
Deep Learning Based Binary Code Analysis

Facoltà di Ingegneria dell’informazione, informatica e statistica
Ph.D. Program in Engineering in Computer Science

Fiorella Artuso
ID number 1602113

Advisor
Prof. Leonardo Querzoni

Academic Year 2024/2025

Deep Learning Based Binary Code Analysis
Sapienza University of Rome

© 2024 Fiorella Artuso. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: February 6, 2025

Author’s email: artuso@diag.uniroma1.it

mailto:artuso@diag.uniroma1.it

ii

Abstract

The exponential growth of software complexity, coupled with the rise of heterogeneous
architectures, further complicates the process of manual binary code analysis. Despite
its complexity, binary code analysis is extremely valuable, particularly in scenarios
where direct access to the source code is unavailable, such as with proprietary
software, firmware images, and malware samples. To tackle these challenges, the
scientific community has started studying methods for creating automated binary
analysis tools based on Deep Learning (DL) that alleviate the workload of human
reverse engineers. Unfortunately, there has been a proliferation of such solutions
without much effort toward systematization.

This thesis contains three main contributions:
First, we present a comprehensive literature review that spans nine years of

research up to 2024. We propose a systematization of 54 research papers, identify
a deep learning pipeline common to all these solutions, and provide an in-depth
analysis of each of its steps. This analysis highlights key trends across various
approaches as well as gaps that need further investigation.

Second, we explore the applicability of Deep Learning solutions to a novel task:
the detection of debug information bugs in optimized binaries. This represents a
practically important problem, as most software running in production is produced
by an optimizing compiler. Current solutions rely on invariants—human-defined
rules that embed the desired behavior—whose violation may indicate the presence
of a bug. Although this approach has proved effective in discovering several bugs,
it is unable to identify bugs that do not trigger invariants. We trained a set of
different models borrowed from the NLP community in an unsupervised way on a
large dataset of debug traces. Our results show that DNNs are capable of discovering
bugs in both synthetic and real datasets. Additionally, with our models we were able
to report 12 unknown bugs in a recent version of the widely used LLVM toolchain,
two of which have been confirmed.

Finally, our last contribution is a novel assembly code model named BinBert.
This model is built on a transformer pre-trained on a huge dataset of both assembly
instruction sequences and execution information (i.e., symbolic expressions). BinBert
can be applied to assembly instruction sequences, and it is fine-tunable—that is,
it can be retrained as part of a neural architecture on task-specific data. Through
fine-tuning, BinBert learns how to apply the general knowledge acquired during
pre-training to the specific task. We evaluated BinBert on a multi-task benchmark
that we specifically designed to test the understanding of assembly code. The
benchmark is composed of several tasks, some taken from the literature and a few
novel tasks that we designed, with a mix of intrinsic and downstream tasks. Our
results show that BinBert outperforms state-of-the-art models for binary instruction
embedding, raising the bar for binary code understanding.

Moreover, BinBert has been developed by taking into account the gaps that we
found in our systematization effort—mainly, the lack of comparison with standard
architectures, the use of tokenization strategies without comparison and rationale,
and the testing of models on a single or very limited tasks.

iii

Contents

1 Introduction 1
1.1 Main Contributions . 2

1.1.1 Literature Review of Binary analysis with Deep Learning . . 2
1.1.2 Debugging Debug Information with Neural Networks 3
1.1.3 BinBert: Binary Code Understanding with a Fine-tunable and

Execution-aware Transformer 3
1.2 Thesis Overview . 4

2 Background 5
2.1 Deep Learning Architectures . 5

2.1.1 Feed Forward Neural Networks 5
2.1.2 Convolutional Neural Networks 7
2.1.3 Autoencoders . 8
2.1.4 Recurrent Neural Networks 8
2.1.5 Sequence-to-Sequence Architectures 12
2.1.6 Transformers . 13
2.1.7 Graph Neural Networks . 18

2.2 Language Models . 20
2.2.1 Neural Language Models . 20
2.2.2 Pre-trained Language Models 21

2.3 Binary analysis and Reverse Engineering 23
2.3.1 The Compilation Process . 23
2.3.2 Dissassemblers . 24
2.3.3 Decompilers . 25
2.3.4 Symbolic Execution . 25

3 Literature Review of Binary analysis with Deep Learning 26
3.1 Goals . 28
3.2 Primary Scope . 28
3.3 Methodology . 28
3.4 Challenges of Deep Learning in the Binary analysis field 29
3.5 Preliminary Definitions. 31
3.6 Deep Binary Analysis Pipeline . 33
3.7 Binary Analysis Downstream Tasks 33

3.7.1 Similarity . 34
3.7.2 Toolchain Provenance . 38

Contents iv

3.7.3 Disassembly . 39
3.7.4 Decompilation . 41
3.7.5 Debug Information Recovery and Reparing 41
3.7.6 Binary Code Understanding Tasks 43
3.7.7 Memory Usage . 45
3.7.8 Code Autorship . 47

3.8 Dataset . 47
3.8.1 Raw Dataset . 48
3.8.2 Binary Representation . 53
3.8.3 Preprocessing and Tokenization 61
3.8.4 Feature Extraction . 65

3.9 Deep Learning Models . 66
3.9.1 Standard Networks . 66
3.9.2 Custom Networks . 67

3.10 Pre-training Tasks . 69
3.11 Conclusion . 71

4 Debugging Debug Information with Neural Networks 72
4.1 Introduction . 72

4.1.1 Motivating example . 73
4.1.2 Contributions . 74

4.2 Related Work . 74
4.2.1 Compiler Toolchains Testing 74
4.2.2 Neural Bug Finding . 75

4.3 Debug Trace, Problem Definition and Overview 76
4.3.1 Preliminary Definitions . 76
4.3.2 Problem Definition . 77
4.3.3 Assumptions and Setting . 77
4.3.4 Solution Overview . 77

4.4 Architectures Details and Unsupervised Training Tasks 78
4.4.1 Source Lines Network: SLNet 78
4.4.2 Mapping Network: MapNet 79

4.5 Datasets . 81
4.5.1 Dataset Preprocessing . 81
4.5.2 Training and Validation Datasets 82
4.5.3 Synthetic Datasets . 82
4.5.4 Real Bugs Datasets . 82

4.6 Experimental evaluation . 83
4.6.1 Training, models parameters, and metrics 83
4.6.2 Results on the Synthetic Datasets 83
4.6.3 Results on the Real Bugs Datasets 87
4.6.4 Threshold Analysis . 88
4.6.5 MapNet and SLNet Correlation 89

4.7 Finding Novel Bugs: Neuro-Debug2 90
4.7.1 Tests and Novel Bugs . 90

4.8 Comparison with Debug2 and Limitations 93
4.8.1 Comparison with Debug2 . 93

Contents v

4.8.2 Limitations . 93
4.9 Conclusion . 94

5 BinBert: Binary Code Understanding with a Fine-tunable and
Execution-aware Transformer 95
5.1 Introduction . 95

5.1.1 Execution-aware Binary Code Interpretation 96
5.1.2 Expressive Power and Fine-tunable Models 96
5.1.3 Our proposal: BinBert . 97

5.2 Background . 98
5.2.1 Instruction Embedding Models 98
5.2.2 Weak Points and Gap Analysis 101

5.3 The BinBert Solution . 102
5.3.1 Overview . 102
5.3.2 Instructions Preprocessing and Assembly Sequences Extraction103
5.3.3 Symbolic Execution . 104
5.3.4 BinBert Input Representation and Pre-Training Tasks 106

5.4 Evaluation Tasks . 108
5.4.1 Intrinsic Tasks . 108
5.4.2 Extrinsic Tasks . 108

5.5 Datasets, Pre-Training and Implementation Details 109
5.5.1 Datasets . 109

5.6 Experimental Evaluation . 110
5.6.1 Intrinsic Tasks . 111
5.6.2 Extrinsic Tasks at Strand and Basic Block Level 115
5.6.3 Extrinsic Tasks at Function Level 121
5.6.4 Tokenizers . 125

5.7 Time Performance Comparison . 125
5.8 Qualitative Analysis of Binbert . 127

5.8.1 Opcode Clustering . 127
5.8.2 BinBert Attention Visualization 128

5.9 Security Applications of an Assembly Code Model 129
5.9.1 Reverse Engineering . 129
5.9.2 Binary Similarity . 129

5.10 Related Works . 130
5.10.1 Distributed Representation Learning 130
5.10.2 Preprocessing of Assembly Instructions 130
5.10.3 Binary Analysis Solutions using Embedding Models 131

5.11 Conclusion . 131

6 Conclusions and Future Work 132
6.1 Conclusions . 132
6.2 Future Works . 133

Bibliography 135

1

Chapter 1

Introduction

The exponential growth of software complexity coupled with the rising of heteroge-
neous architectures, further complicates the process of manual binary code analysis.
Despite its complexity, binary code analysis is extremely valuable, particularly
in scenarios where direct access to the source code is unavailable, such as with
proprietary software, firmware images, and malware samples. Furthermore, the
exponential proliferation of internet-connected devices in households and companies
(the IoT1 revolution), frequently designed with inadequate security measures [65],
is inevitably causing a significant increase in the attack surface, giving the chance
for malicious actors to hamper the security and privacy of both private and public
institutions. Examples are hidden backdoors inserted by malicious producers inside
IoT devices or vulnerable firmware where a coding flaw at the source code level
could propagate through a multitude of devices across diverse architectures. Those
vulnerable devices could be exploited by Advanced Persistent Threat (APT) to
obtain long-time persistence or by hackers to create for instance large botnets of
infected devices to perform massive Distributed Denial of Service (DDoS) attacks.
To mitigate these risks, one approach involves conducting extensive analyses of these
devices in an attempt to pinpoint their vulnerabilities or shortcomings. Nevertheless,
the manual analysis of executables is a challenging and daunting task, demanding
the valuable time and expertise of proficient reverse engineers. To make things
worse, reverse engineers, particularly malware analysts, have to deal with the rapid
evolution and proliferation of malicious executables, targeting governmental and
private organizations at an alarming rate. To tackle these challenges, last few years
the scientific community has embarked on studying methods for creating automated
binary analysis tools based on Deep Learning (DL) to alleviate the workload of
human reverse engineers [161] and significantly enhance software security .

These methods have been inspired by a recent research trend that involves
applying Natural Language Processing (NLP) techniques for source code analysis,
addressing various tasks. These tasks span from code completion and inspection to
debugging, showcasing the adaptability of NLP methods in the realm of software
development and analysis. This research line is called “Big code” and consists of
leveraging massive open-source codebases (“Big code”) to build statistical models
of code capable of producing representations of code using Deep Learning (DL)

1Internet of Things

1.1 Main Contributions 2

techniques [6]. These representations are called embeddings and refer to a mapping
of code snippets in a vector space. The resulting embeddings could be used to build
tools capable of solving a variety of tasks thus providing support to code analysis.
The rationale for employing NLP techniques on code is grounded in the naturalness
hypothesis, which highlights the similarities between software and human language.

The naturalness hypothesis. Software is a form of human commu-
nication; software corpora have similar statistical properties to natural
language corpora; and these properties can be exploited to build better
software engineering tools [6].

Motivated by the proliferation and success of works using NLP techniques for
source code, the scientific community has also started investigating their applicability
to binary code [38,107,175], thus leading to a new line of research.

This thesis further explores this research area by first providing a comprehensive
Systematization of Knowledge (SoK) regarding solutions that use deep learning
techniques to solve various binary analysis tasks. It then proceeds to apply these
techniques to a novel task: the detection of debug information bugs in optimized
binaries. To our knowledge, the work introduced in this thesis is the first to explore
the use of deep learning techniques for this specific task. Finally, this thesis also
advances the research towards the creation of a transformer-based pre-trained model
capable of achieving state-of-the-art performance on a wide range of downstream
tasks. This work is the first to propose such a model that can be fine-tuned on a
variety of tasks.

The subsequent section will highlight all the main contributions provided in this
thesis.

1.1 Main Contributions

1.1.1 Literature Review of Binary analysis with Deep Learning

The use of deep learning techniques is revolutionazing lots of fields, including binary
analysis. However, as often occurs with disruptive technologies, last few years
have witnessed to a proliferation of different solutions without much effort toward
systematization. In fact, despite being a fundamental and promising area of research,
few efforts have been made to systematically organize the various solutions proposed
in the field. Specifically, existing surveys either do not focus specifically on deep
learning approaches and do not move beyond 2019 [161], or they concentrate on a
single task [105]. In this Chapter, we advance the field by offering a comprehensive
review that spans nine years of research, up to 2024. We propose a systematization
of 54 research papers and we identify a deep learning pipeline common to all these
solutions and provide an in-depth analysis of each of its steps, highlighting key trends
across the various approaches as well as gaps that need to be further investigated.

This work will be presented in Chapter 3.

1.1 Main Contributions 3

1.1.2 Debugging Debug Information with Neural Networks

The correctness of debug information included in optimized binaries has been the
subject of recent attention by the research community. Indeed, it represents a
practically important problem, as most of the software running in production is
produced by an optimizing compiler. Current solutions rely on invariants, human-
defined rules that embed the desired behavior, whose violation may indicate the
presence of a bug. Although this approach proved to be effective in discovering
several bugs, it is unable to identify bugs that do not trigger invariants. In this
work, we investigate the feasibility of using Deep Neural Networks (DNN) to discover
incorrect debug information. We trained a set of different models borrowed from
the NLP community in an unsupervised way on a large dataset of debug traces and
tested their performance on two novel datasets that we propose. Our results are
positive and show that DNNs are capable of discovering bugs in both synthetic and
real datasets. More interestingly, we performed a live analysis of our models by
using them as bug detectors in a fuzzing system. We show that they were able to
report 12 unknown bugs in the latest version of the widely used LLVM toolchain, 2
of which have been confirmed.

This work will be presented in Chapter 4 and is based on the paper [12] published
in the IEEE Access Journal.

1.1.3 BinBert: Binary Code Understanding with a Fine-tunable
and Execution-aware Transformer

A recent trend in binary code analysis promotes the use of neural solutions based on
instruction embedding models. An instruction embedding model is a neural network
that transforms assembly instructions into embedding vectors. If the embedding
network is able to processes sequences of assembly instructions transforming them
into a sequence of embedding vectors, then the network effectively represents an
assembly code model.

With this work we present BinBert, a novel assembly code model. BinBert is
built on a transformer pre-trained on a huge dataset of both assembly instruction
sequences and symbolic execution information. BinBert can be applied to assembly
instructions sequences and it is fine-tunable, i.e. it can be re-trained as part of a
neural architecture on task-specific data. Through fine-tuning, BinBert learns how
to apply the general knowledge acquired with pre-training to the specific task. We
evaluated BinBert on a multi-task benchmark that we specifically designed to test
the understanding of assembly code. The benchmark is composed of several tasks,
some taken from the literature, and a few novel tasks that we designed, with a
mix of intrinsic and downstream tasks. Our results show that BinBert outperforms
state-of-the-art models for binary instruction embedding, raising the bar for binary
code understanding.

This work will be presented in Chapter 5 and is based on the paper [13] published
in the Transactions on Dependable and Secure Computing (TDSC) journal.

1.2 Thesis Overview 4

1.2 Thesis Overview
This thesis is structured as it follows:

• Chapter 2 offers an overview of the main deep learning techniques employed
in the related literature;

• Chapter 3 provides a structured analysis of the literature of binary analysis
with deep learning;

• Chapter 4 presents the paper named Debugging Debug Information with
Neural Networks published in the IEEE Access Journal;

• Chapter 5 presents the paper named BinBert: Binary Code Understanding with
a Fine-tunable and Execution-aware Transformer published in the Transactions
on Dependable and Secure Computing (TDSC) journal.

5

Chapter 2

Background

2.1 Deep Learning Architectures
Deep Learning is a branch of Artificial Intelligence (AI) that uses machine learning
models known as Neural Networks (NNs). These models have a structure that
resemble the human brain and are widely used nowadays to solve problems in a
variety of fields, ranging from image [52] and audio [171] processing, NLP [172], and
program analysis [6].

This Section will introduce the most used models, starting from simpler models
like Feed Forward Neural Networks (FFNs) and advancing to more complex and
recent architectures like Transformers. The networks that will be presented differ
not only in their structure but also in the kind of inputs they are designed for. For
instance, Graph Neural Networks (GNNs) are designed to deal with data organized
as graphs, Convolutional Neural Networks (CNNs) are more suitable for grid-like
data, while Recurrent Neural Networks (RNNs) and Transformers are used for
handling sequences.

2.1.1 Feed Forward Neural Networks

FFNNs, also known as Multi-Layer Perceptron (MLP), are one of the simplest neural
network. The term "forward" indicates that the input progresses directly to the
output without any form of feedback connection. FFNNs aim to learn a function f̂
that approximates a target function f by learning parameters θ such that given an
input x the network produce an output y = f̂(x; θ) such that f(x) = y. As shown
in [69], FFNNs are universal approximators and thus are capable of approximating
any continuous function. To do so, FFNNs are composed of basic elements known
as perceptron, also called neurons, organised in layers (Figure 2.1).

Each neuron acts as a fundamental computational unit within a neural network.
It operates by receiving multiple inputs which are multiplied by corresponding
weights. After all inputs have been weighted, the neuron sums these values together,
also adding a bias term. The obtained sum is then typically passed through an
activation function, which determines the neuron’s output (Figure 2.2). Activation
functions in neural networks are used for two primary purposes. Firstly, they
introduce non-linearity, thus giving the network the possibility to go beyond simple
linear relationships. Secondly, activation functions determine whether or not a

2.1 Deep Learning Architectures 6

x1

x2

x3

y2

y1

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.1. Example of FFNN with six neurons (blue and orange dots) organized in
two layers: the hidden layer, composed by four orange neurons, and the output layers,
composed by two blue neurons.

1
Activation
function

Figure 2.2. Example of a neuron.

neuron should activate in response to a given input. Some of the most widely used
activation functions are: binary step, sigmoid, and Rectified Linear Unit (RELU).

Neural networks are typically represented in a matrix/vector form. Thus, given
an input vector x ∈ Rn and a weight vector w ∈ Rn and a bias scalar b, a neuron is
typically represented in the following form:

y = ϕ(w · x + b) (2.1)

Similarly, a single-layer FFNN with k neurons can be represented in matricial
form as:

y = ϕ(W ⊺ · x + b) (2.2)

where x ∈ Rn is the input vector, W ∈ Rn×k is the weight matrix and b ∈ Rk is
the bias vector.

Generalizing to FFNNs with l layers, we obtain:

y = ϕl(W ⊺
l ·ϕl−1(W ⊺

l−1 · (. . . ϕ1(W ⊺
1 ·ϕ0(W ⊺

0 ·x+b0)+b1)+ . . .)+bl−1)+bl) (2.3)

2.1 Deep Learning Architectures 7

Input
Image Convolution Pooling

Flatten
FFNN

Feature Extraction Classification

Figure 2.3. Structure of a CNN.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are designed to process grid-like data, for this
reason they are widely used in computer vision for image processing applications [52].
The term "convolution" refers to the convolution operation used in mathematics to
combine two functions and to describe how one function can affect the shape of
another one.

In the context of CNNs, the input data is decomposed into channels, which,
in the case of images, correspond to pixels with the Red, Green, and Blue (RGB)
components. As shown in Figure 2.3 CNNs are composed of the following layers:

• Convolutional layer: since the input data consists of discrete values (e.g. pixels
in an image), discrete convolution is applied. In particular, this layer applies a
kernel also known as a filter or feature extractor to the input image. A kernel
is a small matrix (often 2D for single-channel inputs or 3D for multi-channel
inputs like colored images) that slides over the input image and performs
an element-wise multiplication with the corresponding section of the image,
followed by summation and an activation function. The goal of the convolution
is to extract meaningful features from the input.

• Pooling layer: this layer is used to reduce the dimensionality of the input to
decrease the number of parameters required for training and adapt it to the
available hardware. Different pooling operations can be applied. Common
types of pooling are max and average pooling which compute the max or the
average of the image section identified by the kernel.

• Fully Connected layer: in this layer, the output of the pooling layer is flattened
and given as input to a regular FFNN for classification purposes.

It is worth highlighting that, multiple convolutional and pooling layers can be used
before applying the fully connected layer.

2.1 Deep Learning Architectures 8

Encoder Decoder

Input Reconstructed
Input

code

Figure 2.4. Structure of an autoencoder.

2.1.3 Autoencoders

Autoencoders are a type of neural network designed to learn a compressed, latent
representation of the input data. In addition to dimensionality reduction, autoen-
coders are also employed for anomaly detection and data-denoising applications.
They are composed of an encoder function f that outputs a latent representation
h = f(x) known as code, while the decoder function g produces as output a recon-
struction of the input r = g(h) (Figure 2.4), with the aim of having x ∼ r. Note that
autoencoders do not aim at reproducing the input exactly but rather at resembling
it. In fact, the reconstruction is typically a close approximation of the original input,
highlighting the most significant features. Since autoencoders learn to reconstruct
the input from the latent representation without the need for externally provided
labels, they are a form of unsupervised learning, and more precisely self-supervised
due to the use of the input data itself.

2.1.4 Recurrent Neural Networks

Unlike traditional FFNNs, where the input progresses linearly toward the output,
RNNs use feedback connections. This design enables them to model sequential data
and capture temporal dependencies, as each unit in the network can keep information
from previous time steps. For this reason, RNNs have been extensively employed in
NLP for processing textual inputs.

RNNs consist of a neural architecture (known as cell) that is replicated across
each element thus keeping the same parameters throughout the entire sequence. This
characteristic, known as parameter sharing, ensures that the same computations are
applied at every step of the sequence. Each RNN cell receives as input a vector xi,
representing an element of the sequence (e.g. a word in a text), and the hidden state
vector at the previous time steps hi−1 and produces an output vector yi and the
hidden state vector at the current time steps hi:

hi, yi = RNN(hi−1, xi) (2.4)

Hidden states are vectors used to keep information of the previous time steps

2.1 Deep Learning Architectures 9

RNN RNN RNN RNN
unfold

Figure 2.5. Structure of a RNN.

RNN

(a) one-to-one

RNN RNN RNN

(b) one-to-many

RNN RNN RNN

(c) many-to-one

RNN RNN RNN

(d) many-to-many

Figure 2.6. RNNs design patterns.

and can be considered as the memory of the network. It is worth mentioning that,
depending on the specific application, each cell may generate an output vector.
However, in scenarios such as sequence classification, the network might be designed
to produce a single output only at the end of the sequence.

Due to the concept of parameter sharing, a RNN can be visualized in two ways
(Figure 2.5):

• In a compact way, known as ‘folded’ form (shown on the left);

• In an expanded way that reveals the sequence processing, known as ‘unfolded’
form (shown on the right).

Depending on the underlying applications, RNNs can be arranged according to
different design patterns:

• One-to-one: produces a single output given a single input (Figure 2.6a);

• One-to-many: produces multiple outputs given a single input (Figure 2.6b);

• Many-to-one: produces a single ouput given multiple inputs (Figure 2.6c);

• Many-to-many: produces multiple outputs given multiple inputs (Figure 2.6d).

2.1 Deep Learning Architectures 10

The Elman Network

The network shown in Figure 2.5 is known as Elman Network and it is one of the
simplest type of RNNs. Mathematically speaking an Elman Network is defined by
the following equations:

hi = σh(U · xi + W · hi−1 + b)
yi = σy(V · hi + c)

(2.5)

where U , V , W , b and c are network parameters and σh and σy are two non-linear
activation functions.

More complex RNNs are Bidirectional Recurrent Neural Networks (BiRNNs)
and multilayer RNNs.

Bidirectional Recurrent Neural Networks

As the name suggests, BiRNNs are structured to process data in both forward and
backward directions. For this reason, this architecture is particularly effective in
scenarios where the output at a specific time-step is influenced not only by preceding
elements in the sequence but also by subsequent ones. A BiRNN consists of two
distinct RNNs:

• One travelling forward −−−→RNN(·) that processes the sequence from the start to
the end;

• One travelling backward ←−−−RNN(·) that processes the sequence from the end to
the start.

The output of a BiRNN at any time-step is a combination of the outputs from both
the forward network (−→y i) and the backward network (←−y i), typically concatenated
together. Mathematically speaking, a BiRNN is described by the following set of
equations:

−→h i,
−→y i = −−−→RNN(−→h i−1, xi)

←−h i,
←−y i =←−−−RNN(←−h i−1, xi)
yi = [−→y i;←−y i]

(2.6)

Multi-layer Recurrent Neural Networks

Figure 2.8 illustrates how complexity can be added to a neural network architecture
to enhance performance by stacking multiple RNNs on top of each other. This
layered configuration results in what is known as a Multi-layer RNN.

2.1 Deep Learning Architectures 11

RNN RNN RNN

RNN RNN RNN

Figure 2.7. Structure of a BiRNN.

RNN RNN RNN

RNN RNN RNN

RNN RNN RNN

Figure 2.8. Structure of a multi-layer RNN.

The Vanishing Gradient Problem and Gated Architecture

As traditional Deep Learning architectures, RNNs are trained using the backpropa-
gation algorithm which is based on the gradient computation to update network’s
weights. These gradients, computed with the chain rule, are progressively propagated
backward through the network’s layers. For long sequences, gradients associated
with early stages can become exponentially smaller. This can lead the network to
forget early inputs, thus making it unable to handle long-term dependencies properly.
This problem is known as the vanishing gradient problem.

To address such problem, Long-Short-Term-Memory (LSTM) and Gated Re-
current Unit (GRU) have been introduced. LSTMs consist of some gates used to
regulate which part of the input information has to be read (input gate), which
information coming from previous time steps has to be forgotten (forget gate) and
which information has to be sent as output (output gate). This selective memory
process helps LSTMs to preserve long-term dependencies and mitigate the vanish-
ing gradient problem. GRUs have similar structures to LSTM but they have less
parameters and thus they allow faster training.

2.1 Deep Learning Architectures 12

RNN RNN RNN RNN RNN RNN

context vector

Figure 2.9. Sequence-to-Sequence network.

2.1.5 Sequence-to-Sequence Architectures

As depicted in Figure 2.6, traditional RNNs can map a sequence of inputs to
a sequence of outputs of the same lenghts. However, some specific applications
require an output sequence which have a different size with respect to the input
one. To address this limitation, Sequence-to-Sequence (seq2seq) networks have been
introduced. These networks, also known as Encoder-Decoder networks, have been
designed to handle situations where the input and output sequences are not aligned
in length, making them suitable for tasks like machine translation, where the length
of the translated output may not correspond the input one.

The seq2seq framework, first introduced by [139,140] and shown in Figure 2.9,
consists of two main components:

• Encoder : based on a RNN, it processes an input sequence of size n and
condenses the information into a fixed-size context vector c, capturing the key
elements of the input. The context vector c can be the hidden layer of the last
cell or a non-linear combination of the hidden states of the whole sequence;

• Decoder : based on a RNN, it subsequently utilizes the context vector to
generate the output sequence of size m. Specifically, the first RNN cell takes as
input an element denoting the start of the sequence, while the last cell produces
as output another element determinig the end of the sequence (< start > and
< end > in Figure 2.9). It is important to note that during inference, the
output produced by the sequence at a given time step is used as the input for
the subsequent time step. However, during training, to prevent the propagation
of errors through the time steps, the true input oi is provided at each step
instead. This training strategy is referred to as teacher forcing.

The two RNNs are simultaneously trained to maximize the probability of the
output sequence:

P (y1, . . . , ym) =
n∏

i=1
p(yi|y1, . . . , yi−1, c) (2.7)

The Attention Mechanism

Because this network depends on a single fixed-size context vector to encapsulate
the entirety of the input sequence’s information, it faces challenges in effectively
processing long input sequences. The reliance on such a context vector can result

2.1 Deep Learning Architectures 13

RNN RNN RNN

RNN RNN RNN...

RNN RNN RNN

...

...

...

Encoder Decoder

FFNN

Figure 2.10. Sequence-to-Sequence network with attention.

in the loss of information, as it must compress all input details into a constrained
representation.

For this reason, [15] introduced a framework that incorporates the so-called
attention mechanism. Originally developed within the NLP community to tackle
machine translation problem, this approach deviates from the traditional method of
compressing input information into a single vector. Instead, the network maintains
a series of vectors that represent the relevance of each input element at every step
of the decoding process, allowing for a more effective handling of sequence data. As
depicted in Figure 2.10, the architecture proposed by [15] consists of a bidirectional
encoder (see Equation 2.8) and a unidirectional attention decoder.

The attention decoder is represented by the following set of equations:

si = σh(U · [oi; ci] + W · si−1 + bs)
ci = H · αi, where H = [h1; h2; . . . ; hn]
αi = (αi,1, αi,2, · · · , αi,n), where αi,j = softmax(attn_score(si−1, hj))
yi = σy(V · [si; ci] + by)

(2.8)

To generate the hidden state representation si, the attention decoder leverages
the hidden state from the previous time step si−1, the representation of the preceding
element oi, and the context vector ci. This context vector is derived from a weighted
sum of the encoder’s hidden states h1, . . . , hn, where the weights are determined by
applying the softmax function to the attention scores. These scores, calculated by
an attention scoring function, assess the relevance of the input at position j to the
output at position i. The scoring function itself is a feedforward neural network that
is trained in conjunction with the entire network.

2.1.6 Transformers

In 2017, [149] introduced a novel architecture for processing sequential data known
as Transformer. As for the the attention-based seq2seq network, the Transformer
was originally developed within the NLP community to solve the machine translation
problem. However, the Transformer architecture rapidly became a new standard for
a variety of NLP tasks beyond machine translation, including text summarization,

2.1 Deep Learning Architectures 14

question-answering, and language understanding, achiving state-of-the-art results
across a plethora of NLP benchmarks.

Unlike its predecessors that relied on recurrence, the Transformer model is entirely
based on a mechanism called self-attention, which allows it to directly compute
relationships between all parts of the input sequence, regardless of their positions.
Since it does not rely on recurrence, this architecture facilitates parallel processing
of data, significantly enhancing efficiency and scalability compared to RNNs and
LSTMs. Additionally, the Transformer mitigates the vanishing gradient problem,
enabling it to better handle long sequences.

As shown in Figure 2.11, the transformer network consists of a set of N stacked
encoders and a set of N stacked decoders. In particular, the encoder stack maps
the input sequence x1, . . . , xn to vectors z1, . . . , zn, used by the decoder stack to
generate the output sequence, one element at a time.

Encoder Stack

The encoder is composed of a stack of N identical layers. The bottom-most layer
is fed with input sequence x1, . . . , xn whereas all the other layers are fed with the
output of the encoder directly below. Each layer consists of two sub-layers:

• A multi-head self-attention mechanism used to understand which part of the
input matters while processing a specific element of the sequence;

• Fully connected feed-forward networks independently applied to each position.

Moreover, Each sub-layer has a residual connection around it, followed by a layer-
normalization step. This design facilitates the flow of gradients during training,
enhancing the model’s learning efficiency. Notably, the Transformer diverges from
traditional seq2seq models since each token flows through a distinct path within
the encoder: while dependencies among tokens exist in the self-attention layers,
the feed-forward layers do not have these dependencies. This specific design enable
parallel processing.

Decoder Stack

The decoder is structured as a stack of N identical layers. The bottom-most layer
receives as input the output tokens shifted by one position, ensuring that at each
time step the next token in the sequence is predicted. Subsequent layers are fed
with the output from the layers directly beneath them. Each layer consists of three
sub-layers:

• A masked multi-head self-attention mechanism, which operates similarly to
the self-attention mechanism of the encoder, with the addition of masking.
Masking is crucial during the decoding process as it prevents the mechanism
from attending to subsequent tokens, ensuring that the prediction for a given
position can only be influenced by tokens already seen by the network;

• A multi-head attention mechanism which performs attention with the output
of the top-most layer of the encoder. This mechanism enables the decoder to
selectively prioritize information from different parts of the encoder’s output;

2.1 Deep Learning Architectures 15

...

Multi-Head Attention

Add & Norm

FFNN FFNN FFNN

Add & Norm

Positional

Encoding

Positional

Encoding

Positional

Encoding

Multi-Head Attention

Add & Norm

FFNN FFNN FFNN

Add & Norm

...

...

Masked Multi-Head Attention

Add & Norm

FFNN FFNN FFNN

Add & Norm

Positional

Encoding

Positional

Encoding

Positional

Encoding

Multi-Head Attention

Add & Norm

Masked Multi-Head Attention

Add & Norm

FFNN FFNN FFNN

Add & Norm

Multi-Head Attention

Add & Norm

...

...

En
co

de
r 1

En
co

de
r N

D
ec

od
er

 1
D

ec
od

er
 N

Figure 2.11. Transformer architecture.

2.1 Deep Learning Architectures 16

• Fully connected feed forward networks.

Similar to the encoder, a residual connection around each sub-layer is used, followed
by a layer normalization.

Attention

The Transformer architecture is characterized by three distinct types of attention
mechanisms: multi-head self-attention within the encoder, masked multi-head self-
attention within the decoder, and multi-head attention (also known as encoder-
decoder attention), situated in the decoder, which mirrors the traditional attention
mechanism of the seq2seq models. To fully understand these attention mechanisms,
it is essential to first grasp the foundational concepts of query, key, and value, which
form the basis of how attention is computed within the Transformer model. As
already explained above, in the attention-based seq2seq model, the context vector ci

is derived through a weighted linear combination of encoder hidden states, utilizing
attention scores αi as weights. This context vector, in conjunction with the hidden
states, is then leveraged to generate the output sequence. In the Transformer
network, the attention mechanism is slightly different. Each input element xi is
represented by a pair comprising a key and a value vector, each with dimensions
dk and dv, respectively. Meanwhile, each output token is conceptualized as a query
vector of dimension dk. The determination of attention scores involves calculating
the similarity between each query and the corresponding keys. Subsequently, the
context vector is generated through a process similar to earlier models: by forming
a weighted linear combination of the value vectors, using the attention scores as
the weighting coefficients. Specifically, the Transformer employs a form of attention
known as Scaled Dot-Product Attention, which is calculated using the formula:

Attention(qi, K, V) =
n∑

s=1

1
z

exp(< qi, Ks,· >√
dk

)Vs,· (2.9)

In this equation, K ∈ Rn×dk and V ∈ Rn×dv represent the matrices containing the
key and value vectors of the input elements in their rows, respectively. When the
query vectors are aggregated into a single matrix Q ∈ Rm×dk , it is possible to rewrite
the equation above as follows:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.10)

The division
√

dk is necessary to prevent inner product from becoming too large.
The attention mechanism is enhanced through the introduction of a multi-headed

attention. This improvement allows the mechanism to simultaneously focus on
different parts of the input and understand it from various perspectives or subspaces.
Instead of using a single set of keys, values, and queries, multi-headed attention
creates multiple sets (or heads) of these elements, each projecting the queries, keys,
and values into different dimensions. This means that the attention process is carried
out several times in parallel, each time looking at the information in a slightly
different way. The results of these parallel attention processes are then combined

2.1 Deep Learning Architectures 17

and once again projected to form the final output. This method allows the model to
capture a richer array of information from the input:

MultiHead(Q, K, V) = [head1; . . . , headh]W O

where headi = Attention(QW Q
i , KW K

i , V W V
i)

(2.11)

W Q
i , W K

i , and W V
i are matrices that transform the input into different dimensions

for each head, and W O is a matrix that combines the outputs from all heads into
the final output.

As previously mentioned, the transformer uses three variants of attention:

• Encoder Multi-Head Self-Attention: In this case, queries keys and values are
taken from the output of the previous layer in the encoder. Each position
in the encoder attends to all the other positions in the previous layer of the
encoder;

• Decoder Masked Multi-Head Self-Attention: This attention is similar to the
one described above in the sense that queries, keys and values come from the
same place, i.e. from the output of the previous decoder. Each position in the
decoder attends to all the other positions in the previous layer of the decoder,
except for subsequent positions. This is achieved through masking;

• Encoder-Decoder Attention: This attention is similar to the attention mech-
anism of traditional seq2seq network. Queries come from the output of the
previous decoder layer, whereas keys and values come from the output of the
bottom-most encoder. This setup allows each position within the decoder to
consider all positions of the input sequence.

Position-wise Feed-Forward Networks

Within both the encoder and decoder, each layer includes a feed-forward network that
operates on each position independently. The linear transformations are consistent
across all positions, whereas the parameters of these transformations vary from one
layer to another.

Positional Encoding

Due to the absence of recurrence, which intrinsically accounts for the sequential order
of inputs, the Transformer architecture, by itself, lacks an effective mechanism able
to recognize this order. In fact, it leverages multi-head attention and position-wise
feed-forward networks to independently compute the output for each position within
the sequence. While this design enables parallel computation, it does not directly
model the sequential order. To address this, the Transformer incorporates positional
information into the input embeddings at the initial layer of both the encoder and
decoder. Specifically, it utilizes positional encoding to generate real-valued vectors
for each input element, encapsulating the order information. These vectors are then
added to the corresponding input vectors, so as to make the model aware of the
sequential order.

2.1 Deep Learning Architectures 18

(a) Convolutional GNN (b) Attentional GNN

(c) Message Passing GNN

Figure 2.12. GNNs

2.1.7 Graph Neural Networks

In recent years, literature has highlighted a growing number of application domains
where input data is inherently graph-based, such as social network analysis [54,63],
biology [59], and more. This has prompted researchers to leverage the capabilities of
neural networks for the representation of graph-structured data effectively.

Drawing inspiration from the progress in word embeddings within the NLP
field, numerous studies have emerged to tackle the challenge of graph representation
learning (also known as graph embedding). In fact, after the introduction of
word2vec [144] used to represent words in the vector space (see Section 2.2.1),
several works started employing similar techniques to graphs. For instance, the
DeepWalk model [124] treat nodes in a graph similarly to words in a natural
language by applying techniques from the word embedding domain. Specifically,
DeepWalk first generate random walks in a graphs and then applies the word2vec
model to learn representations for each node. To do so, the model is designed
to predict the neighboring nodes in a walk given the current node. However,
besides structural information, each node could contain rich textual information
that should be taken into account to create node emebeddings. To tackle this
challenge [162] introduced an extension of the original DeepWalk method known as
Text-associated DeepWalk (TADW) algorithm. This enhancement allows the creation
of more complex embeddings capable of reflecting both the network topology and
the semantic content of each node.

After the advent of random walk-based methods for graph representation, various
Graph Neural Networks (GNNs) have been introduced to significantly advance the
field by providing a more direct and powerful approach to learning from graph-
structured data [150,173]. GNNs operate through an iterative process that continu-

2.1 Deep Learning Architectures 19

ously augment the states of nodes based on the information from their neighbors.
Initially, the process incorporates data from immediate neighbors, then from nodes
two hops away, progressively collecting the information with each subsequent itera-
tion. This process ensures that the representation of each node is shaped not only
by its own attributes but also by those of its adjacent nodes. Moreover, at each
iteration neural networks are applied to each aggregated information to finalize the
node representation. Final representations are then leveraged to address specific
problems, including node and graph classification. GNNs can be cathegorized as
follows [150]:

• Convolutional GNN: these networks are designed to extend the convolution
operation to graph-structured data [83]. In such networks, features from
neighboring nodes Ni are aggregated, employing fixed, precomputed weights
ci,j (see Figure 2.12a). convolutional GNNs can be represented by the following
mathematical formulation:

xt+1
i = σh(xt

i,
⊕
j∈Ni

ci,j · σn(xt
j)) (2.12)

where xt
i is the node representation at time step t and σh and σn are two

Neural Networks;

• Attentional GNN: these networks incorporate the attention mechanism, origi-
nally introduced in the NLP domain by [15], to enhance graph-structured data
processing. Mimicking the way the attention mechanism assigns weights to
words based on their importance within a sentence in NLP, attentional GNNs
apply this concept to graph nodes [151]. This approach enables the model
to dynamically assess and prioritize the importance of each neighboring node
during the feature aggregation process. attentional GNNs can be represented
by the following mathematical formulation:

xt+1
i = σh(xt

i,
⊕
j∈Ni

attn_score(xt
i, xt

j) · σn(xt
j)) (2.13)

• Message Passing GNN: Unlike the previously mentioned networks, which
rely on features weighted by some constants, this network adopts a collab-
orative approach by computing messages in conjunction with neighboring
nodes [58]. These messages are subsequently utilized to update the features of
the nodes. These kind of networks implement a more flexible approach to learn
graph representation and can be represented by the following mathematical
formulation:

xt+1
i = σh(xt

i,
⊕
j∈Ni

σn(xt
i, xt

j)) (2.14)

where σn(xt
i, xt

j) is the message created and exchanged between node i and
node j.

2.2 Language Models 20

2.2 Language Models
Language modeling is the primary approach used in NLP to capture language under-
standing, enabling machines to mimic and reproduce human language comprehension.
Technically speaking, a language model is a statistical distribution of words in a
sequence that facilitates the prediction of the next word in that sequence or of a
word in a specific context. Given a sequence of n−1 words belonging to a vocabulary
V , a language model aims at computing the probability of the nth word:

P (wn|w1, . . . , wn−1) = P (w1, . . . , wn−1, wn)
P (w1, . . . , wn−1) (2.15)

The probability P (w1, . . . , wn) can be obtained using the chain rule:

P (w1, . . . , wn) =
n∏

i=1
P (wi|w1, . . . , wi−1) =

= P (w1) · P (w2|w1) · P (w3|w2, w1) . . . P (wn|w1, . . . , wn−1)
(2.16)

As the context expands, modeling these probabilities becomes increasingly chal-
lenging, necessitating simplifying assumptions. One such simplification is the Marko-
vian assumption, according to which a given word w is influenced solely by its
preceding word. Consequently, the probability P (w1, . . . , wn) transforms into the
product of bigram probabilities. This assumption can be further generalized to
assume that a word w depends on the previous n words, thus leading to the product
of n-gram probabilities. These approaches are known in the literature as Statistical
Language Modeling sinche n-gram probabilities are estimated from a corpus of docu-
ments. However, an inherent limitation of such approaches arises from the fact that
not all sequences, even if legitimate, appear in the training corpus, causing some
probabilities to be zero. This problem is known in the literature as the curse of
dimensionality.

2.2.1 Neural Language Models

Given the inherent limitations of Statistical Language Modeling approaches, [23]
introduced a solution to address the curse of dimensionality problem by employing a
Feed-Forward Neural Network. Moreover, [23] pioneered the idea of distributed word
representations, wherein each vocabulary word is associated with a vector in the
d-dimensional space. These vectors, referred to as word embeddings, are designed
to encapsulate semantic information about the respective words. The computation
of the probability distribution for the next word in a sentence involves feeding
the neural network with a combination of the embeddings of all the words in the
sentence.

Later, [144] introduced a more efficient Neural Network, referred to as word2vec,
for computing word embeddings. Word2vec is a 2-layer Feed Forward Neural Network
specifically designed to produce embeddings in a manner that aligns with the semantic
similarity of words: words with similar meanings are assigned vectors that are close
in the vector space. Word2vec is trained in an unsupervised way and depending on

2.2 Language Models 21

(a) C-BOW (b) Skip-Gram

Figure 2.13. Word2vec training approaches.

the specific tasks it is trained on, it is possible to distinguish two configuration (see
Figure 2.13):

• C-BOW: the network is fed with context words (m preceding and m subsequent
words) as input and it has to produce the target word as output. In this case,
given a dataset of T words, the goal is to minimize the following loss function:

1
T

T∑
i=1

∑
−m≤j≤m,i ̸=0

log P (wi|wi+j) (2.17)

• Skip-Gram: the network is fed with a target word as input and it has to predict
its context words as output (m preceding and m subsequent words). In this
case, given a dataset of T words, the goal is to minimize the following loss
function:

1
T

T∑
i=1

∑
−m≤j≤m,i ̸=0

log P (wi+j |wi) (2.18)

2.2.2 Pre-trained Language Models

A fundamental constraint of word embedding models, such as word2vec, lies in their
inability to effectively model polysemous words. This limitation arises because a
single vector is employed to represent a word, regardless of its various meanings
in different contexts. Moreover, since words typically have predominant meanings,
their vector representations are biased toward their most common sense.

To address these limitations, [125] introduced a model named ELMo, designed
to generate context-sensitive word embeddings. This innovative model comprises a
2-layer bidirectional LSTM network, pre-trained with the objective of predicting the
next word in a given sentence. Notably, ELMo played a pivotal role in introducing
the concept of the pre-training and fine-tuning paradigm to NLP. This paradigm

2.2 Language Models 22

BERT

[CLS] tok 1 tok n[MASK] tok 1 tok m[MASK]...

NSP MLM MLM

Figure 2.14. Bert model.

consists in initially pre-training a model on an unsupervised task, enabling it to
learn contextualized representations, and subsequently fine-tuning the model on a
specific downstream task. This two-step process has proven effective in leveraging
learned contextual information to enhance the overall performance of various natural
language understanding applications.

BERT

To enhance the representation of word embeddings in context, [44]developed a
model called BERT (Bidirectional Encoder Representations from Transformers).
BERT processes a sentence to produce contextualized vector representations for each
word. Its architecture, built on the Transformer encoder, is pre-trained through two
unsupervised tasks:

• Masked Language Modeling (MLM): This task involves masking a certain
percentage of the input sentence’s tokens and making the model to predict
the masked ones. Notably, the model utilizes the context provided by both
preceding and subsequent words to accurately predict the masked token;

• Next Sentence Prediction (NSP): This task aims to determine whether two
sentences are sequentially related. During training, for half of the input pairs,
the second sentence is the true following sentence, while for the other half, it
is randomly selected from the corpus.

After pre-training, the BERT model can be fine-tuned on specific downstream
tasks.

BERT utilizes the WordPiece tokenization method, which begins with a basic
vocabulary that includes special tokens and the initial alphabet. This vocabulary is
incrementally merged to achieve the desired size. The special tokens are:

• CLS: Added at the beginning of each input sequence, its final hidden state can
serve as an aggregate representation for the entire sequence;

• SEP: Used to delineate two input sentences in the NSP task;

• MASK: Employed to obscure tokens in the sentence for the MLM task.

2.3 Binary analysis and Reverse Engineering 23

2.3 Binary analysis and Reverse Engineering
Binary analysis is the process of analysing binary code to pinpoint its functionality
and behaviour, particularly when the source code is inaccessible. This critical
process is applied in various scenarios, including identifying bugs or vulnerabilities
in proprietary software, applying patches to software in production environments, or
comprehensively analysing the functionalities of malicious executables. To achieve
this, a range of binary analysis techniques have been developed, which can be broadly
classified into two categories: static and dynamic analysis. Static analysis techniques
do not require running the binary, thus offering more flexibility since they can be
analyzed on any CPU architecture. On the other hand, dynamic analysis requires
running a binary in a specific isolated environment running on an architecture
capable of supporting, or emulating, that binary format. Although this method is
less versatile, it simplifies the analysis process by enabling real-time observation of
the binary’s behavior.

It is important to note that achieving a comprehensive understanding of a binary’s
characteristics often involves manual code reversing. Despite being one of the more
challenging aspects of binary analysis, it remains the most effective method for
uncovering the program’s internal logic. This process typically requires the use of a
disassembler to retrieve assembly instructions for analysis, potentially complemented
by a decompiler to gain a higher-level code perspective, and a debugger to monitor
the program’s behavior during execution.

Binary analysis and reverse engineering are notably challenging tasks. A signif-
icant factor contributing to their complexity is the common practice of stripping
binary code to protect proprietary software from being copied or to make the analysis
of malware more difficult. Stripping involves removing all high-level information from
the symbol table, such as variable names and types, function names, and the number
and type of function arguments. This information is helpful for analysts to fully
understand the code’s functionality. Additionally, the same source code compiled
across different architectures and optimization levels can result in vastly different
binary outputs, further complicating the analysis. Compounding these challenges,
binaries frequently undergo obfuscation, deliberately increasing the difficulty of
binary analysis.

2.3.1 The Compilation Process

Figure 2.15 delineates the sequential stages of the compilation toolchain used to
transform high-level source code into machine code, which is subsequently interpreted
and executed by the CPU. The initial stage involves compilation, where the source
code is transformed into object files. These object files contain machine code that
is not bound to any specific memory address, rendering them incapable of direct
execution. Importantly, object files may include unresolved references to symbols
found in other object files or libraries. To address these unresolved references, the
linker comes into play. It takes all the object files associated with a program and put
them into a singular executable. This executable can be loaded at a specific memory
address for execution. Additionally, the linker plays a crucial role in resolving
symbolic references present in other object files or statically linked libraries. Unlike

2.3 Binary analysis and Reverse Engineering 24

Compiler

Source
Code

Object
Code

Linker

Statically Linked
Libraries

Executable

Strip

Stripped
Executable

Loader

Dinamically
Linked Libraries

DisassemblerDecompiler

Assembly
Code

Decompiled
Code

Reverse Engineering

Figure 2.15. The compilation toolchain and reverse engineering.

dynamically linked libraries, which are loaded at runtime, statically linked libraries
are integrated into the binary itself.

2.3.2 Dissassemblers

Disassembly is the process of converting a bytecode into an higher level representation
consisting of assembly instructions. The disassembly process is usually performed
with a mixture of algorithimic techniques and heuristics aimed at differentiating the
actual code from the embedded data. As a matter of fact, binaries often include
inline data, which may lead the disassembler to misinterpret them as code, resulting
in the generation of invalid instructions or, in extreme cases, causing the entire
disassembly process to become desynchronized.

Disassembly techniques can generally be categorized as linear sweep and recursive
disassembly. Simpler disassemblers, such as objdump, employ linear sweep that
decodes bytes consecutively. However, these methods have a drawback, they are
prone to misinterpreting data as code, leading to incorrect assembly instructions. On
the contrary, recursive disassembly follows the flow of control, mitigating the issue of
misinterpreting inline data. Nonetheless, certain portions of the code are challenging
to reach statically, such as the code targeted by indirect calls or jumps whose location
is revealed only at runtime. Popular tools like IDA, Ghidra, Radare2, Angr, etc.,
leverage recursive disassembly as it stands out as the most precise technique in the
field.

In this regards, the studies conducted by [75,114,115] assess the correctness of

2.3 Binary analysis and Reverse Engineering 25

commercial disassembly tools, demonstrating that, in the majority of cases, they
exhibit good performances. Specifically, they measure the precision and recall of
recovering assembly instructions, identifying the function entry points and recon-
structing the Control Flow Graph (CFG). According to the experiments of [114] for
x86 and x64 binaries, Ghidra, IDA and Radare2 shows a precision ranging between
98% and 99% and a good recall in recovering valid assembly instructions; a precision
ranging between 97% and 99% and a recall above 60% in extracting correct function
entry points. Regarding CFG reconstruction, while Ghidra and Radare mantains
good performances, IDA shows best precision and recall.

2.3.3 Decompilers

Decompilation is the process of reconstructing high-level source code, typically
starting from disassembled code. Although decompiled code may contain errors
and may not precisely replicate the original source code, it aids human reversers in
comprehending the code more easily due to its improved readability. In particular,
decompiled code aims to reconstruct high-level constructs such as function signatures,
variables, as well as for and if statements. Popular decompiler tools are IDA Hex
Rays and the Ghidra decompiler.

2.3.4 Symbolic Execution

Besides static and dynamic analysis techniques, another means for binary analysis is
represented by symbolic execution [17]. Instead of executing a program with concrete
inputs, symbolic execution treats input values as symbols and computes logical
formulas (known as symbolic expression) over these symbols as the program execution
proceed. Moreover, to keep track of path constraints imposed by the different
execution branches, symbolic constraints are associated to symbolic expressions.

Symbolic execution is particularly helpful for checking the presence of a specific
property of a program without directly executing it. Unfortunately it also has some
drawbacks. One of the main limitations is the path explosion problem, wherein
exploring and managing all potential execution paths becomes impractical due to
the exponential increase of paths with the number of branches. Another limitation is
represented by the difficulty of modeling the effect of calling external dependencies.
While certain approaches attempt to capture the effects of system dependencies,
achieving precision in this regard remains a challenging problem.

26

Chapter 3

Literature Review of Binary
analysis with Deep Learning

One of the most exciting trends in the wide research landscape has been the
renaissance of DNNs, which have been widely applied across various settings to solve
a plethora of tasks ranging from computer vision to natural language processing.
The field of binary analysis has not been immune to this compelling trend, adopting
novel neural architectures and paradigms such as graph neural networks, transformer
architectures, and word embeddings, among others [161]. However, as often occurs
when a field is rapidly influenced by the disruptive presence of powerful technology,
there has been a swift proliferation of novel solutions to solve disparate binary
analysis tasks without much effort towards systematization. Consequently, the
current landscape of DNNs applied to binary analysis tasks is fragmented and
scattered. This create several problematic aspects that in the long term will hinder
the collective research effort, as example: many solutions address the same tasks
using partially overlapping ideas without adequate comparison; methodologies and
steps that can be applied to several different tasks (to name a few the preprocessing
of assembly instructions and their representations) are each time reinvented from
scratch; substantially equivalent tasks are defined in slightly different ways making
solutions hard or impossible to compare; the datasets on which the models are
trained and tested overrepresent some architectures and operating systems totally
neglecting others. This effect is exacerbated by the fact that the binary analysis
domain spans several communities, including security research, software engineering,
and machine learning.

In this chapter, we take an initial step towards systematizing the landscape
of deep neural network (DNN) solutions applied to binary analysis tasks. We
conducted a survey of current solutions across various communities and defined a
pipeline common to all deep learning-based approaches. Building upon this pipeline,
we systematize its main building blocks, identifying unresolved gaps in the literature
for each. More specifically, we provide a systematization of:

• Downstream Tasks: We identified 25 different tasks, along with minor
variants. Our analysis reveals that some tasks have been investigated more
extensively than others and are sometimes redefined in slightly different ways,
complicating comparisons;

27

• Raw Datasets: We analyzed the datasets used in the literature and observed
that they over-represent Linux binaries, with only a small representation of
Windows executables. Additionally, there is a common trend to recreate
datasets from scratch without considering previous work on the same task,
making comparisons difficult;

• Binary Representation: We identified all the different binary representation
methods and discovered that, besides traditional representations (e.g., Control
Flow Graphs), many exotic representations have been proposed. Unfortunately,
comparisons between these custom representations and standard ones are
missing. Therefore, further research is needed to pinpoint the most suitable
representations;

• Preprocessing and Tokenization: All the analyzed solutions define pre-
processing and tokenization rules capable of reducing the vocabulary size.
A common trend for tokenization is to split on whitespace, punctuation, or
assembly instructions. However, automatic tokenization methods, such as Byte
Pair Encoding (BPE), are becoming the standard in this field since they show
better performance [13, 82]. Regarding preprocessing, most works redefine
their own rules from scratch. Thus, further research is needed to define the
most effective rules;

• Feature Extraction: We analyzed all the feature extraction methods explored
in the literature and observed a common trend toward eliminating the use
of manual features. Thus, automatically learned features are becoming the
standard in the field. However, a recent work [80] demonstrates that, in the
binary similarity task, a small subset of manually crafted features is sufficient to
obtain comparable performance. Therefore, we believe that further research is
needed to investigate whether automatically extracted features can consistently
outperform manual ones across all tasks and datasets;

• Deep Learning Models: We studied all the different deep learning models
used and observed that most solutions, except for a few cases, utilize custom
networks obtained from modifications to existing ones. We provide a systemati-
zation of the main types of modifications applied. From this analysis, we notice
that these customizations often lead to complex and intricate architectures
that are not often justified or compared with baseline models;

• Pre-training Tasks: For works relying on the pre-training and fine-tuning
paradigm, we create a categorization of their pre-training tasks. While doing
so, we noticed that newly introduced tasks are not often adequately compared
against baseline tasks, such as the Masked Language Modeling (MLM) task.
Additionally, with the exception of a few works [13,91], the pre-training and
fine-tuning paradigm is misused. In fact, most of the works use them only to
solve a single task without testing their generalizability to different downstream
tasks.

3.1 Goals 28

3.1 Goals
Although beeing a fundamental and a proficent area, there are no existing works
that comprehensively organize the most recent literature. In 2019, [161] conducted
a literature review on machine learning techniques for binary code analysis. More
recently, in 2022, [105] delivered an in-depth evaluation of research employing deep
learning for addressing binary similarity challenges. However, the binary similarity
problem is not the unique problem that can be solved with deep learning-based
solutions.

This thesis aims to bridge this gap by providing an exhaustive literature review
focused on the application of deep learning approaches to binary analysis. Specifically,
we started identifying the main building blocks for deep learning based binary analysis
works: solved tasks 3.7, dataset 3.8, models 3.9 and pre-training tasks 3.10. For
each of these main building blocks we tried to clusterize the identified literature into
groups so as to identify common patterns or unexplored paths.

3.2 Primary Scope
We restricted the scope of our literature review to studies that address binary
analysis tasks on benign executables, intentionally excluding literature related to
malware analysis. The primary reason for this exclusion is that the field of analyzing
complex malicious binaries presents specific challenges that differ significantly from
those encountered with benign executables, such as intricate obfuscation and anti-
debugging techniques, and security-sensitive datasets. These challenges merit a
separate discussion. Conversely, simple malicious binaries are effectively comparable
to benign executables for the tasks analyzed in our review. Additionally, we chose
not to focus on the task of determining whether a binary is malicious, as this specific
area has been extensively researched and documented in the literature with decades
of research and numerous survey and Systematization of Knowledge (SoK) papers
already published [100,146].

3.3 Methodology
Our first step in our analysis has been to collected the recent relevant work in the
literature. To achieve this, we identified works in the subject area by searching
for specific keywords, such as "deep learning" and "binary analysis", within well
known research databases such as Google Scholar [3] and DBLP [2]. Additionally,
we expanded our research by also reviewing papers cited from these works or papers
citing them. We discarded unpublished works, except when they were cited or
used for comparisons by other relevant works. With this process we identified and
analysed 54 research papers spanning 9 years of research (from 2015 till 2024).

3.4 Challenges of Deep Learning in the Binary analysis field 29

3.4 Challenges of Deep Learning in the Binary analysis
field

Deep learning techniques applied at the source code level have gathered considerable
attention, with ongoing exploration and integration into commercial tools. For
instance, Copilot [1], a code completion tool developed by Github and OpenAI,
leverages these techniques to support software development. However, there are
comparatively fewer solutions that apply such techniques to the domain of binary
analysis. This is due to the intrinsic characteristics of binary code that introduce
significant challenges, thus hindering the straightforward application of the techniques
widely employed at the source code level:

• Prevalence of compiler optimized code: the compilation of source code at
varying levels of optimization introduces a layer of complexity for analysts
attempting to understand the code. Higher optimization levels can significantly
obfuscate the code, making it challenging to understand. Techniques such as
function inlining, aimed at enhancing execution speed, could merge functions
with distinct semantics. This issue is further exacerbated by Link Time
Optimization (LTO), which is designed to optimize a program across all its
modules, thus leading to functions being inlined across source file boundaries.
Therefore, creating a deep learning model capable of identifying complex logic
within binaries demands an in-depth comprehension of their semantics;

• Low level syntax: source code is written with syntactically rich programming
languages (C, C++, Java, etc.) that incorporate high-level construct such as
loops, conditional statements, and high-level data structures. These elements
are straightforward to identify and interpret within source code due to the clear,
structured syntax of these languages. However, when translated into binary
code, these constructs are reduced to a linear sequence of assembly instructions.
For instance, both loops and conditional statements are represented in binary
code through jump instructions. Distinguishing between these constructs
requires a detailed analysis of the instructions surrounding the jumps, as
well as an understanding of the specific patterns that signify loops versus
conditional branches (see Figure 3.1). To make things worst, the conditions
governing these jumps are often determined by the status of flags (RFLAGS
registers in x86 architecture), which are indirectly set by prior instructions
and thus not immediately apparent. In order to reconstruct the conditions,
it is required to fully understand how instructions interact with and modfiy
the processor’s state over time. This contributes to further obscure the actual
jump conditions which are fundamentals to fully understand the flow of control
and the high-level logic of a binary program. Deep learning models should be
meticulously designed to grasp the intricacies of low-level syntax along with
its subtle nuances;

• Lack, intricate or wrong symbolic information: the process of stripping typically
removes significant symbolic details from binary code, such as the names and
types of variables, and the names of functions typically present in souce code.
Even in those cases where such information is present it can be challenging

3.4 Challenges of Deep Learning in the Binary analysis field 30

to understand. For example, certain programming languages (such as C++)
employ name mangling; a technique that incorporates extra information within
function names to manage function overloading or the use of identical identifiers
in different scopes effectively. This method renders the names less intelligible to
a human attempting to reverse-engineer the code. Furthermore, when dealing
with highly optimized binaries, there is a risk that debug information—such
as source line information and variable values—may be inaccurate [45, 92] .
Building a model that depends on this potentially erroneous information for
its training could lead to inaccuracies. Finally, while source code usually has
comments inserted by developers to facilitate the code comprehension, binary
code does not. Deep learning models need to comprehend the logic behind
binary code snippets without relying on all such high-level hints;

• Long distance dependencies: instruction sequences in source code are typi-
cally more concise compared to their corresponding assembly sequences in
binary code. In fact, in binary code instructions that are logically related
may be separated by unrelated instructions. For example, in Figure 3.1a,
the instructions ‘mov r9, 0xd‘ and ‘lea r13d, [rcx+r9]‘ are linked by a data
dependency, even though they appear distantly within the code sequence. This
dispersion of related instructions poses a significant challenge in identifying
and understanding long-distance dependencies, which is a well known problem
in NLP [167];

• Sensitivity to changes: binary code exhibits a higher sensitivity to modifications
compared to source code. For example, altering all identifier names in the
source code does not impact the underlying logic of the program. In contrast,
minor adjustments in binary code can significantly alter or, in extreme cases,
corrupt the semantics of the code snippets. Deep learning models should be
adept at detecting these minute changes and understanding their implications
on the program’s overall semantics.

0 : mov r9 , 0 xd
7 : cmp rax , rbx
a : j l e 17
10 : inc rax
13 : add rbp , 0 x3
17 : add rax , rcx
1a : lea r13d , [rcx+r9]

(a) if-statement in assembly.

0 : cmp rcx , 0 x0
4 : je 16
a : dec rcx
d : add rbp , 0 x3
11 : jmp 0
16 : add rax , rcx
19 : lea r13d , [rcx+r9]

(b) loop in assembly.

Figure 3.1. Example of assembly snippets.

These factors not only necessitate more sophisticated approaches to understand
binary code but also highlight the need for innovative solutions tailored to overcome
the unique obstacles presented by binary formats.

3.5 Preliminary Definitions. 31

3.5 Preliminary Definitions.
Before delving into the details of the literature review, let us first provide some
preliminary definitions.

B = {b1, b2, . . . } The set of all possible binaries.

S = {s1, s2, . . . } The set of all possible source codes.

CF = {cf1, cf2, . . . } The set of all possible compiler families and versions.

OPT = {opt1, opt2, . . . } The set of all possible optimizations.

ARCH = {arch1, arch2, . . . } The set of all possible architectures.

OBF = {obf1, obf2, . . . } The set of all possible obfuscations.

C ⊆ CF ×OPT ×ARCH ×OBF The set of all possible compiler configurations.

Fb = {f1
b , . . . , fn

b } The set of all functions within a binary.

BBfb
= {bb1

fb
, bb2

fb
, . . . } The set of all basic blocks within a function.

Fs = {f1
s , . . . , fk

s } The set of all functions within a source code.

SSbb = {ss1
bb, . . . , ssp

bb} The set of all strands of a basic block.

Rss = {r1
ss, . . . , rl

ss} The representative set of a strand.

Efb
⊆ BBfb

×BBfb
The set of edges between function’s basic blocks.

CFGfb
= (BBfb

, Efb
) The Control Flow Graph of a function.

BBb = {bb1
b , bb2

b , . . . } The set of all basic blocks within a binary.

Eb ⊆ BBb ×BBb The set of edges between basic blocks of a binary.

ICFGb = (BBb, Eb) The Interprocedural Control Flow Graph of a binary.

Table 3.1. Notation.

Binary program, functions, and basic blocks. Let B be the set of all
possible binaries, and S be the set of all possible source codes of programs. Let
C ⊆ CF ×OPT ×OBF ×ARCH be the set of all possible compiler configurations,
where CF, OPT, OBF and ARCH are the set of all possible compiler families,
optimizations, obfuscation techniques, and target CPU architectures respectively. A
compilation function is defined as:

Compile : S × C → B

For any source code s ∈ S and compiler setting c ∈ C, the compilation function
produces a binary b ∈ B:

b = Compile(s, c)

Each binary b contains a set of n binary functions Fb = {f1
b , . . . , fn

b }, while each
function fb ∈ Fb contains a set of m basic blocks BBfb

= {bb1
fb

, . . . , bbm
fb
}.

Each source code s contains a set of k source functions Fs = {f1
s , . . . , fk

s }.

3.5 Preliminary Definitions. 32

Figure 3.2. Example of strands in a CFG block.

Strands. A strand, as originally defined in [42], is a slice of a basic block
constituted by all the instructions that are connected by def-use dependences.
More specifically, consider a basic block as a sequence of assembly instruction
bb = [a1, . . . , ar], it can be partitioned into p stands SSbb = {ss1

bb, . . . , ssp
bb} such

that ssi
bb ⊆ bb is a maximal subsequence of bb where all the instructions in ssi

bb are
connected by a def-use relationship. Moreover, it is worth noticing that strands are
not disjoint, i.e. a given instruction can be part of multiple strands, i.e. ssi

bb ∩ ssj
bb.

For instance, the basic block shown in Figure 3.2 consists of two strands. The
strand s1 includes instruction i0, i1, i4, since instructions i0 and i1 modify the value
of register ecx which is used by the rep stosb instruction to repeatedly place the
content of al into the memory pointed by rdi for ecx times. The strand s2 includes
instruction i0, i1, i2 and i3 that contribute in defining the value of the ebx register.

Additionally, each strands can be represented by some output variables, such as
register or a memory location values. Each of these output variables can be expressed
symbolically as a functional representation of the input-output relationship of the
strand. The collective set of such symbolic expressions constitutes the representative
set of the strand Rss = {r1

ss, . . . , rl
ss}.

For instance, strand s1 in Figure 3.2 has three output variables: the memory
location pointed by rdi and the value of the registers rdi and ecx.

Control Flow Graph. Given a binary function fb within a program b ∈ B,
a CFGfb

= (BBfb
, Efb

) is a directed graph representing the flow of control during
function execution. Specifically, Efb

⊆ BBfb
×BBfb

is the set of edges, where each
edge e ∈ Efb

is an ordered pair of nodes (bb1, bb2) within a function and representing
a possible control flow transfer from the basic block bb1 to bb2 due to the presence
of conditional or unconditional branches or other control flow transfer instructions.

Interprocedural Control Flow Graph. An Interprocedural Control Flow
Graph (ICFG) is an extension of the traditional CFG since it covers multiple
functions within a program. In particular, given a binary program b ∈ B, a
ICFGb = (BBb, Eb) is a directed graph representing the flow of control during
program execution. Specifically, BBb is the set of all basic blocks within a binary,
and Eb ⊆ BBb × BBb is the set of edges. Each edge e ∈ Eb is an ordered pair of
nodes (bb1, bb2) representing a possible control flow transfer from the basic block bb1
to bb2 due to the presence of conditional or unconditional branches, function calls or
other control flow transfer instructions.

3.6 Deep Binary Analysis Pipeline 33

Data Flow Graph. Given a binary program b ∈ B, a Data Flow Graph
DFGb = (Ib, Eb) is a directed graph representing the data flow among instructions.
Specifically, the graph nodes Ib are the set of all the instructions of the binary b and
Eb ⊆ Ib × Ib is the set of edges. Each edge e ∈ Eb is an ordered pair of nodes (i1, i2)
representing a def-use relationship between instructions i1 and i2.

Call Graph. Given a binary program b ∈ B, a Call Graph CGb = (Fb, Eb) is
a directed graph representing the calling relationships (callers and callees) among
instructions. Specifically, the graph nodes Fb are the set of all the functions of the
binary b and Eb ⊆ Fb × Fb is the set of edges. Each edge e ∈ Eb is an ordered pair
of nodes (f1

b , f2
b) representing a calling relationship between function f1

b and f2
b (i.e.

f1
b is the caller and f2

b is the callee).

Abstract Syntax Tree. An Abstract Syntax Tree (AST) is a tree-based
representation for the source code. In particular, inner nodes represent operators
or control flow construct in the source code, while leaf nodes represent variables,
constants or other data values. The AST representation is used for program analysis
applications.

3.6 Deep Binary Analysis Pipeline
By analyzing the literature, we can derive a general binary analysis pipeline that is
commonly used across all the works examined, typically with only minimal differences.
This pipeline is represented in Figure 3.3. The remainder of this chapter is organized
into sections that follow the stages of the aforementioned pipeline.

The first step of this pipeline is the dataset creation phase, which consists of
several steps: raw dataset construction, binary representation extraction, preprocess-
ing, and feature extraction. Each of these steps will be outlined in detail in Section
3.8. After extracting the dataset, specific deep learning models are used to solve a
downstream task. Both models and tasks will be analysed in details in Section 3.9
and 3.7 respectively. Additionally, we will also analyse the pre-training strategies
employed by works based on the Transformer network (Section 3.10).

3.7 Binary Analysis Downstream Tasks
Publications in the existing literature on binary analysis using deep learning and
natural language processing techniques can be classified according to the different
tasks they try to solve. In total, we have identified 25 different tasks. Figure 3.4
provides a visual representation of the binary analysis tasks solved in the revised
literature. Specifically, we clusterized these tasks into 8 macro categories: Similarity
(3.7.1), Toolchain Provenance (3.7.2), Disassembly (3.7.3), Decompilation (3.7.4),
Debug Information Recovery and Repairing (3.7.5), Binary Code Understanding
(3.7.6), Memory Usage (3.7.7) and Code Autorship (3.7.8).

Finally, it is worth mentioning that the relevant literature, with few exceptions
[8,38,43,62,78,99,112,119,135], analyzes disassembled binaries, composed of sequences
of assembly instructions, instead of raw binaries composed of sequences of bytes. We

3.7 Binary Analysis Downstream Tasks 34

Raw
Dataset

Binary
Representation

Extraction
Preprocessing Feature

Extraction

Dataset Creation

DL Model
Pretraining

DL Model
dowstream task

training

Pre-training
Task

Downstream
Task

Figure 3.3. Deep Binary analysis pipeline.

will do the same, using the term binary to refer to a disassembled binary, explicitly
stating when we are talking about raw binaries.

3.7.1 Similarity

Binary similarity consists of the systematic analysis of binary programs to determine
their degree of resemblance, specifically aiming to identify and delineate the structural
and semantic commonalities between them. Binary similarity is an important
process in the cyber security context as it serves areas like malware detection,
malware lineages, patch analysis, vulnerability detection, plagiarism detection, and
so on [105]. Although function-level binary similarity is the most prevalent variant
of binary similarity tasks, various other forms of this problem exist in the current
literature. The following Sections will describe all such variants, including Basic
Block Similarity, Strand Similarity, Code Containment Problem, Binary Graph
Alignment and Function-level Binary Souce Code matching.

Function Similarity

The Function Similarity tasks consist of determining the similarity between two
binary functions. Two binary functions are similar when they derive from the same
source code compiled either with different compilers, optimization levels, obfuscation
methods, or different architectures [160]. As it is defined, two functions that originate
from different source code but have the same semantic are not considered similar.
However, it has been shown [107] that solutions that have been trained on the purely
syntactical definition generalises and cluster functions with the same semantic even
when coming from different source codes. We identified 20 works solving the function
similarity task: Gemini [160], VulSeeker [57], Zeek [133], αdiff [99], GMN [93],

3.7 Binary Analysis Downstream Tasks 35

Tasks

Function Similarity

Basic Block
Similarity

Strand Similarity

Code Containment

Binary Graph
Alignment

Function-level Binary
Source Code Matching

Similarity Toolchain Provenance

Compiler Classification

Optimization
Classification

Disassembly
Function Signature

Recovery
Assembly Instruction

Recovery

Function Boundary
Identification

Matching Indirect
Call

Semantic Classification

Strand Execution

Instruction Similarity

Strand Recovery

Binary Code Understanding

Memory Usage

Memory Region
Prediction

Stack Frame
Prediction

Memory Dependency
Prediction

Code Autorship

Code Autorship

Function Naming

Variable Type
Recovery

Variable Name
Recovery

Debug Information Recovery and Repairing

Correct Debug
Detection

Decompilation

Decompilation

Figure 3.4. Tasks solved by state-of-the-art works.

3.7 Binary Analysis Downstream Tasks 36

Graphemb [106], SAFE [107], Asm2Vec [46], OrderMatters [168], TIKNIB [80],
TREX [121], PalmTree [91], Binshot [4], JTrans [155], Sem2vec [154], Codee [163],
VulHawk [103], BinFinder [127], BinBert [13], HermesSim [66].

Definition. Consider two binaries b1 and b2 such that b1 = Compile(s, c1) and
b2 = Compile(s, c2) for two compiler settings c1 and c2. A function f1

b1
∈ Fb1

is similar to a function f2
b2
∈ Fb2 if and only if both functions derive from the

same function fs in the original source code s. Otherwise, the two functions are
dissimilar.

The Function Similarity task consists in determining whether a given function
f1 is similar or not to a given function f2. Said otherwise, the task is to learn the
indicator function Sim : Fbi

× Fbj
→ {0, 1} that outputs one when the functions

are similar and zero otherwise.

In order to test the effectiveness of the model, some works use a variant of the
function similarity task named Function Search, which reflects better real-world
usage.

Function Search. In the function Search task, given a database of functions
and a set of query functions, the network must identify, for each query, the similar
functions in the dataset. Works solving this problem are: Gemini [160], VulSeeker [57],
Zeek [133], αdiff [99], SAFE [107], Asm2Vec [46], OrderMatters [168], TREX [121],
Binshot [4], JTrans [155], Sem2vec [154], Codee [163], VulHawk [103], BinFinder [127],
BinBert [13], HermesSim [66].

Definition. Given a query function q, the Function Search task consists in
retrieving, from a large database D of functions, those that are similar.

Basic Block Similarity

The Basic Block Similarity task consists of determining whether two basic blocks
derive from the same piece of source code compiled either with different compilers,
optimization levels, obfuscation methods, or different architectures. Works solving
this problem are: InnerEye [175], XArchInstrEmb [128] and PalmTree [91].

Definition. Consider two binaries b1 and b2 such that b1 = Compile(s, c1)
and b2 = Compile(s, c2) for two compiler settings c1 and c2.

A basic block bbfb1
∈ BBfb1

is similar to a bbfb2
∈ BBfb2

if and only if bbfb1
and bbfb2

derive from the same piece of the source code s.
The Basic Block Similarity task consists in determining whether a given

basic block bb1 is similar or not to a given basic block bb2. Said otherwise, the
task is to learn the indicator function Sim : BBbi

×BBbj
→ {0, 1} that outputs

one when the blocks are similar and zero otherwise.

Strand Similarity

The Strand Similarity task consists of determining whether two strands are similar,
i.e. they have an overlapping semantic (non-empty intersection of the representative

3.7 Binary Analysis Downstream Tasks 37

sets). In contrast to function and basic block similarity tasks, which define similarity
based on whether two pieces of assembly code originate from the same source code
segment, the strand similarity task focuses on the values computed by specific
assembly code portions. Therefore, it necessitates a semantic understanding of the
assembly code in question. This task is solved only by BinBert [13].

Definition. Given two strands ssbb1 and ssbb2 with their corresponding rep-
resentative sets Rssbb1

and Rssbb2
, they are said to be similar if and only if

Rssbb1
∩Rssbb2

̸= ∅
The Strand Similarity task consists in determining whether a given strand

ssbb1 is similar or not to a given strands ssbb2 . Said otherwise, the task is to
learn the indicator function Sim : SSbbi

×SSbbj
→ {0, 1} that outputs one when

the strands are similar and zero otherwise.

Code Containment Problem

The Code Containment problem consists of determining whether a piece of binary
code is contained within another piece of binary code compiled either with different
compilers, optimization levels, obfuscation methods, or different architectures. This
task is solved only by InnerEye [175].

Definition. Consider two binaries b1 and b2 such that b1 = Compile(s, c1)
and b2 = Compile(s, c2) for two compiler settings c1 and c2 and two pieces of
binary code pfb1

∈ Pfb1
and pfb2

Pfb2
representing paths in CFGfb1

and CFGfb2
respectively.

The Code Containment task consists in determining whether a pieces of
binary code pfb1

is contained within another piece of binary code pfb2
. Said

otherwise, the task is to learn the indicator function Contain : Pfbi
× Pfbj

→
{0, 1} that outputs one when the first piece of binary code is contained within a
second piece of binary code and zero otherwise.

Binary Graph Alignment

Similarly to the definition provided by [49], the Binary Graph Alignment tasks
consist of assessing the similarities and delineating the differences between two binary
programs compiled either with different compilers, optimization levels, obfuscation
methods, or different architectures by identifying possible matches among their basic
blocks. This task is solved by DeepBinDiff [49] and XBA [81].

3.7 Binary Analysis Downstream Tasks 38

Definition. Consider two binaries b1 and b2 such that b1 = Compile(s, c1)
and b2 = Compile(s, c2) for two compiler settings c1 and c2, their corresponding
ICFGs, ICFGb1 = (BBb1 , Eb1) and ICFGb2 = (BBb2 , Eb2) and the indicator
function Sim defined for the basic block similarity.

The Binary Graph Alignment task consists in finding the optimal basic block
matching that maximizes the similarity between b1 and b2:

Sim(b1, b2) = max
m1,...,mk∈M(b1,b2)

k∑
i=1

Sim(mi)

where M(b1, b2) ⊆ (BBb1×BBb2) represent a set of matching pairs (bbi
b1

, bbj
b2

).

Function-level Binary Source Code Matching.

The Function-level Binary Source Code Matching problem consists of determining
whether a binary function matches a source code function, i.e. it derives from the
compilation of that source code function. This task is solved only by CodeCMR [169].

Definition. Consider a source code s and a binary b such that b = Compile(s, c)
for a compiler setting c. A function fb ∈ Fb match to a function fs ∈ Fs if and
only if fb derives from the function fs in the original source code s. Otherwise,
the two functions do not match.

The Function-level Binary Source Code Matching task consists in determining
whether a given binary function fb match or not to a given source code function
fs. Said otherwise, the task is to learn the matching function Match : Fb×Fs →
{0, 1} that outputs one when the functions match and zero otherwise.

3.7.2 Toolchain Provenance

Toolchain Provenance aims at identifying tools and configurations used to produce
a given executable. It is especially helpful for digital forensics investigations as it
can pinpoint the environment in which binaries and especially malware have been
compiled [112]. Additionally, toolchain provenance is crucial for determining security
flaws possibly inserted by specific vulnerable compiler versions inside binary code [48].
Since such information is usually omitted from binaries in production environments,
recovering it becomes crucial to ensure the integrity and security of the software.
Toolchain provenance tasks require the model to understand the specific instruction
patterns created by compilers to identify the toolchain.

Compiler Classification.

The Compiler Classification task involves determining the particular compiler family
(eventually with version) used to compile a given binary code. This task is solved by
GraphEmb [106], o-glassesX [112] and BinBert [13].

Definition. Given a function fb (or a binary b), the Compiler Classification
is to determine the specific compiler family (eventually with version) cf ∈ CF
used to compile fb (or the binary b).

3.7 Binary Analysis Downstream Tasks 39

Optimization Classification.

The Optimization Classification task involves determining the particular compiler
optimization used to compile a given binary code. This task is solved by GraphEmb
[106], Himalia [36], OrderMatters [168], o-glassesX [112] and BinBert [13].

Definition. Given a function fb (or a binary b), the Optimization Classification
is to determine the specific optimization opt ∈ OPT used to compile fb (or the
binary b).

3.7.3 Disassembly

The Disassembly task is performed by several Commercial off-the-shelf disassem-
blers. Such disassemblers are available in both static and dynamic variants. Static
disassemblers, such as the simpler linear disassembler objdump, decode bytes in a
sequential manner. More advanced ones, like recursive disassemblers (e.g. IDA),
follow the control flow graph to decode bytes so as to avoid inline data typically
introduced by commercial compilers. However, these may miss some blocks due
to indirect jumps or calls. Such issues are exhacerbated in x86 compilers where
innstructions have varying lenght thus leading to the possible presence of complex
construct like overlapping and misaligned instructions which can cause troubles while
disassembly [9]. Consequently, dynamic disassemblers have emerged, leveraging
execution data to more accurately decode bytes and address the limitations of
static methods. Unfortunately, dynamic disassemblers strongly depend on the code
coverage, since they can decode only the bytes of executed instructions. Additionally,
dynamic disassemblers can be slower and more resource intensive than traditional
static disassemblers. To overcome all such limitations and improve the accuracy of
such disassemblers, the research community started to investigate several techniques
including deep-learning based solutions [38,119,135,166].

Specifically, following the definition used by [9,119], the disassembly task involves
recovering the following disassembly primitives:

• assembly-level instructions;

• function boundaries, the end and start addresses of functions within a binary;

• function signatures, the list of function parameters;

• Interprocedural Control Flow Graph.

Thus, based on this definition, we categhorized the revised literature regarding
disassembly within the following subtasks: Assembly Instruction Recovery, Function
Boundary Identification, Function Signature Recovery and Matching Indirect Calls.
Although the latter does not directly contribute to building the ICFG, it plays a
crucial role by recovering key information necessary for constructing a comprehensive
ICFG—specifically, resolving indirect calls.

3.7 Binary Analysis Downstream Tasks 40

Assembly Instruction Recovery

The task of Recovering Assembly Instructions consists of identifying the bounds of
each individual assembly instruction within the code section of a stripped binary. The
challenge lies in accurately differentiating and isolating these instructions from the
binary’s continuous byte stream, especially considering the variability in instruction
lengths and the presence of inline data within executable code segments. This task
requires a semantic understanding of the code, especially because it is necessary to
also understand the bytes targeted by indirect jumps and calls. Works solving this
problem are XDA [119] and DeepDi [166].

Definition. Given a binary b consisting of series of byte sequences, the goal of
the Assembly Instruction Recovery task is to recover a set of assembly instructions
start and end address pairs (i.e. delineate the boundaries of each instruction):

Ab = {(a1
s, a1

e), . . . , (am
s , am

e)}

where ai
s and ai

e are the start and the end address of the ith instruction.

Function Boundaries Identification

Similarly to the definition of [135] and [19], the Function Boundary Recovery task
is the process of delineating the start and end points of functions within a binary
executable. Among the works solving this problem we have identified RFBNN [135],
XDA [119] and DeepDi [166].

Definition. Given a binary b composed of n functions Fb = {f1
b , . . . , fn

b }, the
goal of the Function Boundaries Identification task is to recover a set of function
start and end address pairs:

Ab = {(a1
s, a1

e), (a2
s, a2

e), . . . , (ak
s , a1

k)}

where aj
s and aj

e are the addresses of the first and last byte of the function f i
b

respectively.

Function Signature Recovery

The Function Signature Recovery problem involves identifying the number and
types of arguments of a function within a stripped binary. This task is solved by
PalmTree [91] and Eklavya [38].

Definition. Given a binary function fb ∈ Fb, where b is a stripped binary,
the goal of the Function Signature Recovery task is to recover the number n of
arguments and for each argument determine its specific type t ∈ T .

Matching Indirect Calls

Constructing a comprehensive ICFG poses significant challenges, primarily because
of the existence of indirect jumps or calls, where the destination address of an

3.7 Binary Analysis Downstream Tasks 41

instruction is determined only during runtime. To enhance the completeness of the
ICFG, various techniques based on fuzzing have been investigated [25]. More recently,
Calle [174] has begun to explore the application of deep learning to identify the
specific function invoked by a call instruction, thus further improving the accuracy
and depth of the ICFG. This approach holds promise for addressing the complexities
associated with indirect jumps and advancing the state-of-the-art in control flow
analysis.

Definition. Consider a function f1
b within a binary progam b and a call-site

cs ∈ CSb within a function f2
b in the same binary b. The Matching Indirect Call

task is to learn a matching function Match : Fb × CSb → {0, 1} that output 1
if the function signature of f1

b matches the call-site cs and 0 otherwise.

3.7.4 Decompilation

Decompilation involves transforming binary code back to its higher-level representa-
tion. Unlike disassemblers, which translate binary into assembly code, decompilers
advance this process by generating a more comprehensible form of code that allows
for easier analysis and interpretation by human analysts. Unfortunately, high-level
information is usually lost during compilation, thus recovering the original source
code from its binary representation is an hard task [102]. In fact, the code resulting
from decompilation is usually not the same as its original source code but rather an
approximation.

Numerous commercial decompilers are available today, including IDA Hex-Ray
1, Ghidra Decompiler 2, and Boomerang 3. However, these tools often produce
incomplete or inaccurate code [50, 102]. Some recent works, like RNND [78], CODA
[55] and NeurDP [29], started exploring the use of neural networks to solve this
problem.

Definition. Consider a binary program b and a source code s such that
b = Compile(s, c) for a compiler setting c. An high-level code d ∈ S is the
decompiled code of the binary b if d is semantically equivalent to the original
source code s.

The Decompilation task is to learn a function Decompile : B → S, that,
given a binary code b produce high-level code d = Decompile(b) such that s
and d produce the same output for every possible input values.

3.7.5 Debug Information Recovery and Reparing

Debug symbols are generated by compiler programs and typically include information
about functions and variables, such as name, location, type, and size which is helpful
for debugging and security analysis of a binary. For ELF binaries, debug information
is stored within a specific executable section in the DWARF format [51], while debug

1https://hex-rays.com/decompiler/
2https://github.com/NationalSecurityAgency/ghidra
3https://boomerang.sourceforge.net/

https://hex-rays.com/decompiler/
https://github.com/NationalSecurityAgency/ghidra
https://boomerang.sourceforge.net/

3.7 Binary Analysis Downstream Tasks 42

information of Windows PE binaries resides in a separate dedicated file known as a
Program Database (PDB).

Since this information is not required for execution, debug symbols are usually
removed from binaries. The process of removing such information is known as
stripping. The primary motivation for stripping binaries is to enhance performance;
removing debug information reduces overhead and file size. Additionally, commercial
vendors often strip binaries to safeguard their intellectual property, and malicious
actors do so to complicate the analysis of their malware. For these reasons, some
works have started to investigate the applicability of deep-learning-based solutions
for Function Naming [41, 53, 56, 76, 82, 117] and Variable Names and Types Recovery
[18, 32,84,110,122].

Additionally, some recent works demonstrate that, in case of highly optimized bi-
naries, debug information—such as source line information and variable values—may
be inaccurate [45,92]. Such inaccuracies can be generated either during the compila-
tion chain by the compiler or later at debugging time by the debugger itself. One
of the work presented in this thesis (Chapter 4), started to test the applicability of
deep-learning techniques to detect such bugs [12].

Function Naming

The Function Naming problem consists of assigning a string to a binary function.
Such string should represents a meaningful name for that function, i.e. a name that
an expert programmer would assign and that captures the semantics and the role of
the function inside the software [11]. Assigning a name to a function requires a deep
understanding of the code semantics. This problem have been studied by NERO [41],
Punstrip [117], NFRE [56], SymLM [76], XFL [53] and AsmDepictor [82].

Definition. Given a binary function fb ∈ Fb, where b is a stripped binary, the
goal is to find a meaningful name fn ∈ FN for a specific function. A meaningful
name is a name that an expert programmer would assign and that captures the
semantics and the role of the function inside the software.

Said otherwise, the Function Naming task is to learn a renaming function
Rename : Fb → FN , that assign a function name fn = Rename(fb) to a
function fb.

Variable Names Recovery

The Variable Name Recovery task consists of assigning meaningful names to variables
contained inside a decompiled binary code. As for the function naming task, a
meaningful name for a variable is a name that a programmer would assign to that
variable and that reflect its role and semantic inside the software. Works solving
this problem are: DIRE [84], DIRECT [110], VarBert [18] and DIRTY [32].

3.7 Binary Analysis Downstream Tasks 43

Definition. Given a decompiled binary db ∈ S with n variables V , where b is
a stripped binary, the goal is to find a meaningful name vn ∈ V N for a specific
variable v ∈ V . A meaningful name is a name that an expert programmer would
assign and that captures the semantics and the role of the variable inside the
software.

Said otherwise, the Variable Name Recovery task is to learn a renam-
ing function Rename : Db × V → V N , that assign a variable name vn =
Rename(db, v) ∀v ∈ V .

Variable Types Recovery

The Variable Types Recovery task consists of recovering the types of variables
contained inside a decompiled binary code. The work solving this task is DIRTY [32].

Definition. Given a decompiled binary db ∈ S with n variables V , where b
is a stripped binary, the goal is to recover the correct type t ∈ T for a specific
variable v ∈ V .

Said otherwise, the Variable Type Recovery task is to learn a retyping function
Retype : Db × V → T , that assign the correct type t = Retype(db, v) ∀v ∈ V .

A variant of this task is solved by Stateformer [122]. Specifically, Stateformer
recover variable types directly from the binary code instead of the decompiled one.

Correct Debug Detection Problem

A pair compiler/debugger can be seen as a toolchain function TC that maps each
source code s to a debug trace T = TC(s), which is a an ordered list of elements,
each representing a step over a machine instruction. A perfect toolchain TC should
never generate a bugged trace. The Correct Debug Detection problem aims at
finding bugs in the toolchain, and so to find instances of programs that generate
wrong debug traces under TC. In this regards, the set Traces of all possible traces
generated by TC for all valid programs 4 can be partitioned into the set of correct
traces NoBug and the one of bugged traces Bug. This task is solved only by our
work Neuro-Debug2 [12].

Definition. Given a trace T ∈ Traces the Correct Debug Detection problem
gives as output 0 if T is a correct debug trace (T ∈ NoBug) and 1 if T is a
bugged debug trace (T ∈ Bug).

3.7.6 Binary Code Understanding Tasks

Recovering semantic information from binaries is a useful feature for reverse engi-
neering. In fact, understanding the functionalities of binaries helps human reverse
engineers in reasoning about the software’s purpose thus leading to quicker under-
standing of complex software behaviors. Additionally, semantic tasks can be used as
benchmarks for assessing the effectiveness of deep learning models in understanding
binary snippets.

4A program is valid if can be compiled by the toolchain and is free of undefined behaviors.

3.7 Binary Analysis Downstream Tasks 44

Semantic classification

The Semantic Classification task involves assigning a semantic class to each binary
function to identify its general semantic behavior. One of the difficulties of this task
lies in the dataset construction phase, since it requires manually assigned labels.
This task has been solved only by SAFE [107].

Definition. Given a binary function fb ∈ Fb, the semantic classification task
is to learn a function AssignSemantic : Fb → SC, that assign a semantic class
sc ∈ SC to a binary function fb.

Instruction Similarity Task

The Instruction Similarity Task involves assessing the similarity between two as-
sembly instructions, which is primarily determined by their semantic meaning.
Instructions are categorized into semantic classes based on their opcodes, grouping
together instructions with similar semantic meanings. An example of such cate-
gorization can be found in the x86 Assembly Language Reference Manual 5. For
instance, the add and sub instructions are classified as similar because they both
perform mathematical operations on two values. The Instruction Similarity Task is
solved by XArchInstrEmb [128], PalmTree [91], MAIE [156] and BinBert [13].

Definition. Given the set all the possible instructions I = {i1, i2, . . . , in}, it
can be partitioned into semantic classes SC = {sc1, sc2, . . . , scm}, where each
class is defined based on opcode characteristics. Two instructions i1 ∈ I and
i2 ∈ I are similar if and only if they belong to the same semantic class sci, i.e.
i1 ∈ sci and i2 ∈ sci.

The Instruction Similarity task is to learn a function Sim : I × I → 0, 1
that given two instructions i1 ∈ I and i2 ∈ I outputs 1 if they are similar and 0
otherwise.

It is worth noting that some of the analyzed papers focus on solving two related
variants of this task: the Opcode Outlier Detection task [13, 91] and the Nearest
Neighbor Istruction task [156].

Opcode Outlier Detection Task. The Opcode Outlier Detection task has been
defined by PalmTree [91] and solved also by our work BinBert [13]. This task involves
analyzing a set of n instructions where n− 1 belong to the same semantic class, and
one is an outlier. The objective is to identify the outlier instruction among the set
of n instructions.

5https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html

https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html

3.7 Binary Analysis Downstream Tasks 45

Definition. Given:
• A set of n instructions I = {i1, i2, . . . , in}

• A corresponding set of semantic classes SC = {sc1, sc2, . . . , scm}, where
each class is defined based on opcode characteristics.

The objective is to identify the outlier instruction io ∈ I such that io belongs
to a different semantic class from the rest of the instructions in I.

Formally, given a function f : I → SC that assigns each instruction to its
semantic class, the Opcode Outlier Detection task is to find io for which:

f(io) ̸= f(ik),∀ik ∈ I \ {io}

Nearest Neighbor Istruction Task. The Nearest Neighbor Instruction task, as
utilized by MAIE [156], assesses the model’s comprehension of instruction semantics
within a multi-architecture environment.

Definition. Given a query instruction q belonging to a certain ISA, the Nearest
Neighbor Instruction is to recover the top-K similar instructions in other ISAs.

Strand Execution

The Strand Execution task has been firstly introduced by our work BinBert [13].
The goal of this task is to test the network ability of understanding the execution
behaviour of a binary code snippet, specifically a strand.

Definition. Given a strand ss and the set of all possible inputs I and output
values O, the Strand Execution task is to learn a function Compute : SS×I → O,
that given an input vector i ∈ I representing values for all the input variables of
a strand, produce an output vector o = compute(ss, i) representing the output
values for all the possible output variables of a strand.

Strand Recovery

The Strand Recovery tasks has been firstly introduced by by our work BinBert [13].
The goal of this task is to recover strands from the assembly instructions composing
a basic blocks. In particular, this task test the network ability of understanding the
semantic of binary code snippets (i.e. strands), since it has to infer the dependencies
among instructions, including those created by implicit registers such as RFLAGS.

Definition. Given a basic block bb ∈ BB, the Strand Recovery task is to find
the set of its p strands SSbb = ss1

bb, . . . , ssp
bb.

3.7.7 Memory Usage

Binary memory analysis is a critical task, particularly for post-mortem program
analysis. Identifying the precise cause of program crashes resulting from erroneous
input values is crucial for detecting memory corruption vulnerabilities [62]. Various

3.7 Binary Analysis Downstream Tasks 46

techniques, such as hardware tracing [159], have been explored to trace the sequence
of instructions leading to a crash. However, these techniques often struggle to
capture the complete trace, making it challenging to reconstruct the crashed memory
state and, consequently, the entire control flow. Specifically, significant efforts have
been dedicated to identifying memory aliases, which represent references to the same
memory location and that can help in identifying the crash cause. For instance,
Value Set Analysis (VSA) [16] aims to analyze and track the possible values that
variables or memory locations can hold during program execution by approximating
the set of possible values at each program point, thus helping in identifiying wether
two variables point to the same memory location. Motivated by this, some works
started investigating the possibility of using deep learning techniques to enhance
VSA accuracy (Memory Region Prediction task [62]) or to directly identify memory
aliases (Memory Dependency Prediction task [120]).

Furthermore, patching a binary program without recompiling it is a common and
essential task. To accomplish this, understanding the stack layout of the function to
be patched is crucial. Recent studies have explored the application of deep learning
techniques to determine the size of each function’s stack frame in a program, a
process referred to as Stack Frame Size Recovery [43].

Memory Region Prediction

The Memory Region Prediction task is used to improve the accuracy of VSA and
consists of predicting the memory region accessed by instructions within a binary
code trace. This task has been solved by DeepVSA [62] and PalmTree [91].

Definition. Consider an execution trace T of a binary program b consisting of
a sequence of n assembly instructions I = (i1, . . . , in) and the set of all possible
memory regions M = {stack, heap, global, other}.

The Memory Region Prediction task is to learn a function MemPredict :
T × I →M that assign a memory region m ∈M to each instruction ii in the
trace T .

Memory Dependency Prediction

The Memory Dependency Prediction task consists of determining wether two assembly
instructions within a binary program trace refer to the same memory location. This
task has been solved only by NeurDP [29].

Definition. Consider an execution trace T of a binary program b consisting
of a sequence of n assembly instructions I = (i1, . . . , in).

The Memory Dependency Prediction task is to learn a function DepPredict :
T × I × I → 0, 1, that given a trace T and an instruction pair ii and ij output
1 when they refers to the same memory location and 0 otherwise.

Stack Frame Prediction

The Stack Frame Prediction task is to determine the maximum size of the stack
frame of a given function. This task has been solved only by StackBert [43].

3.8 Dataset 47

Definition. Consider a function fb of a binary program b. The Stack Frame
Prediction task is to learn a function StackPredict : Fb → Z that given a function
fb outputs the maximum size of its stack frame size = StackPredict(fb).

3.7.8 Code Autorship

The problem of Code Authorship involves identifying the authors of a particular binary
program. This task is valuable for detecting software plagiarism, conducting malware
analysis, and digital forensics investigations. While some may question whether the
author’s coding style can survive the compilation process, recent studies [108,131]
demonstrate that the author’s style is preserved in compiled code, even resisting
optimizations and certain obfuscation techniques [71]. An interesting aspect is that
all existing approaches to this problem are based on the Closed World Assumption
(CWA) [60], which assumes a finite set of possible authors. This assumption is
limiting and distant from real scenarios, especially in cases involving malware, where
new authors emerge over time. Another factor to consider is that a single binary
program is often written by multiple developers, each potentially contributing with
a different coding style. Consequently, multiple authors may be associated with a
single binary. Recent approaches have explored the applicability of deep learning
techniques to the code autorship problem on benign executables: BinEye [8] and
BinMLM [137].

Definition. Given a binary code b, the Code Autorship task is to learn a
function AuthorAssign : B ×A→ 0, 1 which output 1 if a given author a ∈ A
have contributed to write the binary code b and 0 otherwise.

Observed Gaps in the Binary Tasks
From our analysis of binary tasks, we identified two main gaps:

• Unexplored tasks: The majority of the reviewed works focus on the
function similarity task, while many other tasks remain largely unexplored.
In fact, some tasks have been addressed by only a single study;

• Inconsistent task definitions: Tasks that are essentially equivalent are often
defined in slightly different ways, making it challenging or even impossible
to compare solutions.

3.8 Dataset
In this section, we discuss the articles we reviewed from the perspective of the
datasets used, encompassing the data generation methodology. We take a holistic
approach and analyze the entire process, starting from the selection of binaries,
which serve as the raw data for the models we studied (this is done in the Raw
Dataset Section 3.8.1), to how a raw binary is represented by the deep learning
model. For instance, the binary could be converted into a graph-based or linear
representation (this is done in the Binary Representation Section 3.8.2). We also

3.8 Dataset 48

examine how different papers process the basic operations that compose the binary
(this is done in the Preprocessing and Tokenization Section 3.8.3).

To clarify, by binary representation, we refer to the way in which the sequence
of basic operations composing the binary is represented. This is distinct from
how individual basic operations are represented. For example, one could represent
the entire binary using its Interprocedural Control Flow Graph (ICFG) and then
represent the operations inside each basic block either by using the block’s binary
code (i.e., the hexadecimal code) or by employing a bag-of-instructions approach,
counting how many instructions fall into certain categories. Finally, in the Feature
Extraction Section 3.8.4, we discuss how the papers extract the actual features, i.e.,
the vectors of numbers on which the DNNs operate, from the binary representation
described above.

3.8.1 Raw Dataset

All the datasets reviewed in the literature, although designed for specific tasks,
require an initial phase of collecting raw executables. In this thesis, we will refer to
these executables as the raw dataset. Figure 3.5 presents an idealized pipeline for
raw dataset collection. This pipeline illustrates the general steps typically involved in
creating the raw dataset. It is important to note that not all the works we surveyed
utilized every step in this pipeline.

The pipeline has two collection points. At the first collection point, the source
code of projects is gathered and compiled into binaries, which then undergo a filtering
process that will be detailed later. The second collection point is where precompiled
binaries are introduced into the pipeline and proceed directly to the preprocessing
step. This dual-input model accommodates both studies that utilize source code
and those that use precompiled binaries.

Preprocessing
(Executable

filtering)

Preprocessing
(Source code

Filtering)

Compilation

Raw
Dataset

Precompiled Repositories

Repositories of Linux
Distrubutions (Ubuntu, debian,
etc.) or Firmware images

Source Code Repositories

Github, Open benchmarks,
Code competitions, etc.

Collection

Collection

Optimization level

Obfuscation
techniques

Compiler family

Architecture

Compilation
Configuration

Figure 3.5. Raw dataset creation pipeline.

3.8 Dataset 49

Pre-compiled vs Source Code. From our analysis of the literature, we found that
the majority of works opted to compile open source projects themselves (See Table
3.2), either collected from open source code repositories such as Github or collected
from publicly available benchmarks such as those of the Standard Performance
Evaluation Corporation (SPEC) designed to test computer performances. Only a
minority of studies opted for pre-compiled projects, such as repositories from Linux
distributions [53,56]. Some other works used both precompiled binaries and binaries
compiled from scratch [99,106,117,174], while others utilized precompiled firmware
images from specific IoT vendors to test the model’s ability to identify vulnerable
binaries [57,103,121,160].

Regarding the selection of source code projects compiled from scratch, it is worth
noting that these are often chosen from a common pool, such as open-source projects
like OpenSSL, binutils, findutils, and others. A consistent trend observed across
all analyzed studies, even for similar tasks, is the creation of custom raw datasets
without thorough validation of their overlap with prior research. As a result, even if
many studies rely on source code datasets that are ostensibly identical, the obtained
raw data can differ due to variations in the implementation of compilation and
preprocessing steps. This makes impossible to compare the majority of results in
the current literature.

From our analysis, only a few studies reused the same raw datasets as others.
For instance, VarBERT [18] and DIRECT [110] used the same dataset as DIRE [84]
for the task of variable name recovery, [105] and BinFinder [127] used subsets of the
datasets from TREX [121] and TIKNIB [80] respectively, while HermesSim [66] used
one dataset from [105].

Another notable point is that, the majority of the binaries used in the studies
are in ELF format, while only few studies include PE files for the Windows OS
[8,81,119,135,166].

Source Code Pre-Processing. After collecting source code projects, some works
perform a preprocessing step finalized at removing some redundacies at the source
code level. For instance, NERO [41], remove projects that compile with static linking
so as to ensure that no dependencies are inserted inside the executables and also
remove different versions of the same project. JTrans [155] remove all non C/C++
projects by looking at specific keywords in the PKGBUILD file.

Compilation. After preprocessing, the source code needs to be compiled. This
involves defining the compilation configurations, including the platform, compiler
family, compiler optimizations, and whether or not to use obfuscation strategies. The
prevailing trend in the literature is to use a compilation step that employs different
compiler families (e.g., GCC, clang, ICC) with varying optimization levels (e.g.,
O0, O1, O2, O3). This approach allows the same source code to be compiled into
several significantly different binaries. Most of the works rely on the x86 architecture,
while some others use cross-compilation to generate binaries for different ISAs (e.g.,
ARM, MIPS, PPC). A few studies also incorporate obfuscation techniques into the
compilation process, typically using the LLVM obfuscator.

3.8 Dataset 50

Compiled Binaries Filtering. After compilation, some works perform a prepro-
cessing phase to filter out some executables. For instance NERO [41] remove all
executables that are suspected to be test or examples and also executables coming
from non C code.

After the executable filtering phase, it is possible to obtain the raw dataset.

3.8 Dataset 51

Y
ea

r
W

or
k

So
ur

ce
s

#
B

in
ar

ie
s

IS
A

T
oo

lc
ha

in
O

pt
im

iz
at

io
ns

O
bf

us
ca

ti
on

O
S

20
15

R
FB

N
N

[1
35

]
bi

nu
til

s,
co

re
ut

ils
,fi

nd
ut

ils
an

d
bi

na
rie

s
fr

om
op

en
-s

ou
rc

e
pr

oj
ec

ts
fo

r
W

in
do

w
s

22
00

x8
6,

x8
6-

64
gc

c,
ic

c
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x,
W

in
do

w
s

20
17

G
em

in
i[

16
0]

O
pe

nS
SL

18
26

9
x8

6-
64

,a
ar

ch
64

,M
IP

S6
4

gc
c-

5
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
17

Ek
la

vy
a

[3
8]

bi
nu

til
s,

di
ffu

til
s,

co
re

ut
ils

,fi
nd

ut
ils

,i
ne

tu
til

s,
sg

3u
til

s,
us

bu
til

s,
ut

il-
lin

ux
20

00
x8

6,
x8

6-
64

cl
an

g,
gc

c
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
18

α
-D

iff
[9

9]
31

pr
oj

ec
ts

fr
om

G
itH

ub
re

po
sit

or
ie

s
69

98
9

*
x8

6-
64

cl
an

g-
3

(2
),

gc
c-

4
(2

),
gc

c-
5

(1
)

N
A

N
on

e
Li

nu
x

20
18

R
N

N
D

[7
8]

Fe
do

ra
se

le
ct

io
ns

fo
r

th
e

M
U

SE
pr

oj
ec

t
N

A
x8

6-
64

cl
an

g-
3

O
0

N
on

e
Li

nu
x

20
18

Vu
lS

ee
ke

r
[5

7]
B

us
yB

ox
,C

or
eu

til
s,

O
pe

nS
SL

N
A

x8
6,

x8
6-

64
,A

R
M

,
aa

rc
h6

4,
M

IP
S,

M
IP

S6
4

gc
c-

4,
gc

c-
5

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
18

Ze
ek

[1
33

]
A

pa
ch

e
M

es
os

,b
as

h,
bi

nu
til

s,
bz

ip
2,

co
re

ut
ils

,c
U

R
L,

FF
m

pe
g,

G
it,

ht
tp

d,
nt

p,
O

pe
nS

SL
,Q

EM
U

,S
no

rt
,t

ar
,u

til
-li

nu
x,

w
ge

t,
W

ire
sh

ar
k

20
68

0
*

x8
6-

64
,a

ar
ch

64
cl

an
g-

3
(4

),
cl

an
g-

4
(1

),
gc

c-
4

(3
),

ic
c-

14
,i

cc
-1

5
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
19

A
sm

2V
ec

[4
6]

B
us

yB
ox

,c
or

eu
til

s,
Im

ag
eM

ag
ic

k,
lib

gm
p,

lib
cu

rl,
lib

to
m

cr
yp

t,
O

pe
nS

SL
,P

uT
T

Yg
en

,S
Q

Li
te

,z
lib

68
*

x8
6-

64
cl

an
g-

3
(2

),
gc

c-
4,

gc
c-

5,
ic

c
(2

)
O

0,
O

1,
O

2,
O

3
O

-L
LV

M
(B

C
F,

FL
A

,S
U

B
)

Li
nu

x

20
19

B
in

Ey
e

[8
]

G
itH

ub
pr

oj
ec

ts
,c

od
e

fr
om

G
oo

gl
e

C
od

e
Ja

m
co

m
pe

tit
io

n
an

d
so

m
e

m
al

w
ar

e
31

15
0

x8
6-

64
cl

an
g,

gc
c,

g+
+

,M
V

SC
20

10
N

A
O

-L
LV

M
(B

C
F,

FL
A

,S
U

B
)

W
in

do
w

s

20
19

C
O

D
A

[5
5]

N
A

N
A

x8
6-

64
,M

IP
S6

4
cl

an
g

O
0

N
on

e
N

A

20
19

D
IR

E
[8

4]
G

itH
ub

pr
oj

ec
ts

w
rit

te
n

in
C

.
16

46
32

x8
6-

64
N

A
N

on
e

N
on

e
Li

nu
x

20
19

G
M

N
[9

3]
FF

m
pe

g
N

A
N

A
cl

an
g,

gc
c

N
A

N
on

e
Li

nu
x

20
19

G
ra

ph
Em

b
[1

06
]

bi
nu

til
s,

cc
v,

co
re

ut
ils

,c
ur

l,
ffm

pe
g,

gd
b,

gs
l,

lib
ht

tp
d,

op
en

m
pi

,O
pe

nS
SL

,
po

st
gr

es
ql

,v
al

gr
in

d
11

24
4

*
x8

6-
64

,a
ar

ch
64

cl
an

g-
3

(2
),

cl
an

g-
4.

0,
cl

an
g-

5.
0,

gc
c-

3.
4,

gc
c-

4
(3

),
gc

c-
5.

0,
ic

c-
17

,i
cc

-1
9

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
19

H
im

al
ia

[3
6]

39
9

po
pu

la
r

op
en

-s
ou

rc
e

pr
oj

ec
ts

(b
as

h,
gz

ip
,n

tp
,o

pe
ns

sh
,P

uT
T

Y
,S

Q
Li

te
,e

tc
.)

58
28

x8
6-

64
gc

c-
4,

gc
c-

5,
gc

c-
6

O
0,

O
1,

O
2,

O
3,

O
s

N
on

e
Li

nu
x

20
19

In
ne

rE
ye

[1
75

]
bi

nu
til

s,
co

re
ut

ils
,d

iff
ut

ils
,fi

nd
ut

ils
,O

pe
nS

SL
84

4
*

x8
6-

64
,a

ar
ch

64
cl

an
g-

6
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
19

SA
FE

[1
07

]
bi

nu
til

s,
cc

v,
co

re
ut

ils
,c

ur
l,

gs
l,

lib
ht

tp
d,

op
en

m
pi

,O
pe

nS
SL

,v
al

gr
in

d
50

01
*

x8
6-

64
,a

ar
ch

64
cl

an
g-

3,
cl

an
g-

4
(3

),
cl

an
g-

5,
cl

an
g-

6,
cl

an
g-

7,
gc

c-
3

(2
),

gc
c-

4,
gc

c-
5,

gc
c-

6
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
19

X
A

rc
hI

ns
tr

Em
b

[1
28

]
bi

nu
til

s,
co

re
ut

ils
,d

iff
ut

ils
,fi

nd
ut

ils
,O

pe
nS

SL
80

4
*

x8
6-

64
,a

ar
ch

64
cl

an
g-

6
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
20

C
od

eC
M

R
[1

69
]

N
A

N
A

x8
6-

64
,a

ar
ch

64
cl

an
g,

gc
c

O
0,

O
3

N
on

e
N

A

20
20

D
ee

pB
in

D
iff

[4
9]

co
re

ut
ils

,d
iff

ut
ils

,fi
nd

ut
ils

,L
SH

B
O

X
,I

nd
ic

at
or

s
(C

+
+

)
22

06
*

x8
6-

64
gc

c-
4

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
20

N
ER

O
[4

1]
N

A
54

1
*

x8
6-

64
N

A
O

1,
O

2,
O

3
A

PI
na

m
e

ob
fu

sc
at

io
n

Li
nu

x

20
20

O
rd

er
M

at
te

rs
[1

68
]

N
A

N
A

x8
6-

64
,a

ar
ch

64
gc

c
O

0,
O

1,
O

2,
O

3
N

on
e

N
A

20
20

o-
gl

as
se

sX
[1

12
]

N
A

28
07

4
x8

6,
x8

6-
64

cl
an

g-
5,

gc
c-

6,
ic

c-
19

,
M

V
SC

20
03

,M
V

SC
20

17
O

0,
O

3,
O

d,
O

x
N

on
e

N
A

20
20

Pu
ns

tr
ip

[1
17

]
co

re
ut

ils
,fi

nd
ut

ils
,m

or
eu

til
s,

x1
1-

ut
ils

,x
11

-x
se

rv
er

-u
til

s
21

32
x8

6-
64

gc
c,

cl
an

g
O

g,
O

1,
O

2
N

on
e

Li
nu

x

20
20

T
IK

N
IB

[8
0]

51
G

N
U

pa
ck

ag
es

24
31

28
x8

6,
x8

6-
64

,A
R

M
,

aa
rc

h6
4,

M
IP

S,
M

IP
S6

4,
M

IP
SE

B
,M

IP
S6

4E
B

cl
an

g-
4,

cl
an

g-
5,

cl
an

g-
6,

cl
an

g-
7,

gc
c-

4,
gc

c-
5,

gc
c-

6,
gc

c-
7,

gc
c-

8

O
0,

O
1,

O
2,

O
3,

O
s,

LT
O

,P
IE

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

)
Li

nu
x

20
21

D
IR

EC
T

[1
10

]
G

itH
ub

pr
oj

ec
ts

w
rit

te
n

in
C

.(
sa

m
e

as
D

IR
E)

16
46

32
x8

6-
64

N
A

N
on

e
N

on
e

Li
nu

x

20
21

Pa
lm

Tr
ee

[9
1]

bi
nu

til
s,

co
re

ut
ils

,d
iff

ut
ils

,fi
nd

ut
ils

32
66

x8
6-

64
cl

an
g-

8,
gc

c-
9

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
21

St
ac

kB
er

t
[4

3]
bi

nu
til

s,
co

re
ut

ils
,S

PE
C

C
PU

20
17

20
76

x8
6-

64
,a

ar
ch

64
cl

an
g-

13
,g

cc
-1

1
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
21

St
at

eF
or

m
er

[1
22

]

ba
sh

,b
c,

bi
nu

til
s,

bi
so

n,
bu

sy
bo

x,
cfl

ow
,c

or
eu

til
s,

cu
rl,

di
ffu

til
s,

dp
kg

,fi
nd

ut
ils

,g
aw

k,
gr

ep
,g

ty
pi

st
,g

zi
p,

Im
ag

eM
ag

ic
k,

in
de

nt
,i

ne
tu

til
s,

le
ss

,G
M

P,
lib

m
ic

ro
ht

tp
d,

lib
pn

g,
lib

to
m

cr
yp

t,
na

no
,O

pe
nS

SL
,P

uT
T

Y
,s

ed
,

sg
3-

ut
ils

,S
Q

Li
te

,u
sb

ut
ils

,u
til

-li
nu

x,
w

ge
t,

zl
ib

N
A

x8
6,

x8
6-

64
,A

R
M

,
aa

rc
h6

4,
M

IP
S,

M
IP

S6
4

gc
c-

8
(2

)
O

0,
O

1,
O

2,
O

3
O

-L
LV

M
(B

C
F,

FL
A

,S
U

B
,I

B
R

,S
PL

)
Li

nu
x

3.8 Dataset 52

Y
ea

r
W

or
k

So
ur

ce
s

#
B

in
ar

ie
s

IS
A

T
oo

lc
ha

in
O

pt
im

iz
at

io
ns

O
bf

us
ca

ti
on

O
S

20
21

T
R

EX
[1

21
]

bi
nu

til
s,

co
re

ut
ils

,c
ur

l,
di

ffu
til

s,
fin

du
til

s,
G

M
P,

Im
ag

eM
ag

ic
k,

lib
m

ic
ro

ht
tp

d,
lib

to
m

cr
yp

t,
O

pe
nS

SL
,P

uT
T

Y
,S

Q
Li

te
,Z

lib
N

A
x8

6,
x8

6-
64

,A
R

M
,

aa
rc

h6
4,

M
IP

S,
M

IP
S6

4
gc

c-
7

O
0,

O
1,

O
2,

O
3

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

,I
B

R
,S

PL
)

Li
nu

x

20
21

Va
rB

ER
T

[1
8]

G
itH

ub
pr

oj
ec

ts
w

rit
te

n
in

C
.(

sa
m

e
as

D
IR

E)
16

46
32

x8
6-

64
N

A
N

on
e

N
on

e
Li

nu
x

20
21

X
D

A
[1

19
]

cu
rl,

di
ffu

til
s,

G
M

P,
Im

ag
eM

ag
ic

k,
lib

m
ic

ro
ht

tp
d,

lib
to

m
cr

yp
t,

O
pe

nS
SL

,P
uT

T
Y

,
SQ

Li
te

,Z
lib

,S
PE

C
C

PU
20

17
,S

PE
C

C
PU

20
06

,B
A

P
>

31
21

x8
6,

x8
6-

64

gc
c-

4,
gc

c-
5,

gc
c-

7,
gc

c-
9,

ic
c-

14
,M

SV
C

20
08

,
M

SV
C

20
10

,M
SV

C
20

12
,

M
SV

C
20

13
,M

SV
C

20
19

O
0,

O
1,

O
2,

O
3,

O
x,

O
d

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

,I
B

R
,S

PL
)

Li
nu

x
W

in
do

w
s

20
22

B
in

M
LM

[1
37

]
co

de
fr

om
G

oo
gl

e
C

od
e

Ja
m

co
m

pe
tit

io
n,

C
od

ef
or

ce
s,

an
d

so
m

e
m

al
w

ar
e.

N
A

N
A

N
A

N
A

N
A

N
A

20
22

B
IN

SH
O

T
[4

]
bi

nu
til

s,
bu

sy
bo

x,
co

re
ut

ils
,d

iff
ut

ils
,fi

nd
ut

ils
,I

m
ag

eM
ag

ic
k,

lib
cu

rl,
lib

gm
p,

lib
to

m
cr

yp
t,

ng
in

x,
O

pe
nS

SL
,P

uT
T

Yg
en

,S
Q

Li
te

,v
sf

tp
d,

Zl
ib

,S
PE

C
20

06
,S

PE
C

20
17

14
00

x8
6-

64
cl

an
g-

6,
gc

c-
5

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
22

C
od

ee
[1

63
]

ba
sh

,c
or

eu
til

s,
lib

cu
rl,

lib
gm

p,
O

pe
nS

SL
N

A
x8

6-
64

,a
ar

ch
64

,
M

IP
S6

4
cl

an
g-

3,
gc

c-
5

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
22

D
ee

pD
I

[1
66

]
cu

rl,
di

ffu
til

s,
G

M
P,

Im
ag

eM
ag

ic
k,

lib
m

ic
ro

ht
tp

d,
SQ

Li
te

,Z
lib

,
LL

V
M

11
,S

PE
C

C
PU

20
06

,S
PE

C
C

PU
20

17
,B

A
P

>
21

28
x8

6,
x8

6-
64

gc
c-

4,
gc

c-
7,

M
SV

C
20

08
,M

SV
C

20
19

O
0,

O
1,

O
2,

O
3,

O
d,

O
x

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

,I
B

R
,S

PL
)

Li
nu

x,
W

in
do

w
s

20
22

D
IR

T
Y

[3
2]

G
itH

ub
pr

oj
ec

ts
w

rit
te

n
in

C
.

75
65

6
x8

6-
64

gc
c-

9
O

0
N

on
e

Li
nu

x

20
22

H
ow

M
LB

in
Si

m
[1

05
]

bi
nu

til
s,

cl
am

AV
,c

or
eu

til
s,

cu
rl,

di
ffu

til
s,

fin
du

til
s,

G
M

P,
Im

ag
eM

ag
ic

k,
lib

m
ic

ro
ht

tp
d,

lib
to

m
cr

yp
t,

nm
ap

,O
pe

nS
SL

,P
uT

T
Y

,S
Q

Li
te

,u
nr

ar
,z

3,
Zl

ib
>

54
89

x8
6,

x8
6-

64
,A

R
M

,
aa

rc
h6

4,
M

IP
S,

M
IP

S6
4

cl
an

g-
3,

cl
an

g-
5,

cl
an

g-
7,

cl
an

g-
9,

gc
c-

4,
gc

c-
5,

gc
c-

7,
gc

c-
9

O
0,

O
1,

O
2,

O
3,

O
s

N
on

e
Li

nu
x

20
22

JT
R

A
N

S
[1

55
]

A
rc

hL
in

ux
an

d
A

rc
h

U
se

r
re

po
sit

or
ie

s.
48

13
0

x8
6-

64
cl

an
g,

gc
c

O
0,

O
1,

O
2,

O
3,

O
s

N
on

e
Li

nu
x

20
22

N
eu

D
ep

[1
20

]
41

op
en

-s
ou

rc
e

pr
oj

ec
ts

(b
as

h,
bc

,b
in

ut
ils

,b
iso

n,
cfl

ow
,c

or
eu

til
s,

cu
rl,

fin
du

til
s,

ga
w

k,
O

pe
nS

SL
,e

tc
.)

N
A

x8
6-

64
cl

an
g-

8,
gc

c-
9

O
0,

O
1,

O
2,

O
3

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

,S
PL

)
Li

nu
x

20
22

N
eu

rD
P

[2
9]

pr
og

ra
m

s
ra

nd
om

ly
ge

ne
ra

te
d

w
ith

cfi
le

40
00

N
A

cl
an

g-
10

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
22

N
eu

ro
-D

eb
ug

2
[1

2]
pr

og
ra

m
s

ra
nd

om
ly

ge
ne

ra
te

d
w

ith
C

sm
ith

47
90

4
x8

6-
64

cl
an

g-
13

O
g

N
on

e
Li

nu
x

20
22

Se
m

2v
ec

[1
54

]
bi

nu
til

s,
co

re
ut

ils
,d

iff
ut

ils
,fi

nd
ut

ils
,l

ib
gm

p,
lib

to
m

cr
yp

t,
O

pe
nS

SL
,r

ap
id

js
on

,Z
lib

N
A

x8
6-

64
cl

an
g-

4,
gc

c-
7

O
0,

O
2,

O
3

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

)
Li

nu
x

20
22

Sy
m

LM
[7

6]
ba

sh
,b

c,
bi

nu
til

s,
bi

so
n,

bu
sy

bo
x,

cfl
ow

,c
or

eu
til

s,
cu

rl,
di

ffu
til

s,
fin

du
til

s,
Im

ag
eM

ag
ic

k,
in

et
ut

ils
,l

es
s,

lib
gm

p1
0,

lib
m

ic
ro

ht
tp

d,
lib

pn
g,

lib
to

m
cr

yp
t,

na
no

,O
pe

nS
SL

,P
uT

T
Y

,s
ed

,s
g3

-u
til

s,
SQ

Li
te

,w
ge

t,
Zl

ib
1g

16
02

7
x8

6,
x8

6-
64

,A
R

M
,

aa
rc

h6
4,

M
IP

S,
M

IP
S6

4
gc

c-
7

O
0,

O
1,

O
2,

O
3

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

,S
PL

)
Li

nu
x

20
22

X
B

A
[8

1]
A

pa
ch

e
H

T
T

PD
,c

ur
l,

gl
ib

c,
lib

cr
yp

to
,O

pe
nS

SL
,S

Q
Li

te
N

A
x8

6-
64

,a
ar

ch
64

N
A

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x,

W
in

do
w

s

20
23

Vu
lH

aw
k

[1
03

]
co

re
ut

ils
,c

ur
l,

di
ffu

til
s,

fin
du

til
s,

lib
m

ic
ro

ht
tp

d,
m

to
ol

s,
O

pe
nS

SL
,P

uT
T

Y
,

w
ge

t,
SQ

Li
te

33
93

x8
6,

x8
6-

64
,A

R
M

,
aa

rc
h6

4,
M

IP
S,

M
IP

S6
4

cl
an

g-
10

,g
cc

-1
0

O
0,

O
1,

O
2,

O
3,

O
s,

O
fa

st
N

on
e

Li
nu

x

20
23

B
in

Fi
nd

er
[1

27
]

bi
nu

til
s,

co
re

ut
ils

,g
lib

c,
G

M
P,

Im
ag

eM
ag

ic
k,

lib
cu

rl,
O

pe
nS

SL
,Z

lib
,

49
G

N
U

pa
ck

ag
es

fr
om

T
IK

N
IB

N
A

x8
6-

64
,a

ar
ch

64
cl

an
g,

gc
c

O
0,

O
1,

O
2,

O
3

O
-L

LV
M

(B
C

F,
FL

A
,S

U
B

)
Li

nu
x

20
23

A
sm

D
ep

ic
to

r
[8

2]
ut

ili
tie

s
an

d
lib

ra
rie

s
ac

ro
ss

di
ffe

re
nt

U
bu

nt
u

Li
nu

x
di

st
rib

ut
io

n
ve

rs
io

ns
30

63
x8

6-
64

N
A

N
A

N
on

e
Li

nu
x

20
23

C
al

le
e

[1
74

]
G

N
U

B
in

ut
ils

69
4

N
A

cl
an

g-
6,

cl
an

g-
12

,
gc

c-
7,

gc
c-

9
N

A
N

on
e

Li
nu

x

20
23

M
A

IE
[1

56
]

bi
nu

til
s,

co
re

ut
ils

,d
iff

ut
ils

,fi
nd

ut
ils

,l
ib

gp
g-

er
ro

r,
O

pe
nS

SL
,e

tc
.

N
A

x8
6-

64
,a

ar
ch

64
,

M
IP

S6
4,

PP
C

64
N

A
O

0,
O

1,
O

2,
O

3
N

on
e

Li
nu

x

20
24

B
in

B
er

t
[1

3]
bi

nu
til

s,
cc

v,
co

re
ut

ils
,c

ur
l,

di
ffu

til
s,

ffm
pe

g,
fin

du
til

s,
gd

b,
G

M
P,

gs
l,

Im
ag

eM
ag

ic
k,

in
et

ut
ils

,l
ib

ht
tp

d,
lib

to
m

cr
yp

t,
m

ai
lu

til
s,

nm
ap

,o
pe

nm
pi

,O
pe

nS
SL

,
po

st
gr

es
ql

,p
re

,P
uT

T
Y

,S
Q

Li
te

,v
al

gr
in

d,
w

ge
t,

Zl
ib

22
26

45
fo

r
pr

et
ra

in
in

g*
*

23
44

fo
r

te
st

in
g

x8
6-

64

cl
an

g-
3(

2)
,c

la
ng

-4
,c

la
ng

-5
,

cl
an

g-
6,

cl
an

g-
9,

gc
c-

3,
gc

c-
4(

3)
,g

cc
-5

,g
cc

-7
,

gc
c-

9,
ic

c-
21

O
0,

O
1,

O
2,

O
3

N
on

e
Li

nu
x

20
24

H
er

m
es

Si
m

[6
6]

su
bs

et
of

H
ow

M
LB

in
Si

m
da

ta
se

t
54

89
x8

6,
x8

6-
64

,A
R

M
,

aa
rc

h6
4,

M
IP

S,
M

IP
S6

4

cl
an

g-
3,

cl
an

g-
5,

cl
an

g-
7,

cl
an

g-
9,

gc
c-

4,
gc

c-
5,

gc
c-

7,
gc

c-
9

O
0,

O
1,

O
2,

O
3,

O
s

N
on

e
Li

nu
x

*
siz

e
ob

ta
in

ed
fr

om
an

ot
he

r
pa

pe
r.

**
th

is
da

ta
se

t
is

co
m

po
se

d
of

ob
je

ct
fil

es
.

>
th

e
siz

e
w

as
pa

rt
ia

lly
av

ai
la

bl
e.

N
A

in
fo

rm
at

io
n

is
no

t
av

ai
la

bl
e

T
ab

le
3.

2.
C

om
pi

le
d

D
at

as
et

.

3.8 Dataset 53

Observed Gaps in the Raw Dataset
While some efforts attempt to address limitations in raw dataset collection

[80], several gaps persist:

• The majority of existing studies focus on Linux and x86 architectures,
revealing a need for a more comprehensive dataset that encompasses a
broader range of architectures, operating systems, and compiler toolchains;

• Many studies independently recreate raw datasets from scratch, even
though the raw dataset content is often independent of the specific tasks.
This leads to two main effects:

– Redundancy in data generation efforts;
– Challenges in benchmarking and comparing different solutions solving

the same task.

3.8.2 Binary Representation

After extracting the raw dataset, researchers must determine the most suitable
representation for addressing a specific binary task. This section will focus on the
various methods used to represent a binary. There are two main factors that define
a binary representation. The first is the granularity of the representation, which
involves deciding whether to represent an entire binary, a single function within
the binary, a basic block within a function, or a strand inside a basic block. This
decision is primarily influenced by the task that the model is designed to address:
function-level tasks require a representation of functions, while binary-level tasks
require a representation of the entire binary. The second factor is the language
used to represent the basic instructions of a binary. This language could be as
simple as the raw bytes that compose an assembly instruction or the assembly
language itself. Some approaches take a more abstract route, using decompiled code
or an intermediate representation of the assembly language. In this section, we will
primarily focus on the first factor: how models represent binaries, functions, basic
blocks, and strands. The language, along with its preprocessing and tokenization,
will be discussed in Section 3.8.3.

Overview of common binary representions. From an high level perspective
there are three main ways in which binaries and functions can be represented:
a graph structure, a linear representation, or with elements extracted through
execution, either concrete or symbolic (see Table 3.3). While basic blocks are
typically represented in their linear form; strands have been represented both in
their linear form and through execution. Regarding graph structures for programs
and functions, ICFG and the CFG, are well-known and widely used and they are the
two most prevalent methods. However, there are also more exotics representations,
most of which are derived from ICFGs and CFGs, that have been used by reviewed
works. It is important to remark that a single work can use multiple representations.
This is done for several reasons:

• It may solve multiple tasks that require different levels of granularity (this is

3.8 Dataset 54

the case of PalmTree and BinBert);

• It may use multiple networks with different representations in parallel. For
example DIRE uses both an LSTM on the linear decompiled code and a GNN
on its AST representation;

• It may employ multiple pipelined steps to obtain a representation. For instance,
OrderMatters first constructs embeddings for basic blocks and then uses these
embeddings to represent nodes in the CFG through a GNN;

• It may use one representation for training and another during inference. For
example, TREX uses function execution traces during training and a linear
representation during testing, while BinBert uses strand and symbolic execution
during training and different representations at inference according to the task
solved.

In the following sections we will detail all the aforementioned representation
at different granularity levels, along with the works that employ them. A visual
summary of the different representation used by the analyzed works is shown in
Table 3.3.

Raw Bytes Assembly Decompiled IR

Binary

Graph

IFG DeepDI

ICFG
DeepBinDiff, SymLM, Codee, BinMLM,

BinEye

BDG XBA

Execution Concrete DeepVSA PalmTree

Linear BinEye, RFBNN, o-glassesX, XDA BinEye

Function

Graph

CFG

Gemini, GMN, GraphEmb, CodeCMR,

NFRE, Codee, OrderMatters, PalmTree,

MAIE

VulHawk, Punstrip, XFL,

BinFinder, NeurDP

CECFG Asm2Vec

LSFG VulSeeker VulHawk

SOG HermesSim

ACSG NERO

DFG PalmTree

AST DIRE

Execution
Concrete TREX, Neuro-Debug2

Symbolic Sem2Vec Punstrip, XFL

Linear Eklavya, adiff, RNND, StackBert

SAFE, Himalia, CODA, TREX,

StateFormer, PalmTree, BINSHOT,

JTRANS, AsmDepictor, BinBert,

Callee, SymLM, NFRE, MAIE

DIRE, VarBert, DIRECT, DIRTY

Basic

Block
Linear

InnerEye, XArchInstrEmb, BinBert,

CodeCMR, GraphEmb, OrderMatters
VulHawk

Strand
Execution

Concrete BinBert

Symbolic BinBert

Linear Zeek, BinBert

Table 3.3. Categorization of works according to the binary representation used.

Binary-level Representations

As mentioned before, binary-level representations can be classified into linear, graph,
and execution-based representations. Each of these representations will be discussed
in the following paragraphs.

3.8 Dataset 55

Linear Representation. Unceremoniously, a linear representation of a binary
is a sequence of information that represents the binary itself. It can either be
the entire sequence of bytes composing the binary, in their order in the raw file,
or, in its high-level version, the sequence of assembly instructions composing the
binary. When we consider very long sequences of bytes or instructions, we must
take into account that it is impractical to feed these entirely into a deep learning
model. Therefore, all the works we surveyed use some strategy to reduce the size
of the information processed in one step. The most common strategy is to use
subsequences. For example, RFBNN and XDA solve the function boundary and
instruction recovery tasks by using fixed-length subsequences of the entire binary
byte sequence under analysis. BinEye solves the code authorship task by using,
among others, two linear representations: bytes converted into an image (prior to
disassembly) and the sequence of opcodes (after disassembly). Note that we consider,
an image to be a linear representation arranged in a grid-like fashion. O-glassesX
uses the byte sequence of instructions after disassembly for the compiler provenance
task by randomly sampling code fragments of fixed size from binaries.

Graph Representations. A natural way to represent a program is by using a
graph to model the relationships between its components. In the literature, the most
commonly used representation of this kind is the ICFG. Other notable representations
are the Instruction Flow Graph (IFG) and the Binary Disassembled Graph (see
Table 3.3). In Figure 3.6, we provide examples of the three representations discussed
above. We will refer to this figure in the following sections to clarify the details of
each representation.

One of the main challenges to overcome when using a graph representation is
deciding how it should be fed to the model. When the model itself is a Graph Neural
Network, there is no need to transform the graph structure, and the only decision is
regarding the features to assign to edges and nodes. When the model is not a GNN,
the graph structure must be transformed in some way. The most common option is
to extract paths from the graph according to some methodology, such as using a
series of random walks. These paths are used as sequences that can be fed into most
models. We will discuss these techniques in detail in the following.

ICFG. The majority of the studies in our survey utilizes the ICFG to represent
a program (see Table 3.3). The ICFG has been explained in Section 3.5. An
example of ICFG can be found in Figure 3.6a. Most studies utilizing the ICFG
transforms it in a set of sequences by performing random walks on it, the sequences
are composed by the assembly instructions encountered during the walks. This is
done in DeepBinDiff, Codee, and BinMLM. Other works extract from the ICFG
more fine grained information. BinEye utilizes the ICFG to extract the sequence of
API calls, while SymLM uses it to extract the calling context of a function. More
specifically SymLM extracts a subset of callee and callers of the function they want
to name; this is done by taking the top ranked callee and callers according to a
frequency based rank. This subset is then represented by using a set of embedding
functions computed using a transformer model.

3.8 Dataset 56

endbr64
push rbp
...
mov edi,1
call f1

mov dword ptr [rbp-8], eax
mov esi, 3
mov edi,2
call f2

mov dword ptr [rbp-4], eax
...
mov esi, eax
lea rdi, [rip+0x11]
mov eax, 0
call printf

mov eax, 0
leave
ret

endbr64
push rbp
mov dword ptr [rbp-4], edi
mov dword ptr [rbp-8], esi
mov eax, dword ptr [rbp-4]
mov eax, dword ptr [rbp-8]
pop rbp
ret

endbr64
push rbp
mov rbp, rsp
...
pop rbp
ret

main

f1

f2

...
mov rax, malloc
call rax

(a) ICFG

main

endbr64
push rbp
...
mov edi,1
call f1

mov dword ptr [rbp-8], eax
mov esi, 3
mov edi,2
call f2

mov dword ptr [rbp-4], eax
...
lea rdi, [rip+0x11]
mov eax, 0
call printf

mov eax, 0
leave
ret

endbr64
push rbp
mov dword ptr [rbp-4], edi
mov dword ptr [rbp-8], esi
mov eax, dword ptr [rbp-4]
imul eax, dword ptr [rbp-8]
pop rbp
ret

endbr64
push rbp
mov rbp, rsp
...
pop rbp
retprintf"a+b=%d\n"

f1

f2

...
mov rax, malloc
call rax

malloc

control flow transfer

code-to-string references
address-taking code-to-code references
direct calls

(b) Binary Disassembled Graph

0: f3
1: 0f
2: 1e
3: fa
4: 55
5: 48
6: 89
7: e5
8: 89

...

0: endbr64
1: nop edx
2:
3: cli
4: push rbp
5: mov rbp, rsp
6: mov ebp, esp
7: in eax, 0x89
8: mov dword ptr[rbp-4], edi
...

0

1

2

3

4

f3 0f 1e fa
0f 1e fa

fa
55

48 89 e5
89 e5
e5 89

89 7d fc
...

5

6

7

8

Superset
Disassembly

assembly bytesraw bytes

overlap edge
forward edge
backword edge

(c) Instruction Flow Graph

Figure 3.6. Examples of different graph representation at binary level.

Binary Disassembled Graph. The Binary Disassembled Graph (BDG) is a
novel modified ICFG introduced by XBA. A graphical representation is in Figure
3.6b. The BDG is a ICFG in which graph nodes do not only represent basic blocks
but also external functions and strings. Besides traditional node relationships,
which include control-flow transfer between basic blocks and direct calls, the Binary
Disassembled Graph also contains two other types of relationships:

• Address-taking code-to-code references: these relationships happen when a
basic block contains instructions that use the address of another function;

• code-to-string references: they connects a basic block with a string node
referenced within that block.

Additionally, because XBA ultimately uses a GNN, no further conversion of the
graph-based representation is needed. In other words, XBA directly employs a BDG

3.8 Dataset 57

with bag-of-words features to represent its nodes.

Instruction Flow Graph. The Instruction Flow Graph (IFG) is a binary
representation used for the disassembly task by DeepDi. Since this representation
precedes the disassembly phase, the right assembly instructions composing the
binary are not known. Therefore, the IFG is a graph that represent the relationships
between all the potential assembly instructions in which a certain sequence of bytes
could be disassembled. More specifically the concept of superset disassembly [21]
is used to disassemble every executable byte offset to determine all the possible
instructions (see Figure 3.6c). All such instructions represent the nodes of the
Instruction Flow Graph. Among these nodes, three type of relationships exists:

• The forward relationship exists between node i and node j if the next instruction
of i can be j (for instance i jumps to j or calls j);

• The backward relationship is the same relationship as the forward one but in
the opposite direction;

• The overlap relationship happens when instruction i overlaps with j, i.e. the
starting address of instruction j is inside instruction i. Intuitively, an overlap
edge indicate that a certain pair of instructions is incompatible as the existence
of both is impossible.

Each potential instruction is also converted into a feature vector via instruction
embedding, preserving its semantic meaning. The feature vectors are propagated
through the IFG using a Relational Graph Convolution Network model (R-GCN [132])
to capture neighboring information, and then fed into a classification layer to predict
whether the corresponding instructions are valid. All the aforementioned layers are
connected and trained in an end-to-end supervised manner.

Execution-based. Concrete execution is employed by DeepVSA to address the
Value Set Analysis problem, specifically by training the model on execution traces.
Similarly, Palmtree also utilizes concrete execution, as it tests its model on the same
task. An execution trace, in this case, is the sequence of machine code or instructions
executed at run-time.

Function-level Representations

Analogously to binary-level representations, function-level representations can be
classified into graph, linear and execution-based representations.

Graph Representations. Besides, traditional representations (CFG, Data Flow
Graph or Abstract Syntax tree), reviewed works also use custom representations,
such as Callee-expanded CFG, Labeled Semantic Flow Graph, Semantic Oriented
Graph and Augmented Call Site Graph. All such different representations will be
outlined in the following paragraphs.

3.8 Dataset 58

CFG. A definition of the CFG has already been provided in Section 3.5.
Similar to our discussion of the ICFG at the binary level, studies in the revised
literature either use this graph representation directly or leverage it to extract specific
information, such as instruction sequences or manually crafted features. Works using
the CFG directly include Gemini, GMN, GraphEmb, CodeCMR, VulHawk, Codee,
MAIE and OrderMatters. Additionally, since PalmTree attaches its embedding
model under Gemini, it uses the CFG direclty as well. It is worth noting that
Codee also performs random walks on the CFG to extract instruction sequences for
training a token embedding model, a technique also employed by NFRE. Moreover,
OrderMatters uses the CFG to extract basic block pair sequences to pretrain its model
on recognizing whether two basic blocks are adjacent (Adjacency Node Prediction).
This pretraining task helps the model to better understand the flow of control
between basic blocks and instructions. Lastly, BinFinder, Punstrip and XFL use
the CFG to extract manual features representing a binary function.

Callee-expanded CFG. A Callee-expanded CFG (CECFG), introduced and
utilized by Asm2Vec, is a CFG where callee functions are inlined based on a
decoupling metric. This decoupling metric determines whether a callee function
operates as a utility function6, indicating its level of independence from the caller.
Function that have a low score will be inlined in the caller. However, if the callee
function is significantly longer than the caller, it will not be inlined. Asm2Vec
extracts instruction sequences from this representation using edge sampling 7 and
random walks.

Labeled Semantic Flow Graph. The Labeled Semantic Flow Graph (LSFG)
have been introduced by VulSeeker. Specifically, a LSFG is a CFG in which edges
from the Data Flow Graph (DFG) are added. CFG and DFG edges are distinguished
by specific labels associated to the edges. Vulseeker directly utilizes this graph-based
representation by feeding it into a GNN, with basic blocks represented by manually
crafted features. Additionally, although not explicitly stated in the paper, VulHawk
uses a variant of this representation on the IR to extract basic block pair sequences to
pretrain its model. This pretraining, known as the Adjacent Block Prediction Task,
helps the model understand the data-flow relationships between adjacent blocks.

Semantic Oriented Graph. The Semantic Oriented Graph (SOG) is a binary
representation proposed by HermesSim to more effectively capture the semantics
of binary functions. In this graph, each node represents a token of an instruction
(either an opcode or an operand) in the Intermediate Representation (IR), and it
incorporates three types of relationships:

• Data relationships exist between nodes that represent tokens of the same
instruction. Numbers on the edges indicate the different orders between the
opcode and operands. Data relationships also exist between nodes that share
a def-use relationship;

6A routine used by multiple functions to perform simpler tasks.
7They randomly sample edges from the CECFG and for each sampled edge, they concatenate

their assembly code to create a sequence.

3.8 Dataset 59

• Control relationships represent the control flow between instructions;

• Effect relationships capture restrictions on the execution order between in-
structions.

HermesSim directly use this graph-based representation by using a GNN.

Augmented Call Site Graph. The Augmented Call Site Graph (ACSG),
introduced by NERO for the function naming problem, is built from the CFG.
In this graph, nodes are call sites in the disassembled code,while edges represent
the execution order of these call sites. Each call site is actually augmented by
reconstructing the register used as arguments and using pointer-aware slicing to
retrieve their values. Such values are either concrete or abstract values. Abstract
values are an approximation of the real concrete values and fall into the following
categories: arguments (ARG), global (GLOBAL), return from calling procedure
(RET) or local variable stored onto the stack (STK). NERO directly uses this
graph-based representation by using a GNN.

Data Flow Graph. Palmtree uses the Data Flow Graph (DFG) to create
instruction pair sequences for pretraining its model on recognizing data relation-
ships. The task involves determining whether a Def-Use relationship exists between
instruction pairs.

Abstact Syntax Tree. The Abstract Syntax Tree (AST) built on the decom-
piled code is used by DIRE for the variable naming task. More specifically DIRE
employs an augmented AST in which new type of edges are added: edges from
function names to its arguments nodes, edges from terminal nodes to its successor to
capture the sequence and edges from variable nodes to a virtual node connecting all
occurrences of that variable within the code. DIRE directly uses this graph-based
representation by using a GNN.

Linear Representation. The linear representation is the most common repre-
sentation and consists of the sequence of instructions provided by a disassembler
or a decompiler. The disassembly instruction sequence can also be seen as a Lin-
earized CFG, that is the sequence of instructions obtained by ordering basic blocks
according to their addresses. The downside of this representation is that blocks
and instructions which are not logically related could be place one after the other,
thus possibly introducing some noise. The disassembly instruction sequence with
raw bytes is used by Eklavya, αdiff , StackBert and RNND (which actually used
smaller snippets rather than entire functions). On the other hand, the disassembly
instruction sequence with assembly instructions is utilized by SAFE, Himalia, CODA,
TREX, Stateformer, BINSHOT, JTRANS, AsmDepictor, BinBert, and NFRE. Ad-
ditionally, Palmtree employs this sequence for the function signature recovery task,
and although not explicitly stated in the paper, MAIE also uses it to train its
instruction embedding model. Furthermore, SymLM leverages this sequence through
TREX to generate function embeddings, and Callee extracts assembly snippets from
both the callee and the callsite to recover the call graph. The decompiled code

3.8 Dataset 60

sequence is utilized by VarBERT, DIRTY, and DIRECT (which uses chunks of
this representation). Additionally, DIRE employs the decompiled code sequence
alongside the AST representation.

Execution-based. Some works in the revised literature utilize function execution
information for training their model. Specifically, TREX and Neuro-Debug2 use con-
crete execution to extract execution traces, while Sem2Vec uses symbolic constraints
for model training. Additionally, Punstrip and XFL leverage symbolic execution to
extract manual features for their models.

Basic-block-level Representations

Basic blocks are only represented in their linear form, i.e. by the sequence of
instructions within a block. The linear representation is employed by InnerEye
and XArchInstrEmb for the basic block similarity task, and by BinBert for the
strand recovery task. Furthermore, CodeCMR, GraphEmb, OrderMatters and
VulHawk utilize basic blocks to train models that generate embeddings, which are
then integrated into other networks to represent functions.

Strand-level Representations

Strand-level representations used in the literature are linear and execution-based.

Linear representation. The linear strand representation is used by BinBert in
the pre-training phase and also for the strand similarity and strand execution tasks.
Additionally Zeek, uses strands to represent a function.

Execution-based. Strand execution is only used by BinBert. Specifically it uses
symbolic execution during the pre-training phase and concrete execution for the
strand execution task.

Observed Gaps in the Binary Representation
From the analysis of binary presentations used in the revised literature we

idefied two main gaps:

• Proliferation of custom representations: numerous custom representations
have been developed across works addressing specific tasks. Unfortunately,
they do not compare properly with standard representations. Additionally,
the current literature lacks a comprehensive study that compares these
various representations across multiple tasks;

• Scarcity of works based on execution information: most commonly used
representations are standard ones, such as linear, CFG, and ICFG-based
approaches, while only a few works utilize execution-based information.
As a result, most studies offer capabilities similar to those of static analysis
solutions, leaving the potential of execution-based information in binary
representation largely unexplored.

3.8 Dataset 61

3.8.3 Preprocessing and Tokenization

In this section, we describe how the works we surveyed preprocess and tokenize the
basic instructions of the binary representations they use. From the literature, we
identified four different ways of interpreting what constitutes a basic instruction in
a binary:

• Raw bytes: In this case, the basic instruction is simply the raw bytes that
compose the binary. Depending on the binary representation used, these may
be the bytes of a basic block in the CFG, or the bytes composing a single
instruction;

• Assembly instructions: Here, the basic instructions are the assembly in-
structions obtained by disassembling the raw bytes. This is the most common
way of representing instructions in the literature, making it the predominant
approach (see Table 3.3);

• Instructions from intermediate representations: A few works [29, 53, 66,
103,117,127] use basic instructions obtained from some intermediate represen-
tation, such as Ghidra’s PCode 8 or VEX IR;

• Instructions from decompiled code: in this case the binary is first decom-
piled to an high level decompiled code. The instructions of this code are used
by the model.

Below, we provide details for each of the categories above, outlining the techniques
encountered for preprocessing and tokenizing instructions.

Raw Bytes. In this Paragraph we will first outline the preprocessing and then
the tokenization strategies used in the literature for processing raw bytes.

Preprocessing. When using raw bytes for Instruction Set Architectures (ISAs)
with variable-length encoding, such as x64, a key decision is whether to pad the
byte string to a fixed length. Fixed-length padding is employed in approaches
like DeepVSA and o-glassesX. Additionally, instructions can be preprocessed into
different formats, such as sequences or other structures. For instance, techniques like
BinEye, o-glassesX, and αdiff arrange bytes in an array or matrix format, allowing
them to be effectively processed by convolutional neural networks (CNNs). Some
approaches, like StackBert, only extract bytes corresponding to opcodes.

Tokenization. In terms of tokenization, most methods treat a byte as the
basic token. The only exception is o-glassesX, which uses bits instead due to its use
of short sequences of only 16 instructions, where bit-level granularity is feasible.

8Ghidra’s PCode is an intermediate representation used by the Ghidra software reverse engineering
framework.

3.8 Dataset 62

Assembly. When dealing with assembly instructions, it is essential to apply
effective preprocessing and tokenization strategies to manage the vocabulary size.
In fact, unlike natural language, which typically has a vocabulary of hundreds
of thousands of distinct words, the vocabulary of assembly instructions can grow
significantly. This increase is due to the many variations in instructions, especially
when considering the numerous possible immediates, offsets, and memory addresses
that can associated to a single instruction. Without well-defined preprocessing and
tokenization rules, the vocabulary size can become unmanageably large. In the
following sections, we will first discuss preprocessing strategies and then explore
tokenization methods for handling assembly instructions effectively.

Preprocessing. Assembly instructions typically consist of at least an opcode
and often one or more operands. We can categorize the operands into memory
references, immediate values, and registers. Consequently, the preprocessing of
assembly instructions must take into account specific techniques for the opcode and
for each of these categories:

• For opcodes, they are generally left unchanged in most studies. Notable
exceptions include CODA, which filters out "nop" instructions, and XBA,
which uses an "icall" token to distinguish between indirect and direct calls;

• Regarding immediate values, studies such as Binshot, Codee, DeepBinDiff,
Himalia, and XBA replace all constants with a single special token, while
others, such as Innereye, MAIE, XArchInstrEmb, and NFRE, differentiate
between negative and positive values. NFRE, in particular, also employs a
special token for the zero value. Additionally, works like BinBert, GraphEmb,
JTrans, Neuro-Debug2, PalmTree, and SAFE retain immediate values within a
specified threshold, substituting all others with a special token. This threshold-
based approach is motivated by the likelihood that small constant values carry
informative content (e.g., comparisons with small constants in branches and
loops, or PC/stack-relative displacements identifying variables in memory).
Sem2Vec, on the other hand, applies logarithmic normalization to map values
to a smaller set. TREX and StateFormer replace all values with special tokens
within the assembly sequence and transfer them to another sequence, which is
processed by a separate network;

• Registers are typically left unchanged. However, some works that adopt more
aggressive preprocessing apply normalization rules to further reduce vocabulary
size. For instance, Himalia replaces general-purpose and control registers with
two distinct special tokens. In contrast, Binshot, Codee, DeepBinDiff, and
XBA replace registers with special tokens that retain only information about
the size of the register used. More specifically, Binshot uses different tokens
for stack, base, and instruction registers;

• Memory references in assembly code can be classified as either direct or indirect.
In direct addressing, the memory address of the operand is explicitly specified
in the instruction. In contrast, indirect addressing occurs when the memory
address is determined by a combination of registers or memory locations, often

3.8 Dataset 63

using base registers, index registers, and displacement values. Some works do
not consider these distinctions and instead replace all memory addresses with
a single special token, as in the cases of XBA, DeepBinDiff, Codee, and Neuro-
Debug2. More specifically, XBA differentiates the sizes of accessed memory
using different tokens. Other works, such as GraphEmb and SAFE, only
replace direct addressing with a special token. Conversely, Himalia uses three
different tokens to distinguish between direct memory access, addressing modes
with base and index registers, and those with base, index, and displacement.
Additionally, each memory reference can represent the address of a function,
a jump target, a string reference, a static variable, or other data types. In
this regard, IDA uses prefixes to help the analyst differentiate these types
of memory addresses. Some works, such as Calle and MAIE, leverage this
information by retaining these prefixes during preprocessing. Specifically, while
MAIE only retains the prefixes, Calle also keeps the memory reference by
applying a modulo N normalization. For memory references representing jump
targets, BinBert, Binshot, Innereye, and NFRE replace them with a single
special token, while Himalia differentiates between far and near addresses.
JTRANS replaces jump targets with a special token that tracks the position of
the targeted instruction within the sequence. Regarding call memory addresses,
works like Innereye, JTrans, MAIE, and XArchInstrEmb replace them with
a unique special token, while Asm2Vec, BinBert, Binshot, NFRE, and XBA
retain libc function names. These function names are typically preserved
in stripped binaries due to dynamic linking. Regarding strings, similarly to
call addresses, some works (Binshot, Innereye, JTrans, MAIE, PalmTree and
XArchInstrEmb) use a special token, while others substitute the address with
the string itself (DeepBinDiff, Neuro-Debug2). This is because strings are
likely to carry informative high-level information. Finally, Binshot and MAIE
use a special token also to identify static variables.

Additionally, MAIE is the only work that also define ISA-specific rulels. For
instance, the ARM architecture use curly braces to perform the same operation
on multiple registers (e.g. PUSH {R4, R5, R6}). In this case, MAIE expand the
single instruction into multiple ones. Another example in both ARM and MIPS
architectures, is represented by registers which are aliases of others (e.g. SP which is
an alias of R13 and R29 in the two architectures respectively). In this case, MAIE
removes all the aliases.

Moreover, some works focus exclusively on opcode (e.g., BinEye, BinMLM, GMN)
or API call (e.g., BinEye) sequences.

Finally, it is worth mentioning that AsmDepictor is the only work that demon-
strates, through an ablation study, that the best performance is achieved without
any form of normalization.

Tokenization. Regarding tokenization, we have identified four strategies:

• Istruction based - the entire instruction is a considered as a token. This
approach is adopted by Binshot, InnerEye, MAIE, SAFE, XArchInstrEmb and
XBA;

3.8 Dataset 64

• Opcode and operand based - opcode and operands are sperate tokens. This is
the case of Asm2Vec, Codee and GraphEmb;

• Puctuation based - the tokenization is performed on puctuations, meaning
that a single operand can be split into multiple tokens. This approach is used
by CODA, JTRANS, Neuro-Debug2, PalmTree, StateFormer, SymLM and
TREX;

• Automatic tokenization - this tokenization scheme uses algorithms such as
WordPiece or Byte Pair Encoding (BPE) and represents the standard in the
NLP community. This algorithms are used by AsmDepictor and BinBert.

Decompiled Code. In the paragraphs below we will first illustrate the prepro-
cessing and then the tokenization strategies used for the decompiled code.

Preprocessing. Decompiled code is primarily used in studies focused on
recovering variable names. One preprocessing technique identified is replacing
variable names with placeholders, a method employed by DIRE.

Tokenization. In terms of tokenization techniques, DIRE and DIRECT use
SentencePiece, whereas DIRTY and VarBert use BPE.

Intermediate Representation. In the text below we will first illustrate the
preprocessing strategies and then the tokenization ones for the Intermediate Repre-
sentation.

Preprocessing. Preprocessing rules for Intermediate Representation (IR) have
been established by works such as HermesSim and VulHawk, which utilize different
IRs—specifically, Ghidra Pcode and IDA Microcode. Consequently, their prepro-
cessing rules may vary, though a common approach can still be identified. Both
works employ a frequency-based method to include tokens in the vocabulary, with
tokens outside the vocabulary being replaced by root tokens that capture their basic
semantics. Furthermore, VulHawk normalizes addresses by substituting them with a
designated token.

Tokenization. Regarding tokenization, VulHawk explicitly splits instructions
into an opcode and three operands, whereas HermesSim does not provide specific
details about its tokenization strategy.

Observed Gaps in the Preprocessing and Tokenization
Although some efforts have been made to study the effects of tokenization

and preprocessing on assembly code [13,82], many studies in the literature tend
to redefine their own rules, often without adequate comparison to prior works.

3.8 Dataset 65

3.8.4 Feature Extraction

Feature extraction involves converting a preprocessed binary representation into a
vector of real numbers. In the reviewed literature, this process is achieved using both
precomputed features and features trained together with the network. Specifically,
precomputed features include manually crafted features extracted from the binary
representation and features derived using unsupervised embedding methods. These
precomputed embeddings are then kept fixed (frozen) and used as input for a
subsequent deep neural network. In contrast, features trained together with the
network typically involve a downstream embedding layer, often implemented as a
learnable matrix, or another underlying network that is trained end-to-end along
with the final task.

Manually Crafted Features. Similar to the approach presented in [80], manual
features can be categorized into presemantic and semantic features. Presemantic
features include properties that can be derived directly from the disassembled code
without the need for additional analysis. In contrast, semantic features necessitate
more advanced analysis techniques, such as symbolic or dynamic execution, to be
extracted. Both presemantic and semantic features can be numerical or cathegorical.
Additionally, some works use basic block-level features, while others use features at
function level. For example, Gemini and Vulseeker employ numerical presemantic
features, which are either derived from the syntax (e.g., the count of call and
arithmetic instructions) or from the structure of the binary representation (e.g., the
number of outgoing edges in a basic block). Similarly, TIKNIB and BinFinder utilize
numerical presemantic features, but at the function level (e.g. number of callers and
callees). In addition to numerical features, BinFinder also incorporates categorical
features, such as the list of libc calls or the list of unique VEX instructions. XBA
employs a bag-of-words representation of instructions within a function, which is
classified as a categorical presemantic function-level feature. Additionally, Sem2Vec
enhances a precomputed function embedding with two additional manual features:
a bit indicating whether the call stack is empty (a semantic numerical feature) and
a one-hot encoding of external function calls (a categorical presemantic feature).
Moreover, Zeek uses an hash value of the strands composing a function. Since strand
computation, requires a semantic analysis, this feature is considered semantic and
cathegorical. Finally, Punstrip and XFL use both presemantic and semantic features.
Specifically, they both use symbolic execution to extract semantic features.

Pre-computed Unsupervised Embeddings. To precompute features, many
studies utilize the word2vec model. This approach is employed by works such
as Eklavya, InnereEye, GraphEmb, SAFE, XArchInstrEmb, Bineye, DeepBinDiff,
NFRE, and Codee. However, more recent studies, including OrderMatters, PalmTree,
Sem2Vec, SymLM, and VulHawk, adopt a more sophisticated approach based on
pre-trained transformer architectures. For example, OrderMatters and VulHawk
pre-train a transformer network on a specific pre-training task and then use it to
generate basic block embeddings, which are subsequently fed into a Graph Neural
Network.

3.9 Deep Learning Models 66

Features Trained with the Network. As previously mentioned, some works
train features alongside the network by employing an embedding layer in the form
of a learnable matrix at the base of another network, such as an RNN. Examples of
this approach include RFBNN, HIMALIA, DIRE, and BinMLM. Another approach
involves using CNNs, where the convolutional layers are trained together with a feed-
forward network to extract features. This method is utilized by αdiff , BinEye, and o-
glassesX. In addition, some works, like DeepVSA and CodeCMR, adopt a hierarchical
approach, where they use another network to learn the embeddings. Furthermore,
many studies automatically learn features using transformer architectures, as seen
in TREX, VarBert, StateFormer, DIRECT, XDA, StackBert, Binshot, JTRANS,
DIRTY, AsmDepictor, and BinBert. Finally, other works that use features trained
alongside the network include GMN, Asm2Vec, NERO, SymLM, DeepDI, NeurDP,
and HermesSim.

Observed Gaps in the Feature Extraction
Although TIKNIB [80] has recently claimed that manually crafted features

can achieve good performances in the binary code similarity task, our survey
reveals a growing trend toward eliminating the use of manual features. Instead,
recent approaches increasingly focus on automatically learned features, trained
directly with the network. Thus, further research is needed to explore the full
potential of automatically learned features in binary code analysis tasks, inves-
tigate their generalizability across different tasks and datasets, and determine
whether they can consistently outperform manually crafted features in various
real-world scenarios.

3.9 Deep Learning Models
Regarding deep learning models employed by works in the revised literature we
observe that, while some works opt to use standard unmodified networks, the
majority of works apply custom modification to standard architectures.

3.9.1 Standard Networks

The analyzed works in the literature based on standard networks manly rely on six
different neural network types: RNN, Feed Forward Networks, CNNs, autoencoders,
Transformers and graph-based networks. Specifically, RFBNN, Eklavya, RNND,
InnerEye, SAFE, HIMALIA, DeepVSA and NFRE use standard RNN-based ar-
chitecture. Asm2Vec uses the PV-DM model [86], αdiff uses a CNN, Zeek and
BinFinder rely on Feed Forward Network while XFL uses an autoencoder followed
by a multilabel classifier. Among works using unmodified transformer networks we
can find XDA, StackBert, PalmTree, Neuro-Debug2 and BinBert. Finally, regarding
standard graph-based networks, GEMINI and GraphEmb use the structure2vec
network [40], XBA uses a Graph Convolutional Network (GCN) [83], HermesSim
uses a Gated Graph Neural Network (GGNN) [94] and DeepBinDiff uses the TADW
model [162].

3.9 Deep Learning Models 67

3.9.2 Custom Networks

Most studies in the revised literature focus on modifying existing networks. The
sole exception is GMN, which introduces a novel graph-based network. Unlike
traditional methods that compute embeddings of graph input pairs separately before
determining their similarity, GMN computes a similarity score directly on the input
pairs in a joint manner.

We have identified three key types of customizations implemented in the reviewed
works:

• Modifications made to the internal structure of existing networks;

• Custom combinations of encoder-decoder architectures;

• Integration of multiple networks in a unique configuration.

In the following sections, we will discuss each of these approaches in detail.

Internal Modifications. Works under this cathegory, mainly operate modifica-
tions to the Transformer architecture (JTRANS, AsmDepictor, DIRTY, StateFormer,
TREX, VarBert, DIRECT). However, we also identified two works, Vulseeker and
o-glassesX, that operate modifications to the structure2vec network and to CNN.

More precisely, Vulseeker slightly changes the node embedding computation in
the structure2vec network so as to handle two different sets of neighbouring nodes
(i.e. nodes connected by control flow or data flow relationships), while o-glassesX
adds positional encoding and attention mechanism to a CNN.

Regarding transformer modification, JTRANS implements in the transformer
network a parameter sharing mechanism between jump instructions and their targeted
instructions by using the embedding of the former as the positional embedding of
the latter. The rational behind this choice is to connect source and target jump
instructions, which are usually distant in the flat CFG representation. AsmDepictor
applies 3 main modifications to the standard transformer encoder-decoder network.
First of all, it reduces the number of stacked layers, secondly it repeats the position
embeddings at the beginning of each layer and lastly it modifies the softmax function
to better balance attention values. Another example is represented by DIRTY
which uses a modified transformer encoder-decoder network to solve the variable
naming problem. The first modification lies in the encoder part, in which they
introduce a pooling mechanism to produce a unique representation of variables
appearing in multiple decompiled code locations. Additionally, at the decoder side,
they train another transformer-based network, referred to as Data Layout Encoder,
which is responsible of producing a softmax used to reduce the likelyhood of less
probable variable types. StateFormer and TREX use a modified transformer which
laverages separate networks for handling concrete numerical values in the assembly
sequence, specifically StateFormer uses a Neural Arithmetic Unit (NAU) [104], while
TREX uses a bi-LSTM network. Other works based on slightly modified transformer
networks are VarBert and DIRECT which solve the variable naming problem. More
precisely, VarBert uses a variation of the masked language modeling task, named
Constrained Language Modeling to recover variable names. Moreover, since the
number of tokens composing a variable name is unkwown at inference time, they

3.9 Deep Learning Models 68

introduce a heuristic approach to estimate that number. On the other hand, DIRECT
addresses the challenge of variables consisting of an arbitrary number of tokens by
employing a dedicated transformer decoder for each variable. Additionally, since a
variable name must be the same for all of its occurences, DIRECT implements a
customize beam search algorithm to choose the most probable name.

Custom Encoder-Decoder combinations. Depending on the task, some studies
need to handle multiple types of sequences. For example, the function naming task
involves both assembly sequences and natural language name tokens. In these cases,
encoder-decoder networks are commonly employed, with some works utilizing custom
combinations of encoders and decoders. For instance, in order to solve the variable
name recovery problem, DIRE uses two encoders: a Bi-LSTM encoder on the flat
decompiled code sequence (lexical encoder) and a GGNN encoder [94] on a modified
AST of the decompiled code (structural encoder). The decoder of DIRE is an
attention-based LSTM which outputs identifier names. Another example is CODA
which uses a N-ary Tree-LSTM encoder and a tree-LSTM decoder [141]. NERO and
NeurDP employ a GNN based encoder and an LSTM decoder. More specifically, the
GNN used by NERO is a GCN [83] while the one used by NeurDP is a GGNN [94].

Combination of Multiple Networks. Some works use a combination of existing
networks to either process different input types separetely or to aggregate embeddings
produced at different stages.

For instance, BinEye uses multiple CNNs to process 3 different binary represena-
tions (binary converted to an image, sequence of opcodes and API calls).

OrderMatters use three main components to process a binary function: a semantic
aware component based on a pretrained transformer model which is used to produce
basic blocks embeddings, a structural aware component that uses a Message Passing
Neural Network [58] to compute the graph embedding starting from node embeddings
and an order aware component which produces embeddings of the adjacency matrix of
CFGs by using a CNN called Resnet [67]. The final function embedding is computed
by concatenating the structural aware embedding with order aware embedding and
by using a feed forward network on it.

Similarly to OrderMatters, CodeCMR uses the HBMP [142] model to produce
node embeddings and then use a GGNN [94] to produce a representation for the
whole graph. Additionally, CodeCMR represents integers and strings separately
using two LSTM based networks. The final embedding is obtained by concat and
batch normalization of the three embeddings.

Other examples are Vulhawk and DeepDI. VulHawk uses a GCN [83] on the
CFG with initial node embeddings produced as mean pooling of the second last
layer of hidden states of a transformer previously pretrained on some specific tasks.
DeepDI uses a RNN to create instruction embeddings and then a Relational-Graph
Convolutional network (R-GCN) [132]. Since this network is used to solve the
disassembly task, on top of each node it has a fully connected layer with a sigmoid
function to output the likelihood for each instruction of beeing a valid one.

Sem2Vec is based on a three steps approach. In fact, it first uses a transformer
pre-trained on symbolic execution contraints and fine-tuned with a siamese network

3.10 Pre-training Tasks 69

by matching symbolic constraints that come from the same line of source code.
Thein it produces embeddings for tracelets by choosing their K longest symbolic
constraints and creating a unique embedding using the HBMP network [142]. Then
they concatenate the resulting embedding with a one hot encoding vector representing
external function calls inside the tracelet and with a bit representing wether the
next block of a tracelets belongs to the same function or not. Finally, in order to
compute the embedding for a function, they use a GGNN [94] on its tracelets.

SymLM uses TREX to produce token embeddings and then a pooling scheme to
create function embedding. Additionally, in order to make the function embedding
aware of the binary context, SymLM creates an embedding lookup matrix for external
functions which is trained together with the network. For internal functions, it
uses TREX to produce their embeddings. The final embedding is obtained by
concatenating all these embeddings.

Observed Gaps in the Deep Learning Models
Most of the revised studies utilize custom networks, often resulting in complex

architectures without sufficient comparison to baseline approaches. Therefore,
further research is needed to determine whether these intricate architectures
are really necessary for specific tasks or if there exists a specific architecture
that can effectively represent binary code and address multiple tasks with good
performance.

3.10 Pre-training Tasks
As discussed in Section 2.2.2, the pre-training and fine-tuning paradigm has become
the standard approach for NLP tasks. This paradigm involves first training a model
on a large-scale unsupervised task, and then the pre-trained model is fine-tuned
on a specific downstream task. One of the key advantages of this approach is
that downstream tasks typically require manually annotated data, which can be
difficult to obtain in large quantities. Pre-trained models have been shown to
significantly reduce both the amount of labeled data needed for effective performance
on downstream tasks and the number of different task-specific architectures. [44].

Similar considerations apply in the context of binary code analysis. However,
unlike NLP, in binary analysis, data for some downstream tasks can be generated
programmatically without requiring human annotation. For example, a dataset for
toolchain provenance tasks can be created by compiling source code and storing
toolchain-related information. Nevertheless, programmatically generated data can
sometimes be inaccurate (e.g. function names may be imprecise depending on the
programmer) or incorrect (e.g. in function-level binary-to-source code matching
tasks, the source line information extracted from debug data can be erroneous [45]).

For these reasons, the revised works based on the transformer architecture have
used some pre-training tasks. Specifically, besides small variations of the traditional
Masked Language Modeling (MLM) task, these works also use different and custom
pretraining objectives.

We categorized them into 5 clusters: CFG related tasks, compilation tasks,
execution related tasks, data-flow related tasks and semantics tasks. Each of these
cathegories will be analyzed in detail in the following paragraphs.

3.10 Pre-training Tasks 70

CFG Related Tasks. These tasks require the model to predict properties that can
be derived from the CFG. For instance OrderMatters uses two tasks: the Adjacency
Node Prediction (ANP) and Block Inside Graph (BIG). The ANP task consists in
predicting wether two blocks are adjacent or not, wheter the BIG task consists in
detecting wether two blocks exists in the same graph.

JTRANS implements the Jump Target Prediction (JTP) task in which, given
a randomly selected jump source token, the model is required to predict its corre-
sponding target token.

Finally, PalmTree uses the Context Window Prediction (CWP) task which
consists in making the network recognise if a pair of instructions is taken from the
same context window or not.

Compilation Tasks. These tasks force the model to recognise the configuration
settings of a specific binary code. One of the works using this kind of task is
OrderMatters, which uses the Graph Classification (GC) task to classify blocks in
different platform, architectures and optimization.

Another example is Neuro-Debug2 that relies on the task named Asm/ Source
Mapping Prediction task, where the objective is to have the network predict whether
a given sequence of assembly instructions is correctly mapped to a certain source line.
This task is considered a compilation related task since the mapping information
is written at compile time, and thus it represents the way in which the compiler
associate a certain assembly code snipppet to the source code lines.

Execution Related Tasks These tasks rely on information extracted during the
binary code execution, so as to make the network aware of the effect that specific
instructions have at runtime. For instance StateFormer uses the Generative State
Modeling (GSM) task which consists in predicting masked micro trace concrete
values and in detecting wether a particular instruction is executed in a trace or
not. Similarly, TREX is based on the task of recovering micro trace values. Finally,
BinBert uses a symbolic execution task named, Strand-Symbolic Mapping (SSM),
in which the goal is to predict whether the symbolic expression matches the strand.

Data-flow Related Tasks. These tasks are based on data-flow information
and are used by PalmTree and VulHawk. Specifically, PalmTree uses the Def-Use
Prediction (DUP) task in which the network has to recognize if there is a data
dependency between instructions. Similarly, VulHawk relies on the Adjacent Block
Prediction (ABP) where, given a basic block A that contains a variable definition
and a subsequent basic block B in which that variable is used, the task is to label
the order of A-B as positive and the order of B-A as negative.

Semantics Tasks. These tasks rely on semantic aspects of instructions. The only
work we observed that is based on this task is VulHawk. In particular, VulHawk
utilizes the Root Operand Prediction (ROP) task which consists of associating the
operand to its semantic root type. The authors divided the operands into 16 types.

3.11 Conclusion 71

Observed Gaps in the Pretraining Tasks
Regarding works relying on pre-training, we observe two main gaps:

• Development of new pre-training tasks: several studies introduce new
pre-training tasks without adequately comparing their effectiveness to the
standard masked language modeling (MLM) task;

• Evaluation on a single downstream task: with the exception of BinBert and
PalmTree, most studies in the literature apply the pre-training and fine-
tuning paradigm to solve only a single task. However, one of the primary
benefits of this approach is the ability to define a unified architecture
capable of addressing multiple tasks.

3.11 Conclusion
In this chapter, we present a systematization of 54 research papers that explore
the application of deep learning techniques to binary analysis tasks. Despite being
a fundamental and promising area of research, few efforts have been made to
systematically organize the diverse solutions proposed in this field. Existing surveys
either do not focus specifically on deep learning approaches [161], or they concentrate
on single specific tasks [105]. In this work, we advance the field by offering a
comprehensive review that spans nine years of research, up to 2024. We identify
a common deep learning pipeline and provide an in-depth analysis of each step,
highlighting key trends across the various approaches as well as gaps that need
further investigation.

72

Chapter 4

Debugging Debug Information
with Neural Networks

4.1 Introduction
Software running in production is highly optimized to maximize its performance
according to several metrics. For compiled languages, binaries are the output of
a compilation process where several optimization techniques are applied. While
these optimizations are critical for the performance of the produced artifacts, they
may expose unwanted behaviors observable only in the optimized case (e.g., race
conditions [73], use-after-free [48], and heisenbugs [165]).

Therefore, debugging the exact version of the binary running in production is key
to triaging specific problems that are otherwise impossible to reproduce. Hence, it is
crucial to have a complete and reliable debugging process for optimized binaries [68].
In order to debug, users need a compiler and a debugger. The compiler, when
instructed to do so, produces a binary that is composed of the binary code and
additional debug information, which for UNIX-like systems is usually encoded using
DWARF [51]. This information is then used by the debugger during the debugging
phase. It is worth noting that while debuggers are the main users of debug info, also
tools consume them too, e.g. profilers.

Preserving the correctness of debug information while optimization passes are
applied is an extremely complex task. To address this challenge, compilers introduced
new optimization levels (e.g., -Og in GCC and clang) specifically targeted at providing
a reasonable tradeoff between the debugging process and optimizations applied. As a
matter of fact, Og is described as the optimization level for the standard edit-debug
lifecycle in the GCC documentation.

However, it has been recently shown [45, 92] that modern optimizing toolchains1

often provide an unsatisfactory debug experience even when using optimization
levels specifically designed for debugging. This happens when the compiler generates
wrong debug information or when the debugger does not handle correctly the debug
information produced. Therefore, it is important to examine debug traces looking
for problems that can be generated by a bug in the toolchain.

1An optimizing toolchain is the union of a compiler capable of optimizing code and a debugger.

4.1 Introduction 73

Recent works [45,92] used a differential testing approach where optimized and
unoptimized binaries are compiled from the same source. The debug traces of the
two binaries are then compared using manually defined invariants. These invariants
look for the inconsistency of some information to identify suspect cases. This
approach can only find bugs that impact the controlled information as predicted by
the invariants’ designers.

Therefore, it would be of extreme interest to build a technique for the automatic
detection of incorrect debug traces without the use of manually defined rules. A
deterministic solution to this problem would entail defining a formal model of the
optimization passes of the compiler. This is far from trivial even limiting the scope
to a single optimization pass.

In this paper, we take a data-driven approach, in which we use a large dataset
to learn a statistical model of correct debug traces. The advantage of this approach
lies in its black-box nature: it does not need knowledge nor makes any assumption
about the internal structure of the compiler and debugger. We are interested in
unsupervised techniques because a labelled dataset of correct/bugged debug traces
is not available, and it cannot be generated automatically.

Specifically, we use neural networks following an anomaly detection approach.
We train several models in an unsupervised way on a dataset of collected debug
traces. Our hypothesis is that the networks may learn the relationships contained in
correct debug traces. This has been inspired by works using a similar approach to
find bugs in source code [6, 89].

We test our models on two novel datasets. A synthetic dataset of bugged debug
traces and another one obtained from real bugs from the LLVM repository. Our
experiments confirm that our models discriminate between bogus and correct traces.
Finally, we test our models in a live analysis to find new bugs in the widely used
LLVM toolchain (composed by the clang compiler and lldb debugger).

4.1.1 Motivating example

Snippet 4.1 shows a bug of LLVM found with our solution. The bug is present
in the latest LLVM when compiling with optimization -Og. When stepping over
instructions, the backtrace information of the lldb debugger wrongly shows that line
3 is inside the main function (this is probably the effect of inlining). This kind of
bug could mislead a developer that sees a return instruction executed right at the
beginning of the main, inferring that the rest of the instructions in that function
will not be executed.

1 volatile int a, g_5108 ; int b;
2 short c(){
3 return g_5108 ;
4 }
5 int main () {
6 c();
7 b = 0;
8 for (;
9 b < 4;

10 b++) a ;
11 }

Snippet 4.1. Clang bug 51511, wrong backtrace information at line 4.

4.2 Related Work 74

4.1.2 Contributions

We provide the following contributions:

• We are the first to consider the problem of detecting bugs in debug information
using DNNs. We use transformer architectures, trained with novel unsupervised
tasks, to create (i) a network that is able to identify a wrong stepping behavior
on a debug trace (SLNet) and (ii) a second one that is able to identify an
incorrect mapping between assembly instructions and source code (MapNet).

• We release three new datasets 2: a large unlabelled dataset constituted by
debug traces, a dataset with debug traces containing synthetic bugs, and a
manually labelled dataset containing real bugs.

• We conduct an experimental evaluation of the proposed architecture on the
aforementioned dataset.

• We use our best-performing networks in a novel fuzzing system. We reported
12 bugs found in the LLVM toolchain: 2 of these bugs have been confirmed
and 10 are pending analysis by the LLVM developers.

4.2 Related Work

4.2.1 Compiler Toolchains Testing

The problem of testing compiler toolchains can be divided into three main branches:
compiler, debugger and debug information testing. While compiler testing has been
widely investigated, little attention has been paid to identifying bugs in debugger
software and debug information of optimized binaries.

Compiler Testing Compilers are widely used and complex software; this complex-
ity makes them prone to bugs. Since compilers are used to build other production
software, these bugs could result in unwanted behaviors, or worse in security-related
problems [72], in different applications. For these reasons, there is a heap of works
focusing on finding compiler bugs [30,35,37,97,134] using compiler testing.

Compiler testing techniques [31] are mainly based on fuzzing: compilers are
fed with random programs either generated from scratch [14, 164] or obtained by
mutating existing ones [87,88]. The generation from scratch uses rules defined for
the grammar of the specific language, mutation-based techniques apply mutations
to programs generated with the first approach. A compiler bug can either generate
a crash or create a program with unwanted behavior; the first case can be easily
detected. The second case is usually detected using differential testing [20,72], which
is based on comparing the results or the behavior of programs obtained from different
compilers. Another approach is metamorphic testing [33], which is based on the idea
of transforming the input while detecting unexpected behavioral changes.

Some novel approaches follow the Big Code trend [6] and are based on NLP
techniques. In particular, [39] and [101] use LSTM architectures for generating and

2https://github.com/FiorellaArtuso/NeuroDebug-2_Dataset

https://github.com/FiorellaArtuso/NeuroDebug-2_Dataset

4.2 Related Work 75

mutating test cases. We remark that they only produce test cases and do not use
neural networks to detect bugs.

Debugger Testing Regarding debugger testing, [90] tests the correctness of
javascript debuggers using a differential approach and assuming that different debug-
ger implementations should exhibit the same behavior. Operatively, they execute
the same debugging actions in parallel and they compare the corresponding results:
every diverging behavior identifies a possible bug. Notice that this approach is not
able to catch debug information bugs, if a debug information is wrong it will result
in the same wrong behavior on different debuggers.

[143] proposes a metamorphic approach for testing the debugger in the Chromium
browser. They transform both the input program and the debugging actions and
they detect whether this transformation causes unexpected changes.

Debug Information Testing There are only two works that identify debug
information errors in optimized binaries [45, 92] and none of them used neural
approaches. Both works are based on differential testing and tackle the problem
using likely invariants. In this approach, a source code program is compiled with and
without optimization obtaining an optimized binary and an unoptimized one. Both
binaries are executed using a debugger and recording the execution traces resulting
in an optimized trace and an unoptimized one. A likely invariant compares these
traces and triggers when a specific inconsistency is detected. This inconsistency
could be caused by a bug in the debug process. An example is the Line Invariant
of [45]; this invariant takes the unoptimized trace and the optimized one and triggers
when there is a line appearing only in the latter. This could be dead code wrongly
shown as executed. We stress the invariant is likely, thus false positives could be
possible; this is true for the other invariants present in [45] as well. To the best
of our knowledge, no technique exists to automatically create invariants for debug
information.

4.2.2 Neural Bug Finding

Several papers [64] used Deep Learning to find bugs in source code across several
languages. We remark that these works focus on finding a bug inside the code and
they do not detect wrong debug information.

An example is the so-called variable misuse bug that mainly occurs when the
developer copies pieces of code from one place to another and forgets to adapt the
used variables to the new location. To solve this problem, [6] represents a program
using a semantic enriched Abstract Syntax Tree (AST) and uses a Graph Neural
Network (GNN) on top of it to predict which variable should be used at a specific
location. Another work is [148], which uses a two-pointer attention-based LSTM to
jointly predict the bug location and the repairing variable.

Some other works focus on fixing errors arising at compile time (e.g. missing
brackets). The problem with this type of errors is that compilers do not always show
the correct error message or the correct bug location, thus misleading the programmer.
[64] solves the problem by using an attention-based sequence-to-sequence network

4.3 Debug Trace, Problem Definition and Overview 76

that takes as input the sequence of tokens representing the program and produces
as output both the bug location and the correct fixed version of the bugged line.

Recent works [24,47] use the concept of pretraining and finetuning of transformer-
based architectures to generate fixes for different kinds of bugs.

Another work is [89], which proposes a Language Modeling based fuzzer for the
javascript engine trained on regression javascript tests. In particular, the authors
splits the AST of the regression test cases into subtrees and, by performing a preorder
traversal of the tree, obtain sequences of such subtrees. The goal of their modified
language model is to make the network predict which subtree comes next. They
generate new test cases by mutating existing regression test cases by using the
obtained language model. With this approach, the authors find lots of bugs and 3
CVE.

4.3 Debug Trace, Problem Definition and Overview
Given a source code c, an optimizing compiler generates an optimized program opt.
From this program, a debugger produces a debug trace T (opt) : [s0, s1, . . . , sn] which
is an ordered list of elements, each representing a step over a machine instruction.
T (opt) is built through instruction by instruction step execution: we set a breakpoint
on the program entry point and repeatedly step over assembly instructions until opt
exits. At each step s ∈ T (opt), we collect the source line line(s) that the debugger
shows in program c when executing s. This is the high-level source line of code in c
that the debugger believes to be executed with step s. Moreover, we also collect the
assembly instruction asm(s) that the CPU executes in s. A c program is constituted
by several functions {f1, . . . , fm}; we divide an execution trace T into several traces
Tf1 , . . . , Tfm , where Tfj

represents the execution of function fj in trace T .

4.3.1 Preliminary Definitions

Before moving on to the problem definition, let us provide some necessary elements.

Sequence of Source Lines Each function trace Tf defines a sequence of executed
source code lines. Formally, L(Tf) : [l1, l2, . . . , lk] is the sequence of source code lines
present in trace Tf in the order of their appearance (a line lj appears when a step
sj ∈ Tf has lj = line(sj)); we remove loops by deleting consecutive sequences of
repeated lines.

Mapping Assembly and Source Code For each line l in c, we have associated
a sequence of steps, each of which is a step over one of the assembly instructions
used to execute line l. Thus, from Tf we extract a set A(Tf) of mapping pairs
< [a0, . . . , am], l > where [a0, . . . , am] is the sequence of all assembly instructions
that the debugger maps to line l in trace Tf .

Optimization Levels Modern compilers provide several optimization levels. In
this paper, we focus on Og that is a level created to provide a good debug experience,
i.e. facilitate the debugging process by embedding accurate and complete debugging

4.3 Debug Trace, Problem Definition and Overview 77

information in the compiled software, while creating optimized binary code. Og
is supported by the two main C compilers available today: GCC and clang. We
consider Og as it was shown to be the optimization level more prone to bugs [45].

4.3.2 Problem Definition

A pair compiler/debugger can be seen as a toolchain function F that maps each
source code c to a debug trace T = F (c). The set Traces of all possible traces
generated by F for all valid programs 3 can be partitioned into the set of correct
traces NoBug and the one of bugged traces Bug. We now define the Correct Debug
Detection (CDD) Problem:

Correct Debug Detection Problem: Given a trace T ∈ Traces a CDD
gives as output 0 if T is a correct debug trace (T ∈ NoBug) and 1 if T is a
bugged debug trace (T ∈ Bug).

It is worth noticing that a perfect toolchain F should never generate a bugged trace.
We remark that our final goal is to find bugs in the toolchain, and so to find instances
of programs that generate wrong debug traces under F . We are not concerned about
the correctness of programs use to test F .

4.3.3 Assumptions and Setting

We simplify the problem by considering only source code generated by csmith [164].
Csmith is a code generator used in many works on compiler correctness [5,61,96,138].
Csmith generates a random C program that is valid and free of undefined behaviors.
The absence of undefined behaviors guarantees a well-defined semantic, and thus
avoids the generation of meaningless debug traces. We will show that using Csmith
generated programs is enough to find novel bugs in the LLVM toolchain.

4.3.4 Solution Overview

All our approaches are based on training unsupervised models on a set of debug
traces obtained by programs generated by Csmith. We use two models, one that
learns the relationships between the source lines executed in a trace, and the other
that learns the mapping between assembly instructions and C code.

Consistency on Source Lines A trace T is associated with a sequence of
executed source lines L(T). On this sequence we train a variation of a masked
language model using a transformer architecture, we call such network Source Lines
Network (SLNet). Our hypothesis is that a model trained on this task can identify
odd stepping behaviors in debug traces (as in Snippet 4.1). As a matter of fact, [45]
has shown that this is a frequent category of bugs, and it is particularly nefarious
since a developer debugging a software could see an execution trace that is not
consistent with the real execution flow, making it hard to understand what is really
happening.

3A program is valid if can be compiled by our toolchain and is free of undefined behaviors.

4.4 Architectures Details and Unsupervised Training Tasks 78

Consistency of the Mapping Assembly-lines A trace T can be seen as a
sequence of pairs, each of them mapping a sequence of assembly instructions A(l) to
a source line l ∈ L(T). On these pairs, we train a transformer architecture on the
task of identifying the correct mapping between assembly instructions and a source
line. We use the term Mapping Network (MapNet) to indicate this architecture.
An example of a bug found by MapNet is in Snippet 4.2. When stepping on line
8, lldb shows a shift assembly instruction associated with this line (shll cl, edx),
this shift instruction should be associated with line 6 instead. We remark that no
existent approach is able to find this kind of bugs.

1 int a, b;
2 int * g_3377 = &b;
3 int main () {
4 short c;
5 char l_3718 [7][4];
6 c = 3 > 7 >> a ? 0 : 3 << a;
7 l_3718 [6][3] = c;
8 (* g_3377) = l_3718 [6][3];
9 }

Snippet 4.2. Clang bug 51507, wrong assembly mapped to line 8.

4.4 Architectures Details and Unsupervised Training
Tasks

We solve the CDD problem with two architectures, the Longformer [22] used for
SLNet and BERT [44] used for MapNet. Both architectures are encoder-only
transformers composed of a stack of N identical layers, where each layer is composed
of a multi-head self-attention mechanism and a fully connected feed-forward network.

4.4.1 Source Lines Network: SLNet

The SLNet is based on the Longformer architecture which has modified attention
that scales linearly with sequence length, thus making it more suitable for processing
long sequences of source code lines. In particular, this modified attention consists of
a windowed self-attention that reduces time and space complexity by focusing only
on local context.

Training SLNet is trained on the Masked Source Language Modeling Task (MSLM)
which is a variation of the traditional Masked Language Modeling (MLM). The
objective of MLM is to hide a certain percentage of tokens in a sentence and then
teach the network to reconstruct the original tokens based on the surrounding
context. We adapt this traditional NLP task to debug traces. We do so by hiding a
certain percentage ml of tokens inside one single random line lj and teaching the
network to guess them. Training is done by minimizing the reconstruction error (i.e.
cross-entropy loss) of masked tokens. The training process is shown in Figure 4.1.

We use this variation of the original task since we are interested in detecting
wrong source line stepping; this behavior manifests in real bugs as a source line that
is out of context. By training the network to reconstruct a single source line in a
correct trace, we expect that the reconstruction loss of a misplaced source line will

4.4 Architectures Details and Unsupervised Training Tasks 79

int MASK 4 MASK MASK NLF if (g 3) ... NLF

Longformer

l = 1

MSML TASK

Figure 4.1. SLNet Training on the Masked Source Language Modeling (MSLM) Task.

be high; the network should not correctly predict a line using a wrong context. For
this reason, we use higher values for ml (≥ 0.6) than the ones used in the MLM
task. Notice that even with values of masking near or equal to 1.0 is still possible to
do meaningful predictions. Consider the sequence int a=0; int b=0; int c=a+b;
and ml is 1.0, the masked result is int a=0; MASK MASK MASK MASK, int c=a+b;.
The model can infer that the line is initializing b, even if it is entirely masked. Note
that during the training we do not use labels that identify a trace as bugged or not.
Our approach is therefore unsupervised as the analogous task in Bert [44].

Inference We solve CDD using SLNet to compute a score for each function. For
each sample, we iteratively mask ml of the tokens inside each source line and we
compute the average reconstruction error. Finally, we take the max of these values
to obtain a score for each function. Figure 4.2 shows an example of inference with
ml equal to 0.6 on a bugged function trace composed of three lines. In Input 1 three
tokens of the first line are masked, while Input 2 and Input 3 have one and two
tokens masked in the second and third line respectively. The network is fed with
all of these inputs, one at a time. For each input, we compute the averages of the
losses of masked tokens which are 0.0101, 9.4 and 6.6 and we take the maximum as
the score. The maximum is 9.4 and represents the score assigned to the function
in question. Notice that 9.4 corresponds to the second line, which is obviously
misplaced since a return instruction cannot appear in the middle of a function trace.

The computed score can be either used to pick the top k scored function as bug
candidates or compared with a certain threshold value.

4.4.2 Mapping Network: MapNet

The MapNet is based on the BERT architecture trained in a cross-lingual fashion [85]
by taking as input parallel sentences in two different languages (assembly and C
source code).

Training MapNet is simultaneously trained on two tasks: Asm/Source Mapping
Prediction (ASMP), and Masked Asm Language Modeling (MALM). Similar to the
traditional Next Sentence Prediction Task (NSP), the objective of ASMP training
is to have the network predict whether a given sequence of assembly instructions
is correctly mapped to a certain source line. We create a dataset for this binary

4.4 Architectures Details and Unsupervised Training Tasks 80

MASK MASK MASK

MASK MASK

Longformer

int l 4 = 1 NLF return g 3 NLB if

0,0001 0,0002 0,03 9,4

NLF

NLF

int 4 NLF return g 3 NLB if NLF

l = 1int 4 NLF g NLB if NLF

int l 4 = 1 NLF return g 3 NLB if

original
input

input 1

input 2

input 3

5,6 6,1

0,0101 9,4 6,6

losses

averages
max

...

...

...

...

Figure 4.2. SLNet Inference.

CLS cmpl 0 MEM je MASK SEP if (g 3 SEP

Transformer Encoder

MEM

ASMP Task

)

Confidence

MALM Task

Figure 4.3. MapNet Training on the Asm/Source Mapping Prediction (ASMP), and
Masked Asm Language Modeling (MALM) Tasks.

classification task, from the original samples mapping a source line l to assembly
instructions A(l). We partition all samples in half; a partition is left untouched while
the other partition is used to generate incorrect mapping pairs. The incorrect pairs
are created by randomly shuffling the mapped source lines. The MALM task consists
in hiding a certain percentage of tokens inside the list of assembly instructions and
in teaching the network to reconstruct them. The training loss is the sum of the
MALM and ASMP cross-entropy losses. The MapNet training process is shown
in Figure 4.3. As for the MSLM task, MALM and ASMP do not use labels that
identify a trace as bugged or not. Therefore, we consider our approach unsupervised
as the analogous tasks in Bert [44].

Inference We solve the CDD using MapNet to compute a score for each function.
For all samples, we use the MapNet to compute the probability that each sample
represents a wrong mapping, by taking the confidence value returned by the classifi-

4.5 Datasets 81

cation layer attached to the hidden state of the CLS token. This is also done in
Bert to compute the confidence of having a pair of consecutive sentences. Then, we
group all samples belonging to a function aggregating all ASMP confidence values
by using the max function. This aggregated value is the score of the function. As
for the SLNet, this score can be used to extract the top k samples for analysis or all
the ones that are above a certain threshold.

4.5 Datasets
In this section, we describe the datasets used for the experimental evaluation. We
consider three distinct sets of programs: one set is used for training and validation,
and the other two are used for testing. From these programs, we generate debug
function traces. For MapNet, the traces are used to build datasets of samples, each
being a mapping pair. For SLNet each sample is a sequence of source lines in a
function trace.

4.5.1 Dataset Preprocessing

In this Section, we explain the preprocessing used in our datasets for SLNet and
MapNet.

SLNet Preprocessing Given a function trace Tf , we create a sample for the
SLNet by first converting all hexadecimal numbers into base ten integers, and then
by substituting all numbers greater than a certain threshold (we used 1,000) with
a special token DEC. The lines are then tokenized using codeprep [77] removing
underscore tokens. Finally, from a sequence of lines [l0, l1, . . . , lm] we obtain a
single string l0 X0 l1 . . . Xm−1 lm by concatenating the lines. The token used for
concatenation Xj , is either: NLF, indicating that lj+1 is at a higher line number
than line lj in the original program; or, NLB, indicating that lj+1 is at lower line
number than line lj . Practically speaking, we use NLB when the trace jumps
backward (e.g., a for loop). An example of a preprocessed SLNet sample is shown in
Figure 4.1. We removed all duplicates and all sequences of a single source line.

MapNet Preprocessing For the MapNet samples, we preprocess the assembly
by executing a symbolication step (we substituted addresses with variable names,
strings, and function names). We then substitute all the memory accesses with a
special token MEM, we convert immediate operands into base ten substituting the
ones above 1,000 with token DEC. We obtain a single string by concatenating all
assembly instructions using whitespaces. We use the same strategy to preprocess
numbers in the source line. We then preprocess source line strings as shown in the
previous paragraph. Finally, the two strings are concatenated using a special token
SEP. An example of a preprocessed MapNet sample is shown in Figure 4.3. We
removed all duplicate samples. Moreover, the csmith generated programs contain
many assignments of the csmith_sink variable and calls to the transparent_crc
function: we performed a downsampling of samples containing these patterns in the
MapNet dataset by taking 2% of them.

4.5 Datasets 82

4.5.2 Training and Validation Datasets

We used Csmith to generate 43,921 programs and lldb to obtain 200,443 debug
function traces. We split the dataset into training and validation (90%-10% split).
After preprocessing, the SLNet datasets result in 81,337 traces for training and 7,195
for validation, while the MapNet datasets end with 349,153 and 25,286 mapping pairs.
We analyzed the length of the samples in our datasets. For the SLNet datasets, we
have that 70% of the samples contain less than 1,024 tokens, while for the MapNet
we have that 99.9% of all samples contain less than 512 tokens.

4.5.3 Synthetic Datasets

These datasets were used to evaluate the performance of the model in identifying
bugs. Programs inside the synthetic datasets were created as the training ones.
Additionally, starting from these programs, we created both synthetic bugged traces,
in which we add different types of errors, and bug-free traces, in which traces
remain untouched. By observing real cases, we identified three main categories of
bugs that were inserted inside the original function traces. Given a function trace
Tf : [s0, s1, . . . , sn], synthetic bugs are defined as follows:

• swap source: we randomly select two steps {sk, sl | line(sk) ̸= line(sl))} and
we assign line(sk) to step sl and line(sl) to step sk.

• swap assembly: we randomly select two steps {sk, sl | asm(sk) ̸= asm(sl))}
and we assign asm(sk) to step sl and asm(sl) to step sk.

• remove step: we randomly select a step sj and we remove it from Tf .

We generated 3,983 programs and then we uniformly inserted one of these bugs
inside one function trace for 27% of the programs. The insertion of a bug in a
trace creates a single bugged sample for the SLNet dataset, while it impacts one or
more samples in the MapNet dataset. Therefore, in MapNet we mark as bugged
all samples deriving from a bugged trace. After duplicate removal, for the SLNet
dataset, we have 6,009 non-bugged samples and 630 bugged samples (Swap Source:
338; Swap Assembly: 149; Remove Step: 143). For the MapNet dataset, we have
90,739 non-bugged samples and 10,653 bugged samples (Swap Source: 5,352; Swap
Assembly: 3,093; Remove Step: 2,208).

4.5.4 Real Bugs Datasets

These datasets were created by using real bugs from the LLVM repository. We
analyzed 42 bug reports and identified bugs that could exhibit a wrong step behavior
or a wrong mapping assembly/source. For each bug, we created a program that
generates the reported bugged behavior and obtained a trace using the LLVM
toolchain version containing that bug. In the program, we normalized variables and
function names using the same naming convention used by csmith. At the end of
this process, we obtained 16 different programs. When possible, for each program
we created a trace that does not contain the bug by using a patched toolchain.
Note that this generates a challenging dataset since the only difference between

4.6 Experimental evaluation 83

bugged/non-bugged traces is the presence of the bug itself; both traces are derived
from the same program.

We obtained a dataset for SLNet with 29 traces, 18 bugged and 11 bug-free. For
MapNet we obtained 136 samples, 76 bugged and 60 bug-free.

4.6 Experimental evaluation
This Section reports the results of our experimental evaluation on the synthetic and
real datasets.

4.6.1 Training, models parameters, and metrics

Since our amount of training data is limited, we use smaller architectures than the
ones usually adopted in NLP. We use [145] as a guide for the selection of parameters
for smaller transformer models. We test medium models composed of 8 layers, 8
attention heads, embedding size 512 and intermediate size 2048, and small models
composed of 4 layers, 8 attention heads, the same embedding and intermediate size of
the medium ones. For SLNet we use a sequence length of 1024 tokens, thus truncating
30% of the sequences. We choose this value since it implements a reasonable trade-off
between the number of truncated sequences and the computational capabilities of
our hardware. The masking rate for the SLNet ml is a value in {0.6, 0.8, 1.0}. For
MapNet the sequence length is 512 tokens (99.9% of the mapping sequences are
above that treshold) and the masking ma ∈ {0.0, 0.2, 0.4}.

We train SLNet for 60 epochs and MapNet for 30 epochs, taking the models
with the lowest validation loss. The training uses Adam optimizer with a learning
rate of 10−5 on 8 A100 GPUs using a batch size of 16 for each device.

Metrics We evaluate the performances of our model in identifying bugs by com-
puting the Area Under the Curve (AUC). This is done by assigning to each function
trace one SLNet score and one MapNet score as defined in the inference Sections
4.4.1, 4.4.2. On the synthetic datasets, we compute a single AUC for each class of
bug; we do this by selecting a certain category (e.g., Swap Source) and ignoring
all the bugged samples belonging to other categories. In this way, we compute the
specific performance on a certain category of bug. On the real dataset, we use a
single AUC score as bugs do not belong to a specific category.

4.6.2 Results on the Synthetic Datasets

In this Section, we will show the results we obtained with both SLNet and MapNet
on the synthetic datasets.

SLNet Figure 4.4 shows the results of SLNet on the Swap Source bug category,
which is the only bug category recognized by SLNet. In this case, the SLNet model
reaches an AUC of 0.74 when using the medium model with ml = 0.6 during training
and ml = 0.8 during inference. This is the model with the best performance; all
the small models, as well as the medium models with training ml ∈ {0.8, 1.0}, have
worse or comparable performances.

4.6 Experimental evaluation 84

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SLNet Medium Model with training ml 0.6: Swap Source

AUC with inference ml 0.6= 0.70
AUC with inference ml 0.8= 0.74
AUC with inference ml 1.0= 0.68

Figure 4.4. Results on the synthetic dataset of the SLNet trained with ml = 0.6.

The ROC curve for the Remove Step bug category of SLNet is in Figure 4.5. The
performance of the network is similar to a random classifier. For the Swap Assembly
bug category, the ROC is in Figure 4.6; also in this case the network behaves as a
random classifier. We believe that SLNet provides random performance on these
bugs since the removal of a step rarely impacts the source line trace; the swap of
assembly instructions, that leaves intact the source line information, is invisible at
the source level.

MapNet The results for MapNet are reported in Figures 4.7, 4.8, and 4.9. MapNet
exhibits the best performance when trained with medium model, ma = 0.2, and
evaluated with ma = 0.0. The Swap Source bug category (Figure 4.7) is the one with
the highest results (AUC 0.89); this is expected as this category of bugs is analogous
to the defects inserted in the training task. MapNet is able to discover also the Swap
Assembly pattern (Figure 4.9), where a single assembly instruction is misplaced,
with acceptable performance (AUC 0.75). Therefore, we expect that it will be able
to identify real bugs where the sequence of assembly instructions mapped by the
debug info is partially correct (we will show that this is confirmed in the following
sections). The worst performance is shown in the Remove Step category (Figure 4.8)
with an AUC of 0.62. This is expected as it is far easier to recognize a completely
out-of-context assembly instruction, than a missing assembly instruction. MapNet
reaches a higher AUC than SLNet on the Swap Source, however, it does so by using
a completely different mechanism looking at the mismatch between assembly and
source line.

4.6 Experimental evaluation 85

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SLNet Medium Model with training ml 0.6: Remove Step

AUC with inference ml 0.6= 0.53
AUC with inference ml 0.8= 0.46
AUC with inference ml 1.0= 0.45

Figure 4.5. Results on the synthetic dataset of the SLNet trained with ml = 0.6: Remove
Step bug category.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SLNet Medium Model with training ml 0.6: Swap Assembly

AUC with inference ml 0.6= 0.53
AUC with inference ml 0.8= 0.45
AUC with inference ml 1.0= 0.45

Figure 4.6. Results on the synthetic dataset of the SLNet trained with ml = 0.6: Swap
Assembly bug category.

4.6 Experimental evaluation 86

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MapNet Medium Model with training ma 0.2: Swap Source

AUC with inference ma 0.0= 0.89
AUC with inference ma 0.2= 0.89
AUC with inference ma 0.4= 0.88

Figure 4.7. Results on the synthetic dataset of the MapNet trained with ma = 0.2: Swap
Source bug category.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MapNet Medium Model with training ma 0.2: Remove Step

AUC with inference ma 0.0= 0.62
AUC with inference ma 0.2= 0.62
AUC with inference ma 0.4= 0.62

Figure 4.8. Results on the synthetic dataset of the MapNet trained with ma = 0.2: Remove
Step bug category.

4.6 Experimental evaluation 87

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MapNet Medium Model with training ma 0.2: Swap Assembly

AUC with inference ma 0.0= 0.75
AUC with inference ma 0.2= 0.75
AUC with inference ma 0.4= 0.75

Figure 4.9. Results on the synthetic dataset of the MapNet trained with ma = 0.2: Swap
Assembly bug category.

4.6.3 Results on the Real Bugs Datasets

Given the limited size of the real dataset and the randomness of the masking
procedure, we decided to increase the robustness of the results by running the
inference procedure multiple times and by reporting the mean AUC value. In order
to compute the results on the real dataset, we used the best models according to
the synthetic dataset, which are the medium models with training ml = 0.6 and
ma = 0.2 for the SLNet and MapNet respectively.

SLNet During inference, we used ml ∈ {0.6, 0.8, 1.0} and, differently from the
synthetic case, we obtained the best performances when ml = 1.0, as shown in
Figure 4.10. This is probably due to longer lines and higher variability for csmith
source code that makes more difficult for the network to predict them without
some suggestions (provided by a certain percentage of non-masked tokens). On the
contrary, the real dataset contains small test cases with small lines having a lower
degree of randomness, thus the network does not need suggestions to predict them.
On the real dataset, SLNet reaches an AUC of 0.81.

MapNet We used ma ∈ {0.0, 0.2, 0.4} and we obtained the best performances
when ma = 0.0, as in the synthetic dataset case (Figure 4.11), the AUC reached is
0.8. This confirms that MapNet is able to identify real bugs.

4.6 Experimental evaluation 88

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SLNet Medium Model with training ml 0.6: Real Dataset

AUC with inference ml 1.0= 0.81

Figure 4.10. Results on real dataset of the SLNet trained with ml = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MAPNet Medium Model with training ma 0.2: Real Dataset

AUC with inference ma 0.0= 0.80

Figure 4.11. Results on real dataset of the MapNet trained with ma = 0.2.

4.6.4 Threshold Analysis

In Section 4.6.2, 4.6.3, we evaluated the performances of our networks by using the
AUC metric. The aim of this Paragraph is to show the value of metrics at fixed
thresholds. In particular, we compute the precision, recall, and F1 of the most
prominent categories of bugs by using our best models, as defined in Section 4.6.3.

4.6 Experimental evaluation 89

SLNet ml = 0.8 MapNet ma = 0.0

Threshold 3.3 0.5

Bug Category Swap Source Swap Source Swap Assembly

Precision 0.20 0.71 0.55

Recall 0.46 0.57 0.38

F1 0.28 0.64 0.45
Table 4.1. Precision and Recall of SLNet and MapNet with fixed thresholds. The values of

ml and ma are used during inference.

Random classifier

for source lines

Random classifier

for mapping assembly-line

Bug Category Swap Source Swap Source Swap Assembly

Precision 0.053 ± 0.003 0.028 ± 0.002 0.024 ± 0.002

Recall 0.50 ± 0.03 0.50 ± 0.027 0.50 ± 0.031

F1 0.096 ± 0.005 0.062 ± 0.003 0.047 ± 0.003
Table 4.2. Precision and Recall of random SLNet and MapNet with fixed thresholds.

We selected the thresholds to maximize the precision metrics: we want to minimize
the number of false-positive bugs triggered and the waste of human time analyzing
them. The chosen thresholds are 3.3 and 0.5 for SLNet and MapNet respectively.
Results (see Table 4.1) confirm that MapNet can identify bugs with acceptable
performances. In fact, MapNet reaches a precision of 0.71 and a recall of 0.57 with
the Swap Source bug category, while SLNet reaches a precision of 0.20 and a recall of
0.46 on the same bug category. To have a reference, we also compute these metrics
for a random classifier that uniformly flags a trace as bugged or not (see Table 4.2).
Since these datasets are highly imbalanced, in some cases the recall is higher than
the one obtained by our networks; on the contrary, precisions are very low compared
to the ones shown in Table 4.1, thus confirming the effectiveness of our system.

4.6.5 MapNet and SLNet Correlation

We employ the data described in Section 4.7.1, to analyze the possibility of linear
correlation between the highest losses obtained by SLNet and the ones of MapNet
using Spearman’s ρ [170], the results show that there is none to very-weak negative
correlation (spearman −0.04 with a p-value < 0.01). This is confirmed by the Kendall
Tau coefficient [79] (value of −0.02 with a p-value < 0.01). Our interpretation is
that the two networks are able to identify different kinds of bugs, and this is why

4.7 Finding Novel Bugs: Neuro-Debug2 90

we keep them apart in the proposed framework.

4.7 Finding Novel Bugs: Neuro-Debug2

We integrated our best models, SLNet medium with training ml = 0.6 and MapNet
medium with training ma = 0.2, in the Debug2 framework [45].

Compiler

<latexit sha1_base64="SorUNNjMARASyCOCHKneEwFfLcQ=">AAACJnicbVDLTgJBEJzFF+IL9OhlIjHxRHaJiXoj4eIRE3kksCGzQ4MTZnY2M70aQvgJr/oBfo03Y7z5KQ4rBwHrVKnqTnVXlEhh0fe/vNzG5tb2Tn63sLd/cHhULB23rE4NhybXUptOxCxIEUMTBUroJAaYiiS0o3F97rcfwVih43ucJBAqNorFUHCGTurUtUqEBNMvlv2Kn4Guk2BBymSBRr/k5XsDzVMFMXLJrO0GfoLhlBkUXMKs0EstJIyP2Qi6jsZMgQ2n2cEzep5ahpomYKiQNBPh78aUKWsnKnKTiuGDXfXm4n9eN8XhdTgVcZIixHwehO69LMhyI1wTQAfCACKbXw5UxJQzwxDBCMo4d2LqqlkKVKlEYfTTbFl14VGk5cx1F6w2tU5a1UpwWbm5q5Zr/qLFPDklZ+SCBOSK1MgtaZAm4USSZ/JCXr0379378D5/R3PeYueELMH7/gElcqY7</latexit>

Debugger

<latexit sha1_base64="C7gVr0i5QK6rzrZnME4YnljnuMI=">AAACJnicbVDLSsNAFJ3UV62vVpduBovgqiRFUHcFXbisYB/QhjKZ3sahkwczd5RS8hNu9QP8Gnci7vwUk5iFbT2rwzn3cg7Hi6XQaNtfVmltfWNzq7xd2dnd2z+o1g67OjKKQ4dHMlJ9j2mQIoQOCpTQjxWwwJPQ86bXmd97BKVFFN7jLAY3YH4oJoIzTKX+DXjG90GNqnW7Yeegq8QpSJ0UaI9qVnk4jrgJIEQumdYDx47RnTOFgktIKkOjIWZ8ynwYpDRkAWh3nhdO6KnRDCMag6JC0lyEvx9zFmg9C7z0MmD4oJe9TPzPGxicXLpzEcYGIeRZEAoJeZDmSqRLAB0LBYgsaw5UhJQzxRBBCco4T0WTTrMQGBiJQkVPyaKahnteJJN0O2d5qVXSbTac88bVXbPesosVy+SYnJAz4pAL0iK3pE06hBNJnskLebXerHfrw/r8PS1Zxc8RWYD1/QP+6aYl</latexit>

Opt

<latexit sha1_base64="DGRIvDOUueLIL5REOt8NoQNkY4U=">AAACI3icbVDLTsJAFJ3iC/EFunQzEUxckZaYqDsSN+7ExAIJNGQ6XHDC9JGZWw1p+g1u9QP8GnfGjQv/xbZ2IeBZnZxzb87JcUMpNJrml1FaW9/Y3CpvV3Z29/YPqrXDrg4ixcHmgQxU32UapPDBRoES+qEC5rkSeu7sOvN7j6C0CPx7nIfgeGzqi4ngDFPJbtyG2BhV62bTzEFXiVWQOinQGdWM8nAc8MgDH7lkWg8sM0QnZgoFl5BUhpGGkPEZm8IgpT7zQDtx3jahp5FmGNAQFBWS5iL8/YiZp/Xcc9NLj+GDXvYy8T9vEOHk0omFH0YIPs+CUEjIgzRXIp0B6FgoQGRZc6DCp5wphghKUMZ5KkbpLguBXiRRqOApWVTTcNcNZJJuZy0vtUq6raZ13ry6a9XbZrFimRyTE3JGLHJB2uSGdIhNOBHkmbyQV+PNeDc+jM/f05JR/ByRBRjfP6aQpF0=</latexit>

Unopt

<latexit sha1_base64="lTshzEshNDWAaidVn0XCrQjEFUw=">AAACJXicbVDJTgJBFOxxRdxAj146goknMkNM1BuJF4+YyJIAIT3NAzv0Mul+oyGEj/CqH+DXeDMmnvwVZ3AOAtapUvVeqlJhJIVD3//y1tY3Nre2czv53b39g8NC8ajpTGw5NLiRxrZD5kAKDQ0UKKEdWWAqlNAKxzep33oE64TR9ziJoKfYSIuh4AwTqVVuaBNhuV8o+RV/DrpKgoyUSIZ6v+jlugPDYwUauWTOdQI/wt6UWRRcwizfjR1EjI/ZCDoJ1UyB603nfWf0LHYMDY3AUiHpXIS/H1OmnJuoMLlUDB/cspeK/3mdGIdXvanQUYygeRqEQsI8yHErkiGADoQFRJY2Byo05cwyRLCCMs4TMU6WWQhUsURhzdNsUU3Cw9DIWbJdsLzUKmlWK8FF5fquWqr52Yo5ckJOyTkJyCWpkVtSJw3CyZg8kxfy6r15796H9/l7uuZlP8dkAd73D33QpVQ=</latexit>

T (Opt)

<latexit sha1_base64="jLIGg47aoIKZp9Bb5yFqPZnF7tw=">AAACJnicbVDLSsNAFJ34rPXV6tLNYCvUTUmKoO4KbtxZoS9oQ5lMb+vQyYOZG6WE/IRb/QC/xp2IOz/FJGZhW8/qcM69nMNxAik0muaXsba+sbm1Xdgp7u7tHxyWykdd7YeKQ4f70ld9h2mQwoMOCpTQDxQw15HQc2Y3qd97BKWF77VxHoDtsqknJoIzTKR+tV27C/C8OipVzLqZga4SKycVkqM1KhuF4djnoQsecsm0HlhmgHbEFAouIS4OQw0B4zM2hUFCPeaCtqOscEzPQs3QpwEoKiTNRPj7ETFX67nrJJcuwwe97KXif94gxMmVHQkvCBE8ngahkJAFaa5EsgTQsVCAyNLmQIVHOVMMEZSgjPNEDJNpFgLdUKJQ/lO8qCbhjuPLONnOWl5qlXQbdeuifn3fqDTNfMUCOSGnpEYsckma5Ja0SIdwIskzeSGvxpvxbnwYn7+na0b+c0wWYHz/ADgspSA=</latexit>

Code
Generation

<latexit sha1_base64="TQufx3YT9A0YTOukaIil3NQXdok=">AAACO3icbVA9T8MwFHT4LOWrwNjFokJiqhKEBGyVGGAsEoVKTYQc57VYOHZkv4CqqgO/hhV+AD+EmQ2xsuOGDLRw0+nuPd/zxZkUFn3/zZubX1hcWq6sVFfX1jc2a1vbV1bnhkOHa6lNN2YWpFDQQYESupkBlsYSruO704l/fQ/GCq0ucZhBlLKBEn3BGTrpplYPlRYqAYX0VCcQhtUzUGBKt+E3/QL0LwlK0iAl2jdbXiVMNM9T9xyXzNpe4GcYjZhBwSWMq2FuIWP8jg2g56hiKdhoVPxiTPdyy1DTDAwVkhYi/N4YsdTaYRq7yZThrZ31JuJ/Xi/H/nE0EirLERSfBKGQUARZboSrB2giDCCyyeVAhaKcuQ4QjKCMcyfmrpGpwDSXKIx+GE+rLjyOtRy77oLZpv6Sq4NmcNg8uThotPyyxQqpk12yTwJyRFrknLRJh3DySJ7IM3nxXr1378P7/Bmd88qdHTIF7+sb1zCuEw==</latexit>

Tested Toolchain

source code

<latexit sha1_base64="izdUk1iAhG2DFE08tXd8C8CmrWg=">AAACKXicbVC7TsNAEDyHVwivBEqaExESVWRHSEAXiYYySOQhJVZ0vmzCKWefdbcGRZY/gxY+gK+hA1p+BNtxQRKmGs3s7qzGC6UwaNtfVmljc2t7p7xb2ds/ODyq1o67RkWaQ4crqXTfYwakCKCDAiX0Qw3M9yT0vNlt5veeQBuhggech+D6bBqIieAMU2mwuEO5GsOoWrcbdg66TpyC1EmB9qhmlYdjxSMfAuSSGTNw7BDdmGkUXEJSGUYGQsZnbAqDlAbMB+PG+c8JPY8MQ0VD0FRImovwdyNmvjFz30snfYaPZtXLxP+8QYSTazcWQRghBDwLQiEhDzJci7QMoGOhAZFlnwMVAeVMM0TQgjLOUzFK21kK9COJQqvnZFlNwz1PySTtzlltap10mw3nsnFz36y37KLFMjklZ+SCOOSKtMgdaZMO4USRF/JK3qx368P6tL4XoyWr2DkhS7B+fgF5Fadq</latexit>

C

<latexit sha1_base64="dH4DUevW1676OZslJ16Wz8rsFdA=">AAACIXicbVDLTsJAFJ36RHyBLt1MBBNXpCUm6o6EjUuM8kigIdPhghOmnWbmVkNIP8GtfoBf4864M/6Mbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86RkWaQ5srqXTPYwakCKCNAiX0Qg3M9yR0vWkz9buPoI1QwT3OQnB9NgnEWHCGiXRXbVaHpYpdszPQVeLkpEJytIZlqzAYKR75ECCXzJi+Y4fozplGwSXExUFkIGR8yibQT2jAfDDuPOsa07PIMFQ0BE2FpJkIfz/mzDdm5nvJpc/wwSx7qfif149wfOXORRBGCAFPg1BIyIIM1yIZAehIaEBkaXOgIqCcaYYIWlDGeSJGySoLgX4kUWj1FC+qSbjnKRkn2znLS62STr3mXNSub+uVhp2vWCAn5JScE4dckga5IS3SJpxMyDN5Ia/Wm/VufVifv6drVv5zTBZgff8AupyjWQ==</latexit>

Neural Trace Ranking

Figure 4.12. Neuro-Debug2: System Overview

The modified framework is depicted in Figure 4.12 and contains the following
modules:

• Program Generation: generates the programs that will fuzz the toolchain
under test. This module uses csmith as generator. The output is a test program
c.

• Tested Toolchain: this module contains the toolchain F to be tested. It
takes as input a test program c and generates an optimized debug trace using
F . Practically speaking, the input program is compiled with optimization level
−Og and fed into the debugger to get a set of function debug traces.

• Neural Trace Scoring: this module analyses each function trace Tf using
the SLNet and MapNet. It outputs a tuple < Tf , rl, rm > where rl and rm are
the scores given by SLNet and MapNet. The Mapping Extractor and Line
Extractor transform the execution trace in a sequence of source lines L(Tf) and
a set of mapping pairs A(Tf), each object is fed into the respective network.

• Triaging and Reporting: this module collects the traces and orders them
by their rank. The likely bugs are manually investigated; if confirmed as
bugs, they are reduced to smaller examples (this is done automatically using
creduce [129]). After the reduction, the confirmed likely bugs are reported to
the toolchain developers.

4.7.1 Tests and Novel Bugs

We tested the LLVM version 13.0.0 of 6 April 2021. We used Neuro-Debug2 to
generate 3,983 programs, which, after preprocessing, resulted in 11,431 function
traces.

4.7 Finding Novel Bugs: Neuro-Debug2 91

Analysis of the Top Scores We used the data described above to compute a
score for each function by using both the SLNet and the MapNet, as described in
the corresponding inference Sections 4.4.1, 4.4.2. Our research hypothesis is that a
high score for functions correlates with the presence of bugs in debug information.
To validate this hypothesis we ordered all the functions by their scores (both for
MapNet and SLNet) and we selected the top-scored functions.

Specifically, we analyzed the 40 top-scored functions for SLNet with inference
ml ∈ {0.6, 0.8, 1.0} and MapNet with inference ma ∈ {0.0, 0.2, 0.4}. 4 This leads
to a total of 240 traces, 120 for each model, and 40 for each fixed combination of
model/parameter. For each batch of 40 traces, we performed a manual analysis
to determine how many of these traces are actually bugged or not: if a previously
unknown bug was encountered during this analysis we reported it to compiler’
developers.

The outcome is reported in Table 4.3. For SLNet, the bug percentage reaches
its maximum 50% with ml = 1.0 and it decreases monotonically with the masking.
This means that half of the 40 top-scored functions indeed contain a bug. To rule
out that this prevalence of bugs was due to chances, we took 40 random functions
from our dataset and analyzed it manually noting the number of bugs encountered.
From our analysis only 7% of the functions in the randomly sampled set contain
a bug. This means that the prevalence of bugs in the 40 top-scored functions for
SLNet is 8 times more than random.

When considering MapNet we have that 77% of the traces contain one or more
bugs when ma = 0.4; different masking levels give a slight decrease in performance.
As for SLNet, to rule out that this effect was due to chance, we took 40 random
samples from the MapNet data and analyzed them for the presence of bugs. We
found that 27% of the samples contained a bug in the mapping. Note that this
number is different from the 7%, reported for the analogous case in SLNet, because in
this case we manually verify if each mapping is correct, while in the previous scenario
we only verify that the sequence of shown source lines is correct. We highlight that
also for MapNet we found almost 3 times more bugs than the ones present in a
random sample. This means that highly-scored samples are likely to be bugs, thus
human experts could save time in analyzing debug information correctness by using
suggestions provided by our system.

Reported Bugs From the bugs found in the previous Section, we sampled a
subset that we reported to LLVM developers. Specifically, we took 6 bugs found
by SLNet and 6 by MapNet and we verified that they were still present in the last
LLVM version 14.0.0 as of August 15th, 2021. Out of the 12 reported bugs, 2 have
been confirmed by the developers; the remaining 10 bug reports are pending analysis.
In this Section, we discuss one bug found by MapNet and one by SLNet.

A bug found by SLNet is in Snippet 4.3. In this case, lldb shows that the
execution steps on line 6 (int i, j;); however, this is a variable declaration that
should not be shown during the execution. This bug is likely due to an error in the
line table (the structure that maps assembly instructions to source lines) produced
by clang. We speculate that SLNet flags the stepping on a declaration as unlikely

4We discarded the samples that had a length above the thresholds used for truncation.

4.7 Finding Novel Bugs: Neuro-Debug2 92

Network Bug Percentage

SLNet ml = 1.0 50%

SLNet ml = 0.8 37.5%

SLNet ml = 0.6 27.5%

Random traces from SLNet samples 7%

MapNet ma = 0.4 77%

MapNet ma = 0.2 75%

MapNet ma = 0.0 72.5%

Random traces from MapNet samples 27%
Table 4.3. Analysis of the top 40 scores for SLNet, MapNet and randomly sampled

functions. The values of ml and ma are used during inference.

1 short a;
2 int b;
3 void func_1 () { a = 0; }
4 int main () {
5 b = 0;
6 func_1 ();
7 }

Snippet 4.4. Clang bug 51751, wrong assembly mapped to line 6.

since it has not been observed as a normal behavior during training.
1 int a, c, e, f;
2 static int *b = &a;
3 short d = 6;
4 void func_15 () {
5 for (; c >= 0; c--) {
6 int i, j;
7 *b = f;
8 }
9 }

10 int main () {
11 func_15 ();
12 for (; d <= 0;) {
13 int g[4];
14 g[e] = &b;
15 }
16 }

Snippet 4.3. Clang bug 51512, wrong assembly mapped to line 6.

MapNet discovered the bug in Snippet 4.4; in this case the call of func_1 at line
6 is wrongly associated to an assembly instruction that set variable a to 0 (movw
$0x0, 0x200b89(rip)); this assembly instruction should instead be ,mapped to the
body of func_1. As in the case of Snippet 4.1, this bug is probably the result of the
inlining optimization.

4.8 Comparison with Debug2 and Limitations 93

Network Neuro-Debug2 Bugs Debug2 Bugs

SLNet ml = 1.0 20 11

MapNet ma = 0.4 31 2
Table 4.4. Results of the comparison between Neuro-Debug2 and Debug2. The values of

ml and ma are used during inference.

4.8 Comparison with Debug2 and Limitations
In this Section, we compare our approach with Debug2, and then we discuss the
limitation of our approach.

4.8.1 Comparison with Debug2

We evaluate the effectiveness of our proposed solution with the respect to the
invariants-based approach of Debug2 [45].

In particular, we take the 31 programs containing bugs detected by the MapNet
with training ma = 0.2 and inference ma = 0.4 and the 20 programs containing bugs
detected by the SLNet with training ml = 0.6 and inference ml = 0.1 (see Table 4.3).
We measure how many times these bugged functions are identified by an invariant
violation of Debug2. We find out that, among the 31 bugs detected by MapNet,
only 2 are discovered by Debug2, while 11 out of 20 bugs discovered by SLNet were
identified by Debug2 as well (see Table 4.4). In our test, Debug2 is more capable of
finding bugs identified by the SLNet rather than MapNet ones. This is expected,
SLNet has been designed to detect source lines that are out-of-context, some of these
cases are covered by the LineInvariant of Debug2.

We want to stress that our system is not alternative to an invariant-based
approach; a user may analyze bugs found with our solution and identify a general
pernicious behavior that could lead to the definition of a new invariant.

4.8.2 Limitations

Manual Analysis Confirming the presence of a bug in an anomalous trace must be
done by a human expert. Table 4.3 quantifies how much effective the job of the expert
is when working on anomalous traces identified by our system vs. random traces.
The manual effort to decide if an anomalous trace is a bug or not requires around
10-20 minutes of time by a human expert. We remark that this manual analysis step
is also needed by the other works that find bugs in debug information [45].

Variable Values In addition to the manual analysis requirement, another limita-
tion of our system is represented by the absence of an explicit analysis of variable
values. [45] uses two invariants which are based on variables: Scope Invariant and
Parameters Invariant. The former checks whether there exists a step where a variable
is visible only in the optimized trace, while the latter checks whether the optimized
trace contains function parameters values that are not present in the optimized one.
Currently, our system is not able to identify mistakes in the values of variables. As
future work, we plan to extend our system to directly integrate them.

4.9 Conclusion 94

Correctness of Training Data As in many previous works on neural bug
finding [6,148], we assume that our training data is correct. However, we have no
guarantees on such correctness. We argue that this is not a problem. Even if some
bugs are so frequent in training that they are not detected as anomalous anymore,
this does not jeopardize our approach. As long as there are rare bugs (that could
appear in the training data but sparingly) they will be detected as anomalous. The
fact that some bugs are rare is reasonable; the contrary would imply that debug
information is almost meaningless. Moreover, frequent bugs are likely to be found
by humans.

4.9 Conclusion
In this work, we introduced two DNN-based architectures trained for the detection
of bugs in debug information attached to optimized binary code. Our results show
that the proposed models, namely SLNet and MapNet, are capable of discovering
bugs both in synthetic and real datasets. As a result of this study, 12 new bugs in
the LLVM toolchain were discovered.

95

Chapter 5

BinBert: Binary Code
Understanding with a
Fine-tunable and
Execution-aware Transformer

5.1 Introduction
A growing body of literature has demonstrated that Deep Neural Networks (DNNs)
can effectively address various binary analysis tasks. DNNs today show state of the art
performances for binary similarity [107,168,175], compiler provenance [36, 106,126],
function boundaries detection [135], decompiling [55], automatic function naming
[41,53] and others.

DNN designers must decide how to feed binary code to their models. One
possibility is to use manually-identified features. This approach requires a domain
expert which identifies features of interest forecasting their helpfulness in solving
the task at hand. This approach is known to produce problem-specific features and
injects a human bias inside the system. Recent solutions automatically transform
binary code into a representation usable by the neural network layers.

A common technique is to transform assembly instructions into representational
embeddings vectors, similarly to what has been done in the Natural Language
Processing (NLP) field with the word embedding revolution [144]. Several works
[38, 91,107,175] proposed refined techniques to transform a single instruction into a
vector of real numbers while capturing its semantic (e.g. all vectors of arithmetic
instructions are clustered in the vector space). By using this approach, sequences of
instructions are transformed into sequences of fixed-size vectors that can be fed into
standard DNNs.

A common weakness of all these approaches is the lack of context: an instruction
is always represented by the same vector, irrespectively of where it appears. However,
the semantics of a single assembly instruction is strongly limited (more than a word
in natural language), and non-trivial concepts in assembly code are almost always
encoded by a sequence of instructions (e.g., loops, swap of variables in memory,
calling conventions, etc). Complex semantics, that span sequences of several assembly

5.1 Introduction 96

instructions, are hardly representable if embeddings of instructions are created in
isolation; they have to be learned by the neural architecture using the embeddings.

Recent works [121, 122] overcome this limitation by using a transformer [149]
based architecture that operates on sequences of assembly instructions. This enables
them to embed entire assembly functions taking into consideration the instructions’
context. These systems have not been proposed and tested as instruction embedding
techniques but as solutions to specific problems (Trex [121] for binary similarity and
the Stateformer [122] for type inference).

5.1.1 Execution-aware Binary Code Interpretation

Code serves as a form of communication between humans and machines, possessing
a dual nature. One aspect represents the syntactic and semantic meaning that
can be inferred from its static form, while the other aspect lies in its ability to be
executed. The full understanding and appreciation of an Instruction Set Architecture
(ISA) can only be achieved through the execution of code (e.g., the dependencies
introduced by RFLAGS in X64). Additionally, sequences of instructions that have the
same meaning but a different syntax can be easily identified when they are executed.

Surprisingly, almost all embedding techniques we are aware of, only consider the
static aspect of binary code. Notable exceptions are the aforementioned [121,122] in
which the execution is embedded by training the models on the assembly instructions
of a function and on the values of CPU registers obtained by a concrete execution
with random inputs. One could argue that such an execution approach is prone to
the noise and the limited significance of a random execution.

5.1.2 Expressive Power and Fine-tunable Models

Oddly, the existent instructions and function embedding models are proposed and
tested on a single problem ([121], [122], [107], [38]). This is limiting as the expressive
power of an embedding model can only be assessed when the model is tested on
different tasks. With the current body of knowledge, there is uncertainty on whether
and how the proposed embedding models generalize to different tasks or not.

The only exception is Palmtree [91], which proposes an assembly instruction
model tested on a few tasks. However, a glaring limitation of [91] is that their
embedding model is frozen and not fine-tuned.

We argue that an assembly model has to be tested using the fine-tuning paradigm.
That is, the model is first pre-trained on a large corpus of assembly code using
several tasks. During pre-training, the model learns a general semantics of assembly
sequences that is context and execution aware. Then, the pre-trained model is used
as part of a DNN that solves a specific downstream task (e.g., compiler provenance,
function similarity, and others). The DNN, including the assembly model, is retrained
end-to-end on a small amount of problem-specific data during the fine-tuning process.
This paradigm is state-of-the-art for NLP and works well also if the fine-tuning
dataset is small. This is especially useful for binary analysis tasks where creating a
labeled dataset requires expensive manual effort.

5.1 Introduction 97

5.1.3 Our proposal: BinBert

In this work we introduce BinBert, a fine-tunable assembly code model based on a
transformer encoder that is execution-aware. To inject execution awareness into our
model, our idea is to symbolically execute snippets of assembly code. Specifically, we
use a symbolic execution engine that transforms sequences of assembly instructions
connected by a data-dependency relationship (the strands introduced in [42]) into sets
of semantically equivalent symbolic expressions. These expressions are a functional
representation of the input-output relationship of the strand. We designed a novel
pre-training process that forces BinBert to learn the correct matching between an
assembly sequence and an equivalent symbolic expression and to translate assembly
code into symbolic expressions and vice-versa. Our intuition is that symbolic
expressions are more useful than using randomised concrete executions as they do
not suffer from the same level of noise.

We train BinBert on a new large dataset1 of assembly sequences and symbolic
expressions derived from symbolic execution, obtaining a general-purpose assembly
code model. Our model is able to create representative embedding of single instruc-
tions, as well as to generate representative embeddings of sequences of instructions
that could be either snippet of assembly code or entire functions. We remark that
symbolic execution is needed only in the pre-training phase; no code execution is
required while using the model for inference tasks.

We tested BinBert on a multi-task benchmark for binary code understanding
that we built. Tasks in the benchmark range from intrinsic ones, aimed at evaluating
how the pre-trained BinBert captures the semantic of instructions and sequences,
to extrinsic downstream tasks, in which we fine-tune BinBert for problems on
assembly sequences and binary functions. In all our experiments BinBert raises the
performance bar outperforming the current state-of-the-art (including PalmTree [91])
and specific solutions created for the binary similarity problem.

In summary, this work provides the following contributions:

• a novel training task that makes the training of an assembly code model
execution-aware by using symbolic expressions derived from the symbolic
executions of assembly snippets;

• BinBert, a pre-trained execution-aware transformer model for X64, that can
be plugged into DNNs for binary analysis. The model has been pre-trained on
a 26 GByte dataset. We release the model, the code used to train it as well as
the dataset;

• the first multi-task benchmark designed to test the binary code understanding
of assembly models. The benchmark is composed of well-known tasks selected
from the literature for their relevance, and two novel tasks (strand recovery
and execution) for the semantic understanding of assembly sequences;

• an in-depth performance evaluation of BinBert based on our benchmark that
shows how execution awareness improves the performance of an assembly model.
To the best of our knowledge, we are the first to thoroughly test the impact

1Size-wise our dataset is larger than the original dataset used to train Bert [44].

5.2 Background 98

of the fine-tuning paradigm on assembly representation learning. We show
that, as already shown in the NLP field, the pre-training/fine-tuning approach
has a positive impact on all downstream tasks. As a consequence, BinBert
outperforms the current state-of-the-art instruction embedding techniques.

BinBert has been developed by addressing some of the research gaps identified in
our systematization effort, as presented in Chapter 3. Specifically, we considered the
following issues:

• The need to explore the full potential of automatically learned features: To
address this, we built BinBert as an unsupervised binary code embedding model
based on a transformer encoder.

• The improper use of the fine-tuning approach: Most existing works evaluate
their models on a single downstream task. In contrast, our BinBert model is a
general-purpose model that can be fine-tuned for multiple downstream tasks (see
5.6).

• The scarcity of works based on execution information: We pre-trained our model
using symbolic execution and evaluated the contribution of such information on
downstream tasks in our experimental study (see Sections 5.3.3 and 5.6).

• The lack of comparisons with standard architectures and pre-training tasks: We
compared our model with solutions based on standard networks (e.g., SAFE [107])
and traditional NLP pre-training tasks, such as the MLM task (see 5.6).

• The use of tokenization strategies without comparison or rationale: We evaluated
different tokenization strategies in Section 5.6.4.

5.2 Background
In this section, we introduce the general theoretical concepts behind the instruction
embedding techniques and focus on the current state of the art. Afterwards, we
detail weak points and gaps in current solutions, discussing how these influenced
our proposal.

5.2.1 Instruction Embedding Models

An instruction embedding model takes as input an assembly instruction i from a
vocabulary V of size d and it returns a vector of real numbers e(i) = i⃗ ∈ Rn, n is the
embedding size (typically n ∈ [128, 1024]). The vector i⃗ is a dense representation of
the instruction i.

In the simplest embedding scheme a random matrix M of size Rd×n is created,
each instruction is mapped univocally to a row of M . A sequence of instructions
I = [i0, i1, . . . , im] is converted into a sequence of vectors e(I) = [i⃗0, i⃗1, . . . , i⃗m] using
a lookup mechanism. This sequence is fed into the task-specific DNN A. The matrix
M is usually trainable: its elements are trainable weights and are modified during
the training of A.

The groundbreaking idea of the embedding models is to generate the embedding
matrix M with a neural network Emb, formally speaking M = Emb(A). The
network Emb is trained in an unsupervised way on a corpus C of data. This corpora

5.2 Background 99

 mov eax, 5
 mov ebx, [MEM]
sub ecx, eax
cmp ebx, eax
jnz BLK1

 mov ecx, 1
 mov [ebx], eax

ret

 xor ecx, ecx
add ebx, 1
add ecx, 2
mov [ebx], eax

Figure 5.1. CFG of an imaginary function in x64 assembly. For each instruction we
indicate with sx the block level strand to which it belongs.

C is composed of sequences of assembly instructions extracted from selected binaries.
Usually, the distributed representation learning tasks used by instruction embedding
models are, apart from minimal modifications, the ones used in NLP by solutions
such as word2vec [144], GloVe [123], fastText [26], pv-dm [86]. The common goal
is to train Emb to produce an embedding vector that contains enough information
to predict a masked instruction from its context in C. Most of the novelty of the
instruction embedding system is in the preprocessing of instructions and in the
definition of the assembly sequences composing C.

Preprocessing of Assembly Instructions

Assembly language and natural language are distinguished by the wide difference
between the vocabulary size d. A natural language is usually composed of hundred
thousands different words, while the number of possible distinct assembly instruc-
tions is much more. Consider the X64 ISA, a mov instruction can use 64 bits to
express immediates, offsets, and memory addresses, thus there can be 264 different
instructions that just move a value in a certain register. This makes raw assembly
instructions impractical: a large vocabulary is discouraged [34] as it worsens the
problem of out-of-vocabulary word (OOW) [70].

Moreover, the exact value of an immediate is largely useless in a static analysis
setting (e.g. a memory address of an unknown memory layout) [107]. To ameliorate
this problem, a lot of effort has been devoted to instructions preprocessing [46,49,
91,107,121,175]. The standard of the field is to substitute all memory addresses and
immediates above a certain threshold value with special symbols (e.g. IMM). Another
design choice is whether to consider the entire assembly instructions as a token
(used in [107]), to split the assembly instructions into several tokens by separating
opcodes and operands (used in [46]) or to use a more fine-grained split strategy [91].
Interestingly, no one used automatic tokenization such as WordPiece [158] that are
standard in NLP.

5.2 Background 100

Extraction of Assembly Sequences

A key point is how to extract the sequences from the binary, as this defines the
context in which an instruction appears. The context for instruction ix is composed
by k instructions appearing before/after ix in C. Used extraction strategies are:

• Linearized Control Flow Graph (CFG) 2: In this case each sequence is a
linearization of a CFG (commonly the one provided by a disassembler) [107].
Blocks of the CFG that are not logically related could be sequentially placed in
the linerization, and thus an instruction will see a noisy context. An example
is the linearization of the CFG in Figure 5.1 induced by instructions numbers:
the context of instruction i8 contains instructions i9, i10 that are not causally
related. This injects noise into the learning process.

• Control Flow Graph (CFG) /Interprocedural Control Flow Graph (ICFG) 3:
the sequences are extracted from the recovered CFG/ICFG. This is done either
by using a random walk strategy ([46]), or by taking as a sequence a single
block [175]. The idea is to have a sequence that respects the logical control
flow of the examined program, removing the source of noise highlighted in the
previous strategy. We argue that this technique does not completely remove
the presence of extraneous instructions in the context. Take the sequence of
instructions i5, i6, i7, i8 in Figure 5.1, the context of instruction i7 contains i6
and i8 that are not causally related.

Transformer Based Solutions

Recent instructions embedding models are based on transformers. In this case the
embedding network is not a single matrix, but a complex DNN that is able to
transform a sequence of instructions into vectors. The considerations above also
applies to these solutions, they have to decide how to extract assembly sequences
and how to preprocess such sequences.

PalmTree PalmTree [91] is a transformer-based instruction embedding model that
has shown state-of-the-art performances beating all the other embedding models on
several tasks. Instructions are divided into tokens using a fine-grained strategy with
manually made regexs. The model is trained on pairs of instructions taken from
the corpora C. PalmTree uses the standard Masked Language Modeling (MLM) of
Bert and two novel tasks: the Context Window Prediction task (CWP) in which the
network has to recognise if a pair of instructions is taken from the same context or
not, and the Def-Use Prediction task (DUP) in which the network has to recognize if
there is a data dependency between instructions. Once trained, the model is used as
an instruction embedding model: a sequence of instructions is embedded by applying
separately the PalmTree model to each instruction.

2A Control Flow Graph (CFG) represents the flow of control in a function and shows the order
in which instructions are executed. The CFG is composed of a set of basic blocks (where each block
represents a sequence of instructions) connected by edges (where each edge represents a conditional
or an unconditional branch.)

3An Interprocedural Control Flow Graph(ICFG) is an extension of the traditional CFG since it
covers multiple functions within a program.

5.2 Background 101

Trex and Stateformer Trex and Stateformer are two solutions that use micro-
execution traces and transformer architecture. Both utilize similar pre-training
strategies and have similar architectures but they are used to solve different tasks:
Trex is used for function similarity, while Stateformer is used for variables type
recovery. The transformer in these solutions is fed with five sequences: the assembly
code sequence, the micro-trace value sequence and additional information sequences
that specify the order of instructions, architecture, and the position of opcodes.
Regarding assembly sequence, the authors treat all symbols as tokens, including
punctuation. To generate embeddings for the micro-trace values, Trex uses a Bi-
LSTM, while Stateformer uses a Neural Arithmetic Unit. In terms of pre-training,
Trex focuses on predicting masked codes and values in micro-traces, while Stateformer
is trained on predicting micro-trace values and whether a particular instruction is
executed in a trace. Differently from PalmTree, instruction embeddings are not
produced in isolation.

5.2.2 Weak Points and Gap Analysis

We can now identify weak points of previous solutions and gaps in the current body
of knowledge. From such analysis, we derive the research directions of our solution.

Noisy or Absent Execution Information

The execution of assembly makes clear concepts that would be covert (or unavailable)
from its static representation. Apart from the RFLAGS example mentioned in the
introduction, consider again the sequence I0 : lea eax, [ebx * ecx + edx]; mov
edi, eax such sequence is semantically equivalent to I ′

0 : imul ebx, ecx; add
ebx, edx; mov edi,eax. The semantic equivalence could be easily discovered if
information taken from the execution is inserted in the pre-training tasks. Unfortu-
nately, current solutions either neglect this aspect ([46,46, 91,175]) or use random
executions as proxy for the semantic of the function [121,122]. The ones that use
a random execution strategy do not quantify the impact of this information with
an ablation study. Additionally, in some cases, random execution is not sufficient
to understand the semantics of a binary code snippet. For example, consider the
sequence mov ecx, 5; mov ebx, 4; cmp eax, ebx; cmove ecx, ebx: if random
execution does not include a value of 4 for eax, the result for ecx will always be 5,
leading the network to incorrectly assume that its value is a constant. Instead, a sym-
bolic expression of this sequence would be If eax eq 4 then 4 else 5, making
explicit all cases.

RD 1: Design an embedding model that takes into account the execution of code using
symbolic execution. The impact of execution-related information has to be quantified
with a specific ablation study.

No End-To-End Retraining (Fine-tuning)

The use case of almost all the known instruction embedding models is to train the
network for a single problem, or to test it on multiple problem without retraining

5.3 The BinBert Solution 102

it 4. We advocate for testing the benefit of fine-tuning. During fine-tuning, the
pre-trained encoder Enc is trained with the network A end-to-end on a problem
specific labeled dataset. The back-propagation algorithm optimizes the internal
weights of network A and Enc; this optimization modifies the weights of Enc so
that the knowledge learned during pre-training is applied to the downstream task.
As a matter of fact, when Enc is a transformer, A is usually a linear classifier or
another simple neural network, since most of the work is performed by Enc.

No one has extensively studied how this paradigm copes with solving different
goals on assembly language, goals selected to test the semantic and syntactic
comprehension of assembly code. This interesting gap of the current body of
knowledge gives us a new research direction:

RD 2: Design an embedding model that can be trained end-to-end on a specific task,
transferring the general knowledge learned during pre-training. The model has to be
evaluated on a multi-task benchmark designed to thoroughly test the syntactic and
semantic understanding of the assembly language.

5.3 The BinBert Solution
In this section we describe BinBert. We first give an overview of the system,
briefly describing the transformer architecture [149]. We then give the details of the
innovative aspects of BinBert.

5.3.1 Overview

The neural architecture of BinBert is the standard transformer encoder [149] used
by Bert [44]. A transformer encoder processes sequential data using an attention
mechanism, which allows for both the creation of more informative embeddings (by
focusing only on relevant parts of the sequence) and good performances (the attention
mechanism is implemented using matrix multiplication that is highly parallelizable
on GPUs). More specifically, a transformer encoder is composed of N identical
layers stacked one on top of the other, where each layer consists of two sublayers:
a multi-head self-attention mechanism and a fully connected feed-forward network.
Practically speaking, a sequence of n tokens is transformed into a sequence of n
latent vectors (one for each token) with a mechanism that we will explain in Section
5.3.4; this sequence is fed into the initial layer of the encoder. Each other layer
takes as input the hidden state token vectors returned by the previous layer. The
output of the encoder is a sequence of n + 1 embedding vectors: one for each input
token and a special embedding for the entire sequence (the [CLS] vector described
in Section 5.3.4).

To avoid the vocabulary inflation generated by the use of raw assembly in-
structions, BinBert substitutes memory addresses and immediates above a certain
threshold with special symbols. Moreover, BinBert splits a single assembly instruc-
tion into several tokens using WordPiece [158].

4 [91] explicitly states that the downstream tasks have been evaluated without fine-tuning since
these tasks were implemented in Tensorflow 3 while their model was implemented in pyTorch.

5.3 The BinBert Solution 103

In BinBert we decided to completely remove the noise given by instructions
that are contextually related but have no logical relation (see Section 5.2.1) by
extracting sequences representing strands [42]. Strands are sequences of causally
related instructions computing the values of a certain variable. In this way, the
context of an instruction never contains extraneous instructions introduced by
compiler optimizations. We symbolically execute each strand to extract a set of
symbolic expressions; these expressions will be used in our training tasks as a means
to inject execution-related information into the pre-training.

During pre-training, BinBert learns the matching between symbolic expressions
and strands (this is done using positive/negative pairs); at the same time, samples
are partially masked forcing the model to guess the masked tokens by also learning
a translation between symbolic expressions and assembly strands.

5.3.2 Instructions Preprocessing and Assembly Sequences Extrac-
tion

This Section will describe the instruction preprocessing rules that we have adopted
together with the sequence of assembly instructions that we have used for training
our model.

Instructions Preprocessing

We preprocess each assembly instruction substituting immediates above a threshold
(5000 in our experiments) with the value IMM (the same is done for offsets and
memory addresses). We use the special symbol MEM in case of jumps. We use a
threshold-based approach as small immediate values are likely to carry informative
content (comparison with small constants in branches and loops, PC/stack relative
displacements that identify variables in memory). All immediates/offsets are con-
verted to decimal format. For call instructions, we distinguish if the called function
is user-defined or belongs to libc. For user-defined functions, we substitute the called
address with func (our system is usable on stripped binaries). If it is a call to libc,
we substitute the address with the function name (e.g., call printf), since external
symbols cannot be stripped. Indirect calls are left untouched.

After preprocessing, each instruction is tokenized using WordPiece [158]. The
latter uses a probabilistic approach to learn how to tokenize instructions in a way
that minimizes the vocabulary size and the OOW problem. Contrarily to manually
made regexes, WordPiece automatically learns how to split complex opcodes (as an
example cmovz will be split in cmov and z helping the model in understanding the
relationship between the cmovX family of X64). We use WordPiece also on symbolic
expressions, This provides a uniform tokenization mechanism and vocabulary for
the two distinct languages (asm/sym. expr.) used for BinBert.

Assembly Sequences

In BinBert we use the concept of strands to extract the sequences of assembly
instructions on which our model is trained. This does not mean that BinBert cannot
be fine-tuned and used on CFG blocks or entire functions as our experiments will
show.

5.3 The BinBert Solution 104

A strand, originally defined in [42], is a slice of a CFG block constituted by all
the instructions that are connected by def-use dependences. More specifically, we
consider as an output variable of a block a memory location or a register on which
the last operation is a write or the check of a jump. Starting from this variable we
construct a backward-slice of the block including all the instructions from which the
value of such variables depends. To make the concept clear, consider the example
in Figure 5.1; the first block contains two strands S1 and S2: S1 is composed by
instructions i0, i1, i3, i4 that influence the RFLAGS register later checked by i4; strand
S2 is composed by i0, i2 which define the value of variable ecx. Other examples of
strands are in the figure. We enrich the original definition of strand, by considering
as a single strand all the instructions that prepare the input values for a call. In
this case, the strand will be constituted by all the aforementioned instructions and
the call instruction itself. Therefore, we build our training corpora C by extracting
the CFGs in binary, and then decomposing all the blocks in strands. The strands
will be the basic sequences in C.

This decomposition has several advantages: it completely removes the noise
introduced by instructions that co-occur in the same context only for compiler
optimization reasons; the model learns the entire “causal context” of an instruction
so it is able to see long dependencies among instructions.

5.3.3 Symbolic Execution

In BinBert we employ symbolic execution to convert each strand into a representative
symbolic expression. The symbolic execution engine operates on strands of assembly
instructions before preprocessing (as it requires the actual values of immediates
and memory locations). The engine is built on angr [136]. During the execution,
we consider variables on which the strand’s first operation is a read as inputs, and
variables on which the last operation is a write as outputs.

Each time the strand writes to a variable (either a memory location or a register),
we express the written value using a symbolic expression. When a variable is read,
it may either be an input (no one has written to it) or contain a symbolic value. If
the variable is an input, we set its symbolic value to its address or register name
(as example, for mov eax, [rbp+4] we have eax=*(rbp+4), for mov eax, ebx we
have eax=ebx).

The symbolic expression obtained with this process may have one of three possible
forms:

• If the strand computes the value of a certain variable, the symbolic expression
describes the value in the output variable as a function of the strand inputs.
For example, in the first row of Table 5.1, we have the symbolic rcx=-1 add
(0 Concat rsi[1:0]). This expression is for the output variable ecx: the
and operation extracts the two least significant bits from rsi, the result is
extended to 64 bits, and then decremented by the rep. The expression only
contains the extended register of X64, which is a design choice that we discuss
later in Section 5.3.4.

• If the strand computes the predicate checked by a conditional branch, then
our symbolic expression will be the comparison of the jump condition with a

5.3 The BinBert Solution 105

Strands Symbolic Expressions

mov ecx, esi

and ecx, 3

rep stosb byte ptr [rdi], al

rcx = -1 add (0 Concat rsi[1:0])

rdi = 1 add rdi

*(rdi) = al

mov rax, qword ptr [rbp - 168]

mov eax, dword ptr [rax + 24]

test al, 2

jne MEM

0 Concat *(*(rbp add -168) add 24)[1:1] ne 0

mov esi, IMM

mov rdi, qword ptr [rbp]

call fprintf

fprintf(*(rbp), IMM)

Table 5.1. Examples of symbolic expressions obtained by different strands.

symbolic expression of the value used in the predicate. For instance, consider
the second row of Table 5.1; in this case, the symbolic expression is compared
with 0 using the not equal (ne) predicate.

• Finally, if the strand computes the arguments used by a call instruction, our
symbolic expression will be the call to the specific function (including the
symbolic name if it is a libc call), where all the arguments are substituted by
the symbolic expressions of their values. We extracted function arguments
following the X64 calling convention. An example of a call expression is in the
third row of Table 5.1.

From a single strand we may obtain multiple symbolic expressions. For example, in
the first row of Table 5.1, the rep stosb instruction repeatedly places the content of
al into the memory pointed by rdi for ecx times, decrementing ecx and incrementing
rdi with each iteration. This means that the strand has three output variables (a
memory location and two registers), and each one will have its symbolic expression.
We will call this set of symbolic expressions the representative set of the strand.

Preprocessing and Tokenization of Symbolic Expressions The symbolic
expressions of each strand are preprocessed similarly to assembly. Large numerical
constants are substituted with the special symbol IMM, for floating point numbers all
the digits after two decimals are truncated. The symbolic expressions are tokenized
using WordPiece. During the preprocessing phase, we substitute the name of all
registers to their extended form (i.e., we use rax instead of eax). We do so to
help the network in understanding the relationships between names used to address
different parts of the same logical register; this step is not applied while preprocessing
assembly instructions (i.e., we leave eax in the strand).

5.3 The BinBert Solution 106

Figure 5.2. Example of BinBert pre-trained on the Execution Language Modeling (ELM)
and on the Strand-Symbolic Mapping (SSM) tasks.

5.3.4 BinBert Input Representation and Pre-Training Tasks

BinBert is fed with pairs <strand, symbolic expression> and pre-trained on two
tasks that we name Execution Language Modeling (ELM) and Strand-Symbolic
Mapping (SSM).

Input Representation

A BinBert input consists of a tokenized strand-symbolic expression pair. Two special
tokens are added to each sample: [SEP] is used to distinguish between assembly
and symbolic expression, and [CLS] is prepended to all samples. The hidden state
of the [CLS] token in the last hidden layer is typically used to obtain a latent vector
representation of the entire sequence [44] (see Figure 5.2).

We employ dynamic padding, padding shorter sequences with the special token
[PAD], while truncating sequences longer than a threshold (we use 512 in our
experiments). Before processing by the transformer architecture, each token is
converted into a vector using the lookup mechanism described in Section 5.2.1. Token
embeddings are then summed with both position and language embeddings [44,85].
Position embeddings enable the model to be aware of sequence order, while language
embeddings help distinguish between assembly code and symbolic expressions (see
Figure 5.2).

Pre-Training Tasks

The first task is Execution Language Modeling (ELM). The objective of ELM is
to mask a certain percentage mp of tokens in the input pairs and have the network
predict the original ones. As in Bert, the tokens to be predicted are either substituted
with a special token [MASK], replaced with a random one, or left untouched with
probabilities of 80-10-10, respectively. Figure 5.2 shows an example in which the
tokens rax, mov, and 3 are masked, and the network attempts to reconstruct them as
output. Note that in order to reconstruct a token contained in a strand, the network
must pay attention to both the strand and its corresponding symbolic expression
(the same applies for a token in the symbolic expression). This means that to predict

5.3 The BinBert Solution 107

the value 3 for register rbx, the network is forced to understand the data flow in the
strand, thus making the semantic of each strand instruction explicit. As in [44], a
linear layer is added on top of the last hidden layer, specifically to the hidden states
of the masked tokens; this layer will guess the masked tokens.

Mathematically speaking, we have a dataset D of <strand, symbolic expression>
pairs I = [t1, . . . , tn] ∈ D, where each token ti belongs to a vocabulary V ∈ Rd. We
feed each pair to BinBert to obtain context-aware hidden vectors H = Binbert(I) =
[h⃗1, . . . , h⃗n] as output. Now, consider a function msk(I, mp) that randomly masks
mp percent of tokens in I. The goal of the network is to predict the probability that
a token ti corresponds to the target word t̂i using the softmax function:

p(ti = t̂i|I) = e
w⃗t̂i

·h⃗i∑d
k=1 e

w⃗t̂k
·h⃗i

(5.1)

where w⃗t̂i
is the weight vector of the linear layer for word t̂i. The loss of the ELM

task is the cross entropy loss:

LELM = −
∑
I∈D

∑
ti∈msk(I,mp)

log p(ti = t̂i|I) (5.2)

The second task is the Strand-Symbolic Mapping (SSM), in which the
goal is to predict whether the symbolic expression is from the set of expressions
representative of the strand (see Section 5.3.3). To solve this task, we create both
negative pairs by associating a strand with a random symbolic expression and
positive pairs in which the symbolic expression is taken from its representative set.
The ratio between positive and negative pairs is 50:50. An example of a positive
pair can be seen in Figure 5.2: the input strand computes the value 3 for register
rbx, as stated by the corresponding symbolic expression. We believe that, with this
task, the network is forced to learn the matching assembly snippets and symbolic
expressions. This task is built by using a linear layer on top of the hidden state of
the [CLS] token in the last layer that will be used to classify a pair as negative or
positive. In mathematical terms, the goal of this task is to evaluate the probability
that the output label is one, i.e., the symbolic expression correctly computes a value
in the strand:

p(y = 1|I) = ew⃗1 ·⃗h[CLS]

ew⃗0 ·⃗h[CLS] + ew⃗1 ·⃗h[CLS]
(5.3)

where w⃗0 and w⃗1 are the weight vector of the linear layer for label 0 (negative pair)
and 1 (positive pair) respectively. The loss LSSM of the SSM task is the standard
cross entropy loss.

The final loss on which BinBert is trained is the sum of the losses of the two
tasks described above:

L = LELM + LSSM (5.4)

5.4 Evaluation Tasks 108

5.4 Evaluation Tasks
The proposal of a new assembly model necessitates extensive experimental evaluation.
In the field of NLP, standard multi-task benchmarks [153] are used to evaluate
language models. However, equivalent benchmarks for binary code do not yet exist.
Therefore, we designed our own benchmark by selecting several tasks at the levels
of strands, CFG blocks, and functions. This approach tests BinBert on sequences
beyond mere strands.

5.4.1 Intrinsic Tasks

The intrinsic tasks [28] directly use the embeddings produced by BinBert; there is
no fine-tuning, and the embeddings are not used as input for other models.

Opcode Outliers

In the opcode outlier task we are given a set of five instructions. Four of these
instructions belong to the same semantic class, and one is an outlier. For example,
if the set is add eax, ebx; sub ebx, ecx; imul ecx, edx; add eax,5; call
printf;, the last one is an outlier. The network has to predict which is the outlier
among the five instructions.

Strand Similarity

In the strand similarity task we compute the embeddings of given strands with
BinBert and use them to discover semantically similar strands. Two strands are
similar if they have an overlapping semantic (non-empty intersection of the represen-
tative sets). More formally, we have a lookup database of n strands A = a1, . . . , an

and a query strand q. The lookup contains strands that are similar to q and strands
that are dissimilar. Given a number k, the network has to return the k strands in A
that are most similar to q.

5.4.2 Extrinsic Tasks

In the extrinsic tasks, BinBert will be used as the encoding layer of a neural
architecture and fine-tuned end-to-end.

Strand Similarity

The extrinsic strand similarity is the same task as its intrinsic version; in this
case, we fine-tune BinBert using a dataset of similar and dissimilar pairs of strands.
We decided to include this task as it will quantify the effect of fine-tuning on the
creation of semantic preserving embeddings.

Strand and Block Compiler Provenance

In the strand compiler provenance task, the architecture has to recognize the
compiler and the optimization levels used to generate a particular strand. This task
has been previously proposed on functions [106] and fragments of code [112]. In

5.5 Datasets, Pre-Training and Implementation Details 109

compiler provenance, the network has to recognize the syntactic signature that a
compiler, or optimization level, produces. The block compiler provenance task
is analogous but at the block level.

Strand Recovery and Execution

We designed two novel tasks that test the semantic understanding of assembly
sequences. In strand recovery, we provide the network a basic block of the CFG
where one instruction is marked. The DNN has to recognize all instructions in the
same strand of the marked instruction. This task tests the understanding of the
inputs/outputs of instructions, as the network has to infer the dependency created
by implicit registers such as RFLAGS.

In strand execution, a strand and a question are given to the network. The
question is composed of an assignment for the inputs and a marked output. The
network has to predict the value of the marked output. This task is interesting as it
forces the network to concretely execute the snippet of assembly code and compute
the correct output.

Function Level - Compiler Provenance and Similarity

Finally, our multitask benchmark includes two tasks at the function level. In the
function compiler provenance task, the network is tasked with analyzing an entire
binary function to predict the compiler used to generate the function, as well as the
optimization level. In the function similarity task, given a database of functions
and a set of query functions, the network must identify, for each query, the similar
functions in the dataset. We use the standard definition of function similarity [107]:
two assembly functions are considered similar if they are derived from the same
source code but compiled with different compilers or optimization levels. Function
similarity is currently a prominent research topic [49, 107,121,168,175] due to its
significant security implications, which are discussed in depth in Section 5.9.

5.5 Datasets, Pre-Training and Implementation Details
Our datasets and the implementation of our system are released and open-sourced.
They can be found at https://github.com/gadiluna/BinBert.

5.5.1 Datasets

We used three datasets, a pre-train dataset PTData used to pre-train BinBert, a
test dataset TestData used for the downstream tasks, and another test dataset
SimTestData specifically used for the similarity tasks. Our datasets are for X64.

PTData - Pre-training Dataset

The pre-training dataset, PTData, includes the following projects: ccv-0.7, binutils-
2.30, valgrind-3.13.0, libhttpd-2.0, openssl-1.1.1-pre8, openmpi-3.1.1, coreutils-8.29,
gsl-2.5, gdb-8.2, postgresql-10.4, ffmpeg-4.0.2, and curl-7.61.0. These projects were
compiled using compilers clang-3.8, clang-3.9, clang-4.0, clang-5.0, gcc-3.4, gcc-4.7,

https://github.com/gadiluna/BinBert

5.6 Experimental Evaluation 110

gcc-4.8, gcc-4.9, and gcc-5.0. For each compiler, we compiled every project four
times, once for each optimization level in O0, O1, O2, O3.

We used radare2 (version 5.6.0) to extract function signatures and angr (version
9.1.11611) to obtain CFGs, basic blocks, and strands, as well as to derive the set
of symbolic expressions from each strand. After removing duplicates, we obtained
17.215.046 pairs in the form (strand, simexpr) as dataset for the SSM task.

TestData - Test Dataset

The test dataset, TestData, is derived from projects diffutils-3.7, findutils-4.7.0,
inetutils-2.0, mailutils-3.10, and wget-1.20.3. We used compilers clang-3.8, clang-6.0,
clang-9, gcc-5, gcc-7, gcc-9, and icc-21, along with the four optimization levels
O0, O1, O2, O3, to generate the raw binaries. These raw binaries will be used to
create specific datasets for each task. As some operations are task-dependent, we
discuss the specific split and format of the data in each task’s experimental section.
We have ensured the removal of duplicates so that the same sample will not be
present in both fine-tune and test splits.

SimTestData - Similarity Test Dataset

The similarity test dataset, SimTestData, comprises the following projects: putty-
0.74, ImageMagick-7.0.10-62, sqlite-3.34.0, gmp-6.2.0, zlib-1.2.11, nmap-7.80 and
libtomcrypt-1.18.2. Similar to the previous dataset, we used compilers clang-3.8,
clang-6.0, clang-9, gcc-5, gcc-7, gcc-9, and icc-21, with the four optimization levels
O0, O1, O2, O3. This dataset has been created to construct a large benchmark for
testing various state-of-the-art solutions for similarity tasks.

Model Parameters, Pre-Training and Implementation Details

Our model is built using python 3, with pytorch (version 1.10.2+cu113) [116] and
hugginface (version 4.16.02) [157]. We trained it on a DGX A100, using 4 A100
GPUs.

BinBert parameters are: sequence length 512, hidden size 768, intermediate size
3072, 12 attention heads and layers. The total number of parameters is 92,645,512
. We used AdamOptimizer and learning rate 0.0001. The masking rate mp is 0.3.
The batch size for each device is 32 with two steps of gradient accumulation; having
4 GPUs the equivalent batch size is 256. We trained for 1 epoch using 1425 steps of
warmup. The time needed for the pre-training is 46 GPU hours.

5.6 Experimental Evaluation
In our evaluation we answer the following experimental questions:

RQ 1 Is an execution-aware transformer model trained on strands of assembly
instructions and symbolic expressions the state-of-the-art assembly model for
binary understanding?

5.6 Experimental Evaluation 111

RQ 2 What is the impact of pre-train on the performance across several binary
understanding downstream tasks?

RQ 3 What is the impact of using a symbolic execution-aware pre-training?
How it fares against the standard Masked Language Modeling (MLM) of Bert?

To answer RQ 1 we compare BinBert with PalmTree and Trex on all the tasks
of our benchmark. We also compare BinBert with state-of-the-art function similarity
solutions SAFE [107], GNN-BoW, GMN-BoW [93, 105] and BinShot [4] on the
extrinsic function similarity task. For a fair comparison, we retrain both PalmTree,
GNN-BoW and GMN-BoW on our pre-train dataset, by using the same parameters
of the original papers. On all the extrinsic tasks we fine-tune PalmTree and Trex
on exactly the same dataset we used to fine-tune BinBert. It is worth noticing that
PalmTree authors highlighted the possibility of fine-tuning their system but they did
not explore this possibility in their paper; while Trex authors test the fine-tuning
on the function similarity task only. We are interested in assessing the effective
contribution of the symbolic expressions used during pre-training (RQ 3) and the
pre-training itself on downstream applications (RQ 2). To do so we will use the
following baselines:

• BinBert-MLM: This is a model pre-trained on strands only with the standard
Masked Language Modeling Task (MLM). In MLM only the assembly of a
strand is given to the transformer during pre-training, the pre-training task is
to recover masked tokens. The gap between this model and BinBert quantifies
the impact of symbolic execution-awareness.

• BinBert-FS: This is a transformer encoder with the application-specific neural
architecture trained from scratch on the specific downstream task. The gap
between this model and BinBert quantifies the impact of pre-training.

For the fine-tuned models we use the notation: BinBert-FT, BinBert-MLM-
FT, PalmTree-FT, and Trex-FT.

For each task, we will provide the details of the dataset, the solution we employed
to solve the problem, the metrics used to evaluate the performance, and the final
results.

5.6.1 Intrinsic Tasks

The results for intrinsic tasks are reported in Table 5.2.

Opcode Outlier Detection

Dataset We used 43618 different instructions to create a dataset of 50000 sets
of 5 instructions each. These sets are created as we have defined in Section 5.4.1.
Analogously to [91], opcodes are categorized according to the x86 Assembly Language
Reference Manual 5. In Table 5.3 we reported the classes that we have used to
categorise instructions for the opcode outlier detection. In particular, for each of the
ten classes in Table 5.3 we created 5000 groups, in each group the outlier is chosen

5https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html

https://docs.oracle.com/cd/E26502_01/html/E28388/ennbz.html

5.6 Experimental Evaluation 112

Models

BinBert BinBert-MLM PalmTree Trex

Accuracy Accuracy Accuracy Accuracy

Outlier

Detection
Opcode 81.9 ± 0.17 71.9 ± 0.17 77.6 ± 0.21 75.7 ± 0.18

Prec. Rec. nDCG Prec. Rec. nDCG Prec. Rec. nDCG Prec. Rec. nDCG

Similarity Strands

top-10 38.9 52.2 62.9 39.5 53.0 63.8 33.0 43.8 55.8 33.3 44.8 56.3

top-20 22.9 58.9 63.9 23.4 60.1 65.0 19.4 49.6 56.5 19.9 51.7 57.5

top-40 12.8 64.4 66.0 13.0 65.4 67.0 10.8 53.9 58.1 11.3 57.4 59.7

Table 5.2. Intrinsic evaluation results.

0 10 20 30 40 50
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Intrinsic Similarity at Strands Level
BinBert
BinBert-MLM
PalmTree
TREX

(a) nDCG for the top-k answers with k ≤ 50.

0 10 20 30 40 50
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Intrinsic Similarity at Strands Level
BinBert
BinBert-MLM
PalmTree
TREX

(b) Recall for the top-k answers with k ≤ 50.

Figure 5.3. Results for the intrinsic strand similarity task. Database of 42547 strands,
average on 4942 queries.

5.6 Experimental Evaluation 113

at random among all the instructions of the other classes. This ensures that we have
a balanced dataset: for each possible pair of classes on average, we have the same
number of groups in our dataset.

Metrics and Results To solve this task, we embed each instruction in the set
and we evaluate if the embeddings are able to distinguish the outlier; this is done
by computing the distance of each embedded instruction from the others and by
predicting as outlier the most distant. An instruction embedding is computed by
mean pooling the instruction tokens’ hidden states in the second last layer of BinBert
(we take the second last layer as it is less influenced by the pre-training task). The
evaluation metric is the accuracy of [28]:

Accuracy =
∑

s∈S outlier(s)
|S|

(5.5)

where S is the dataset composed of instruction sets and outlier(s) is equal to 1 if
the outlier in the instruction set s is detected and 0 otherwise.

We compute the mean accuracy and standard deviation on 10 runs of the
experiment on different datasets (each composed of 50k sets), the results are in
Table 5.2. BinBert achieves the best performances (81.9 accuracy) and it shows a
great improvement over BinBert-MLM (71.9 accuracy): this confirms that symbolic
expressions clearly enrich the semantic learned by the model for each instruction. It
also outperforms PalmTree and Trex (77.6 and 75.7 accuracies respectively) by a wide
margin. The performances of PalmTree are not dominated by a transformer trained
on MLM. We believe that this is so because PalmTree has been explicitly designed
to be an instruction embedding solution, while BinBert-MLM has been trained
on sequences. Moreover, Trex outperforms BinBert-MLM, meaning that micro-
execution traces used by Trex enhance the semantic of each instructions. However,
Trex does not outperform BinBert: thus confirming that symbolic expressions are
more powerful than concrete execution values used by Trex. In Section 5.8.1 we
report a qualitative analysis with the clusters of opcodes learned by BinBert.

Similarity at Strand Level

Dataset We use a database A of 42547 strands on which we perform 4942 queries
Q which correspond to the number of equivalence groups. That is we perform one
query for each group of similar functions. On average for each query, we have 8.61
(s.d. ±4.9) similar elements in A.

Metrics and Results To solve the task we compute an embedding vector q⃗ for
each query q and an embedding vector a⃗ for each strand a in the lookup database
A. This is done by averaging all the instruction tokens’ hidden states in the second
last layer of BinBert. For each query vector q⃗ we compute the cosine similarity with
all a⃗ ∈ A; we return the ordered list of the top-k similar elements Rq = (r1, . . . , rk).
Using Rq we compute: precision, number of true similars in Rq over k; recall, number
of true similar in Rq over #sim(q), that is the number of items similar to q in A;
and nDCG. The nDCG is a measure used in information retrieval. It is defined as:

5.6 Experimental Evaluation 114

Type Opcodes

Data Movement
mov, push, pop, cwtl,

cltq, cqto,cqtd

Unary Operations inc, dec, neg, not

Binary Operations
add, sub,imul, xor,

or, and, lea, leaq

Shift Operations sal, sar, shr, shl

Comparison and Test

Intructions
cmp, test

Conditional Set

Instructions

sete, setz, setne,

setnz, sets,setns, setg,

setnle,setge, setnl, setl,

setnge,setle, setng, seta,

setnbe, setae, setnb, setbe,

setna

Jump Instructions

jmp, je, jz, jne, jnz,

js, jns, jg, jnle,jge,

jnl, jl, jnge, jle, jng,

ja, jnbe, jae,jnb, jb,

jnae, jbe, jna

Conditional Move

Instructions

cmove, cmovz, cmovne,

cmovenz, cmovs, cmovns,

cmovg, cmovnle, cmovge,

cmovnl, cmovnge, cmovle,

cmovng, cmova, cmovnbe,

cmovae, cmovnb, cmovb,

cmovnae, cmovbe, cmovna

Procedure Call

Instructions
call, leave, ret, retn

Floating Point

Arithmetic

fabs, fadd, faddp, fchs,

fdiv, fdivp, fdivr,fdivrp,

fiadd, fidivr,fimul, fisub,

fisubr, fmul,fmulp, fprem,

fpreml, frndint, fscale, fsqrt,

fsub, fsubp, fsubr,

fsubrp, fxtract

Table 5.3. Opcode classes used to categorise instructions for the opcode outlier detection
task.

5.6 Experimental Evaluation 115

Figure 5.4. Scheme for the triplet loss: asmi can be either a strand or a function and
Model is either BinBert, BinBert-ML.

nDCG =
∑k

i=1
sim(ri,q)
log(1+i)∑#sim(q)

i=1
1

log(1+i)

(5.6)

Where sim(ri, q) is 1 if q is similar to ri and 0 otherwise. The quantity at the
denominator is the scoring of a perfect answer, and the number at the numerator is
the scoring of our system. The nDCG is between 0 and 1, and it takes into account
the ordering of the items in Rq, giving better scores when similar items are ordered
first. As an example let us suppose we have two results for the same query: (1, 1, 0, 0)
and (0, 0, 1, 1) (where 1 means that the corresponding index in the result list is
occupied by a similar item and 0 otherwise). These results have the same precision
(i.e., 1

2), but nDCG scores the first better. We average the per-query precision, recall,
and nDCG to obtain the final metrics. Results are shown in Table 5.2 and in Figure
5.3. We can see that BinBert and BinBert-MLM achieve the best performance on
precision, recall and nDCG, the MLM model has a slight edge on BinBert.

5.6.2 Extrinsic Tasks at Strand and Basic Block Level

Results for extrinsic tasks are shown in Table 5.4.

Strands Similarity

Dataset We fine-tuned BinBert on the task of recognizing whether strands are
similar or dissimilar. We created a dataset of 49974 samples, each being a triplet
consisting of an anchor strand a, a positive strand p (similar to the anchor), and a
negative strand n (dissimilar from the anchor). We split it into train and validation,
resulting in 39978 strands triplets for the training set and 9996 for the validation. We
test the fine-tuned models on the same test sets used in the corresponding intrinsic
tasks (see Sec.5.6.1).

Fine-tuning We fine-tune the model using a siamese architecture [27, 107, 160]
with the triplet objective function [130] (see Figure 5.4). In this architecture three
instances of the embedding network are used, each instance produces the embedding
of the corresponding entity in a triplet. The resulting embeddings are used during

5.6 Experimental Evaluation 116

training to minimize the triplet margin loss that has the following mathematical
form:

L(⃗a, p⃗, n⃗) = max{∥a⃗− p⃗∥2 − ∥a⃗− n⃗∥2 + ϵ, 0} (5.7)

The training process instructs the embedding network to produce embeddings such
that the euclidean distance between a⃗ and p⃗ is smaller than the euclidean distance
between a⃗ and n⃗ by at least a margin of ϵ. For BinBert-FT and BinBert-MLM-FT
the embeddings for the triplet loss are given by the average of all tokens of the last
layer (excluded the padding).

Differently from BinBert, which can directly embed any arbitrary sequence of
assembly code, Palmtree is an instruction embedding model, thus requiring an
additional architecture to transform it into a model that embeds sequences. In
particular, we use a bidirectional LSTM, where each cell takes as input the instruction
embedding produced by PalmTree. Finally, we compute an embedding by averaging
all the hidden states of the LSTM. We stress that in case of BinBert we do not need
to use an LSTM to compute a function embedding but we use the average of the
tokens of the last layers.

Regarding Trex, we used the same finetuning process used in the original paper
for the function similarity test.

We fine-tune each model for 20 epochs, selecting the epoch with the best AUC
on validation.

Metrics and Results Results for strands similarities are in Table 5.4. In Figures
5.5 there are the results of strand similarity for k ∈ [0, 50].

Also in this case BinBert achieves the best performances. The gap between
BinBert-FT and the other models is much wider than in the intrinsic case. A
possibility is that BinBert learns a wider semantic during pre-training, solving
more efficiently the similarity task after fine-tuning. This explains the gap between
BinBert-FT and BinBert-MLM-FT.

The great impact of pre-training can be appreciated by looking at the performance
of BinBert-FT and BinBert-FS. BinBert-FS has been only trained on the fine-tune
dataset so it cannot leverage a learned semantic, the fine-tune dataset has not enough
data to make up for this disadvantage and to train a big transformer model.

Compiler Provenance

As in other works on compiler provenance [106], we train and test the networks
on the task of Compiler Classification, that is detecting the compiler family that
has generated a sample, and Optimization Classification, detecting the optimization
level used to generate a sample.

Dataset The compiler provenance dataset is made up of samples in which, de-
pending on the granularity, a strand or a basic block is associated with two labels:
the compiler family with its corresponding version and the optimization used. The
strand compiler provenance dataset has 30760 samples, split into 24564 samples for
the training set, 3104 samples for the validation set, and 3092 samples for the test
sets. Each compiler family contains 4394.29 samples on average (s.d. ±185.08), thus

5.6 Experimental Evaluation 117

0 10 20 30 40 50
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Extrinsic Similarity at Strands Level

BinBert-FT
BinBert-MLM-FT
BinBert-FS
PalmTree-FT
TREX-FT

(a) nDCG for the top-k answers with k ≤ 50.

0 10 20 30 40 50
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Extrinsic Similarity at Strands Level

BinBert-FT
BinBert-MLM-FT
BinBert-FS
PalmTree-FT
TREX-FT

(b) Recall for the top-k answers with k ≤ 50.

Figure 5.5. Results for the extrinsic strand similarity task. Database of 42547 strands,
average on 4942 queries.

5.6 Experimental Evaluation 118

resulting in a balanced dataset. In terms of optimization levels, there is an imbalance
caused by O0 optimization, which has a higher number of strands, while other
optimization levels (O1, O2, O3) are more balanced. Specifically, O0 optimization
level contains 12727 samples, while other levels contain 6011 samples on average (s.d.
±775.01). The basic blocks compiler provenance dataset has 73252 samples, split
into 58625 training samples, 7258 validation samples, and 7369 test samples. Each
compiler family contains 10464.57 samples on average (s.d. ±775.01), thus resulting
in a balanced dataset. Regarding optimization levels, there exists an imbalance
similar to the strand case. In fact, the O0 optimization level contains 26380 samples,
while other levels contain 15624 samples (s.d. ±1828.63).

Fine-tuning We fine-tune BinBert, BinBert-MLM, and Trex on both compiler
and optimization classification by adding a linear layer followed by the softmax
function on top of the last layer hidden state corresponding to the [CLS] token. For
PalmTree we use an LSTM over the instruction embedding tokens generated; to
obtain a classifier we attach a linear layer with the softmax on top of the last hidden
states of the RNN. We fine-tune each model for 20 epochs, selecting the epoch with
the best classification accuracy on validation.

Metrics and Results To assess the performance of the models, we utilized macro
precision, recall, and F1 score. These metrics guarantee equal treatment of all
classes, thereby mitigating the potential for misleading outcomes in the presence
of imbalances as discussed earlier. Results for both compiler and optimization
classification are shown in Table 5.4. In this case, BinBert-FT is slightly worse
than BinBert-MLM-FT, we believe that this is due to the fact that recognising a
compiler signature is a syntactic task. PalmTree-FT and Trex-FT have the worse
performance among all fine-tuned models. Again we can see that pre-training is
important as the from-scratch model performs consistently worse than its fine-tuned
counterpart. Results are similar for the optimization classification task. Since the
optimization dataset has some imbalances, we reported in Figure 5.6 the confusion
matrices obtained by using BinBert on the optimization classification tasks for both
strands and basic blocks. We can observe that BinBert is better at distinguishing
optimized (O1, O2, O3) vs unoptimized code (O0) rather than recognizing the
specific optimization level used to compile it.

Strand Recovery

Dataset The dataset is made of 9265 basic blocks, each block contains at least
5 disjoint strands (i.e. the strands do not overlap on instructions). We split the
dataset into 7411 training samples and 927 samples for both validation and test. We
model strand recovery as instruction classification; given the instructions of a basic
block and the final instruction of one of its strands, we aim at classifying the other
instructions as either belonging to the same strand as the marked instruction or not.
Thus, the classification of each instruction is a binary classification task. To mark
an instruction we surround it with a special token. The total number of instructions
is 105288, 13230, and 13138 for the training, validation, and test set respectively.
The total number of instructions belonging to the positive class is 29% in each set.

5.6 Experimental Evaluation 119

(a) Confusion matrix for the optimization classification task at
strand level with BinBert.

(b) Confusion matrix for the optimization classification task at
basic block level with BinBert.

Figure 5.6. Results for the extrinsic compiler provenance task at strand and basic
block level.

5.6 Experimental Evaluation 120

Fine-tuning We fine-tune BinBert, BinBert-MLM, and Trex by attaching a
classification head on top of the last layer hidden states of the first token of each
instruction; the network will output 1 if an instruction is part of the strand to
be recovered and 0 otherwise. As for previous tasks, we use an LSTM on top of
PalmTree and we put a classification head on the hidden states of the first token of
each instruction. We fine-tune each model for 20 epochs, selecting the epoch with
the best classification accuracy on validation.

Metrics and Results To evaluate the performance of the models, we used
precision, recall, and F1-score of the positive class, which is the minority class as
well. Results are shown in Table 5.4. We can see that the best-performing model
is BinBert-FT, it is outperformed only by Trex-FT in terms of precision, but it
markedly surpasses PalmTree-FT on all the metrics considered. BinBert-MLM-FT
achieves the same precision as BinBert-FT but smaller recall. We believe the reason
to be the execution-awareness of BinBert-FT that allows the model to recover more
instructions in a strand. For the sake of completeness, we reported the performance
of BinBert on the negative class as well: 99.6 Precision, 99.0 Recall and 99.3 F1
score. A qualitative analysis showing the change of internal attention weights of
BinBert during fine-tuning is in Section 5.8.2.

Tasks

Models

BinBert-FT BinBert-MLM-FT BinBert-FS PalmTree-FT Trex-FT

Prec. Rec. nDCG Prec. Rec. nDCG Prec. Rec. nDCG Prec. Rec. nDCG Prec. Rec. nDCG

Similarity

Strands

top-10 54.3 71.1 81.0 53.1 69.7 79.7 36.8 48.8 60.9 41.4 55.3 66.0 37.0 49.5 61.0

top-20 31.7 78.6 81.8 31.1 77.4 80.6 21.8 55.6 61.9 24.6 63.1 67.5 22.0 57.3 62.5

top-40 17.3 83.7 83.7 16.9 82.2 82.4 12.3 61.4 64.1 13.9 69.4 69.9 12.8 64.4 65.3

Functions

top-5 78.5 38.9 83.4 75.9 37.4 81.3 39.5 19.3 51.4 60.5 29.1 69.4 71.9 35.2 78.1

top-10 59.2 55.3 74.7 56.2 52.3 71.8 23.9 22.8 39.9 39.9 36.8 56.7 51.9 48.3 67.8

top-25 31.5 69.6 74.0 29.8 65.8 70.8 12.0 28.0 38.0 20.3 45.2 54.2 27.3 60.6 65.5

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Compiler Classification

Strands 73.7 73.6 73.6 75.4 75.2 75.2 45.8 45.9 44.5 69.4 68.8 68.4 69.5 68.9 68.7

Basic Blocks 72.6 72.3 72.4 72.7 72.4 72.4 54.2 53.7 53.6 69.9 68.8 69.0 70.0 68.2 68.6

Functions 89.0 87.6 88.2 88.9 88.7 88.8 74.3 69.6 74.7 86.0 84.0 84.7 88.5 86.1 86.9

Optimization Classification

Strands 73.4 73.2 73.2 73.4 73.5 73.4 58.4 59.0 57.1 69.8 67.2 68.2 69.9 69.8 69.6

Basic Blocks 65.9 66.1 66.0 66.2 66.4 66.3 57.6 57.8 53.7 63.1 63.1 67.2 60.4 61.0 60.3

Functions 70.0 70.0 70.0 68.8 68.4 68.4 62.0 59.4 58.6 66.7 66.2 66.3 67.7 67.5 67.5

Strand Execution 80.1 80.0 79.1 78.4 77.0 76.6 17.2 17.7 16.6 25.1 23.8 23.3 18.4 20.1 16.7

Strand Recovery 96.9 98.7 97.8 96.9 98.4 97.6 65.7 29.9 41.1 81.1 75.5 79.2 98.0 97.0 97.5

Table 5.4. Extrinsic evaluation results.

Strand Execution

Dataset We created a dataset for the strand execution task by taking strand-
symbolic execution pairs, assigning concrete values to input variables, and evaluating
its concrete output. In particular, we randomly assign values between 0 and 100 to
input variables and we take only strands whose output is not greater than 200. Our
dataset only contains strands computing the value of a register or a predicate of a
conditional branch. The dataset is composed of 40000 training samples, and 5000
validation and test samples (total 50k). In each dataset, approximately 83% of the
samples have an output value below 100. For each output value between 0 and 100
there is an average number of 41 strands (s.d. ±7.65).

5.6 Experimental Evaluation 121

Each sample is made up of strand instructions followed by concrete assignments
of input variables and the query output variables (only in the case of register
outputs); the label for such a sample is the concrete value of the output vari-
able. For instance, consider the strands mov eax, dword ptr [rbp - 180] sub
eax, 1 and the value 9 assigned to dword ptr [rbp - 180]. The corresponding
sample will be mov eax, dword ptr [rbp - 180] sub eax, 1 [SEP] dword ptr
[rbp - 180] = 9 [SEP] rax. The network has to predict the value for register
rax, in this case 8.

Fine-tuning We model this problem as a sequence classification task, thus we
used the same architectures used for the compiler provenance tasks (see Section
5.6.2). Regarding Trex, since it uses a bi-LSTM to deal with concrete values, we
pass our concrete input inside that LSTM architecture.

Metrics and Results To evaluate the performance of the models and to address
dataset imbalances we used macro precision, recall and F1 measures. We reported
results obtained by all the models in Table 5.4. BinBert-FT achieves the best
performances. PalmTree-FT and Trex perform poorly on this task. In the case
of Palmtree we believe that this is due to the fact that it is a pure instruction
embedding model so even when fine-tuned it cannot transfer to the upward neural
architecture A sequence-related knowledge. On the contrary, both BinBert-FT and
BinBert-MLM-FT are trained on sequences; however, BinBert-FT has the edge
thanks to its execution-awareness. Regarding Trex, we believe that low performances
are due to its architecture that treats concrete values in a separate network. In this
case, the pre-training has a great impact as we can see by the poor performance of
BinBert-FS.

5.6.3 Extrinsic Tasks at Function Level

To address function-level tasks, we employ BinBert on the Linearized CFG. This
approach serves two purposes. Firstly, it evaluates whether the drawbacks of such
a representation, as discussed in Section 5.2.1, are offset by the pre-training phase.
During this phase, the noise from unrelated instructions is filtered out through
the use of strands. Secondly, it aims to assess the representational capacity of our
assembly code model independently of complex architectures or elaborate function
representation. This is crucial for determining that the source of performance
improvements stem from the assembly code model itself and are not due to other
structures, either integrated with or built upon our model, which could confound
the evaluation of its true effectiveness.

Similarity

Fine-tune Process and Dataset The function similarity dataset has exactly the
same format as the similarity tasks at strand level (see Section 5.6.2). In particular,
the training dataset contains 18834 function triplets, while the validation set contains
7650 triplets.

5.6 Experimental Evaluation 122

On top of the embedding models, we use the same architectures that we employed
to solve the other similarity tasks (see Section 5.6.2). Specifically, for PalmTree we
use it on the linearized CFG using an LSTM on top of the instruction embeddings.

We compare our solution with some other approaches that have been specifically
designed to tackle the binary similarity problem. These include SAFE [107], Trex
[121], GNN-BoW, GMN-BoW [93,105] and BinShot [4]. SAFE uses word2vec [144] to
create instruction embeddings that are then fed to a self-attentive neural network [98]
for learning the final embeddings for functions. Binshot utilizes a transformer encoder
that has been pre-trained on the MLM task and is subsequently fine-tuned using
pairs of similar and dissimilar functions. BinShot calculates a weighted distance
vector from a given pair of functions and then employs a fully-connected layer on
this vector to output a final similarity score. GNN-BoW and GMN-BoW are both
based on graph neural networks and are the best-performing solutions for the binary
similarity problem according to [105]. In these approaches, the function control
flow graph (CFG) is represented as a graph, and the nodes are represented by the
bag of words (BoW) of the 200 most frequent opcodes contained in each block.
While GNN-BoW computes the embedding of each function independently and then
computes the similarity score, GMN-BoW computes the embeddings of a pair of
graphs simultaneously. However, even though GMN-BoW achieves the best results, it
cannot be used in some scenarios due to its time performance. This is because, unlike
traditional embedding models, the function embeddings cannot be precomputed
since they depend on the query function. This makes large-scale testing infeasible.
Similar observations can be done for BinShot, in which the model is designed to
produce a similarity score between function pairs rather than outputting function
embeddings. For this reason, we performed two experiments on different datasets.
The first experiment was conducted on a larger dataset, where all models were
evaluated except GMN-BoW and BinShot. This dataset comprised 58773 functions,
with 5000 of them serving as queries (the number of queries corresponds to the
number of equivalence groups). On average, each query had 11.7 similar entities
(s.d. ±5.29). The second experiment was conducted on a reduced dataset, where
GMN-BoW and BinShot took a reasonable amount of time to compute. This dataset
consisted of 5962 functions, with 422 of them serving as queries. On average, each
query had 15 similar entities (s.d. ±5.91).

Results Results are in Figure 5.7 and Table 5.4. BinBert achieves the best
performances, beating also GNN-BoW, SAFE and Trex which are specific for the
function similarity problem. PalmTree performs worse than BinBert, confirming our
initial intuition about the drawbacks of the lack of context and the isolated instruction
embeddings. SAFE has lower performances than PalmTree. This suggests that even if
they are both based on fixed instructions embeddings, a transformer encoder is more
capable of capturing an instruction semantic than word2vec. Unsurprisingly, the Trex
model beats PalmTree. Also in this task, BinBert-FS is below its corresponding fine-
tuned version highlighting the importance of pre-training. The impact of execution
awareness can be seen in the advantage of BinBert-FT on BinBert-MLM-FT. Finally,
the results for the experiments on the reduced dataset are in Figure 5.8, also in this
case we can see that BinBert-FT is the state-of-the-art and it performs better than

5.6 Experimental Evaluation 123

GMN-BoW and BinShot.

(a) nDCG for the top-k answers with k ≤ 30.

(b) Recall for the top-k answers with k ≤ 30.

Figure 5.7. Results for the function similarity task on the largest dataset. Database of
58773 functions, average on 5000 queries.

Compiler Provenance

Fine-tune Process and Dataset The compiler provenance dataset has the same
structure as the strand and block compiler provenance tasks. It contains 39017
functions in the training set and 4877 functions in the validation and test set. Each
compiler family contains 6967.42 samples on average, thus resulting in a balanced
dataset (s.d. ±1600.42). Regarding optimization levels, there exists an imbalance
similar to the strand and basic block cases. In fact, the O0 optimization level
contains 16258 samples, while other levels contain 10838 samples (s.d. ±2589.33).

We used the same architectures that we employed to solve the other compiler
provenance tasks.

5.6 Experimental Evaluation 124

0 5 10 15 20 25 30
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Extrinsic Similarity at Functions Level

BinBert-FT
BinBert-MLM-FT
BinBert-FS
PalmTree-FT
GNN-BOW
GMN-BOW
TREX-FT
SAFE
BINSHOT-FT

(a) nDCG for the top-k answers with k ≤ 30.

0 5 10 15 20 25 30
Number of Nearest Results

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Extrinsic Similarity at Functions Level
BinBert-FT
BinBert-MLM-FT
BinBert-FS
PalmTree-FT
GNN-BOW
GMN-BOW
TREX-FT
SAFE
BINSHOT-FT

(b) Recall for the top-k answers with k ≤ 30.

Figure 5.8. Results for the function similarity task on the reduced dataset. Database of
5962 functions, average on 422 queries.

5.7 Time Performance Comparison 125

Results We reported the macro precision, recall, and F1 score for different models
in Table 5.4. Results are similar to the compiler provenance task at strand and block
level, thus the same considerations hold. In Figure 5.9 we reported the confusion
matrices obtained by using BinBert on the compiler and optimization classification
tasks. We can observe that BinBert can clearly distinguish among different compiler
families and it only gets confused with different versions in the same family. Similar
behavior can be observed in the optimization classification task. It is easier for
BinBert to distinguish optimized (O1, O2, O3) vs unoptimized code (O0) than to
recognize the specific optimization level used to compile it.

Results from the experimental evaluation confirm that BinBert is the current
state-of-the art for assembly code models. It shows improvement over PalmTree,
Trex, and other deep learning solutions specifically tailored for a certain task.
Execution awareness has a marked impact on semantic tasks. Interestingly, on
some syntactic tasks, execution awareness does not increase the performance
of the model. Our evaluation highlights the great impact of pre-training on
downstream tasks with small-size datasets.

5.6.4 Tokenizers

In all of the aforementioned experiments, we utilized the Wordpiece tokenizer, which
is a standard choice for Bert-like models. However, we also assessed the performance
of the model using two additional tokenization strategies: whitespace tokenizer and
unigram tokenizer. The whitespace tokenizer, employed by PalmTree and Trex,
involves splitting tokens based on whitespaces and symbols. The unigram tokenizer
initializes its vocabulary with a large number of symbols and progressively trims it
down to obtain a smaller vocabulary. Our experimental evaluation shows that the
whitespace tokenizer results in an average performance decrease of 1.88%, while the
unigram tokenizer leads to a performance decrease of 8.91%.

5.7 Time Performance Comparison
Table 5.5 shows the time performance of different solutions for binary similarity. The
measures, in seconds, are the time required for the models to generate embeddings 6

and find the top k most similar functions in the reduced dataset. The GNN-BoW
model is the fastest, likely due to its smaller size of basic block embedding. Palmtree
is slower than BinBert and SAFE, possibly due to the need of applying a transformer
model separately to each assembly instruction. Trex is slower than Palmtree due to
its use of an additional LSTM architecture to embed numerical values. GMN-BoW
is the slowest model, as it must generate a similarity score for each pair of functions
in the dataset. The performance of GMN-BoW may not be practical in a real-world
scenario, especially when the network has to be used to retrieve similar functions in
a large database of samples. BinShot outperforms GMN-BoW in terms of speed, but
it lags behind other embedding models due to the necessity of computing similarity
scores for each function pair.

6The measures are taken after the binary function is converted in the format required by the
model.

5.7 Time Performance Comparison 126

cla
ng

-3.
8

cla
ng

-6.
0

cla
ng

-9
gcc

-5
gcc

-7
gcc

-9
icc

-21

Predicted labels

cla
ng

-3.
8

cla
ng

-6.
0

cla
ng

-9

gcc
-5

gcc
-7

gcc
-9

icc
-21

Tr
ue

 la
be

ls
253 82 12 1 0 0 1

32 637 83 4 2 0 1

4 49 685 1 4 1 1

0 2 4 506 94 4 1

1 3 5 54 766 27 1

0 1 1 4 45 759 1

0 1 3 2 2 0 738

BinBert Compiler Classification at Function Level

0

100

200

300

400

500

600

700

(a) Confusion matrix for the compiler classification task at
function level with BinBert.

O0 O1 O2 O3
Predicted labels

O0

O1

O2

O3

Tr
ue

 la
be

ls

1533 57 27 37

49 1232 83 94

42 87 397 304

38 108 276 514

BinBert Optimization Classification at Function Level

200

400

600

800

1000

1200

1400

(b) Confusion matrix for the optimization classification task at
function level with BinBert.

Figure 5.9. Results for the extrinsic compiler provenance task.

5.8 Qualitative Analysis of Binbert 127

Model Time (s)

BinBert 37.5

BinBert-MLM 37.3

Palmtree 49.7

Trex 87.9

SAFE 37.6

GNN-BoW 19.1

GMN-BoW 11765.8

BinShot 2327.9

Table 5.5. Results for time analysis.
5.8 Qualitative Analysis of Binbert
We performed a qualitative analysis of the Binbert model by examining the clusters
of opcodes created by the model and by visualising its attention mechanism.

5.8.1 Opcode Clustering

We performed a qualitative analysis based on the visualization of the clusters of
opcodes learned by BinBert. To do so, we first used BinBert to convert each
opcode into a vector, and we then applied t-SNE [147] to visualize opcodes in a
two-dimensional space. Results are shown in Figure 5.10. Opcodes are well clustered
according to their semantics. Specifically, we can identify two symmetric regions in
which jumps, conditional move, and conditional set are split based on the condition
checked (either positive or negative). We can also identify a region containing
operations performing multiplications (imul, lea) and divisions (divq), and other
arithmetic operations (add, sub). Another interesting example is given by the region
containing ret, pop, push and call: they all manipulate the stack.

30 20 10 0 10 20
tsne_1

15

10

5

0

5

10

ts
ne

_2

jbe

js

cmovepop

cltq

or
xor

setl

cmovnl

jae
jb

imulq

cwtl

sal

frndint

push

cmovnle

cmovna

jl

leaq

leave

sub

cmovnae

cmovnbe

cqtd

fpreml

fsub

jnge

fchs

jne

cmovnb

setle

jg

retn

neg

fsubr

cmovz
jz

setae

cmovge

fidivr

setne

fscale

sete

cmovae

fsubrp

fisub

jmp

cmovns

setbe

jna

cqto

fmulp
setg

jnl

cmovng

shr

not

seta

setnge
setnbe

jnbe divq

faddp
fmul

setnz

setnle

cmovs

fsqrt

lea

cmp

setz
jnle

jng

setge

cmovenz

fiadd
setnb

jnb mov
imul

fimul

cmovne

fisubrsetnl

fdiv

jns

ret

sar

setng

fdivr

cmova

fadd

jge

and add

cmovg cmovle

shl

idivq
jnae

inc

fsubp setns

fxtract

cmovb

mulq

cmovnge

call

test

cmovbe

fdivrp

fabs

dec

fdivp

fprem

jle
je

setna

ja

jnz

sets

Jump
Conditional Move
Data Movement
Binary Operations
Conditional Set
Special Arithmetic Operations
Shift Operations
Floating Point Arithmetic
Procedure Call
Unary Operations
Comparison and Test

Figure 5.10. Visualization of opcode embeddings in a two-dimensional space with t-SNE.

5.8 Qualitative Analysis of Binbert 128

(a) Attention weights of the
last head for the embed-
ding of the call token
in the last layer when
BinBert is fed with a
strand. We can see
that the network pays
attention to the func-
tion arguments and the
name of the called func-
tion. This shows that
the network has learnt
non trivial relantioshpis
between the call token
and the rest of the se-
quence.

(b) Attention weights of the
last head for the embed-
ding of the call token
in the last layer when
BinBert is fed with a
non-strand. We can see
that the network pays
also some attention to
the extraneous register
rbx

(c) Attention weights of the
last head for the embed-
ding of the call token
in the last layer when
BinBert-FT fine-tuned
on strand recovery is fed
with a non-strand. We
can see that the network
learns that rbx is extra-
neous and do not pay
attention to it.

Figure 5.11. Series of Attention Visualization snapshots, we can see that the network
changes its attention paradigm during fine-tuning to more effectively tune down the
noise inserted by extraneous instructions.

5.8.2 BinBert Attention Visualization

BinBert is based on a stacked attention mechanism, in each layer of the transformer,
there is an attention mechanism that creates the embedding of a token by focusing
on the most interesting part of the input layer. We used BertViz [152] to visualize
the attention weights produced by BinBert at certain layers and heads. Specifically,
we were interested in evaluating two aspects: the robustness of the attention when
BinBert is fed with assembly sequences that are not strands and the effect of
finetuning on those weights. We fed BinBert with a strand (Figure 5.11a). We
observe the last attention head in the last layer, and we discover that when computing
the embedding of the call instruction, BinBert focuses on the parameters of the call
which are 3 and 4 (Figure 5.11a) and on the name of the called, meaning that it has
understood the strand relationship and it understood the calling convention. We then
added an instruction (inc rbx) to the previous strand and we gave it as input to
BinBert. We can see, that the attention is still focusing on the function parameters,
but it is also considering the rbx register of the outlier instruction. We then feed
the same non-strand instruction to BinBert-FT finetuned on the strand recovery
task. We observe that finetuning has lowered the attention weight associated with
the rbx register, thus reducing the noise. This last observation shows that during

5.9 Security Applications of an Assembly Code Model 129

fine-tuning BinBert is able to reconfigure its attention mechanism according to the
downstream task to be solved.

5.9 Security Applications of an Assembly Code Model
The BinBert assembly code model is suitable for various security applications.
The model transforms sequences of assembly instructions into representations that
other machine learning models or neural architectures can directly use and can be
seamlessly integrated into existing solutions to leverage the semantic knowledge
acquired during pre-training. In this section we show possible venue of applications
of our model.

5.9.1 Reverse Engineering

An assembly code model can assist and automate multiple tasks beneficial for reverse
engineers. In this scenario a fundamental challenge is understanding the semantics
of unknown functions. A valuable tool is a high-level representation in the form
of decompiled code. To produce decompiled code from a low-level programming
language, some deep learning-based solutions use encoder-decoder architectures [29],
where BinBert could replace the encoder part. Additionally, a code model can
automate the task of naming assembly functions with semantically representative
names. Recent studies [56, 76, 82] suggest neural architectures for this challenge,
where many process sequences of assembly instructions using Transformers or RNNs
as encoders. BinBert can be directly integrated into such solutions either as an
encoder (for example, in [76,82]) or as a method for creating feature vectors from
assembly instructions (for example, in [53,117]). Another area where an assembly
code model proves useful is binary authorship detection, aiming to identify the author
of an executable and, in malware cases, the Advanced Persistent Threat (APT) group
responsible for the attack [137]. The compilation and optimization classification
tasks are also significant from a security perspective. It has been recognized that
specific versions of compilers and optimization levels may inadvertently introduce
security vulnerabilities into cryptographic code [48]. An assembly model can furnish
analysts with insights into the probable optimization level utilized for compiling a
binary. This information could steer their analysis towards identifying particular
security-sensitive bugs.

5.9.2 Binary Similarity

The Binary Similarity problem is a fundamental problem that has application in a
wide range of security related tasks [105]. As example it has been used to classify
unknown malware in families [107], or to find known vulnerabilities (CVE) in specific
binaries used in production environments [4, 121, 160]. This aspect is especially
important in contexts with vulnerable firmware, where a flaw at the source code
level can affect numerous devices across different architectures.

5.10 Related Works 130

5.10 Related Works
Binary code representation techniques can be subdivided into two main branches:
manual features selection [10,53,95,113,117,160] and unsupervised features extraction.
Since our work proposes an assembly model we discuss works that use or propose
instruction embedding models. We first focus on the instruction embedding models
proposed in the literature, categorising them according to the defining properties
identified in the Background Section 5.2: the distributed representation learning
used, the preprocessing of assembly instructions, and the extraction methodology
for assembly sequences. Finally, we discuss how these models have been used to
solve binary analysis tasks.

5.10.1 Distributed Representation Learning

The distributed representation learning technique is the neural architecture and the
training tasks used by the instruction models to create useful embedding vectors.
The most common is word2vec [144]. Word2vec has been used, with minimal
modifications, by Eklavya [38], SAFE [107] and others [49, 106, 175]. A notable
difference is Asm2vec [46] which uses PV-DM [86], a variation of word2vec that
simultaneously creates instructions and function embeddings. We remark that PV-
DM cannot be fine-tuned. PalmTree [91], Trex, Stateformer and Binshot, that we
described in Section 5.2.1, use a transformer architecture, such architecture contain
an embedding layer that automatically learn a distributed representation of the
input tokens.

5.10.2 Preprocessing of Assembly Instructions

The preprocessing is characterised by the substitution policy for information in the
raw assembly instruction and the tokenization policy. We classify the substitution
policies in aggressive or light. In an aggressive policy, lots of information contained in
the assembly instructions are removed or changed. An example is DeepBinDiff [49]
that replaces all constants and pointers with special tokens and renames registers
according to their lengths in bytes (e.g. ecx becomes reg4). InnerEye [175],
instead, replaces all constants, strings, and function names with special symbols.
BinDeep [7] substitutes operands based on predefined categories (e.g. general
register, direct memory reference, etc.). All the above policies are aggressive; indeed,
InnerEye [175] wastes fundamental information that a library function call could
bring and DeepBinDiff [49] loses register names that could be relevant, for instance,
to understand the data flow.

Light preprocessing policies are applied by SAFE [107] and PalmTree [91] which
keep small constant values and replace values above a predefined threshold with
a special token. SAFE [107] replaces all memory addresses with the same token,
PalmTree uses different tokens for generic memory locations and the ones pointing
to strings.

Regarding tokenization, some works consider an entire instruction as a token [107]
or split an instruction into opcode and operands [46], while others use a word-based
tokenizer by splitting instructions on symbols (e.g. spaces or special characters) [121],

5.11 Conclusion 131

[91]. The latter is a fine-grained tokenization strategy that is useful to reduce the
vocabulary size and allow the upstream network to separately learn the semantics
of each token (mnemonics, registers, etc.). No one used automatic tokenization
strategies like WordPiece [158].

5.10.3 Binary Analysis Solutions using Embedding Models

Deep-learning-based solutions can be categorized into approaches using Graph
Neural Networks (GNN), Recurrent Neural Networks (RNN), and Transformer
architecture. [41, 106] use a GNN applied to function control flow graphs after
transforming each block into a vector representation; this transformation is done by
aggregating the instruction embeddings of each block. The resulting architecture
is applied to the binary similarity [106], the compiler provenance problem [106],
function naming problem [41]. Eklavya [38] and InnerEye [175] are examples of RNN-
based solutions applied to the recovery of arguments used by a binary function [38],
and basic-block similarity [175]. Another work is SAFE [107] which added a self-
attention layer on top of an LSTM to solve the binary similarity problem. Among
transformer-based solutions, we can find [11], [41] that apply transformers encoder-
decoder architecture to recover function names from stripped binaries. Other
works [4, 121, 168] use transformer architecture and specifically takle the binary
similarity problem. In particular, [168] uses a transformer encoder to obtain basic
blocks embeddings to be fed into a GNN which is trained in conjunction with a
Convolutional Neural Network (CNN) to produce a function embedding for binary
similarity. Unfortunately, [168] does not release the code and the paper lacks of the
details needed to reimplement their proposal.

5.11 Conclusion
We presented BinBert, an execution-aware assembly language model. BinBert is
trained on a big dataset of assembly strands and symbolic expressions. BinBert has
shown state-of-the-art performance highlighting the relevance of execution-awareness.
Our evaluation shows that BinBert is an encoder model that can be used to solve
several tasks related to binary analysis using a fine-tune dataset of relatively small
size. The generality of the model is an important strength and we believe that
BinBert can be fruitfully applied to other downstream tasks as encoder layer of
complex neural networks.

132

Chapter 6

Conclusions and Future Work

6.1 Conclusions
This thesis explores the applicability of deep learning techniques in the context of
binary analysis. In fact, the last few years have witnessed a proliferation of solutions
using these techniques to solve multiple binary analysis tasks. Unfortunately, little
effort has been directed toward systematizing such solutions. Consequently, the
current landscape of deep neural networks (DNNs) applied to binary analysis tasks
is fragmented and scattered. For this reason, this thesis makes a step forward in
the research by providing an in-depth analysis of 54 research papers in the field
(Chapter 3). Specifically, we identify a common deep learning pipeline and analyze
each of its building blocks from the perspective of the reviewed papers, providing
novel categories and systematization. At the same time, we highlight the main gaps
identified in the literature for which further research is needed. To name a few,
we identified that some tasks have been widely investigated while others remain
unexplored, or methodologies and steps that can be applied to several different tasks
are each time reinvented from scratch.

Additionally we explore the applicability of recent NLP techniques based on
the transformer architecture to a novel task: detection of debug information bugs
in optimized binaries. The correctness of debug information included in optimized
binaries is an important problem since most of the software running in production
derived from an optimizing compiler. All the current solutions to this problem rely
on human-defined rules (i.e. invariants) that once triggered may reveal the presence
of a bug. A downside of this approach is that new rules are needed to discover new
categories of bugs. Thus, in Chapter 4 we investigated the feasibility of using the
Transformer model to discover incorrect debug information. Our results show that
our model, named Neuro-Debug2, is capable of discovering bugs in both synthetic
and real datasets. Additionally, we reported 12 unknown bugs in a recent version of
LLVM toolchain, 2 of which have been confirmed.

Finally, we explore the applicability of deep learning techniques also for the
creation of a binary code model capable of solving multiple downstream tasks
(Chapter 5). We created a model, named BinBert, built on a transformer pre-
trained on a huge dataset of both assembly instruction sequences and symbolic
execution information. Through fine-tuning, BinBert learns how to apply the general

6.2 Future Works 133

knowledge acquired with pre-training to the specific task. We evaluate BinBert on
both standard and novel tasks, showing that it is capable of achieving state of the
art perfomances.

6.2 Future Works
Starting from the gaps proposed in Chapter 3 and from the research papers published
with this thesis, we identified different future research directions that can be further
investigated:

• Conduct a comprehensive study comparing the various binary representations
identified in this work and study their effectiveness across multiple tasks. In
this regard, it is worth further investigating the impact of execution-based
information in the binary representation. In fact, since most studies do not
include such information in their representations, they offer capabilities similar
to those of static analysis, leaving the potential of execution-based information
in binary underexplored. While some effort has been made in this thesis with
BinBert, further research is needed. It is imperative that such research uses
ablation study to identify specifically when execution information improve on
more straightforward approaches;

• Investigate the impact of the different tokenization and preprocessing rules.
Although some efforts have been made to study the effects of tokenization and
preprocessing on assembly code cite [82], also by BinBert, more studies are
necessary;

• Explore the full potential of automatically learned features in binary code
analysis tasks, investigating their generalizability across different tasks and
datasets, and determining whether they can consistently outperform manually
crafted features in various real-world scenarios;

• Determine whether custom neural architectures are necessary for specific
downstream tasks or if there exists a specific standard architecture that can
effectively represent binary code and address multiple tasks with good perfor-
mances;

• Make an evaluation of different pre-training tasks trying to understand which
one contribute more to create a richer pre-trained binary representation;

• Investigate the perfomance of Neuro-Debug2 to different compiler-debugger
pairs (e.g. gcc and gdb);

• Investigate the perfomance of BinBert to multiple architectures and different
tasks.

Finally, given the recent success of Large Language Models [74,109,111] in the
NLP community, we believe that it is pivotal to understand whether such models
are capable of solving binary code analysis better than smaller models. In this

6.2 Future Works 134

regards, [118] have recently shown that the OpenaAI Codex model 1 is capable of
solving some reverse engineering tasks in a zero-shot setting. Further research is
needed to highlight whether more modern LLMs are capable of solving multiple
reverse engineering tasks or whether smaller or binary specific models are needed.

1https://openai.com/index/openai-codex/

135

Bibliography

[1] Copilot. https://github.com/features/copilot.

[2] Dblp: computer science bibliography. https://dblp.org/.

[3] Google scholar. https://scholar.google.com/.

[4] Ahn, S., Ahn, S., Koo, H., and Paek, Y. Practical binary code similarity
detection with bert-based transferable similarity learning. In 38th Annual
Computer Security Applications Conference (ACSAC ’22), ACSAC ’22, p.
361–374 (2022).

[5] Alipour, M. A., Groce, A., Gopinath, R., and Christi, A. Generating
focused random tests using directed swarm testing. In 2016 International
Symposium on Software Testing and Analysis, ISSTA ’16, p. 70–81 (2016).

[6] Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. A survey of
machine learning for big code and naturalness. ACM Computing Surveys, 51
(2018), 1.

[7] Alrabaee, S., Choo, K.-K. R., Qbea’h, M., and Khasawneh, M.
Bindeep: Binary to source code matching using deep learning. In Proceedings
of the 2021 IEEE 20th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 1100–1107 (2021).

[8] Alrabaee, S., Karbab, E. B., Wang, L., and Debbabi, M. Bineye:
Towards efficient binary authorship characterization using deep learning. In
Proceedings of the 24th European Symposium on Research in Computer Security
(ESORICS ’19), vol. 11736, pp. 47–67 (2019).

[9] Andriesse, D., Chen, X., van der Veen, V., Slowinska, A., and Bos,
H. An In-Depth analysis of disassembly on Full-Scale x86/x64 binaries. In 25th
USENIX Security Symposium (USENIX Security ’16), pp. 583–600 (2016).

[10] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and Rieck,
K. Drebin: Effective and explainable detection of android malware in your
pocket. In Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS ’14) (2014).

[11] Artuso, F., Di Luna, G. A., Massarelli, L., and Querzoni, L. Function
naming in stripped binaries using neural networks. CoRR, abs/1912.07946
(2019).

https://github.com/features/copilot
https://dblp.org/
https://scholar.google.com/

Bibliography 136

[12] Artuso, F., Di Luna, G. A., and Querzoni, L. Debugging debug
information with neural networks. IEEE Access, 10 (2022), 54136.

[13] Artuso, F., Mormando, M., Di Luna, G. A., and Querzoni, L. Binbert:
Binary code understanding with a fine-tunable and execution-aware trans-
former. IEEE Transactions on Dependable and Secure Computing, (2024).

[14] Babokin, D., Regehr, J., and Livinskiy, V. Yarpgen: Yet another
random program generator. https://github.com/intel/yarpgen (2020). [Online;
accessed 27-July-2020].

[15] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by
jointly learning to align and translate. In 3rd International Conference on
Learning Representations (ICLR ’15) (2015).

[16] Balakrishnan, G. and Reps, T. Analyzing memory accesses in x86
executables. In Proceedings of the International Conference on Compiler
Construction (CC 2004), pp. 5–23.

[17] Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi,
I. A survey of symbolic execution techniques. CoRR, abs/1610.00502 (2016).

[18] Banerjee, P., Pal, K. K., Wang, F., and Baral, C. Variable name re-
covery in decompiled binary code using constrained masked language modeling.
CoRR, abs/2103.12801 (2021). arXiv:2103.12801.

[19] Bao, T., Burket, J., Woo, M., Turner, R., and Brumley, D.
Byteweight: Learning to recognize functions in binary code. In Proceed-
ings of the 23rd USENIX Conference on Security Symposium, SEC’14, p.
845–860 (2014).

[20] Barany, G. Finding missed compiler optimizations by differential testing. In
27th International Conference on Compiler Construction, CC ’18, p. 82–92
(2018).

[21] Bauman, E., Lin, Z., and Hamlen, K. W. Superset disassembly: Stati-
cally rewriting x86 binaries without heuristics. In 25th Annual Network and
Distributed System Security Symposium (NDSS ’18) (2018).

[22] Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-
document transformer. ArXiv, abs/2004.05150 (2020).

[23] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. A neural
probabilistic language model. Machine Learning Research, 3 (2003), 1137.

[24] Berabi, B., He, J., Raychev, V., and Vechev, M. Tfix: Learning to fix
coding errors with a text-to-text transformer. In 38th International Conference
on Machine Learning, vol. 139 of MLR ’21, p. 780–791 (2021).

[25] Böhme, M., Pham, V.-T., Nguyen, M.-D., and Roychoudhury, A.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17), p. 2329–2344 (2017).

https://github.com/intel/yarpgen
http://arxiv.org/abs/2103.12801

Bibliography 137

[26] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching
word vectors with subword information. CoRR, abs/1607.04606 (2016).
arXiv:1607.04606.

[27] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R.
Signature verification using a "siamese" time delay neural network (nips’93).
In Proceedings of the 6th Advances in Neural Information Processing Systems
(NIPS ’93), pp. 737–744 (1993).

[28] Camacho-Collados, J. and Navigli, R. Find the word that does not
belong: A framework for an intrinsic evaluation of word vector representations.
In Proceedings of the 1st Workshop on Evaluating Vector-Space Representations
for NLP, pp. 43–50 (2016).

[29] Cao, Y., Liang, R., Chen, K., and Hu, P. Boosting neural networks to
decompile optimized binaries. In 38th Annual Computer Security Applications
Conference, ACSAC ’22, p. 508–518 (2022).

[30] Chen, J. Learning to accelerate compiler testing. In 40th International
Conference on Software Engineering: Companion Proceeedings, ICSE ’18, p.
472–475 (2018).

[31] Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., and
Zhang, L. A survey of compiler testing. ACM Computing Surveys, 53 (2020),
1 .

[32] Chen, Q., Lacomis, J., Schwartz, E. J., Le Goues, C., Neubig, G.,
and Vasilescu, B. Augmenting decompiler output with learned variable
names and types. In 31st USENIX Security Symposium (USENIX Security
’22), pp. 4327–4343 (2022).

[33] Chen, T. Y., Cheung, S. C., and Yiu, S. M. Metamorphic testing: A new
approach for generating next test cases. ArXiv, abs/2002.12543 (2020).

[34] Chen, W., Su, Y., Shen, Y., Chen, Z., Yan, X., and Wang, W. Y.
How large a vocabulary does text classification need? a variational approach
to vocabulary selection. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies (ACL ’19), vol. 1, pp. 3487–3497 (2019).

[35] Chen, Y., Groce, A., Zhang, C., Wong, W. K., Fern, X., Eide,
E., and Regehr., J. Taming compiler fuzzers. In 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13,
p. 197–208 (2013).

[36] Chen, Y., Shi, Z., Li, H., Zhao, W., Liu, Y., and Qiao, Y. Himalia:
Recovering compiler optimization levels from binaries by deep learning. In
Proceedings of the 2018 Intelligent Systems and Applications (IntelliSys ’18)
(edited by K. Arai, S. Kapoor, and R. Bhatia), pp. 35–47 (2018).

http://arxiv.org/abs/1607.04606

Bibliography 138

[37] Chowdhury, S. A., Shrestha, S. L., Johnson, T. T., and Csallner,
C. Slemi: Equivalence modulo input (emi) based mutation of cps models
for finding compiler bugs in simulink. In 42nd International Conference on
Software Engineering, ICSE ’20, p. 335–346 (2020).

[38] Chua, Z. L., Shen, S., Saxena, P., and Liang, Z. Neural nets can learn
function type signatures from binaries. In Proceedings of the 26th USENIX
Conference on Security Symposium (USENIX ’17), pp. 99—-116 (2017).

[39] Cummins, C., Petoumenos, P., Murray, A., and Leather, H. Com-
piler fuzzing through deep learning. In 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’18, p. 95–105 (2018).

[40] Dai, H., Dai, B., and Song, L. Discriminative embeddings of latent variable
models for structured data. In 33rd International Conference on International
Conference on Machine Learning (ICML’16), vol. 48, p. 2702–2711 (2016).

[41] David, Y., Alon, U., and Yahav, E. Neural reverse engineering of stripped
binaries using augmented control flow graphs. Proceedings of the ACM on
Programming Languages, 4 (2020), 1.

[42] David, Y., Partush, N., and Yahav, E. Statistical similarity of binaries. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16), p. 266–280 (2016).

[43] Deshpande, C., Gens, D., and Franz, M. Stackbert: Machine learning
assisted static stack frame size recovery on stripped and optimized binaries.
In 14th ACM Workshop on Artificial Intelligence and Security (AISec ’21), p.
85–95 (2021).

[44] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, (2018).

[45] Di Luna, G. A., Italiano, D., Massarelli, L., Osterlund, S., Giuf-
frida, C., and Querzoni, L. Who’s debugging the debuggers? exposing
debug information bugs in optimized binaries. In 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’21, p. 1034–1045 (2021).

[46] "Ding, S. H. H., Fung, B. C. M., and Charland, P. Asm2vec: Boosting
static representation robustness for binary clone search against code obfuscation
and compiler optimization. In Proceedings of the 2019 IEEE Symposium on
Security and Privacy (SP ’19), pp. 472–489 (2019).

[47] Drain, D., Wu, C., Svyatkovskiy, A., and Sundaresan, N. Generating
bug fixes using pretrained transformers. In 5th ACM SIGPLAN International
Symposium on Machine Programming, MAPS ’21, p. 1–8 (2021).

[48] D’Silva, V., Payer, M., and Song, D. The correctness-security gap in
compiler optimization. In 2015 IEEE Security and Privacy Workshops, SPW
’15, pp. 73–87 (2015).

Bibliography 139

[49] Duan, Y., Li, X., Wang, J., and Yin, H. Deepbindiff: Learning program-
wide code representations for binary diffing. In 27th Annual Network and
Distributed System Security Symposium (NDSS ’20) (2020).

[50] Durfina, L., Kroustek, J., and Zemek, P. Psybot malware: A step-
by-step decompilation case study. In 20th Working Conference on Reverse
Engineering, (WCRE ’13), pp. 449–456 (2013).

[51] DWARF Standards Committee. The dwarf debugging standard. http:
//dwarfstd.org/ (2020). [Online; accessed August-2021].

[52] Estrela, V. V. and Hemanth, J. Deep Learning for Image Processing
Applications. IOS Press (2017).

[53] Evans, J. P., Dannehl, M., and Kinder, J. XFL: extreme function
labeling. CoRR, abs/2107.13404 (2021). Available from: https://arxiv.org/
abs/2107.13404, arXiv:2107.13404.

[54] Fan, W., Ma, Y., Li, Q., Wang, J., Cai, G., Tang, J., and Yin,
D. A graph neural network framework for social recommendations. IEEE
Transactions on Knowledge and Data Engineering, 34 (2022), 2033.

[55] Fu, C., Chen, H., Liu, H., Chen, X., Tian, Y., Koushanfar, F., and
Zhao, J. Coda: An end-to-end neural program decompiler. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems
(NeurIPS ’19), vol. 32, pp. 3703–3714 (2019).

[56] Gao, H., Cheng, S., Xue, Y., and Zhang, W. A lightweight framework
for function name reassignment based on large-scale stripped binaries. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’21), ISSTA 2021, p. 607–619 (2021).

[57] Gao, J., Yang, X., Fu, Y., Jiang, Y., and Sun, J. Vulseeker: A
semantic learning based vulnerability seeker for cross-platform binary. In 33rd
IEEE/ACM International Conference on Automated Software Engineering
(ASE ’18), pp. 896–899 (2018).

[58] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,
G. E. Neural message passing for quantum chemistry. In 34th International
Conference on Machine Learning (ICML’17), vol. 70 of ICML’17, p. 1263–1272
(2017).

[59] Gligorijević, V., et al. Structure-based protein function prediction using
graph convolutional networks. Nature, 12 (2021).

[60] Gray, J., Sgandurra, D., Cavallaro, L., and Blasco Alis, J. Identi-
fying authorship in malicious binaries: Features, challenges & datasets. ACM
Comput. Surv., 56 (2024).

[61] Groce, A., Zhang, C., Eide, E., Chen, Y., and Regehr, J. Swarm
testing. In 2012 International Symposium on Software Testing and Analysis,
ISSTA ’12, p. 78–88 (2012).

http://dwarfstd.org/
http://dwarfstd.org/
https://arxiv.org/abs/2107.13404
https://arxiv.org/abs/2107.13404
http://arxiv.org/abs/2107.13404

Bibliography 140

[62] Guo, W., Mu, D., Xing, X., Du, M., and Song, D. DEEPVSA: Facilitat-
ing value-set analysis with deep learning for postmortem program analysis. In
28th USENIX Security Symposium (USENIX ’19), pp. 1787–1804 (2019).

[63] Guo, Z. and Wang, H. A deep graph neural network-based mechanism for
social recommendations. IEEE Transactions on Industrial Informatics, 17
(2021), 2776.

[64] Gupta, R., Pal, S., Kanad, A., and Shevade, S. Deepfix: Fixing common
c language errors by deep learning. In 31th AAAI Conference on Artificial
Intelligence, AAAI’17, p. 1345–1351 (2017).

[65] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., and
Sikdar, B. A survey on iot security: Application areas, security threats, and
solution architectures. IEEE Access, 7 (2019), 82721.

[66] He, H., Lin, X., Weng, Z., Zhao, R., Gan, S., Chen, L., Ji, Y., Wang,
J., and Xue, Z. Code is not natural language: Unlock the power of semantics-
oriented graph representation for binary code similarity detection. In 33rd
USENIX Security Symposium (USENIX Security 24) (2024).

[67] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. CoRR, abs/1512.03385 (2015). arXiv:1512.03385.

[68] Hennessy, J. Symbolic debugging of optimized code. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4 (1982), 323.

[69] Hornik, K., Stinchcombe, M. B., and White, H. L. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2 (1989),
359.

[70] Hu, Z., Chen, T., Chang, K.-W., and Sun, Y. Few-shot representation
learning for out-of-vocabulary words. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics (ACL ’19), pp. 4102–4112
(2019).

[71] Islam, A. C., Yamaguchi, F., Dauber, E., Harang, R. E., Rieck,
K., Greenstadt, R., and Narayanan, A. When coding style survives
compilation: De-anonymizing programmers from executable binaries. CoRR,
abs/1512.08546 (2015). Available from: http://arxiv.org/abs/1512.08546,
arXiv:1512.08546.

[72] J. Xu, K. L. and Mao, B. Cross-architecture testing for compiler-introduced
security bugs. In 48th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL ’21 (2021).

[73] Jia, C. and Chan, W. K. Which compiler optimization options should i
use for detecting data races in multithreaded programs? In International
Conference on Automation of Software Test, AST ’13, pp. 53–56 (2013).

[74] Jiang, A. Q., et al. Mistral 7b (2023). Available from: https://arxiv.org/
abs/2310.06825, arXiv:2310.06825.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.08546
http://arxiv.org/abs/1512.08546
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825

Bibliography 141

[75] Jiang, M., Dai, Q., Zhang, W., Chang, R., Zhou, Y., Luo, X., Wang,
R., Liu, Y., and Ren, K. A comprehensive study on ARM disassembly tools.
IEEE Trans. Software Eng., 49 (2023), 1683.

[76] Jin, X., Pei, K., Won, J. Y., and Lin, Z. Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code embed-
dings. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, p. 1631–1645 (2022).

[77] Karampatsis, R. M., Babii, H., Robbes, R., Sutton, C., and Janes, A.
Big code != big vocabulary: Open-vocabulary models for source code. In 42nd
International Conference on Software Engineering, ICSE ’20, p. 1073–1085
(2020).

[78] Katz, D. S., Ruchti, J., and Schulte, E. Using recurrent neural networks
for decompilation. In 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER ’18), pp. 346–356 (2018).

[79] KENDALL, M. G. A new measure of rank correlation. Biometrika, 30
(1938), 81.

[80] Kim, D., Kim, E., Cha, S. K., Son, S., and Kim, Y. Revisiting binary
code similarity analysis using interpretable feature engineering and lessons
learned. IEEE Transactions on Software Engineering, 49 (2023), 1661–1682.

[81] Kim, G., Hong, S., Franz, M., and Song, D. Improving cross-platform
binary analysis using representation learning via graph alignment. In Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2022), p. 151–163 (2022).

[82] Kim, H., Bak, J., Cho, K., and Koo, H. A transformer-based function
symbol name inference model from an assembly language for binary reversing.
In 2023 ACM Asia Conference on Computer and Communications Security,
ASIA CCS ’23, p. 951–965 (2023).

[83] Kipf, T. N. and Welling, M. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning Repre-
sentations (ICLR ’17) (2017).

[84] Lacomis, J., Yin, P., Schwartz, E. J., Allamanis, M., Goues, C. L.,
Neubig, G., and Vasilescu, B. Dire: A neural approach to decompiled
identifier naming. In 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE’19), p. 628–639 (2020).

[85] Lample, G. and Conneau, A. Cross-lingual language model pretraining. In
33rd Annual Conference on Neural Information Processing Systems, NeurIPS
’19 (2019).

[86] Le, Q. and Mikolov, T. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on Interna-
tional Conference on Machine Learning (ICML’14), vol. 32, p. II–1188–II–1196
(2014).

Bibliography 142

[87] Le, V., Afshari, M., and Su, Z. Compiler validation via equivalence modulo
inputs. In 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, p. 216–226 (2014).

[88] Le, V., Sun, C., and Su, Z. Finding deep compiler bugs via guided stochas-
tic program mutation. In 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’15, p. 386–399 (2015).

[89] Lee, S., Han, H., Cha, S. K., and Son., S. Montage: A neural network
language model-guided javascript engine fuzzer. In 29th USENIX Security
Symposium, USENIX ’20, p. 2613–2630 (2020).

[90] Lehmann, D. and Pradel, M. Feedback-directed differential testing of
interactive debuggers. In 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC FSE ’18, p. 610–620 (2018).

[91] Li, X., Qu, Y., and Yin, H. Palmtree: Learning an assembly language model
for instruction embedding. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’21), p. 3236–3251
(2021).

[92] Li, Y., Ding, S., Zhang, Q., and Italiano, D. Debug information
validation for optimized code. In 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI ’20, p. 1052–1065
(2020).

[93] Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph matching
networks for learning the similarity of graph structured objects. In Proceedings
of the 36th International Conference on Machine Learning (ICML ’19), vol. 97,
pp. 3835–3845 (2019).

[94] Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S. Gated
graph sequence neural networks. In 4th International Conference on Learning
Representations (ICLR ’16) (2016).

[95] Liangboonprakong, C. and Sornil, O. Classification of malware families
based on n-grams sequential pattern features. In Proceedings of the 2013 IEEE
8th Conference on Industrial Electronics and Applications (ICIEA ’13), pp.
777–782 (2013).

[96] Lidbury, C., Lascu, A., Chong, N., and Donaldson, A. F. Many-
core compiler fuzzing. In 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, p. 65–76 (2015).

[97] Lim, H. and Debray, S. Automated bug localization in jit compilers. In
17th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’21, p. page 153–164 (2021).

Bibliography 143

[98] Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B.,
and Bengio, Y. A structured self-attentive sentence embedding. CoRR,
abs/1703.03130 (2017). Available from: https://arxiv.org/abs/1703.03130,
arXiv:1703.03130.

[99] Liu, B., Huo, W., Zhang, C., Li, W., Li, F., Piao, A., and Zou,
W. Adiff: Cross-version binary code similarity detection with dnn. In 33rd
ACM/IEEE International Conference on Automated Software Engineering
(ASE ’18), p. 667–678 (2018).

[100] Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., and Liu, H. A review
of android malware detection approaches based on machine learning. IEEE
Access, 8 (2020), 124579.

[101] Liu, X., Li, X., Prajapati, R., and Wu, D. Deepfuzz: Automatic
generation of syntax valid c programs for fuzz testing. In Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI ’19 (2019).

[102] Liu, Z. and Wang, S. How far we have come: Testing decompilation
correctness of c decompilers. In 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2020, p. 475–487 (2020).

[103] Luo, Z., Wang, P., Wang, B., Yong, T., Xie, W., Zhou, X., Liu,
D., and Lu, K. Vulhawk: Cross-architecture vulnerability detection with
entropy-based binary code search. In 30th Annual Network and Distributed
System Security Symposium (NDSS ’23) (2023).

[104] Madsen, A. and Johansen, A. R. Neural arithmetic units. (2020).

[105] Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y.,
Mansouri, M., and Balzarotti, D. How machine learning is solving the
binary function similarity problem. In 31st USENIX Security Symposium
(USENIX Security ’22), pp. 2099–2116 (2022).

[106] Massarelli, L., Di Luna, G. A., Petroni, F., Querzoni, L., and Bal-
doni, R. Investigating graph embedding neural networks with unsupervised
features extraction for binary analysis. In Proceedings of the 2019 Workshop
on Binary Analysis Research (BAR ’19) (2019).

[107] Massarelli, L., Di Luna, G. A., Petroni, F., Querzoni, L., and
Baldoni, R. Function representations for binary similarity. IEEE Transactions
on Dependable and Secure Computing, (2021), 1.

[108] Meng, X., P., M. B., and Jun, K. Identifying multiple authors in a
binary program. In Proceedings of the 22nd European Symposium on Research
(ESORICS ’17), vol. 10493, pp. 286–304 (2017).

[109] Meta. The llama 3 herd of models (2024). Available from: https://arxiv.org/
abs/2407.21783, arXiv:2407.21783.

[110] Nitin, V., Saieva, A., Ray, B., and Kaiser, G. E. Direct : A transformer-
based model for decompiled identifier renaming. In NLP4PROG (2021).

https://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1703.03130
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783

Bibliography 144

[111] OpenAI. Gpt-4 technical report (2024). Available from: https://arxiv.org/
abs/2303.08774, arXiv:2303.08774.

[112] Otsubo, Y., Otsuka, A., Mimura, M., Sakaki, T., and Ukegawa, H.
o-glassesx: Compiler provenance recovery with attention mechanism from a
short code fragment. Proceedings 2020 Workshop on Binary Analysis Research
(BAR ’20), (2020).

[113] Padmanabhuni, B. M. and Tan, H. B. K. Buffer overflow vulnerability
prediction from x86 executables using static analysis and machine learning. In
Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications
Conference (COMPSAC ’15), vol. 2, pp. 450–459 (2015).

[114] Pang, C., Yu, R., Chen, Y., Koskinen, E., Portokalidis, G., Mao,
B., and Xu, J. Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask. In 42nd IEEE Symposium on Security and
Privacy (SP ’21), pp. 833–851 (2021).

[115] Pang, C., Zhang, T., Yu, R., Mao, B., and Xu, J. Ground truth for
binary disassembly is not easy. In 31st USENIX Security Symposium (USENIX
’22), pp. 2479–2495 (2022).

[116] Paszke, A., et al. Pytorch: An imperative style, high-performance deep
learning library. In Proceedings of the Advances in Neural Information Pro-
cessing Systems (NEURIPS ’19), pp. 8024–8035 (2019).

[117] Patrick-Evans, J., Cavallaro, L., and Kinder, J. Probabilistic naming
of functions in stripped binaries. In Annual Computer Security Applications
Conference, ACSAC ’20, p. 373–385 (2020).

[118] Pearce, H., Tan, B., Krishnamurthy, P., Khorrami, F., Karri, R.,
and Dolan-Gavitt, B. Pop quiz! can a large language model help with
reverse engineering? (2022). Available from: https://arxiv.org/abs/2202.01142,
arXiv:2202.01142.

[119] Pei, K., Guan, J., Williams-King, D., Yang, J., and Jana, S. XDA:
accurate, robust disassembly with transfer learning. In 28th Annual Network
and Distributed System Security Symposium (NDSS ’21) (2021).

[120] Pei, K., She, D., Wang, M., Geng, S., Xuan, Z., David, Y., Yang, J.,
Jana, S., and Ray, B. Neudep: neural binary memory dependence analysis.
In Proceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’22), p. 747–759 (2022).

[121] Pei, K., Xuan, Z., Yang, J., Jana, S., and Ray, B. Trex: Learning execu-
tion semantics from micro-traces for binary similarity. CoRR, abs/2012.08680
(2020). Available from: https://arxiv.org/abs/2012.08680, arXiv:2012.08680.

[122] Pei, K., et al. Stateformer: Fine-grained type recovery from binaries using
generative state modeling. In Proceedings of the 29th ACM Joint Meeting on

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2202.01142
http://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2012.08680
http://arxiv.org/abs/2012.08680

Bibliography 145

European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE 2021), p. 690–702 (2021).

[123] Pennington, J., Socher, R., and Manning, C. GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP ’14), pp. 1532–1543 (2014).

[124] Perozzi, B., Rami, A., and Skiena, S. Deepwalk: online learning of
social representations. In 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’14), pp. 701–710 (2014).

[125] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,
Lee, K., and Zettlemoyer, L. Deep contextualized word representations.
In Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT ’18), vol. 1,
pp. 2227–2237 (2018).

[126] Pizzolotto, D. and Inoue, K. Identifying compiler and optimization
options from binary code using deep learning approaches. In Proceedings of the
2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME ’20), pp. 232–242 (2020).

[127] Qasem, A., Debbabi, M., Lebel, B., and Kassouf, M. Binary function
clone search in the presence of code obfuscation and optimization over multi-cpu
architectures. In Proceedings of the 2023 ACM Asia Conference on Computer
and Communications Security (ASIA CCS ’23), p. 443–456 (2023).

[128] Redmond, K., Luo, L., and Zeng, Q. A cross-architecture instruction
embedding model for natural language processing-inspired binary code analysis.
In Proceedings of the Workshop on Binary Analysis Research 2019 (BAR ’19)
(2019).

[129] Regehr, J., Chen, Y., Cuoq, P., Eide, E., Ellison, C., and Yang, X.
Test-case reduction for c compiler bugs. In 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, pp. 335–346.
Association for Computing Machinery (2012).

[130] Reimers, N. and Gurevych, I. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP ’19), pp. 3980–
3990 (2019).

[131] Rosenblum, N. E., Zhu, X., and Miller, B. P. Who wrote this code?
identifying the authors of program binaries. In Proceedings of the 16th European
Symposium on Research in Computer Security (ESORICS ’11), vol. 6879, pp.
172–189 (2011).

[132] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van den Berg, R., Titov,
I., and Welling, M. Modeling relational data with graph convolutional

Bibliography 146

networks. In The Semantic Web: 15th International Conference (ESWC ’18),
p. 593–607 (2018).

[133] Shalev, N. and Partush, N. Binary similarity detection using machine
learning. PLAS ’18, p. 42–47 (2018).

[134] Shen, Q., Ma, H., Chen, J., Tian, Y., Cheung, S. C., and Chen., X.
A comprehensive study of deep learning compiler bugs. In 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE ’21, p. 968–980 (2021).

[135] Shin, E. C. R., Song, D., and Moazzezi, R. Recognizing functions in
binaries with neural networks. In 24th USENIX Security Symposium (USENIX
Security ’15), pp. 611–626 (2015).

[136] Shoshitaishvili, Y., et al. Sok: (state of) the art of war: Offensive
techniques in binary analysis. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P ’16), pp. 138–157 (2016).

[137] Song, Q., Zhang, Y., Ouyang, L., and Chen, Y. Binmlm: Binary author-
ship verification with flow-aware mixture-of-shared language model. In IEEE
International Conference on Software Analysis, Evolution and Reengineering
(SANER ’22), pp. 1023–1033.

[138] Sun, C., Le, V., and Su, Z. Finding compiler bugs via live code mutation.
In 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA ’16, p. 849–863
(2016).

[139] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning
with neural networks. In 27th International Conference on Neural Information
Processing Systems, vol. 2 of NIPS’14, p. 3104–3112 (2014).

[140] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning
with neural networks. In 27th International Conference on Neural Information
Processing Systems, vol. 2 of NIPS’14, p. 3104–3112 (2014).

[141] Tai, K. S., Socher, R., and Manning, C. D. Improved semantic repre-
sentations from tree-structured long short-term memory networks. In 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (edited by
C. Zong and M. Strube), vol. 1, pp. 1556–1566 (2015).

[142] Talman, A., Yli-Jyrä, A., and Tiedemann, J. Sentence embeddings
in nli with iterative refinement encoders. Natural Language Engineering, 25
(2019), 467–482.

[143] Tolksdorf, S., Lehmann, D., and Pradel, M. Interactive metamorphic
testing of debuggers. In 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’19, p. 273–283 (2019).

Bibliography 147

[144] Tomás, M., Chen, K., Corrado, G., and Dean, J. Efficient estimation
of word representations in vector space. In 1st International Conference on
Learning Representations (ICLR ’13) (2013).

[145] Turc, I., Chang, M., Lee, K., and Toutanova, K. Well-read students
learn better: On the importance of pre-training compact models (2019).
arXiv:1908.08962.

[146] Ucci, D., Aniello, L., and Baldoni, R. Survey of machine learning
techniques for malware analysis. Computer Security, 81 (2019), 123.

[147] van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal
of Machine Learning Research, 9 (2008), 2579.

[148] Vasic, M., Kanade, A., Maniatis, P., Bieber, D., and Singh, R.
Neural program repair by jointly learning to localize and repair. ArXiv,
abs/1904.01720 (2019).

[149] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all you need.
In Neural Information Processing Systems (NISP ’17), pp. 5998–6008 (2017).

[150] Veličković, P. Everything is connected: Graph neural networks. Current
Opinion in Structural Biology, 79 (2023), 102538.

[151] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,
and Bengio, Y. Graph attention networks. arXiv preprint arXiv:1710.10903,
(2017).

[152] Vig, J. A multiscale visualization of attention in the transformer model. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations (ACL ’19), pp. 37–42 (2019).

[153] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp. 353–355 (2018).

[154] Wang, H., Ma, P., Wang, S., Tang, Q., Nie, S., and Wu, S. Sem2vec:
Semantics-aware assembly tracelet embedding. ACM Transaciton Software
Engineerinh Methodology, (2022).

[155] Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, H., Zhuge, J.,
and Zhang, C. Jtrans: Jump-aware transformer for binary code similarity
detection. In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’22), p. 1–13 (2022).

[156] Wang, J., Sharp, M., Wu, C., Zeng, Q., and Luo, L. Can a deep learning
model for one architecture be used for others? Retargeted-Architecture binary
code analysis. In 32nd USENIX Security Symposium (USENIX ’23), pp.
7339–7356 (2023).

http://arxiv.org/abs/1908.08962

Bibliography 148

[157] Wolf, T., et al. Transformers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations (EMNLP ’19), pp. 38–45 (2020).

[158] Wu, Y., et al. Google’s neural machine translation system: Bridging the
gap between human and machine translation. CoRR, abs/1609.08144 (2016).
arXiv:1609.08144.

[159] Xu, J., Mu, D., Xing, X., Liu, P., Chen, P., and Mao, B. Postmortem
program analysis with Hardware-Enhanced Post-Crash artifacts. In Proceedings
of the 26th USENIX Security Symposium (USENIX ’17), pp. 17–32 (2017).

[160] Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., and Song, D. Neural
network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17), pp. 363—-376 (2017).

[161] Xue, H., Sun, S., Venkataramani, G., and Lan, T. Machine learning-
based analysis of program binaries: A comprehensive study. IEEE Access, 7
(2019), 65889.

[162] Yang, C., Liu, Z., Zhao, D., Sun, M., and Chang, E. Y. Network
representation learning with rich text information. In 24th International Joint
Conference on Artificial Intelligence (IJCAI ’15), pp. 2111–2117 (2015).

[163] Yang, J., Fu, C., Liu, X., Yin, H., and Zhou, P. Codee: A tensor
embedding scheme for binary code search. IEEE Transaction on Software
Engineering, 48 (2022), 2224.

[164] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding
bugs in c compilers. In 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, p. 283–294 (2011).

[165] Yin, J., Tan, G., Li, H., Bai, X., Wang, Y.-P., and Hu, S.-M. Debu-
gopt: Debugging fully optimized natively compiled programs using multistage
instrumentation. Science of Computer Programming, 169 (2019), 18 .

[166] Yu, S., Qu, Y., Hu, X., and Yin, H. DeepDi: Learning a relational graph
convolutional network model on instructions for fast and accurate disassembly.
In 31st USENIX Security Symposium (USENIX ’22), pp. 2709–2725 (2022).

[167] Yu, Y., Si, X., Hu, C., and Zhang, J. A review of recurrent neural
networks: Lstm cells and network architectures. Neural Computation, 31
(2019), 1235.

[168] Yu, Z., Cao, R., Tang, Q., Nie, S., Huang, J., and Wu, S. Order
matters: Semantic-aware neural networks for binary code similarity detection.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI
’20), vol. 34, pp. 1145–1152 (2020).

http://arxiv.org/abs/1609.08144

Bibliography 149

[169] Yu, Z., Zheng, W., Wang, J., Tang, Q., Nie, S., and Wu, S. Codecmr:
Cross-modal retrieval for function-level binary source code matching. In Pro-
ceedings of the 34th International Conference on Neural Information Processing
Systems (NIPS’20) (2020).

[170] Yule, G. U. An introduction to the theory of statistics. Charles Griffin and
company, London, (1911).

[171] Zaman, K., Sah, M., Direkoglu, C., and Unoki, M. A survey of audio
classification using deep learning. IEEE Access, 11 (2023), 106620.

[172] Zhao, W. X., et al. A survey of large language models. CoRR,
abs/2303.18223 (2023). arXiv:2303.18223.

[173] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L.,
Li, C., and Sun, M. Graph neural networks: A review of methods and
applications. AI open, 1 (2020), 57.

[174] Zhu, W., Feng, Z., Zhang, Z., Chen, J., Ou, Z., Yang, M., and Zhang,
C. Callee: Recovering call graphs for binaries with transfer and contrastive
learning. In 2023 IEEE Symposium on Security and Privacy (SP ’23), pp.
2357–2374 (2023).

[175] Zuo, F., Li, X., Young, P., Luo, L., Zeng, Q., and Zhang, Z. Neural
machine translation inspired binary code similarity comparison beyond function
pairs. In Proceedings of the 26th Network and Distributed Systems Security
Symposium (NDSS ’19) (2019).

http://arxiv.org/abs/2303.18223

	Introduction
	Main Contributions
	Literature Review of Binary analysis with Deep Learning
	Debugging Debug Information with Neural Networks
	BinBert: Binary Code Understanding with a Fine-tunable and Execution-aware Transformer

	Thesis Overview

	Background
	Deep Learning Architectures
	Feed Forward Neural Networks
	Convolutional Neural Networks
	Autoencoders
	Recurrent Neural Networks
	Sequence-to-Sequence Architectures
	Transformers
	Graph Neural Networks

	Language Models
	Neural Language Models
	Pre-trained Language Models

	Binary analysis and Reverse Engineering
	The Compilation Process
	Dissassemblers
	Decompilers
	Symbolic Execution

	Literature Review of Binary analysis with Deep Learning
	Goals
	Primary Scope
	Methodology
	Challenges of Deep Learning in the Binary analysis field
	Preliminary Definitions.
	Deep Binary Analysis Pipeline
	Binary Analysis Downstream Tasks
	Similarity
	Toolchain Provenance
	Disassembly
	Decompilation
	Debug Information Recovery and Reparing
	Binary Code Understanding Tasks
	Memory Usage
	Code Autorship

	Dataset
	Raw Dataset
	Binary Representation
	Preprocessing and Tokenization
	Feature Extraction

	 Deep Learning Models
	Standard Networks
	Custom Networks

	Pre-training Tasks
	Conclusion

	Debugging Debug Information with Neural Networks
	Introduction
	Motivating example
	Contributions

	Related Work
	Compiler Toolchains Testing
	Neural Bug Finding

	Debug Trace, Problem Definition and Overview
	Preliminary Definitions
	Problem Definition
	Assumptions and Setting
	Solution Overview

	Architectures Details and Unsupervised Training Tasks
	Source Lines Network: SLNet
	Mapping Network: MapNet

	Datasets
	 Dataset Preprocessing
	Training and Validation Datasets
	Synthetic Datasets
	Real Bugs Datasets

	Experimental evaluation
	Training, models parameters, and metrics
	Results on the Synthetic Datasets
	Results on the Real Bugs Datasets
	Threshold Analysis
	MapNet and SLNet Correlation

	Finding Novel Bugs: Neuro-Debug2
	Tests and Novel Bugs

	Comparison with Debug2 and Limitations
	Comparison with Debug2
	Limitations

	Conclusion

	BinBert: Binary Code Understanding with a Fine-tunable and Execution-aware Transformer
	Introduction
	Execution-aware Binary Code Interpretation
	Expressive Power and Fine-tunable Models
	Our proposal: BinBert

	Background
	Instruction Embedding Models
	Weak Points and Gap Analysis

	The BinBert Solution
	Overview
	Instructions Preprocessing and Assembly Sequences Extraction
	Symbolic Execution
	BinBert Input Representation and Pre-Training Tasks

	Evaluation Tasks
	Intrinsic Tasks
	Extrinsic Tasks

	Datasets, Pre-Training and Implementation Details
	Datasets

	Experimental Evaluation
	Intrinsic Tasks
	Extrinsic Tasks at Strand and Basic Block Level
	Extrinsic Tasks at Function Level
	Tokenizers

	Time Performance Comparison
	Qualitative Analysis of Binbert
	Opcode Clustering
	BinBert Attention Visualization

	Security Applications of an Assembly Code Model
	Reverse Engineering
	Binary Similarity

	Related Works
	Distributed Representation Learning
	Preprocessing of Assembly Instructions
	Binary Analysis Solutions using Embedding Models

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Works

	Bibliography

