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Abstract
In parallel discrete event simulation techniques, the sim-

ulation model is partitioned into objects, concurrently ex-
ecuting events on different CPUs and/or multiple CPU-
Cores. In such a context, run-time supports for logical
time synchronization across the different simulation objects
play a central role in determining the effectiveness of the
specific parallel simulation environment. In this paper we
present an experimental evaluation of the memory manage-
ment capabilities offered by the ROme OpTimistic Simulator
(ROOT-Sim). This is an open source parallel simulation en-
vironment transparently supporting optimistic synchroniza-
tion via recoverability (based on incremental log/restore
techniques) of any type of memory operation affecting the
state of simulation objects, i.e., memory allocation, deal-
location and update operations. The experimental study
is based on a synthetic benchmark which mimics different
read/write patterns inside the dynamic memory map asso-
ciated with the state of simulation objects. This allows sen-
sibility analysis of time and space effects due to the memory
management subsystem while varying the type and the lo-
cality of the accesses associated with event processing.

1 Introduction
A traditional way to achieve high performance simula-

tions is the employment of parallelization techniques [3].
They are based on the partitioning of the simulation model
into objects that can execute events in parallel on multiple
CPUs and/or CPU-Cores. For these techniques, the main
obstacle to speedup and scalability is the overhead due to
synchronization, which is required to ensure causally con-
sistent execution of simulation events at each object.

The optimistic synchronization approach is likely to fa-
vor speedup in general application/architectural contexts. In
particular, it has been shown to exhibit performance rela-
tively independent of the lookahead of the specific simula-
tion model, and has also been shown not to suffer (in terms
of amount of rollback in the parallel execution) from non-
minimal message delivery latency. The latter feature makes
it suited for a wide variety of computing platforms, includ-
ing large scale traditional GRID systems and even desktop
GRID environments. On the other hand it is clearly under-
stood that the aforementioned potential advantages become
real only in scenarios where the core issue of managing
log/restore operations of the simulation objects’ states has
been addressed for both (a) transparency to the application
programmer and (b) run-time efficiency.

In [8, 17] we have presented the design and develop-
ment of Di-DyMeLoR (Dirty-Dynamic-Memory-Logger-
and-Restorer), namely a fully featured memory manage-
ment subsystem specifically oriented to optimistic simula-
tion. It provides recoverability, via incremental log/restore
techniques, of any type of memory operation occurring in-
side the state of the simulation object, namely chunk al-
location/deallocation and update operations. Also, the ap-
plication programmer is not requested to explicitly interact
with this subsystem since those operations are allowed to
be triggered inside the application level software accord-
ing to standard technology and programming approaches.
This memory management subsystem has been integrated
inside the open source ROOT-Sim platform, which relies on
C technology and on event-handlers’ based programming
style for simulation software development at the application
level (see, e.g., [1, 2, 6]).

At the design level, Di-DyMeLoR relies on wrapping
techniques used to intercept allocaton/deallocation requests
from the overlying application in order to identify any
changes dynamically occurring in the layout of the object
memory map. It also adopts (lightweight) instrumenta-
tion to transparently link a memory-update tracker mon-
itor to the application software, thus allowing run-time
identification of memory-update operations occurring in-
side the memory map. The effectiveness of the whole de-
sign/implementation has been evaluated in [8, 17] with a
mobile communication system simulation application. Al-
though such an application has been parameterized to take
into account different settings (e.g. in terms of memory
requirements for the state of each simulation object), it
does not mimic a sufficiently wide spectrum of memory us-
age/access patterns. Thus, a general-settings study of the
effects of Di-DyMeLoR on (i) event processing overhead
(caused by the run-time memory update tracker), and (ii)
log latency reduction and memory locality improvements
(thanks to incremental logging) is mandatory.

In this work we focus exactly on such a type of study.
In particular, we have implemented a synthetic applica-
tion derived from the well known PHOLD benchmark [4],
explicitly embedding parameterizable memory operations’
patterns. Then we have performed a sensibility study on
the behavior of the memory management capabilities inside
ROOT-Sim vs diversified application level memory opera-
tions’ patterns. We note that the relevance of the present
benchmarking study is twofold. (A) It can assess the good-
ness of the design approach underlying Di-DyMeLoR under
generic application software execution patterns, thus quali-



fying such a design as a potential reference for other imple-
mentations. (B) It can allow establishing the viability and
the effectiveness of such a memory management operating
mode for applications characterized by specific memory op-
erations’ patterns (e.g. in terms of percentage of memory-
write machine instructions per event).

The remainder of this work is structured as follows. In
Section 2 we discuss related work. Section 3 provides an
overview of ROOT-Sim. In Section 4 the benchmark ap-
plication is described. Experimental data are presented in
Section 5.

2 Related Work
Memory management operations, in terms of log/restore

of optimistic simulation objects’ states, have been studied
by several works and according to differentiated method-
ologies. The works in [9, 11, 15] cope with non-incremental
techniques and provide analytical models for the determi-
nation of the best suited frequency for log operations in or-
der to optimize the trade-off between log and restore costs.
In these studies, there is no explicit mention about how to
support/implement the log/restore protocol. Hence, com-
pared to our work, these models act at a higher level of ab-
straction, and require log and restore latency values as input
parameters to be provided by the specific implementation
of the log/restore architecture. Similar considerations ap-
ply to the incremental-log oriented studies in [7, 16], where
analytical evaluation of best suited trade-offs is performed
by having exact information about incremental (vs non-
incremental) log operations’ costs in input. In other words,
differently from the present proposal, these works do not
deal with the evaluation of any real subsystem (transpar-
ently) supporting incremental log facilities.

The work in [10] is oriented to implementation aspects
and to the evaluation of a specific architecture for non-
blocking (asynchronous) logging. However, differently
from our work, it does not deal with incremental logging,
and the implementation does not allow the employment of
dynamic memory for the state of simulation objects.

The work in [18] copes with the design and evaluation
of an incremental logging architecture based on software
instrumentation. However, as for the aforementioned work,
the usage of dynamic memory is not allowed, which is in-
stead permitted inside the architecture we are evaluating in
this work. Also, the instrumentation technique presented
and evaluated in [18] is tailored to RISC architectures, while
we deal with IA-32/x86-64 CISC processors, which intrin-
sically increases the complexity of the instrumentation pro-
cess independently of the integration with a dynamic mem-
ory map manager.

The work in [12] deals with implementations of supports
for incremental logging in the context of object oriented
simulation software, which are based on operator overload-
ing schemes. However, differently from the architecture
we cope with, a-priori knowledge of memory locations re-
served for state variables is required.

The issue of supporting dynamic memory based states
for optimistic simulation objects has also been addressed

by the optimistic simulation frameworks in [1, 2]. Com-
pared to our target architecture, in these frameworks ad-hoc
APIs are used to explicitly notify to the simulation kernel
that specific allocation/deallocation operations, and, more
in general, operations on data structures based on dynamic
memory (e.g. lists), need to be rollbackable. As a conse-
quence, supports for application level full transparency vs
optimistic state management are not included (and hence
not evaluated).

In terms of capabilities of the memory management sub-
system the software architectures closest to the one we are
evaluating in this study are probably those described in
[13, 14]. However, they rely on a completely different de-
sign approach since there is an explicit use of Operating
System memory protection mechanisms to detect memory
updates and to incrementally log dirty pages belonging to
the state of simulation objects. Compared to our case, the
overhead for tracking updates and incremental log opera-
tions is likely higher (e.g. since it exhibits page size granu-
larity). Hence, evaluation studies of these architectures are
not representative of what we can expect with the different
design approach adopted for developing the memory man-
agement capabilities offered by ROOT-Sim.

Similar comments apply to several other works aimed
at implementing and evaluating transparent software archi-
tectures for incremental log/restore in the context of fault
tolerance (see, e.g., [5]). In these studies, the main focus is
on the optimization and evaluation of the interaction with
stable storage devices, in order to persist volatile memory
losses. Instead, we deal with an architecture for main mem-
ory logs, which are used to rebuild correct snapshots of the
simulation object state in case of causality errors (not in
case of faults causing volatile memory losses).

3 Overview of ROOT-Sim
ROOT-Sim is an open source, general purpose platform

developed using C technology, which is based on a simu-
lation kernel layer that ultimately relies on MPI for data
exchange across different kernel instances. The platform
transparently supports all the mechanisms associated with
parallelization (e.g. mapping of simulation objects on dif-
ferent kernel instances) and optimistic processing.

In Figure 1 we schematize the architecture of ROOT-
Sim, with focus on the memory management subsystem.
The simulation kernel interacts with the overlying applica-
tion software via the following call/callback functions:

ProcessEvent(): this callback has a set of parameters
identifying the event to be processed (in the form of an
application-defined data structure) and the base pointer for
identification of the address where the top data structure as-
sociated with the simulation object state resides in memory.
All the other memory chunks dynamically allocated inside
the object state will be reachable via pointer based linking
according to the logic defined by the application program-
mer.

ScheduleNewEvent(): this service exposed by the ker-
nel can be invoked during event processing for injecting
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Figure 1. ROOT-Sim Architecture.

new events within the system, targeting whichever active
simulation object.

The object state management subsystem, namely Di-
DyMeLoR [8, 17], is a wrapper of malloc and free
ANSI-C standard services, interposed at linking time be-
tween the application-level software and the standard mal-
loc library. This approach allows the application program-
mer to use dynamic memory in a transparent way vs lower
level memory management tasks (such as log/restore oper-
ations) supported by the ROOT-Sim kernel.

Di-DyMeLoR maintains per-simulation-object meta-
data tables, composed of so called malloc area entries.
Each entry keeps information about a block of contiguous
pre-allocated chunks of a given power-of-2 size (i.e. the
head memory location of the block of chunks and the meta-
data describing their status). Each time a memory alloca-
tion request is issued by the application-level software, Di-
DyMeLoR checks whether a malloc area of chunks of a
suitable size has been pre-allocated. In the positive case, it
finds an unused chunk inside it for serving the request. On
the other hand, if the malloc area was still unallocated,
the underlying standard malloc service is invoked to allo-
cate a whole block of unused chunks. Then the request is
served.

A memory segment associated with a malloc area
keeps two bitmaps, named use bitmap and dirty bitmap,
both reserving one bit for each chunk. The former bitmap
keeps information about which pre-allocated chunks are
currently in-use. The latter keeps information about which
pre-allocated chunks have been involved in a memory write
since the last log operation (those chunks will be referred to
as dirty-chunks). Exploiting these data structures, a log op-
eration is simply performed by analyzing the in-use/dirty
bitmaps. In case of full logs, all the in-use chunks are
packed into a contiguous log buffer appropriately sized.
Instead, for an incremental log, only the dirty-chunks are
packed. The log buffer, whether incremental or not, is
linked to a log chain. A restore operation is performed by
iteratively backward traversing the log chain, searching for
logged chunks that have not been restored yet. This proce-
dure stops when all the active malloc area entries and

all the in-use chunks have been restored. Although in prin-
ciple this could entail an indefinite number of iterative back-
ward steps, in practice the restore operation can be immedi-
ately finalized once a full log is found while backward re-
traversing the log chain. In fact, all the in-use chunks that
have not yet been restored are immediately available inside
the full log for copy-back operations.

To update the dirty bitmap, the memory management
subsystem needs to intercept all the memory write opera-
tions occurring inside the memory map. Since dynamically
allocated memory could be scattered through all the vir-
tual addressing space, the design had to discard approaches
such as memory-regions monitoring. Instead, a compile-
time instrumentation approach has been adopted which an-
alyzes the object generated after linking together all the
application level modules. The analysis is carried out by
a Parser/Modifier (PM) software component that has been
specifically designed for instrumenting ELF objects gen-
erated by standard gcc compilers (versions 3 and 4) for
IA-32 and x86-64 architectures. While scanning the ob-
ject file, PM identifies every memory-write instruction in-
side it, namely mov instructions with a memory location
as the destination. The instrumentation process is then
supported via the insertion of a call instruction to an
update tracker module, written in assembly language,
which performs the identification of the exact memory ad-
dress and the size (amount of bytes) involved in the memory
update operation.

For efficiency purposes update tracker has been
designed in a way to avoid disassembling of the memory
reference instruction fully operated at run-time. Instead, an
orthogonal technique has been adopted where a software
table is built and populated during the compile-time instru-
mentation process. This table acts as a cache of disassem-
bling results for memory-write instructions. Actually, in IA-
32/x86-64 architectures, the address of each memory-write
operation depends on a set of up to four parameters, namely
base, index, scale and displacement. The former
two parameters correspond to register values (i.e. they iden-
tify the registers containing the values), while the latter two
correspond to specific values of fields inside the memory-
writing instruction. The instruction opcode tells what of
those parameters are relevant. Also, the opcode, together
with its prefixes, establish the real size of the memory area
touched by the write operation. Hence, to cache the results
of the disassembling process, PM builds a table with entries
structured as follows:

struct update_tracker_entry {
unsigned long ret_addr;
unsigned int size;
char flags;
char base;
char index;
char scale;
long displacement;

}

The flags field is used to identify which of the afore-
mentioned four parameters are actually relevant and should
be considered by update tracker for computing the



exact address for the memory-write operation. Also, the
size field immediately indicates to update tracker
the (compile-time defined) size of the memory area to be
dirtied by the current memory-write instruction (1). Fi-
nally, the ret addr field indicates to update tracker
where control will be returned after its execution. This
field corresponds to the memory address of the write in-
struction which immediately follows the current instance
of the call to update tracker. It has been included
in the update tracker entry data structure for allow-
ing the disassembling results’ table produced during the
instrumentation process to be organized as a fast search
hash-with-buckets table. In particular, upon its activation,
update tracker checks inside its own stack frame the
return address value, which is used as the key for access-
ing the hash table maintaining update tracker entry
records, and is compared to the ret addr field inside
these records for selecting the correct entry within the
bucket. Once this is done, the memory address for the write
operation and the size of the memory being dirtied are easily
computed by the monitor via a few machine instructions.

In the memory model offered by Di-DyMeLoR, loca-
tions associated with automatic variables (allocated inside
the stack) do not belong to the object memory map, since
they do not survive across different invocations of the event
handler. Hence, all those memory-write instructions that
can be detected at compile-time to access the stack (e.g.
mov instructions addressing memory via base pointer or
stack pointer displacement) are not instrumented by PM.
However, in some cases write access into the stack cannot
be recognized at compile time. For this reason, after hav-
ing computed the address for the memory-write operation,
update tracker compares it with the current value of
the stack pointer. In case the access is an actual stack up-
date, update tracker simply returns. Otherwise, the
information about the identified memory address and the
size of the area being dirtied is passed to the Memory Map
Manager via a call to an internal function. The latter module
identifies the malloc area containing the chunks being
dirtied via a software address-cache, used to speed up the
retrieval (2). Thus, the monitoring operation ends with the
Memory Map Manager setting to 1 all the bits in the dirty
bitmap associated to those chunks that have been involved
in the memory-write operation.

4 Benchmark Description
The benchmark we have used in this experimental study

is derived from PHOLD [4]. In this benchmark, each sim-
ulation object executes fictitious events which only involve
the advancement of the local simulation clock to the event
timestamp. Each time an event is executed, a new fictitious
event is scheduled, destined to whatever object inside the

1The only exception is for movs and stos instructions, used for mov-
ing arbitrary size memory blocks. These instructions keep the information
for identifying the destination address and the current size of the memory
block being written into predefined registers, namely EDI and ECX, which
are directly accessible by update tracker.

2Per-chunk headers have been explicitly avoided in Di-DyMeLoR, so a
chunk has no information identifying the malloc area it belongs to.
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system, with a timestamp increment following some expo-
nential distribution. In implementations of this benchmark
(see, e.g., [10, 18]), the execution of an event has included
a busy loop (which emulates a specific CPU delay for event
processing, and hence a specific event granularity) and/or
read/write mode access to a fictitious, memory contiguous
state buffer of a given size S. Large values for S would
mimic applications with large memory requirements. On
the other hand, the spanning of read/write operations across
the state buffer determines the specific locality inside the
object state, associated with the event execution.

We have adapted this benchmark in order to cope with
dynamic memory employment at the application layer level.
In particular, we have re-implemented the benchmark by
having each simulation object state formed by a main data
structure called state head, containing a set of N point-
ers for accessing N distinct linked lists of buffers relying
on dynamic memory allocation (see Figure 2). The differ-
ent lists keep track of buffers with different sizes, linearly
distributed in between a min and a max value (this may
give rise to chunk internal-fragmentation in Di-DyMeLoR
since, as pointed out, it manages power of 2 chunk sizes).
We denote as size(i) the exact size of the buffers inside the
i-th list (with 0 ≤ i ≤ (N − 1)).

At setup time, the S bytes forming the fictitious state are
allocated according to the following rule:

• S
N bytes are destined for buffer allocation inside each
of the N lists.

• d S
N /size(i)e buffers are allocated for the i-th list, and

linked together.

In other words, there is a bias towards buffers associated
with smaller sizes. This is reasonable when thinking that the
logic used in general software contexts tends to rely on allo-
cation of large amounts of relatively small memory chunks,
and smaller amounts of relatively large chunks (3).

Two types of events have been included in the bench-
mark logic:

BUFFER ALLOCATE[size] - Upon its execution at log-
ical time t by some simulation object, a new buffer is al-

3As an example, this is the typical layout for dynamic memory based
data structures in side the LINUX kernel.



located and linked to the i-th local list, associated with
size(i) = size.

BUFFER DEALLOCATE[null] - Upon it’s execution at
logical time t by some simulation object, a size value is
randomly selected from the pool of size(i) possibilities
(with 0 ≤ i ≤ (N − 1)). Then a random buffer in the
list associated with size(i) = size, if any, gets released
and a BUFFER ALLOCATION[size] event is scheduled
at the same simulation time t for whatever simulation ob-
ject. Also, a new BUFFER DEALLOCATE[null] event is
scheduled for the local simulation object, with logical time
t + incr, where incr follows some exponential distribu-
tion. In other words, the BUFFER DEALLOCATE[null]
event occurring at some simulation object reschedules itself
for that same simulation object, so to generate a periodic
deallocation operation on that object while simulation time
proceeds (with consequent allocation on whatever object).

Compared to the original PHOLD, the differentiation in the
previous two types of events actually implies that, while
simulation time goes on, we are migrating buffers across the
different simulation objects, with exponentially distributed
migration rate (according to the rate for the reschedule of
deallocation events). In other words, while simulation times
goes on, dynamic memory allocation/deallocation opera-
tions take place, causing migration of a given buffer (with
a randomly selected size) from one simulation object to an-
other. In any case, at each simulation time, the global mem-
ory occupancy across all the objects is constant (thus re-
flecting, at any point in simulation, the specific space com-
plexity of the simulation model for which the benchmark
configuration is the current mimic).

We have also augmented the event execution logic with
read/write accesses inside the buffer lists currently belong-
ing to the simulation object memory layout. This has been
done in order to emulate read vs write intensive applica-
tions. The more write intensive the event, the larger the
number of chunks for which memory write tracking is ex-
pected to occur during event processing (namely, the dirty
chunks), and which are expected to be incrementally logged
upon taking the object state snapshot. This will allow us
to observe how the costs of memory write tracking and
log/restore operations scale vs ROOT-Sim implementation
choices and vs conventional technological trends (e.g. the
interaction between compiler choices and the specific in-
struction set of IA-32/x86-64 processors).

To determine the span of read/write operations across the
buffers inside the object lists, we have adopted a breadth-
first visit on those lists. Specifically, we have introduced
an additional parameter x (with x ≤ S) indicating the total
amount of bytes that need to be read and/or written during
the event execution across the dynamically allocated buffers
currently linked inside the object state. Initially x represents
the residual amount of bytes to be touched. Upon starting
the execution of an event, we randomly select the list of
buffers from which starting the visit, and we touch in read
and/or write mode all the content inside the buffer at the
head of this list, thus also decreasing the residual amount of

bytes to be touched by subsequent access operations. Then,
starting from that list, every other list is accessed the same
way according to a circular policy. At each access on a
given list, we move on the subsequent (untouched) buffer
in that list (if any) and then perform the read/write opera-
tion. This goes on until the residual amount of bytes to be
read/written becomes zero. Actually, the lower the value of
x, the higher the memory locality of the application.

In any case, we note that the breadth-first visit mimics
a worst case scenario for incremental log/restore facilities
offered by ROOT-Sim since write operations are not local-
ized inside one or a few malloc area regions. This im-
plies that the amount of meta-data that are dirtied due to
event processing is non-minimal (recall that when a mem-
ory chunk delivered to the overlying application gets up-
dated, the associated meta-data also gets updated), thus ul-
timately imposing significant meta-data management costs
for supporting incremental log/restore operations.

Finally, we have implemented the read/write operating
modes by exploiting C services offered by stdlib. Specif-
ically, the read operating mode has been supported via
memcmp calls, while the write operating mode has been
supported via an instrumented version of memset, trans-
parently linked to the update tracker module (and
hence to the lower level memory management subsystem) at
compile time. Among services in the standard library, the
aforementioned ones seem to better emulate read-only vs
write-only activities. In particular, memcmp only involves
data movement from memory towards CPU registers, while
memset only entails data movement from CPU registers to
main memory. Other stdlib services, such as memcpy, en-
tail both types of data movement, thus not fitting the aim of
our study, where a specific tuning of the mixture of read vs
write memory operations needs to be explicitly selected for
each configuration point.

5 Experimental Data
The hardware platform used in this experimental study is

a QuadCore machine, equipped with an Intel Core 2 Quad
Q6600 (64bit execution support, 2.4GHz, 4MB L2 Cache
per couple of cores, 32KB L1 Cache per core, 1GHz Front
Side Bus speed) and 4GB of RAM memory. The running
Operating System is GNU/Linux (kernel 2.6.22-31 64bit,
distribution OpenSUSE 9.2), the used gcc version is 4.2.1,
the used binutils version (ld and gas) is 2.17.50 and
the used MPI version is OpenMPI 1.2.4. Regarding ROOT-
Sim run-time parameters, the GVT period (namely, the in-
terval for memory recovery of obsolete logs) has been set to
1 sec. With this value, RAM usage never exceeds 60/70%,
thus avoiding swapping phenomena that would alter the re-
liability of the reported measures. The benchmark config-
uration is formed up by four simulation objects (each one
hosted by one instance of the simulation kernel running
on the QuadCore machine). The performed tests require
each simulation object to execute at least 10.000 buffer al-
locations, scattered over 8 different buffer chains with sizes
ranging from 32 bytes to 4KB.



We have measured Event Latency, Checkpoint Latency,
Restore Latency and Memory Usage (per checkpoint) with
different interleaving steps between full and incremental
logs, namely incremental logs taken at each event and full
logs taken every 5 or every 20 log operations.

We have performed similar measurements by also ex-
cluding software instrumentation and related incremental
log capabilities. This has been done by linking the envi-
ronment to DyMeLoR [17], whose structure is similar to
Di-DyMeLoR, except for that no write-memory tracking is
supported, thus log and restore operations are always full
(i.e. all the currently in-use chunks are packed/unpacked
to/from the log buffer). We will refer to the simulation soft-
ware running with incremental log/restore capabilities as in-
strumented software, while we will refer to the simulation
software running with non-incremental log/restore capabil-
ities as non-instrumented. The latter acts as a reference for
the evaluation of the fully featured instrumented version.
The measures have been taken with different read/write
memory access patterns. Specifically, the value of the pa-
rameter x in the benchmark has been varied in order to gen-
erate read/write operations spanning their locality from the
20% to the 80% of the whole size of the simulation object
state. In addition, we have varied the objects’ state startup
size S, specifying it to be 10KB, 100KB and 1MB.

In Figures 3, 4 and 5 we present the observed parame-
ter values while varying read/write locality. As hinted in
Section 3, Di-DyMeLoR traces memory updates caused by
event processing via the insertion of a call to a monitor-
ing routine which inevitably adds some overhead. However,
such an overhead is relatively limited up to 40% spanning
of write operations inside the simulation object state (see
Figures 3-A, 4-A and 5-A). Also, when the state increases
in size (i.e. when the amount of memory buffers to be read
or written is higher), the overhead gets relatively reduced.

The limited overhead up to relatively large spanning of
the locality of write operations can be notably justified on
the basis of classical technological trends in compilers for
IA-32/x86-64 architectures, according to which (large) data
structures are updated by modules relying on optimized
movs and/or stos instructions. These allow copy/set op-
erations of arbitrary size memory chunks via a single ma-
chine instruction, for which Di-DyMeLoR tracks the mem-
ory write access via a single call to the update tracker
module. In other words, the cost of memory tracking well
scales due to synergy between the tracking architecture and
the compiler/instruction-set. We recall that in standard li-
braries, such optimizations are present in the compilation of
many modules, including the memset module we have in-
strumented and, more importantly, the traditional memcpy
facility. The event processing overhead of the instrumented
software is moreover counterbalanced by reduced check-
point latency (see Figures 3-C, 4-C and 5-C). Further, this
latency is not significantly affected by the variation of the
interleaving step between full and incremental logs.

The capability for such a checkpoint overhead reduc-
tion would acquire a highly increased relevance in sce-
narios where the application software is not Piece-Wise-

Deterministic, which require a log to be taken at each event
since un-logged state values cannot be guaranteed to be cor-
rectly reconstructed starting from a previous log and replay-
ing intermediate events. In these scenarios, the latency of a
log operation becomes as critical as the event latency in de-
termining the final perceivable performance.

Memory requirements for each log operation in the in-
strumented case are definitely lower than those observed for
non-instrumented software (see Figures 3-B, 4-B and 5-B).
This further strengths the capabilities of the fully featured
incremental version of the software in case of applications
with very large memory requirements for the objects’ states.

The non-instrumented configuration typically provides
gains in state restore operations. However, as pointed out
in Section 3, the state restore latency in Di-DyMeLoR di-
rectly depends on the interleaving between full logs and in-
cremental logs along the log chain. In fact, by the plots
(specifically, those in Figures 3-D, 4-D and 5-D) we see that
the performance decrease in the state restore for the case
of instrumented software can be controlled (while main-
taining the aforementioned advantages on the side of log-
ging) via proper selection of a non-oversized interleaving
step between full and incremental logs. Also, for 1MB
state size, state restore operations in the non-instrumented
version become more expensive that those of the instru-
mented version. Given that our tests have been performed
with logs taken at each simulation event (which mimics
the settings required by application software not entailing
Piece-Wise-Determinism), the larger restore latency for the
non-incremental case is supposed to occur due to largely re-
duced locality of state management operations. In particu-
lar, given the large size of the simulation objects’ states (and
hence of the log buffers used to pack state information by
the non-instrumented version) a relevant amount of virtual
addresses are referenced for building the log chain in the
non-instrumented case before memory recovery operations
associated with GVT are executed. This provides reduced
locality that reveals unfavorable to restore operations (i.e.
the likelihood of cache availability of logged information to
be restored gets reduced). Such a phenomenon is especially
evident for finer grain events, namely when the memory ac-
cess pattern mostly entails read accesses.

6 Summary
In this paper we have presented an experimental eval-

uation of the memory management capabilities offered by
the optimistic parallel simulation environment ROOT-Sim.
In particular, our focus was on incremental log/restore as-
pects, and on the software instrumentation techniques used
to track memory write operations with arbitrary granularity.
We have developed and presented a synthetic benchmark,
derived as a variation of the PHOLD benchmark, which
mimics different read/write patterns inside dynamic mem-
ory based maps of the simulation objects’ states, thus al-
lowing sensibility analysis of both time and space effects
due to the memory management subsystem. This has been
done while varying both the type and the locality of the ac-
cesses performed by the simulation object while processing
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Figure 3. Benchmark with 10KB Objects’ State Size.

the events. Our work is on the path of assessing the effi-
ciency of design/implementation of supports for high per-
formance simulation systems, which are becoming increas-
ingly important in contexts such as simulation based deci-
sion making with temporal constraints.
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Figure 4. Benchmark with 100KB Objects’ State Size.
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Figure 5. Benchmark with 1MB Objects’ State Size.


