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The aim of the paper is to emphasize the role of the primary strain–line patterns in a human
left ventricle within the complex system that is the heart. In particular, a protocol is proposed
for the measurement of the principal strain lines (PSL) in the walls of the left ventricle; this
protocol is tested by means of a computational model which resembles a human left ventricle.
When the analysis is focused on the epicardial surface, PSL can be used to derive information
on the directions of muscle fibers during the entire cardiac cycle, not only the systolic phase.
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1. Introduction

In structural mechanics, the stresses and strains within a body are limited above
and below by their principal counterparts; this allows for the discussion and ver-
ification of the mechanical state of that body. Moreover, the principal stress and
strain lines (which are the same only when special symmetry conditions are veri-
fied) determine the directions where the largest strains and/or stresses are to be
expected. Due to these characteristics, the mechanics of fiber–reinforced bodies are
often based on the detection of the principal strain lines and, wherever needed,
fiber architecture is conceived in order to make the fiber lines coincide with the
principal strain lines (PSL). Fibers make a tissue highly anisotropic; hence, prin-
cipal strain and stress lines may be distinct. Whereas principal strains can be
measured starting with the analysis of tissue motion, being only dependent on the
three–dimensional strain state of the tissue, principal stresses can only be inferred.
Thus, the PSL have a predominant role where the analysis of the mechanics of a
body is concerned. Where cardiac tissues are concerned, it is worth noting that
muscle fibers function as uniaxial actuators that drive tissue contraction (while
collagen fibers act as the passive reinforcement of the myocardial tissue) and that
it is often assumed that they share the same direction. Hence, it can be expected
that, during the systolic phase, strains will mainly be suffered by highly-contracting
muscle fibers and, in this case, PSL may very well agree with muscle fiber lines.
Outside of this time range, the identification of strain lines is not straightforward.
In addition, given that only the endocardial surface is subjected to high blood
pressures, the roles of the endocardial and epicardial fibers may differ. The present
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paper wishes to make some progress towards improving the ability to obtain in-
formation on the fiber architecture within the heart walls thanks to the detection
of the PSL. Now that full-volume images of the heart walls can be obtained by
high-resolution 3-dimensional Real Time (3DRT) speckle tracking-based motion-
detecting echocardiography (STE) (in short, 3DSTE), many of the shortcomings
of 2D echocardiography (as opposed to NMRI) can be overcome, to the extent that
myocardium strains may be investigated noninvasively with high accuracy (???).
The goal in (?)is the same. Therein, the patterns of the principal strain lines on the
endocardial surface of the left ventricles of a few normal adults are analyzed and
discussed. The primary and secondary strain lines, corresponding to the smallest
and the largest PSL, are evaluated as the outcomes of an eigenvalue analysis on
a strain tensor, based on echocardiographic data. The analysis is limited to the
systolic phase, evaluated as the most appropriate to infer data on the architecture
of muscle fibers, and to the endocardial surface, as it has been noted that the epi-
cardial echocardiographic data is not adequate. A qualitative similarity between
the PSL and the expected pattern of muscle fibers on the endocardial surface is ob-
served near the systolic peak. In this paper, a protocol of measurement of the PSL
on the endocardial and epicardial surfaces based on data from 3DSTE is presented
and discussed. The protocol is based on the evaluation of the standard strain tensor
of nonlinear mechanics, directly from data acquired by 3DSTE on the positions of
specific points (the markers of 3DSTE) at different frames during the cardiac cycle.
The protocol is tested on a set of data generated by the computational model pre-
sented in (?) and briefly summed up in the next section. Therein, the architecture
of muscle fibers in the walls of the left ventricle is included as part of the model;
hence, the test allows for discussing the appropriateness of the PSL to correctly
identify the directions of muscle fibers. The main conclusions of the paper are two.
Firstly, the protocol delivers the strain field and the PSL on the endocardial and
epicardial surface with a good approximation; secondly, it suggests that the epi-
cardium rather than the endocardium should be analyzed to infer information on
muscle fibers from 3DSTE data.

2. Background

In (?), a realistic geometrical model of the left ventricle (LV) is developed from
data recorded through 3DSTE. The nonlinear mechanics of the LV body during a
typical cardiac cycle are studied through a computational model whose outcomes
are successfully compared with the strain data given by 3DSTE (see (?) for details
of the technique). The main characteristics of the above model are briefly listed.
The reference configuration B of the LV body is a three–dimensional region of the
Euclidean space E , corresponding to a zero–stress and no loads configuration. Of
course, it does not correspond to any configuration assumed by a real LV during
the cardiac cycle, and is determined by the following condition: the geometrical
characteristics of the LV body at the end diastole are those of a representative
subject (selected from the group of normal subjects examined in (?)) in the end
diastolic frame. The muscle architecture is described by assigning a unit vector
field e : B → V = TE representing the transmurally, linearly varying, muscle
fiber direction. Denoted by β the angle between a fiber and the circumferential
direction; it is assumed that β = −60◦ on the epicardial surface ∂Bepi (fibers
spiraling counterclockwise toward the base), and β = 80◦ on the endocardial surface
∂Bendo (fibers spiraling clockwise). The displacement vector field is denoted by u

and the deformations of B are described by the tensor field F = I +∇u, where I

is the identity tensor. Following (?), the deformation gradient is multiplicatively
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decomposed into an active component, Fa, describing tissue contraction and an
elastic component, Fe, describing the elastic deformation, as

Fa = δ e⊗ e+
(1

δ

)1/2
(I− e⊗ e) and F = FeFa , (2.1)

where the scalar field δ, the fiber contraction, is not constant along the cardiac
cycle and is related to the fiber shortening ε by ε = 1− δ. A transversely isotropic
strain energy density ψ̂ per unit of stress-free volume is assumed to describe the
passive properties of the cardiac tissue as the sum of an isotropic component ψ̂i

and an anisotropic component ψ̂f , which takes into account the fiber reinforcement
(effective only for positive stretching of the fibers with respect to the contracted
state), as

ψ̂(Ce) = ψ̂i(I1(Ce)) + ψ̂f (I4(Ce), I5(Ce)) , Ce = FT
e Fe ; (2.2)

here Ii(Ce) (i = 1, 4, 5) are the invariants of Ce:

I1(Ce) = I ·Ce , I4(Ce) = Cee · e , I5(Ce) = C2
ee · e . (2.3)

Moreover, the energy function is added to an isochoric constraint on the elastic
deformation guaranteeing that det Ce = 1. The Cauchy stress tensor reads

T = 2FF−1
a

∂ψ̂

∂Ce
F−1
a FT

− pI , (2.4)

where p, the hydrostatic pressure field, is a direct result of the incompressibility
constraint. As usual, where large deformations are concerned, the standard balance
equations of forces are written in the reference configuration B in terms of the
reference stress S = (detF)TF−T . The boundary conditions set blood pressure π
on ∂Bendo to be a scalar field varying along the cardiac cycle (see Figure 1 (right)),
whereas a stress–free condition is set on ∂Bepi; a torsional spring is put on the mitral
annulus partially hampering the torsional motion, and the displacements along
the direction of the longitudinal LV axis are constrained. Any bulk force, inertia
included, is assumed negligible. In order to solve an inverse problem, a muscle
contraction field δ describes a spatially uniform function varying along the cardiac
cycle together with the blood pressure field π; the mechanical response of the LV
body is evaluated by solving a one–parameter family of nonlinear elastic problems,
where the parameter spans the cardiac cycle (?). Contraction and pressure along
the cardiac cycle are shown in Figure 1.
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Figure 1. Pressure π (left) and contraction δ (right) along the cardiac cycle. The red portions of the lines
correspond to the systolic phase within the cardiac cycle. Whereas the pressure data are real data, the
contraction data have been inferred in such a way to get specific characteristics of the LV motion, so as
derived from 3DSTE data (see (?)).
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3. Method

The outcomes of the computational model set in (?) are therein extensively dis-
cussed; here, the attention is devoted to the (visible) strain tensor C = FTF which
collects all the information on strains suffered by the tissue. It is worth noting that
the strain C accounts for both the active strain

Ca = FT
a Fa , (3.5)

and the elastic strain Ce (see (?) for further details); however, it does not include
any additive decomposition of the total strain C into its active and elastic parts,
as it holds1

C = FT
a CeFa . (3.6)

It is to be noted that both the elastic component Ce and the active component Ca

can be the dominant component of the total visible strain C in different crucial
moments of the cardiac cycle such as the diastolic and the systolic phases, respec-
tively, and in different parts of the myocardium, such as the epicardium and the
endocardium. It is worth noting that when Ca prevails, it is expected that the PSL
are similar to the directions of the fibers, while, in general, this is not true when
Ce prevails. In fact, while the principal directions of Ca are determined by the
equations (2.1) and (3.5), Ce is dependent on the solution of the elastic problem.
It is worth highlighting that the situation in which C = Ca (i.e. Ce = I) cannot
exist because, as established in (?), Ca is not compatible, apart from the trivial
case where δ = 1. A preliminary analysis is firstly carried out to verify the rela-
tionships between the PSL and the muscle fiber lines within the tissue, along the
whole cardiac cycle. An indicator able to quantify the similarity between PSL and
muscle fiber lines is introduced and its pattern along the cardiac cycle at different
points within the LV walls is discussed, with reference to the computational model
developed in (?). Therein, the computational solution of a specific nonlinear elas-
tic problem (where specific means that geometric and material data, as well as the
muscle fiber architecture, are given) delivers primary and secondary strain lines
through a simple eigenvalue analysis on C. This nonlinear elastic solution is used
to assess the role of the PSL during the whole cardiac cycle. Next, a protocol of
measurement of the PSL is proposed, to be used on 3DSTE data. 3DSTE devices
measure the motion of the walls, tracking the position of a set of markers, auto-
matically set by the device’s software, along the cardiac cycle. The strain tensor
C can be evaluated accordingly. Here the protocol is exemplified with the help of
the computational model. The whole procedure and the example are discussed in
detail in the following sections.

3.1 Preliminary analysis

The finite collection of points identified as the vertices of the triangular ele-
ments used to discretize ∂Bendo and ∂Bepi is shown in Figure 2; they are denoted
D(∂Bendo) and D(∂Bepi), respectively. The total visible strain tensor C correspond-
ing to the solution of the previously summed up nonlinear elastic problem is known
at any Xi ∈ D(∂Bendo) ∪ (D(∂Bepi) for any contraction–pressure pairs of values

1The additive decomposition of strains into active and elastic components only pertain to linear theory,
where the equation (3.6) is replaced by E = Ee + Eo, with E, Ee, and Eo the linear visible, elastic, and
active deformations respectively.
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(δj , πj) corresponding to a frame j ∈ n ⊂ N along the cardiac cycle, where n is a
subset of the set N of the natural numbers, hence a time within the characteris-
tic interval (0, 0.7) s. The pairs (γm(Xi, j), cm(Xi, j)) (m = 1, 2, 3) of eigenvalues

Figure 2. Representation of the discretized epicardial (red) and endocardial (purple) surfaces generated
within the finite element code. The surfaces correspond to a left ventricle with a long axis of 9.8 cm, a
short axis of 4.35 cm, a short axis wall thickness of ∼ 1 cm, and an end diastolic endocardial volume of
∼ 102ml.

and eigenvectors of the strain tensor C can easily be evaluated. The corresponding
surface strain tensor Ĉ is obtained through a preliminary projection of C onto the
epicardial and endocardial surfaces. The projector P = I− n⊗ n, where the field
n corresponds to the unit normal field of the endocardial and epicardial surfaces,
leads to the following definition:

Ĉ = PCP . (3.7)

The eigenvalue analysis performed on Ĉ delivers the pairs of eigenvalue and eigen-
vector (γ̂m(Xi, j), ĉm(Xi, j)) (m = 1, 2, 3), where the eigenvectors are ordered by

ascending eigenvalues. It is expected that Ĉ will represent a plane strain state,
hence, that it will have a zero eigenvalue corresponding to the eigenvector ĉ1 = n;
and that the primary strain lines on the (discretized) surfaces will be the stream-
lines of the eigenvector c2, which lies on the surface and corresponds to the smallest
nonzero eigenvalue. To evaluate and specify the similarity between primary and sec-
ondary strain lines and the muscle bands on the endocardial and epicardial surfaces
respectively, the fields θ̂α : D(∂Bendo

)× n → R are introduced as

θ̂α(Xi, j) = arccos ĉα(Xi, j) · e(Xi) , α = 2, 3 , (3.8)

where e(Xi) is the fiber vector at the point Xi; the fields are considered to be
material, assigned once for all on the reference configuration of the body. At a point
Xi ∈ D(∂Bendo) along the cardiac cycle, θ̂2(Xi, ·) (θ̂3(Xi, ·)) gives the difference in
orientation between the fiber line and the PSL (secondary strain lines).
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3.2 The protocol for measuring strain lines

When the pattern of the PSL is derived from 3DSTE data, the starting point is very
different. Typically, 3DSTE devices adopt a discretization of the LV through 36
planes perpendicular to the longitudinal axis of the LV; each plane is then divided
into 36 sections along the circumference, each 10 degrees apart; this subdivision
gives rise to 36 × 36 points on both the endocardial and the epicardial surfaces.
Hence, the real LV is identified by a cloud of points pi whose motion is followed
along the cardiac cycle. The position of each of the (36×36)×2 points pi (i = 1, 36×
36 × 2) is registered by the device at each time frame j of the cardiac cycle, and
represented through the set of its Cartesian coordinates. The coordinates refer to a
system represented by the i3 axis defined by the longitudinal LV axis and the (i1, i2)
axes on the orthogonal planes. The clouds of markers are intrinsically ordered. At
a first level, it is possible to recognize an epicardial and an endocardial cloud,
each of them consisting of 36× 36 points, here named Sepi and Sendo respectively.
As an example, the clouds obtained from the computational model at its reference
configuration, are shown in Figure 3. Moreover, an intrinsic order within each cloud
can be identified with respect to the coordinate system which implicitly is used
by the device to order the points: to any marker on ∂Bepi (∂Bendo) is associated
a z–position along the vertical axis and a φ–position on the plane crossing the
longitudinal LV axis at that z. The previous discussion about the intrinsic order
of the epicardial and endocardial point clouds is propaedeutic to discussing the
evaluation of the strain tensor C, as in the following. The procedure adopted to
evaluate the strain tensor C is borrowed from classical topics in Solid Mechanics
(?); these concern the transformation of line, area, and volume elements under
a motion whose gradient at a point X ∈ B and a time t is F. Indeed, a pair
(X,X − Xo) ∈ B × V, with Xo close to X, under this motion is transformed
according to

(X,X −Xo) 7→ (x, x− xo) , (3.9)

where x and xo are the positions of the points X and Xo at time t, respectively;
this gives

x− xo = F(X −Xo) . (3.10)

In general, once X ∈ B is fixed and a pair of covariant and controvariant bases ai
and ai (i = 1, 2, 3) are given, the following two–point representation of the tensor
F respectively holds:

F = ãi ⊗ ai , ãi = Fai . (3.11)

Hence, the mixed components of F can be evaluated as

Fr
s = F · ar ⊗ as = Fas · a

r = ãs · a
r , (3.12)

whatever the representation of ar and ãs. Following from (3.12), the strain tensor
C turns out to be C = FTF. To each point P ∈ Sepi (Sendo), identified within the
intrinsic reference system by the pairs of 3DSTE coordinates z and φ, corresponds a
set of n positions within the Cartesian coordinate system, where n is the number of
equally spaced frames registered by the device along the cardiac cycle. Moreover,
let Pz ∈ Sepi and Pφ ∈ Sepi be the points close to the point P in the 3DSTE
topology, i.e. identified within the intrinsic reference system by the pair (z+hz, φ)
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Figure 3. Endocardial (left) and epicardial (right) clouds: blue circles denote the markers pi ∈ Sendo and
red circles denote the markers pi ∈ Sepi. Both the endocardial and epicardial markers are automatically
set by the device’s software, once a few key markers have been selected by the medical operator.

and (z, φ + hφ) of 3DSTE coordinates, where hz = H(LV )/36, hφ = 2π/10, and
H(LV ) the height of the LV model. The vectors Pz − P and Pφ − P span a non-
orthonormal covariant basis (a1,a2) which corresponds to the 3DSTE coordinate
system. Let a3 = a1 × a2, it is now possible to construct a unique non–orthogonal
basis (a1,a2) such that

a1 =
a2 × a3

a1 · a2 × a3
and a2 =

a3 × a1

a1 · a2 × a3
, (3.13)

where a1 · a2 × a3 = a3 · a3 the scalar triple product. It holds aα · aβ = δαβ , where
α, β = 1, 2. Let p, pz, and pφ denote the positions occupied by the points P , Pz,
and Pφ respectively at the frame j. The deformation gradient F at position P and
frame j admits the following representation

F = (pz − p)⊗ a1 + (pφ − p)⊗ a2 , (3.14)

and its mixed components can be evaluated as

Fα
β = F · aα ⊗ aβ = Faβ · aα = ãβ · aα , (3.15)

where ã1 = (pz−p) and ã2 = (pφ−p). Both ãβ and aα are known in terms of their
Cartesian coordinates. Thus, the following holds:

ã1 = λzi (j) ii and ã2 = λφi (j) ii , (3.16)

where j refers to the frame along the cardiac cycle;

a1 = λzi ii and a2 = λφi ii , (3.17)

where λφi = λφi (0) and λ
z
i = λzi (0);

a3 = (λφ2 λ
z
3 − λφ3 λ

z
2)i1 + (λφ3 λ

z
1 − λφ1 λ

z
3)i2 + (λφ1 λ

z
2 − λφ2 λ

z
1)i3 ; (3.18)
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and, eventually, a1 and a2 may be evaluated from (3.13) using (3.17) and (3.18).
Once the mixed components of the deformation gradient F have been evaluated at
every point P ∈ Sepi (P ∈ Sepi) and at every frame j ∈ n, it is easy to obtain the
total surface strain tensor, C̄

C̄βδ = Fα
β F

γ
δ (aα · aγ) . (3.19)

The eigenvalue analysis should reveal a plane strain state, thus delivering the ex-
pected results concerning the primary and secondary strain lines. The correspond-
ing eigenvalue–eigenvector pairs are denoted as (γ̄α, c̄α), where α = 2, 3.

Remark. The proposed protocol is based on the evaluation of the positions oc-
cupied by the points along the cardiac cycle in their corresponding Cartesian co-
ordinates. These coordinates, once real 3DSTE data is analyzed, will be directly
identified by the system. So far, the intrinsic 3DSTE topology has only been used
to define the closeness between points in the configuration (hence, at the frame)
chosen as reference, and to obtain a special two–point representation of the de-
formation gradient tensor. Moreover, the evaluation of the nonlinear strain tensor
C is performed in one derivative step, which relates to the position of points that
are close to each other in the 3DSTE topology. Other techniques have been pro-
posed (?); these define the strain tensor as the integral of the strain rate tensor
which is determined from the gradient of material velocity measures. Hence, these
techniques involve two separate derivative steps (in space and in time) and an
additional integration step (in time).

4. Results and Discussion

Firstly, the role of the pairs of eigenvalues and eigenvectors of the strain tensor Ĉ
evaluated on the endocardial and epicardial surfaces is discussed. In the computa-
tional model, the muscle fiber architecture is known and identified as the structure
of the passive reinforcement fibers. These assumptions lead to a straightforward
discussion of the relationship between the eigenvectors of the surface strain tensor
Ĉ and the muscle fiber lines, at different times along the cardiac cycle. When the
end systolic peak time (from Figure 1, t ≃ 0.3 s) is selected in the (simulated)
cardiac cycle, the three eigenvectors can be shown by means of their correspond-
ing streamlines. The following Figure ?? displays the endocardial (top row) and
epicardial (bottom row) surfaces, rendered by triangular meshes. At any node Xi

of the mesh, the eigenvector fields ĉi have been highlighted, where i goes from 1
to 3, from left to right. The figure displays two remarkable findings. As expected,
with Ĉ a plane strain tensor, the first eigenvector ĉ1 (bottom and top left panels)
has eigenvalue zero and is orthogonal to both surfaces. Moreover, the primary and
secondary strain lines (which correspond to the streamlines with the smallest eigen-
values between γ̂2 and γ̂3) on the epicardial surfaces (bottom center and bottom
right panels) follow the muscle fiber lines and the corresponding orthogonal lines.
In the end, on the endocardial surface, the primary lines (top center panel) are
circumferential and the corresponding secondary lines (top right panel) are almost
aligned with the directions of the muscle fibers on the endocardial surface (∼ 80◦).
This result is justified: due to the high blood pressure during the systolic phase,
the relevant total visible strains on the endocardial surface are mainly elastic and
highlight circumferential bands of smallest strains. Hence, with reference to the
equation (3.6), at the systolic peak the main component of C is the elastic com-
ponent Ce. On the contrary, on the epicardium, where pressure is extremely low,
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Figure 4. Representation of the epicardial (bottom row) and endocardial (top row) surfaces as generated
within the finite element code. At the time corresponding to the end systole, the ĉi fields with i = 1, 2, 3
are represented by green arrows at each node, and defined the strain eigenvectors at that node.

strains are mainly active strains (Ca) and the PSL actually suggest the orientation
of the muscle fibers. These facts must be taken into account when muscle fiber ar-
chitecture is unknown, as is the case when real 3DSTE data are examined. Figure
?? shows the pattern of the eigenvalues corresponding to the primary (left) and
secondary (right) strain lines at each point of the mesh (red lines) and the corre-
sponding spatial average pattern, along the entire cardiac cycle. It is worth noting
that a well-defined pattern of values can be identified for both surfaces; hence, the
average blue line bears meaning. At t=0, the values attained by the eigenvalues
belong to the end–diastolic state. At the peak systolic frame, both first and second
eigenvalues are on average less than 1; this denotes tissue shortening in the endo-
cardium. The second step is to validate the assumption that the strain tensor C̄,
that is derived from the application of the protocol proposed in the previous section
and defined in equation (??), is suitable to obtain the same results that in our case

are obtained from Ĉ. C̄ is hence calculated by simulating the pseudo–experimental
3DSTE data (i.e. the pi ∈ Sendo,Sepi coordinates at each step frame of the cardiac
cycle, that are the unique available dataset from real human LV) from the model
and by applying the protocol. The strength of the proposed protocol is assessed
through a comparison of the eigenvalues γ̄α corresponding to the primary and
secondary strain lines, as Figure ?? shows. The results simulated from the com-
putational model are analogous to those obtained with the pseudo-experimental
3DSTE data. Even if not pictured, the resulting eigenvectors c̄α equal, in practice,
the ĉα represented in Figure ??. The last step of this discussion relates to the
quantification of the similarity between the calculated eigenvectors and the direc-
tions of the fibers. As previously discussed from a qualitative point of view, the
directions of the PSL differ, at the systolic peak, from endocardium to epicardium.
Now, this difference is quantified along the entire cardiac cycle. Recalling the scalar
fields previously defined in equation 3.8, the similarity between PSL and muscle
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Figure 5. Eigenvalues γ̂α (α = 2, 3) corresponding to the primary (left panels) and secondary (right
panels) strain lines at each point (red lines) of the clouds Sendo (top line) and Sepi (bottom line): below
the straight black line (which denotes the unit value) shortening occurs, above the line elongation occurs.
The blue line identifies the spatial mean value.

fiber lines can be quantified through the introduction of the equivalent fields, now
calculated over the points belonging to the protocol sets Sendo and Sepi as

θ̄α(Xi, j) = arccos c̄α(Xi, j) · e(Xi) , α = 2, 3 ; (4.20)

the same holds for Sepi. When θ̄2 ∼ 0, the PSL and the muscle fiber lines are
almost aligned; when θ̄2 ∼ 90◦, they are almost orthogonal (and similarly for θ̄3).
Figure ?? shows both fields for α = 2, 3 for the epicardial surface (left) and for the
endocardial surface (right). It is evident from the figure that: (i) on the epicardium
(right panel) the PSL and the direction of the muscle fibers are very similar, i.e.
along a large part of the cardiac cycle phase the angle θ̄2 is less than 20◦ (blue line);
on the contrary, the secondary strain lines remain almost orthogonal to the same
direction of muscle fibers (cyan line); (ii) on the endocardium (left panel), at the
systolic phase when high internal blood pressures are expected, the primary strain
lines (blue line) are circumferential, that is, almost orthogonal to the direction of
the muscle fibers. However, it is to be noted that before blood pressure increases,
that is, at the initial end–diastolic time, the PSL are very similar to the direction
of the muscle fibers.

5. Conclusions

A protocol of measurement of the primary strain lines in the left ventricle’s walls
is proposed and tested against a computational model. The interesting result is
that, provided a proper time interval is chosen, the PSL may be used to retrieve
information on the direction of the muscle fibers, both for the epicardial and for the
endocardial surfaces. In particular, if the analysis is limited to the epicardial surface
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Figure 6. Eigenvalues γ̄α (α = 2, 3)corresponding to the primary (left panels) and secondary (right panels)
strain lines at each point (red lines) of the clouds Sendo (top row) and Sepi (bottom row), as evaluated by
the measurement protocol.
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Figure 7. Spatially-averaged time–pattern of the fields θ̄ on the endocardial (left) and epicardial (right)
surfaces.

then most of the cardiac cycle can be selected. On the contrary, the directions of the
endocardial fibers can only be recovered from the first time frames of the cardiac
cycle. This last result opens the road to a systematic study which can be carried
on through the analysis of 3DSTE data from both normal humans and patients
showing different levels of cardiac diseases. The study can help shed light on how
the patterns of PSL within the walls of the left ventricle are altered in the presence
of cardiac diseases.
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