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Abstract We consider here generalized fractional versions of the difference-
differential equation governing the classical nonlinear birth process. Orsingher and
Polito (Bernoulli 16(3):858–881, 2010) defined a fractional birth process by replacing,
in its governing equation, the first order time derivative with the Caputo fractional
derivative of order υ ∈ (0, 1]. We study here a further generalization, obtained by
adding in the equation some extra terms; as we shall see, this makes the expres-
sion of its solution much more complicated. Moreover we consider also the case
υ ∈ (1,+∞), as well as υ ∈ (0, 1], using correspondingly two different definitions
of fractional derivative: we apply the fractional Caputo derivative and the right-
sided fractional Riemann–Liouville derivative on R+, for υ ∈ (0, 1] and υ ∈ (1,+∞),
respectively. For the two cases, we obtain the exact solutions and prove that they
coincide with the distribution of some subordinated stochastic processes, whose
random time argument is represented by a stable subordinator (for υ ∈ (1,+∞))

or its inverse (for υ ∈ (0, 1]).

Keywords Generalized fractional birth process ·Fractional Caputo derivative ·
Fractional Riemann–Liouville derivative ·Mittag–Leffler functions ·
Stable subordinator

M. Alipour
Faculty of Basic Science, Babol University of Technology, P.O. Box 47148-71167, Babol, Iran
e-mail: m.alipour2323@gmail.com

L. Beghin (B)
Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy
e-mail: luisa.beghin@uniroma1.it

D. Rostamy
Department of Mathematics, Imam Khomeini International University, P.O. Box 34149-16818,
Qazvin, Iran
e-mail: rostamy@khayam.ut.ac.ir

Methodol Comput Appl Probab (2015) 17: –552 540

Published online: 2013A31 ugust/



AMS 2010 Subject Classifications 60G52 · 34A08 · 33E12 · 26A33

1 Introduction and Preliminaries

We consider here the following Cauchy problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dυ

dtυ
Pυ
1 (t) = −λ1Pυ

1 (t)

dυ

dtυ
Pυ
k(t) = −λkPυ

k(t) +
k−1∑

i=1

λi Pυ
i (t), k = 2, 3, . . . ,

(1)

for t ≥ 0, υ > 0, with initial conditions

Pυ
k(0) =

{
1 k = 1,
0 k = 2, 3, . . . , (2)

where λ j ∈ R, j = 1, 2, . . ..
We will obtain exact solutions to Eqs. 1 and 2 in both cases υ ∈ (0, 1] and υ ∈

(1,+∞); in the first case they will be expressed in terms of finite sums of the Mittag–
Leffler functions and in the second case as finite sums of exponentials.

While the first equation in Eq. 1 is the so-called fractional relaxation equation
(see e.g. Uchaikin 2002; Beghin 2012), we can call the second equation in Eq. 1
a generalized fractional birth equation (see e.g. Orsingher and Polito 2010, 2011,
2013; Cahoy and Polito 2012). Indeed, in Orsingher and Polito (2010) and later in
Orsingher and Polito (2013), the authors analyze the following Cauchy problem

dυ

dtυ
Pυ
k(t) = −λkPυ

k(t) + λk−1Pυ
k−1(t), k ≥ 1, υ ∈ (0, 1] , (3)

(where Pυ
k(0) = 1[k=1] and dυ

dtυ denotes the Caputo fractional derivative) and define
the corresponding process “fractional birth process”. Equation 3 is formally con-
nected to Eq. 1, even though it cannot be obtained as a particular case, since, by
assumption, it is λ j �= λi, for j �= i, in Eq. 1. The extra terms in the second equation
of Eq. 1 makes the expression of its solution much more complicated.

We will analyze the problem (1)–(2) for any value of υ: we need to distinguish the
two cases υ ∈ (0, 1] and υ ∈ (1,+∞), because we use correspondingly two different
definitions of fractional derivative (see, for example, Kilbas et al. 2006):

1. For υ ∈ (0, 1], we apply the fractional Caputo derivative of order υ, which is
defined as follows:

CDυ
0+,t f (t) := 1

� (1 − υ)

∫ t

0
(t − s)−υ d

ds
f (s)ds, t > 0.

2. For υ ∈ (1,+∞), we use the right-sided fractional Riemann–Liouville derivative
on R+ of order υ, which is defined as follows:

RLDυ
−,t f (t) := 1

� (m − υ)

(

− d
dt

)m ∫ +∞

t

f (s)

(s − t)υ−m+1 ds, t > 0,

wherem = �υ�.
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Note that, for υ = 1, we have CDυ
0+,t = d

dt
and RLDυ−,t = − d

dt
, where

d
dt

is the

standard derivative. Throughout this paper we always use the symbol
dυ

dtυ
and we set

dυ

dtυ
:=

{
CDυ

0+, t υ ∈ (0, 1] ,

−RLDυ−, t υ ∈ (1,+∞)
.

The study of fractional generalizations of classical differential equations has attracted
a lot of attention over the last decades: see, for example, Mainardi (1996), Angulo
et al. (2000) andOrsingher and Beghin (2009) for fractional diffusions;Mainardi et al.
(2004), Beghin and Orsingher (2009) and Meerschaert et al. (2011) for equations
related to fractional Poisson and renewal processes.

Finally we prove that the solution to Eq. 1 can be expressed as the distribution of
the stochastic process defined as

Nυ(t) := N1(Hυ(t)),

where N1(t), t ≥ 0 is the process governed by Eq. 1 with υ = 1, and

Hυ(t) :=
{
Lυ(t), υ ∈ (0, 1)

A
1
υ (t), υ ∈ (1,+∞)

, t ≥ 0, (4)

with Hυ(t) := t for υ = 1. The processes A
1
υ (t) and Lυ(t) in Eq. 4 are respectively a

stable subordinator of index 1
υ
and the inverse of a stable subordinator of index υ

(see Theorem 5 below for their exact definitions).
Due to the different properties of the sample paths between the processes given

in Eq. 4, the two forms of fractional birth processes presented here display a very
different behavior, in the two cases υ ∈ (0, 1] and υ ∈ (1,+∞). Indeed in the first
case the process can perform only unitary jumps in an interval of infinitesimal length
(as in the standard case υ = 1), while in the latter the number of jumps can be of any
integer size.

2 Main Results

We start by considering the case where υ ∈ (0, 1] and deriving the Laplace transform
of the solution to Eqs. 1 and 2. We use the following notation:

L
[
f (t); μ

] :=
∫ ∞

0
e−μt f (t)dt.

Theorem 1 For the fractional equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dυ

dtυ
Pυ
1 (t) = −λ1Pυ

1 (t)

dυ

dtυ
Pυ
k(t) = −λkPυ

k(t) +
k−1∑

i=1

λi Pυ
i (t), k = 2, 3, . . . ,

t > 0, 0 < υ ≤ 1, (5)
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with initial conditions

Pυ
k(0) =

{
1 k = 1,

0 k = 2, 3, . . .
, (6)

for λi ∈ R (i = 1, 2, . . .), we have

L
[
Pυ
k(t);μ

]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μυ−1

μυ + λ 1
, k=1

λ 1 μυ−1

(μυ + λ 1) (μυ + λ 2)
, k=2

λ 1 μυ−1

(μυ + λ 1) (μυ + λk)

∑

(q2, ... ,qk−1) ∈Ak

k−1∏

i= 2

(
λ i

μυ + λ i

)q i

, k=3, 4, . . .

,

(7)
where

Ak = {(q2,q2, . . . ,qk−1) |qi ∈ {0, 1} , i = 2, . . . ,k − 1 } . (8)

Proof We prove the result (7) by induction.
For k = 1,

dυ

dtυ
Pυ
1 (t) = −λ1Pυ

1 (t), Pυ
1 (0) = 1,

by the Laplace transform we get

μυL
[
Pυ
1 (t); μ

]− μυ−1 Pυ
1 (0) = −λ1 L

[
Pυ
1 (t); μ

]
, ⇒ L

[
Pυ
1 (t); μ

] = μυ−1

μυ + λ1
.

For k = 2, Eq. 5 becomes

dυ

dtυ
Pυ
2 (t) = −λ2Pυ

2 (t) + λ1Pυ
1 (t), Pυ

2 (0) = 0.

By taking the Laplace transform, we have

μυL
[
Pυ
2 (t);μ

]− μυ−1 Pυ
2 (0) = −λ2 L

[
Pυ
2 (t); μ

]+ λ1
μυ−1

μυ + λ1
,

⇒ L
[
Pυ
2 (t);μ

] = λ1 μυ−1

(μυ + λ1) (μυ + λ2)
.

For k = 3, Eq. 5 becomes

dυ

dtυ
Pυ
3 (t) = −λ3Pυ

3 (t) + λ2Pυ
2 (t) + λ1Pυ

1 (t), Pυ
3 (0) = 0.

By taking the Laplace transform, we get

μυL
[
Pυ
3 (t);μ

]− μυ−1Pυ
3 (0) = −λ3L

[
Pυ
3 (t);μ

]

+ λ2
λ1 μυ−1

(μυ + λ1) (μυ + λ2)
+ λ1

μυ−1

(μυ + λ1)
.
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Therefore, we obtain

L
[
Pυ
3 (t); μ

] = λ2
λ1 μυ−1

(μυ + λ1) (μυ + λ2) (μυ + λ3)
+ λ1

μυ−1

(μυ + λ1) (μυ + λ3)

= λ1 μυ−1

(μυ + λ1) (μυ + λ3)

(
λ2

μυ + λ2
+ 1

)

.

Similarly, for k = 4, we get

L
[
Pυ
4 (t); μ

] = λ1 μυ−1

(μυ + λ1) (μυ + λ4)

×
(

λ2λ3

(μυ + λ2) (μυ + λ3)
+ λ2

(μυ + λ2)
+ λ3

(μυ + λ3)
+ 1

)

.

Then, we can see that Eq. 7 holds for k = 1, 2, 3, 4.
Now, we suppose that Eq. 7 holds for L[Pυ

i (t); μ], i = 1, . . . ,k − 1. Then we will
prove that Eq. 7 is true for L[Pυ

k(t);μ].
Thus, by taking the Laplace transform of Eq. 5 for k ≥ 2, we can write

μυL
[
Pυ
k(t); μ

]− μυ−1Pυ
k(0) = −λkL

[
Pυ
k(t); μ

]+
k−1∑

i=1

λi L
[
Pυ
i (t); μ

]
.

Therefore,

(μυ + λk) L
[
Pυ
k(t); μ

] =
k−1∑

i=3

λi
λ1μ

υ−1

(μυ + λ1) (μυ + λi)

∑

(q2,...,qi−1)∈Ai

i−1∏

j=2

(
λ j

μυ + λ j

)q j

+ λ2
λ1μ

υ−1

(μυ + λ1) (μυ + λ2)
+ λ1

μυ−1

μυ + λ1

and

L
[
Pυ
k(t); μ

] = λ1 μυ−1

(μυ + λ1) (μυ + λk)

×
⎛

⎝
k−1∑

i=3

λi

(μυ + λi)

∑

(q2,...,qi−1)∈Ai

i−1∏

j=2

(
λ j

μυ + λ j

)q j

+ λ2

(μυ + λ2)
+ 1

⎞

⎠

Note that

k−1∑

i=3

λi

(μυ + λi)

∑

(q2,...,qi−1)∈Ai

i−1∏

j=2

(
λ j

μυ + λ j

)q j

+ λ2

(μυ + λ2)
+ 1

=
∑

(q2,...,qk−1)∈Ak

k−1∏

j=2

(
λ j

μυ + λ j

)q j

,

so that we get formula (7). 
�
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Lemma 2 Let x ∈ R, ai ∈ R (i = 1, . . .n) and ai �= a j for i �= j, then

1
n∏

i=1
(x + ai)

=
n∑

i=1

1
n∏

j=1
j�=i

(a j − ai)
× 1

(x + ai)
(9)

Proof We prove Eq. 9 by induction.
For n = 2, it is clear. We suppose that it is true for n = k − 1, then we will show

that it is true for n = k.

1
k∏

i=1
(x + ai)

= 1

(x + ak) ×
k−1∏

i=1
(x + ai)

= 1
(x + ak)

×
k−1∑

i=1

1
k−1∏

j=1
j�=i

(
a j − ai

)
× 1

(x + ai)

=
k−1∑

i=1

1
k−1∏

j = 1
j �= i

(
a j − ai

)
×
(

1
(ak − ai)

× 1
(x + ai)

+ 1
(ai − ak)

× 1
(x + ak)

)

=
k∑

i=1

1
k∏

j = 1
j �= i

(
a j − ai

)
× 1

(x + ai)
.


�

In the next theorem, we will obtain the exact solutions to Eqs. 1 and 2, for
υ ∈ (0, 1] which will be expressed in terms of finite sums of the Mittag–Leffler
function, i.e.

Eα,β(x) =
∞∑

j=0

x j

� (α j+ β)
, x ∈ R, α, β ∈ C, �(α),�(β) > 0.

Theorem 3 The solution to the problem (1)–(2) for υ ∈ (0, 1], is given by

Pυ
k(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Eυ,1(−λ1tυ), k = 1

k∑

j=1

⎛

⎜
⎜
⎝

∑

(q1,q2,...,qk)∈Ãk

q j

⎛

⎝
k−1∏

r=1

(λr)
qr

⎞

⎠×

⎛

⎜
⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ Eυ,1

(−λ j tυ
)
, k = 2, 3, . . .

,

(10)
where

Ãk = {(q1,q2, . . . ,qk) |(q2, . . . ,qk−1) ∈ Ak and q1 = qk = 1 } . (11)
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Proof For k = 1, by Theorem 1, taking the inverse of Laplace transform and by
noting that

L
[
Eυ , 1 (−λtυ) ; μ

] = μυ−1

(μυ + λ)
, (12)

we have

Pυ
1 (t) = Eυ,1 (−λ1 tυ) .

For k = 2, from Theorem 1,

L
[
Pυ
2 (t);μ

] = λ1 μυ−1

(μυ + λ1) (μυ + λ2)
.

By using Lemma 2, we can get

L
[
Pυ
2 (t); μ

] = λ1μ
υ−1

(
1

(λ2 − λ1)
× 1

(μυ + λ1)
+ 1

(λ1 − λ2)
× 1

(μυ + λ2)

)

= λ1

(λ2 − λ1)

(
μυ−1

μυ + λ1
− μυ−1

μυ + λ2

)

.

By taking the inverse of Laplace transform and considering Eq. 12, we obtain

Pυ
2 (t) = λ1

(λ2 − λ1)

(
Eυ,1 (−λ1 tυ) − Eυ,1 (−λ2tυ)

)
.

Then, Eq. 10 is proved for k = 2.
For k ≥ 3, from Theorem 1, we have

L
[
Pυ
k(t); μ

] = λ1 μυ−1

(μυ + λ1) (μυ + λk)

∑

(q2,...,qk−1)∈Ak

k−1∏

j=2

(
λ j

μυ + λ j

)q j

.

By definitions of the sets Ak and Ãk in Eqs. 8 and 11, respectively, we can write

L
[
Pυ
k(t); μ

] = μυ−1
∑

(q1,...,qk)∈Ãk

k−1∏

r=1

(λr)
qr

⎛

⎜
⎜
⎜
⎝

1
k∏

j=1

(
μυ + λ j

)q j

⎞

⎟
⎟
⎟
⎠

.

On the other hand, by Lemma 2, we have

1
k∏

j=1

(
μυ + λ j

)q j

=
k∑

j=1

q j

⎛

⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎠× 1

(
μυ + λ j

) , ∀ (q1, . . . ,qk) ∈ Ãk.

Therefore, we get

L
[
Pυ
k(t); μ

] =
∑

(q1,...,qk)∈Ãk

k−1∏

r=1

(λr)
qr

k∑

j=1

⎛

⎜
⎝q j

⎛

⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎠× μυ−1

(
μυ + λ j

)

⎞

⎟
⎠.
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Fig. 1 Plot of Pυ
k (t) for

υ = 0.9, k = 1, 2, 3 and
λi = 2−i (i ∈ N)

P1

P2

P3

v = 0.9

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

So, by taking the inverse Laplace transform and by Eq. 12, we can obtain

Pυ
k(t) =

∑

(q1,...,qk)∈Ãk

k−1∏

r=1

(λr)
qr

k∑

j=1

⎛

⎜
⎝q j

⎛

⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎠× Eυ,1

(−λ jtυ
)

⎞

⎟
⎠.

Finally, by interchanging the two sums, we get formula (10) for k = 2, 3, . . . 
�

Let λi = 2−i (i ∈ N), we can see the plot of P0.9
k (t) for k = 1, 2, 3 and Pυ

3 (t) for
υ = 0.6, 0.8, 1, in Figs. 1 and 2, respectively.

Remark 1 In formula (10), if we just consider the case qi = 1 for any i, we have

Pυ
k(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eυ,1 (−λ1tυ) , k = 1
k−1∏

r=1

(λr)

k∑

j=1

⎛

⎜
⎝

k∏

i=1
i �= j

1
(λi−λ j)

⎞

⎟
⎠Eυ,1

(−λ j tυ
)
, k = 2, 3, . . . ,

Fig. 2 Plot of Pυ
3 (t) for

υ = 0.6, 0.8, 1 and
λi = 2−i (i ∈ N)

v = 0.6

v = 0.8

P3

v = 1

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

t
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that is the exact solution of the fractional birth equation proposed by Orsingher and
Polito (2010).

Remark 2 By considering the special case υ = 1 in Theorem 3 and writing P1
k = Pk,

we can conclude that the solution to the integer-order fractional equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dt

P1(t) = −λ1P1(t)

d
dt

Pk(t) = −λkPk(t) +
k−1∑

i=1

λi Pi(t), k = 2, 3, . . . ,
t ≥ 0, (13)

with

Pk(0) =
{
1 k = 1,

0 k = 2, 3, . . .
. (14)

is given by

Pk(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−λ1t, k = 1

k∑

j=1

⎛

⎜
⎝

∑

(q1,q2,...,qk)∈Ãk

q j

(
k−1∏

r=1

(λr)
qr

)

×
⎛

⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎠

⎞

⎟
⎠ e−λ j t, k = 2, 3, . . .

.

(15)
We prove now that the previous expression represents a proper probability distrib-
ution, for any t ≥ 0, under the condition that λi ≥ 0, (i = 1, 2, . . .) and thus we can
define P(

kt) = Pr {N1(t) = k}, for the random process N1(t), t ≥ 0.

Theorem 4 If λi ≥ 0, (i = 1, 2, . . .), then

(i) Pk(t) ≥ 0, t ≥ 0, k = 1, 2, . . . .

(ii)
∞∑

k=1

1
λk

= ∞ ⇒
∞∑

k=1
Pk(t) = 1, ∀t ≥ 0.

Proof

(i) We prove it by induction. For k = 1 have that P(
1t) = e−λ1t > 0. For k = 2, by

Eqs. 13 and 14, we get d
dt P2(t) = −λ2P2(t) + λ1P1(t) and P2(0) = 0. Therefore

P2(t) = e−λ2t
∫ t

0
λ1 e(λ2−λ1)tdt

λ1≥0⇒ P2(t) ≥ 0.

If Pi(t) ≥ 0 for i = 1, 2, . . . ,k − 1, we show that Pk(t) ≥ 0 as follows.
By solving Eqs. 13 and 14 with respect to Pi(t) (i = 1, 2, . . . , k − 1), we obtain

Pk(t) = e−λkt
∫ t

0
eλkt

k−1∑

i=1

λi Pi(t)dt
λi, Pi(t)≥0, i=1,...,k−1⇒ Pk(t) ≥ 0.

(ii) Let Sn(t) =
n∑

k=1
Pk(t) and S(t) =

∞∑

k=1
Pk(t). Then, from Eq. 14 we have Sn(0) = 1,

∀n ≥ 1.
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By summing the differential Eq. 13 for k = 1, . . ., n and n ≥ 3 we have

n∑

k=1

d
dt

Pk(t) = −λnPn(t) +
n∑

j=3

j−2∑

i=1

λi Pi(t) ⇒ d
dt

Sn(t) = −λnPn(t) +
n∑

j=3

j−2∑

i=1

λi Pi(t)

∫ t

0

d
dt

Sn(t)dt = −λn

∫ t

0
Pn(t)dt +

n∑

j=3

j−2∑

i=1

λi

∫ t

0
Pi(t)dt

Sn(t) − 1 = −λn

∫ t

0
Pn(t)dt +

n∑

j=3

j−2∑

i=1

λi

∫ t

0
Pi(t)dt.

Since
n∑

j=3

j−2∑

i=1
λi
∫ t
0 Pi(t)dt ≥ 0, we can write

1 − S(t) ≤ 1 − Sn(t) ≤ λn

∫ t

0
Pn(t)dt ≤ λn

∫ +∞

0
Pn(t)dt, ∀ n ≥ 2.

On the other hand, from Eq. 15, we have

Pk(t) = 1
λk

∑

(q1,...,qk)∈Ãk

k∑

j=1

q jλ j

k∏

i = 1
i �= j

(
λi

λi − λ j

)qi

e−λ jt, k = 2, 3, . . . .

∫ +∞

0
Pk(t)dt = 1

λk

∑

(q1,...,qk)∈Ãk

k∑

j=1

q jλ j

k∏

i = 1
i �= j

(
λi

λi − λ j

)qi ∫ +∞

0
e−λ jtdt, k = 2, 3, . . . .

∫ +∞

0
Pk(t)dt = 1

λk

∑

(q1,...,qk)∈Ãk

k∑

j=1

q j

k∏

i = 1
i �= j

(
λi

λi − λ j

)qi

, k = 2, 3, . . . .

Moreover, from Eq. 3.12 in Orsingher et al. (2010), we have that

k∑

j=1

k∏

i = 1
i �= j

(
λi

λi − λ j

)

= 1, ∀λi (i = 1, 2, . . . , k) and λi �= λ j f or i �= j.

Therefore, we can conclude that

k∑

j=1

q j

k∏

i = 1
i �= j

(
λi

λi − λ j

)qi

= 1, ∀ (q1, . . . ,qk) ∈ Ãk,
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and that
∫ +∞

0
Pk(t)dt = 1

λk

∑

(q1,...,qk)∈Ãk

1 = 2k−2

λk
, k = 2, 3, . . . .

Thus we can write

1 − S(t) ≤ λn

∫ t

0
Pn(t)dt ≤ 2n−2, ∀ n ≥ 3

⇒ (1 − S(t))
λn

≤
∫ t

0
Pn(t)dt ≤ 2n−2

λn
, ∀ n ≥ 3. (16)

Moreover we have that
∫ +∞

0
P1(t)dt = 1

λ1
and

∫ +∞

0
P2(t)dt = 1

λ2
,

so that we get

(1 − S(t))
λn

≤
∫ t

0
Pn(t)dt ≤ 1

λn
, ∀ n = 1, 2. (17)

By Eqs. 16, 17 and summing for n = 1, . . .m, ∀m = 3, 4, . . ., we have

(1 − S(t))
m∑

n=1

1
λn

≤
∫ t

0
Sm(t)dt ≤ 1

λ1
+ 1

λ2
+

m∑

n=3

2n−2

λn
, ∀m = 1, 2, . . . ,

⇒ (1 − S(t))
m∑

n=1

1
λn

≤
∫ t

0
Sm(t)dt ≤

m∑

n=1

2n

λn
, ∀m = 1, 2, . . . . (18)

Therefore, using the comparison test for series, we have

∞∑

n=1

2n

λn
< ∞ ⇒

∞∑

n=1

1
λn

< ∞ and
∞∑

n=1

1
λn

= ∞ ⇒
∞∑

n=1

2n

λn
= ∞. (19)

Finally, similarly to the proof at page 452 of Feller (1968), we can conclude from
Eqs. 18 and 19 that (ii) holds. 
�

Turning back to the fractional case, we prove the following result, which holds
for any υ > 0. Let Aα(t) be the stable subordinator of index α with parameters
μ = 0, β = 1 and σ = (

t cos
(

πα
2

))1/α , for t ≥ 0, in the notation of Samorodnitsky
and Taqqu (1994); thus its Laplace transform can be written as L

[
hα(x, t); θ

] =
exp

{−θαt cos
(

πα
2

)}
.

Furthermore its inverse (or hitting time) process is defined as Lα(t) =
inf {z |z > 0, Aα(z) > t } for all t ≥ 0.

Theorem 5 Let Nυ(t) be the process def ined as N1(Hυ(t)), t ≥ 0, where

Hυ(t) =
{
Lυ(t), υ ∈ (0, 1) ,

A
1
υ (t), υ ∈ (1,+∞) ,
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and Hυ(t) = t for υ = 1, under the assumption that N1 and Hυ are independent. Then
the distribution Pυ

k(t) = Pr {Nυ(t) = k}, k ≥ 1, satisf ies the problem (1)–(2) for any
υ > 0.

Proof By definition, we can write

Pυ
k(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ +∞

0
Pk(z) lυ(z, t)dz, υ ∈ (0, 1] ,

∫ +∞

0
Pk(z) h 1

υ
(z, t)dz, υ ∈ (1, +∞) ,

where lυ(z, t) and h 1
υ
(z, t) are the densities of Lυ(t) and A

1
υ (t), respectively.

Case 1 υ ∈ (0, 1] :
We set

akj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 k = 1, j = 1,

∑

(q1,...,qk)∈Ãk

q j

k−1∏

r=1

λqr
r ×

k∏

i = 1
i �= j

1
(
λi − λ j

)qi k ≥ 2, j = 1, . . . ,k, ,

then formula (10) can be written as Pυ
k(t) =

k∑

j=1
akj Eυ,1

(−λ jtυ
)
. Let Gυ(u, t) =

∞∑

k=1
ukPυ

k(t) be the probability generating function, then we can write

∫ +∞

0
e−μtGυ(u, t)dt =

∫ +∞

0
e−μt

∞∑

k=1

ukPυ
k(t)dt

=
∫ +∞

0
e−μt

∞∑

k=1

uk
k∑

j=
akj Eυ,1

(−λ jtυ
)
dt

=
∞∑

k=1

uk
k∑

j=1

akj
μυ−1

μυ + λ j
=

∞∑

k=1

ukμυ−1
k∑

j=1

akj

∫ +∞

0
e−s(μυ+λ j)ds

=
∫ +∞

0
μυ−1e−sμυ

∞∑

k=1

uk
k∑

j=1

akj e
−sλ jds

=
∫ +∞

0
μυ−1e−sμυ

∞∑

k=1

ukPk(s)ds

=
∫ +∞

0
μυ−1e−sμυ

G1(u, s)ds

=
∫ +∞

0
e−μt

∫ +∞

0
G1(u, s)lυ(s, t)ds dt,
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since μυ−1e−sμυ = ∫ +∞
0 e−μ tlυ(s, t)dt (see Hahn et al. 2001). Thus, we get

Gυ(u, t) =
∫ +∞

0
G1(u, s) lυ(s, t)ds ⇒ Pυ

k(t) =
∫ +∞

0
Pk(s) lυ(s, t)ds.

Case 2 υ ∈ (1,+∞) :
For Pυ

k(t) = ∫ +∞
0 Pk(z) h 1

υ
(z, t)dz, we can write

RLDυ
−,t P

υ
k(t) =

∫ +∞

0
Pk(z) RLDυ

−,th 1
υ
(z, t)dz =

∫ +∞

0
Pk(z)

∂

∂z
h 1

υ
(z, t)dz

=
[
Pk(z) h 1

υ
(z, t)

]+∞
z=0

−
∫ +∞

0

d
dz

Pk(z) h 1
υ
(z, t)dz

= −
∫ +∞

0

(

−λkPk(z) +
k−1∑

i=1

λi Pi(z)

)

h 1
υ
(z, t)dz

=
∫ +∞

0
λkP

(

kz) h 1
υ
(z, t)dz −

k−1∑

i=1

λi

∫ +∞

0
P(

i z)h 1
υ
(z, t)dz

= λkPυ
k(t) −

k−1∑

i=1

λi Pυ
i (t).

It is well-known that lim
z→∞ h 1

υ
(z, t) = 0 (see Uchaikin and Zolotarev 1999). More-

over the law of A1/υ(t) is governed by the following equation:

RLDυ
−,th 1

υ
(z, t) = ∂

∂z
h 1

υ
(z, t), z, t > 0, υ ∈ (1,+∞) ,

with the following conditions

{
h 1

υ
(0, t) = 0,

h 1
υ
(z, 0) = δ(z).

The previous result is proved, for υ = n ∈ N, in D’Ovidio (2011) and later general-
ized to any υ > 1 in Beghin and Macci (2012) (see formula (5.17), with γ = 1

/
υ,

in the last reference). The proof is complete by considering the definition dυ

dtυ :=
−RLDυ−,t, υ ∈ (1,+∞) . 
�

Remark 3 The processes representing the random-time arguments in Theorem 5
exhibit different properties, in the two cases υ ∈ (0, 1] and υ ∈ (1,+∞): the stable
subordinator A

1
υ (t) is strictly increasing and jumps with non-negative probability,

while its inverse Lυ(t) is continuous, non-decreasing and it is not a Lévy process. As
a consequence, the sample paths of the two forms of fractional birth processes, i.e.

N1

(
A

1
υ (t)

)
and N1 (Lυ(t)), display a very different behavior. Indeed in the first case
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the process can perform only unitary jumps in an interval of infinitesimal length (as
in the standard case υ = 1), while in the latter the number of jumps can be of any
integer size.

We are now ready to obtain an explicit expression for the solution to Eqs. 1 and 2
in the case υ ∈ (1, +∞).

Theorem 6 The solution to problem (1) and (2) is given, for υ ∈ (1,+∞), by

Pυ
k(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−λ
1
υ
1 t k = 1,

k∑

j=1

⎛

⎜
⎝

∑

(q1,...,qk)∈Ãk

q j

(
k−1∏

r=1

(λr)
qr

)

×
⎛

⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎠

⎞

⎟
⎠ e−λ

1
υ
j t k ≥ 2,

Proof From Theorem 5, for υ ∈ (1,+∞), by considering formula (15), we can get

Pυ
k (t) = ∫ +∞

0 Pk(z) h 1
υ
(z, t)dz

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ +∞
0 e−λ1 zh 1

υ
(z, t)dz k = 1,

k∑

j=1

⎛

⎜
⎜
⎝

∑

(q1,...,qk)∈Ãk

q j

⎛

⎝
k−1∏

r=1

(λr)
qr

⎞

⎠×

⎛

⎜
⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

∫ +∞

0
e−λ j zh 1

υ
(z, t)dz k ≥ 2,

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−λ
1
υ
1 t k = 1,

k∑

j=1

⎛

⎜
⎜
⎝

∑

(q1,...,qk)∈Ãk

q j

⎛

⎝
k−1∏

r=1

(λr)
qr

⎞

⎠×

⎛

⎜
⎜
⎝

k∏

i=1
i �= j

1
(
λi − λ j

)qi

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ e−λ

1
υ
j t k ≥ 2,

since
∫ +∞
0 e−λ j zh 1

υ
(z, t) dz = e−λ

1
υ
j t (see Proposition 1.2.12 in Samorodnitsky and

Taqqu 1994).

Fig. 3 Plot of Pυ
k (t) for

υ = 2.75, k = 1, 2, 3 and
λi = 2−i (i ∈ N)
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Fig. 4 Plot of Pυ
3 (t) for υ = 1,

1.5, 1.75 and λi = 2−i (i ∈ N)
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In order to check that the initial conditions in Eq. 2 are satisfied we write:

Pυ
k(0) =

∫ +∞

0
Pk(z)h 1

υ
(z, 0) dz

= Pk
1(0) =

{
1, k = 1

0, k = 2, 3, . . .
,

since it is well-known that h 1
υ
(z, 0) = δ(z). 
�

Let λi = 2−i (i ∈ N), then we can see the behavior of P2.75
k (t) for k = 1, 2, 3 and

Pυ
3 (t) for υ = 1, 1.5, 1.75, in Figs. 3 and 4, respectively.
We check now the conditions under which the solution to problem (1) and (2)

represents a proper probability distribution.

Corollary 7 The following implications hold:

Pk(t) ≥ 0 ∀k ≥ 1, t > 0 ⇒ Pυ
k(t) ≥ 0 ∀k ≥ 1, t > 0, υ > 0,

∞∑

k=1

Pk(t) = 1 ∀t > 0 ⇒
∞∑

k=1

Pυ
k(t) = 1 ∀t > 0, υ > 0,

where Pk(t) = Pr {N1(t) = k} ∀k ≥ 1, t > 0.

Proof It easily follows from Theorem 5. 
�

Corollary 8 If λi ≥ 0, (i = 1, 2, . . .), then

(i) Pυ
k(t) ≥ 0, t ≥ 0,k = 1, 2, . . ..

(ii)
∞∑

k=1

1
λk

= ∞ ⇒
∞∑

k=1
Pυ
k(t) = 1,∀t ≥ 0.

Proof It follows immediately from Corollary 7 and Theorem 4. 
�
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