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Abstract

Metamaterials are materials especially engineered to have a peculiar physical

behaviour, to be exploited for some well-specified technological application. In

this context we focus on the conception of general micro-structured continua,

with particular attention to piezoelectromechanical structures, having a strong

coupling between macroscopic motion and some internal degrees of freedom,

which may be electric or, more generally, related to some micro-motion. An

interesting class of problems in this context regards the design of wave-guides

aimed to control wave propagation.

The description of the state of the art is followed by some hints addressed

to describe some possible research developments and in particular to design

optimal design techniques for bone reconstruction or systems which may block

wave propagation in some frequency ranges, in both linear and non-linear fields.

Keywords: Metamaterials, micro-structured media, micropolar continuum,

micromorphic continuum, variational principles

1. Introduction

At the very beginning of this paper the authors clarify that the use of the

word metamaterial is intended as a synonym of microstructured continuum.

∗Corresponding author
Email address: ivan.giorgio@uniroma1.it (Ivan Giorgio)

Preprint submitted to Journal of LATEX Templates January 3, 2014



One could question this choice, but, according to (Eringen, 2001), whenever a

continuum model is applicable then a suitable microstructural set of kinematical5

descriptors can be determined which effectively describe the considered complex

system. Of course when wavelengths are small enough to interact with the

discrete microstructure then continuum models will not be applicable. We limit

ourselves, therefore, to deal with wave phenomena not influenced by the very

fine length micro-scale.10

Metamaterials are materials which are designed to have exotic behaviour:

the concept has been first conceived for optical devices. Therefore, very often

one talks about mechanical metamaterials, when the exotic behaviour is limited

to mechanical effects, as e.g. very negative Poisson effects.

This paper is based on a really simple idea: construct a bridge between15

two different cultural environments which address the same relevant problems.

Metamaterials are studied and conceived by physicists to tackle problems and

applications not yet considered in engineering sciences; at the same time the

community of continuum mechanics nearly completely ignores what physicists

devise and develop in the same field. This review intends to fill a gap in or-20

der to stimulate a parallel development of the these theories and to near not

communicating scientific groups.

The mathematical formalism chosen thereinafter is that preferred by physi-

cist, like Landau type variational principles, and the treated subjects are chosen,

in the opinion of the authors, from those considered nowadays more important25

by applied mechanicians.

The capability of continuum theories to describe the time evolution and the

deformation of the micro-structure of complex mechanical systems was recog-

nised in the very first formulations of continuum mechanics, as in the pioneering

work by Piola (Piola, 1846). He was lead by stringent physical considerations30

to introduce higher gradients of displacement field, as necessary independent

variables, in the constitutive equation for the deformation energy of continu-

ous media. For a more modern interpretation of this subject refer to (Mindlin,

1964, 1965; Mindlin, Eshel, 1968; Toupin, 1962, 1964; Eringen, 1999, 2001, 2002;
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dell’Isola, Seppecher, 1995; dell’Isola, Sciarra, Vidoli, 2009; Sciarra, dell’Isola,35

Coussy, 2007; Auffray, Bouchet, Brechet, 2009).

However in a similar period, while Piola was producing his papers, Cauchy

and Poisson obtained a description, with a very elegant and effective format,

for continuum mechanics in which:

i) the displacement from a reference configuration is the only kinematic40

descriptor;

ii) the crucial conceptual tool is Cauchy stress which is constitutively related

only to the first gradient of displacement;

iii) the crucial postulates are those concerning balance of mass, linear and

angular momentum and, when necessary, energy.45

The Cauchy-Poisson format is usually very effective to describe the mechan-

ical behaviour of a very wide class of natural and also artificial materials. Nev-

ertheless, when considering materials with very well-organised microstructures,

subjected to particular loads and/or boundary conditions, Cauchy’s continuum

theory may not be accurate. This is the case of some engineered materials hav-50

ing high contrast of material properties (Alibert, Seppecher, dell’Isola, 2003;

dell’Isola, Rosa, Woźniak, 1997, 1998; Ferretti et al., 2013; Pideri, Seppecher,

1997; Camar-Eddine, Seppecher, 2002, 2003; Contro, Poggi, Cazzani, 1988) or

for some natural materials with highly heterogeneous hierarchical microstruc-

tures (Buechner, Lakes, 2003). In all these cases, the introduction of more55

sophisticated models is mandatory in order to satisfactory catch the features of

the mechanical behaviour of such complex materials.

Many and unexpected effects on wave propagation can be mathematically

predicted and described in the study of continua with micro-structures (Mank-

telow, Leamy, Ruzzene, 2013a,b; Narisetti, Ruzzene, Leamy, 2011, 2012; Placidi60

et al., 2013; Rosi, Giorgio, Eremeyev, 2013; Rosi, Madeo, Guyader, 2013; dell’Isola,

Madeo, Placidi, 2012; Eremeyev, 2005; Altenbach et al., 2010).

The intent of this review is to indicate the importance of the aforemen-

tioned effects and to direct the investigation towards those among them having

engineering relevance.65
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We want to underline that some mathematical results, as those in Ghiba et

al. (2013) and Neff et al. (2013), together with the analysis developed in the

framework of continuum mechanics (dell’Isola, Madeo, Placidi, 2012; Placidi

et al., 2013), can produce interesting hints useful to investigate on exotic ef-

fects, i.e. unconventional dynamic behaviours, which can be exploited in engi-70

neering applications. For instance, the singular model studied in Ghiba et al.

(2013) attracted the attention of the authors because of the difficulties to define

some technical upper bounds for the solutions of formulated partial differential

equations (PDEs). However the singularity pointed out by the mathematical

difficulties is an indication of some peculiarities of this case of micro-morphic,75

Mindlin-type, micro-structured continua. These peculiarities, afterwards stud-

ied and not yet completely described in Neff et al. (2013), promise interesting

and probably important applications.

In Mindlin (1964) Mindlin excludes from his analysis the metamaterials con-

sidered in Ghiba et al. (2013) and Neff et al. (2013) since their deformation80

energy is not definite positive as a function of the defined deformation mea-

sures: with this meaning the word singular used in a previous sentence should

be interpreted.

The challenge consist in using mathematics, continuum modelling, numerical

simulations techniques and experiments to determine those material properties85

which may play a significant role in future technological advances.

In the section dealing with the research perspectives, possible developments

are imagined from an applicative point of view.

The literature about metamaterials is enormous and in this paper only some

instances are cited.90

2. A Matter of Principle

We assume that every physical phenomenon can be described by means of a

maybe modified or improved version of the Principle of Least Action (Hellinger,

1913). The whole mathematical content of the present work actually is re-
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duced to a general formulation of this Principle and on a series of examples,95

in which particular Lagrangian functions and, possibly, particular Hamilton-

Rayleigh dissipation functionals are specified to deals with a particular class of

phenomena.

2.1. The Principle of Least Action

As discussed e.g. in dell’Isola, Placidi (2012), to formulate a mathematical100

model following the spirit of Lagrange one has to:

1. single out the kinematical descriptors which describe the state of the phys-

ical system;

2. choose the set of admissible motions for the system under description;

3. exert the physical intuition to find the right Action Functional whose105

minima are exactly the searched motions.

A configuration is the mathematical object used to model the state of the sys-

tem: the set of possible configurations will be denoted by C. The only possible

way for labelling a configuration is to find the values of the kinematical descrip-

tors corresponding to it.110

The motion is the mathematical model describing the evolution of the sys-

tem: it is a C-valued function defined on time interval (t0, tf ); the set of all

admissible motions will be denoted by M. Of course one has to assume some

regularity properties for the motions in M . For instance: to exclude impulsive

motions, the regularity hypothesis requires that the second time derivative of115

C-valued function exists.

The action is a real-valued function, defined on M: for traditional reasons

and also to avoid to repeat too often the word function, the action is said to be

a functional: that is a function defined in a set of functions.

Finally, to use the Principle of Least Action sometimes it is useful to:120

1. find the Euler-Lagrange conditions which are consequence of the postu-

lated Least Action Principle;

2. interpret these conditions on a physical ground.
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In epochs in which the only method for getting some previsions about the be-

haviour of a physical system was to find a more or less explicit solution of some125

system of differential equations, the determination of Euler-Lagrange minimality

conditions supplied the fundamental calculation tool for the applied scientists.

This is not the case nowadays considering the systematic use of computers in

science. It has become progressively more important to determine the numerical

integration scheme to adopt in order to predict the model behaviuor, in terms130

of the postulated Action Functional: therefore the role of Euler-Lagrange equa-

tions has become less important. However, the presented integration by parts

procedure remains important for determining the boundary conditions.

2.2. Lagrangian Action Functionals: technical details

In our presentation we follow more or less closely Landau, Lifshitz (1975,135

1976, 1977).

Let Ψσ(xµ) be any set of n tensor fields defined on Rm, σ being a multi-index

and µ = 1, 2, ...,m. We do not want to limit ourselves to three-dimensional or

four-dimensional, including time, spaces for defining the fields Ψσ. So e.g., when

dealing with shells we need bi-dimensional domains for Ψσ and when dealing140

with beams we need one-dimensional domains.

If we define the Lagrangian density as:

L

(
xµ,Ψσ,

∂Ψσ

∂xµ

)
(1)

then we can introduce the Action Functional as

A =

∫
T

L

(
xµ,Ψσ,

∂Ψσ

∂xµ

)
(2)

where T is a hyper-volume in the m-dimensional space determined by the xµ.

We remark that this is only a possible choice of Action Functional: however

it seems to be general enough to formulate all the models which were conceived

up to now.145
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2.3. Variation of the Action Functional

We now consider small variations εησ(xµ) of the considered fields Ψσ(xµ):

Ψ̃σ(xµ) = Ψσ(xµ) + εησ(xµ) (3)

where the ησ(xµ) are any set of linearly independent functions of the xµ which

vanish on the part ∂dT (∂dT ⊆ ∂T ) of the boundary ∂T of the hyper-volume T ,

on which the kinematical condition are prescribed. The variation of the action150

functional can then be computed as:

∆A =

∫
T

L

(
xµ, Ψ̃σ,

∂Ψ̃σ

∂xµ

)
−
∫
T

L

(
xµ,Ψσ,

∂Ψσ

∂xµ

)
(4)

The computation of the variation of the Action Functional now proceeds as

follows:

∆A =

∫
T

L

(
xµ,Ψσ + εησ,

∂Ψσ

∂xµ
+ ε

∂ησ
∂xµ

)
−
∫
T

L

(
xµ,Ψσ,

∂Ψσ

∂xµ

)
+O

(
ε2
) (5)

Which, with a slight abuse of notations, can be written at the first order in ε

as:

δA = ε

∫
T

∑
σ

[
∂L

∂Ψσ
ησ +

m∑
µ=1

∂L

∂ (∂Ψσ/∂xµ)

∂ησ
∂xµ

]
(6)

Integrating by parts and recalling that ησ vanish on S it is easy to get:

δA = ε

∫
T

∑
σ
ησ

{
∂L

∂Ψσ
−

m∑
µ=1

∂

∂xµ

[
∂L

∂ (∂Ψσ/∂xµ)

]}

+ ε

∫
∂T/∂dT

∑
σ
ησ

m∑
µ=1

∂L

∂ (∂Ψσ/∂xµ)
Nµ

(7)

where ∂T/∂dT is the symmetric difference between ∂T and ∂dT and Nµ is the

external unit normal of ∂T/∂dT .

Imposing the stationarity condition

δA = 0 (8)
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the arbitrariness of ησ gives, for any σ:

∂L

∂Ψσ
−

m∑
µ=1

∂

∂xµ

[
∂L

∂ (∂Ψσ/∂xµ)

]
= 0, ∀xµ ∈ T (9)

m∑
µ=1

∂L

∂ (∂Ψσ/∂xµ)
Nµ = 0, ∀xµ ∈ ∂T/∂dT (10)

In the case of a discontinuity material surface Σ, with unit normal Nµ, the (10)

have to completed by

m∑
µ=1

[∣∣∣∣ ∂L

∂ (∂Ψσ/∂xµ)

∣∣∣∣]Nµ = 0, ∀xµ ∈ Σ (11)

where [| (·) |] is the jump of (·) across the surface Σ. These equations are known155

as the Euler-Lagrange equations corresponding to the considered Lagrangian

density.

2.4. The Space-Time Case (R4)

Let us now consider the particular case in which m = 4. This case commonly

corresponds to the case xµ = (x1, x2, x3, t). We have that ησ(xµ) are any set

of linearly independent functions of xµ which vanish on the boundary of time

type domain,

ησ(x1, x2, x3, t0) = ησ(x1, x2, x3, t1) = 0

and on the part ∂dV of the boundary ∂V of the volume V , on which the kine-

matical conditions are fixed,

ησ(x1, x2, x3, t) = 0, ∀(x1, x2, x3) ∈ ∂dV, ∀t ∈ [t0, t1] .

It is easy to show that in this particular case equation (7):

δA = ε

∫ t1

t0

dt

∫
V

∑
σ
ησ[

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
]dV

+ ε

∫
∂V/∂dV

∑
σ
ησ

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk +

∫
Σ

∑
σ

[∣∣∣∣∣ησ
3∑
k=1

∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣∣
]
Nk

(12)
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The stationarity δA = 0 of the action implies, for any σ = 1, 2, ..., n,

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
= 0, ∀xk ∈ V (13)

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk = 0, ∀xµ ∈ ∂V/∂dV(14)

3∑
k=1

[∣∣∣∣ ∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣]Nk = 0, ∀xµ ∈ Σ (15)

Which are the standard Euler-Lagrangian equations. We show below how to160

generalise (15) when Σ can freely move.

2.5. Rayleigh-Hamilton Principle

Least Action Principle is not easily adapted to deal with dissipative systems

(dell’Isola, Placidi, 2012). A chance to overcome the related difficulties consists

in postulating the Rayleigh-Hamilton Principle. It is based on the choice of a165

dissipation functional which is a functional of the velocities along the motions.

The first variation with respect to velocities of this functional has to be calcu-

lated on the first variations of motions and to be equated to the first variation

of Action Functional, to get the searched equations of motions.

One can introduce a dissipation functional of the type

D =

∫
T

R

(
xµ, Ψ̇σ,

∂Ψ̇σ

∂xµ

)
(16)

where R is the Rayleigh potential density.170

The first variation of this functional with respect to Ψ̇σ is a linear functional

of the variation of its argument. This linear functional has to be calculated in

ησ and equated to δA in equation 8 to produce the final evolution equations.

Remark that the conditions 9 and 10, 11 are correspondingly modified with the

introduction of derivatives of R.175

2.6. Principle of Virtual Work and Principle of Least Action

Sometimes it is believed that postulation methods based on the Principle of

Virtual Work are much different from those recalled in the previous subsections.

This is not indeed the case, as there is a strict relationship between them.
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The Principle of Least Action, when formulated for action functionals ad-

mitting first differentials, can be regarded as a particular form of the Principle

of Virtual Work. If one can decompose the action into its internal, external and

inertial parts, as follows

A = Aint + Aext + Aine (17)

then

δA = 0 ⇐⇒ δAint + δAext + δAine = 0 (18)

Identifying the decomposed actions with corresponding powers

δAint = Pint δAext = Pext, δAine = Pine (19)

we get

Pint + Pext + Pine = 0 (20)

which is the standard form of Principle of Virtual Power, equivalent to the180

Principle of Virtual Work when action functionals admit first differentials, as

mentioned.

3. State of the Art

In general, metamaterials are artificial materials engineered by assembling

multiple individual elements, usually arranged in (quasi-)periodic patterns, in185

order to show very peculiar and specific physical properties, due to their designed

substructures and not to their composition.

It may be remarked that the expression metamaterial and the early stud-

ies in this field were primarily diffused among the scientific area dominated by

physicists: so first examples of designed metamaterials had very peculiar elec-190

tromagnetic, optical or thermodynamic properties. Subsequently, the so-called

mechanical metamaterials received the attention of scientists: e.g. in Xu et al.

(1999), Engheta, Ziolkowski (2006) and Christensen, de Abajo (2012) mechan-

ical exotic properties were conceived and exploited. These materials may also

10



show interesting coupling phenomena with several thermodynamic or electro-195

magnetic unconventional properties (Berezovski, Maugin, 2005a,b; Berezovski,

Engelbrecht, Peets, 2010; Berezovski, Engelbrecht, Berezovski, 2011; Berezovski,

Engelbrecht, Maugin, 2011; Maugin, Muschik, 1994a,b). These coupling phe-

nomena deserve a great attention as they can be fruitfully developed.

We focus on a small part of the literature on metamaterial: we are interested200

in so-called micro-structured metamaterials, having a behaviour expressible with

continuum models in which along with the placement field other kinematic de-

scriptors are employed. In the rest of this paper we refer to them simply as

metamaterial, but otherwise specified. In this context we mention the classical

works by Eringen (1999, 2001, 2002), Eringen, Suhubi (1964a,b), Sedov (1968,205

1972), Toupin (1962, 1964) and Bleustein (1967), among those which merit

considerable attention.

The idea underlying the theory of micro-structured continua is simple: the

complexity of the structure of some materials or living tissues (Federico, Herzog,

2008b,c; Federico, Gasser, 2010; Madeo, Lekszycki, dell’Isola, 2011; Federico,210

Grillo, 2012; Lekszycki, dell’Isola, 2012) or reinforcements (Nadler, Papadopou-

los, Steigmann, 2006; Ferretti et al., 2013) can be still described by considering

field theories, but with the addition of tensorial fields to account for the time

evolution of micro-structures.

In the formulation of these new models, the problem of determining the most215

suitable evolution equations arises once the kinematic parameters are selected:

in our opinion the most effective method is based on the formulation of a suitable

variational principle, as in the references stemming from the fundamental work

by Lagrange (Lagrange, 1788), e.g. Auffray et al. (2013), Daher, Maugin (1986),

Epstein (2010), Cazzani, Lovadina (1997) Germain (1973a,b), Green, Rivlin220

(1964a), Kroner (1968), Maugin (2013), Sedov (1968), Toupin (1962, 1964) and

Bedford (1985).

Indeed, variational methods have the very positive feature to produce well-

posed mathematical problems, where the corresponding energy and dissipation

functionals are well-behaving, and to lead more easily to the formulation of225
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effective numerical integration schemes.

Of course, in formulation and use of these enhanced field theories, the adop-

tion of Ricci and Levi-Civita indicial notation (Ricci-Curbastro, Levi-Civita,

1900; Lebedev, Cloud, Eremeyev, 2010) and absolute tensor calculus cannot

be avoided and it is simply not conceivable to tackle these theories with a230

component-wise notation. In this context, the differential geometry plays an es-

sential role as it already does in standard continuum mechanics (Epstein, 2010;

Epstein, Segev, 1980; Segev, 1986, 2000; Spivak, 1979).

3.1. Cosserat and micromorphic continua

About fifty years later Piola’s main contributions, his ideas were developed.235

A Lagrangian density example for Piola-type media is

L(∇u,∇∇u, u̇) =
1

2
ρ ‖ u̇ ‖2 +

−
(
µ ‖ sym∇u ‖2 +

λ

2
(tr∇u)

2
+
α

2
‖∇∇u‖2

) (21)

where ρ is the mass density, µ and λ are the Lam parameters, α is the second

gradient stiffness and u is the displacement field.

The Cosserat brothers were among the first authors who complemented, with

additional independent kinematic fields, the standard kinematics constituted by240

a placement field. According to them, these fields are Euler angles, representing

rigid rotations of the microstructure with respect to the overall continuum local

displacement. Cosserat contributions (Cosserat brothers, 1909) were underesti-

mated for other fifty years and only starting from 1960 a group constituted by

notable scientific personalities as Mindlin, Green and Rivlin, Toupin, Eringen245

and Germain (Green, Rivlin, 1964a,b,c, 1965; Mindlin, 1964, 1965; Toupin, 1962,

1964; Eringen, 1999, 2001, 2002; Eringen, Suhubi, 1964a,b; Germain, 1973a,b)

managed to establish, yet with some resistances, the validity of Cosserat’s point

of view.

Actually, Cosserat’s approach can be further generalised including in macro-250

scopic models, along with micro-rotations, also micro-stretches, micro-strains or
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concentrated micro-deformations, so introducing the so-called micro-structured

or micropolar or micromorphic continuum models (Erofeyev, Potapov, 1993;

Potapov, Pavlov, Maugin, 1999; Erofeyev, Pavlov, Leontiev, 2013). These can

be formulated through a postulation process based on the principle of least255

action (Auffray et al., 2013) or on the principle of virtual works (Maugin,

Metrikine, 2010; Maugin, 2013). Later on, alternative postulation procedures,

based on generalised balance laws, have been also attempted (Eringen, 1999,

2001).

Indeed, as already remarked in Piola (1846), it is rather unlikely to achieve260

a standard Cauchy continuum starting from a discrete system with a multi-

length-scale microstructure.

The evolution of non purely mechanical phenomena can be described within

the framework of micromorphic continuum theory: in this context we refer e.g.

to phenomena observed in piezoelectromechanical structures (Vidoli, dell’Isola,265

2000, 2001) where also electromagnetic descriptors are necessary to characterise

the kinematics of the system.

The micromorphic model, as a natural generalisation of the Cosserat ap-

proach, has also mainly been studied in its linearised version. Existence re-

sults for the nonlinear static setting are quite recent (Neff, 2006c; Neff, Forest,270

2007). There are manifold connections to models of gradient continua and

elasto-plasticity, still awaiting closer mathematical inspection (Neff et al., 2009;

Klawonn, 2011).

It has to be explicitly remarked that Piola’s and Cosserat’s models can be

reconciled, i.e. Cosserat reduced to Piola, introducing internal constraints and275

Lagrange multipliers as clearly stated in (Bleustein, 1967): the second gradient

materials can be seen as a particular limit case of the micromorphic media as

they can be obtained from micromorphic ones constraining the micromorphic

tensor to be equal to the classical strain tensor. Actually one can get Piola’s

deformation energies depending on higher gradients of displacement, as a limit of280

many different, physically non-equivalent, more detailed micromorphic models.

To formulate three-dimensional Cosserat theories, the framework built to
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construct Cauchy’s model needs to be deeply modified and in particular the con-

cept of stress needs to be revisited (Neff, 2006a,b; Neff, Jeong, 2009; Pietraszkiewicz,

Eremeyev, 2009). This last difficulty is a serious conceptual one, as Cauchy285

paradigm has become a mental habitude, or even a natural belief, for many en-

gineers and material scientists: as a matter of fact, in the opinion of the authors,

the first scientists who managed to get rid of it were actually physicists.

A Lagrangian density example for Cosserat-type media can be expressed

L(∇u,Q, u̇, Q̇) =
1

2
ρ ‖ u̇ ‖2 +

1

2
η
∥∥∥ Q̇∥∥∥2

+

−
(
µe ‖sym∇u‖2 +

λe
2

(tr∇u)
2

+ µc ‖skew (∇u)−Q‖2 +
α

2
‖Curl (Q)‖2

)
(22)

where ∇u is the gradient of displacement field and the micro-rotation tensor290

Q is a second order tensor associated to the microstructure rotations, ρ is the

density per unit of macro volume of the material, η is the micro-density and

µe,λe, µc and α are elastic coefficients assumed to be constant.

The Cosserat brothers never proposed a linearisation of their intrinsically

nonlinear theory, neither elaborated on any specific constitutive law. The re-295

discovery of the Cosserat approach in the second half of the last century was

mainly restricted to a linearisation of their equations. However, more than 50

years later, no material has been conclusively shown to be a Cosserat material

yet. For the linear Cosserat model and its mathematical complexity we refer to

the discussion in Neff, Jeong (2009) and Neff, Jeong, Fischle (2010). Devoid of300

any physical meaning, the linear Cosserat approach may be used as a regulari-

sation for otherwise ill-posed problems, e.g. in elasto-plasticity (Neff, Wieners,

2003; Neff, Che lmiński, 2005).

The problems with the linear Cosserat model, referred to above, are all

connected to the question of how the Cosserat rotations and the macroscopic305

rotations are locally coupled. This coupling is governed in the linearised model

by the Cosserat couple modulus µc, which penalises the quadratic difference be-

tween micro- and macro-rotation. Its numerical value is under constant debate.
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We run into the role of that modulus later on, again in conjunction with the

micromorphic models.310

A new turn for the Cosserat model can be found in the Neff’s work. With

a closer look to the original nonlinear Cosserat model, he provided the first

existence proof in the geometrically nonlinear case and investigated some phys-

ical applications. As it turned out, the question of how to couple micro- and

macro-rotations in the nonlinear model has different answers. One may use the315

already known linear coupling, relying on the introduction and determination of

the Cosserat couple modulus µc, or one may resort to a truly nonlinear coupling,

as strongly favoured in Neff (2004b) and Münch, Wagner, Neff (2011), in which

a linearisation would turn into classical elasticity without Cosserat effects. The

nonlinear coupling involves much more complicated mathematics which require320

deeper insights in the analytical aspects (Neff, 2002; Neff, Münch, 2008; Neff,

Pompe, 2013).

Let us finally mention a Cosserat success story: the application of the con-

cept in the realm of plates and shells. Here, the introduction of an orthogonal

frame to the shells surface is most natural and is the preferred choice from an325

engineering point of view. The first existence results for the geometrically non-

linear Cosserat plate model has been proposed again by Neff and subsequently

extended to shells (Neff, 2004a; B̂ırsan, Neff, 2013).

3.2. Acoustic metamaterials and wave propagation in micromorphic continua

The concept of acoustic metamaterials is attracting increasingly the interest330

of physicists and mechanicians. It is described and studied in many works: we

refer here e.g. to Engheta, Ziolkowski (2006) or Zouhdi, Ari, Vinogradov (2008).

In this field, the particular shape, geometry, size, orientation and arrange-

ment of metamaterial constitutive elements can affect the propagation of light or

sound waves in a not-yet-observed manner, creating material properties which335

cannot be found in nature.

Particularly promising in the design of metamaterials are those with mi-

crostructures which present high-contrast in microscopic properties: these highly

15



heterogeneous microstructures, once homogenised, produce generalised contin-

uum models (Alibert, Seppecher, dell’Isola, 2003; Forest, Sievert, 2006; Forest,340

2009; Misra, Ching, 2013; Misra, Singh, 2013). In these metamaterials, when

the size of the Representative Elementary Volume (REV) tends to zero, some

of the physical micro-properties characterising the behaviour diverge, while si-

multaneously some others vanish, although the micro-structures remain quasi-

periodical.345

One has to remark that the standard homogenisation techniques need to be

modified and/or generalised in order to be adapted to the process of identify-

ing the macro-properties of metamaterials (Steinmann, Elizondo, Sunyk, 2007;

Sunyk, Steinmann, 2003; Nadler, Papadopoulos, Steigmann, 2006; Misra, Singh,

2013; McBride et al., 2012; dell’Isola, Rosa, Woźniak, 1997, 1998; Andreaus,350

Ruta, 1998).

In literature, attention has been drawn on a particular mechanical meta-

material sub-class, which is significant to the considerations of this paper: the

acoustic metamaterials. To give a hint of the possible applications of the newly

designed metamaterials, we list some papers which are more relevant to our re-355

sults, especially in the perspective of their extension to 2D and 3D systems. In

Lee et al. (2010) a composite medium, exhibiting negative effective bulk modu-

lus or negative effective mass density or both of them, is studied. In Kolpakovs

(1985) and Xu et al. (1999) materials with negative Poisson’s ratio, named aux-

etic materials, were designed. Anisotropic versions of the so-called pentamode360

structures, i.e. having a finite bulk modulus and vanishing shear modulus, are

candidates for effective control of acoustic waves (Christensen, de Abajo, 2012).

In Porubov (2003) amplification of strain waves are investigated.

The papers Neff et al. (2013) and Ghiba et al. (2013) study a large class of

evolution equations governing the propagation of linear waves in micromorphic365

or generalised continua (Placidi et al., 2013; Rosi, Giorgio, Eremeyev, 2013).

A series of papers (Neff, Pauly, Witsch, 2012, 2013), which propose the math-

ematical bases necessary for the formulation of the new relaxed micromorphic

model, are of independent interest.
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The Lagrangian density for the relaxed micromorphic continuum in isotropic,370

linear-elastic case, as proposed in Ghiba et al. (2013) and Neff et al. (2013), can

be introduced

L(u,∇u,P, u̇, Ṗ) =
1

2
ρ ‖ u̇ ‖2 +

1

2
η
∥∥∥ Ṗ∥∥∥2

+

−
(
µe ‖ sym (∇u−P) ‖2 +

λe
2

(tr (∇u−P))
2

+ µh ‖ symP ‖2 +
λh
2

(trP)
2

+

+µc ‖ skew (∇u−P) ‖2 +
αc
2
‖CurlP ‖2

)
(23)

where u is the displacement field and the microstrain tensor P is a second

order tensor which accounts for deformations associated to the medium mi-

crostructure, ρ is the density per unit of macro volume of the material, η is the375

micro-density and µe, µh, µc, λe, λh and αc are elastic coefficients assumed to

be constant.

It is clear that, in further investigations, the great variety of propagating

waves that may exist in micromorphic or complex continua may unfold useful

engineering applications, through the design of particularly tailored metamate-380

rials with up-to-now not imagined features. The problems studied in Neff (2002)

and Neff, Jeong (2009) are the mathematical basis for these developments.

We already mentioned that Bleustein (Bleustein, 1967) shows how Cosserat’s

model reduces to Piola’s. In this sense, the results obtained from the study of

wave propagation in micromorphic media intrinsically contains those of second385

gradient media. Introductory results on wave propagation in second gradient

elastic media have shown a variety of exotic phenomena in mainly shielding

or transmitting through embedded media interfaces. It has been shown that

(dell’Isola, Madeo, Placidi, 2012; Placidi et al., 2013; Rosi, Madeo, Guyader,

2013; Rosi, Giorgio, Eremeyev, 2013), for waves at frequencies sufficiently high390

to interact with the microstructure, the shielding or transmitting properties can

be significantly enhanced. Technologically significant devices may be designed

exploiting such exotic wave propagation properties, for example in the fields

of vibration and acoustic passive control or stealth technology. Some prelimi-
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nary results on the study of wave propagation in micromorphic media indicate395

that, for particular sets of the constitutive parameter values, propagation of

some types of waves can be inhibited or waves that propagate without carry-

ing energy can be also observed. Such exotic frequency-dependent behaviours

are observable as bulk properties of the micromorphic medium, ignoring more

complicated reflection and transmission phenomena at the surfaces of material400

properties discontinuity. This means that well-conceived micromorphic materi-

als may be used as exotic wave-guides which allow, depending on the envisaged

use, to filter and switch on and off some typical waves.

3.3. Functional Structural modifications and their use for designing metamate-

rials405

In the mechanics of materials and structures the concept of “functional struc-

tural modification” has been developed as a modification of a principal structure,

without changing its original uses, aimed at obtaining an engineering collateral

purpose, generally an improvement of the behaviour (Carcaterra, 2005; Car-

caterra, Akay, Ko, 2006; Carcaterra, Akay, 2007, 2011; Altenbach, Eremeyev,410

2008, 2009; B̂ırsan et al., 2012).

Relevant examples of principal structures are systems for carrying loads in

space applications and industrial or space robotic arms affected by forced vi-

brations that, in absence of damping, could eventually have a destructive effect.

In these cases, structural modifications of the principal structures are aimed415

at the addition of some elements that damp vibrations: these devices may be

e.g. arrays of piezoelectric actuators coupled with dissipative electronic circuits

(dell’Isola, Vidoli, 1998b).

In general, a structural modification is the addition of a designed new struc-

ture which –once coupled with the original one– will produce the desired, effi-420

cient effect.

It is our opinion that multidisciplinary studies are very often fruitful and

crucial in technology advancement. On the contrary, a lost awareness in engi-

neering sciences concerns the importance of scientific knowledge in the process of
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conceiving technological applications; interesting considerations on this subject425

are in Russo (2004).

In this context it has to be remarked that the very interesting concepts that

motivated the papers Carcaterra, Sestieri (1995), Carcaterra et al. (2000), Culla,

Sestieri, Carcaterra (2003), Carcaterra (2005) and Carcaterra, Akay (2007) stem

from the thermodynamics and statistical mechanics of irreversible systems. Al-430

though the theory of mechanical vibrations is often considered far from thermo-

dynamics1, these papers show how the concepts, that one may consider very dis-

tant, of irreversibility, Poincar recurrence time and thermodynamic equilibrium

are prolific in this context. Actually in those papers, the concept of structural

modification is considered together with the concept of hamiltonian system and435

internal degrees of freedom: a structure is coupled with many internal extra

degrees of freedom properly designed. In this way, one can trap mechanical

vibration energy for a very long time, related to the Poincar recurrence time,

and thus construct a structure with an effective damping system.

Alternatively, it will be an interesting challenge to design metamaterials440

whose material particles are endowed with such energy sinks. These sinks may

be conceived as some growing micro-structural damage (dell’Isola, Woźniak,

1997a; Misra, Singh, 2013; Rinaldi, Lai, 2007b; Rinaldi, 2013; Yang, Misra,

2010, 2012; Yang, Ching, Misra, 2011; Auffray, Bouchet, Brechet, 2010). In

this case, until the evolution of micro-damages do not affect the macroscopic445

material behaviour, the applied loads is sustained, as the design requires. Of

course a micro-structural yield criterion has to defined to assure the macro-

structural integrity of the metamaterial. This topic is further discussed in some

of the following sections.

1Very often mechanical engineers specialise their skills, alternatively, focusing on or simply

ignoring thermodynamics.
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4. Smart Structures with distributed control450

A class of metamaterials is represented by controlled smart structures, re-

cently introduced to optimise the dissipation of mechanical vibration energy.

The purpose is to tune an electronic circuit network in such a way that the

electric eigenfrequencies always coincide with the mechanical eigenfrequencies

of the structural member to be damped.455

This process is based on the known equivalence concept between structural

members and analogue circuits. The investigations in this field were developed

in the period 1940-1970 for another engineering application, i.e. the design of

analogue computers: the knowledge acquired in that field can be exploited with

these other purposes.460

In dell’Isola, Vidoli (1998a,b), Vidoli, dell’Isola (2000, 2001), Andreaus,

dell’Isola, Porfiri (2004), Maurini, dell’Isola, Del Vescovo (2004), Maurini, Pouget,

dell’Isola (2004, 2006), Porfiri, dell’Isola, Santini (2005) and Giorgio, Culla, Del

Vescovo (2009) the piezoelectric transduction is applied to damp vibrating shells

or beams by means of a multimodal, passive control, obtained designing and cou-465

pling a distributed electronic circuit with exactly the same evolution equations

as those pertaining the structural member.

These metamaterials are based on the following concept: the dynamic evolu-

tion of the structural members is linked via piezoelectric coupling terms, whose

mathematical structure is that of gyroscopic coupling, to the dynamic evolu-470

tion of the micro-structure parameter. The latter is physically associated to

observable electric potentials of a designed electronic circuital network, whose

characteristics can be theoretically determined and physically realised. Evi-

dently, the quality of precision, design and construction of electronic devices

cannot be paralleled by mechanical ones.475

It is reasonable to assume that the Lagrangian density of the homogenised

20



piezo-composite plate is (Alessandroni et al., 2005)

L(u, u̇, ψ̇) =
1
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∂2u

∂x1∂x2

] (24)

in which ρt is the effective mass per unit surface, St is the effective bending

stiffness, νt is the effective Poisson ratio, c is the effective capacitance per unit

surface, g is the effective piezoelectric coupling and u is the transversal displace-480

ment.

The metamaterial is globally behaving as an electromechanical wave-guide

where the electric part is an internal resonator coupled to an oscillator of the

mechanical subsystem.

From a purely mathematical point of view, one observes the following cir-485

cumstances: i) the vibration spectrum of both the mechanical structure and its

electric counterpart are exactly the same and ii) the electric system is thought

as a mirror system whose evolving parameter is the micro-structural kine-

matic descriptor. Hence, piezoelectromechanical structures are particular micro-

structured continua of the kind studied e.g. by Toupin, Eringen and Mindlin490

(Toupin, 1962, 1964; Eringen, 1999, 2001; Mindlin, 1964; Mindlin, Eshel, 1968).

Since piezoelectromechanical structures are controlled systems, the microstruc-

ture is designed as an optimal controller which maximises the mechanical energy

absorption and possibly dissipate it through dampers i.e. electric resistances.

It has to be remarked that, in the mentioned investigations, shells or more495

complex structures are not treated neither nonlinear cases are studied, i.e. only

material and geometric linear, simple systems are considered. So, it could be

very interesting to investigate the behaviour of piezoelectromechanical struc-

tures in the case of nonlinear and more complex structural members.

Moreover, these metamaterials present some stability and bifurcation prob-500

lems, especially when follower forces are considered. In a few papers (Pignataro,

Luongo, 1987; Michel, Limam, Jullien, 2000; Jamal et al., 2003; Luongo, Di
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Egidio, 2005; Luongo, Romeo, 2006; Belyakov, Seyranian, Luongo, 2009; Lu-

ongo, Zulli, Piccardo, 2009; Limam et al., 2010), for cases of similar complexity,

these difficulties are dealt with. A preliminary study, reported in a private505

communication by A. Luongo, seems to indicate that piezoelectromechanical

structures are less stable, in a way not yet rigorously specified, than their origi-

nal mechanical counterpart. Hence, it should be planned a series of theoretical,

numerical and experimental analyses of the bifurcation of piezoelectromechan-

ical structures, using the methods presented e.g. in Luongo (2001), Paolone,510

Vasta, Luongo (2006) and Di Egidio, Luongo, Paolone (2007), aimed at charac-

terising or even exploiting their possible imperfections and at identifying some

of their constitutive parameters. In addition, numerical problems could arise

from strongly coupling systems involved in studies of metamaterials as those

presented in Cazzani, Ruge (2012); Garusi, Tralli, Cazzani (2004)515

4.1. Microstructured continua as damaged body models

Bodies with micro-cracks or other damage mechanisms can be modelled by

means of either discrete methods, producing finite dimensional models, or ho-

mogenised models with extra kinematical descriptors.

Interesting results in this context can be found in Rinaldi, Lai (2007a,b),520

Rinaldi, Krajcinovic, Mastilovic (2007), Rinaldi et al. (2008), Rinaldi (2009),

Yang, Misra (2010) and Misra, Singh (2013), where the final goal is to produce

a macroscopic field theory based on the knowledge, not necessarily detailed, of

the micro-structure of the mechanical system.

To model the damage mechanisms, Eringen continua (Eringen, 1999, 2001,525

2002; Eringen, Suhubi, 1964a,b; Sedov, 1968, 1972; Kroner, 1968) have to be

assumed with the addition of dissipative effects, e.g. via Hamilton-Rayleigh

dissipation potentials, to take into account the irreversible phenomena involving

dissipation of energy.

The phenomena of material transformation due to the damage evolution530

are similar to phase transitions (dell’Isola, Romano, 1987b; dell’Isola, Woźniak,

1997a,b; Eremeyev, Freidin, Sharipova, 2003), with the addition of irreversibility

22



(Cuomo, Contrafatto, 2000; Contrafatto, Cuomo, 2005; Contro, Poggi, Cazzani,

1988). Damage may be described by plastic deformation phenomena (Con-

trafatto, Cuomo, 2002, 2006; Forest, 2009; Ciancio, Carol, Cuomo, 2006, 2007)535

or by crack growth (Andreaus, Baragatti, 2009).

A vibration control may be obtained by degrading part of the mechanical

energy involved in some micro-structural vibrations by means of the dissipation

associated to damage phenomena, like e.g. plastic deformation. This control

can be fruitfully employed as long as the provoked structural modifications do540

not compromise the mechanical properties of the structure.

4.2. Metamaterials designed by species evolution

It has already happened in science that a new field of investigation has

taken advantage of the parallel between structures existing in Nature and human

designed devices.545

A discussion of this deep and interesting topic is not within the scope of this

review: we simply cite here the case of Cybernetics, as an exemplary one.

Exotic behaviour actually means only not-yet-studied behaviour. At present,

materials that are studied and used in the engineering and technology of the XX

century are simple, with the meaning of being sufficiently well modelled with550

the paradigm of Cauchy continuum mechanics.

However, those scientists who tackled the problem of studying living mate-

rials understood that specific tools, much more sophisticated than those used

up to that moment, were necessary. With this respect, it is illuminating the

pioneering work by Wolff (Wolff, 1892).555

The problem of modelling the mechanical behaviour of growing tissues has

been confronted by many researchers: in this context we refer to those belonging

to two groups.

The first one addresses the problem of the bone growth and reconstruction

with the insertion of a graft of artificial bio-resorbable material (Mullender,560

Huiskes, 1995; Madeo, Lekszycki, dell’Isola, 2011; Lekszycki, dell’Isola, 2012;

Madeo et al., 2012). The second group regards the mechanical description of bio-
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logical tissues, with a special emphasis on their micro-structural behaviour (Fed-

erico, Grillo, Herzog, 2004; Federico et al., 2005; Federico, Herzog, 2008a,b,c;

Federico, Gasser, 2010; Rinaldi, 2011; Federico, Grillo, 2012; Bellini, Di Martino,565

Federico, 2013).

The first group of papers is based on the biological knowledge according to

which both the growth and resorption of bone tissue is driven by a stimulus

depending on external mechanical loads. Various models are introduced in the

literature to describe how the stimulus is related to the mechanical excitation

and governs bone remodelling, in a living or reconstructed tissue. While in some

papers (Mullender, Huiskes, 1995) the stimulus is assumed to be affected by the

local state of mechanical deformation and maybe by the its time history, there

is biological evidence that also the neighbouring deformation is involved. This

circumstance plays a dominant role in the phenomena of growth occurring in

reconstructed bones, so needs to be considered. This is done (Madeo, Lekszy-

cki, dell’Isola, 2011; Lekszycki, dell’Isola, 2012; Madeo et al., 2012) introducing

integral operators in order to represent the stimulus S, at point x and time

t, as a linear functional depending on the sensor cell density d and the strain

energy U :

S(x, t) =

∫ t

−∞

∫
Vt

K(x,y, t, τ)U(y, τ)d(y, τ)dydτ − S0(x, t)

where the kernel K(x,y, t, τ) represents the range of influence of sensor cells in

space and time and Vt(x, t) is the volume of the bone tissue in the current config-

uration; S0, possibly depending on the position and time, is the threshold value

of stimulus associated with a biological equilibrium state for which the effect of

bone resorption and synthesis are balanced. In the other words, S represents

the non-local behaviour both in time and space, like in the viscoelasticity or

non-local elasticity (Eringen, Edelen, 1972; Haseganu, Steigmann, 1996; Parks

et al., 2008; Lehoucq, Silling, 2008). If the signal from sensor cells is assumed

instantaneously transmitted, i.e. the transmission time scale is negligible if

compared with the characteristic time of the remodelling phenomena, a simpler
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assumption can be stated

S(x, t) =

∫
Vt

k(x,y)U(y, t)d(y, t)dy − S0(x, t)

where the function k(x,y) is the reduced form of the range of influence of sensor

cells.

The second group of aforesaid papers regards the models for complex bio-

logical tissues, considered as composite materials. For instance, some tissues570

have an internal structure in which a porous matrix filled with an interstitial

fluid is reinforced by impermeable collagen fibres: the modelling of these sys-

tems is motivated by the need to describe the phenomena related to interstitial

fluid flow in articular cartilage. For this purpose, the results in Misra, Chang

(1993), Quiligotti, Maugin, dell’Isola (2003), Sciarra, dell’Isola, Coussy (2007),575

dell’Isola, Madeo, Seppecher (2009), Madeo, Gavrilyuk (2010), Misra, Yang

(2010) and Madeo et al. (2013) are useful to model the flow of a compressible or

incompressible fluid in deformable porous media. Some difficulties arise in this

innovative application field of micro-structured continuum mechanics: we men-

tion for instance, in fibre-reinforced composite materials, the problem to model580

the permeability both in the initial undeformed configuration and its modifica-

tions during the deformation evolution. In this context, the analysis of involved

length scales is crucial, as length scale separation allows simplification in the

modelling procedure. In any case, different complex homogenisation methods

need to be used and very often the capillary properties of the interstitial fluid585

may be significant: in this case the results developed in Gatignol, Seppecher

(1986), Seppecher (1987, 1988, 1989, 1993, 2001), dell’Isola, Seppecher (1995),

dell’Isola, Gouin, Seppecher (1995) and dell’Isola, Seppecher, Madeo (2012) can

be of use.

5. Some research perspectives590

The hints sketched in this section are limited to some research developments

in progress at the M&MoCS International Research Centre. The experimental
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part of investigations, proposed or in progress, need great efforts, since the

sophisticated models involved are able to predict unconventional phenomena

and thus most laboratory apparatuses are not designed for them.595

Great care has to be paid to the theoretical aspects of proposed investigations

and their design.

5.1. Sound and vibration control via the conception of frequency filters or en-

hanced damping effects

Acoustic metamaterials can be devised employing various phenomena. For600

a comprehensive description of the necessary models in this context we refer to

Maugin, Metrikine (2010).

It is opinion of the authors that the most fruitful models and effects to

be exploited are those involving the energy trapping of macroscopic waves in

microscopic degrees of freedom, i.e. those which describe more accurately micro-605

motion. The reader should note that in the present context models are preceding

phenomena, as we look for materials having some peculiar phenomena: this is

the commonly accepted point of view when dealing with metamaterials.

The results described in Narisetti, Ruzzene, Leamy (2011, 2012), Mank-

telow, Leamy, Ruzzene (2013a) and Reccia, Cazzani, Cecchi (2012) are a useful610

starting point to enclose non-linearities. Multiple time-scale analyses (Luongo,

Paolone, Di Egidio, 2003; Luongo, Di Egidio, 2005) can be used to design wave

modulations with energy transfer among vibration modes, the so-called energy

spillover, aimed at an effective dissipation. In this case, the active degrees of

freedom are those described by the micro-structural kinematical descriptors.615

It is clear that, due to the coupling phenomena involving the micro-structure

and thank to non-linearities, it is possible to design metamaterials in which there

are gaps in wave propagation for selected frequency bands.

On the other hand, in Ghiba et al. (2013) and Neff et al. (2013) it is de-

scribed a behaviour which is somewhat surprising: for a singular kind of linear620

micro-structured continuum, not admissible according to Mindlin, it is possi-

ble to choose the constitutive parameter values in order to obtain even wide
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frequency wave propagation gaps. The novelty of this result is twofold: i) it

seems that non-linearities are not required to achieve such gaps ii) the mathe-

matical well-posedness, presented by the authors, indicates that the implemen-625

tation of these metamaterials is highly feasible. Micro-structured continua and

their physical feasibility deserve specific investigations, also by means of suitable

electronic waveguides. The aforementioned preliminary results promise a rich

variety of behaviour for Mindlin-type materials which could provide amazing

developments.630

Other investigations concerns the invention of metamaterials undergoing

phase transitions when solicited by a proper mechanical action: they are named

thixotropic materials (Barnes, 1997). Metamaterial undergoing solid-solid phase

transitions could be used to reduce obnoxious mechanical vibrations, in the de-

sign of acoustic noise shields: the mechanical energy associated with the vibra-635

tions causes an endo-energetic phase transition, producing a dissipative effect

(dell’Isola, Woźniak, 1997b; Yeremeyev, Freidin, Sharipova, 2007).

Of course, in the description of these phenomena, strong non-linearities and

non-convexities commonly occur and mathematical formulation could require

higher gradient or micro-structured continua.640

Efficient and volume dissipation effects, occurring in porous deformable

solids, are an important class of phenomena (Sciarra, dell’Isola, Hutter, 2001;

Quiligotti, Maugin, dell’Isola, 2002, 2003; dell’Isola, Guarascio, Hutter, 2000; Al-

tenbach, Eremeyev, 2009). An interesting case takes place when the porous ma-

terial is partially saturated with compressible fluid whose deformation-induced645

viscous flow causes energy dissipation (Madeo, dell’Isola, Darve, 2013). The

fluid can be totally or partially trapped in the pores, with effects linked to the

tortuosity (dell’Isola, Rosa, Woźniak, 1997, 1998; dell’Isola, Hutter, 1998; Scia-

rra, dell’Isola, Hutter, 2001; Madeo, Gavrilyuk, 2010; Madeo et al., 2013; Rosi,

Madeo, Guyader, 2013). The design of metamaterials with fluid inclusions, com-650

pletely or partially interconnected, or totally or partially isolated, with possibly

channel opening mechanisms which dissipate energy, is really promising: slow

and fast Biot-type waves may enhance the effects of wave propagation lack in
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multiple frequency ranges, as already described.

5.2. Conception of noise shields655

The design of noise shields through metamaterial characteristics is related

to the subject of section 5.1.

Shields are usually modelled by means of bi-dimensional continua. The

theoretical analysis of bi-dimensional continua endowed with micro-structure

has recently received a great impulse: we refer to the results in Neff (2004a,660

2007) and Neff, Che lmiński (2007) for Cosserat shells and in Eremeyev, Zubov

(2007), Eremeyev, Altenbach, Morozov (2009) and Eremeyev, Pietraszkiewicz

(2011) for micro-structured shells in which phase transition may occur.

These shells are designed with properties capable to stop noise: generalising

some results already presented (Madeo, Gavrilyuk, 2010; Madeo et al., 2013;665

dell’Isola, Madeo, Placidi, 2012; Rosi, Madeo, Guyader, 2013; Rosi, Giorgio,

Eremeyev, 2013; Placidi et al., 2013) one can expect to get important techno-

logical applications. Again, the key idea is trapping vibration energy in the

internal degrees of freedom, i.e. those of the micro-structured shells.

Another class metamaterials may spring up from the comparative analysis670

between the pre-stressed microstructured shells in Altenbach, Eremeyev (2009,

2010), Altenbach, Eremeyev, Morozov (2009, 2010, 2012) and Altenbach, Ere-

meyev, Lebedev (2011), and those involving shells with phase transitions in Ere-

meyev, Pietraszkiewicz (2004, 2006), Eremeyev, Zubov (2007), Pietraszkiewicz,

Eremeyev, Konopinska (2007) and Eremeyev, Lebedev (2013). The analysis675

performed in Placidi et al. (2013) implies that the interfacial mechanical prop-

erties may have very interesting and effective benefits on wave transmission and

reflection: therefore one can expect that pre-stressed shells, maybe undergoing

phase transitions, are efficient noise shields in a wide range of frequencies and

amplitudes.680

Dissipative contact phenomena involving impact (Cuomo, Ventura, 1998;

Andreaus, Placidi, Rega, 2010) or phenomena related to so-called energetic

boundaries (Steigmann, Ogden, 1997; Steeb, Diebels, 2004; Steinmann, 2008;
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Altenbach, Eremeyev, Lebedev, 2010; Altenbach, Eremeyev, 2011; McBride et

al., 2011) could also be fruitful. Near future researches may involve the formu-685

lation of a three-dimensional boundary value problem with boundaries charac-

terised by one or more of those surface micro-structures. The structure of these

boundary conditions may induce

• a time delay in the release of incident energy at the interface,

• a concentrated dissipation at the interface,690

• a considerable increase of reflected energy, also with time delay,

• a surface trapping of incident energy with its release in different forms,

which could have non-parasitic uses,

• the origination of surface waves, involving surface displacement, surface

thickness variation or, more generally, surface micro-structural oscilla-695

tions.

In the opinion of the authors the devices conceived up to now in general did not

try to completely exploit the synergistic effect of all previously listed boundary

effects: it seems unavoidable to use all of them simultaneously if one wants to

stop a large amount of energy in a very narrow space region.700

Shells are surfaces always constituted by the same set of material particles

during the involved phenomena. The modelling difficulties dramatically increase

(dell’Isola, Romano, 1986, 1987a,b) when i) the interfaces must be endowed with

some material properties, i.e. simultaneously mass, energy, linear momentum,

electric charge and so on, and ii) they are constituted by different material705

particles in different time instants. Actually, materials with phase transition, in

presence of mechanical vibrations, exhibit the onset of internal boundary layers

(Yeremeyev, Freidin, Sharipova, 2007; Pietraszkiewicz, Eremeyev, Konopinska,

2007; Ferretti et al., 2013), with localisation not known a priori: the free-moving

boundary problems that arise are also very difficult to solve, but may produce710

another effective method for controlling the energy transfer in metamaterials.
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5.3. Metamaterials self-limiting and self-detecting effects of damage

Damages in materials are often considered as a negative byproduct of motion

or external actions. In our opinion this is not always the case, as damaging

phenomena, when suitably controlled, may have a positive role in conception715

of novel engineering devices: one can accept to sacrifice a part of mechanical

resistance in order to limit the dynamical effects on a structure. This sacrifice

is even more effective if the structure is endowed with a self-healing or self-

limiting control. One of the most challenging fields which open to pioneering

investigations is exactly the search of such kind of controls.720

It has been discussed how this effect may conversely result in some positive

microscopically driven damping effects, at least until the damage progress does

not cause a permanent structural failure. Healing is that process, occurring

in living tissues, of repairing the effects of the progress of damage. A great

scientific and technological challenge is the conception of self-healing materials.725

More modestly, one could imagine systems that are able to self-limit the damage

effects and so to continue to be operative also in presence of serious damages.

Piezoelectromechanical systems, described in section 4, belong to this cate-

gory. These structures, in an initial stage of crack formation in their mechanical

part, may continue to correctly operate if the piezoelectric transduction trans-730

form enough mechanical energy into its electrical counterpart. The range of

validity of this statement needs to be investigated. In particular it has to be

assessed the degree of damage

• in the mechanical structure which causes the whole system failure,

• in the transduction system which affects an effective transduction,735

• in the electrical part of the wave-guide which makes the piezoelectric trans-

duction useless.

Moreover, the systems with electric and mechanical coupling have a peculiarity:

it is possible to use the efficiency and sensitivity of electronic circuits to assess,
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with periodic electrically driven checks or even observing possible malfunction-740

ing of the electric wave-guide, the status and progression of damage. One can

easily design a system of collection and processing of signals in the electric

network and interpret possible anomalies, compared with analogous results of

numerical simulations, for the damage assessment.

5.4. Detection of material properties in growing or reconstructed bone tissue745

with acoustic techniques

There are so many similar applications of sonic or ultrasonic techniques that

it is not meaningful nor useful to give references about the subject. Here, as

an example, a single topic by one of the authors (Del Vescovo, Fregolent, 2005,

2009) is cited, in which the problem of detecting damage in frescoes with non-750

destructive procedures is addressed.

In many papers (Madeo, Lekszycki, dell’Isola, 2011; Lekszycki, dell’Isola,

2012; Andreaus, Giorgio, Lekszycki, 2013) the growth in bone tissue, possibly

consequent to reconstruction with bio-resorbable materials, is studied with par-

ticular attention to determine the final bone properties. Luckily, ultrasound755

propagation are greatly influenced by bone mechanical properties. It is also

known that bone tissue in general must be modelled as a Cosserat or second

gradient material (Buechner, Lakes, 2003; Madeo et al., 2013) and so it can be

regarded as a metamaterial even before reconstruction with grafted metamate-

rials.760

For instance, the initial discontinuity surface, between the existing bone tis-

sue and the bio-resorbable material used as a scaffold for tissue growth, could

persist at the end of the remodelling process. This interface could be modelled

with material properties, the techniques in dell’Isola, Romano (1986, 1987a,b)

and dell’Isola, Kosinski (1993) are a possibility, and greatly influences the trans-765

mission and reflection of mechanical waves: it is therefore possible to devise

methods to determine the properties of the metamaterial resulting at the end

of the complex remodelling process; this metamaterial can be described by us-

ing the phenomena in Placidi et al. (2013) or in Madeo et al. (2013), where in
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the latter the effects of fluid flow in a deformable porous matrix are taken into770

account (it seems that bone interstitial fluids play an important role in bone

growth processes, see section 5.5).

5.5. Optimal design techniques for bone reconstruction

Present models are insufficient to describe the bone remodelling and it is

really challenging to add all relevant features necessary to attain a reasonably775

detailed characterisation of these phenomena.

The difficulty resides in weighing the relative importance of factors whose

role in these phenomena is just qualitatively known; efforts, in this direction

and for specific situations, are described e.g. in Andreaus, Colloca (2009).

Indeed, it is clear that:780

• in reconstructed bones, the tissue may be constituted by a mixture of

living bone and resorbable biomaterial, the latter used as a scaffold for

the tissue growth;

• both bone and bio-resorbable material are porous with assorted sizes of

pores and have a solid matrix with different hierarchies of structures; thus785

it is evident that micro-structured or higher gradient continuum theo-

ries are needed (Eringen, 2002; Green, Rivlin, 1964a,b,c, 1965; dell’Isola,

Seppecher, 1995; dell’Isola, Sciarra, Vidoli, 2009; dell’Isola, Seppecher,

Madeo, 2012);

• porosity and average density of the porous matrix can be regarded as in-790

dependent variables, thus requiring the introduction of a micro-structured

continuum theory;

• the interstitial fluid is filling the different networks of interconnected or

partially disconnected pores and its mechanical behaviour may widely vary

in different conditions, showing capillary and viscosity effects;795

• a bio-resorbable material can be a metamaterial designed to favour its

final total resorption: actually, its property determination is part of the
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problem to be solved;

• both the living tissue and the bio-resorbable material can be regarded as

composite materials with reinforcement fibres (Cowin, 1983, 2008);800

• there are probably different mechanisms controlling the resorption of bone

and bio-resorbable material and the synthesis of the bone tissue: there-

fore it may become necessary to introduce more complicated evolution

equations for the stimulus or maybe even more stimulus fields.

So, a set of integro-differential equations is to be introduced, possibly with time-805

delay effects, which takes into account the aspects describing the global growth

and remodelling phenomena.

Moreover, the clinical requirements are clear:

• the reconstructed bone needs to resemble the natural bone as close as pos-

sible; therefore in principle, the bio-resorbable material should be com-810

pletely resorbed at the end of the process and, during the resorption-

remodelling process, cavities should be avoided since they prevent the

formation of new bone tissue;

• remodelling and reformation process should last a reasonable period of

time and the mechanical stability of the system must be continuously815

assured.

At this stage, an optimal problem for bone implant design may be knowingly

formulated. It consists in i) defining the characteristics, like initial mass and

geometrical positioning of the bio-resorbable material for bone reconstruction,

which satisfy the previously listed conditions and ii) minimising the time nec-820

essary to reach the target bio-mechanical properties of the remodelled bone. A

similar problem is addressed in Andreaus et al. (2011).

A multidisciplinary research group is required for the necessary skills: the

numerical modelling demands the formulation of non-standard multiphysics

codes, possibly with free-moving boundary problems, involving evolution of a825
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sharp separation between regions with different properties (dell’Isola, Romano,

1987a,b; Eremeyev, Freidin, Sharipova, 2003), in which the constitutive equa-

tions are part of the unknown fields to be determined.

5.6. Modelling of capillary properties in biological tissue with narrow channels.

Mechanosensing and the related stimulus for tissue growth seem to be influ-830

enced by interstitial fluid flow in the narrow channel network present in many

biological tissues (Madeo, Lekszycki, dell’Isola, 2011; Lekszycki, dell’Isola, 2012;

Madeo et al., 2012; Forest, Cordero, Busso, 2011). The modalities of this flow

depend on the fluid characteristics and capillary properties of the fluid-channel

interface.835

In the authors’ opinion it is therefore very important to add to the models

presented in Federico, Herzog (2008a,c) and Federico, Grillo (2012) the features

necessary for a correct description of these phenomena (Seppecher, 1996a,b,

2002).

For living tissues, the results in Madeo, dell’Isola, Darve (2013) may be840

extended to introduce the concept of interfacial energy density in a REV: the

target is a macroscopic model which takes into account wettability of micro-

channels and density of transported solutes, yet in a simplified way.

Moreover, special attention should be paid to the role of Brinkman dissi-

pation (dell’Isola, Madeo, Seppecher, 2009; Giusteri, Marzocchi, Musesti, 2011;845

Giusteri, 2013) in the mechanically driven stimulus for the growth of living tis-

sues. Although the phenomena involved in the mechanosensing are not yet com-

pletely understood, the influence of higher gradients of velocity field is widely

asserted.

Finally, to describe the evolution of the stimulus, it is clearly convenient850

to adopt equations for which optimised numerical codes are already available:

the integral operators up-to-now introduced to calculate the stimulus (cited in

section 4.2) have implied considerable difficulties especially with regard to the

computational burden.
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6. Conclusions855

Classical field theories are considered nowadays as a nearly sterile research

activity. Instead –in the authors’ opinion– the most recent developments, not

only those in the very limited part of the literature explored here, prove that

field theories still are fertile tools to solve many scientific problems and to put

into effect promising technological applications.860

The assumptions, which usually are considered to be immovable paradigms

of continuum mechanics, conversely seem to have a much more restricted appli-

cability and their removal open unexpected scientific possibilities towards tech-

nological innovations. Many new phenomena, with very interesting possibilities

of applications, simply wait to be observed and understood.865

A remark is here pertinent: the theories of continua with micro-structures

are indeed very old, as it seems they were formulated by Piola in a pristine

form. However, they were not extensively used in the applications: this circum-

stance has erroneously been interpreted as a sign of their lack of efficacy or their

restricted applicability.870

On the contrary, in the opinion of the authors, they were not used simply be-

cause the exercises and problems formulated in their framework have presented

up to now insurmountable technical difficulties.

Nowadays the tools of numerical analysis, coupled with very versatile soft-

ware packages and powerful computers, allow for the easiest implementation of875

non-standard mathematical models, as never experienced before.

This is the historical moment where non-standard continuum models should

find their fastest development.
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A second gradient continuum model accounting for some effects of micro-

structure on reconstructed bone remodelling. Comptes Rendus Mécanique,
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