even if the thrusting pulse – as in the 

case of a debris removal mission aiming to destroy the target by means of a forced re-entry – should be extremely 

large. 

Appendix 

The derivation of the Jacobian matrix by means of the Denavit-Hartenberg approach is a procedure commonly 

used in terrestrial robotic systems
15

. The derivation starts from the definition of the reference frames associated to 

the link of the manipulator by following the Denavit-Hartenberg conventions
16

 and then uses the homogeneous 

matrix for representing the mutual position and attitude between two neighbor links as follows: 
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1, 1,

1,
0 1 0

0 0 0 1

i i i i i i

i i i i i i

i i

i i i i

i

i

i

i i

c s c s s a c

s c c c s a sD

s c d

ϑ ϑ ϑα α

α α

α

ϑ

ϑ ϑ ϑ ϑ

α

− −
−

− 
 

−   
= =   
   

  

R
M

r

 (31) 

 

where 
i

a , 
i

d , 
i

α  and 
i

ϑ  (already reported in Table 2 for the case under investigation) are the length, the offset, the 

torsion angle and the joint rotation angle, respectively. The direction of the axis of the revolute joint associated to 

the motion of the i-th link with respect to the previous one can be represented by the matrix: 

  

1,

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

i i−

− 
 
 =
 
 
 

L  (32) 

 

It is possible to report this direction to the reference frame associated to the base of the manipulator (0) by applying 

the following rule: 
 

( ) ( )0 0 1

0,1 1,2 i 2,i 1 0,1 1,2 i 2,i 1 0, 1 0

1

1, 1, 1, , 1i ii i i i i i

− −

− − − −− − −− −= =L M M M L M M M M L MK K  (33) 

 

where the resulting position matrix  
0, 1i−M is obtained as the product of the matrices relevant to the sequence of the 

links from the base 0 to the i-th body of the kinematic chain. The resulting matrix 0

1,i i−L  has the following structure: 

 

0 0 0

1, 1, 1,

0 0 0

0 1, 1, 1,

0 0 0

1, 1,

,

1,

1

0

0

0

0 0 0 0

z y x

i i i i i i

z x y

i i i i i i

y x y

i i i i i

i

i

i

L L T

L L T

L L T

− − −

− − −

− − −

−

 −
 

− =
 −
 
 

L  (34) 

 

where 0

1,

x

i i
L − , 0

1,

y

i i
L −  and 0

1,

z

i i
L −  are the components of the unit vector representing the rotation of the i-th link with 

respect to the 0-th reference frame, due to the motion of the joint between the (i-1)-th and i-th link. In the same 

way 0

1,

x

i i
T − , 0

1,

y

i i
T −  and 0

1,

z

i i
T −  are the components of the unit vector representing the translation of the i-th link with 

respect to the 0-th reference frame, due to the motion of the joint between the (i-1)-th and i-th link. 

The Jacobian matrix, representing the motion of the end effector with respect to the point where is attached the 

manipulator, is built by selecting the translation unit vector components ( 0

1,

x

i i
T − , 0

1,

y

i i
T −  and 0

1,

z

i i
T − ) for each joint of 

the manipulator and collecting them as follows: 
 

0 0 0

0,1 1,2 1,N

0 0 0

0,1 1,2 1,N

0 0 0

0,1 1,2 1,N

x x x

N

y x x

N

z x x

N

T T T

T T T

T T T

−

−

−

 
 

=  
 
 

J

L

L

L

 (35) 

 

This matrix allows to formulate the relationship between the end effector velocity and the joints’ coordinates 

rates Q&  by means of: 

0 Q
ee

V = J
r

&  (36) 
 

which can be used for the Jacobian transpose control approach as shown in previous Eq.(25). 
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