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LACUNARY GENERATING FUNCTIONS OF HERMITE

POLYNOMIALS AND SYMBOLIC METHODS

G. DATTOLI, B. GERMANO, M.R. MARTINELLI, P.E. RICCI

Abstract. We employ an umbral formalism to reformulate the theory of Her-

mite polynomials and the derivation of the associated lacunary generating
functions.

1. Introduction

In a paper of few years ago Gessel and Jayawant [6] have discussed a triple
lacunary generating function for Hermite polynomials. The Authors employ two
different methods, one of umbral nature, the other based on combinatorial argu-
ments.

In this paper we comment on the umbral technique proposed in [6], discuss
its link with previously developed formalisms and suggest extensions, allowing the
umbral treatment of families of Hermite like polynomials.

The 2-variable polynomials, defined by the series [1]

Hn(x, y) = n!

[n2 ]∑
r=0

xn−2 ryr

(n− 2 r)! r!
(1.1a)

belong to the Hermite-like polynomials. This family of polynomials has many
generalization and sometimes there is some confusion in the literature, regarding the
relevant notation. For reasons which will be clarified in the following, they should

be denoted by H
(2)
n (x, y) and should be referred to as “second order two variable

Hermite polynomials”, we will however keep the upper index only for polynomials
with order > 3 or add it whenever strictly necessary to avoid confusion.

The function generating (1.1a) reads

∞∑
n=0

tn

n!
Hn(x, y) = ex t+y t

2

. (1.1b)

A remarkable property is the operational definition [3]

Hn(x, y) = ey ∂
2
xxn (1.2)
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due to the fact that they are a solution of the partial differential equation

∂yF (x, y) = ∂2xF (x, y), (1.3)

with the “initial condition”

F (x, 0) = xn . (1.4)

For this reason they are also defined “heat polynomials” [10].
From equation (1.1a) we derive the boundary condition at x = 0

Hn(0, y) = n!
y
n
2

Γ
(
n
2 + 1

) ∣∣∣cos
(
n
π

2

)∣∣∣ . (1.5)

The use of equation (1.2) is extremely useful, for example we can derive straight-
forwardly the double lacunary Hermite generating function, which can be formally
written as

∞∑
n=0

tn

n!
H2n(x, y) = ey ∂

2
xex

2t . (1.6)

A definite meaning to the rhs of equation (1.6) is obtained through the application
of the Weierstrass Gauss transform [8]

ey ∂
2
xf(x) =

1

2
√
π y

+∞∫
−∞

e−
(x−ξ)2

4 y f(ξ) dξ (1.7)

which allows the derivation of the generating function (1.6) according to the fol-
lowing expression

∞∑
n=0

tn

n!
H2n(x, y) =

1√
1− 4 y t

e
x2t

1−4 y t ,

|t| < 1
4 |y|

(1.8)

which is sometimes called Doetsch rule [5].
The procedure we have adopted to derive equation (1.8) can be generalized to

get the following generalization of the Doetsch rule

∞∑
n=0

tn

n!
H2n+l(x, y) = ey∂

2
x

(
et x

2

xl
)

=
1√

1− 4 y t
e

x2t
1−4 y t

Hl

(
x√

1−4 y t , y
)

(1− 4 y t)
l
2

,

|t| < 1

4 |y|
.

(1.9)

It is evident that the operational method exploited so far can be extended to higher
order lacunary generating functions and we will show, in the forthcoming sections,
that it may become a fairly powerful tool once complemented with a notation of
umbral nature.
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2. Umbra and Hermite polynomials

In a previous investigation we have shown that symbolic methods seem to be
tailor suited to deal with the properties of Bessel functions and Laguerre polyno-
mials as well [2]. The methods we have developed largely rely on techniques of
umbral type and therefore in order of treating Hermite polynomials we introduce
the following “umbra”

ĥryϕ0 =
y
r
2 r!

Γ
(
r
2 + 1

) ∣∣∣cos
(
r
π

2

)∣∣∣ . (2.1)

Which reduces, for y = 1
2 , to an analogous quantity defined in [6]. By such a

notation we can redefine the Hermite polynomials as

Hn(x, y) =
(
x+ ĥy

)n
ϕ0 . (2.2)

According to equation (2.2) the Hermite polynomials are reduced to the n-th power
of a binomial. All the relevant properties can be obtained by handling equation
(2.2) by means of elementary algebraic tools.

The exponentiation of the umbra ĥy will be particularly important in the present
context, we note therefore that

eĥy zϕ0 =

∞∑
r=0

(
ĥy z

) r
r!

ϕ0 = ey z
2

(2.3a)

and

eĥ
2
y zϕ0 =

1√
π

+∞∫
−∞

e−ξ
2+2 ξĥy

√
zϕ0dξ =

1√
1− 4 y z

,

|z| < 1

4 |y|
.

(2.3b)

Which is just a consequence of equation (2.3a), if we note that

eĥ
2
yzϕ0 =

1√
π

+∞∫
−∞

e−ξ
2+2 ξ ĥ y

√
z dξ ϕ0 =

1√
π

+∞∫
−∞

e−ξ
2+2 ξ ĥy

√
zϕ0 dξ

=
1√
π

+∞∫
−∞

e−ξ
2(1−4 y z) dξ.

(2.4)

The Doetsch formula and its extension can be therefore derived by the use of the
identity

∞∑
n=0

tn

n!
H2n(x, y) = e(x+ĥy)

2tϕ0 =
1√
π

+∞∫
−∞

e−ξ
2+2 (x+ĥy)

√
tξϕ0 dξ . (2.5)
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Let us now consider the same problem from a different point of view and write

∞∑
n=0

tn

n!
H2n(x, y) = e(x+ĥy)

2tϕ0 = ex
2teĥ

2
y t+2 ĥy x tϕ0

= ex
2t
∞∑
r=0

ĥry
r!
Hr(2x t, t)ϕ0 = ex

2t
∞∑
r=0

yr

r!
H2r(2x t, t)

(2.6)

which has been derived by using equation (1.1b), by comparison with the Doetsch
rule equation (2.6) yields the operational identity

eĥ
2
y t+2 ĥy x tϕ0 =

1√
1− 4 y t

e
4 y (t x)2

1−4 y t . (2.7)

Before going further let us note that the third order Hermite polynomials [3]

H(3)
n (x, y, z) = n!

[n3 ]∑
r=0

zrHn−3 r(x, y)

r! (n− 3 r)!
(2.8)

can be defined through the generating function

∞∑
n=0

tn

n!
H(3)
n (x, y, z) = ex t+y t

2+z t3 . (2.9)

On account of equation (2.2) we can write the triple lacunary Hermite generating
function as

∞∑
n=0

tn

n!
H3n(x, y) = et (x+ĥy)

3

ϕ0 . (2.10)

Which, according to equation (2.9), allows the following conclusion

∞∑
n=0

tn

n!
H3n(x, y) = et x

3
∞∑
r=0

ĥry
r!
H(3 )
r (3x2t, 3x t2, t)ϕ0

= et x
3
∞∑
r=0

yr

r!
H

(3 )
2 r (3x2t, 3x t2, t) .

(2.11)

Which can be worded as it follows: the triple lacunary generating function of second
order Hermite polynomials, can be expressed in terms of double lacunary generating
function of third order Hermite polynomials.

3. The associated Hermite polynomials

In analogy with the case of Laguerre polynomials [2] we introduce the associated
Hermite polynomials, which, according to the present formalism, read

Hn(x, y|p) = ĥpy

(
x+ ĥy

)n
ϕ0

= n!

n∑
r=0

(r + p)!y
r+p
2 xn−r

Γ
(
r+p
2 + 1

)
(n− r)!

∣∣∣cos
(

(r + p)
π

2

)∣∣∣ . (3.1)

They cannot be identified with the generalized heat polynomials [8], and, within
the present context, deserve a separate treatment.
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According to the previous definition we can “state” the following index-duplication
formula

H2n(x, y) = (ĥy + x)n(ĥy + x)nϕ0

= n!

n∑
s=0

xn−s

(n− s)! s!
Hn(x, y|s)

(3.2)

and argument-duplication formula

Hn(2x, y) =

[(
ĥy
2

+ x

)
+

(
ĥy
2

+ x

)]n
ϕ0

=

n∑
s=0

(
n

s

) s∑
r=0

(
s

r

)
xr

2s−r
Hn−s

(
x,
y

2
|s− r

)
.

(3.3)

It is furthermore easily checked that

xn =
[(
x+ ĥy

)
− ĥy

]n
ϕ0 =

n∑
r=0

(−1)r
(
n

r

)
Hn−r(x, y|r) (3.4)

and that

Hn+m(x, y) = (ĥy + x)m (ĥy + x)nϕ0

=

m∑
r=0

(
m

r

)
xm−rHn(x, y|r) .

(3.5)

The last identity is a reformulation of the Nilsen theorem, concerning the sum of
the indices of Hermite polynomials [1]. The previous results (3.2)-(3.5) occur in
the literature in different forms [4] and in the concluding section we will comment
on the differences between the ordinary formulation and the ones presented in this
paper.

Even though not explicitly mentioned the Hermite umbra can be raised to any
real power, and this allows noticeable freedom in guessing possible generalizations.
A fairly direct example is provided by the following extension

Hn(x, y |β;α) = ĥβy

(
x+ ĥαy

)n
ϕ0 . (3.6)

Yielding a family of polynomials with generating function

∞∑
n=0

tn

n!
Hn(x, y |β;α) = ex ty

β
2 eα, β(y

α
2 t),

eα, β(x) =

∞∑
r=0

Γ(α r + β + 1)xr

Γ
(
α r+β

2 + 1
)
r!

∣∣∣∣cos

(
α r + β

2
π

)∣∣∣∣ . (3.7)

Their properties can easily be studied and they are framed within the context of
the Sheffer family, they can accordingly be defined through the operational rule

Hn(x, y |β;α) = y
β
2 eα, β(y

α
2 ∂x)xn (3.8)

In the following part of the paper we will discuss further elements characterizing
the usefulness of the umbral point of view to the theory of Hermite polynomials.
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4. Umbra, Higher order Hermite polynomials
and final comments

The Hermite polynomials, defined through the operational identity [3]

H(m)
n (x, z) = ez ∂

m
x xn (4.1)

are specified by the series

H(m)
n (x, z) = n!

[ nm ]∑
r=0

xn−mrzr

(n−mr)! r!
. (4.2)

They can reduced to the n-th power of a binomial by introducing the umbra

mĥ
r
yϕ0 =

y
r
m r!

Γ
(
r
m + 1

)Am,r
Am,r =

(
1, r = mp

0, otherwhise

)
, p ≡ integer .

(4.3)

Which allows to define them as

H(m)
n (x, z) = (mĥz + x)nϕ0 . (4.4)

It is clearly evident that not too much effort is necessary to study the relevant
properties, which can be derived using the same procedure adopted for the second
order case.

We can combine the Hermitian umbra to get further generalizations, as for the
three variable third order Hermite polynomials, which, according to the previous
formalism, can be defined as

H(3)
n (x, y, z) = (3ĥz + 2ĥy + x)nϕ0,zϕ0,y . (4.5)

Thereby we find

H(3)
n (x, y, z) =

n∑
s=0

(
n

s

)
(3,2)ĥ

s
z, yx

n−sϕ0,zϕ0,y,

(3,2)ĥ
s
z, y =

s∑
r=0

(
s

r

)
3ĥ
s−r
z 2ĥ

r
y .

(4.6)

The extension of the method to bilateral generating functions is quite straightfor-
ward too. We consider indeed the generating function

G(x, y; z, w| t) =

∞∑
n=0

tn

n!
Hn(x, y)Hn(z, w)

=

∞∑
n=0

tn

n!
(ĥy + x)nHn(z, w)ϕy,0

= e(ĥy+x) z t+[(ĥy+x) t]
2
wϕy,0

(4.7)

the use of our technique yields

G(x, y; z, w| t) =
1√

1− 4yt2w
e

(x2w+y z2) t2+x t z

1−4 y t2w . (4.8)

Exotic generating functions involving e.g. products of Laguerre and Hermite poly-
nomials can also be obtained and will be discussed elsewhere.
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The use of umbral methods looks much promising to develop a new point of view
on the theory of special polynomials and of special functions as well.

Just to provide a flavor of the directions along which may develop future specu-
lations, we consider the definition of the following umbra

Ĥn
x,yϕ0 = Hn(x, y) . (4.9)

Accordingly we can write

et Ĥx,yϕ0 = ex t+y t
2

(4.10)

and also
∞∑
n=0

tn

n!
H2n(x, y) = et Ĥ

2
x,yϕ0

=
1√
π

+∞∫
−∞

e−ξ
2+2 ξ Ĥx,y

√
tdξ ϕ0

=
1√
π

+∞∫
−∞

e−(1−4 y t) ξ
2+2 ξ x

√
tdξ =

1√
1− 4 y t

e
x2t

1−4 y t .

(4.11)

Let us now consider the following integral

I (x, y) =

+∞∫
−∞

e−z
2Ĥx,− y dz ϕ0 (4.12a)

equivalent to

I(x, y) =

+∞∫
−∞

e−y z
4−x z2d z =

+∞∫
0

e−s x−s
2ys−

1
2 ds . (4.12b)

The same result will be now derived using a symbolic procedure, based on the
application of the Ramanujan master theorem [7], which allows to write the formal
solution of the integral in equation (4.12a) according to the identity

I (x, y) =
√
π Ĥ

− 1
2

x,−yϕ0 . (4.13)

We are therefore faced with the necessity of specifying the meaning of the Hermite
umbra raised to a negative fractional power.

The use of standard Laplace transform methods yields

Ĥ
− 1

2
x,−yϕ0 =

1

Γ
(
1
2

) +∞∫
0

e−sĤx,− ys−
1
2 dsϕ0 =

1√
π

+∞∫
0

e−s x−s
2ys−

1
2 ds (4.14)

which correctly reproduces equation (4.12b). This is quite a significant result, which
ensures that the formalism has a very high level of flexibility.

It is also interesting to note that the “Fourier” transform

F̂ (f ; k, β)ϕ0 =
1√
2π

+∞∫
−∞

f(x) ei xĤk, βdxϕ0 (4.15)

can be viewed as a kind of Gabor transform.
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The technique we have discussed in the paper is tightly bound to the method of
quasi-monomials developed in [9], provided that we make the following identification(

x+ ĥy

)
→ (x+ 2 y ∂x) . (4.16)

The differential operator on the left is used to define the Hermite polynomials as

Hn(x, y) = (x+ 2 y ∂x)
n

1 . (4.17)

There are certain advantages offered by the umbra method with respect to the
monomiality technique, which are all associated with the fact that in the former
case one deals with commuting operators.
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