The ROme OpTimistic Simulator: A Tutorial

Alessandro Pellegrini and Francesco Quaglia

High Performance and Dependable Computing Systems Group
DIAG, Sapienza, University of Rome

Abstract. In this paper we present the ROme OpTimistic Simulator
(ROOT-Sim), a general-purpose Parallel Discrete Event simulator built
according to the optimistic synchronization protocol, which allows—via
the adoption of a simple/reduced API—to implement simulation mod-
els via event handlers relying on standard ANSI-C. We present the set
of paradigms which ROOT-Sim is built on, and its internal design, along
with the offered facilities. We also explain the simulation-model program-
ming paradigm, and give an example of a (very basic) simulation model,
which stands as a building block for more complex ones.

1 Introduction

Simulation is an attractive and well-consolidated methodology to study real-
world phenomena. It is continuously exploited in a wide set of fields, including
physics, biology and business-oriented processes (such as financial prediction or
optimized system-configuration selection). For some application contexts, one
relevant aspect relates to the timeliness according to which simulation results
are provided to end users or applications, such as when exploiting simulation
as a tool supporting time-critical decision making. Hence, performance aspects
while delivering simulation output is a core issue to cope with.

In the context of Discrete Event Simulation (DES), high performance has
been targeted via the Parallel-DES (PDES) paradigm [1], which allows exploit-
ing the computing power offered by (high-end) parallel/distributed platforms
in order to speedup model execution and to make (very) large and/or accurate
models tractable. The basic idea underlying PDES is to partition the simulation
model into N distinct simulation objects, which are the core of the simulation
process from the model writer’s point of view. In fact, each object represents a
portion of the real world being simulated, and/or an agent interacting with the
world or with other agents. The evolution of simulation objects is described by
state transitions, driven by a set of logical/mathematical properties. In order
to represent real-world interactions, simulation objects communicate with each
other by exchanging pieces of information in the form of events.

From a technical point of view, simulation objects are handled by Logical
Processes (LP), which undertake the concurrent execution of simulation events.
Traditionally, a PDES run entails a number of concurrent LPs, uniquely iden-
tified by a numerical code in the range [0, N — 1], and the overall simulation
model keeps track of the evolution of the simulated world by relying on a global
simulation state S, which is partitioned into various LPs’ private and disjoint

simulation states S;, so that S = S; N ;" S; and S; N S; = 0,Vi # j.

In PDES, simulation events are timestamped and their execution is impulsive,
meaning that there is no notion of time evolution during an event’s processing.
The current simulation time at each individual LP is known as Local Virtual
Time (LVT), and can be expressed in any measure unit (i.e., one LVT unit
can represent seconds, hours, or even years, depending on the actual simulation
model). This notion of time is opposed to the Wall-Clock Time (WCT), which is
the actual notion of time we are used to. Therefore, in one WCT unit, the LVT
advancement can be of one or several units, depending on the actual complexity
of the simulation model and on the efficiency of the simulation run.

During the execution of an event, other events can be generated, destined to
any simulation object in the system, and are associated with a timestamp value
which is greater than or equal to the one of the event currently being executed,
i.e. during the execution of the event e, associated with the timestamp t,, a new
event e, associated with timestamp ¢, can be generated and sent to another
simulation object, ensuring that ¢, > t,. Therefore, event generation evolves
according to a causality pattern where the present cannot affect the past.

LPs are in charge of delivering simulation events to the hosted simulation
objects, via the invocation of proper event handlers. Simulation-kernel instances
take care of dispatching events for processing activities across the various LPs,
and of managing inter-LP communication. In particular, they handle the LPs’
event queues, by reflecting the updates due to incoming messages, and determine
the best LP to be dispatched in order to optimize specific execution metrics.

At the same time, when concurrently running the LPs on multiple CPU-cores
provided by the underlying parallel /distributed platform, synchronization mech-
anisms are required in order to ensure that the causality pattern is maintained
for both event generation and processing at any LP. Although various definitions
of causally consistent execution are devised in literature [2-5], the most widely
known and exploited causality criterion expresses that model execution is correct
if each LP processes its input events in non-decreasing timestamp order.

To maintain causal consistency two main approaches have been proposed:
conservative and optimistic. The former avoids the possibility of a causal vio-
lation at all, relying on block-until-safe policies which suspend event-processing
activities at an LP until it is ensured that the execution of the next pending
event is coherent with logical-time ordering. The latter—which finds its basis in
the Time Warp protocol presented in [6]—aims at full exploitation of the paral-
lelism offered by the underlying computing platform (either local or distributed),
which is achieved by avoiding the aforementioned block-until-safe policies, and
by adopting speculative processing. With this approach, causality violations can
occur upon the delivery of a so-called straggler message to any LP involved in
the run, which carries a scheduled event associated with a timestamp ¢; lower
than the timestamp to of some already-processed event. In such a case, all the
events already processed by the recipient LP, having timestamp ¢ in the interval
t; < t < t9 are no longer causally consistent.

Anytime a causality violation is detected, some rollback recovery mechanism
needs to be actuated which involve, at the same time, two orthogonal issues:
1. undoing the effects of inconsistent local processing activities on other LPs;
2. restoring the state of the rolling back LP to a still-consistent past snapshot.

The first task is generally supported via the employment of so-called anti-
messages, which annihilate events scheduled by the rolling back LP (due to
the causal inconsistency). An anti-message is therefore a negative copy of a
previously sent message, and is used to signal the destination LP to discard the
original message. Clearly, if the event carried by the original message was already
processed, we experience a spreading of the rollback occurrence along a chain of
LPs, a phenomenon called cascading rollback.

On the other hand, the second task poses problems on the side of both perfor-
mance and application transparency. As for performance, we must consider both
CPU usage for supporting both checkpoint/restore tasks, and memory usage for
keeping recoverability-related data/metadata. On this side, a wide literature ex-
ists that has proposed the employment of log/restore techniques (see, e.g., [7-9]),
where snapshots of LPs’ state are taken according to some (infrequent) policy
in order to optimize the tradeoff between log costs and restore latency. Also,
these techniques deal either with non-incremental or incremental logging, the
latter approach (see, e.g., [L0-12]) also trying to reduce the memory usage for
log buffers. On the other hand, transparency issues deal with supporting log/re-
store with no need for modules implemented in the application-level code (hence
masking the actual synchronization paradigm to the application programmer).
This is a non-trivial aspect since it relates to the flexibility according to which the
application programmer is allowed to organize the data structures representing
the LP state image.

Recently, the memory demand problem associated with logging has been
also tackled via reverse computing [13], where a state-restore operation is sup-
ported via application-level compensation logic that applies backward compu-
tation steps until the correct snapshot for resuming the LP is built. For this
approach we still find issues in relation to how to generate the reverse code
version transparently to the application programmer.

Still in relation to memory usage and recovery, optimistic synchronization is
intrinsically linked to the notion of Global Virtual Time (GVT). It represents
the commit horizon of the optimistic simulation run, i.e. the simulation-time
barrier which separates the set of committed events from the still-rollbackable
ones. It corresponds to the minimum timestamp of not-yet-processed or in-transit
messages/anti-messages. Once the new GVT is available, all the memory buffers
keeping events belonging to the committed portion of the simulation (and the re-
lated logs) can be released®. This procedure is usually termed fossil collection. We
note that the GVT protocol cannot be executed with unbounded frequency since
it imposes some overhead. This leads to further exacerbation of memory-demand
problem, since memory is allocated (and temporarily kept) to store information
related to both speculatively-scheduled events and already committed events.

An additional central point relates to the CPU-scheduling algorithm used
to determine which LP, among the ones hosted by a given simulation-kernel in-
stance, must be given control. Several proposals have been made [14-17], but

! For infrequent logging schemes, the only exception is related to the need for keeping
data/metadata for at least one logged state image with time ¢ less than GVT, and
the events with time in between ¢ and the GVT value, to be able to recover the LP
state image to any point in time arbitrarily close, or coinciding with, the GVT value.

the common choice is the Lowest-Timestamp-First (LTF) algorithm [18], which
selects the LP whose next pending event has the minimum timestamp, among
all the locally-hosted ones. LTF’s advantage is that it does not generate lo-
cal causality violations. This is because LPs are dispatched similarly to what
would happen with a sequential simulator, which imposes a timestamp-ordered
sequence of CPU-schedule operations. Hence, rollbacks are generated only due
to events scheduled between LPs hosted by different kernels.

2 ROOT-Sim programming and object model

ROOT-Sim [19] is a PDES simulation kernel relying on the optimistic synchro-
nization paradigm. It comes as a static library which can be linked to executables
implementing simulation models using the ANSI-C programming standard [20],
as if they were completely sequential.

In particular, the user can organize the code in as many function/files as
needed, can perform any I/O operation during the simulation (keeping in mind
that I/O operations can degrade performance), can use dynamically-allocated
memory to build the simulation state, and so on and so forth. The only exceptions
is that the volatile qualifier becomes meaningless (i.e., there is no possibility
for a variable to be modified outside the simulation platform). In addition, the
model lives in userspace only, so no *NIX system calls should be used. No regular
entry point is required for the application-level code (i.e., no main() function
must be implemented), as entry points for the application code are specified by
ad-hoc APIs, which will be discussed in the next section.

The actual simulation is based on events: each LP processes events, and its
advancement in the Logical Virtual Time (LVT) is connected to their exectution,
and LPs communicate via messages. ROOT-Sim, as the Time Warp protocol
stands, enforces a logical identity between events and messages. This means
that a message envelopes only events to be scheduled to other LPs. Each event
(and thus message backing it) is identified by a numerical code, which is defined
by the application-level logic. Each type of message is fixed-size. In particular,
the application-level code must provide a definition of a struct for each event
type, where the contents of a message (an event) must be specified.

At simulation startup, ROOT-Sim delivers to each LP a special INIT event
(identified by the reserved code 0) which allows the simulation model to set
up its initial configuration. In particular, the model can define its simulation
state relying on a sequence of malloc() calls, and the initial values can be re-
trieved by command-line arguments which are delivered as INIT-event’s payload,
resembling the standard ANSI-C char **argv vector. During the execution of
the INIT event, other events can be scheduled at any LP in the system, therefore
allowing the actual simulation to start. According to the ROOT-Sim program-
ming model, the first malloc() call issued by each LP during the execution of
the INIT event is considered as the initial part of the LP’s simulation state, and
will be later passed via a specific pointer to allow the execution of additional
events. This can be overridden by a specific API provided by the platform, as
it will be discussed later. Nevertheless, this approach allows LPs’ states to arbi-
trarily grown/shrink during the simulation’s exection, just relying on additional

malloc() /free() calls. This unique feature means that the user can produce
standard code to design the simulation model, with the only requirement that
every additional malloc’d memory region must be referred via a pointer in the
first malloc’d structure for the simulation platform to be able to correctly roll-
back previous simulation states.

2.1 Application Level APIs

The core API to allow communication between application-level code and simu-
lation kernel is very simple. It consist of one call function, ScheduleNewEvent (),
and two callback functions, ProcessEvent () and OnGVT (). The callbacks must
be necessarily implemented in the simulation model to be compliant with the
library. Then, the rest of the code can be implemented in any way, albeit respect-
ing the ANSI-C standard. These functions have the following signature/purpose.
void ProcessEvent(int me, time_type now, int event_type, void *
event_content, void *state) is the callback that supports the actual pro-
cessing of simulation events, and it is used by the kernel to give control to
the application layer. me is the ID of the LP being scheduled, now is the current
value for the local clock, event_type is the ID code for the event to be processed,
event_content is the information regarding the event itself, and state is the
current LP’s state. Inside of ProcessEvent () the execution is fully speculative,
i.e. the events that are executed might be eventually undone. The programmer,
nevertheless, is completely unaware of this issue, and can simply implement state
transitions within this callback. ROOT-Sim will transparently undo (in case of
a detected inconsistency) or commit speculative events (whenever a new GVT
value is computed and the commitment horizon is moved forward). The only
issue concerning ProcessEvent () is the execution of non-rollbackable actions.
In fact, if the programmer, e.g., prints some text on the screen during the ex-
ecution of an event that will be eventually rolled back, the output generated
will not be reverted. This is a non-trivial problem associated with speculative
execution, even more if transparency is enforced and the programmer is given
the freedom to implement its model by relying on standard ANSI-C. ROOT-Sim
offers a facility which tries to address this issue (at the cost of some delay in the
materialization of the actual output), which will be presented in section 3.
void ScheduleNewEvent(int receiver, time_type timestamp, int

event_type, void *event_content, int event_size) is a function that al-
lows injecting a new simulation event within the system, to be destined to
whichever simulation object. receiver denotes the id of the destination LP,
timestamp is the LVT associated with the event to be processed, event_type,
event_content, and event_size allow the correct identification and delivery of
the actual event. For efficiency reasons, events are buffered and asynchronously
delivered when the execution of the current one is completed. This allows to
pack together more events if the destination LP is the same, and prevents delays
in current event’s execution. We note that this asynchronous deliver does not
affect the correctness of the execution, as ROOT-Sim will order events in the
input queue before scheduling the next event to the destination LP. In case the
delay created by this internal buffering generates an out-of-order execution at
some LP, then the rollback procedure will restore consistency.

bool OnGVT(void *snapshot, int gid) is a callback that gives control to
the application layer by also providing a committed snapshot of the simulation
object. The execution of OnGVT() is therefore not speculative, i.e. any action
taken within this function will never be undone. This means that, e.g., any I/O
operation within this function is perfectly safe, and therefore it can be used
to gather statistics on the ongoing simulation. We note that, since the times-
tamp associated with snapshot is the last computed GVT value (which is by
Time Warp definition lower than the LP’s current LVT), it is forbidden to call
ScheduleNewEvent () within OnGVT (), because this would produce a long roll-
back operation. In case the user calls ScheduleNewEvent () in this callback, a
runtime error will be generated. OnGVT () additionally implements a distributed
termination control: Since snapshot is a portion S; of the Committed and Con-
sistent Global State (CCGS) S, according to [21] a global predicate can be locally
evaluated on S;. If the model determines that the simulation is completed for
that particular LP, OnGVT () can return the true value. ROOT-Sim will collect
all return values, and in case all the LPs agree, the simulation will stop.

In addition to the core API, ROOT-Sim has a set of additional facilities. First,
void SetState(void *new_state) allows a LP to manually specify which is its
simulation state. It is not mandatory in a simulation-model’s implementation,
as explained in Section 2, but gives the programmer more freedom.

ROOT-Sim comes bundled with a fully-featured numerical library, which gives
the modeler the possibility to generate random numbers drawn from several dis-
tribution. So far, the Random(), Expent () (exponential), Normal(), Gamma(),
Poisson(), and Zipf () distributions are implemented, along with functions
to compute the their cumulative densities. This library is crucial in the devel-
opment of simulation models (and should be used in place of other libraries)
because it adheres to the Piece Wise Deterministic paradigm (see [22]), i.e. the
same sequence of numbers will be deterministically produced if a rollback op-
eration is performed. The numerical library maintains one seed per each LP,
pseudo-randomly drawn by an initial master seed which can be either randomly
computed at simulation startup, or manually specified by the user. This gives
full control on the model’s execution, giving the possibility to re-study the same
configuration (determined by the initial master seed) which will give the same
final outcome, independently of the actual events’ execution pattern.

3 Internal Features

The simulation platform offers several facilities to support model’s simulation in
the most effective way, and to control the simulation’s execution. Configuration
can be specified either at command line, or by relying on an interactive shell
which supports execution scripts as well.

The GVT computation interval can be tuned at simulation startup. If the
user selects a higher value, the overhead associated with this operation gets
reduced, but since the fossil collection operation (see Section 1) is thus executed
less often, the overall simulation likely requires more memory to maintain older
checkpoints. By tweaking this parameter, the user can manually balance the
tradeoff between performance and memory consumption.

As mentioned before, at simulation startup ROOT-Sim initializes the internal
numerical library starting from a master seed. The user can ask ROOT-Sim to
randomly draw this master seed or can specify it manually. In case the seed is
randomly chosen, the user can configure ROOT-Sim to store it as the master
seed for future runs. In this way, a set of experiments can be conducted on the
same events’ pattern, therefore comparing the very same model’s configuration.

Concerning initialization, ROOT-Sim allows to run the simulation model on
a distributed environment, by ultimately relying on MPI for message delivery.
Using a description of the machines which can be used to run the simulation
(i.e. address for reaching them, and number of CPU-cores), ROOT-Sim trans-
parently sets up the distributed simulation environment. For efficiency reasons,
two different mappings between LPs and simulation kernels are available: block
distribution evenly divides the available LPs across the kernel instances, while
circular assigns one LP per kernel, in a circular fashion. Depending on the inter-
LP interaction, the one that limits at most the number of inter-kernel interactions
due to event exchange can be selected, to reduce performance degradation.

As for state saving, ROOT-Sim offers a large set of facilities which address
both transparency and execution efficiency at the same time. In particular, as
mentioned, the simulation state can be scattered across different segments of
allocated memory, and log/restore operations can be carried out either in non-
incremental [23] or incremental way [24]. Additionally, ROOT-Sim can be con-
figured to switch between these two differentiated modes autonomically and to
optimize the checkpointing interval, either by relying on an analytic model [25],
or by relying on a genetic algorithm [26].

ROOT-Sim offers the user the possibility to select either the traditional LTF
scheduler for event processing selection, or an optimized O(1) variant [27], which
selects the next event to be scheduled in a (probabilistic) constant time.

Third-party libraries are almost fully supported. The user is allowed to rely
on any third-party library given that they are implemented statelessly, i.e. they
do not keep internal buffers and/or allocate memory during their call. Support
for stateful third-party libraries is currently under development and will be in-
tegrated in a future release.

There are several branches of the ROOT-Sim kernel still under development
and that will be merged in the main version soon. One relies on multithread-
ing [28] for running in parallel within the same kernel more than one LP and
the related housekeeping operations. Another supports migration of LPs among
different kernel instances depending on the current workload [29], while the or-
thogonal load sharing approach [30] varies the number of CPU-cores assigned to
each simulation kernel instance depending on the current workload. This avoids
the costly migration operation, but limits the viability to multicore machines.
Another one allows intersections between LPs’ states [31], i.e. global variables
can be speculatively accessed and in case of inconsistency they are rolled back as
well. Another version supports consistent generation of I/O within the specula-
tive ProcessEvent () callback [32], by logging the I/O operations and delaying
them until the associated events get committed, and ordering the generated out-
put (on any stream) by its associated timestamp on a system-wide scale. In case
of a rollback operation, the logged output is discarded.

[
H O © N U s W=

-

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

50
51
52
53
54

4 A Code Example

We present here some code snippets implementing a ROOT-Sim application
which models a set of N nodes connected as a mesh, sending packets randomly
to each other. The first important thing is to define the possible events handled
by the model, the content of an event message, and the structure of the state:

#include <ROOT—-Sim.h>

#define PACKET 1 // Event definition

#define DELAY 120

#define PACKETS 1000000 // Termination condition

typedef struct _event_content_t {
time_type sent_at;

} event_content_t;

typedef struct _lp_state_t{
int packet_count;

} lp_state_t;

In this model we allow just one application-defined event, PACKET, which identi-
fies the transit of a packet in the mesh. Then, we must specify the actual events’
logic. ProcessEvent () is the only entry point for speculative event processing,
so we rely on a switch construct to demultiplex them:

void ProcessEvent(unsigned int me, time_type now, unsigned int event, event_t xcontent,\\
unsigned int size, Ip_state_t xptr) {
event_t new_event;
time_type timestamp;

switch(event) {

case INIT: // must be ALWAYS implemented
state = (Ip-state_t *)malloc(sizeof(Ip_state_t));
state—>packet_count = 0;
timestamp = (time_type)(20 * Random());
ScheduleNewEvent(me, timestamp, PACKET, NULL, 0);
break;

case PACKET: {
pointer—>packet_count++;
new_event_content.sent_at = now;
int recv = FindReceiver(MESH);
timestamp = now + Expent(DELAY);
ScheduleNewEvent(recv, timestamp, PACKET, &new_event, sizeof(new_event));

}

}
}

The code logic is fairly simple: upon INIT event, the LP’s state is malloc’d and
initialized, and an initial packet is sent to the LP itself. Whenever a PACKET event
is received, a local counter is increased, and a packet is sent back to a random
LP in the simulation environment. Timestamps are computed according to an
exponential distribution, exploiting the internal Expent () function.

CheckTermination() is the second callback to be implemented, which per-
forms a local check on the LP’s state. If the number of packets passed in the LP
is smaller than PACKETS, then the simulation cannot be halted yet:

bool OnGVT(Ip_state_t *snapshot, int gid) {
if (snapshot—>packet_count < PACKETS)
return false;
return true;

}

TOTAL KERNELS................ : 32

TOTAL PROCESSES.............. : 1024

TOTAL EVENTS EXECUTED........ : 169923760

TOTAL COMMITTED EVENTS....... : 96932768

TOTAL ROLLBACKS EXECUTED..... : 2357476

TOTAL ANTIMESSAGES........... : 72208424

AVERAGE ROLLBACK FREQUENCY... : 1.4 %

AVERAGE ROLLBACK LENGTH...... : 56.19 events
EFFICIENCY............ooun.. : 68.11 7,

AVERAGE EVENT COST........... : 11.48 us

AVERAGE CHECKPOINT COST...... : 28.327 us

AVERAGE RECOVERY COST........ : 20.110 us

Simulation started at........ : Thu Mar 21 23:23:07 2013
Simulation finished at....... : Thu Mar 21 23:27:49 2013
Computation time............. : 282 seconds

Last GVT value............... : 50828.568372

Average Committed Event-Rate. : 343733.22 events/second

Fig. 1. General Statistics Output File
5 Runtime data

Beyond the statistics that the user can programmatically obtain from the exe-
cution of the OnGVT () callback, ROOT-Sim has three levels of statistics gener-
ation which can be configured at startup. The first (default) level produces a
file containing average values for the most common performance metrics on a
system-wide scale. An example file is presented in Figure 1. With it, the user
can gather information about general execution and overall performance, i.e. the
efficiency of the simulation, or the number of events executed.

If the user is interested in the same statistics but at a per-kernel granularity
(i.e. not a system-wide average), the second level of statistics generates a text file
like the previous one for each kernel instance. This is useful, e.g., to check if the
workload of the model is evenly distributed across simulation kernel instances.
At the same time, this level produces punctual data during the simulation’s
execution in the form (GVT phase number, GVT value, committed events in
this phase, cumulated committed events) (one tuple per line). This adds some
overhead, which is nevertheless minimal because this operation is performed
periodically only during the GVT calculation. This is a very useful information
to track performance variations during the execution of the simulation model.

The last (more intrusive) level of statistics generation prints on a per-kernel
separate file additional information for each GVT phase, in the form (total
events, committed events, rollbacks, average event cost, average checkpoint cost).

References

[1] Fujimoto, R.M.: Parallel discrete event simulation. Communications of the ACM 33(10) (Oc-
tober 1990) 30-53

[2] Madhava Rao, D., Thondugulam, N., Radhakrishnan, R., Wilsey, P.: Unsynchronized parallel
discrete event simulation. In: Simulation Conference Proc., 1998. Winter. Volume 2. (Dec)
1563-1570 vol.2

[3] Quaglia, F., Baldoni, R.: Exploiting intra-object dependencies in parallel simulation. Inf.
Process. Lett. 70(3) (1999) 119-125

[4] Fujimoto, R.M.: Exploiting temporal uncertainty in parallel and distributed simulation. In:
Proc. of the 13th Workshop on Parallel and Distributed Simulation, IEEE Comp. Soc. (May
1999) 46-53

[5] Cai, W., Turner, S.J., Lee, B.S., Zhou, J.: An alternative time management mechanism for
distributed simulations. ACM Transactions on Modeling and Computer Simulation 15(2) (April
2005) 109-137

(0]

(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]
[20]
[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

(31]

(32]

Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Languages and System 7(3)
(July 1985) 404-425

Bellenot, S.: Global virtual time algorithms. In: Proc. of the SCS Multiconference on Distributed
Simulation. (January 1990) 122-127

Preiss, B.R., Loucks, W.M., MacIntyre, D.: Effects of the checkpoint interval on time and
space in Time Warp. ACM Transactions on Modeling and Computer Simulation 4(3) (July
1994) 223-253

Palaniswamy, A.C., Wilsey, P.A.: An analytical comparison of periodic checkpointing and
incremental state saving. In: Proc. of the 7th Workshop on Parallel and distributed simulation,
ACM (1993) 127-134

Ronngren, R., Liljenstam, M., Ayani, R., Montagnat, J.: Transparent incremental state saving
in Time Warp parallel discrete event simulation. In: Proc. of the 10th Workshop on Parallel
and Distributed Simulation, IEEE Comp. Soc. (May 1996) 70-77

Santoro, A., Quaglia, F.: Transparent state management for optimistic synchronization in
the High Level Architecture. In: Proc. of the 19th Workshop on Principles of Advanced and
Distributed Simulation, IEEE Comp. Soc. (June 2005) 171-180

West, D., Panesar, K.: Automatic incremental state saving. In: Proc. of the 10th Workshop on
Parallel and Distributed Simulation, IEEE Comp. Soc. (May 1996) 78-85

Carothers, C.D., Perumalla, K.S., Fujimoto, R.M.: Efficient optimistic parallel simulations
using reverse computation. ACM Transactions on Modeling and Computer Simulation 9(3)
(july 1999) 224-253

Som, T.K., Sargent, R.G.: A probabilistic event scheduling policy for optimistic parallel discrete
event simulation. In: Proc. of the 12th Workshop on Parallel and Distributed Simulation, IEEE
Comp. Soc. (May 1998) 56-63

Quaglia, F., Cortellessa, V.: On the processor scheduling problem in time warp synchronization.
ACM Transactions on Modeling and Computer Simulation 12 (July 2002)

Ronngren, R., Ayani, R.: Service oriented scheduling in Time Warp. In: Proc. of 1994 Winter
Simulation Conference, Society for Computer Simulation (December 1994) 1340-1346
Palaniswamy, A.C., Wilsey, P.A.: Scheduling Time Warp processes using adaptive control tech-
niques. In: Proc. of the 1994 Winter Simulation Conference, Society for Computer Simulation
(December 1994) 731-738

Lin, Y.B., Lazowska, E.D.: Processor scheduling for Time Warp parallel simulation. In: Proc.
of the 23rd SCS Multiconference on Advances in Parallel and Distributed Simulation, IEEE
Comp. Soc. (January 1991) 11-14

HPDCS Research Group: ROOT-Sim: The ROme OpTimistic Simulator - v 1.0. http://www.
dis.uniromal.it/~hpdcs/RO0T-Sim/ (October 2012)

Kernighan, B.W., Ritchie, D.M.: The C Programming Language. 2nd edn. Prentice Hall
Professional Technical Reference (1988)

Mattern, F.: Efficient algorithms for distributed snapshots and global virtual time approxima-
tion. Journal of Parallel Distributed Computing 18(4) (1993) 423-434

Elnozahy, M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery protocols
in message-passing systems. ACM Computing Surveys 34(3) (sept 2002) 375-408

Toccaceli, R., Quaglia, F.: DyMeLoR: Dynamic Memory Logger and Restorer library for op-
timistic simulation objects with generic memory layout. In: Proc. of the 22nd Workshop on
Principles of Advanced and Distributed Simulation, IEEE Comp. Soc. (2008) 163-172
Pellegrini, A., Vitali, R., Quaglia, F.: Di-DyMeLoR: Logging only dirty chunks for efficient
management of dynamic memory based optimistic simulation objects. In: Proc. of the 23rd
Workshop on Principles of Advanced and Distributed Simulation, IEEE Comp. Soc. (2009)
Vitali, R., Pellegrini, A., Quaglia, F.: Autonomic log/restore for advanced optimistic simulation
systems. In: Proc. of the Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, IEEE Comp. Soc. (2010) 319-327

Pellegrini, A., Vitali, R., Quaglia, F.: An evolutionary algorithm to optimize log/restore opera-
tions within optimistic simulation platforms. In: Proc. of the 4th International ICST Conference
on Simulation Tools and Techniques, SIGSIM (2011)

Santoro, T., Quaglia, F.: A low-overhead constant-time LTF scheduler for optimistic simulation
systems. In: Proc. of the IEEE Symposium on Computers and Communications. (2010) 948-953
Vitali, R., Pellegrini, A., Quaglia, F.: Towards symmetric multi-threaded optimistic simulation
kernels. In: Proc. of the 26th International Workshop on Principles of Advanced and Distributed
Simulation. PADS, IEEE Comp. Soc. (August 2012) 211-220

Peluso, S., Didona, D., Quaglia, F.: Application transparent migration of simulation objects
with generic memory layout. In: Proc. of the 25th Workshop on Principles of Advanced and
Distributed Simulation, IEEE Comp. Soc. (june 2011) 169-177

Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for optimistic parallel simulations on multi
core machines. SIGMETRICS Performance Evaluation Review 40(3) (August 2012) 2-11
Pellegrini, A., Vitali, R., Quaglia, F.: Transparent and efficient shared-state management for
optimistic simulations on multi-core machines. In: Proc. 20th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems, IEEE Comp.
Soc. (August 2012) 134-141

Antonacci, F., Pellegrini, A., Quaglia, F.: Consistent and efficient output-stream management
in optimistic simulation platform. In: Proc. of the 2013 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, ACM (May 2013) 315-326

