
Di-NONAME-LIB: Logging only Dirty Chunks for Efficient Management of
Dynamic Memory Based Optimistic Simulation Objects

Abstract
A recent work has presented the design and implementa-

tion of a software library, named NONAME-LIB (name re-
moved for blind review) supporting transparent log/restore
facilities for optimistic simulation objects with generic
memory layout. This library offers the possibility to allo-
cate/deallocate memory chunks within the object state via
standard API, and performs log/restore of the object state
via pack/unpack techniques, exploiting ad-hoc meta-data
concisely identifying the object state layout at each point
in simulation time. In this paper we complement such a li-
brary with a software architecture offering the following ad-
ditional advantages: (i) run-time identification of chunk up-
dates within the dynamic memory map, (ii) reduced check-
point latency and increased effectiveness in memory usage
thanks to log/restore facilities based on (periodic) snap-
shots of the whole simulation object state, taken via the in-
cremental copy of the modified (dirty) chunks only. Hence,
Di-NONAME-LIB (Dirty-NONAME-LIB). Our approach is
based on software instrumentation techniques (suited for
LINUX and the ELF format), targeting memory update ref-
erences performed by the application level software, and
on a lightweight run-time monitoring mechanism provid-
ing minimal overhead while tracking the exact memory ad-
dresses and the size of memory areas dirtied by the execu-
tion of each event. Also, Di-NONAME-LIB has been de-
signed for portability across 32-bits and 64-bits Intel com-
pliant architectures, thus covering a wide spectrum of off-
the-shelf machines. Some performance results for an evalu-
ation of effectiveness and scalability of our proposal (vs the
state size) are provided.

1 Introduction
State management is one of the most critical aspects in

optimistic simulation systems, which involves both perfor-
mance and transparency aspects. In particular, log/restore
mechanisms for optimistic simulation objects’ states should
likely be lightweight (in terms of both latency and memory
usage) and act with no explicit intervention or awareness by
the application programmer (e.g. in terms of direct inter-
facing between the application level software and the state
log/restore sub-system).

A recent work [19] has presented a memory manage-
ment library (NONAME-LIB), implemented in C technol-
ogy, which offers completely transparent log/restore facili-
ties while supporting, at the same time, a general program-
ming model where the state of a simulation object can be

scattered on dynamically allocated memory chunks. In par-
ticular, NONAME-LIB, has been designed for integration
within traditional-style optimistic simulation kernels (see,
e.g., [9, 3, 13, 19]), and allows the application programmer
to employ standard malloc services within event handler
modules (e.g. for changing the current layout of the object
state).

In this work we complement NONAME-LIB via a soft-
ware architecture which adds new capabilities within the
memory management subsystem, while maintaining the
same transparency level. Specifically, we present the de-
sign and implementation of software modules that are able
to track state updates (with arbitrary granularity) occur-
ring during event processing. These modules also offer
log/restore facilities based on (periodic) snapshots of the
whole state of the simulation object built by incremen-
tally copying only dirty chunks within the dynamic memory
map associated with the state layout. Hence the name Di-
NONAME-LIB (Dirty-NONAME-LIB) for the out-coming
memory management system.

On the side of state logging, the present proposal can
provide direct performance advantages over the original
NONAME-LIB due to the reduced amount of memory copy
operations. In fact, a complete snapshot of the simulation
object state involves logging a subset of the chunks cur-
rently belonging to the memory map (those that have been
dirtied since the last checkpoint was taken). It can also pro-
vide indirect advantages (e.g. via increased locality) thanks
to the reduction of the memory usage for storing the snap-
shots.

On the other hand, the new architecture involves run-
time monitoring activities to determine the exact addresses
that are referenced in memory update operations by the ap-
plication level software. To efficiently support this task,
we have designed and implemented a lightweight memory
write tracking mechanism. It is based on transparent appli-
cation software instrumentation, and is tailored for LINUX
and standard ELF objects/executables on both 32-bits and
64-bits Intel compliant hardware architectures (namely IA-
32 and X86-64 architectures).

From a methodological point of view, the literature work
closest to the present proposal is [27], where a transparent
incremental state saving method is supported via automatic
editing of the application executable. However, the substan-
tial differences between our software architecture and the
capabilities of the state management system in [27] are that
we cope with dynamic memory and support recoverability
for each permitted operation (allocation, deallocation and



application level software (event handlers)

simulation kernel

platform specific
call/callback API

ANSI-C malloc library

malloc/free
calls redirected 
to wrappers 

(A)

NONAME-LIB

checkpoint/restore API

malloc_area

malloc_area

chunk

chunk

block status
bitmap

preallocated
block for 
contiguous
chunks of a
given size

(B)

meta-data table
associated with a 
simulation object

Figure 1. Software Architecture and (A) main
NONAME-LIB data structures (B).

update), which are not provided in that work.
The remainder of this paper is structured as follows. In

Section 2 we provide an overview of NONAME-LIB as the
basis for the comprehension of the whole software system.
In Section 3 the innovative capabilities and the design of
the associated modules are presented. Related work is dis-
cussed in Section 4. Experimental data for the assessment
of the effectiveness of Di-NONAME-LIB are presented in
Section 5.

2 Overview of NONAME-LIB
From an architectural point of view, NONAME-LIB

can be seen as a wrapper of ANSI-C malloc/free ser-
vices, which is transparently interposed, via simple com-
pile/linking time directives, between the application level
code and the traditional malloc library (a schematization
of this approach is shown in Figure 1.A). NONAME-LIB
also offers an API for integration with the simulation ker-
nel, which consists of a set of services supporting memory
management operations specifically oriented to log/restore
activities proper of the optimistic synchronization scheme.

For each simulation object hosted by the simulation
kernel, NONAME-LIB maintains a meta-data table of
malloc area entries. Each entry keeps information
about a block of contiguous memory chunks (e.g. the
memory location of the block), possibly allocated for serv-
ing memory requests for that object, and different entries
are used for managing chunks of different sizes. As soon
as a malloc request occurs for a given chunk size, the
corresponding block is allocated by NONAME-LIB (via
real malloc services) so that a contiguous number of those
chunks is in practice pre-allocated for serving future re-
quests with that same size (if any). This allows exalt-
ing memory contiguity for the state layout of each sim-
ulation object, which can favor performance during both
event processing and log/restore operations. In addition,
pre-allocation of contiguous chunks allows NONAME-LIB
to use very concise meta-data for the identification of the
status of each chunk (busy or free) within a block. In partic-
ular, a simple bitmap of so called ”status bits” is used for the
identification of those pre-allocated chunks that have also
been delivered (and are currently in use) to the application
software. To further optimize memory usage, NONAME-
LIB adopts a layout where the bitmap of status bits is col-

located at the head of the pre-allocated block of chunks,
and gets allocated only in case of real allocation of the
corresponding block (see Figure 1.B for a schematization
of the relation between the main data structures describing
the simulation object memory map). Actually, the table of
malloc area entries can be expanded in case its entries
have been saturated, and the simulation object goes on re-
questing more chunks during event processing activities.

Log/restore operations are supported by NONAME-LIB
via pack/unpack techniques. For a log operation, the cur-
rently in use memory chunks are packed into a contigu-
ous log buffer (which is dynamically allocated via the
underlying malloc services), together with all the active
malloc area entries and the status bitmaps at the head of
active blocks. For a restore operation, these data structures
are extracted from the contiguous log buffer and put back in
place. To make deallocation operations recoverable, each
malloc area entry also keeps information about the log-
ical time (if any) at which the chunks inside a given block
were all released. A block with no chunks currently al-
located, and whose last chunk release occurred before the
Global-Virtual-Time (GVT) can be deallocated via a free
call towards the underlying malloc library. In such a case,
the corresponding malloc area entry is set to non-active.

Actually, log operations exploit threshold-based opti-
mizations, and an ad-hoc chunk allocation algorithm within
each block, aimed at optimizing the trade-off between meta-
data management and memory copies of active chunks. In
particular, each malloc area keeps a counter identify-
ing the percentage of in use chunks within the correspond-
ing memory block. When the occupancy exceeds a given
threshold, the memory block is entirely logged, without
explicitly scanning the status bitmap in order to identify
busy chunks. Also, chunk allocation within each memory
block is similar to the LINUX algorithm for the selection
of the next file descriptor to be assigned while opening an
I/O channel. This algorithm keeps low block fragmentation
and tends to have busy chunks clustered at the head of the
memory block. Therefore, in case the bitmap needs to be
scanned upon the log operation (i.e. when the block occu-
pancy is under the threshold), the latency of the operation
can benefit by the early stopping of the bitmap scan when-
ever all the in use chunks are really found clustered at the
beginning of the memory block.

3 Di-NONAME-LIB: Design and Implemen-
tation

As mentioned, Di-NONAME-LIB is based on new soft-
ware modules able to track at run-time memory update ref-
erences performed by the application software. It also uses
data structures and modules which augment the capabilities
of the original NONAME-LIB with the aim at tracking not
only the current memory map of the simulation object (and
its dynamic changes), but also the dirtying activities. This is
done for increasing the efficiency of log/restore operations
via the exploitation of an incremental approach.

In this section we first describe the techniques we have
used for a lightweight instrumentation of the application
level software, in order to support the memory update track-
ing process. Then we enter details of data structures’ and



modules’ integration. Finally a discussion on the usage
of third party libraries for application level software, and
on how Di-NONAME-LIB handles memory dirtying oper-
ations occurring inside those libraries is provided.

3.1 The Software Instrumentation Tool

Software instrumentation has been realized via a soft-
ware Parser/Modifier (PM) specifically designed for analyz-
ing and rewriting ELF (Executable and Linking Format) ob-
jects generated by standard gcc compilers (versions 3 and
4) for IA-32 and X86-64 architectures. At the very base,
PM works by parsing the object generated after linking to-
gether all the application level modules (third party libraries
being excluded), and by identifying every memory write in-
struction inside this object, namely mov instructions with
a memory location as the destination. The instrumentation
process is then supported by PM via the insertion of a call
instruction to an update tracker module, edited in as-
sembly language, which performs the identification of the
exact memory address and the size (amount of bytes) in-
volved in the memory update operations. Although this is a
typical way for tracking memory update references (e.g. in
the context of program debugging techniques [26]), the us-
age of this approach in optimistic simulation systems poses
(more) stringent performance issues. In particular, the mon-
itor should likely perform its job via very few machine in-
structions, in order not to significatively impact event exe-
cution latency.

To cope with such a performance target we have decided
not to employ run-time disassembling of the memory refer-
ence instruction, which could be onerous (compared to the
event execution latency of non-instrumented software) es-
pecially due to the complexity and variable format/length
of the Intel instruction set. Instead, we have adopted an or-
thogonal technique where a software table associated with
the update tracker is built and populated during the
compile-time instrumentation process. This table acts as a
cache of disassembling results for memory write instruc-
tions.

In IA-32/X86-64 architectures, the address of each mem-
ory write operation depends on a set of up to four parame-
ters, namely base, index, scale and displacement.
The former two parameters correspond to register values
(hence the parameters identify the registers containing the
values), while the latter two correspond to specific values of
fields inside the memory writing instruction. The instruc-
tion opcode tells which of those parameters are relevant.
Also, the opcode, together with its prefixes, establish the
real size of the memory area touched by the write operation.
Hence, to cache the results of the disassemblig process, PM
builds a table where each entry is structured as:

struct update_tracker_entry {
unsigned long ret_addr;
unsigned int size;
char flags;
char base;
char index;
char scale;
long displacement;

};

The flags field is used to identify which of the afore-
mentioned four parameters (corresponding to subsequent
fields inside this same data structure) are actually relevant
and should be considered by the update tracker for
computing the exact address for the memory write oper-
ation. Also, the size field immediately indicates to the
update tracker the (compile-time defined) size of the
memory area to be dirtied by the current memory write in-
struction (1). Finally, the ret addr field indicates to the
update tracker where control will be returned after its
execution. This field corresponds to the memory address of
the write instruction which immediately follows the current
instance of the call to the update tracker. It has been
inserted as a field of the update tracker entry data
structure for allowing the disassembling results’ table pro-
duced during the instrumentation process to be organized
as a fast search hash-with-buckets table. (Recall that ac-
cess to the update tracker entry associated with the
memory write instruction occurs during the execution of
the update tracker. Hence it is a performance crit-
ical operation directly impacting the event execution cost
for the instrumented version of the application software.)
In particular, upon its activation, the update tracker
checks inside its own stack frame the value of the return
address, which is used as the key for accessing the hash ta-
ble maintaining update tracker entry records, and
is compared to the ret addr field inside these records for
selecting the correct record within the bucket. Once this
is done, the memory address for the write operation and
the size of the memory being dirtied are easily computed
by the monitor via a few machine instructions. Given that
this computation can unpredictably change the value of the
EFLAGS register on board of the CPU, this register value
is saved by the update tracker upon its activation to-
gether with general purpose ones, and is put back in place
right before returning control to the memory write instruc-
tion for which the tracking process has been activated. Ac-
tually, PM can be parameterized in order to optimize the
trade-off between the size of the hash-with-bucket table,
and the access cost. Specifically, the instrumentation pro-
cess can be asked to check whether the level of collision
inside the hash table does not exceed a pre-specified value.
In the negative case, PM can resize the hash-with-bucket
table in order to reduce the actual bucket size. The poten-
tial drawback is the increase of unused table entries, while
the benefit is the reduction of the update tracker over-
head when accessing the table. The most favorable case
is when the bucket size is (or boils down to) 1, leading to
O(1) time complexity for the access to the hash table of
update tracker entry records.

Actually, the update tracker uses absolute ad-
dresses as keys for the hash table. In fact, as mentioned
above, this module identifies the address of the memory
write operation at run-time by accessing its own stack

1The only exception is for movs and stos instructions, specifically
used for moving arbitrary size memory blocks. However, for those in-
structions, the information for identifying the destination address and the
current size of the memory block being written is immediately available
into predefined registers, namely EDI and ECX, which are directly acces-
sible by the update tracker.



frame. In order for PM to be able to build the table of
update tracker entry records via correct insertion
of the absolute addresses of memory writing instructions
inside the ret addr field, we have exploited incremen-
tal linking facilities offered by standard linkers (e.g. ld
on UNIX systems). In particular, the instrumentation pro-
cess interacts with the linker for the definition of the exact
(absolute) position of the object associated with application
level software inside the executable layout. All the other
modules (e.g. the simulation kernel object modules) will be
then located by incrementally selecting absolute addresses
compatible with the current position of the object associated
with the application level software.

The insertion of the call to the update tracker prior
to the execution of a memory write instruction leads to a
resize of the sections associated with the object file, and to
the shift of instructions and other memory locations inside
the object layout. Hence, PM also has to rewrite the headers
associated with the ELF object, the relocation tables, and
the off-sets used for the identification of memory addresses
referenced by the software, e.g. the destination addresses
for jmp instructions.

However, in IA-32/X86-64 processors not all destination
addresses for jmp instructions that are found in the original
software can be identified at compile time, and corrected
via rewriting of the relocation tables. This occurs in case
of so called register-jumps (also frequently referred to as
indirect-branches), where the destination address is dynam-
ically identified via the content of CPU registers. To cope
with this issue, we have implemented a second run-time
monitoring mechanism for supporting on-the-fly correction
of destination addresses in register-jumps. Like in the afore-
mentioned approach, this mechanism is based on the inser-
tion of a call instruction to a second assembly level mon-
itoring module, referred to as branch corrector, prior
to each register-jump in the original software. This mon-
itoring module relies on a hash table similar to the previ-
ously described one, where each entry is associated with a
single register-jump instruction, and keeps the information
regarding which are the registers whose values determine
the destination address for the jump operation. Also this ta-
ble is built and populated at compile-time during the instru-
mentation process (again to avoid costly run-time disassem-
bling techniques). Exploiting the information inside this ta-
ble, branch corrector evaluates the original destina-
tion address for the jump instruction (by reading the CPU
registers that specify the destination value). Then it corrects
this address on the basis of the amount of bytes by which the
original destination was shifted inside the instrumented ob-
ject layout (we recall that the shift is due to the insertion of
the additional call instructions to the monitoring modules).
To provide a lightweight mechanism for the address correc-
tion operation, PM generates a third table at compile-time,
which is visible to branch corrector. Each entry in-
side this table identifies an interval of addresses for which
the instrumentation process gave rise to the same amount of
shift inside the final (instrumented) memory layout. Such
an offset is also maintained in each table entry. The table is
ordered by interval extremes, and branch corrector
performs a logarithmic-cost binary search to retrieve the

interval containing the original destination for the register-
jump, and the offset to be applied for the correction. Such a
correction cannot however be applied by modifying the val-
ues of the CPU registers involved in the jump instruction.
This would otherwise result in an application inconsistent
processor state. Instead, we have adopted a different ap-
proach where the original register-jump instructions (whose
relevant information is anyway logged inside the hash ta-
ble available to branch corrector), are substituted at
compile-time by PM with so called offset-jumps (not re-
lying on CPU registers), where the destination address is
maintained inside one field of the instruction, and is ap-
propriately set by the on-the-fly correction mechanism. To
support the rewrite operation of the appropriate instruction
field at run-time, without impacting typical settings associ-
ated with memory protection, the offset-jump operation has
been moved inside a run-time re-writable ELF section (ad-
hoc created by exploiting compiler/linker facilities). Also,
a jump-label instruction has been inserted in place of the
offset-jump inside the original (non-rewritable) sections of
the application code, which passes control to the offset-
jump right after the brach corrector module has re-
written the correct destination address (the offset) inside the
ad-hoc re-writable section.

We note that efficient solutions for correcting register-
jumps (e.g. via the avoidance of run-time disassembling)
have practical relevance since register-jumps are typically
generated by standard compilers (e.g. gcc version 3) for
machine language translation of Switch-Case constructs.
The constructs are relatively relevant in simulation appli-
cations (e.g. for flow control inside the event handler on the
basis of the type of dispatched event), which supports the
relevance of the optimizations we presented for limiting the
cost of on-the-fly address correction.

Going back to instrumentation of memory write instruc-
tions and to the structure of the update tracker mod-
ule, we have further tailored the process of identifying
memory locations that are dirtied during the execution of
simulation events to the simulation object memory model
originally offered by NONAME-LIB. In this model, mem-
ory locations associated with automatic variables (allocated
inside the stack) do not belong to the object memory map,
since they do not survive across different invocations of the
event handler. Hence, all those memory write instructions
that can be detected at compile-time to access the stack (e.g.
mov instructions addressing memory via base pointer or
stack pointer displacement) are not actually instrumented
by PM. Anyway, in some cases write access into the stack
cannot be recognized at compile time. For this reason, after
having computed the address for the memory write opera-
tion, update tracker compares it with the current value
of the stack pointer. In case the access is an actual stack up-
date, update tracker simply returns (the memory up-
date operation is of no interest for the management of the
object memory map). Otherwise, the information about the
identified memory address and the size of the area being
dirtied is passed to the memory map manager whose struc-
ture is presented in the next section.



malloc_area

malloc_area

chunk

chunk

block status
bitmap

dirty
bitmap

int dirty_area
int dirty_chunks

Figure 2. Main Memory Map Data Structures
in Di-NONAME-LIB.

3.2 Management of the Memory Map
The original data structures and modules manag-

ing the simulation object memory map have been ex-
tended/modified in Di-NONAME-LIB in order to explicitly
cope with the possibility to build complete state logs by in-
crementally logging only data that have been dirtied since
the last log operation. To guarantee recoverability of each
type of operation permitted on the memory map, namely
chunk allocation/deallocation and chunk update, we need
to deal with incremental log of both dirty data, namely dirty
chunks, and dirty meta-data, namely dirty malloc area
entries associated with the memory map.

To track dirty chunks, a second bitmap, of so called
dirty bits, has been associated with each block of pre-
allocated chunks destined to a specific simulation object.
As shown in Figure 2, this bitmap is located inside the same
contiguous memory segment pointed by the corresponding
malloc area and containing the original status bitmap
and the chunks destined for use by the overlying applica-
tion in case of malloc requests. In terms of real stor-
age, the dirty bitmap inherits the same features of the orig-
inal status bitmap since its allocation occurs only in case
the corresponding chunks gets really pre-allocated. Hence
the extra storage occupancy for detecting chunks that have
been dirtied since the last log operation well scales with
the size of application destined storage. The bits inside the
dirty bitmap are treated as sticky flags vs the memory write
monitoring mechanism described in the previous section.
Hence, a memory write operation performed by the appli-
cation software can only result in a set operation of the dirty
bit associated with the chunk being dirtied.

To track dirty meta-data we have added the following
two integer fields inside the malloc area data structure
(see again Figure 2):

• dirty area, which is used as a flag indicating
whether any type of operation (allocation, deallocation
or chunk dirtying) has occurred in the malloc area
since the last log.

• dirty chunks, which explicitly counts the current
number of in use chunks that have been dirtied in the
malloc area since the last log operation.

Once the memory map manager receives the address
and the size of the memory area being dirtied from the
memory tracker, it identifies all the chunks that will
be dirtied inside the memory map, and the associated
malloc area entries. Then the previous bitmaps and the
dirty chunks field are updated. Again in compliance
with the original NONAME-LIB memory model, in case
the address and the memory area being dirtied refer to lo-
cations outside the memory map of the currently executing
simulation object (e.g. they refer to global variables outside
the heap, for which recoverability is not provided in this
memory model), the memory map manager simply returns
control to the memory tracker module. On the other
hand, the dirty area field inside the malloc area is
set to 1 each time a malloc/free call insisting on that
area is performed by the application software.

3.2.1 State Log Operations

Via the exploitation of the additional fields inside each
malloc area, and of the dirty bitmaps, the logging ac-
tivities performed by Di-NONAME-LIB have been differ-
entiated in full-logs and incremental-logs. Both types of
logs still result in packing the information to be logged in-
side a contiguous buffer allocated via the underlying malloc
services. However, they pack different things (with con-
sequently different costs). A full-log operation coincides
with the original log supported by NONAME-LIB. Hence,
the active malloc area entries are packed inside the log
buffer together with the in use chunks in the corresponding
memory blocks, while the dirty bitmaps are not logged. The
only additional tasks performed by the full-log operation in
Di-NONAME-LIB is the reset of all the data structures ex-
plicitly used for tracking dirty data/meta-data (namely the
dirty bitmaps and the two aforementioned fields inside the
malloc area). On the other hand, an incremental-log
performs differentiated pack operations depending on the
current value of those data structures. Specifically, for each
active malloc area entry we have the following cases:

A: dirty area is set and dirty chunks is zero. In
this case the malloc area is packed into the log
buffer together with the status bitmap indicating the
current allocation of chunks inside a given block. But
the dirty bitmap and the currently in use chunks are not
logged.

B: dirty area is set and dirty chunks is greater
than zero. In this case the malloc area is packed
into the log buffer together with the status bitmap, the
dirty bitmap and the chunks that are currently in use,
which have been dirtied. All the other in use chunks
are not logged.

C: dirty area is not set. In this case, no information
associated with the area is logged at all.

As for the case of full-logs, incremental-logging also
involves the re-set of all the data structures tracking dirty
data/meta-data. This occurs independently of the actual
case among the aforementioned ones.



We finally underline that incremental state log operations
no way require to be forced at each simulation event, but can
be taken periodically. In fact they are based on recognizing
memory portions that have been dirtied since the last log,
independently of the amount of events actually perform-
ing the dirtying operations. Hence, with Di-NOANME-
LIB state reconstruction at whichever simulation time can
be supported via a mix of state restore (i.e. copy back) from
the log (this procedure will be illustrated in the next sec-
tion), and classical coasting forward.

3.2.2 State Restore Operations

Similarly to the original version of NONAME-LIB, each
log is stamped with the current simulation time, and all the
logs (full and incremental) are linked together as a chain.
When a restore operation needs to be executed at simu-
lation time T , the log chain is searched to determine the
more recent log with time less than or equal to T (logs with
time greater than T are simply discarded since they refer to
causally inconsistent memory maps). In case the log found
is a full one, then a restore operation is executed by sim-
ply unpacking all the logged data and putting them back
in place (like in the original version of NONAME-LIB). A
different restore algorithm is executed in case the log found
is an incremental one. Specifically, the following steps are
iterated by backward traversing the chain of logs:

1. A malloc area found inside the log buffer, which
has not been restored, is put back in place inside the
meta-data table. The associated status bitmap is also
copied back from the log buffer (recall that indepen-
dently of the type of log and of the specific case for
incremental-logging, a logged malloc area is al-
ways associated with the corresponding status bitmap
inside the log buffer to guarantee recoverability of
chunk allocation/deallocation operations).

2. Each dirty chunk found inside the log and associated
with the malloc area, which has not yet been re-
stored in a previous iteration while backward travers-
ing the log, is copied back in its correct position inside
the corresponding memory block.

The iterative restore procedure stops when all the active
malloc area entries have been restored and all the in use
chunks that have been dirtied are also restored. Although
in principles this could entail an indefinite number of iter-
ative backward steps along the log chain, in practice the
restore operation can be immediately finalized once we find
a full-log while backward re-traversing the log chain. In
fact, all the in use chunks that have not yet been restored
are immediately available inside the full log for copy-back
operations. Actually, to optimize the detection of already
restored chunks, which must therefore not be copied-back
again from the log, the iterative restore procedure has been
based on temporary bitmaps (each associated with an active
malloc area) on which a couple of fast bitwise XOR-
OR operations are executed each time a dirty bitmap (as-
sociated with that same �malloc area) is extracted from the
incremental log.

3.2.3 Caching Write References for Latency Reduc-
tion while Managing the Memory Map

The data structures characterizing Di-NONAME-LIB, are
based on the avoidance of per-chunk headers. This is an
explicit design choice aimed at minimizing the amount
of meta-data to be logged/restored (2). Hence, when
a chunk gets released by the overlying application, no
header information can be exploited for fast access to
the malloc area involved in the deallocation opera-
tion. To speedup deallocations, via the avoidance of
a scan operation over all the active malloc area en-
tries, the original NONAME-LIB provided a software
level direct-map caching subsystem, implemented as a
hash table, with cache line formed by the couple <
chunk addr,m area index >.

The issue of identifying the correct malloc area
starting from the memory address associated with a
chunk becomes even more critical in the new version Di-
NOINAME-LIB. Specifically, the memory map manager
needs to retrieve the malloc area for updating the in-
formation about dirty data/meta-data each time it receives
an input from the update tracker. This occurs each
time an instrumented memory write operation dirtying
whichever chunk inside the memory map occurs. Such an
operation is likely to be more frequent compared to a deal-
location operation. Also, in Di-NONAME-LIB we need to
retrieve the correct malloc area starting from a memory
address which does not necessarily coincide with the chunk
boundary address (as instead occurs for free operations).
In other words, update tracker could catch a write op-
eration related to a memory location placed in the middle of
a single chunk.

To cope with such an issue, the original cache has
been extended by having the cache line augmented with
the chunk end address and represented by the tuple <
chunk start addr, chunk end addr,m area index >.
Hence the cache as been actually modified to achieve a
cache for multi-set inputs. The start address for a memory
write operation intercepted by the update tracker is
stripped of n less significant bits by the memory map man-
ager and is then used as the key for accessing the hash ta-
ble, the value of n being chosen with the aim at making the
whole range of addresses belonging to each single chunk
collide into a single cache line. Actually, given that the size
of the chunks delivered to the application software can be
different (3), n has been set as the mean value between the
number of bits needed to make the smallest and the great-
est chunks managed by Di-NONAME-LIB collide, biased
to the smaller sizes.

3.3 Interaction with Third Party Libraries
With the original NONAME-LIB, any memory write op-

eration on allocated chunks was allowed to occur inside

2Flexibility in memory management via partitioning/aggregating free
memory buffers according to the so called “boundary tagging” scheme
[2] is anyway inherited by Di-NONAME-LIB thanks to per-chunk headers
used at the level of the underlying malloc library.

3We recall that, similarly to the malloc library, Di-NONAME-LIB
manages different power of 2 chunk sizes, with a parameterizable maxi-
mum size typically set to 32KB.



functions in third party libraries, provided that these func-
tions did not allocate any further memory buffer (as is the
case for most functions inside the C standard library stdlib).
This is no longer automatically the case when using Di-
NONAME-LIB and its incremental log/restore facilities. In
fact, libraries are not instrumented hence it would not be
possible for update tracker to catch memory changes
made inside those libraries.

We have explicitly addressed the case of update op-
erations performed by third party software, just focusing
on stdlib. Specifically, we have implemented inside Di-
NONAME-LIB a set of function wrappers for all those
functions whose signature allows the overlying software to
pass a pointer for a memory write operation to be performed
by the library. Those wrappers simply throw back the call to
the underlying standard-library function, and then pass con-
trol to the memory map manager with explicit indication of
the address of the updated buffer, and the size of the updated
memory block. In case the size cannot be retrieved by the
library function signature (as for pointers to buffers used
for strings), the memory map manager is provided with a
special flag, which triggers the manager to update the dirty
bits for all the currently allocated contiguous chunks start-
ing from the pointed address. This is obviously a conser-
vative way of managing the memory map which can only
result in an increased log/restore overhead (due to the fact
that some chunks that have not been really dirtied by the li-
brary are actually considered as dirty ones). Correctness is
in no way touched given that the wrapped library functions
are all stateless, thus posing no issue on the side of memory
log/restore.

Anyway, we are currently working on techniques for ap-
plication transparent management, and integration with Di-
NONAME-LIB, of all those library functions which explic-
itly allocate memory and/or have an internal state.

4 Related Work
In the optimistic simulation context, several solutions

have been introduced for logging the whole state of a simu-
lation object (at each event execution or after an interval of
executed events) [10, 15, 17, 18, 20], or incrementally log-
ging modified state portions [7, 21, 25, 27], or supporting
a mix of the two approaches [11, 24]. With these solutions
there is the need (i) to supply the necessary code to collect
snapshots of the objects’ state inside the application level
software, or (ii) to employ calls to functions within the API
of proper checkpointing libraries, or (iii) to statically iden-
tify (e.g. at compile-time) which portions of the address
space need to be considered part of the state. Consequently,
perfect transparency is not supported since the programmer
must necessarily be faced with issues related to state snap-
shots. Also, static identification of the memory locations
to be included inside the snapshot is non-compatible with
dynamic memory allocation/deallocation (e.g. via standard
libraries) at the simulation object level. This is the case for
the work in [27], which, as sketched in the introduction, has
some technical similarities to our work on the side of au-
tomatic instrumentation, but does not allow dynamic mem-
ory to be employed. Compared to all those approaches, our
solution supports state management, based on incremental

log capabilities, without the need for specific log/restore
modules within the application code, or for explicit inter-
facing with log/restore libraries, and allows the simulation
object state to be scattered on dynamically allocated mem-
ory chunks.

The issue of dynamic memory based states for optimistic
simulation objects has also been addressed by the opti-
mistic simulation frameworks in [3, 9]. However, ad-hoc
APIs are used to explicitly notify to the simulation kernel
that specific allocation/deallocation operations, and, more
in general, operations on data structures based on dynamic
memory (e.g. lists), need to be rollbackable. Hence, dif-
ferently from our approach, dynamic memory based lay-
outs via ANSI-C memory allocation/deallocation services
are not supported.

In terms of capabilities of the memory management sub-
system the closest works to our approach are probably the
ones in [22, 23], which present software layers for transpar-
ent log/restore in optimistic simulation based on the High-
Level-Architecture (HLA) interoperability standard. These
layers rely on Operating System memory protection mech-
anisms to detect memory updates and to incrementally log
dirty pages belonging to a dynamically changing federates’
memory layout. Compared to our proposal, the overhead
for tracking updates and incremental log operations is likely
higher and affordable only when comparable with the cost
of interoperability services supported by HLA middleware.
This makes those approaches not tailored to traditional op-
timistic simulation platforms, which are instead the target
of the present work.

Some recent advances [5, 8, 14] have shown the viabil-
ity and effectiveness of optimistic state management via re-
verse computation, where a reverse version of application
level simulation code is (automatically, or semiautomati-
cally) generated and employed for backward computation
just aimed at restoring the state of the simulation object.
Anyway, in general simulation contexts (e.g., possibly ex-
hibiting non-reversible execution paths), this approach still
needs to be complemented via optimized log/restore tech-
niques like the one we have presented in this work.

Finally, our proposal is also related to a number of
works in the field of program execution tracing (see, e.g.,
[1, 4, 16, 28]) for debugging, vulnerability assessment and
repeatability purposes. Compared to our work, several
of those approaches provide detailed analysis of changes
in the state of the program, and of the execution flow.
However, this is achieved via performance intrusive tech-
niques relying on dynamic instrumentation and/or kernel
level services, unsuited in contexts (e.g. parallel simula-
tion) where performance cannot be sacrificed. Again con-
cerning program debugging supports, the only works show-
ing basic operating mode comparable to our one (namely,
the employment of trap mechanisms based on code inser-
tion/replacement to detect memory write accesses) are those
addressing data watch points (see, e.g., [26]. However they
have performance targets different from ours since opti-
mizations mostly cope with search techniques for verifying
whether a memory reference falls inside a region that is cur-
rently subject to a watch point. In other words, aspects re-
lated to the identification of areas that have been dirtied and



to incremental log/restore operations are not considered.

5 Experimental Data
We have integrated Di-NONAME-LIB within the open

source NONAME optimistic simulator [19]. This is a
traditional-style (event-handler based) optimistic simula-
tion platform, which transparently supports all the mech-
anisms associated with parallelization (e.g. the mapping of
simulation objects on different kernel instances) and opti-
mistic processing. It relies on MPI for data exchange across
different simulation kernel instances.

The hardware platform used in this experimental study
is a Quad-Core machine equipped with four 2.4-GHz/4MB-
cache 64-bits Intel processors and 4 GB of RAM memory,
running LINUX (kernel version 2.6.22). Each core hosts
one instance of the optimistic simulation kernel.

The test-bed application software is a parameterizable
cellular system simulator, explicitly modeling fading and
channel interference phenomena [12]. Each simulation ob-
ject instance models a single cell, by tracking, via dynami-
cally allocated data structures, channel allocation and power
management information for ongoing calls. Specifically,
upon the start of a call destined to a mobile device cur-
rently hosted by the cell, the simulation object allocates
a new call-setup record via a couple of dynamically allo-
cated data structures, and links it to a list of already ac-
tive records, each one released when the corresponding call
ends or is handed-off towards a different cell (in this case
a similar call-setup procedure is executed at the destina-
tion cell). Upon call-setup, power regulation is performed,
which involves scanning the aforementioned list of records
for computing the minimum transmission power allowing
the currently setup call to achieve the threshold-level SIR
value, according to GSM technology. Data structures keep-
ing track of fading coefficients are also updated while scan-
ning the list.

We have simulated macro-cells, each one managing up
to 1000 wireless channels, using classical settings such as
exponential distribution of the call inter-arrival time, and
average call duration of 2 minutes (see, e.g., [6]). Also,
the call inter-arrival frequency to each cell has been varied
in the interval between 1 and 6.25 calls per simulation time
unit, thus providing increasing values of the channel utiliza-
tion factor (in between 12% and 75%), and hence increasing
values of the expected length of the aforementioned list of
in-use records. This has a twofold effect: (1) The storage
requirement for the state of each simulation object varies
in between 4KB and 32KB (meta-data for the maintenance
of the memory map being excluded). (2) The event granu-
larity grows from finer to coarser values. These variations
allow us to evaluate the effects of the innovative capabilities
provided by Di-NONAME-LIB in differentiated configura-
tions.

For instrumented and non-instrumented software we
comparatively report in Figure 3 the measured values for the
below parameters, with measures obtained for a small-sized
test-bed benchmark configuration formed by four simula-
tion objects (each one hosted by one instance of the simula-
tion kernel running on the Quad-Core machine):

(A) The average latency for the execution of a simulation
event.

(B) The average latency for a log operation.

(C) The average latency for restoring the memory map to
a logged state.

(D) The average size for a taken log.

As pointed out in Section 3.2.2, the latency of a state
restore operation in Di-NONAME-LIB directly depends
on the interleaving between full logs and incremental logs
along the log chain. Hence, for the parameters in points (B),
(C) and (D), the plots refer to different interleaving steps
between full and incremental logs, namely full logs taken
every 20 and every 50 log operations, respectively. Also,
non-instrumented software has been linked to the original
version of NONAME-LIB in order not to alter the inner (op-
timized) logic and data-structures specifically designed for
non-incremental logging.

By the results, we see that the overhead caused by the
memory update tracking mechanism on the event execution
latency is very limited. Also, CPU and memory require-
ments for each log operation in the instrumented case are
definitely lower than those observed for non-instrumented
software. The latter configuration actually provides a gain
for state restore operations. Anyway, by the plots we see
that performance decrease in the state restore for the case of
instrumented software can be controlled (while maintaining
the advantages on the side of logging) via proper selection
of a non-oversized interleaving step between full and incre-
mental logs.

In order to assess the overall benefits provided by Di-
NONAME-LIB, in Figure 4 we also report plots related to
the event rate (committed events per wall-clock time unit)
while varying the state log interval, also known as check-
point period. This time the curves refer to a much larger
configuration of the aforementioned benchmark, with 1024
macro-cells evenly distributed on the four simulation kernel
instances hosted by the Quad-Core machine.

Concerning the checkpoint period, namely the indepen-
dent parameter, we recall that it directly affects the trade-
off between state log and coasting forward overheads, and
potentially affects the overall memory locality due to vari-
ations in the memory usage for checkpoints. For Di-
NONAME-LIB, a state restore (occurring before coasting
forward, if any) additionally depends on the interleaving
step between full logs and incremental logs, which has been
set to 20 in this study. Also, the plots are reported for three
different channel utilization factors (25%, 50% and 75%) in
order to observe the overall performance while varying the
application software CPU/memory requirements.

By the results we see that, as soon as the application
exhibits non-minimal memory requirements (namely when
the channel utilization factor is non-minimal, hence induc-
ing an increase in the simulation object state size), the non-
incremental approach provides significant performance ad-
vantages. We note that these advantages come from a direct
reduction in the cost of state logs (this can be noted espe-
cially for small values of the checkpoint period) and from



increased locality (this can be noted especially for increased
values of the checkpoint period, where the event rate curve
for the incremental case does not stay flat, as instead occurs
for the non-incremental case). Concerning the latter point,
the frequency of GVT calculation and related memory re-
covery operations has been set in a way to never exceed
60/70% of RAM usage, so not to incur swapping phenom-
ena that would alter the reliability of the reported measures.
Hence, improved locality even excludes potential (further)
advantages from incremental logging thanks to the avoid-
ance of swap phenomena, which are more likely to occur
with non-incremental logs in case of (excessively) lazy set-
tings for GVT operations.

6 Summary
In this paper we have presented a software architec-

ture complementing an existing open source layer support-
ing transparent log/restore operations for optimistic sim-
ulation objects with state layout based on standard dy-
namic memory allocation/deallocation services. The new
capabilities added through the presented architecture entail:
(i) Lightweight run-time monitoring mechanisms (based
on ad-hoc software instrumentation facilities) for tracking
memory update references inside the current memory map
associated with the state of each simulation object - (ii)
Optimized log/restore based on incremental copies of dirty
chunks inside the memory map. Some experimental re-
sults have also been reported for an evaluation of the bene-
fits achievable through the provided approach. Planned fu-
ture work encompasses: (A) Supports for completely trans-
parent state management, based on incremental logging, in
the context of application software integration with third
party libraries (for which we have currently provided a par-
tial solution coping with stateless libraries, and libraries
not directly interacting with lower level memory alloca-
tion/deallocaton APIs) - (B) The design of (autonomic)
mechanisms for dynamic switching between incremental
and non-incremental operating modes, in order to further
improve the system run-time behavior by optimizing the
trade-off between the cost of memory update tracking (to
be paid in case the incremental mode is switched on) and
the cost of (full or incremental) log operations.

References
[1] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/.

[2] A memory allocator. http://g.oswego.edu/dl/html/malloc.html, 1996.

[3] SPEEDES. http://www.speedes.com, 2005.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In Proceedings of the 2000 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 1–12,
2000.

[5] D. W. Bauer and E. H. Page. An approach for incorporating rollback through
perfectly reversible computation in a stream simulator. In 21st International
Workshop on Principles of Advanced and Distributed Simulation, pages 171–
178. IEEE Computer Society, 2007.

[6] A. Boukerche, S. K. Das, A. Fabbri, and O. Yildz. Exploiting model indepen-
dence for parallel PCS network simulation. In Proceedings of the 13th Work-
shop on Parallel and Distributed Simulation, pages 166–173. IEEE Computer
Society, May 1999.

[7] D. Bruce. The treatment of state in optimistic systems. In Proceedings of
the 9th Workshop on Parallel and Distributed Simulation, pages 40–49. IEEE
Computer Society, June 1995.

[8] C. D. Carothers, K. S. Perumalla, and R. Fujimoto. Efficient optimistic parallel
simulations using reverse computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, 1999.

[9] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. Gtw: a time
warp system for shared memory multiprocessors. In WSC ’94: Proceedings of
the 26th conference on Winter simulation, pages 1332–1339, San Diego, CA,
USA, 1994. Society for Computer Simulation International.

[10] J. Fleischmann and P. Wilsey. Comparative analysis of periodic state saving
techniques in Time Warp simulators. In Proceedings of the 9th Workshop on
Parallel and Distributed Simulation, pages 50–58. IEEE Computer Society,
June 1995.

[11] S. Franks, F. Gomes, B. Unger, and J. Cleary;. State saving for interactive
optimistic simulation. In Proceedings of the 11th Workshop on Parallel and
Distributed Simulation, pages 72–79. IEEE Computer Society, June 1997.

[12] S. Kandukuri and S. Boyd. Optimal power control in interference-limited fad-
ing wireless channels with outage-probability specifications. IEEE Transac-
tions on Wireless Communications, 1(1):46–55, 2002.

[13] D. E. Martin, T. J. McBrayer, and P. A. Wilsey. WARPED: A time warp
simulation kernel for analysis and application development. In HICSS ’96:
Proceedings of the 29th Hawaii International Conference on System Sciences
(HICSS’96) Volume 1: Software Technology and Architecture, page 383, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[14] A. Naborskyy and R. M. Fujimoto. Using reversible computation techniques in
a parallel optimistic simulation of a multi-processor computing system. In 21st
International Workshop on Principles of Advanced and Distributed Simulation,
pages 179–188. IEEE Computer Society, 2007.

[15] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects of the checkpoint in-
terval on time and space in Time Warp. ACM Transactions on Modeling and
Computer Simulation, 4(3):223–253, July 1994.

[16] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In
MICRO, pages 135–148, 2006.

[17] F. Quaglia. A cost model for selecting checkpoint positions in Time Warp
parallel simulation. IEEE Transactions on Parallel and Distributed Systems,
12(4):346–362, Feb. 2001.

[18] F. Quaglia and A. Santoro. Non-blocking checkpointing for optimistic parallel
simulation: Description and an implementation. IEEE Transactions on Parallel
and Distributed Systems, 14(6):593–610, 2003.

[19] Reference removed for blind review.

[20] R. Ronngren and R. Ayani. Adaptive checkpointing in Time Warp. In Proc.
of the 8th Workshop on Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, July 1994.

[21] R. Ronngren, M. Liljenstam, R. Ayani, and J. Montagnat. Transparent incre-
mental state saving in Time Warp parallel discrete event simulation. In Pro-
ceedings of the 10th Workshop on Parallel and Distributed Simulation, pages
70–77. IEEE Computer Society, May 1996.

[22] A. Santoro and F. Quaglia. Transparent state management for optimistic syn-
chronization in the High Level Architecture. In Proceedings of the 19th Work-
shop on Principles of Advanced and Distributed Simulation, pages 171–180.
IEEE Computer Society, 2005.

[23] A. Santoro and F. Quaglia. A version of MASM portable across different UNIX
systems and different hardware architectures. In Proceedings of the 9th Interna-
tional Symposium on Distributed Simulation and Real Time Applications. IEEE
Computer Society, 2005.

[24] H. Soliman and A. Elmaghraby. An analytical model for hybrid checkpoint-
ing in Time Warp distributed simulation. IEEE Transactions on Parallel and
Distributed Systems, 9(10):947–951, 1998.

[25] J. Steinman. Incremental state saving in SPEEDES using c plus plus. In
Proceedings of the Winter Simulation Conference, pages 687–696. Society for
Computer Simulation, 1993.

[26] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints: Design
and implementation. In Proceedings of the 1993 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 1–12,
1993.

[27] D. West and K. Panesar. Automatic incremental state saving. In Proceedings of
the 10th Workshop on Parallel and Distributed Simulation, pages 78–85. IEEE
Computer Society, May 1996.

[28] Q. Zhao, R. M. Rabbah, S. P. Amarasinghe, L. Rudolph, and W.-F. Wong. How
to do a million watchpoints: Efficient debugging using dynamic instrumenta-
tion. In L. J. Hendren, editor, CC, volume 4959 of Lecture Notes in Computer
Science, pages 147–162. Springer, 2008.



20

40

60

80

100

120

1 2 3 4 5 6

E
ve

nt
 L

at
en

cy
 (

m
ic

ro
se

c.
)

Call Inter-Arrival Frequency

Instrumented
Non-Instrumented

5

10

15

20

25

30

1 2 3 4 5 6

Lo
g 

La
te

nc
y 

(m
ic

ro
se

c.
)

Call Inter-Arrival Frequency

Instrumented (Full Log each 20)
Instrumented (Full Log each 50)

Non-Instrumented (Full Log Only)

20

40

60

80

100

120

140

160

1 2 3 4 5 6

R
es

to
re

 L
at

en
cy

 (
m

ic
ro

se
c.

)

Call Inter-Arrival Frequency

Instrumented (Full Log each 20)
Instrumented (Full Log each 50)

Non-Instrumented (Full Log Only)

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6

P
er

-L
og

 M
em

or
y 

U
sa

ge
 (

K
B

)

Call Inter-Arrival Frequency

Instrumented (Full Log each 20)
Instrumented (Full Log each 50)

Non-Instrumented (Full Log Only)

Figure 3. Basic Statistics for the Test-bed
Configuration.

15000

20000

25000

30000

35000

40000

45000

50000

510 20 50 100

E
ve

nt
 R

at
e 

(c
om

m
itt

ed
 e

ve
nt

s/
se

c.
)

Checkpoint Period (Events)

Channel Utilization Factor 25%

Instrumented (Incremental Log)
Non-Instrumented (Full Log)

15000

20000

25000

30000

35000

510 20 50 100

E
ve

nt
 R

at
e 

(c
om

m
itt

ed
 e

ve
nt

s/
se

c.
)

Checkpoint Period (Events)

Channel Utilization Factor 50%

Instrumented (Incremental Log)
Non-Instrumented (Full Log)

12000
14000
16000
18000
20000
22000
24000
26000
28000
30000

510 20 50 100

E
ve

nt
 R

at
e 

(c
om

m
itt

ed
 e

ve
nt

s/
se

c.
)

Checkpoint Period (Events)

Channel Utilization Factor 75%

Instrumented (Incremental Log)
Non-Instrumented (Full Log)

Figure 4. Event Rate vs the Checkpoint Period
for Three Different Channel Utilization Factor
Values (1024 Simulation Objects).


