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There is still great interest in the determination of microtopographic properties of rough metallic surfaces from
light scattering measurements. According to Beckmann—Kirchhoff theory a clear relationship is established
between the in-plane angular scattered light intensity and the statistical properties of the surface. We discuss
one way to invert this relationship, and we introduce a new iterative procedure to retrieve the height autocor-
relation function even for a very rough metallic surface (rms surface roughness of the same order of the optical
wavelength). The procedure is eventually applied to the experimental data of a known metallic surface for

validation. © 2009 Optical Society of America

OCIS codes: 240.0240, 240.3695, 290.5880, 120.5820.

1. INTRODUCTION

The characterization of rough surfaces by light scattering
has remained an active research field. Although the use of
the real space imaging techniques, such as atomic-force
microscopy (AFM) and scanning-tunneling microscopy, al-
low the surface morphology to be probed directly, indirect
methods based on the light scattering from the sample
surface still keep relevant advantages such as the con-
tactless methodology, large sampling size, and the capa-
bility to detect nanotopographic surface features, hetero-
geneous nanostructures, nano-objects, etc.

The original idea to correlate surface roughness with
light scattering came out from the early work of Lord
Rayleigh [1,2]. However a systematic determined effort
was made to solve the scattering problem for random sur-
faces only after World War II with the development of ra-
dar systems [3-5]. At that time myriads of approximated
models [6-9] came out, but all used the Beckmann-—
Kirchhoff theory, where the surface scattering is ex-
plained as merely a diffraction phenomenon resulting
from random phase variations induced on the reflected
wavefront by (micro)topographic surface features, as de-
scribed in the monograph by Beckmann and Spizzichino
[10]. Nowadays the surface scatter phenomenon contin-
ues to be an important issue in diverse areas of science
(optics, acoustics, geophysics, and terrestrial or extrater-
restrial remote sensing), [11] and the limit of the validity
of Beckmann—Kirchhoff theory is still under discussion,
especially in optics [12-14].

The great interest in the Beckmann—Kirchhoff theory
arises mainly because it establishes a clear relationship
between the statistical surface properties (such as the
rms roughness ¢ and the autocorrelation function C of the
topographic surface) and the angular light scattering dis-
tribution. In the particular case of small roughness (with
respect to the optical wavelength), many authors have
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shown that this relationship reduces to a simple Fourier
transform that can be easily inverted with the standard
methods known from signal processing [15-19].

In this paper we focus the study on the case of moder-
ate to high surface roughness, for which the relationship
is strictly nonlinear and consequently not invertible. We
discuss the full theory and some crucial theoretical as-
pects of the inverse problem, discussing a new iterative
procedure for retrieving the statistical parameters of the
surface. First the procedure is tested on some numerical
simulations, and eventually it is applied to some experi-
ments of light scattering measured on a known rough me-
tallic sample. The statistical properties obtained from the
light scattering technique are eventually discussed and
compared with the ones obtained with standard methods
(stylus and AFM).

2. THEORY

We summarize in this paragraph the main theoretical re-
sults of the Beckmann—Kirchhoff theory, for better read-
ability of the paper and comprehension of the critical
points [10].

The rough metallic surface is represented by the func-
tion {(x,y), which has mean level z=0. Important related
statistical quantities are the rms roughness o= v’@ (the
brackets indicate averaging over the whole surface of in-
terest) and the autocorrelation function C=({;{y) ({; and
{9 represent the heights of points B; and B, at a relative
distance 7, as shown in Fig. 1). C is usually normalized to
its maximum value C,=({1{1)=({%) =02, occurring when
=0 (Bl = Bz) .

A plane wave launched in the direction of the wavevec-
tor %; and incident on the surface with the angle 6; (with
respect to normal) generates the disturbance at point B
(see Fig. 1):

© 2009 Optical Society of America
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Fig. 1. Surface reflection is closely related to the microscopic
surface profile and to the direction of the incident wave.

Vg =A explik; - pl, (1

where p is the vector OB and A is a constant. Point B be-
comes the source of a secondary spherical wave that gen-
erates the disturbance at observation point P at distance
r chosen, without loss of generality, in the plane of inci-
dence:

explik|F-p|]  explik\r?+ p* - 27 -
[/] = =
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explikr - ik, - p] @
= 2

r

where the wavevector %, points in the direction of P. It is
worth noting that Eq. (2) is valid in the Fraunhofer zone
of diffraction. The total scattered field at point P may be
obtained according to the Helmholtz equation by integrat-
ing over the whole surface S as follows [10]:

1 ﬁlﬂ &VB,tot
Vp=— VB iot— — ds
F 47Tjs Bitot oy v on

=F'Df expli(k; - k,) - 51dS, 3)
S

where Vg i is the total disturbance at B (the sum of the
incident and reflected terms), F=[1+cos(6;
+6,)]/[cos 6;(cos ;+cos 6,)] is an angular function ob-
tained by many authors under the assumption of a per-
fectly conductive surface [10], 6, and 6, are the incident
and the scattering angles, and D is an unessential con-
stant function that is dependent on the intensity and
phase of the incident plane wave. The intensity may be
obtained by averaging Eq. (3) as follows:

1p=<VPV;>=F2f f<6Xp[i(75i—/50)-(ﬁ—ﬁ’)]>deS’,
s'Js
4)

where the constant |D|? has been neglected because unes-
sential (in the experiments the light scattering intensity
is always normalized). Under the assumption of a nor-
mally distributed surface with a Gaussian statistic, Eq.
(4) eventually becomes (see Eq. (44) of [10], p. 87)
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where 7 is the distance between two points B; and B,
on the surface, C(7) is the normalized autocorrelation
function, and x(6;,6,,0/\,C(7)=exp[-(27/\)252(cos 6;
+cos 6,)2(1-C(7)]. This equation establishes a clear rela-
tionship between the statistical properties of the surface
and the angular scattered intensity. Just for example we
discuss two simple cases for the normalized autocorrela-
tion function: (a) the exponential case C,(7)=exp(-7/A),
where A is the autocorrelation length (i.e., the distance at
which C decreases to e~1), and (b) the linear case Cj(7)
=1-17/A for which the scattered intensity I, may be ex-
pressed in the closed form [20]

27F? u? A \2 1
(cos 6+ cos 6,)*\ 2 {1 (sin 6; - sin 6,)? ) 32’

+ _—
(cos 6; + cos 00)4;/,

I,(6,) =

(6)

where u=\A/2mo?. We performed the numerical simula-
tions for both case (a) [by using C, in Eq. (5)], and case (b)
[directly by using Eq. (6)] [21]. In Fig. 2 the normalized
scattered intensity is shown also for different rough-
nesses (0=200,300 nm), while A\=633 nm, A=10 um have
been kept constant and 6,=0. Note that the angular inten-
sity profile becomes narrow as the roughness decreases as
expected. Note also that there are no substantial differ-
ences between the exponential case (a) and the linear case
(b), since C,(7) and Cy(7) have similar initial behaviors.
This makes Eq. (6) an excellent approximation for the
light scattering from a metallic surface with an exponen-
tial autocorrelation function. Obviously Eq. (5) is more
general and should be used for any other autocorrelation
function C(7); in fact we discuss in the next paragraph
how Eq. (5) can be inverted in order to retrieve the un-
known autocorrelation function.

It is worth noting that Egs. (3)-(6) have been obtained
in the case of perfectly conducting surface. In the case of
finite conductivity of the metal, the surface partially re-
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Fig. 2. Normalized angular scattered intensity versus scatter-
ing angle (degrees) for A\=633 nm and autocorrelation length
A=10 pm. Curve (a) 0=200 nm and C,(7)=exp(-7/A); curve (b)
0=200 nm and Cy(7)=1-7/A; dashed curve =300 nm (the lin-
ear and the exponential case merge).
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flects the incident light, and the general problem becomes
not trivial. However for many metals the reflectance is
rather large and almost independent of the angle of inci-
dence. In these cases Eqgs. (3)—(6) are still valid in the
present form, if one includes the average reflectance in
the quantity D. This new quantity finally disappears in
Eqgs. (4)—(6) because of the standard normalization proce-
dure.

3. INVERSE PROBLEM

In the previous paragraph we summarized the approach
by Beckmann and Spizzichino for modeling the single
scattering from random rough surfaces. Equation (5) evi-
dences how the scattered intensity strongly depends on
some particular quantities: the angle of incidence 6;, the
angle of observation 6,, the optical wavelength A, the rms
roughness o, and the roughness autocorrelation function
C(7). Note that the expression in Eq. (5) is not dissimilar
from a 2D Fourier transform of the characteristic function
x from the domain 7 to the spatial frequency domain p
=(sin 6;—sin 6,)/\. As a simple check of validity we con-
sider the particular case of a plane flat metallic surface
for which o=0. In this case the characteristic function is
x=1 for any C(7), and the scattered intensity indeed be-
comes the Dirac & function (i.e., exactly the 2D Fourier
transform of y=1) that is nonzero only for 6,=6;, accord-
ing to the well-known Snell law for specular reflection.
But in the general case of a rough metallic surface the y
function also depends on 6,, making Eq. (5) slightly dif-
ferent from a rigorous 2D Fourier transform and making
theoretically impossible the reconstruction of the y func-
tion with an inverse Fourier transform procedure. Never-
theless, many authors [15-19] notice that for samples
with a moderate surface roughness the scattered inten-
sity is expected mainly in the quasi-specular direction for
which 6,~ 6;, where the y function can be approximated

as follows:
470 cos 0, \?
X =< exp| — (f) (1-C(7)|. (7)

The result of such crucial approximation makes the inte-
gral in Eq. (5) formally equivalent to a 2D Fourier trans-
form and invertible by means of the inverse Fourier (IF)
transform as follows:

0

I(p)
Xe(7) = ZWJ Jo(2mp7) - P dp, (8)
0

where p=(sin 6,-sin 6;)/\ and J, is the Bessel function of
the first kind. Combining Egs. (7) and (8), the autocorre-
lation function Ciy is eventually retrieved as follows:

Co(r) =1 A 21 xr(0)
wr=2" 470 cos 6; . xie(D )

In practice a number of problems may limit the quality of
the reconstruction.

9)

(a) The integral in Eq. (8) is truncated when the maxi-
mum observation angle is reached at 6,= /2, correspond-
ing to the maximum spatial frequency p,..=(1-sin 6;)/\.
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The limited bandwidth generally rounds the original pro-
file C(7) and decreases the spatial resolution of the recon-
struction. The result of a numerical simulation is shown
in Fig. 3(a), where the autocorrelation function C=1-7/A
with A=10 um is reconstructed by Eq. (9). In the inset it
is clear that the reconstruction Cp (symbols) is initially
rounded with respect to the original linear profile C (solid
line).

(b) Since the scattered intensity is sampled with an
angular step Af,, the reconstructed Cir may be affected
by some replica of C(7), with a periodicity of the order of
A7=N\/A6, (aliasing). In the numerical simulation we set
Af,=1° so that the small replica could be visible only at a
far distance of about 7<36 um.

(¢) For moderate roughness y(7) tends to zero much
faster than C(7), making the reconstruction of Cir by Eq.
(9) more critical as o/\ increases. In Fig. 3(b) the y func-
tion is shown for both ¢=200 nm (solid line) and 300 nm
(dashed line). y drops very quickly to zero, especially for
=300 nm, as expected from Eq. (7), and the reconstruc-
tions of y;r (symbols) fail down to the value 1074, limiting
the reconstruction interval till the distance 7., (i.e., for
Tmax=2 pm, inverted triangles, and for 7,,,=4 um, dots).
Correspondingly, the reconstructions of Cip [symbols in
Fig. 3(a)] clearly fail beyond 7,,.

In Fig. 4 the normalized scattering intensity spectra 1(6,)
are shown for the numerical examples reported in Figs. 3
(solid curve for 0=200 nm and dashed curve for o
=300 nm). To check the validity of the procedure the scat-
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Fig. 3. (Color online) (a) Autocorrelation function versus dis-
tance: solid curve, C=1-7/A with A=10 wm; filled circles, recon-
structed Ciy for 0=200 nm; inverted triangles, reconstructed Cip
for 0=300 nm. Inset, magnification of the initial behavior. (b) y
function versus distance for the same case as (a): lines represent
the calculated y from Eq. (7) for ¢=200 nm (solid line) and o
=300 nm (dashed line); symbols represent the reconstructed yip
for 0=200 nm (filled circles) and 0=300 nm (inverted triangles).
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Fig. 4. Normalized scattering intensity versus scattering angle
for the same case as in Fig. 3; curves represent the normalized
intensity calculated by Eq. (6) with ¢=200 nm (solid), and o
=300 nm (dashed); symbols represent the reconstructed I for
0=200 nm (filled circles) and =300 nm (inverted triangles).

tering intensity Iip calculated from Cip is compared with
the original spectra. Unfortunately, the intensity spectra
agree only for small observation angles |6,| <30° and fail
elsewhere because of the difference between C and Ciy.

A. Use of the Singular Value Decomposition

One way to improve the quality of the reconstruction is to
calculate the autocorrelation difference AC=C-Cip from
the intensity difference AI=1-Ip between the spectra. By
this approach, Eq. (5) becomes

I= 277F2f J,(2mprexp[-g(1 - Crp-AC)]- 7-dr,
0

(10)

where g=(2m/\)20%(cos 6;+cos 6,)%. If we assume that the
correction AC is small enough that exp(gAC)=1+gAC,
Eq. (5) may be linearized into

%

A= ZWFZJ Jo(2mpr)exp[-g(1-Cp)]-g-AC- 7-dr.
0

(11)

The Fredholm integral in Eq. (11) links AI(6,) to AC(7).
The relation may be inverted by using singular value de-
composition (SVD) [22]. In practice the kernel is decom-
posed in a set of (orthonormal) singular functions U(6,)
and V,(7), which constitute a basis for the direct and in-
verse spaces [23,24]. In fact the solution AC of the inverse
problem may be calculated as a weighted superposition of
these singular functions as follows:

<I(0o)’ Uk(00)>

AC(7) = >, a;Vy(7), where weights a;, =
A M

(12)

and where y,, is the kth singular value and (IU) is the in-
tegral product in the 6, space. Keeping in mind the nu-
merical simulations shown in Figs. 3 and 4, it is instruc-
tive to follow, in Fig. 5(a), the typical behavior of several
singular functions V,(7) where k=1,2,20, (respectively,
curves 1, 2 ,3) and to evaluate the typical values of the
weight a;, as shown in Fig. 5(b).

It is worth noting that the singular function V), exhibits
a number of oscillations increasing with the index &,
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Fig. 5. (a) Singular functions versus distance (micrometers) for
the same case as in Fig. 3: curves (1) k=1; (2) k=2, (3) £=20. (b)
Weight of the kth singular function versus index % calculated by
Eq. (12).

somehow resembling the Fourier series [although these
oscillations are aperiodic; see Fig. 5(a)l. Like the case of
the Fourier series, the use of high-order singular func-
tions allows us to reconstruct AC with a better spatial res-
olution. Unfortunately, because of the ill posedness of the
inverse problem, the weight a; exhibits a critical amplifi-
cation for £>20, as shown in Fig. 5(b), which introduces
unrealistic oscillations in the reconstruction. In practice
the summation in Eq. (12) should be always truncated to
a maximum index k&, that represents the optimum maxi-
mum number of singular functions used for the recon-
struction (i.e., in our case k,p;=17), which guarantees the
requested spatial resolution but without unrealistic oscil-
lations. For example, we report in Fig. 6(a) the result of
the improved reconstruction of the linear profile in Figs. 3
with =300 nm. The linear profile (curve 1) is recon-
structed first by the inverse Fourier transform (open
circles) and finally by SVD both using k,p=17 (curve 2)
and exceeding that value with £=20 (curve 3). The corre-
spondent intensity spectra are shown in Fig. 6(b). As ex-
pected, when the index k exceeds k,, large oscillations
appear. The best reconstruction (for £,,;=17) allows us to
extend 7., to 2.5 um [see Fig. 6(a)] and to improve sub-
stantially the quality of the fit in the whole domain [-90°,
90°] as shown in Fig. 6(b).

B. Iterative Procedure

Looking at Figs. 6, one might be not fully satisfied from
the optimum autocorrelation function C; given by SVD
with k. One reason for the misfit is that the original
nonlinear Eq. (5) has been linearized into Eq. (11) only for
small g-AC<1; the linear inverse problem in Eq. (11)
may differ from the nonlinear case in Eq. (5). One way to
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get further improvements is by an iterative procedure;
the first solution C; is used again in Eq. (11) as a starting
function for the second application of the SVD. The result
is an improved solution C9=C;+AC,, which diminishes
the difference Aly=1-1;. This procedure may be iterated
n times, by inverting at each step the following integral:

©

AlL=1-1,,= 27TF2J J,(27pT)
0

Xexp[-g(1-C,_1)]-g-AC, - 7-d~. (13)

The results of this iterative procedure are shown in Fig. 7,
where the improvements in the reconstruction of the au-
tocorrelation function [Fig. 7(a)] and of the intensity spec-
trum [Fig. 7(b)] are reported for n=1 (curve 1), n=2 (cuve
2), and n=4 (curve 3). Note that in the case of C, the
quantity 7., is extended to 3 um Further improvements
for n>4 are negligible.

4. EXPERIMENTAL RESULTS

In this paragraph we report the experimental results per-
formed on a specific rough metallic sample by using sev-
eral techniques. The description of the investigated
sample and the standard measurements of the surface
roughness are reported in Subsection 4.A. The experimen-
tal setup for the light scattering measurements and the
relative experiments are shown in Subsection 4.B. Fi-
nally, the reconstruction procedure of the autocorrelation
function and the comparison among techniques is dis-
cussed in Subsection 4.C.

A. Standard Roughness Measurements

The investigated sample originally comes from a 1 mm
thick Pd slab subjected to several surface treatments that
enhanced the surface roughness. The slab was first rolled
and reduced to a 50 um thin foil. Immediately after roll-
ing, the Pd foil was annealed under vacuum conditions for
1 h at about 900°C. The high surface roughness was ob-
tained by means of a chemical etching of the sample,
which was treated with a solution of nitric and chloridic
acid with a 1:3 volume ratio (aqua regia) for about 120 s.

The morphology of the sample has been investigated by
atomic force microscopy (AFM). The scans over a typical
area of 15 um X 15 um of the sample surface are shown in
Fig. 8. The estimated rms roughness is here about o
=330 nm, while the autocorrelation length along the
x and y axes are 1.4 and 1.8 um, respectively. However
the sample surface is strongly inhomogeneous, and the
roughness changes substantially point by point. In order
to check the surface roughness at an intermediate scale
(millimeter range) a more appropriate measurement has
been performed with a stylus by scanning a 3 mm line as
shown in Fig. 8(c).

By a first inspection of Fig. 8(c) the scan passes through
zones with different roughness. In particular eleven dif-
ferent zones have been individuated and ordered by capi-
tal letters. For each homogeneous zone the roughness, the
autocorrelation function (see Fig. 9), and the autocorrela-
tion length have been calculated and are reported in
Table 1. Strong variations for both roughness (from 100 to
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Fig. 8. (a) AFM x—y surface image of the Pd sample. The
scanned area is 15 um X 15 um. (b) Same AFM image in 3D. (c)
Stylus scan over a 3 mm line. The surface roughness (microme-
ters) is plotted versus the offset (micrometers). Insets, magnifi-
cations of five different zones A, D, E, G, L.
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tion distance 7. The autocorrelation ({(x)-{(x+7)) is calculated
from the data shown in Fig. 8(c) in the five zones labeled A, D, E,
G, I; av represents the averaged autocorrelation curve.

700 nm), as well as for the autocorrelation length (from 3
to 11 um) are clearly evident. It seems worthwhile to av-
erage these parameters over all of the 3 mm line to obtain
the quantities 0,,=300 nm and ACL,,=10.5 um (see
curve labled “av” in Fig. 9) to be compared with the light
scattering measurements as described later in Subsection
4.C.

B. Experimental Setup

To experimentally measure the scattered light from the
rough metallic surface we have designed and realized the
in-plane light scattering device shown in Fig. 10 to collect
and measure the in-plane scattered intensity even for
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Table 1. Results from Stylus Measurements®

o ACL Scan Length

Zone (um) (um) (um)
A 0.62 10.5 300
B 0.26 3 100
C 0.20 4.5 200
D 0.26 10.5 400
E 0.24 8.5 300
F 0.21 4.5 200
G 0.25 — 500
H 0.06 4 100
I 0.13 — 400

L 0.07 3 100
M 0.13 6 200

Average 0.30 10.5 3000

“Zone, zone of the sample; o, rms roughness; ACL, autocorrelation length. In the
last row the average values are calculated.

large scattering output angle 6, (with respect to the nor-
mal to the sample surface) over the whole range [-89°,
+89°]. The incident light comes from a He-Ne laser at
633 nm. A probe beam of 5 mW with a diameter of 0.7 mm
is modulated by a mechanical chopper at the frequency
400 Hz and directed toward the sample surface by a min-
imirror. The light scattered from the rough sample sur-
face is diffused in all directions. Only the in-plane light
scattered in the direction 6, is filtered by a 1 mm pinhole
and focused by an f=15 cm lens over a Si photodiode. The

Angular light scattering measurements. Set-up |

Rotation
axis

Incidence angle

Fig. 10. (Color online) (a) Schematic setup and (b) experimental
setup for the in-plane light scattering measurements.
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Fig. 11. In-plane scattered light intensity versus scattering
angle for Pd sample. The symbols refer to different incident
angles: circles, 6;,=0°; squares, 6,=—34°; inverted triangles,
0,=-50°.

signal is finally sent to a lock-in amplifier, which allows
the signal to noise ratio to be increased by filtering out
signals not syncronous with the mechanical chopper. The
angular scans may be performed thanks to two rotation
stages: the incident angle 6; can be adjusted by rotating
the sample holder, while the scattering output angle 6,
can be adjusted by rotating the detector arm.

The light scattering measurements have been per-
formed on the rough metallic sample described in Subsec-
tion 4.A. The experimental results are reported in Fig. 11.
The in-plane scattered intensity has been measured by
rotating the detector arm to perform a scan of the scatter-
ing angle 6, in the range —89° to +89° with an angular
step of 1°. During a single set of measurements (scan) the
incident angle 6; has been set to a fixed value: (circles)
#;=0°, (squares) 6;=-34°, (triangles) 6;=-50°. As ex-
pected, the maximum of each scan is found in the specu-
lar direction 6,,;= 6;. A small backscattering broad peak is
also visible for 6,,=-6;, even if this phenomenon is not
well resolved, because the setup does not allow light to be
measured exactly at 6,,;=—6; when the incident beam is
obscured by the minimirror, which minimizes the dark
zone to 1.5° [see Fig. 10(a)]. In general the shape of all
curves is rather flat owing to the high value of the rough-
ness 0<300 nm: the dynamic is in this case limited to 2
orders of magnitudes, as is also shown in Figs. 2 and 4 for
the theoretical expectation. Moreover, it is worth noting
that all curves exhibit a similar behavior for large output
angles 6,, which contains information on the initial shape
of the autocorrelation function C(7).

C. Reconstruction Procedure and Discussion

The average reflection of Pd is around 70% and is rather
flat in a wide range of incidence angles, making the pro-
cedure described in Subsection 3.A applicable. However to
retrieve the profile C(7) only the scattered intensity for
normal incidence I (§,, 6,=0°, circles in Fig. 11) is consid-
ered for the inversion procedure, for the following rea-
sons: (a) to prevent the excitation of surface plasmons,
which usually may be triggered for larger angles and may
lead to a wrong estimate of the material autocorrelation
function [25]-a more appropriate model, beyond the aim
of the present paper, should be implemented to include
these effects; (b) to achieve the maximum signal to noise
ratio; (c) to exploit the symmetry of the signal with re-
spect to Oyyt-
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As a first step Egs. (8) and (9) are applied to the experi-
mental signal to calculate the inverse Fourier relation-
ship and determine Cip(7) in the range [0-5 um] as
shown in Fig. 12(a) (circles). Some unrealistic oscillations
have been averaged as reported in the smoothed curve 1.
The autocorrelation Cgy1ys(7) obtained by stylus (see
curve labeled “av” in Fig. 9) is also reported in Fig. 12(a)
(solid curve) for comparison. The difference between Cip
and Cgyiys is not too surprising in view of the different
techniques (contactless optical measurements by a probe
beam versus mechanical measurements by a tip in con-
tact with the sample). The main reasons for this differ-
ence are summarized as follows: (a) the measurements by
stylus are taken with a step of 300 nm that fixed the
maximum spatial resolution. With such accuracy it is im-
possible to detect surface nanostructures or nanoscale
surface patterning. This also explains why Cg1,s has a
smooth behavior while Cip has an initial quick drop. (b) In
the mechanical measurement by stylus, which is the tip
in contact with the sample, some artifacts may appear
(induced channels by tip, etc.). (¢) The stylus scans the
surface roughness along a line, while the optical beam il-
luminates a large area of the surface. (d) The light scat-
tering measurements are more sensitive to inhomogene-
ity of the surface, possible surface plasmons in the metal,
shadowing effects due to the large roughness, etc. It is
therefore somehow improper to require good agreement
between the optical and the mechanical measurements. It
seems better to require that the data obtained from the
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Fig. 12. (Color online) (a) Normalized autocorrelation function
versus autocorrelation distance 7 for Pd sample: solid curve, av-
eraged autocorrelation function calculated by stylus as shown in
Fig. 9; circles, Cp autocorrelation calculated by Eq. (9); curve (1)
smooting of Cyp. (b) In-plane normalized scattered light intensity
versus scattering angle (degrees) for Pd sample and for 6;,=0°:
open circles,k experimental results; filled circles, I}y calculated
from Cip in (a); (1) Iy calculated by smooting Ciy; solid curve,
Iy14s calculated from Cgy,s in (a).
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scattered measurements are able to retrieve the real in-
tensity distribution.

In order to check the quality of the reconstruction, we
compare in Fig. 12(b) the corresponding scattered inten-
sity calculated from Fig. 12(a) by using Eq. (5). It is again
evident that I, calculated from Cgyys (so0lid curve) to-
tally misfits the experimental data (circles), especially at
large angles (the surface nanostructures are not seen by
this technique). Instead the experimental data are better
fitted by ijp (filled circles) calculated from Cip. A similar
quality of the fit is when Cip is smoothed (curve 1). In or-
der to improve the quality of the reconstruction, the quan-
tity Cir is used as the initial profile for the iterative SVD
optimization procedure described in Subsection 3.A.

The results of the procedure are reported in Fig. 13.
The profiles C; and C, obtained after the application of
one and two cycles of SVD are shown in Fig. 13(a). The
iterative procedure practically converges already after
two cycles, so that it is irrelevant to show cycles C3, C,
etc. The corresponding intensity spectra are reported in
Fig. 13(b).

As a conclusion it is worth noting that (a) the quality of
the fit becomes excellent with I, after already 2 cycles.
(b) Further improvements are impossible owing to the
level of the experimental noise. (c) The iterative SVD pro-
cedure, on the one hand, allows us to find a lower corre-
lation in the range [2 um,5 um], and on the other hand
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Fig. 13. (Color online) (a) Reconstructed autocorrelation func-
tion versus autocorrelation distance 7, for Pd sample: solid curve,
averaged autocorrelation function calculated by stylus as shown
in Fig. 9; circles, Cyr autocorrelation calculated by Eq. (9); dashed
curve, reconstructed C; profile after the application of one SVD
cycle; solid curve, reconstructed C, profile after the application of
two SVD cycles. (b) In-plane normalized scattered light intensity
versus scattering angle (degrees) for Pd sample and for 6,=0°:
open circles, experimental results; filled circles, I;p calculated
from Cip; dashed curve, intensity I calculated from C;; solid
curve, intensity I, calculated from C,.
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discovers an initial quick drop of C(7) in the range
[0,500 nm] that is explained by the presence of surface
nanostructures, as is clearly visible in the AFM image in
Fig. 8(a).
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