
Edge2LoRa: A New Paradigm for Enabling Cloud
Edge Computing Continuum over LoRaWAN

Department of Computer, Control and Management Engineering – DIAG
Ph.D. in Engineering in Computer Science (XXXVII cycle)

Stefano Milani
ID number 1707181

Advisor
Prof. Ioannis Chatzigiannakis

Co-Advisor
Prof. Domenico Garlisi

Academic Year 2024

Edge2LoRa: A New Paradigm for Enabling Cloud Edge Computing Continuum
over LoRaWAN
PhD Thesis. Sapienza University of Rome

© 2024 Stefano Milani. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: milani@diag.uniroma1.it

“E sono contento della scelta che ho fatto
Nemmeno un rimorso, nemmeno un rimpianto

Sì, sono contento, che bella scoperta
Non serve nient’altro che fare una scelta”

Michele Salvemini, in arte Caparezza

5

Abstract

Low-Power Wide-Area Network (LPWAN) offer a low-cost solution for deploying large-
scale Internet of Things (IoT) infrastructures by adhering to a classic producer/-
consumer model with minimal requirements. However, as these deployments scale,
the need for low-latency, distributed, and collaborative data aggregation models be-
comes inevitable. The Cloud Edge Computing Continuum (CECC) has been proposed
as an evolution of traditional centralized, ultra-high-end processing clouds into a
continuum of collaborative processing elements, distributed from the cloud to the
network edge.

Integrating existing centralized and monolithic LPWAN architectures into the
CECC framework, however, poses several security challenges. To address these
challenges, I propose Edge2LoRa (E2L), a comprehensive and secure solution that
integrates LPWAN architectures into the CECC. This integration facilitates faster
data processing while minimizing the transmission of sensitive data. E2L enhances
network performance by enabling data pre-processing, optimizing traffic flow, and
providing real-time local analysis.

By progressively transforming existing LPWAN deployments into agile and ver-
satile infrastructures, E2L ensures seamless and efficient data processing across the
CECC while maintaining service continuity and full backward compatibility.

The E2L implementation is available as open-source and is compatible with
hardware that adheres to the Things Stack and Long-Range Wide-Area Network (Lo-
RaWAN) v1.0.4 and v1.1 specifications. The system’s performance was evaluated in
terms of network and computing resource utilization, Quality of Service (QoS), and
security. Results demonstrate significant improvements in both public and private
LoRaWAN infrastructures, without any disruption or degradation of existing legacy
services. In particular, for public LoRaWAN deployments supporting large-scale IoT
data streams and big data analytics, a reduction in core network bandwidth usage
by up to 90% is observed, along with data processing latency improvements of up
to 10×.

Additionally, as a further contribution, Edge4LoRa (E4L) incorporates a distinct
computing module capable of processing data streams at the network edge. This
module utilizes a Map/Reduce engine based on Apache Spark, enabling the ex-
ecution of various processing applications, including anomaly detection and data
reduction techniques. Furthermore, E4L enables efficient traffic routing across Lo-
RaWAN gateways, addressing the dynamic nature of IoT data traffic and the mo-
bility of source devices.

The proposed architecture ensures modularity, reliability, scalability, and ro-
bustness. The evaluation demonstrates its effectiveness under different testbed con-
figurations. Performance assessments were conducted using a hardware setup in a
laboratory, and we evaluated the architecture across three scenarios: data reduction,
scaling activation of edge gateways, and mobility-aware scenarios.

7

Contents

1 Introduction 1

2 Objectives 5

3 Related Works 7

4 Background: LoRa & LoRaWAN 9
4.1 LoRa & LoRaWAN . 9
4.2 LoRa Uplink Frame Structure . 9
4.3 LoRaWAN Architecture . 11
4.4 LoRaWAN End Devices Classes . 13
4.5 LoRaWAN End Devices Activation Methods 13

5 Limitations, Possible Improvements & Requirements 17
5.1 Simple Edge Architecture . 18
5.2 Group Application Keys Agreement 19

6 Enabling Cloud Edge Computing Continuum in LoRaWAN 23
6.1 Gateway and Device deployment . 26
6.2 Gateway and Device association . 26
6.3 Group key establishment . 28
6.4 Multiple deliveries and QoS support 31

7 Implementation Details & Performance Evaluation 37
7.1 Implementation Details . 37

7.1.1 Far-Edge layer . 38
7.1.2 Edge layer . 38
7.1.3 Cloud layer . 39
7.1.4 Hybrid testbed for Large scale experimentation 40

7.2 Performance Evaluation . 41
7.2.1 Network Performance . 43
7.2.2 Security Analysis . 50

8 Integrating Distributed Application 53
8.1 System Architecture . 53
8.2 Protocol Definition . 55
8.3 Implementation Details . 57

8 CONTENTS

8.4 Performance Evaluation . 58
8.4.1 Data reduction scenario . 59
8.4.2 Auto-scaling scenario . 60
8.4.3 Mobility scenario . 61

9 Results, Conclusion & Future Works 63

1

Chapter 1

Introduction

The Internet of Things (IoT) has been a game changer in the way we operate,
live, commute, and conduct business thanks to its capacity to monitor in real-
time a broad range of environmental parameters in indoor, outdoor, industrial,
urban, as well as rural areas [37]. From homes to cities, from farms to factories,
in hospitals and vehicles, IoT deployments expand our ability to monitor physical
phenomena and offer us the opportunity to significantly enhance the way we control
our environment [69]. My research focuses on the expected significant growth in
the IoT sector, with IoT device connections predicted to rise from 7 billion in 2018
to 22 billion by 2025.

The proliferation of the IoT applications has significantly increased data gen-
eration across various fields such as informatics, urban planning, and economics.
The International Data Corporation (IDC) predicts that the global data volume
will reach a staggering 175 zettabytes by 2025. This explosion of data has created a
growing need for the analysis of vast and diverse datasets produced by a multitude
of IoT devices, often referred to as IoT big data. Within this diverse landscape
of massive IoT use cases, emerging Low-Power Wide-Area Network (LPWAN) tech-
nologies introduce a uniform approach for creating global networks of devices for
power-efficient and cost-effective integration of IoT data streams with cutting-edge
web services across numerous specialized sectors [16,33,51].

Given the realization of the above new/novel application scenarios, the Interna-
tional Data Corporation (IDC) [52] has projected that the global volume of data will
reach an astounding 175 zettabytes by 2025. For this reason the analysis of large and
diverse datasets generated, which is commonly referred to as IoT big data [59, 60],
needs to be done across the entire Cloud Edge Computing Continuum (CECC). Dis-
tributed computing plays a crucial role in the reduction of extensive network traffic,
enabling processing and real-time response to scale network dimensions.

To support communication between this large number of IoT devices, there are
technologies such as Long-Range Wide-Area Network (LoRaWAN) [5], which enables
devices to establish connections over large distances with minimal consumption of
energy and computational resources. Such scenarios are discussed within the Lo-
RaWAN Alliance through numerous white papers to support various use cases1.
Although there’s a growing necessity for distributed processing, LoRaWAN technol-

1https://resources.lora-alliance.org/whitepapers

2 1. Introduction

ogy operates on a centralized architecture, channeling all data produced by devices
to a singular network/application server and it uses end-to-end encryption to ensure
data confidentiality and security. In light of the existing limitations of current IoT
edge processing solutions, this thesis proposes the integration of a processing module
into a LoRaWAN architecture, capitalizing on the principles of edge computing.

In this work, I focus on LoRaWAN as one of the most adopted LPWAN tech-
nologies [23,30]. LoRaWAN introduces a centralised, monolithic, architecture where
network gateways (GWs) bridge traffic arriving from the IoT devices with the net-
work backbone by directly forwarding all the IoT traffic to central cloud services [4].
Following a licence-free ad-hoc deployment model, it provides an ideal solution
for connecting a wide range of IoT devices with minimal infrastructure require-
ments [49]. At the same time, the standard producer/consumer model adopted by
LoRaWAN allows the straight-forward deployment of cloud-based analytics services
to process the large amounts of IoT generated data streams [62]. For a graphical
representation of the key components of LoRaWAN, see Fig. 4.1.

LoRaWAN technology is recognized for its suitability in supporting very large-
scale deployments and managing substantial data volumes. The ETSI TR 103 526
(ETSI-EN-300) [18] document underscores the scalability and wideband capabilities
of LPWAN LoRaWAN technology, particularly its unique “network densification"
feature. The capture effect, an essential part of Long-Range (LoRa) modulation,
aids in multi-gateway setups by allowing at least one gateway to decode a packet
successfully, even amidst collisions. Increasing gateway density can enhance data
collection, improve the capture effect, and balance overall airtime. Another ap-
proach is the potential use of Long-Range 2.4GHz (LoRa 2.4GHz) while reduces the
range compared to traditional LoRa, it significantly enhances network capacity by
enabling higher data rates and eliminating the need to comply with any duty cy-
cle restrictions [32]. Specifically, the data rates for LoRa range from 0.3kbit/s to
50kbit/s depending on the spreading factor (SF) used [1], whereas LoRa 2.4GHz
supports data rates ranging from 0.595kbit/s to 253.91kbit/s. This higher data
rate allows LoRa 2.4GHz to facilitate the use of LoRaWAN for applications requiring
lower latency, higher data rates, and non-scheduled packet transmissions. Incorpo-
rating CECC in such applications is crucial for meeting the demands of real-time
operations over LoRaWAN.

Although LoRaWAN has served as an excellent starting point to integrate IoT
infrastructures with cloud services and big data analytics, the centralized architec-
ture faces certain bottlenecks when scaling up to large deployment areas. Increasing
the number of gateways that forward large volumes of unprocessed IoT data to the
centralised infrastructure places significant pressure on the network backbone in
terms of bandwidth, energy and security [50]. At the same time, the emergence of
new services that rely on new deployment and operational models require a shift
from the classical two-tier producer/consumer model to multi-tier models involv-
ing client or application consumers, applications, and data sources. Such kinds of
models necessitate a paradigm shift in the processing of IoT data for low-latency,
distributed and collaborative aggregation. We are now entering a new phase where
the fast and low-cost deployment strategy needs to be transformed into a scalable
and agile approach that comprehensively considers these service requirements and
optimally addresses them to enhance efficiency, sustainability, safety, and resilience.

3

The main contributions of this thesis can be summarized as follows:

1. Edge2LoRa (E2L) is introduced, a new approach to transform the LoRaWAN
GWs into an active element in the CECC by providing computational and stor-
age resources at the edges of the network. The E2L elements are designed in
a way such that they respect the existing LoRaWAN specification and guaran-
tee backward compatibility, allowing seamless interoperability between legacy
and CECC-native elements, as demonstrated in the detailed performance eval-
uation included in the thesis.

2. A mechanism that enables the association of IoT LoRaWAN End Devices (EDs)
that are CECC-native to a specific CECC-native LoRaWAN Gateways (GWs)
that will serve as the intermediate point for processing and storage in the
CECC. The mechanism allows different strategies to be used for the association
of GWs to EDs based on diverse optimization criteria of the network operation,
the hardware capabilities and/or application-level metrics. The design allows
the dynamic association of EDs to GWs so that current network conditions
and application-level parameters can be taken into consideration to optimize
the available network, processing and storage resources.

3. An extended rejoin service procedure that allows the CECC-native ED, the
associated GW and the LoRaWAN Application Server (AS) to establish a group
key. The group key is used by the CECC-native EDs to encrypt the IoT data
before transmitting them to the LoRaWAN. Since the associated GW partic-
ipates in the key generation phase, this mechanism enables the CECC-native
GW to access the application payload of the LoRaWAN frames in a secure and
privacy-preserving manner. This extended rejoin service is fundamental to
allow the GWs to act as storage and processing elements within the CECC.
Simultaneously, given that the group key is established after the deployment
of the EDs in the area of interest, avoiding to hard-code the keys into the
ED firmware and the GW software, ensuring they are not fixed for the entire
duration of the network deployment.

4. A mechanism that provides certain Quality of Service (QoS) guarantees for
the processing and storage of messages within the CECC even in the case of
multiple deliveries of frames via legacy equipment. Detailed information are
provided on the operation of the network components and how they can co-
exist with public infrastructures that rely on legacy LoRaWAN Network Server
(NS) and LoRaWAN Join Server (JS) compliant with the LoRaWAN v1.0.4 or
v.1.1 specifications.

5. The integration of a processing module into a LoRaWAN network using the
principles of edge computing. Edge4LoRa (E4L), incorporates a distinct com-
puting module capable of processing data streams at the network edge. The
module utilizes a Map/Reduce engine based on Apache Spark, enabling the
execution of various processing applications, including anomaly detection and
data reduction techniques. Additionally, E4L enables traffic to move across
LoRaWAN GWs, facing the nature of the IoT data traffic mining and mobility
of the source EDs, and allowing to rely on multiple QoS guarantee.

4 1. Introduction

6. A complete implementation of the proposed mechanisms based on the Lo-
RaWAN specification v1.0.4 and v1.1 that is available as open-source software.
The implementation allows third-parties to develop novel services that utilise
all the resources available in the Cloud-Edge-Device processing and storage
continuum. The service provider can deploy the CECC-native EDs and GWs in
existing public LoRaWAN infrastructures, e.g., such as the TheThingsNetwork.

7. A multifaceted performance evaluation is conducted to assess the correct-
ness, security and network utilization of the new system. The services are
deployed in real-world devices in combination with an IoT device emulator
to recreate massive IoT application scenarios. To demonstrate that legacy
and CECC-native services can co-exist without any disruption or performance
degradation, CECC-native EDs and GWs are deployed in an existing public
LoRaWAN infrastructure.

In the following chapter (Chap. 2), the objectives of my doctoral research and
the outline of this thesis are addressed in detail.

5

Chapter 2

Objectives

My doctoral research centered on optimizing the network performance, security, and
scalability of Low-Power Wide-Area Network (LPWAN), especially Long-Range Wide-
Area Network (LoRaWAN). Given the escalating deployment of Internet of Things
(IoT) applications and devices worldwide, the burgeoning volume of sensor data
demands advancements in these areas. Edge computing offers a compelling solution
to mitigate cloud burdens, alleviate network congestion, expedite response times for
end-users, and bolster security and privacy.

The primary objective of my research is to enable Cloud Edge Computing Con-
tinuum (CECC) over LoRaWAN while ensuring data integrity, confidentiality, and
privacy. To achieve this goal, the research is structured into three key phases: (1)
conducting a comprehensive analysis of the state of the art and the LoRaWAN pro-
tocol to identify relevant requirements and challenges; (2) developing a novel CECC
protocol specifically tailored for LoRaWAN environments; and (3) integrating dis-
tributed applications and exploring potential improvements driven by the needs of
real-world use cases. This phased approach facilitates a systematic exploration of
the limitations of existing protocols and the development of scalable, secure solu-
tions for edge computing over LoRaWAN.

Phase 1: In-Depth LoRaWAN Protocol Analysis and Requirement Iden-
tification

In the initial phase of this research, a comprehensive analysis of the state of the art
(Chap. 3) and the LoRaWAN protocol was conducted, focusing on its architecture,
security mechanisms, and operational characteristics (Chap. 4). This in-depth re-
view enabled me to pinpoint the specific requirements and challenges that must be
addressed to achieve secure and confidential CECC over LoRaWAN (Chap. 5).

By identifying these key areas, I laid the groundwork for developing solutions
that strengthen data privacy, enhance security protocols, and ensure the efficient
use of computational resources in edge environments. This foundation was essential
for overcoming the inherent limitations of LoRaWAN in supporting more advanced
applications and secure data handling.

6 2. Objectives

Phase 2: Development of a Novel CECC Protocol for LoRaWAN

Building upon the insights gained from the first phase, I developed and proposed
a novel CECC protocol specifically designed for LoRaWAN environments, named
Edge2LoRa (E2L). This protocol integrates advanced cryptographic techniques, pri-
vacy preserving mechanisms, and efficient communication protocols to ensure the se-
curity, integrity, and confidentiality of data processed at the network edge (Chap. 6).

A complete open-source implementation of E2L is available on GitHub1. The im-
plementation (Sec. 7.1) has been rigorously tested and is compatible with both real-
world and simulated devices, validating the correctness, scalability, and efficiency
of the proposed protocol. Testing with real hardware demonstrates its practical ap-
plicability, while simulated environments allow for the evaluation of the protocol’s
performance in large-scale and high-density scenarios (Sec. 7.2). This dual approach
ensures that E2L can handle a wide range of use cases, from small deployments to
massive IoT networks, offering both security and operational efficiency.

Phase 3: Integration of Distributed Applications & Improvements

The third phase of this research focuses on identifying and integrating a real-world
use case into the E2L architecture. This phase aims to leverage the distinct ad-
vantages of a distributed application, enabled by CECC, highlighting the significant
benefits of this approach in contrast to traditional centralized models, such as those
commonly used in LoRaWAN. By employing a distributed framework, scalability
is enhanced, fault tolerance is improved, and resource utilization becomes more
efficient, ultimately leading to better performance in edge computing environments.

The development of these use cases has driven substantial enhancements in the
E2L framework, culminating in an upgraded version known as Edge4LoRa (E4L).
This new iteration not only incorporates additional functionalities but also features
a refined architecture specifically designed to overcome several limitations identified
during the research process (Chap. 8). These improvements include optimized data
handling and better support for diverse application scenarios.

The implementation of this innovative solution is available in the same GitHub
repository1, offering researchers and practitioners access to the enhanced framework
for further experimentation and application across various scenarios (Sec. 8.4). By
making this resource available, I aim to encourage collaboration and exploration of
the potential applications of E4L in real-world settings.

The thesis concludes (Chap. 9) with a summary of the results achieved and an
overview of the foreseen improvements for the newly proposed framework.

1https://github.com/Edge2LoRa

7

Chapter 3

Related Works

Long-Range Wide-Area Network (LoRaWAN) has received significant attention dur-
ing the past years since it is a crucial and promising Low-Power Wide-Area Network
(LPWAN) technology [58]. A comprehensive review of LoRaWAN from the perspec-
tive of network operation, security, applications, modelling and experimentation the
interested reader is presented in [62].

On the other hand, during the past couple of years only a handful of stud-
ies have been proposed to address the centralized architecture of the LoRaWAN
v1.1 network standard. Zhou et al. [68] propose to decouple the functionalities of
the LoRaWAN Network Server (NS) in four modules: connector, central server, join
server and network controller. Such a split can indeed assist in distributing the
centralized functionalities to different locations within the network. The scalability
however of this approach remains limited, the functionalities that can be decen-
tralized are related to the network management and operation, while at the same
time the proposed extensions are not compatible with existing, public LoRaWAN
deployments.

Liu et al. [38] propose an extension to Long-Range (LoRa) network standard that
allows to migrate the functions of rejoin and media access control (MAC) commands
into the LoRaWAN Gateway (GW). Since the GWs are required to store data related
to the network operation and a data synchronization mechanism is introduce to
allow the NS to have a complete view of the system. Like with the previous work,
this allows to mitigate the workloads of the central cloud that have to do with
network management and operation. Once again, the proposed extensions are not
backward compatible with the current LoRaWAN standard. More recently, Lu et
al. [31] proposes to migrate the functions of rejoin and media access control (MAC)
commands into the GW however instead of using a local database, a blockchain
network with multiple ledgers is designed. The resulting system improves the over-
all scalability of the network operations by utilising the Edge resources available
at the GW, however yet again it is not backward compatible with the current Lo-
RaWAN standard. The LoRaCTP is a flexible protocol based on LoRa that enables
data transfer over large distances with very low energy expenditure over a generic
FrUgal eDGE (FUDGE)/fog architecture [45]. The solution provides all necessary
mechanisms for LoRaWAN reliability and allows edge computing via a lightweight
connection, it is not however compatible with existing LoRaWAN deployments.

8 3. Related Works

The ability to introduce Edge/Fog processing for the analysis of the payload of
LoRaWAN frames is studied in [6, 24]. The proposed architectures utilise the com-
putational resources already available at the GW deployed to facilitate the anal-
ysis of IoT data in smart water distribution networks. A distributed key man-
agement system is introduced that shares the Application Session Encryption Key
(AppSEncKey) with the GWs so that they can decrypt and analyze the application-
level messages received. Both studies indicate significant reductions to the overall
load to network and cloud resources. However transmitting the AppSEncKey to the
disparate GWs introduces new vulnerabilities to the system. In contrast to these
approaches, the solution presented in this thesis does not require the exchange of
any secret key across the network.

The design of a LoRaWAN deployment in a smart campus enabling fog com-
puting on the LoRaWAN gateways giving them the LoRaWAN servers capabilities
is presented in [21]. The evaluation shows the benefits of the use of fog computing
however the solution proposed is not compatible with existing public networks and
its scalability is limited since the functionalities of the GWs and NS are collapsed
in a single entity. The focus of the authors was limited to the use of fog com-
puting nodes to support low-latency and location-aware IoT applications, and the
evaluation was conducted on a particular smart campus. As a result, there are no
indications provided on the scalability of the solution.

A different approach is followed in [20] to minimise upstream network traffic
in cases of overlapping network areas covered by multiple nearby GWs. In Lo-
RaWAN frames received by one or more GW are forwarded multiple times through
the network backbone to a central NS. To reduce the duplicate transmission, each
LoRaWAN End Device (ED) selects the nearby GW with which it has the best signal
quality to act as a so-called Rendezvous Point where analysis of the frames payload
can also take place. In dense deployments this approach has certain limitation since
transmitting large number of down-link frames leads to high loss rates. In contrast
to this approach, a scalable Edge2 Gateway (E2GW) selection is proposed that does
not require the exchange of any additional down-link frames.

The existing literature emphasizes the integration of processing modules at the
edge layer, where data originate, and researchers have been actively exploring and
evaluating novel solutions for edge data processing. One notable reference work in
the field of edge computing is EDGEWISE [22], which introduces a stream pro-
cessing engine specifically designed for edge computing environments. The authors
demonstrate that EDGEWISE, with its congestion-aware scheduler and pool of
fixed-sized workers, significantly enhances performance across various metrics.

Moving in the context of IoT, the authors in [53] present an edge-based pro-
gramming framework for stream processing in IoT environments. The authors
highlight the inefficiency of traditional core-centric data processing methods due
to data transfer latencies, particularly for time-sensitive applications. In addition,
a framework called Seagull is presented in [11], which focuses on building efficient,
large-scale IoT-based applications. Through a smart city scenario, the authors
showcase the impact on throughput by varying the amount of processing at the
edge and performing various streaming analyses such as filtering or aggregation.

Despite the significant contributions from these works, none of these solutions
are specifically tailored for LoRaWAN environments.

9

Chapter 4

Background: LoRa &
LoRaWAN

Before introducing the Edge2LoRa (E2L) and Edge4LoRa (E4L) Network, it is essen-
tial to first outline the model, architecture, and key aspects of Long-Range (LoRa)
and Long-Range Wide-Area Network (LoRaWAN). This will provide a foundational
understanding of their inherent limitations and clarify the improvements that this
thesis aims to introduce.

In this chapter, I will introduce the LoRa physical layer and the LoRaWAN
architecture as defined in the current specification [4]. This will include a detailed
explanation of the roles of each network component, the various LoRaWAN End
Device (ED) classes, and the available methods for ED activation.

4.1 LoRa & LoRaWAN
LoRaWAN is one of the most widely used Low-Power Wide-Area Network (LPWAN)
technologies, developed by the LoRa Alliance as an open standard operating in
unlicensed frequency bands [4]. It utilizes the LoRa physical communication layer,
which employs a proprietary modulation technique known as LoRa Modulation—a
derivative of Chirp Spread Spectrum (CSS). This technique operates in the Sub-GHz
bands and is developed and distributed by Semtech.

LoRaWAN leverages Adaptive Data Rate (ADR) and various Spreading Fac-
tor (SF) ranging from 7 to 12, allowing for multiple simultaneous data rates and
messages on the same channel [39]. Each SF defines the data rate and maximum
payload size, based on the ratio between chip and symbol rates [48]. Data rates
range from as low as 22 bps to as high as 27 kbps, while maximum payload sizes
vary from 51 to 222 bytes, depending on the SF used [1].

4.2 LoRa Uplink Frame Structure
The LoRaWAN uplink frame structure is designed to facilitate communication be-
tween ED and the network through LoRaWAN Gateways (GWs), ensuring secure and
efficient data transmission. The frame structure can be broken down into several
key components as shown in Table 4.1.

10 4. Background: LoRa & LoRaWAN

Table 4.1. LoRaWAN uplink frame structure

Preamble PHDR PHDR_CRC PHYPayload CRC

6 − 65535 bits 1 Byte 1 − 2 Bytes 1 − 255 Bytes 4 Bytes

• Preamble: the initial part of the frame used to synchronize the transmitter
and receiver. It helps the receiver detect the beginning of the frame and is
critical for precise timing in low-power operations.

• Physical Header (PHDR): contains information about the packet’s prop-
erties, such as spreading factor, coding rate, bandwidth, CRC presence.

• Physical Header CRC (PHDR_CRC): check for the PHDR, ensuring its
integrity 1-2 bytes (8-16 bits).

• Physical Payload (PHYPayload): contains the frame actual payload.
Composed of a header and a payload,

• CRC: integrity check for the PHYPayload.

Physical Payload

The physical payload (PHY Payload) contains several fields, which are crucial for
the operation of the LoRaWAN protocol. These include:

Table 4.2. LoRaWAN Physical Payload structure

MHDR MACPayload MIC

1 Byte 0 − 255 Bytes 4 Bytes

• MAC Header (MHDR): defines the Message type and its format. The
structure is presented in Table 4.3.

Table 4.3. The structure of the MAC Header. The first row shows the fields composing
the header, while the second row indicates the bits position for each field.

MType RFU Major

7..5 4..2 1..0

Table 4.4 shows the possible values for the MType field.

• MAC Payload (MACPayload): carries either the application data or con-
trol commands. Contains a frame header (FHDR) followed by an optional port
field (FPort) and an optional frame payload field (FRMPayload).

• Message Integrity Code (MIC): 4-byte field that ensures the integrity and
authenticity of the message

4.3 LoRaWAN Architecture 11

Table 4.4. MAC message type.

MType Description

000 Join Request
001 Join Accept
010 Unconfirmed Uplink Data
011 Unconfirmed Downlink Data
100 Confirmed Uplink Data
101 Confirmed Downlink Data
110 Rejoin Request
111 Propetary

MAC Payload

The main body of the message, which carries either the application data or control
commands. Table 4.5 shows the structure.

Table 4.5. The structure of the MAC Payload.

FHDR FPort FRMPayload

7 − 22 Bytes 0 − 1 Bytes Variable size

• Frame Header (FHDR): includes information such as the device address
(DevAddr), frame control (FCtrl) field, and frame counter (FCnt). The FOpts
field id used to transport MAC commands, if present shall be encrypted using
the Network Session key. Table 4.6 shows its structure.

Table 4.6. The structure of the Frame Header.

DevAddr FCrl FCnt FOpts

4 Bytes 1 Bytes 2 Bytes 0 − 15 Bytes

• Frame Port (FPort): optional 1-byte field that identifies the application
port. Ranging from 1 to 223 for application-specific data and port 0 for MAC
commands.

• Frame Payload (FRMPayload): the actual payload of the frame, contain-
ing either user data or MAC commands. This field is encrypted using the
application session keys.

4.3 LoRaWAN Architecture

The main actors in a LoRaWAN 1.1 Network [4] are the ED, the GW, the LoRaWAN
Network Server (NS), the LoRaWAN Join Server (JS) and the LoRaWAN Application
Server (AS), as shown in Fig. 4.1.

12 4. Background: LoRa & LoRaWAN

Network
Server

Join
Server

ED CLOUDGW

Control

Application
Server

IP-based

communication
Wireless

Link

Data
Data /

Control

LoRa

wireless

channel Control

Packet
Forwarder

Figure 4.1. Architecture of the LoRaWAN v1.0.4 and v1.1 Network Standards [4]. The
figure illustrates the interrelations between the five key components: the LoRaWAN
End Devices (EDs), the LoRaWAN Gateways (GWs), the LoRaWAN Network Server (NS),
the LoRaWAN Join Server (JS) and the LoRaWAN Application Server (AS). The GWs
bridge traffic between the EDs and the NS without accessing the frame payload. The
NS manages the network operations, the JS provides authentication, authorization, and
access control to the EDs while Internet of Things (IoT) data streams are processed
centrally by the AS.

• LoRaWAN End Device (ED) often a small and cheap device that periodically
collects data from its sensors and broadcasts them using LoRa. It has limited
power computation capabilities to maintain its cost as low as possible and offer
the most extended lifespan possible, given that it is often battery-powered.

• LoRaWAN Gateway (GW): acts as a concentrator that collects frames from
the ED in its radio range and forwards those to the NS. It can connect with
many ED but can not access the payload of the received frames. It has two
different network interfaces: one for LoRa and one for Internet Protocol (IP)
based communications. The subsequent communications are conducted via
IP-based technologies; LoRa physical layer use is limited to exchanging frames
between the ED and the GW.

• LoRaWAN Network Server (NS): it manages the entire network by dynami-
cally controlling network parameters, such as the SF and the Data Rate (DR),
to respond to changing conditions. The NS ensures the authenticity of each
ED joining the network and checks the integrity of each frame. However, the
NS can not access the application data.

• LoRaWAN Join Server (JS): it manages the Over-The-Air Activation (OTAA)
(Sec. 4.5) method. It stores the information required to process the Join-
Request frame and to generate the Join-Accept in response to it after per-
forming the Network Session and Application Sessions Keys derivation. It is
responsible for notifying the NS to which AS an ED shall be connected.

• LoRaWAN Application Server (AS): it securely handles, manages and inter-
prets the application data. It is the only actor that can access the application
payload sent by the ED.

4.4 LoRaWAN End Devices Classes 13

4.4 LoRaWAN End Devices Classes

LoRaWAN defines three types of ED [4]:

• Class A: The ED opens two receive windows after an uplink message. The
second receive window is opened only if no downlink frame is received during
the first. It is possible to send a single downlink frame to this type of ED for
each uplink frame they send during those receive windows.

• Class B: The GW, via beacons, synchronises periodic receive widows of the
EDs in its radio range. It is possible to send downlink frames to those EDs even
when they do not send uplink frames; however, the overall energy consumption
increases.

• Class C: The ED continuously listens for downlink frames except when it
broadcasts an uplink message. This class is the most demanding energy-wise.

The Class A EDs have the most strict constraint. However, they are the most
common since they are the most energy efficient.

4.5 LoRaWAN End Devices Activation Methods

In LoRaWAN, the encryption of the payload is, by default, enabled in every trans-
mission. The LoRaWAN 1.1 specification specifies two methods to agree on a set of
session keys.

Activation by Personalization Method – ABP

The Activation By Personalization (ABP) method is the most straightforward; how-
ever, it is not secure and shall be used exclusively in the early stages of network
design tests. The ABP activation method consists of hard-coding the session keys
in all the interested actors (ED, JS).

Over-The-Air Activation Method – OTAA

The OTAA method is more sophisticated than ABP and allows a higher level of
security. In literature, lots of work presents some vulnerabilities in the OTAA [10,
14, 15, 17], offering alternative solutions or mitigation [29, 41, 57, 64]. Fig. 4.2 &
Algorithm 1 summarise the steps of the OTAA methods.

Before the activation, two 64-bit Extended Unique Identifiers shall be assigned
to the ED and the JS, respectively, the Device Extended Unique Identifier (DevEUI)
and the Join Extended Unique Identifier (JoinEUI).

Two root keys are hard-coded into the device: the Network Key (NwkKey) and the
Application Key (AppKey). These root keys are then used to derive two additional
keys: the Join Specific Encryption Key (JSEncKey) and the Join Specific Integrity
Key (JSIntKey). The JSEncKey is used to encrypt the JoinAccept frame, while the
JSIntKey is responsible for computing the Message Integrity Code (MIC) for that
frame

14 4. Background: LoRa & LoRaWAN

LoRaWAN

End Device

LoRaWAN

Gateway

LoRaWAN

Network Server

LoRaWAN

Application
Server

LoRaWAN

Join Server

LoRa IP Network

Root Keys

Root Keys

Join Request
Join Accept

Application
Session Keys

Network
Session

Keys

Figure 4.2. LoRaWAN 1.1 Over-The-Air-Activation Method

1. The ED and the JS share the Root Keys and the information about the De-
vEUI and the JoinEUI. Moreover, the JS knows to which AS the ED shall be
connected.

2. The ED triggers the activation process via a Join Request frame containing its
DevEUI, the JoinEUI and a DevNonce. The ED computes the MIC using a key
derivated from the Root Keys.

3. The JS checks the MIC and the validity of the pair DevEUI and JoinEUI. If
the checks succeed, it replies with a Join Accept containing a JoinNonce.
The frame is encrypted with the JSEncKey, and its MIC computed with the
JSIntKey.

4. The ED and the JS can compute the Network and Application Session Keys
using the two nonces, the EUIs and the Root Keys.

5. The JS distribute the Network Session Keys to the NS and the Application
Session Keys to the AS.

Table 4.7 summarise the number of up-link and down-link frames exchanged
to complete the OTAA method.

Table 4.7. Number of Frames exchanged during the OTAA

Type of Frame Number of Frames
Uplink LoRaWAN 1

Downlink LoRaWAN 1
Minimum IP frames 6

4.5 LoRaWAN End Devices Activation Methods 15

Algorithm 1 OTAA according to LoRaWAN 1.1 specification
ACTOR: ED

Require:
Hard-Coded Root Keys: NwkKey, AppKey
Hard-Coded JoinEUI: 64-bit Extended Unique Identifier of the Join Server
DevEUI: its 64-bit Extended Unique Identifier

upon event < OT AA, Init > do
NwkKey := from hard-coded Root Keys
AppKey := from hard-coded Root Keys
JSIntKey = aes128_encrypt(NwkKey, 0x06|DevEUI|pad16)
JSEncKey = aes_encrypt(NwkKey, 0x05|DevEUI|pad16)
F NwkSIntKey := ⊥
SNwkSIntKey := ⊥
NwkSEncKey := ⊥
AppSKey := ⊥
DevNonce := 2 Bytes Counter
jr = JoinEUI|DevEUI|DevNonce
trigger < LoRaReceive, JoinRequest|jr, GW >

end upon event

upon event < LoRaReceive, JoinAccept|ja > do
ja = eas128_encrypt(JSEncKey, ja)
JoinNonce := ja[0 : 3]
F NwkSIntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|JoinEUI|DevNonce|pad16)
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSEncKey = aes128_encrypt(NwkKey, 0x04|JoinNonce|JoinEUI|DevNonce|pad16)
AppSKey = aes128_encrypt(AppKey, 0x02|JoinNonce|JoinEUI|DevNonce|pad16)

end upon event

ACTOR: GW
Require:

JoinEUI and IP address of the respective Network Server

upon event < OT AA, Init > do
ED := ⊥

end upon event

upon event < LoRaReceive, JoinRequest|jr > do
ED := jr[8 : 16]
trigger < Receive, JoinRequest|jr, NS >

end upon event

upon event < Receive, JoinAccept|ja > do
trigger < LoRaReceive, JoinAccept|ja, ED >

end upon event

16 4. Background: LoRa & LoRaWAN

ACTOR: NS
upon event < OT AA, Init > do

JS := Respective Join Server
GW := ⊥
F NwkSIntKey := ⊥
SNwkSIntKey := ⊥
NwkSEncKey := ⊥

end upon event

upon event < Receive, JoinRequest|jr, gw > do
GW := gw
trigger < Receive, JoinRequest|jr, JS >

end upon event

upon event < Receive, JoinAccept|ja, js > do
trigger < LoRaReceive, JoinAccept|ja, GW >

end upon event

upon event < Receive, NetworkSessionKeys|NwkSKeys, js > do
F NwkSIntKey := NwkSKeys → F NwkSIntKey
SNwkSIntKey := NwkSKeys → SNwkSIntKey
NwkSEncKey := NwkSKeys → NwkSEncKey

end upon event

ACTOR: AS
Require: DevEUI: Indentified of End Device

upon event < OT AA, Init > do
AppSKey := ⊥

end upon event

upon event < Receive, ApplicationSessionKey|key, js > do
AppSKey := key

end upon event

ACTOR: JS
Require: Hard-Coded Root Keys: NwkKey, AppKey

Hard-Coded JoinEUI: its 64-bit Extended Unique Identifier
DevEUI: 64-bit Extended Unique Identifier of the End Device
Application Server linked to the ED as AS

upon event < OT AA, Init > do
NwkKey := from hard-coded Root Keys
AppKey := from hard-coded Root Keys
JSIntKey = aes128_encrypt(NwkKey, 0x06|DevEUI|pad16)
JSEncKey = aes_encrypt(NwkKey, 0x05|DevEUI|pad16)
F NwkSIntKey := ⊥
SNwkSIntKey := ⊥
NwkSEncKey := ⊥
AppSKey := ⊥

end upon event

upon event < Receive, JoinRequest|jr, ns > do
JoinEUI := 3 Bytes Device specific Counter
ja = JoinNonce|HomeNet_ID|DevAddr|DLSettings|RxDelay|CF List
ja = eas128_decrypt(JSEncKey, ja)
trigger < Receive, JoinAccept|ja, NS >
F NwkSIntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|JoinEUI|DevNonce|pad16)
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSEncKey = aes128_encrypt(NwkKey, 0x04|JoinNonce|JoinEUI|DevNonce|pad16)
AppSKey = aes128_encrypt(AppKey, 0x02|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSKeys := (F NwkSIntKey, SNwkSIntKey, NwkSEncKey)
trigger < Receive, NetworkSessionKeys|NwkSKey, NS >
trigger < Receive, ApplicationSessionKey|AppSKey, AS >

end upon event

17

Chapter 5

Limitations, Possible
Improvements & Requirements

LoRaWAN is one of the most promising and used LPWANs, the benefits listed in
Sec. 4 make that technology particularly suitable for Wireless Sensor Network
(WSN). The following summarises the main limitation of LoRa and LoRaWAN:

1. Limited Payload size

2. Low Data Rate

3. Strict Duty Cycle restiction

4. Class A ED receive windows (Sec. 4.4)

5. The GW can not access the payload, so performing edge or fog computation
over LoRaWAN is impossible.

The limitations described in Point 1, 2 & 3 arise from the use of LoRa as
physical layer. These constraints are crucial to ensuring long-range and energy-
efficient communication. However, to expand the range of applications for which
LoRaWAN can be used, these limitations can be addressed by switching the physical
layer from LoRa to Long-Range 2.4GHz (LoRa 2.4GHz) [32].

LoRa 2.4GHz reduces the range compared to traditional LoRa but significantly
enhances network capacity by enabling higher data rates and eliminating the need to
comply with any duty cycle restrictions. Specifically, the data rates for LoRa range
from 0.3kbit/s to 50kbit/s depending on the SF used [1], whereas LoRa 2.4GHz
supports data rates ranging from 0.595kbit/s to 253.91kbit/s. This higher data
rate allows LoRa 2.4GHz to facilitate the use of LoRaWAN for applications requiring
lower latency, higher data rates, and non-scheduled packet transmissions.

On the other hand, the limitation in Point 4 significantly affects the energy
efficiency of the ED. Devices in Class B or Class C have relaxed or no constraints
on downlink frames, respectively, which increases energy consumption and thus
reduces the lifetime of battery-powered devices.

The improvements for the first four limitations are beyond the scope of this
thesis. However, it is crucial to highlight them because any solution aimed at
improving LoRaWAN technology must conform to these constraints.

18 5. Limitations, Possible Improvements & Requirements

Conversely, I consider Point 5 to be a significant limitation. Edge/Fog Com-
puting is becoming increasingly critical for deploying efficient and cost-effective
WSN, offering well-documented benefits [44, 67]. These advantages include miti-
gating network congestion caused by the exponential growth of data exchanged as
the number of IoT devices increases, reducing the workload on cloud servers, and
providing faster response times to end-users due to geographically proximate compu-
tation. Currently, state-of-the-art LoRaWAN GWs function merely as concentrators,
forwarding frames to the NS.

This thesis proposes a new paradigm to overcome these constraints and enable
Cloud Edge Computing Continuum (CECC). In the following section, I will investigate
this point in detail, outlining a set of solutions ranging from the most straightfor-
ward to the more complex. Additionally, I will collect and analyze the necessary
requirements to ensure that the proposed solutions are not only comprehensive and
feasible but also aligned with the practical and operational needs of the LoRaWAN
ecosystem. This approach will help to address the limitations effectively while main-
taining the integrity and performance of the network.

5.1 Simple Edge Architecture

A straightforward solution to enable CECC is to consolidate the functionalities of
the GW, NS, JS, and AS into a single entity; some commercial GWs offer such
an integrated approach. Fig. 5.1 illustrates two examples of possible LoRaWAN
architectures that can be employed to implement this solution. In both cases, the
ED will interact directly with the GW, which also has server capabilities, allowing it
to access the payload of both the Network and Application LoRaWAN frames from
the device. However, this solution presents several issues:

• The ED will be able to exchange Network and Application LoRaWAN frames
solely with the GW to which it is activated.

• The OTAA uses a pair of root keys that need to be hard-coded in both the
actors. The ED will not be able to activate with other GWs or NSs without
compromising the overall security of the protocol.

• The GW with server capabilities represents a single point of failure. If it
crashes, the communication with the ED will be interrupted.

• The solution does not support mobility of the ED and the GW.

• GW computation capabilities are often comparable to a Raspberry Pi and
serve many EDs. Using such a solution will increase their workload since they
will perform Edge Computing, manage the network, set network parameters
for each device linked to them, and store many cryptography materials. Such
implication can decrease the number of devices a GW can serve, so it is nec-
essary to increase the number or the computational capabilities of the GWs.
Consequently, the cost of deploying and maintaining a LoRaWAN network
deployment could rise.

5.2 Group Application Keys Agreement 19

• The solution requires a change at the architectural level of the LoRaWAN
Network, causing it to be incompatible with the existing and public LoRaWAN
network.

AS

NS/JS

GW

DEV DEV

DEV

AS

NS/JS

GW

DEV

Simple Edge Architecture 1 Simple Edge Architecture 2

Figure 5.1. Example of possible LoRaWAN Architectures for Solution 1

Collected Requirements

• The GWs shall not be a single point of failure.
• The protocol shall consider the possibility of mobility of both EDs and GWs.
• One of the main advantages of Edge Computing is to optimize the compu-

tation, distributing it over the IoT network without increasing network man-
agement costs.

• The compatibility between existing and public networks and existing Lo-
RaWAN networks shall be guaranteed. This means that actors using the
classical LoRaWAN protocol and the edge-enabled ones shall coexist in the
same LoRaWAN Network.

5.2 Group Application Keys Agreement

To enable Edge/Fog Computing on the GWs, the latter need to decrypt and access
the Application LoRaWAN frame payload while avoiding becoming a single point of
failure and ensuring backward compatibility. One potential solution is to enhance
the OTAA method to establish session Application Keys shared among the ED, the
GWs within the device’s range, and the AS. By encrypting the Application LoRaWAN
frames with these shared keys, the ED allows every GW within its radio range, as
well as the AS, to access the payload. This approach facilitates the processing of
data at the edge while preserving the flexibility and scalability of the LoRaWAN
network.

20 5. Limitations, Possible Improvements & Requirements

This approach enables CECC in public networks by including only trusted GWs
in the key agreement process, with these trusted GWs maintained in an Active
Directory on the AS. It also ensures backward compatibility, as a GW can still use
the standard LoRaWAN protocol to forward the frame to the NS.

However, if an ED is within the coverage area of two or more GWs, each of these
gateways can access the payload and perform the necessary computation. This
can result in the same information being processed and transmitted multiple times,
potentially leading to overlapping network activities and redundant data handling.

The following algorithms present different approaches to agreeing on a set of
Application Session Keys shared among the ED, the AS, and a set of trusted GWs.

Algorithm 2 presents the pseudo-code in case the Group Key Agreement is
executed after completing the OTAA. In such a case, the ED, the AS and the set of
trusted GWs shall execute a new protocol on top of the OTAA. This will increase the
energy consumption of the ED, the number of total LoRaWAN frames exchanged,
and the elapsed total time needed for the activation.

Algorithm 2 GKA after OTAA
Require: ED, NS, JS, AS

Set of trusted Gateways: GWT = {GWT1 , GWT2 , . . . , GWTm }
OT AA(ED, NS, JS, AS)
groupSharedAppSKeys = GKA(ED, GWT1 , GWT2 , . . . , GWTm , AS)

Table 5.1 summarise the number of LoRaWAN up-link and down-link frames
exchanged to complete the Group Key Agreement after the OTAA.

Table 5.1. Number of Frames exchanged during the GKA After OTAA

Type of Frame Number of Frames
Minimum Uplink LoRaWAN 2

Minimum Downlink LoRaWAN 2
Minimum IP frames 6 + m

Algorithm 3 presents a tentative solution (Gateway-Integrated OTAA) in
which the Application Sessions Keys are provided to the set of trusted GWs by
the JS. In such an approach, the GWs do not contribute to generating the above
keys. For simplicity the algorithm shows only the delta between the OTAA and the
Gateway-Integrated OTAA.

Table 5.2 summarise the number of LoRaWAN up-link and down-link frames
exchanged to complete the Gateway-Integrated OTA Activation process.

Table 5.2. Number of Frames exchanged during the GW-Integrated OTAA

Type of Frame Number of Frames
Uplink LoRaWAN 1

Downlink LoRaWAN 1
Minimum IP frames 6 + m

5.2 Group Application Keys Agreement 21

Algorithm 3 Gateways-Integrated OTAA
ACTOR: JS

Require: Set of trusted Gateways: GWT = {GWT1 , GWT2 , . . . , GWTm }
upon event < Receive, JoinRequest|jr, ns > do

JoinEUI := 3 Bytes Device specific Counter
ja = JoinNonce|HomeNet_ID|DevAddr|DLSettings|RxDelay|CF List
ja = eas128_decrypt(JSEncKey, ja)
trigger < Receive, JoinAccept|ja, NS >
F NwkSIntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|JoinEUI|DevNonce|pad16)
SNwkSIntKey = aes128_encrypt(NwkKey, 0x03|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSEncKey = aes128_encrypt(NwkKey, 0x04|JoinNonce|JoinEUI|DevNonce|pad16)
AppSKey = aes128_encrypt(AppKey, 0x02|JoinNonce|JoinEUI|DevNonce|pad16)
NwkSKeys := (F NwkSIntKey, SNwkSIntKey, NwkSEncKey)
trigger < Receive, NetworkSessionKeys|NwkSKey, NS >
trigger < Receive, ApplicationSessionKey|AppSKey, AS >
for GWTi

∈ GWT do
trigger < Receive, ApplicationSessionKey|AppSKey, GWTi

>
end for

end upon event

ACTOR: GW
Require: DevEUI: Indentified of End Device

upon event < OT AA, Init > do
AppSKey := ⊥

end upon event

upon event < Receive, ApplicationSessionKey|key, js > do
AppSKey := key

end upon event

Collected Requirements

• Two or more Trusted GWs shall not execute the same computation on the
same frame or group of frames.

• No Edge processing should be duplicated. Each LoRaWAN frame should be
processed by only one Edge-Enabled Gateway. This will prevent overlapping
networks and reduce potential congestion caused by redundant information.

23

Chapter 6

Enabling Cloud Edge
Computing Continuum in
LoRaWAN

Cloud Edge Computing Continuum (CECC) offers a natural evolution of informa-
tion technology provisioning of computation and storage, which was traditionally
bound to centralized data centres, to include resources available at the edges of
the network [44, 58]. In the case of LoRaWAN that adopts the design approach of
using simple protocols to realise a centralised architecture, one faces multiple im-
plications when trying to incorporate it in the CECC. Forcing the GWs to act as
simple bridges, at one hand accommodates the rapid and low-cost deployment of
unlicensed LPWANs, on the other hand excludes them from potentially acting as
trusted intermediate processing and storage elements in the CECC. Recently some
researchers have explored different approaches in modifying the specified operation
of the protocols, proposing alternative architectures to reduce the significant pres-
sure imposed on the central cloud services in cases of massive IoT data streams or
time-constrained consumption of IoT data [21,31,68]. At the same time, introduc-
ing changes to the architecture and the specified operation of the protocols while
maintaining backward compatibility is a challenging discourse [45].

I here propose a new approach that enables for the first time the efficient and
secure integration of LoRaWAN in the CECC while respecting the current specifi-
cations and maintaining backward compatibility, thus allowing seamless interoper-
ability between legacy and new elements. In other words, I allow the co-existance
of cloud-centric analytics services with the execution of novel services that build
upon edge computing concepts that require certain Quality of Service (QoS) guar-
antees. Consider that in the common case where IoT applications rely over public
LoRaWAN infrastructures, like for example the TheThingsNetwork1, it is impossi-
ble to expect that the operator will support extended versions of the LoRaWAN
Network Server (NS) and/or the LoRaWAN Join Server (JS) that deviate from the
current standards and may lead to service disruptions for already deployed devices
and services. For this reason, I guarantee that my extensions can be fully integrated
in public LoRaWAN infrastructures: CECC-native GWs can co-exist with legacy GWs

1https://www.thethingsnetwork.org/

24 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

and communicate with a legacy NS and a legacy join server JS by respecting the
protocols defined in the current LoRaWAN specifications. I also guarantee that
the legacy IoT devices already deployed in the public LoRaWAN infrastructure will
not experience any service degradation when CECC-native elements are deployed.
The extended infrastructure of legacy and CECC-native GWs can support multiple
IoT applications, allowing the cooperative allocation of processing and storage of
CECC-native resources. Only for the special case where an IoT use case requires
that multiple QoS guarantees are respected concurrently, e.g., involving notions of
exactly-once and at-most-once processing of messages, the deployment of an NS
with extended functionalities is required.

The Edge2LoRa (E2L) [42] solution evolves the LoRaWAN architecture by intro-
ducing several elements: the device and GW registries, the table of device-gateway
associations, the GW selection module, the group key agreement module, the edge
processing executor module, the QoS support mechanism and the driver module.
Fig. 6.1 depicts how these newly introduced elements interconnect with the com-
ponents currently defined in the LoRaWAN network standard. Notice that the new
components that constitute the E2L architecture are depicted in blue color, while
the components already defined by the LoRaWAN standard are depicted in green
color. Remark that the standard components, i.e. those in green color, are also in
Fig. 4.1.

Network
Server

Packet
Forwarder

E2L
executor
module

Join
Server

Data /

Control

Data / Control

Control

Data

LoRaWAN
resources

Edge2LoRa
resources

E2ED
E2GW

Packet
Forwarder

GW

E2L driver
module

Table of
associations

Device
registry

E2L key
agreement

module

E2L GW
selection
module

GW
registry

Application Server

QoS support

Control*

* Not required in case of backward compatibility

IP-based

communication

Wireless

Link

Sensor / Actuator

LoRaWAN radio

LoRaWAN security

E2ED

Sensor / Actuator

LoRaWAN radio

LoRaWAN security

E2L key agreement LoRa

wireless

channel

ED
Far Edge CloudEdge

Figure 6.1. Overview of the proposed E2L (E2L) architecture including the key components
of the current LoRaWAN network standard along with the ones introduced in E2L and
their interconnections. The diagram depicts the data flow for frames transmitted by
an E2L end device (Edge2 End Device (E2ED)) that is received by an E2L GW (Edge2
Gateway (E2GW)), which can be processed locally before forwarding through the E2L
driver to the AS (blue data link). Concurrently, frames transmitted by an E2ED and
received by a legacy GW, or frames transmitted by a legacy ED and received by an
E2GW, are forwarded to the NS (green data link), following the current LoRaWAN
network standard.
The far-edge layer comprises legacy LoRaWAN IoT EDs and EDs that are

compatible with the E2L framework, denoted as E2ED. At the edge layer, the legacy
LoRaWAN GWs provide the Packet Forwarder module, as defined in the LoRaWAN
network standard, along with GWs compatible with the E2L framework, denoted

25

as E2GW. The E2GW introduces the E2L executor, a lightweight and thin applica-
tion virtualization layer for the execution of container-based micro-services and/or
Big Data analytics operators on the received sensor data streams. Finally, at the
cloud layer, each AS maintains the device registry, the GW registry and the ta-
ble of device-gateway associations. These are in constant communication with the
NS and JS so that the GW selection module can make Pareto-optimal decisions
based on network performance, analytics execution performance, energy efficiency,
security, reliability and dependability. The key agreement module establishes a se-
cure communication channel between the E2ED, the E2GW, and the AS. The E2L
driver is responsible for the facilitation of the execution flow of Big Data opera-
tors on IoT data streams and/or the migration of container-based micro-services to
the E2GWs. Finally, the QoS support module ensures that edge-based processing
provides certain guarantees.

In the overall system that combines legacy and E2L elements, frames transmit-
ted by an E2ED that are received by a E2GW can be processed at the edge layer
before they are forwarded to the E2L driver residing at the AS. In Fig. 6.1 this
execution and data flow is depicted using the blue data path. On the other hand,
frames transmitted by an E2ED that are received by a legacy GW and/or frames
transmitted by a legacy ED that are received by an E2GW will be directly forwarded
to the NS (green data link), without any processing at the edge layer, as per the
current LoRaWAN network standard. Since LoRaWAN frames may be received
by multiple GWs, some of them might be processed at the edge, while duplicates
may arrive unprocessed at the AS. Therefore correct distributed processing of mul-
tiple sensor data stream processing tasks may require specific QoS guarantees. It
is up to E2L driver in coordination with the NS to ensure the correct processing of
the data streams that respect different QoS policies, including “at most once", “at
least once" and “exactly once" notions to ensure appropriate data management in
different situations. For more details on the QoS guarantees see Sec. 6.4.

Typically frames in LoRaWAN contain data of the collected or processed infor-
mation of a physical phenomenon as observed by an IoT device. In the standard
LoRaWAN network standard, the ED encrypts the data included in the payload of
a frame using a common key established between the ED and the AS. Therefore
in the current LoRaWAN standard, neither the GW nor the NS are capable of de-
crypting the data part of the payload of the frames received. In E2L, access to the
data included in the payload of the frames is enabled by establishing a group key
between the E2L driver included in the AS, the E2GW and the E2ED. The group
key agreement protocol introduced in this paper relies on light-weight asymmetric
encryption techniques that ensure the confidentiality of the exchanged data between
E2ED, E2GW, and the E2L driver, while at the same time keeping at minimum the
energy and memory consumption. For more details see Sec. 6.3.

In the following sections I look into the modules that make up E2L and how
they operate throughout the lifecycle of the network, from the deployment of the
gateways and devices to the actual operation and data processing.

26 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

6.1 Gateway and Device deployment

The deployment of an E2L GW (E2GW) in a LoRaWAN requires to follow the GW
registration process defined in the current LoRaWAN network standard: the 64-bit
globally unique identifier of the GW (GatewayEUI) is provided to the NS and it
is also inserted in the configuration of the legacy packet forwarder module of the
GW along with the hostname or IP address of the NS. After this standard step,
the GatewayEUI is also inserted in the GW registry of E2L along with information
regarding the processing and storage capabilities of the E2GW as well as the capa-
bilities of the IP-level network in terms of, e.g., available bandwidth and latency.
Naturally, the network level parameters are monitored continuously to reflect the
current conditions.

Similarly, the deployment of an E2L device (E2ED) requires first to follow the
OTAA join process flow defined in the current LoRaWAN network standard (Alg, 1).
First, the 64-bit globally unique identifier of the device (DevEUI) along with the 64-
bit globally unique identifier of the network the device is joining (JoinEUI) needs to
be hardcoded in the E2ED firmware along with the necessary information to setup
the end-to-end encryption between the E2ED and the NS and AS. Second, these
information are stored in the JS that is overseeing the standard LoRaWAN join
procedure. Third, these information are also inserted in the device registry of E2L.
In addition, the AS may introduce application-level metrics for each ED. These
metrics are also stored in the device registry.

6.2 Gateway and Device association

In the current LoRaWAN network standard, the GWs are acting as bridges that
directly forward the packets received from the wireless medium to the NS through
the IP-based network. Recall that the GWs are incapable of decrypting the payload
of the frames received. Moreover, due to the license-free ad-hoc deployment model
adopted, gateways may have overlapping areas of network coverage (a) resulting
in an increase of network traffic at the network backbone as frames are relayed to
the NS multiple times, (b) may cause unexpected frame collisions and duty-cycle
exhaustion.

On the other hand in E2L the E2ED is associated with one E2GW that is enabled
to process the data included in the payloads of the frames transmitted by the E2ED.
The association of devices with GWs is carried out centrally based on the application
specific needs. Such an approach has several benefits.

First, the radio-level statistics received by the NS from the GWs are used for
optimizing data rates, airtime and energy consumption in the network for each de-
vice individually [4]. Moreover, a global view of the network-level and radio-level
performance allows to reach Pareto-optimal assignments that (i) optimize power
consumption of the device while ensuring that frames are still received at the asso-
ciated E2GW; (ii) equalize the Time-on-Air of frames transmitted by the E2ED in
each spreading factor’s group; iii) balances the assignment of E2ED to E2GW and
the use of spreading factors across multiple E2GW and iv) keep into account the
channel capture [25].

6.2 Gateway and Device association 27

Battery lifecycle

LoRa ED classes

SF, TX power

SNR

RSSI

Channel

Available

HW resources

Bandwidth

Latency

QoS

E2ED Radio E2GW Network

Data-flow

Operators

Exc. Time

optimization

dimensions

Application

Pareto

optimization

Figure 6.2. Example of a Pareto optimization strategy considered in E2L.

Second, IoT deployments consist of very diverse devices which require system
support for a wide range of resource capabilities and security requirements. Some
services may require low-latency processing of IoT data utilising specific hardware
and software capabilities. Certain GWs may be small, battery operated, possi-
bly mobile or deployed in outdoor environments potentially vulnerable to security
threats while others may have access to specific heterogeneous hardware acceler-
ators, such as Graphic Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs), thus achieving higher data processing throughput and energy-
efficient execution. A centralized assignment allows a hardware-conscious optimiza-
tion of the available resources in a holistic way [66].

Third, in cases when sensor data stream processing tasks are executed via a cen-
tralised Big Data processing framework, the operators of each task are organized in
a data-flow graph that models the dependency between the operators. Operators
may split data streams into windows of finite size based on criteria like time inter-
vals, element counts, or sliding windows over which the computations are applied.
In other cases join operators may combine frames arriving from the same E2ED or
frames generated by multiple E2EDs based on common attributes. Ideally, each op-
erator should be executed at the most suitable point across the CECC. Suitability
is related to the available processing, storage, energy and communication resources
and data access. Big Data frameworks have as an ultimate goal to scale out ex-
ecution to increase performance by employing elaborate scheduling algorithms are
used to identify the optimal execution plans that distribute data across the CECC.
Information of such optimal execution plans will enable decisions such as where to
execute each operator allowing intelligent resource selection and allocation [63].

The above dimensions provide a broad range of design choices for an optimiza-
tion assignment of E2ED-E2GW. An example Pareto-optimal optimization flow dia-
gram is illustrated in Fig. 6.2. The example indicates several dimensions taken into
account along with their respective architectural collection points.

The table of device-gatewey associations provides a comprehensive view of the
network topology by storing one entry for each device-gateway pair based on the
radio-level statistics provided by the NS. In particular, during the operation of the
network, as defined in the current LoRaWAN standard, when a GW receives a
frame from an ED it carries out certain link-level budget/measurements, such as
the Received Signal Strength Indicator (RSSI) and the Signal-to-Noise Ratio (SNR),

28 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

and inserts them in the frame’s header that is forwarded to the NS. The table of
device-gateway associations of E2L is continuously listening for such updates from
the NS given the latest radio-level statistics received from the GWs. Upon receiving
updated radio-level statistics, it updates the corresponding entry related to the
specific device-gateway pair.

Since the registries and the table of associations are continuously updated E2L
can detect E2EDs and/or E2GWs that are no longer accessible, as well as changes in
the topology due to the dynamic nature of the wireless medium, e.g., increase/de-
crease in noise producing interference, or due to changes of the device positions in
case of passive or active mobility. Similarly, the IP-level network is continuously
benchmarked in terms of available bandwidth and latency between E2GW-NS and
E2GW-AS connections.

The GW selection module will associate each E2ED to an E2GW by consulting
the device and gateway registries along with the table of device-gateway associations
of E2L. Remark that the specific detail of an assignment strategy is presented in
the Appendix.

As soon as the assignment is done, the selected E2GW takes on the responsibility
of coordinating uplink and downlink data traffic between the E2ED and the AS as
well as facilitating local processing and storage of frames following the processing
and/or storage tasks assigned to the E2GW. As a result, direct communication
via an IP link is established between the E2GW and the AS. VPN channels are
preferred for this purpose, as they follow established best practices for providing
secure communication between NS and GWs in LoRaWAN infrastructure. Remark
that although the E2GWs are connected to only one NS, the above process does not
exclude the possibility that each E2GW is connected to one or more AS.

The final step is to provide a secure communication channel between the E2ED
and the E2GW so that the latter can have access to payloads of the frames transmit-
ted by the E2GW. This is done using the group key agreement protocol presented
in the following section.

6.3 Group key establishment

I here propose a group key agreement protocol that enables the creation of a shared
session encryption key between the three involved actors. Remark that at this stage,
the E2ED is already activated with the NS and the AS and the communication
between the E2GW and the AS is secure. For simplicity I here assume that each
E2ED is assigned to a single E2GW, however, the protocol can support any number
of E2GWs.

Two shared session encryption keys are created between the E2ED, E2GW and
the AS: the Edge Session Encryption Key (EdgeSEncKey) and the Edge Session
Integrity Key (EdgeSIntKey). The former is used to enable secure encryption and
decryption of the frame payload. The latter is used to check the integrity of the
edge-specific frames. Here I propose the use of Elliptic Curve Cryptography (ECC),
a public-key cryptography that uses elliptic curves over finite fields to create cryp-
tographic keys [36, 40]. ECC offers a higher level of security with smaller key sizes
compared to other public-key cryptography techniques such as RSA [2]. This ad-

6.3 Group key establishment 29

Table 6.1. Proof of the E2L group key agreement protocol

E2ED EdgeSKey = P rivE2ED × GAS−E2GW = P rivE2ED × (P rivAS × P ubE2GW) = P rivE2ED × P rivAS × P rivE2GW × P (6.1)

E2GW EdgeSKey = P rivE2GW × GAS−E2ED = P rivE2GW × (P rivAS × P ubE2ED) = P rivE2GW × P rivAS × P rivE2ED × P (6.2)

AS EdgeSKey = P rivAS × GE2GW−E2ED = P rivAS × (P rivE2GW × P ubE2ED) = P rivAS × P rivE2GW × P rivE2ED × P (6.3)

KEY P rivE2ED × P rivAS × P rivE2GW × P = P rivE2GW × P rivAS × P rivE2ED × P = P rivAS × P rivE2GW × P rivE2ED × P (6.4)

vantage enables the use of asymmetric encryption in resource-constrained scenarios,
such as LoRaWAN EDs, with minimal energy consumption and memory consump-
tion [41].

This approach helps to mitigate the computational overhead, particularly on the
device, which is introduced by asymmetric cryptography compared to symmetric
cryptography. Moreover, ECC, and hence asymmetric cryptography, is exploited
only to compute the secret shared between the three parties. Once the two edge
keys are computed, AES-128bit encryption shall be used complying with the actual
LoRaWAN specification.

The protocol is triggered by the E2ED, however, to optimize network utilization
and reduce latency, the E2GW should share its ephemeral public ECC keys with
the AS. Remark that the procedure is enforced on classical LoRaWAN application-
specific frames where the payload is encrypted with AppSEncKey and integrity is
performed with FNwkSIntKey. The E2GW and any other GWs in the radio range
of the E2ED will forward the frame to the NS. The NS checks the integrity and,
if successful, it sends the frame to the AS, discarding possible duplicates of the
same frame. To simplify the presentation of the algorithm Alg. 4 shows only the
relevant steps for my proposal, not including steps of the LoRaWAN standard frame
exchange.

Tab 6.1 shows the proof that the three actors compute the same key. The E2ED
(Eq. 6.1), the E2GW (Eq. 6.2), and the AS (Eq. 6.3) compute a value that is the
multiplication of the three private ECC key and the same point P of the Elliptic
Curve. Since the private ECC keys are scalar, the three actors have computed the
same secret as shown in Eq. 6.4.

The EdgeSKey shall be used to derive the EdgeSEncKey and the EdgeSIntKey
using a 128-bit hashing function as shown in Alg. 4. The hashing function allows
for greater flexibility in choosing the size of the elliptic curve used in the protocol,
which impacts the size of the secret. This ensures that the security of the protocol
is not compromised due to a constraint on the size of the curve.

The AS shall securely share only the EdgeSIntKey with the NS, to check the
frame integrity in case the E2GW is not available, or the frame coming from legacy
GWs.

Finally, the complete network lifecycle from LoRaWAN device activation to E2L
Cloud-Edge-Device coordination establishment is depicted in Fig. 6.3. The figure
also includes the E2GW selection process discussed in the previous section.

It is worth noting that the E2GW remains active for legacy EDs, thus frames

30 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

Algorithm 4 E2L Group Key Agreement
Require: ECC Curve with point P common to every actor.

ACTOR: E2ED
upon event < E2LGKA, Init > do

P rivE2ED = random_bytes()
P ubE2ED = P rivE2ED × P
EdgeSEncKey = ⊥
EdgeSIntKey = ⊥
trigger < Receive, EdgeJoinRequest|P ubE2ED, AS >

end upon event
upon event < Receive, EdgeJoinAccept|GAS−E2GW > do

EdgeSKey = P rivE2ED × GAS−E2GW
EdgeSEncKey = hash128(0x01|EdgeSKey)
EdgeSIntKey = hash128(0x02|EdgeSKey)

end upon event
ACTOR: E2GW
upon event < E2LGKA, Init > do

P rivE2GW = random_bytes()
P ubE2GW = P rivE2GW × P
EdgeSEncKey = ⊥
EdgeSIntKey = ⊥
trigger < Receive, P ubInfo|P ubE2GW, AS >

end upon event
upon event < Receive, P ubInfo|(GAS−E2ED, P ubE2ED) > do

GE2GW−E2ED = P rivE2GW × P ubE2ED
trigger < Receive, P ubInfo|GE2GW−E2ED, AS >
EdgeSKey = P rivE2GW × GAS−E2ED
EdgeSEncKey = hash128(0x01|EdgeSKey)
EdgeSIntKey = hash128(0x02|EdgeSKey)

end upon event
ACTOR: AS
upon event < E2LGKA, Init > do

P rivAS = random_bytes()
P ubAS = P rivAS × P
EdgeSEncKey = ⊥
EdgeSIntKey = ⊥

end upon event
upon event < Receive, P ubInfo|P ubE2GW > do

GAS−E2GW = P rivAS × P ubE2GW
end upon event
upon event < Receive, EdgeJoinRequest|P ubE2ED > do

trigger < Receive, EdgeJoinAccept|GAS−E2GW, E2ED >
GAS−E2ED = P rivAS × P ubE2ED
trigger < Receive, P ubInfo|(GAS−E2ED, P ubE2ED), E2GW >

end upon event
upon event < Receive, P ubInfo|GE2GW−E2ED > do

EdgeSKey = P rivAS × GE2GW−E2ED
EdgeSEncKey = hash128(0x01|EdgeSKey)
EdgeSIntKey = hash128(0x02|EdgeSKey)
trigger < Receive, IntKey|EdgeSIntKey, NS >

end upon event
ACTOR: NS
upon event < E2LGKA, Init > do

EdgeSIntKey = ⊥
end upon event
upon event < Receive, IntKey|EdgeSIntKey > do

EdgeSIntKey = EdgeSIntKey
end upon event

6.4 Multiple deliveries and QoS support 31

Edge2LoRa

E2ED NS ASJSE2GW

OTAA

E2GW selection

OTAA

OTAA

DevAddr

NwkSKey

AppSKey

DevAddr

NwkSKey

DevAddr

AppSKey

E2GW selection

E2GW selection

EdgeSEncKey

EdgeSIntKey

EdgeSEncKey

EdgeSIntKey

EdgeSEncKeyEdgeSIntKey

Figure 6.3. LoRaWAN device activation and E2L coordination procedures to enable edge
processing while maintaining backwards compatibility.

received from legacy EDs are still forwarded to the NS following the LoRaWAN
standard.

6.4 Multiple deliveries and QoS support

In the current LoRaWAN standard the NS is responsible for identifying and remov-
ing frames received multiple times, selecting those with the best signal quality to
forward to the AS. On the other hand, in E2L deployment, multiple alternatives of
frame routing, processing and storage may happen concurrently either at the edge
or at the cloud. Frames consumed at an associated E2GW are not forwarded to
the NS but instead the AS is notified directly about the outcome of the edge-based
processing and/or storage. At the same time, frames received from legacy GWs
coexisting in the infrastructures arrive at the AS via the NS. It is therefore crucial
to make sure that duplicate processing and/or storage of data is avoided. It is the
role of the E2L driver module to coordinate the flow of data in the CECC.

In the following paragraphs I examine the six possible scenarios of up-link frame
transmissions. I consider the first three scenarios simple, in the sense that processing
and/or storage of frames takes place exclusively a single point in the CECC, e.g.,
either at the cloud or at the network edge. The other three scenarios constitute more
complex cases where some frames may traverse the network by following alternative
paths that involve legacy and E2L elements. In these latter scenarios it is crucial to
ensure that the frames are not processed and/or stored multiple times throughout
the CECC when it is required to respect “at-most-once” or “exactly-once” QoS
guarantees.

32 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

X

E2GWLegacy EDE2ED Legacy GW NS AS

Case 1

(Sec. 2.4.1)

Case 2

(Sec. 2.4.2)

X

Case 3

(Sec. 2.4.3)

..

Aggregation

function

Processed

data

Application-Level

metadata

Radio-Level

metadata
Standard

frame
LoRaWAN
resources

Edge2LoRa
resources

X

Lost

frame

Figure 6.4. Flow of frames in simple scenarios where legacy and E2L elements co-exist in
the IoT deployment. In cases 1 and 2 the network operates in full compliance with the
LoRaWAN network specifications without being able to execute any processing and/or
storage task in the CECC. Case 3 depicts the case where only E2L elements are active
and processing and storage tasks are executed at the network edge.

Case 1: Frames transmitted by a legacy ED are received by both legacy
GWs and E2GWs

In the first case, frames transmitted by a legacy ED are received by both a legacy
GW and an E2GW. In this case the E2GW operates in full compliance with the
LoRaWAN network specifications. In other words, the frames along with all the
radio-level information collected from all GWs are forwarded to the NS. The NS
uniquely selects those with the best signal quality and delivers them to the AS while
discarding any duplicate frames implementing the existing LoRaWAN protocols.
Fig. 6.4 depicts this standard flow.

Case 2: Frames transmitted by a E2ED are received only by legacy GWs

The second scenario illustrates the case where the frames transmitted by an E2ED
are received only by legacy GWs and thus no edge processing can take place. Like in
the previous case, the frames are forwarded to the NS which will deliver them to the
AS following the standard flow described in the LoRaWAN network specifications.
Once again no processing and/or storage of frames can take place at the network
edges. The flow is depicted in Fig. 6.4.

Case 3: Frames transmitted by an E2ED are received only by an E2GW

The third scenario considers one more simple case since the frames transmitted by an
E2ED are received only by the associated E2GW without the activation of any legacy
elements due to continuous failures. Such failures may involve permanent failures on
the hardware equipment or continous wireless interference blocking proper reception
of the frames. This results in frames delivered to the AS via a single path. In this
case the processing and storage of frames may be carried out exclusively at the

6.4 Multiple deliveries and QoS support 33

X

X

..
..

Aggregation

function

Processed

data

Application-Level

metadata

Radio-Level

metadata
Standard

frame

E2GWLegacy EDE2ED Legacy GW NS AS

Case 4

(Sec. 2.4.4)

Case 5

(Sec. 2.4.5)

.. XCase 6

(Sec. 2.4.6)

LoRaWAN
resources

Edge2LoRa
resources

X

Lost

frame

Figure 6.5. E2L frame flow in a mixed scenario through both legacy and E2L elements.
The figure also illustrates the flow of metadata involving the NS and the AS, taking
into account modifications to the NS and the enabling of “exactly-once” QoS.

associated E2GW. Fig. 6.4 depicts how the processing and/or storage of the data
included in the payloads of the received frames is carried out at the network edge.
The outcome of the edge-based processing and/or storage is forwarded directly to
the E2L driver module residing at the AS. At the same time, the collected radio-
level information along with application-level metadata are forwarded to the NS so
that the device and gateway registries are properly updated to reflect the current
network conditions.

To be noted that the NS involvement is not always necessary for the processing
of the application-level metadata. For instance, when considering backward com-
patibility with legacy NS the metadata only needs to reach the AS. The system will
maintain its functionality because radio-level metadata will still be forwarded to
the NS.

Case 4: Frames transmitted by an E2ED are received by both a legacy
GW and by an E2GW

In the fourth scenario up-link frames arrive at the AS through multiple paths as
shown in Fig. 6.5 without experiencing any transient of permanent failures. The
frames received by legacy GWs are forwarded to the NS and are eventually delivered
to the AS following the standard flow described in the LoRaWAN network specifi-
cations, similar to case 1. At the same time, the frames received by the associated
E2GW may be processed and/or stored at the network edge, in a way similar to
case 3. Whenever it is required to support “at-most-once” or “exactly-once” QoS
guarantees it is necessary to ensure that the frames are not processed and/or stored
twice throughout the CECC. However I consider this to be a simple case since the
scenario naively assumes that no transmission failures occur and that frames are
always delivered through both paths. Under these assumptions, the necessary mech-

34 6. Enabling Cloud Edge Computing Continuum in LoRaWAN

anisms are provided for the AS to properly identify and discard duplicate frames
without requiring any modification to the legacy NS.

In order to enable QoS by detecting processed frames at different levels, the E2L
protocol works to generate metadata used to notify processed frames together to the
aggregation result. The E2L driver module residing in the AS implements a duplicate
detection filter (DDF) for identifying whether a given frame has previously appeared
in a stream of data. The DDF is used to identify with no errors, duplicate frames
in constant time [26]. The DDF relies on metadata produced by the E2GW upon
receiving a frame that is about to be processed and transmitted to the AS. As shown
in Fig. 6.5, there are two types of metadata generated: radio-level and application-
level. The metadata are used to ensure that the device registries and table of
associations are properly updated, like in case 3. At the same time application-level
are also used to register the frame ID in the DDF maintained by the AS. In this
way the AS will be notified about a frame being properly received at the E2GW
and discard the one also delivered by the NS. After transmitting the metadata, the
E2GW will process the frame as per the assigned processing and/or storage tasks.
The outcome of the edge-based processing and/or storage may be transmitted to
the AS at a later stage, as soon as the edge-based tasks are completed.

Case 5: All frames transmitted by an E2ED are received by an E2GW
while some are also received by legacy GWs

The fifth scenario is similar to the fourth one, with the difference that now I assume
that some frames are not received by a legacy GW. That is, I now assume a more
realistic case where some transient failures occur either at the hardware level or
during wireless transmissions however involving only the legacy GW. On the other
hand no failures occur during the reception of the frames by the associated E2GW
as depicted in Fig. 6.5.

Like in the fourth scenario, the DDF maintained by the E2L driver module is
enough to guarantee that the AS will be in a position to identify and discard the
frames received by the legacy GW and arriving through the NS.

Case 6: Some frames transmitted by an E2ED are received only by a
E2GW or only by an legacy GW

The sixth scenario represents the most realistic case where due to wireless transmis-
sion failures and/or transient failures at the hardware of both legacy and CECC-
native hardware, some up-link frames arrive either through both paths or via one
of the two paths as shown in Fig. 6.5. The complexity of this case is more evident
considering that a processing and/or storage task may be composed by one or a
combination of more operators that apply i) one-to-one and one-to-many transfor-
mations of the received frames that are communicated directly to the AS and/or ii)
many-to-one transformations potentially aggregating data received from multiple
frames where results are communicated after all frames received within a window
are processed and/or stored.

When a processing and/or storage task relies on transformations that require
the aggregation of multiple frames arriving over a window of time, avoiding inaccu-

6.4 Multiple deliveries and QoS support 35

rate aggregations due to missing frames or frames being computed multiple times is
needed. This can be achieve this by assigning a timeout on the processing and/or
storage of each single frame delivered to the AS via the NS. The duration of the
timeout is appropriately set by the E2L driver module in a way such that it will
allow the E2GW to complete the processing of the operator. The E2L driver module
decides on the length of the timeout based on a series of factors taking into con-
sideration the type and combination of the operators used along with the data-flow
graph that models the dependency between the operators and the hardware-level,
network-level and application-level operation parameters of the E2GW. The E2L
driver module relies on the up-to-date information stored in the device and gateway
registries. For example, for filter operators the timeout can be set to zero; for map
operators that carry out one-to-one or one-to-many transformations the timeout
can be set in relation to the latency of the E2GW-AS link and the computational
resources of the E2GW; for window operators, the timeout needs to also consider
the size of the window.

Depending on the actual task and given the presence of frames being delivered
via legacy elements, the AS may have to repeat the processing and/or storage tasks
carried out by the E2GW. This will require the transmission of the raw data included
in the frames received only by the E2GW to the AS so that the transformations can
be accurately executed respecting the required QoS policies. “At-most-once” is the
cheapest with the least implementation overhead and highest performance because
it can be done in a fire-and-forget fashion without keeping the state in the E2GW or
at the E2ED. Guaranteeing “at-least-once” requires multiple transmission attempts
in order to counter transport losses which means keeping the state at the device
and utilising the LoRaWAN acknowledgement mechanism. The “exactly-once” is
the most expensive and has consequently the worst performance because, in addi-
tion to “at-least-once” that relies on the LoRaWAN acknowledgement mechanism,
it requires the state to be kept at the NS in order to filter duplicate deliveries.
Additional implementation details are provided in Sec. 7.1.3.

37

Chapter 7

Implementation Details &
Performance Evaluation

7.1 Implementation Details

The implementation of the E2L services depicted in Fig. 6.1 is available as open-
source project1 to freely download and execute in public or private LoRaWAN de-
ployments. To be noted that a previous version of the code has been demonstrated at
MobiCom2023 [43]. This demonstration involved the use of five physical end devices
(Heltec Cubecell HTCC-AB012 & HTCC-AB023), two of which were implementing
the legacy LoRaWAN components while three included also the E2L extensions. The
demonstration also included a NS based on the Things Stack4, compatible with the
LoRaWAN 1.0.4 specification. The demonstration aimed to validate the system’s
functionality within private deployments in a scaled-down scenario.

Tab. 7.1 summarizes the complete implementation details for the different com-
ponents deployed through the three layers of the architecture.

Table 7.1. E2L module implementation details.

Component Programming
Language

Main Libraries

E2ED [43] Arduino and
RIOT-OS

Crypto (AES), micro-ecc (ECC)

E2GW Rust tonic (RPC), p256 (ECC), lorawan-
encoding (Packet parsing, decryption, en-
cryption)

AS Python Eclipse Paho (MQTT), gRPC (RPC), py-
cryptodome (Crypto)

ED emulator NodeJS lora-packet (Packet parsing, encryption)

1https://github.com/Edge2LoRa
2https://heltec.org/project/htcc-ab01-v2/
3https://heltec.org/project/htcc-ab02/
4https://github.com/TheThingsNetwork/lorawan-stack

38 7. Implementation Details & Performance Evaluation

7.1.1 Far-Edge layer

At the far-edge layer I implement the E2L Key Agreement module based on the
secp256r15 elliptic curve. I selected this curve as it employs 256-bit private keys
and 512-bit public keys. Remark that the public keys can be compressed to 33
Bytes, making them suitable for transmission over a single LoRaWAN frame. The
computed secret key is of the same size as the private key. Subsequently, it undergoes
two SHA256 hashing processes, each concatenating the secret with a byte, differing
in the two rounds. The first 16 bytes of the result are then used to generate the
final EdgeSEncKey and EdgeSIntKey.

I provide a hardware-agnostic implementation of the E2L Key Agreement module
using the RIOT Operating System [55] since it supports many different architectures
for 8bit, 16bit, 32bit and 64bit processors, provides a simple process manager with
support for multi-threading, provides a generic network stack and also power man-
agement [56]. I also use Arduino to provide a hardware-specific implementation of
the module for the Heltec Cubecell HTCC-AB01 and HTCC-AB02 as they provide
a native implementation of LoRaWAN 1.0.46. Both RIOT OS and Arduino incor-
porate the micro-ecc library [34] that implement ECDH and ECDSA for 8-bit,
32-bit, and 64-bit processors. The implementation of the 128-bits AES encryption
was based on the crypto module provided by RIOT OS [54] and by Arduino7.
These cryptographic functions can be used within security protocols at the system
level by providing seamless crypto support across software and hardware compo-
nents [27]. A detailed evaluation of the energy consumption overhead incurred by
the E2L Key Agreement module due to the use of the ECC on different common IoT
chips is available in [41]. Moreover, this implementation can be easily replicated on
other hardware/software platforms. This is because the LoRa driver, which is a key
component in the system, is not modified. This means that the changes are largely
agnostic to the underlying hardware and software, making them versatile and easy
to implement across different systems.

7.1.2 Edge layer

At the Edge layer I implement the E2L executor module that is deployed at the
E2GW. The executor is interconnected with the standard Packet Forwarder of the
Semtech8 through a light-weight proxy component implemented in Rust. The proxy
intercepts traffic from the Packet Forwarder and redirects it to the E2L executor
module after it has been decrypted by the E2L Key Agreement module executed
within the E2GW. The LoRaWAN packet parsing, decryption and encryption are im-
plemented with the lorawan-encoding crate9, while the Elliptic Curve cryptographic
primitives are implemented using the p256 crate10. The communication over the
RPC Protocol is implemented using the tonic create11, which is a production-ready

5https://neuromancer.sk/std/secg/secp256r1
6https://github.com/HelTecAutomation/CubeCell-Arduino
7https://rweather.github.io/arduinolibs/crypto.html
8https://github.com/Lora-net
9https://docs.rs/lorawan-encoding/latest/lorawan_encoding

10https://docs.rs/p256/latest/p256/
11https://docs.rs/tonic/latest/tonic/

7.1 Implementation Details 39

implementation of gRPC 12 for Rust.

7.1.3 Cloud layer

For the implementation of the E2L extensions residing at the cloud layer I use the
Thing Stack. It is implemented using Python3 and it interfaces with Thing Stack
using the MQTT integration that the latter offers. Using the MQTT integration
the E2L components residing in the AS can receive the uplink LoRaWAN packets
and schedule downlink ones. The MQTT interface is implemented with the Eclipse
Paho library13. The communication between the AS and the E2GW exploit the
RPC Protocol, implemented using the gRPC Python3 SDK 14. All the cryptographic
primitives are implemented using the pycryptodome library15 which offers support
for both symmetric and asymmetric cryptography and for hashing functions.

For the implementation of the different QoS policies, as mentioned in Sec. 6.4,
modifications to the Network Server (NS) are not always required. This is partic-
ularly true when considering backward compatibility with legacy NS systems. The
provision of the “at-least-once” and “at-most-once” QoS guarantees depends on the
version of the LoRaWAN network specifications implemented by the NS. The main
difference between the two versions of the specification lies in the check of frame
integrity:

• LoRaWAN 1.0.4: No integrity check is computed by the NS. The NS checks
the FCnt of the E2L frame received, and if the check passes, it forwards it to
the AS.

• LoRaWAN 1.1.0: The NS checks the frame integrity using the FNwkSIn-
tKey. The MIC, used for this integrity check, is computed using the new
EdgeSIntKey. Consequently, the integrity check of the NS will fail, resulting
in the frame being dropped. Given that the NS will reject all E2L frames,
certain precautions must be taken by the E2ED or the E2GW to ensure the
NS can effectively manage network parameters and downlink scheduling. Two
potential solutions are proposed:
(a) The E2ED periodically sends a legacy frame to the NS, allowing it to
update the FCnt and schedule downlinks accordingly. While this solution does
not compromise security, it mandates the E2ED to intermittently transmit a
legacy frame, impacting the benefits of Edge Computing.
(b) Using the secure channel established through the group key agreement, the
E2ED shares the FNwkSIntKey with the E2GW. Subsequently, the E2GW can
periodically generate simulated legacy frames containing the updated counters
and an aggregation of the network metrics. These frames are then transmitted
to the NS to facilitate updates. Although the latter solution does not com-
promise the advantages of Edge Computing, it introduces a potential security
impact.

12https://grpc.io/
13https://eclipse.dev/paho/
14https://grpc.github.io/grpc/python/
15https://www.pycryptodome.org/

40 7. Implementation Details & Performance Evaluation

The choice between these solutions involves a trade-off between security and
uninterrupted edge-level operations.

Given these considerations, E2L supports the “at least once” QoS guarantee in
the case of LoRaWAN 1.0.4, while it supports the “at most once” QoS guarantee
in the case of LoRaWAN 1.1.0, both fully supports the existing deployed struc-
tures, ensuring that the system’s operational continuity is maintained. However,
to support the “exactly-once” QoS guarantee the NS needs to support the DDF
discussed above requiring the coordination between E2GW, the NS and the AS in
combination with advance mechanisms for data buffering and retransmissions [35].
Table 7.2 summarizes the QoS guarantees that E2L is capable of supporting, detail-
ing all possible combinations of E2L and legacy components.

Table 7.2. QoS support for different configuration scenarios.

Network Server LoRaWAN
Specification

QoS Backward
compatibility

E2L

Legacy 1.0.4 at least once ✓

5Legacy 1.1.0 at most once ✓ ✓

E2L support 1.0.4 exactly once ✗ ✓

E2L support 1.1.1 exactly once ✗ ✓

7.1.4 Hybrid testbed for Large scale experimentation

In contrast to the small-scale evaluation presented in [41,43] here I wish to look into
large-scale LoRaWAN deployments. Moreover, in contrast to the previous evalua-
tions, I am interested to evaluate the backwards compatibility of the provided E2L
extensions with the LoRaWAN network standard. It is therefore crucial to provide
an environment that allows to experiment using a public infrastructure rather than
a privately deployed one. For this reason, I developed a detailed emulator module
for the End Devices, a tool designed to reproduce LoRaWAN frames received in a
real-world network environment.

The tool is a comprehensive emulator software of LoRaWAN EDs that allows
the creation of extensive testing environments, encompassing thousands of EDs on a
controlled network setup. The emulated EDs adhere to LoRaWAN v1.0.4 and v1.1
specifications and support the OTAA activation method. The modular architecture
allows different types of LoRaWAN EDs (Class A, B, and C) to be modelled, each
with the ability to send different payloads as defined by the configuration scripts.
Emulated LoRaWAN EDs transmit their PhyPayload frames via UDP to the GWs,
which encapsulate them into either Semtech UDP frame Forwarder (GWMP) mes-
sages for delivery to the NS, in case of legacy frame, or to the assigned E2GW
executor according to the logic implemented in the E2L driver.

The tool provides separate configuration parameters to control and fine-tune the
activity of the legacy EDs and the E2ED. Parameters such as the EDs source rate
and the message payload can be configured for each device individually. Moreover,
the emulator can be connected to a real dataset of sensor values so that it can

7.2 Performance Evaluation 41

encapsulate the sensor values in the payloads of the transmitted frames, achieving
in this way a higher fidelity. This feature allows for more accurate and realistic
testing and evaluation of the system’s performance under conditions that closely
mimic real-world scenarios.

At the network level, real LoRaWAN network traffic is reproduced by incorpo-
rating the detailed frames loss model introduced in [25]. The interference model
considers EDs deployed in geographic areas that are covered by multiple GWs.
The coverage of each GW is represented by a circular radius. The model consid-
ers uniformly deploying EDs in areas where multiple GWs operate with possible
overlapping coverage areas. The emulator is fully aligned with the methodology
described in the referenced paper [25] and is modelled by the following formula,
reported as formula [25](13).

Sc(Gsf) = 2π

∫ R/α

0
δsf e−2 α2r2

R2 Gsf r · dr+

+δsf (πR2 − πR2/α2)e−2·Gsf

(7.1)

The above formula (Eq. 7.1) generalises the medium access control in LoRaWAN
that follows Aloha scheme in a scenario where the EDs are uniformly distributed.
The model is specifically formulated for a circular coverage area and the throughput
is calculated in the presence of a channel capture effect. In the formula δsf =
Gsf /(πR2) is the density of traffic load offered to a SF=sf and R is the cell radius.
Due to the scenario configuration, a target ED is actually competing with a fraction
of devices generating the total load Gsf . Indeed, neglecting the effect of random
fading and assuming an attenuation law of type r−η, all the interfering nodes at
a distance higher than α · r, with α = 10SIR/10η > 1, do not prevent the correct
demodulation of the signal from the target ED. Here, SIR represents the Signal to
Interference Ratio and η is the propagation coefficient. The smaller the α coefficient,
the lower the number of competing EDs. Therefore, the throughput can be obtained
by Sc(Gsf)/Gsf . Finally, the model supports the presence of multiple GWs with
overlapping areas, where M is the number of GWs deployed in the coverage area
and Sc(G) the throughput perceived under load G, the total capacity can be by
approximated by M

∑
sf Sc(Gsf /M).

Fig. 7.1 illustrates the developed testbed setup for the purposes of the large-scale
performance evaluation. The ED layer and part of the GW layer are replaced by the
emulator that communicates with software components executed in real-hardware
elements. In the figure, light-blue blocks represent emulated components, while yel-
low blocks represent real deployment hardware elements. To validate the backward
compatibility of the proposed architecture, utilizing the TheThingsNetwork public
LoRaWAN infrastructure.

7.2 Performance Evaluation

In this section, I present a comprehensive evaluation in terms of the network perfor-
mance improvements and the security guarantees provided by the E2L extensions

42 7. Implementation Details & Performance Evaluation

Figure 7.1. Overview of the testbed that combines emulated elements with real-hardware
communicating with the TheThingsNetwork, a public LoRaWAN infrastructure. The
diagram is color-coded to distinguish between the emulated components (light-blue)
and the actual hardware elements (yellow).

to the current LoRaWAN network specifications. The results presented here pro-
vide insights on the advantages of my design choices and how they can be used to
improve the operation of large-scale LoRaWAN deployments.

Several sectors can benefit from the capabilities of E2L. For instance, in Wa-
ter Metering and Flow Monitoring, edge processing improves computing latency.
The E2L solution enables faster data processing by leveraging the substantial com-
puting capacity of network servers, thus enhancing the efficiency of water network
monitoring [6]. Moreover, privacy preservation can benefit from edge processing as
it reduces the transmission of sensitive data to cloud servers, thereby mitigating
privacy risks and potential misuse or theft of user data. In the realm of water
management, edge computing allows for the implementation of solutions to detect
user anomaly patterns and identify water leakage, enhancing the overall security
and efficiency of the water network [24].

Smart Buildings is another vertical application that can benefit from the E2L
solution that performs data pre-processing aggregation at IoT gateways, reducing
network bandwidth consumption and addressing issues such as transmission delay
and packet loss [3]. Furthermore, traffic flow control is enabled by migrating data
processing and aggregation tasks to the edge, optimizing traffic flow, minimizing
bandwidth requirements for end users, while maintaining data quality. Real-time
local analysis is made possible by E2L, enabling local data traffic analysis and real-
time notifications to a local entity, facilitating efficient monitoring and management
of smart building systems.

In the Smart Industry vertical, the enhanced security of the E2L approach imple-
ments security measures to protect against attacks and data manipulation, ensuring
the robustness of edge nodes, servers, and networks, thereby safeguarding critical
industrial infrastructure. Finally, in Agricultural Applications, the solution takes
into account power resource optimization [49]. It improves power resources and
battery capacity in agricultural settings by incorporating a flexible task offloading
scheme that considers the power resources of each device.

7.2 Performance Evaluation 43

7.2.1 Network Performance

In terms of network performance, first, I evaluate the performance of a large-scale
LoRaWAN deployment that follows the standard network specification to serve
as baseline. Then I introduce the E2L extensions and measure the improvements
achieved under various traffic loads. My goal is to highlight the benefits of the E2L
proposal and also demonstrate the backward compatibility of all the E2L extensions
when operated in a LoRaWAN infrastructure that is fully compliant with the current
network standard.

Large-scale Deployment Scenario

In this chapter, I focus on massive IoT scenarios that encompass dense deployments
of a large number of IoT devices that require massive connectivity to efficiently
transmit streams of sensor data to cloud services [16,23,33]. I look into deployments
that are expected to reach device densities ranging from 1k to 10M devices per
square kilometer [19]. Apart from the device density, other factors that need to be
taken into consideration are the device duty-cycle, the sensor sampling rate and the
message generation frequency. Furthermore, the density of the gateways and the
resulting overlap in the network coverage needs to be taken into account since they
affect the overall performance of the network [12].

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
is

ta
nc

e
[m

et
er

]

GW1 GW2

Radius = 1km
ED
GW

Figure 7.2. A large-scale IoT network scenario comprised from 3000 EDs and 2 GWs
uniformly deployed in a circular area of 1 km of radius.

I design a large-scale IoT network scenario where 3000 devices are uniformly
deployed in a circular area of 1 km of radius, producing a total of 500 frames of 24
bytes each and using a transmission rate of 1 frame every 3 sec. The LoRaWAN data
rate is set to DR = 5 (spreading factor set to SF = 7 and bandwidth 125KHz).
Moreover, two GWs are deployed equally spaced at 0.15 km from the centre of the
circular area. The devices are progressively activated with an interval of 0.1 sec,
resulting in a transitory period of approximately 5 minutes before all the devices
become active. The selected scenario produces a density of approximately 950
devices per square kilometre and generates 1000 frames per second. According to the

44 7. Implementation Details & Performance Evaluation

formula (13) of [25], each GW perceives on average a network Frame Delivery Ratio
(FDR) of 31%. The complete list of parameters used for the evaluation scenario is
summarized in Table 7.3. For a graphical representation of the deployment scenario
refer to Fig. 7.2.

In the experiments presented here, the devices are configured to act as legacy
ED or as E2ED. Similarly, the gateways are either set to legacy mode or E2GW.
In the experiments that involve E2ED and E2GW, the E2L driver is configured to
assign half of the E2ED to one E2GW and the other half to the other E2GW. I
use this simple approach of partitioning the E2ED to E2GW so that I can better
understand the improvements in comparison with the performance of the legacy
LoRaWAN components. The performance of different Pareto-optimal strategies, as
those discussed in Sec. 6.2, are left as future work.

In terms of the high-level application, I introduce only one application where
the edge-computing task deployed to the E2GW comprises of a series of one-to-
one and many-to-one operators applied on a device-based window. I configure the
window size to 30 seconds. As a result, I expect that for every 10 frames received
from each E2ED the task will produce a single message containing the aggregated
value of the 10 measurements included in the payloads of the original frames. Once
again, other kinds of edge-computing tasks that reflect specific use-case scenario
are left for future work. Since in LoRaWAN each device can belong to only one
application, the gateways will execute the group key agreement module for each
device only once. Therefore, the scalability of E2L is independent of the number
of applications but depends only on the number of devices. Moreover, since each
device is assigned to only one gateway, there is no repetition of the execution of the
group key establishment module across multiple number of gateways.

All experiments are carried out for a total duration of 30 minutes. Repeat-
ing each experiment multiple times until the certainty is above 95% to ensure the
repeatability of the results.

In terms of hardware used throughout the experiments, for the gateways and
E2GW I use Raspberry Pi 4 Model B units, each equipped with a Broadcom
BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz and 4GB of
RAM running Debian GNU/Linux 11. The AS is deployed on an Intel NUC, sup-
plied with an Intel i5-6260U CPU @ 1.80GHz and 8GB of RAM running Ubuntu
22.04.3 LTS. For the experiments that rely on the TheThingsNetwork public infras-
tructure, the NS is provided by the TheThingsNetwork. On the other hand, when
I deploy a NS within the laboratory, I use an Intel NUC, similar to the one used to
host the AS, that is an Intel i5-6260U CPU @ 1.80GHz and 8GB of RAM running
Ubuntu 22.04.3 LTS.

Evaluation in Different Scenarios

I have selected four metrics to evaluate the performance of the E2L system: the total
number of frames transmitted over the IP-based network, the number of frames
delivered solely by one gateway, and the computational resources utilized by the
host machine, specifically the percentage of CPU usage and the amount of memory
usage measured in Gigabytes (GB). The first two metrics define the volume of traffic
arriving from each delivery route and help us identify the data reduction due to edge

7.2 Performance Evaluation 45

Table 7.3. LoRaWAN scenario simulation parameters for the realistic large-scale scenario.

Parameter Value
Deployment area circular area of 1km radius
Number of Gateways 2
Gateways deployment equally spaced at 0.15 km from the center
Number of Devices 3000
Device deployment uniform
Device activation pattern progressively activated with an interval of

0.1 sec
Device activation method OTAA
Transmission Data Rate DR = 5
Bandwidth BW = 125KHz
Spreading Factor SF = 7
Propagation Coefficient η = 2.9
Frames transmitted 500
Frame transmission rate 1 frame every 3 seconds
Frame size 24 bytes
Frame delivery ratio based on interference model defined in [25]
Aggregation window size 30 seconds
Experiment duration 30 minutes

processing being executed at the E2GW. Moreover, they help us identify the usage
frequency of the DDF for detecting duplicate deliveries to support “at-most-once”
and “exactly-once” QoS guarantees.

First scenario: baseline performance of Legacy elements

I start by measuring the performance of the LoRaWAN deployment when only the
legacy components are activated. Fig. 7.3 depicts the overall performance in terms
of the performance metrics defined in the previous section. Since the devices are
progressively activated, during the first five minutes the number of frames received
by each gateway and consequently transmitted to the AS increases. During the next
period of 20 minutes, given that all the devices are activated, a steady reception
of frames is observed from both gateways and their forwarding to the AS. During
this period, all devices collectively transmit 1000 frames per second. Finally, during
the last 5 minutes of the experiments, after having transmitted all 500 frames, the
devices deactivate. Thus during this last period the total number of frames received
by the gateways eventually drops to zero.

Looking into the period where all the devices are activated in Fig. 7.3a, to be
noted that although a total of 1000 frames are transmitted every second by all
the devices, it can be observed that each gateway correctly receives approximately
300 frames per second. The number of lost frames is due to the integrated FDR
model used in this study, as presented in Sec. 7.1, which is about 31% at each
GW, equivalent to approximately 300 frames per second. This is an indicator of
the number of transmission failures at the wireless medium due to interference
resulting from the given device density. This kind of visualization is essential for

46 7. Implementation Details & Performance Evaluation

0 5 10 15 20 25 30
Time [Minutes]

0

100

200

300

400

500

Fr
am

e
ra

te
 p

er
 se

co
nd

AS RX
GW1 RX
GW2 RX

(a) Frame rate received per second by each GW and by the AS

0 5 10 15 20 25 30
Time [Minutes]

0

1

2

3

4

5

6

7

8

CP
U

ut
iliz

at
io

n
[%

]

AS
GW1
GW2

(b) CPU usage of the host machines accom-
modating the GW and the AS

0 5 10 15 20 25 30
Time [Minutes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

em
or

y
us

ag
e

[G
B]

AS
GW1
GW2

(c) Memory usage of the host machines ac-
commodating the GW and the AS

Figure 7.3. Baseline performance for ED, GW and AS when only legacy components are
activated via the TheThingsNetwork public infrastructure.

understanding the load distribution among different gateways in the network.
Among these 300 frame transmissions properly received by each gateway ev-

ery second, some frames are received by only one gateway while others are re-
ceived by both. Those frames received by both gateways are detected as du-
plicate frames when they reach the NS and are thus dropped. Therefore these
frames represent the union probability of the frames received at each GW and ex-
pressed as P (GW1) and P (GW2) respectively, and computed P (GW1 ∪ GW2) =
P (GW1) + P (GW2) − (P (GW1) ∩ P (GW2)), where the intersect probability rep-
resents the duplicate frames. This equation accounts for the probability of frames
received at both gateways, ensuring no double counting of the overlapping frames
removed by the NS. Finally, the AS receives approximately 520 frames per second,
that accounts for about the 50% of the frames emitted from the emulated devices.

7.2 Performance Evaluation 47

During the experiment, it is observed that the resource utilization of both GWs
and also for the AS are maintained at minimum levels. In terms of computational
load, Fig. 7.3b the CPU usage is lower in the host machine accommodating the AS,
average of 1.8% concerning 3.2%, due to the more powerful hardware. Fig. 7.3c
shows the memory usage at the host machines that accommodate the GW and
the AS. Again, the memory usage at the AS is higher than at the GWs. This is
because it runs an Ubuntu operating system, as opposed to the Raspbian operating
system deployed on the two host machines where the GWs are deployed. The
Ubuntu system is more resource-intensive, which contributes to the observed higher
memory usage of 1GB with respect to the 0.4GB perceived from the host machines
accommodated by the GWs.

Second scenario: performance of the E2L extensions

0 5 10 15 20 25 30
Time [Minutes]

0

100

200

300

400

500

Fr
am

e
ra

te
 p

er
 se

co
nd

AS RX
GW1 RX
GW2 RX

(a) Frame rate received per second by each E2GW and
by the AS

0 5 10 15 20 25 30
Time [Minutes]

0

1

2

3

4

5

6

7

8

CP
U

ut
iliz

at
io

n
[%

]

AS
GW1
GW2

(b) CPU usage of the host machines accom-
modating the E2GW and the AS

0 5 10 15 20 25 30
Time [Minutes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
y

us
ag

e
[G

B]

AS
GW1
GW2

(c) Memory usage of the host machines ac-
commodating the E2GW and the AS

Figure 7.4. Overall performance for E2ED, E2GW and AS when E2L extensions are acti-
vated via the TheThingsNetwork public infrastructure.

I now proceed with the performance evaluation when the E2L extensions are ac-

48 7. Implementation Details & Performance Evaluation

tivated. Fig. 7.4a depicts the number of frames received by each E2GW, which
is more or less the same as in the case when legacy GWs were used as depicted
in Fig. 7.3a. On the other hand, the number of frames transmitted to the AS is
drastically reduced due to the edge-computing tasks deployed to the E2GW module
executor. In comparison to the legacy scenario, the number of frames received by
the AS is reduced to approximately 10%: on average, about 52 messages compared
to 520 frames. This drastic reduction illustrates the efficiency of the aggregation
function, which can help conserve network resources and reduce data transmission
volume without losing essential information.

In terms of the resulting computational load of the E2GW when the E2L com-
ponents are activated, Fig. 7.4b indicates an increase on the CPU usage by about
an average of 6.8 percentage points. This increase in the CPU usage is due to
the edge-computing task being executed that carries out a series of one-to-one and
many-to-one operators on the 30-seconds windows. Moreover, the increase in the
CPU usage is also due to the deciphering and ciphering of each frame so that the
data payload can be extracted. Given all these considerations, the shift of process-
ing from the cloud to the edge does not result in any significantly additional resource
consumption in terms of CPU usage. On the other hand, the CPU usage of the AS
is slightly reduced by an average of 1.2 percentage points since the AS is no longer
aggregating the frames as this is now done at the edge of the network. Similarly,
in terms of memory usage, it seems that the activation of the E2L components does
not present any significant increase when compared with the legacy scenario.

These experiments provide evidence that the E2L extensions can help reduce the
network traffic of the core backbone network and also reduce the processing load on
the AS, without significantly increasing resource utilization at the edge level. This
finding is crucial as it demonstrates the potential of edge computing when combined
with LoRaWAN in managing network resources more efficiently.

0 500 1000 1500 2000 2500 3000
Number of devices

0

20

40

60

80

100

120

Ba
nd

wi
dt

h
oc

cu
pa

tio
n

[K
bi

t/s
ec

]

Reduction of 91.60%

LoRaWAN
E2L

Figure 7.5. Assessment of the benefits for the proposed approach in terms of bandwidth
utilization using the legacy LoRaWAN standard as baseline in comparison with the E2L
extensions when the edge-computing task is deployed to the E2GW.

7.2 Performance Evaluation 49

To further illustrate the benefits provided by the E2L approach, the first five
minutes of the experiment are examined as the number of devices are activated. I
calculate the bandwidth utilization of the IP-level network backbone connecting the
gateways with the NS of the public infrastructure. Fig. 7.5 depicts the drastic re-
duction in bandwidth utilization as the number of active devices increases from 1 to
3000. Using this specific reference, it can deduce that there is an average bandwidth
reduction of 91.60% when the number of active E2ED is 1500. This demonstrates
that the E2L approach, with its strong data aggregation capabilities at the edge
level, can significantly reduce network bandwidth usage. This is particularly bene-
ficial in large-scale deployments or high-density environments with numerous active
devices, where the gateways utilise internet connections provided by various ac-
cess technologies, e.g. 3G/4G access technology with lower bandwidth. This also
applies to situations where multiple gateways share the same backhaul through a
single central NS.

Third scenario: verifying the backwards compatibility of the E2L

0 5 10 15 20 25 30
Time [Minutes]

0

100

200

300

400

500

Fr
am

e
ra

te
 p

er
 se

co
nd

AS RX
GW1 RX
GW2 RX

Figure 7.6. Assessment of the backwards compatibility of the proposed approach.

The previous experiments were conducted by utilising a public infrastructure, that
is TheThingsNetwork. I wish to look further into the backwards compatibility of
the E2L extensions by conducting an experiment in a scenario with 1500 legacy EDs
and 1500 E2ED deployed over the same area where two E2GW are operating. In
this case, the E2L driver equally assigns the 1500 E2ED to the two E2GW. At the
same time, the 1500 legacy EDs are connected by both E2ED. Fig. 7.6 depicts the
number of frames received by each E2GW. The results are substantially similar to
before for what concerns the received frames at each E2GW. However, the number
of frames received at the AS falls somewhere in between the values observed in
purely legacy and E2L scenarios. Since only half of the deployed devices are E2ED,
the edge-computing task executed at the two E2GW can only aggregate the sensor
values included in the frames transmitted by the 1500 E2ED. Specifically, since the
E2ED transmit on average 500 frames per second, these are reduced, on average, to
50 messages that are transmitted to the AS. The remaining 500 frames per second
received on average by the legacy EDs, are directly forwarded for processing to the
AS through the NS. I remark here that a subset of these frames are not received due
to the interference phenomena. This scenario illustrates how the system can handle

50 7. Implementation Details & Performance Evaluation

both legacy EDs and E2ED devices simultaneously, eliminating the need to replace
existing devices during a transition period. This feature enhances the system’s
flexibility and adaptability, making it more feasible for real-world implementations.

Devices [only 20 by random selection]0

25

50

75

100

125

150

175

200

Av
er

ag
e

pr
op

ag
at

io
n

tim
e

[m
s]

Legacy Edge2LoRa

Figure 7.7. Impact of the proposed method on data latency to the AS. The bar plot
represents the average latency for each terminal in the legacy scenario, with the standard
deviation indicated by the error bar.

Latency in data reaching the AS is another key factor to consider. As illustrated
in Fig. 6.1, the direct connection between the gateway layer and the AS bypasses
the NS, reducing overall latency since the NS no longer processes the frames. To
quantify this reduction in processing overhead, a private infrastructure is used where
the NS, AS, and E2GW are located within the same local network, minimizing
network transmission delays. For the experiment, 20 out of 3000 terminals are
randomly selected, and the average delay time comparison between the legacy and
E2L scenarios is plotted. The results are depicted in Fig. 7.7. In the legacy setup,
the average time for frames to travel from the gateway to the AS, passing through
the NS, is around 180ms, shown in a bar plot with standard deviation presented
via error bars. In contrast, in the E2L setup, where the E2GW connects directly
to the AS, the average delay drops to approximately 16ms for the same 20 devices
configured as E2ED. Note that, in the legacy case, frame aggregation happens at
the AS, while in E2L, aggregation occurs at the E2GW. This direct gateway-to-AS
data transfer results in a 92% reduction in delay when comparing the two scenarios.

Fourth scenario: handover in case of failures

During the execution of the experiment where all the devices are E2ED and both
gateways are E2GW, a failure occurring at one of the two E2GW at the 15th minute
is introduced. The E2L driver notices that the gateway registry has marked the
failing E2GW as being offline and re-assign the E2ED to the other E2GW. Fig. 7.8
shows how the frame rate of the failing E2GW drops to zero while the traffic of the
other E2GW almost doubles after the re-assignment of the E2EDs. The experiment
illustrates the resilience of the proposed approach. It is evident that the processed
frames at E2GW 1 drop to zero immediately at the 15-minute mark. Despite this,
the number of received frames at the sink perceived a lower influence because all
the E2ED are now managed from the E2GW 2.

7.2.2 Security Analysis

I now proceed with the analysis of the security properties of the E2L extensions.
Focusing on the three cryptographic properties that the group key establishment

7.2 Performance Evaluation 51

0 5 10 15 20 25 30
Time [Minutes]

0

100

200

300

400

500

Fr
am

e
ra

te
 p

er
 se

co
nd

AS RX
GW1 RX processed
GW2 RX processed

Figure 7.8. Simulating a failure of E2GW 1 after 15 minutes of activity to showcase the
resilience of the proposed method.

protocol shall guarantee, which are: i) the computational key secrecy; ii) the deci-
sional key secrecy; iii) key independence. The E2L security analysis including the
three properties is reported in the following sections.

Computational & Decisional Key Secrecy

It must be computationally infeasible for any passive adversary to discover any
key, while no information may be leaked other than the public key. The security
of the protocol is based on the use of ECDH, an algorithm that enables secure
communication between two parties over an insecure channel.

The security of ECDH is derived from the computational difficulty of solving the
Elliptic Curve Discrete Logarithm problem. This problem involves finding the dis-
crete logarithm of a point on an elliptic curve, which is considered computationally
difficult to solve. The large size of the elliptic curve group and the complex mathe-
matical operations involved make it challenging for an attacker to derive the private
key from the public key [61]. By utilizing ECDH, the E2L ensures the confidentiality
and integrity of the communication, making it resistant to attacks attempting to
compromise the shared secret key.

To evaluate the computational and decisional key secrecy, I consider a Man-
in-the-Middle (MITM) attack scenario. In the proposed protocol, an attacker at-
tempting a MITM attack would be unable to eavesdrop on the LoRaWAN frames
because they are encrypted using the AppSEncKey. Even if an attacker manages to
break this key by exploiting a vulnerability in the OTAA process, it would still be
computationally challenging to guess the EdgeSKey.

52 7. Implementation Details & Performance Evaluation

Key Independence

A passive adversary that manages to acquire a subset of the keys must not be able to
discover any other information about the remaining keys. This property is further
decomposed into:

• Forward Secrecy: A passive adversary that knows a subset of keys must not
discover any subsequent keys.

• Backward secrecy: A passive adversary that knows a subset of keys must not
discover any preceding keys.

To enhance the overall security of the activation methods, my proposal offers a way
to periodically refresh the Edge Session Keys by performing a new execution of
the protocol. Since a new pair of ephemeral ECC keys is computed by every actor
in each execution of the protocol, the key independence is guaranteed. There is no
correlation between the previous set of keys and the new one, or any subsequent
ones.

Remark that only a single uplink and downlink LoRaWAN frame are needed for
the re-execution of the protocol, it does not significantly impact the performance
and energy consumption of the E2ED.

Finally, it is important to note that no security analysis of the communication
over IP-based networks is performed, as the solution does not impose any specific
protocol requirements.

53

Chapter 8

Integrating Distributed
Application

The International Data Corporation (IDC) [52] has projected that the global vol-
ume of data will reach an astounding 175 zettabytes by 2025. For this reason the
analysis of large and diverse datasets generated, which is commonly referred to as
IoT big data [59, 60], needs to be done across the entire Cloud Edge Computing
Continuum (CECC). Distributed computing plays a crucial role in the reduction of
extensive network traffic, enabling processing and real-time response to scale net-
work dimensions.

Edge4LoRa (E4L), enhances the pre-existing Edge2LoRa (E2L) [42] architecture
by incorporating a distinct computing module. This module, capable of processing
the data stream received at the network edge, ensures both modularity and reliabil-
ity. It embodies a Map/Reduce engine, based on Apache Spark [8], and is capable of
executing multiple processing applications, including anomaly detection algorithms
and data reduction techniques such as aggregation.

My solution introduces an automated traffic flow management system that lever-
ages real-time monitoring of radio coverage and computational capacity. This sys-
tem enables seamless traffic redirection between gateways without relying on a cen-
tral server. I have developed a logic that accounts for device mobility and the
resource utilization of each gateway, allowing the system to dynamically select the
optimal location for data processing.

In addition, the proposed architecture demonstrates excellent scalability, partic-
ularly suited for larger environments, and robust performance, ensuring the accu-
rate execution of processing algorithms under diverse conditions. The enhancements
provided by E4L effectively address the limitations in QoS support outlined in Ta-
ble 7.2, enabling an exactly once QoS guarantee in every scenario. Furthermore,
I assess the performance of this approach under various configuration settings and
scenarios in the testbed, demonstrating its effectiveness.

8.1 System Architecture

This section provides a detailed description of the key components that make up
the architecture of the proposed approach. Fig. 8.1 illustrates the process of stream

54 8. Integrating Distributed Application

processing, where, from left to right, IoT sensors generate data continuously that
is ingested and buffered by the stream processing engine. The data undergoes
processing actions such as filtering, mapping, joining, or analytics operations like
counting and averaging. After processing, the data are sent to other application
services for further analysis or storage.

Figure 8.1. IoT collection/processing architecture is presented including devices, edge, fog
and cloud. The figure illustrates the mapping between the IoT collection architecture,
the Spark infrastructure, and the deployment of the LoRaWAN network.

In the recent past, a variety of frameworks have been developed to facilitate
dynamic data processing. These include renowned platforms such as Apache Spark
[65], Apache Flink [7], Apache Storm [9], and Nebula Stream [47]. Taking into
account several critical factors, Apache Spark stands out as the preferred choice for
stream processing. Its superiority stems from its ability to provide rapid in-memory
processing, real-time capabilities, minimized latency, effective lazy evaluation, and
simplified code implementation. These features make it a highly beneficial solution
for managing data streams both effectively and efficiently, particularly in the context
of IoT. Essentially, Apache Spark [65] encompasses batch processing along with real-
time streaming and also offers APIs for Java, Python, and R, finding its streaming
processing ability particularly useful, utilizing them in a distributed fashion.

As depicted in Fig. 8.1, in the Spark architecture, the cluster manager driver
node is represented to the right. The cylinders represent the daemon processes that
are active on and manage each worker node. These processes originate from the
Cluster Manager. The Spark Driver acts as the central command center for a Spark
application. It is responsible for managing the execution of the Spark application
and maintaining the application states across the Spark cluster.

It operates with its driver, called ’master’ and ’worker’ abstractions, which are
linked to physical machines, unlike Spark’s processes.

This work has focused on the capabilities of Apache Spark, specifically those
relevant for the integration of edge processing within the LoRaWAN architecture.
The aim has been to incorporate Apache Spark directly onto the GW, thereby

8.2 Protocol Definition 55

enhancing the processing capabilities at the edge of the network, Additionally, I
designed a global message broker architecture to move IoT traffic from one GW to
another to implement low latency application (e.g. [46]). As visible in Fig. 8.1, the
GW capability are extended to support Spark worker.

8.2 Protocol Definition
E4L is built on top of the E2L framework. E2L comprises several key elements,
including the device registry, the group key establishment method, and sensor data
stream processing. The EDs compatible with the E2L framework, denoted as E2ED
and the GWs compatible with the E2L framework, denoted as E2GW. Each E2ED
is served by an E2GW, which is responsible for performing data processing tasks on
the received sensor data streams. In this improved implementation, I undertake a
substantial reconstruction of the GW layer to facilitate edge processing using the
Spark Engine. Additionally, an interface was developed to facilitate optimal flow
redirection and load balancing between GWs using the MQ Telemetry Transport
(MQTT) protocol.

Packet
Forwarder

Edge4LoRa
parser

SPARK
module

Local
Broker

Packet
Forwarder

Edge4LoRa
parser

SPARK
module

Local
Broker

Packet
Forwarder

Edge4LoRa
parser

ED
 L

A
YE

R

GW 1

SPARK
module

Local
Broker

Packet
Forwarder

Edge4LoRa
parser

GW 3

SPARK
module

Local
Broker

ED
 L

A
YE

R

GW 2

UDP/RPC

GW 4

MQTT

Edge4LoRa
sink

CLOUD
LAYER

Application
Server

LoRa

MQTT

Bridge Extension

Mobility

1

Network
Server

Global
Worker

3

2

Figure 8.2. The figure shows a global overview of the E4L architecture.

In order to achieve this, E4L introduces three new components at the GW layer:
the Spark engine, the message broker, and the E4L parser. These newly created
elements are illustrated in Fig. 8.2. As can be seen in the figure, the E2GW structure
plays a pivotal role in enabling the E4L mechanism. To ensure efficient frame
exchange between E2GWs, a hierarchical broker system is integrated into the system.
Each E2GW is paired with a dedicated local broker, which facilitates the exchange
of frames between the E2GW and the assigned E2GW responsible for handling the

56 8. Integrating Distributed Application

frame. Additionally, a global broker is introduced at the AS level, serving as a
bridge between the AS and the hierarchical broker system. The global broker acts
as a central hub for receiving processed frames from the designated E2GW and
forwarding them to the AS for further processing and analysis. This configuration
ensures streamlined data flow and enables effective coordination between the E2GW
and the AS.

Simultaneously, a logical implementation is directed towards the AS to select
the E2GW in charge of processing frames from a specific E2ED. At the base of this
structured E2GW architecture, the E4L mechanism optimizes the computational bal-
ance between the E2GWs and the edge processing components within the LoRaWAN
network.

In E4L deployment, multiple alternatives of frame routing, processing, and stor-
age may happen concurrently either at the edge or at the cloud. In the following
paragraphs, the three possible scenarios of up-link frame transmissions are detailed.
For the sake of clarity, I will confine this discussion to up-link traffic, which consti-
tutes the majority of LPWAN traffic.

Case 1: Frames sent by an E2EDs are received by the E2GW that is tasked
with the processing (label 1 in Fig. 8.2)

Considering a simple scenario first, where processing and/or storage of frames takes
place exclusively at a single point in the CECC. Frames consumed at an associated
E2GW are not forwarded to the NS but instead, the AS is notified directly about
the outcome of edge-based processing. Access to the data within the frames is
facilitated by establishing a group key among the AS, edge (E2GW), and E2ED.
Two shared session encryption keys are created between the E2ED, E2GW and AS.
They are used to enable secure encryption and decryption of the frame payload as
well as the integrity of the edge-specific frames (Sec. 6.3).

Case 2: Frames transmitted by an E2EDs are received by E2GWs and
forwarded to the E2GW responsible for the process (label 2 in Fig. 8.2)

This scenario constitutes more complex cases where some frames may traverse the
network by following alternative paths that involve 2 E2GWs elements. This al-
ternative represents the novelty introduced from E4L that enables supporting to
balancing of the computational process. In these latter scenarios, it is crucial to
ensure that the frames are not processed and/or stored multiple times throughout
the CECC when it is required.

Case 3: Frames transmitted by a EDs are received by E2GW and consid-
ered as traditional LoRaWAN frames, that can not be processed at the
edge (label 3 in Fig. 8.2)

At the same time, frames transmitted from legacy ED and/or received from legacy
GWs coexisting in the infrastructures arrive at the AS via the NS. No access to the
data can be affected on this flow.

Here, E4L operates over the conventional LoRaWAN architecture, ensuring back-
ward compatibility.

8.3 Implementation Details 57

8.3 Implementation Details

In the following section, I introduce the implementation of a distributed applica-
tion on E4L, demonstrating how it operates through the inclusion of two distinct
applications. The first application performs time window aggregation, calculating
the average of Received Signal Strenght Indicator (RSSI) and Signal to Noise Ratio
(SNR) within a predefined time interval. The second application employs a Hampel
filter [28] to detect anomalies or outliers in high-level application values. These
applications provide practical examples of the functionality and versatility of the
E4L system.

An example of the main code section for configuring the E4L process module is
as follows:

spark_conf = SparkConf () . setAppName(" e4 l −proce s s ")
sc = SparkContext (conf=spark_conf)
s s c = StreamingContext (sc , 1) # 1−second batch i n t e r v a l
#us ing MQTTUtils to r e c e i v e the stream mqtt
r ead ings = MQTTUtils . createStream (ssc , BROKER_ADDRESS,
MQTT_TOPIC, MQTT_USERNAME, MQTT_PASSWORD)
read ings . foreachRDD (

lambda rdd : rdd . f o r each (process_reading)
)
s s c . s t a r t ()
s s c . awaitTermination ()

the code described above begins by initializing SparkConf and SparkContext
objects to define the application. Subsequently, a StreamingContext is created with
a batch interval, indicating that data will be processed in time-defined intervals (e.g.
1-second). Furthermore, since the spark module acts as a subscriber/publisher of
the MQTT broker defined within the E2GW, it is essential to specify the broker
parameters. Finally, each Resilient Distributed Dataset (RDD), which represents
the distributed collection of data, is processed via the process_reading function.
This function executes the defined processing algorithm and returns the results.

Time-Window Aggregation: Average Network Values

The first application algorithm is designed for time-window aggregation of network
level information. The algorithm processes frames containing RSSI and SNR values
and computes their average within a predefined time window, in this case set to 1
minute. Using streaming data processing methodologies, it efficiently calculates the
average of RSSI and SNR over successive time intervals, grouped by ED address.
The aggregated data is then forwarded to the AS, providing concise data reduction.

Anomaly Detection With Hampel Filter

As a second application, a Hampel filter is employed for anomaly detection in high-
level application values. This type of filter represents a robust outlier detection and
correction technique, widely used in various environments to mitigate the impact

58 8. Integrating Distributed Application

of spurious data generated by sensor measurements. The algorithm operates by
analyzing data streams within a moving window to identify outliers or anomalies.

The function that performs the steps described above is defined as follows.

hampe l_f i l t e r (input_data , window_size , n_sigma)

where the input_data represents the data stream that will be processed, along
with the window_size, which determines the size of the moving window within
which anomalies can be detected and the n_sigma, which represents the number of
standard deviations for outlier detection.

8.4 Performance Evaluation

This section offers an in-depth examination of various performance facets of the pro-
posed architecture. The evaluation is carried out using a hardware setup available
in the laboratory. The performance metrics presented in this section are derived
from the previously discussed applications, which are executed within the E2GWs
at the network’s edge. In addition, I consider three distinct scenarios for this eval-
uation. The first scenario focuses on data reduction, the second scenario illustrates
the edge scaling activation E2GWs, and the final scenario is specifically designed to
demonstrate the advantages in a context where EDs mobility is taken into account.

Data injection into the system is facilitated by a LoRaWAN device simulator1

designed to closely mimic the network environment of a large-scale LoRaWAN sys-
tem. This sophisticated tool acts as a complete emulator of LoRaWAN terminals,
enabling the creation of detailed test environments comprising thousands of termi-
nals capable of injecting authentic LoRaWAN frames. At the same time, the module
can be programmed to reproduce the actions of the recorded data set to recreate
the real IoT scenarios. For the experimental evaluation of this work, the simulator
is configured to reproduce an environment with 8 or 100 E2EDs, the EDs simulator
also includes an analytical model to reproduce realistic frame lost behavior in the
free space environment. Simulated devices inject real frames into the system based
on data recovered from a data set comprising 190,503 records in a vineyard located
in Reggio Emilia2.

The experiment setup for evaluating the E4L system involved a comprehensive
hardware deployment that included three Intel NUCs, each equipped with an Intel
i5-6260U CPU and 8GB of RAM, running Ubuntu 22.04.3 LTS. These machines were
allocated for the EDs simulator, the NS, and the AS. Additionally, two Raspberry
Pi 4 Model B units, powered by Broadcom BCM2711 SoCs and 4GB of RAM,
operating on Debian GNU/Linux 11, were utilized as the E2GWs in the setup.

The data collected during the experiments conducted focused on key metrics
such as total frame count, frame delivery by E2GWs, and computational resource
utilization. These metrics were selected to offer a comprehensive view of the system’s
performance and suitability for practical implementation in real-world IoT scenarios.

1https://github.com/Edge2LoRa/e2l-device-simulation
2https://github.com/emanueleg/lora-rssi/blob/master/vineyard-2021_data/sensors_data.csv

8.4 Performance Evaluation 59

8.4.1 Data reduction scenario

In the first scenario, the stream engine processes incoming LoRaWAN frames, ag-
gregating them by device and computing the average of network parameters such
as RSSI and SNR.

(a) (b)

Figure 8.3. Reception events for each E2GW and AS within the context of the time-window
aggregation application (a), and distributed Hampel filter (b).

Fig. 8.3 illustrates the performance metrics of the scenario with the E4L system
activated. Here, the AS is configured to evenly distribute data processing respon-
sibilities among each E2GWs. In Fig. 8.3a, the count of reception events by each
E2GWs and the AS is depicted for the time-window aggregation application. There
is a noticeable decrease in the number of frames arriving at the AS. For this ex-
periment, the stream processing engine executes a time window aggregation, where
at each 60-seconds interval, it aggregates data for each E2ED and computes the
average of the RSSI, SNR.

For this experiment, 8 E2EDs have been taken into account. Each of these E2ED
transmits at a rate of one frame per second, with each frame being configured to be
24 bytes in size. Statistics are collected every 5 seconds, which means 40 frames are
acknowledged for each report as shown in Figure 8.3a. Aggregation is performed
at 60-second intervals for each E2ED. This triggers a transmission to the AS every
60 seconds for each EED, and the processing is evenly distributed between the two
E2GWs. As depicted in Fig. 8.3a, 4 frames are received at the AS from each E2GW.
Compared to the legacy scenario, the events reaching the AS are significantly fewer,
constituting 1 reception event every 60 seconds, which corresponds to an aggregation
for each device comprising 480 frames.

For the second process application, a distributed Hampel filter application is
applied to the LoRaWAN stream and subsequently detecting anomalies or outliers.
In this configuration, only 1 gateway is utilized, and the Spark module performs
anomaly detection using the hampel filter as the processing query. The application
delineates a time-window aggregation, which produced a frame in which all anomaly
detection events are transmitted to AS. Fig. 8.3b depicts the reception events at the
E2GW, as well as the detection event received at the AS. This scenario also employs
8 E2EDs, where a frame loss model is implemented with a set loss rate of 25%. As

60 8. Integrating Distributed Application

shown in Fig. 8.3b, the number of received events at the E2GW is approximately
30, therefore a single frame is triggered from each aggregation, which contains the
number of anomalies detected in the window.

Table 8.1. Comparison of anomalies detected from the execution of the distributed Hampel
filter application versus its execution as a standalone application.

Frame Loss Edge4Lora Standalone Anomaly Loss
0% 1159 1159 0%
10% 923 1159 20%
20% 750 1159 35%

Moreover, the experiment involves a performance evaluation intended to show-
case the efficiency of distributed anomaly detection deployed by E4L. To this scope I
compare the distributed execution of the application within E4L and its standalone
execution, including the frame loss extracted from the formula described in [25].
Tab. 8.1 encapsulates the results obtained, which are detailed as follows: In the
first test, without frame loss, 1159 anomalies were detected, validating 100% of the
present data and affirming the effectiveness of the edge processing implemented.
Therefore, I conducted two other tests that incrementally increased frame loss ex-
actly 10%, and 20%. The second test identified only 923 anomalies, marking a
decrease of 20.3%, attributable to system losses such as collisions or non-covered
devices. Despite losing frames, the system continued to operate. In the final test,
750 anomalies were detected, reflecting a reduction of 35.3%. It becomes clear that
increasing the number of E2GWs within the system leads to a decrease in frame loss
and, consequently, enhances anomaly detection efficiency.

8.4.2 Auto-scaling scenario

To assess the scalability and load-balancing capabilities of the proposed architec-
ture, an experiment was carried out in which the number of devices connected to
the LoRaWAN network gradually (every 1 second) increased from 1 to 100. The
objective was to evaluate how the system automatically recognizes the processing
load at the E2GW level and activates an additional E2GWs when the load exceeds
a predefined threshold. This dynamic load-balancing mechanism ensures efficient
processing and prevents performance degradation due to overload. The E4L logic
is introduced to monitor the behavior of the system as the device count increased
and analyze the load distribution among the E2GWs.

The results of the evaluation are depicted in Fig. 8.4, which displays the trans-
mission events E2ED and the count of frames processed by each E2GW. Initially,
when the number of E2ED remains below 50, a single E2GW is tasked with process-
ing the incoming data from the E2ED. However, as the number of E2ED escalates
after 100 seconds, the processing load also expands, prompting the system to au-
tomatically engage a second E2GW to manage the additional incoming E2ED (both
E2GWs are within the same coverage area). After the 150-second mark, both E2GWs
are operational and frame processing is equally divided between them, with each
E2GW processing exactly 50 frames every 5 seconds. This load balancing mechanism
ensures that the processing load is evenly distributed across multiple E2GWs.

8.4 Performance Evaluation 61

50 100 150 200 250
Time [seconds]

0

20

40

60

80

100

120

140

Nu
m

be
r o

f e
ve

nt
s

ED TX Events
Processing Event at GW1
Processing Event at GW2

Figure 8.4. Display of system performance during the execution of the load balancing
algorithm. This includes ED transmission events and processing at each E2GW as the
number of E2ED progressively increases

8.4.3 Mobility scenario

To evaluate the system’s capability to handle E2ED mobility within the LoRaWAN
network, an experiment was conducted considering scenarios where E2ED moved
from the coverage area of one E2GW to another. The objective was to assess how
the system recognizes the movement of the E2EDs and dynamically assigns process-
ing responsibilities to the appropriate E2GW. This dynamic processing assignment
ensures efficient data processing while accommodating device mobility.

As shown in Fig. 8.5, the system’s ability to recognize E2ED movement and dy-
namically assign processing responsibilities was evaluated. Initially, a group of 100
E2ED were within the coverage area of E2GW1, and processing for these E2ED was
assigned to E2GW1. Frames were transmitted every 3 seconds, and measurements
were collected every 5 seconds. The total average number of received events during
the experiment, after the transitory period, was 167 every 5 seconds. The number
of processing frames may vary as they can occur in different locations. As E2ED
moved out of the coverage area of E2GW1 and entered the range of E2GW2, start-
ing at 800 seconds in Fig. 8.5, the number of reception events at E2GW2 gradually
increased. However, the processing for the device remained assigned to the original
E2GW. A soft handover mechanism was implemented to facilitate a smooth han-
dover. During a safe guard interval period, frames in the responsibility of E2GW1
were forwarded from E2GW2 to E2GW1 to avoid any ping pong phenomena. At the
1200-second mark, the system held the device’s movement, and the load balancing
mechanism took effect, progressively assigning the responsibility for processing to
E2GW2. During this reconfiguration period, the system performed a new assign-
ment, designating the E2GW within the E2ED new coverage area as the responsible
E2GW for processing. Once the reconfiguration was complete, the frames from the
E2ED were processed by the local E2GW, ensuring efficient data processing and

62 8. Integrating Distributed Application

0 500 1000 1500 2000
Time [seconds]

0

50

100

150

200

250

Nu
m

be
r o

f e
ve

nt
s

RX Events at GW1
RX Events at GW2
Processing Event at GW1
Processing Event at GW2

Figure 8.5. Display of system performance during the execution of the load balancing
algorithm. This includes ED transmission events and processing at each E2GW when
E2ED are subjected to mobility.

minimizing latency.

63

Chapter 9

Results, Conclusion & Future
Works

The ever-growing resource needs of modern-day large-scale Internet of Things (IoT)
deployments regarding guaranteed low latency and the massive data transfer rate
are constantly pushing the boundaries of technologies and requiring a paradigm
shift from the traditional producer/consumer model. At the same time, the new
paradigm called Cloud Edge Computing Continuum (CECC) that evolves beyond the
more traditional central cloud/DC with ultra-high-end processing powers and high-
capacity networking infrastructure to extend their coverage all the way to the net-
work edge, has not yet been fully extended to include edge and far-edge resources
available in IoT deployments. This is mainly because Long-Range Wide-Area Net-
work (LoRaWAN) adopts the design approach of using simple protocols to realise a
centralised architecture that guarantees the security and confidentiality of the IoT
generated data. Forcing the gateways to act as simple bridges, at one hand ac-
commodates the rapid and low-cost deployment of unlicensed Low-Power Wide-Area
Networks (LPWANs), on the other hand excludes them from potentially acting as
trusted intermediate processing and storage elements in the CECC.

Recently some attempts have been made in modifying the specified operation
of the LoRaWAN standard protocols, proposing alternative architectures to reduce
the significant pressure imposed on the central cloud services in cases of massive
IoT data streams or time-constrained consumption of IoT data. At the same time,
introducing changes to the architecture and the specified operation of the protocols
while maintaining backward compatibility is a challenging discourse. As a result,
to the best of my knowledge, there is currently no proposal that incorporates Lo-
RaWAN in the CECC both for network management and application data processing
that maintains the practical philosophy of LoRaWAN and respects backward com-
patibility.

This thesis presents Edge2LoRa (E2L), an enhanced version of LoRaWAN that
transforms LoRaWAN Gateways (GWs) from simple bridges to edge processing units
in a secure and privacy preserving manner. By taking the advantage of edge/-
fog computing, E2L offers substantial benefits to allow the execution of Big Data
analytics across the CECC over LoRaWAN. The proposed design enables dynamic
cloud-edge-far-edge coordination based on network conditions and application-level

64 9. Results, Conclusion & Future Works

parameters. The resulting system ensures backward compatibility for seamless inter-
operability between legacy and new elements without disrupting network operation
and providing Quality of Service (QoS) guarantees.

I present a comprehensive design of the key components and rational choices
within the E2L. The description points several key features of E2L and how it differs
from standard LoRaWAN. Specific implementation decisions are provided that result
into an efficient, secure, and adaptable infrastructure for optimizing sensor data
stream processing in LoRaWAN networks. E2L does not limit the network operator
to this particular usage. Other design choices are also possible so that operation
is optimized based on different network topologies, device characteristics and Big
Data analytics.

Secure communication is ensured through shared session encryption keys within
the E2L system, with Elliptic Curve Cryptography (ECC) proposed for creating
these cryptographic keys. ECC offers high security with lower resource consump-
tion, making it suitable for resource-constrained environments like LoRaWAN End
Devices (EDs) with minimal energy consumption.

Moreover is presented the implementation and evaluation of an edge processing
module within the architecture of a LoRaWAN network, with a focus on leveraging
edge computing principles, called Edge4LoRa (E4L). The integration of a dedicated
processing entity into the E2L architecture was identified as essential to ensure re-
liability and modularity. It enables the execution of processing algorithms at the
network edge, leading to a significant reduction in data volume transmitted to the
cloud. This reduction is achieved through the implementation of aggregation algo-
rithms and near real-time analysis, enabling timely and proactive actions. Further-
more, the distributed execution of processing algorithms across multiple gateways
demonstrates comparable efficiency to the execution of a standalone application.

Furthermore, the experiment highlighted the system’s ability to handle device
mobility while minimizing processing disruptions. The efficient forwarding of frame
traffic during the reconfiguration period allowed uninterrupted data processing, en-
suring a smooth transition between Edge2 Gateway (E2GW) and maintaining low
latency.

A performance evaluation was conducted to assess the correctness, security,
and network utilization of the new system. This evaluation approach considers
the co-existence of legacy EDs and GWs with new ones, creating the possibility
of unprocessed frames arriving at the LoRaWAN Network Server (NS)/LoRaWAN
Application Server (AS) via legacy equipment, while simultaneously, some parts of
the data arrive at the AS after being processed by an E2L GW.

Adopting E2L and E4L could lay the groundwork for more efficient, scalable,
and secure LPWAN deployments, enabling IoT networks to effectively manage the
increasing demands of real-world applications.

Future Works

At the time of writing, preparations are underway for a poster and a demo to be pre-
sented at the 21st International Conference on Embedded Wireless Systems
and Networks (EWSN’24).

The poster presents the LoRa Mobility and Coverage (LoRaMC) Dataset, a large

65

dataset for LoRaWAN, which presents devices with mobility patterns in a city-scale
and which aims at providing researchers with a means to develop new algorithms
and assess their performance on common data, thus allowing for fair comparisons.
LoRaMC comprises mobility traces of 3300 taxis integrating network coverage in-
formation related to 50 LoRaWAN GWs deployed throughout the operation in the
metropolitan city of Rome.

Starting from the CRAWDAD Rome/taxi dataset [13] that includes location
data of 320 taxis moving around the city and a new dataset with 3300 taxis is
produced including radio-level information, not present in CRAWDAD.

The entire CRAWDAD Rome/taxi dataset is condensed into a single day by
segmenting the dataset into 30 different subsets, one for each day. This division
allows to assign each taxi an identifier consisting of both its ID and the day, forming
a new identifier pair (ID, day). Once the tracks are organized by this new identifier,
all data is projected onto a single day. Each of the 3,300 tracks is further divided
into 288 ‘snapshots’. These snapshots capture the state of each taxi within that 5-
minute window. For each taxi, if there is at least one recorded position in that time
window, the locations are aggregated into a single point, representing the snapshot.
If no position data is available for a taxi in a given snapshot interval, that taxi is
excluded from the snapshot, simulating inactivity or a scenario where the device is
turned off and unable to send or receive any data

Figure 9.1. Dataset device density and coverage with 50 GWs over the entire period.

50 GWs are positioned in a way such that they reflect a realistic deployment
strategy as it would be designed by a LoRaWAN operator. Fig. 9.1 presents the
density of the devices and the position of the GWs throughout the city area. Thus,
for each snapshot, a separate simulation was carried out in which for each device
present in that snapshot a total of 10 LoRaWAN frames were transmitted. For each
frame, the potential reception is monitored, including the number and positions
of the GWs that received the frame. Additionally, the power at which each GW
receives the frames is extracted, along with the data rate and the channel/frequency
used for the frame transmission.

On the other hand, the demo introduces and demonstrates two new mechanisms
for E2L that allows to seamlessly process data produced by Edge2 End Device (E2ED)
by a E2GW even when the E2ED is not within the coverage of the E2GW due to

66 9. Results, Conclusion & Future Works

mobility. The first mechanism forwards frames to the associated E2GW in the case
when the E2ED is not within the coverage, while the second mechanism allows the
handover of an E2ED from one E2GW to another based on the current network
conditions and application-level parameters to optimize the available network, pro-
cessing and storage resources. The latter mechanism introduces an automatic traffic
flow management system. It is based on real-time monitoring of resources in terms
of radio coverage and computational capacity, enabling the redirection of traffic flow
from one GW to another without the need to pass through the central server.

To evaluate the scalability of the proposed extensions of E2L in large-scale urban
scenarios, the LoRaMC Dataset is used, demonstrating how to perform edge process-
ing enabling the E2GW to execute stream-based big data queries. Thus the traffic
is automatically processed by different E2GW (edge nodes) as the E2ED change lo-
cation within the city. The demo demonstrates the dynamic and adaptable nature
of the system, thus, presenting the forwarding mechanism, and the load balancing
reassignment, including the transition hand-over from one E2GW to another.

Publication & Awards

During my PhD program, I have made the following scientific contributions:

• Ivan Fardin, Stefano Milani, Francesca Cuomo, and Ioannis Chatzigiannakis.
2022. Enabling Edge Computing over LoRaWAN: A Device-Gateway Coordi-
nation Protocol. In Proceedings of the 12th ACM International Symposium
on Design and Analysis of Intelligent Vehicular Networks and Applications
(DIVANet ’22). Association for Computing Machinery, New York, NY, USA,
23–30. https://doi.org/10.1145/3551662.3560926

• Stefano Milani, Domenico Garlisi, Matteo Di Fraia, Patrizio Pisani, and Ioan-
nis Chatzigiannakis. 2023. Enabling Edge processing on LoRaWAN architec-
ture. In Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking (ACM MobiCom ’23). Association for Comput-
ing Machinery, New York, NY, USA, Article 103, 1–3. https://doi.org/10.
1145/3570361.3614074

• Stefano Milani, Domenico Garlisi, Carlo Carugno, Christian Tedesco, Ioannis
Chatzigiannakis. 2024. Edge2LoRa: Enabling edge computing on long-range
wide-area Internet of Things. Internet of Things, Volume 27, 101266, ISSN
2542-6605. https://doi.org/10.1016/j.iot.2024.101266. Awarded the Inter-
net of Things Editor’s Choice Awards - July 2024. https://www.
sciencedirect.com/journal/internet-of-things/about/editors-choice#
editor-s-choice-awards-july-2024

• Domenico Garlisi, Stefano Milani, Christian Tedesco, Ioannis Chatzigiannakis.
2024. Achieving Processing Balance in LoRaWAN Using Multiple Edge Gate-
ways. Springer Nature “Lecture Notes in Computer Science”. Awarded the
ALGOCLOUD 2024 Best Paper Award. In course of publication.

• Lorenzo Frangella, Stefano Milani, Domenico Garlisi, Ioannis Chatzigian-
nakis. 2024. Poster: LoRa Mobility and Coverage Dataset (LoRaMC). 2024.

67

21st International Conference on Embedded Wireless Systems and Networks
(EWSN’24). Accepted, to be presented at the conference.

• Lorenzo Frangella, Stefano Milani, Domenico Garlisi, Ioannis Chatzigiannakis.
2024. Demo: Enhancing LoRaWAN Networks with Edge Computing: A
Demonstration on a Large-Scale Scenario. 2024. 21st International Con-
ference on Embedded Wireless Systems and Networks (EWSN’24). Accepted,
to be presented at the conference.

69

Appendix

This Appendix provides a possible implementation of a E2GW selection algorithm
within the application server. Alg. 5 dynamically select the optimal E2GW within
the infrastructure, considering factors such as load balancing and proximity to the
end E2ED. The experiment measured various performance metrics, including han-
dover time, processing time, and frame forwarding latency, to evaluate the effec-
tiveness of the dynamic processing assignment mechanism. In addition, the system
monitored the handover process and the corresponding assignment changes in re-
sponse to device mobility. Following the pseudo-code of the algorithm implemented
along with comments explaining each step.

Algorithm explanation: the algorithm begins with the initialization of the system
(Step 1), setting up the E2GWs and their processing capacities. It then proceeds to
monitor the system resources (Step 2) and the number of received frames (Step 3).

To optimize GW assignments, the algorithm calculates the average processing
time per frame (Step 4) based on historical data. The threshold values for system
resources and the number of frames received are established (Step 5) to determine
when dynamic E2GW assignment is needed.

If any of the system resources exceed their threshold values or the number of
frames received exceeds the predefined threshold, the algorithm identifies E2GW
with the lowest processing load (Step 6a). Calculate the processing load of the
identified E2GW (Step 6b) and check if it has sufficient capacity to handle additional
frames (Step 6c). If so, the responsibility for processing the new frames is assigned
to the identified E2GW, and its processing load is updated accordingly.

If the identified E2GW is already overloaded and cannot handle additional frames,
the algorithm selects a E2GW with a lower processing load as the responsible E2GW
for the new frames (Step 6d). The processing load of the newly assigned E2GW is
updated to reflect the additional frames it is processing.

The algorithm continues to monitor system resources and the number of re-
ceived frames (Step 7). If the system resources or the number of received frames
decrease below their respective threshold values, the E2GW assignments are re-
evaluated (Step 8). If necessary, E2GW responsibilities are reassigned to optimize
the processing load distribution.

70 Appendix

Algorithm 5 Dynamic GW Assignment based on System Resource Monitoring
// Step 1: Initialization
InitializeSystem()
// Step 2: Monitor system resources
MonitorSystemResources()
// Step 3: Monitor number of received frames
MonitorReceivedFrames()
// Step 4: Calculate average processing time per frame
CalculateAverageProcessingTime()
// Step 5: Set threshold values for system resources and received frames
SetThresholdValues()
// Step 6: Check if dynamic GW assignment is needed
if ResourcesExceededThreshold() OR FramesExceededThreshold() then

// Step 6a: Identify GW with lowest processing load
GW = IdentifyGWWithLowestLoad()
// Step 6b: Calculate processing load of identified GW
ProcessingLoad = CalculateProcessingLoad(GW)
// Step 6c: Assign responsibility to GW if it has capacity
if GWHasCapacity(ProcessingLoad) then

AssignResponsibility(GW)
UpdateProcessingLoad(GW)

else
// Step 6d: Select GW with lower load as responsible GW
NewGW = SelectGWWithLowerLoad()
UpdateProcessingLoad(NewGW)

end if
end if
// Step 7: Continue monitoring system resources and received frames
ContinueMonitoring()
// Step 8: Reevaluate GW assignments if resources or frames decrease
if ResourcesBelowThreshold() OR FramesBelowThreshold() then

ReevaluateAssignments()
if ReassignmentNeeded() then

ReassignGWResponsibilities()
end if

end if

71

Bibliography

[1] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan
Melia-Segui, and Thomas Watteyne. Understanding the limits of lorawan.
IEEE Communications magazine, 55:34–40, 2017.

[2] Ram Ratan Ahirwal and Manoj Ahke. Elliptic curve diffie-hellman key ex-
change algorithm for securing hypertext information on wide area network. In-
ternational Journal of Computer Science and Information Technologies, 4:363–
368, 2013.

[3] Orestis Akrivopoulos, Na Zhu, Dimitrios Amaxilatis, Christos Tselios, Aris
Anagnostopoulos, and Ioannis Chatzigiannakis. A fog computing-oriented,
highly scalable iot framework for monitoring public educational buildings.
In 2018 IEEE international conference on communications (ICC), pages 1–
6. IEEE, 2018.

[4] LoRa Alliance. Lorawan 1.1 specification. technical specification, 2017.

[5] LoRa Alliance. Lorawan 1.0.4 specification. https://lora-alliance.org/
wp-content/uploads/2020/11/LoRaWAN-1.0.4-Specification-Package\
_0.zip, 2020.

[6] Dimitrios Amaxilatis, Ioannis Chatzigiannakis, Christos Tselios, Nikolaos
Tsironis, Nikos Niakas, and Simos Papadogeorgos. A smart water metering
deployment based on the fog computing paradigm. Applied Sciences, 10(6),
2020.

[7] Apache flink. https://flink.apache.org/.

[8] Apache spark. https://spark.apache.org/.

[9] Apache storm. https://storm.apache.org/.

[10] Emekcan Aras, Gowri Sankar Ramachandran, Piers Lawrence, and Danny
Hughes. Exploring the security vulnerabilities of lora. In 2017 3rd IEEE In-
ternational Conference on Cybernetics (CYBCONF), pages 1–6, 2017.

[11] Roshan Bharath Das, Gabriele Di Bernardo, and Henri Bal. Large Scale Stream
Analytics Using a Resource-Constrained Edge. In 2018 IEEE International
Conference on Edge Computing (EDGE), pages 135–139, July 2018.

72 Bibliography

[12] Laksh Bhatia, Po-Yu Chen, Michael Breza, Cong Zhao, and Julie A McCann.
Ironwan: Increasing reliability of overlapping networks in lorawan. IEEE In-
ternet of Things Journal, 2021.

[13] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul
Amici, and Antonello Rabuffi. Crawdad roma/taxi, 2022.

[14] Ismail Butun, Nuno Pereira, and Mikael Gidlund. Analysis of lorawan v1.1
security: research paper. In Proceedings of the 4th ACM MobiHoc Workshop
on Experiences with the Design and Implementation of Smart Objects, SMAR-
TOBJECTS ’18, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[15] Fotios Chantzis, Evangel Deirme, Ioannis Stais, Paulino Calderon, and Beau
Woods. Practical IoT hacking the definitive guide to attacking the internet of
things. No Starch Press, Inc, 2020.

[16] Xiaoming Chen, Derrick Wing Kwan Ng, Wei Yu, Erik G. Larsson, Naofal Al-
Dhahir, and Robert Schober. Massive access for 5g and beyond. IEEE Journal
on Selected Areas in Communications, 39(3):615–637, 2021.

[17] Florian Laurentiu Coman, Krzysztof Mateusz Malarski, Martin Nordal Pe-
tersen, and Sarah Ruepp. Security issues in internet of things: Vulnerability
analysis of lorawan, sigfox and nb-iot. In 2019 Global IoT Summit (GIoTS),
pages 1–6, 2019.

[18] ETSI. Final draft ETSI EN 300 220-1 V2.4.1 (2012-01). Technical Report
REN/ERM-TG28-434. https://www.etsi.org/deliver/etsi_tr/103500\
_103599/103526/01.01.01_60/tr_103526v010101p.pdf, 2012.

[19] ETSI. System reference document (srdoc); technical characteristics for low
power wide area networks chirp spread spectrum (lpwan-css) operating in the
uhf spectrum below 1 ghz. Technical Report 103 526, ETSI, April 2018. v1.1.1.

[20] Ivan Fardin, Stefano Milani, Francesca Cuomo, and Ioannis Chatzigiannakis.
Enabling edge computing over lorawan: A device-gateway coordination pro-
tocol. In Proceedings of the 12th ACM International Symposium on Design
and Analysis of Intelligent Vehicular Networks and Applications, DIVANet ’22,
page 23–30, New York, NY, USA, 2022. Association for Computing Machinery.

[21] Paula Fraga-Lamas, Mikel Celaya-Echarri, Peio Lopez-Iturri, Luis Castedo,
Leyre Azpilicueta, Erik Aguirre, Manuel Suárez-Albela, Francisco Falcone, and
Tiago M. Fernández-Caramés. Design and experimental validation of a lorawan
fog computing based architecture for iot enabled smart campus applications.
Sensors, 19(15):3287, July 2019.

[22] Xinwei Fu, Talha Ghaffar, James C. Davis, and Dongyoon Lee. EdgeWise:
A better stream processing engine for the edge. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 929–946, Renton, WA, July
2019. USENIX Association.

Bibliography 73

[23] Domenico Garlisi, Antonino Pagano, Fabrizio Giuliano, Daniele Croce, and
Ilenia Tinnirello. A coexistence study of low-power wide-area networks based
on lorawan and sigfox. In 2023 IEEE Wireless Communications and Networking
Conference (WCNC), pages 1–7, 2023.

[24] Domenico Garlisi, Gabriele Restuccia, Ilenia Tinnirello, Francesca Cuomo, and
Ioannis Chatzigiannakis. Leakage detection via edge processing in lorawan-
based smart water distribution networks. In 2022 18th International Con-
ference on Mobility, Sensing and Networking (MSN), pages 223–230. IEEE,
December 2022.

[25] Domenico Garlisi, Ilenia Tinnirello, Giuseppe Bianchi, and Francesca Cuomo.
Capture aware sequential waterfilling for lorawan adaptive data rate. IEEE
Transactions on Wireless Communications, 20(3):2019–2033, 2021.

[26] Rémi Géraud-Stewart, Marius Lombard-Platet, and David Naccache. Ap-
proaching optimal duplicate detection in a sliding window. In Computing and
Combinatorics: 26th International Conference, COCOON 2020, Atlanta, GA,
USA, August 29–31, 2020, Proceedings 26, pages 64–84. Springer, 2020.

[27] Cenk Gündoğan, Christian Amsüss, Thomas C Schmidt, and Matthias Wäh-
lisch. Iot content object security with oscore and ndn: a first experimental
comparison. In 2020 IFIP Networking Conference (Networking), pages 19–27.
IEEE, 2020.

[28] Hampel filter. https://medium.com/\@miguel.otero.pedrido.1993/
hampel-filter-with-python-17db1d265375.

[29] Jialuo Han and Jidong Wang. An enhanced key management scheme for lo-
rawan. Cryptography, 2:34, 2018.

[30] Jetmir Haxhibeqiri, Eli De Poorter, Ingrid Moerman, and Jeroen Hoebeke. A
survey of lorawan for iot: From technology to application. Sensors, 18(11),
2018.

[31] Lu Hou, Kan Zheng, Zhiming Liu, Xiaojun Xu, and Tao Wu. Design and proto-
type implementation of a blockchain-enabled lora system with edge computing.
IEEE Internet of Things Journal, 8(4):2419–2430, 2021.

[32] Thomas Janssen, Noori BniLam, Michiel Aernouts, Rafael Berkvens, and
Maarten Weyn. Lora 2.4 ghz communication link and range. Sensors, 20(16),
2020.

[33] Mohammed Jouhari, Nasir Saeed, Mohamed-Slim Alouini, and El Mehdi
Amhoud. A survey on scalable lorawan for massive iot: Recent advances, poten-
tials, and challenges. IEEE Communications Surveys & Tutorials, 25(3):1841–
1876, 2023.

[34] kmackay. micro-ecc. https://github.com/kmackay/micro-ecc, 2020.

[35] Taiwo Kolajo, Olawande Daramola, and Ayodele Adebiyi. Big data stream
analysis: a systematic literature review. Journal of Big Data, 6(1):47, 2019.

74 Bibliography

[36] K. Lauter. The advantages of elliptic curve cryptography for wireless security.
IEEE Wireless Communications, 11:62–67, 2 2004.

[37] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A
Survey on Internet of Things: Architecture, Enabling Technologies, Security
and Privacy, and Applications. IEEE Internet of Things Journal, 4(5):1125–
1142, October 2017.

[38] Zhiming Liu, Qihao Zhou, Lu Hou, Rongtao Xu, and Kan Zheng. Design and
implementation on a lora system with edge computing. In 2020 IEEE Wireless
Communications and Networking Conference (WCNC), pages 1–6, 2020.

[39] Jaco M. Marais, Reza Malekian, and Adnan M. Abu-Mahfouz. Lora and lo-
rawan testbeds: A review. In 2017 IEEE AFRICON, pages 1496–1501, 2017.

[40] David McGrew, Kevin Igoe, and Margaret Salter. Fundamental elliptic curve
cryptography algorithms. Internet Engineering Task Force RFC, 6090:1–34,
2011.

[41] Stefano Milani and Ioannis Chatzigiannakis. Design, analysis, and experimental
evaluation of a new secure rejoin mechanism for lorawan using elliptic-curve
cryptography. Journal of Sensor and Actuator Networks, 10:36, 6 2021.

[42] Stefano Milani, Domenico Garlisi, Carlo Carugno, Christian Tedesco, and Ioan-
nis Chatzigiannakis. Edge2lora: Enabling edge computing on long-range wide-
area internet of things. Internet of Things, 27:101266, 2024.

[43] Stefano Milani, Domenico Garlisi, Matteo Di Fraia, Patrizio Pisani, and Ioan-
nis Chatzigiannakis. Enabling edge processing on lorawan architecture. In
Proceedings of the 29th Annual International Conference on Mobile Computing
and Networking, page 1–3, Madrid Spain, October 2023. ACM.

[44] Carla Mouradian, Diala Naboulsi, Sami Yangui, Roch H. Glitho, Monique J.
Morrow, and Paul A. Polakos. A comprehensive survey on fog computing:
State-of-the-art and research challenges. IEEE Communications Surveys and
Tutorials, 20:416–464, 1 2018.

[45] Kiyoshy Nakamura, Pietro Manzoni, Alessandro Redondi, Edoardo Longo,
Marco Zennaro, Juan-Carlos Cano, and Carlos T. Calafate. A lora-based pro-
tocol for connecting iot edge computing nodes to provide small-data-based
services. Digital Communications and Networks, 8(3):257–266, 2022.

[46] Jorge Navarro-Ortiz, Sandra Sendra, Pablo Ameigeiras, and Juan M. Lopez-
Soler. Integration of lorawan and 4g/5g for the industrial internet of things.
IEEE Communications Magazine, 56(2):60–67, 2018.

[47] Nebulastream. https://nebula.stream/.

[48] Moises Nunez Ochoa, Luiz Suraty, Mickael Maman, and Andrzej Duda. Large
scale lora networks: From homogeneous to heterogeneous deployments. In-
ternational Conference on Wireless and Mobile Computing, Networking and
Communications, 2018-October:192–199, 12 2018.

Bibliography 75

[49] Antonino Pagano, Daniele Croce, Ilenia Tinnirello, and Gianpaolo Vitale. A
survey on lora for smart agriculture: Current trends and future perspectives.
IEEE Internet of Things Journal, 10(4):3664–3679, 2023.

[50] Wajid Rafique, Lianyong Qi, Ibrar Yaqoob, Muhammad Imran, Raihan Ur
Rasool, and Wanchun Dou. Complementing IoT Services Through Software
Defined Networking and Edge Computing: A Comprehensive Survey. IEEE
Communications Surveys & Tutorials, 22(3):1761–1804, 2020.

[51] Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. Low power wide
area networks: An overview. IEEE Communications Surveys & Tutorials,
19(2):855–873, 2017.

[52] David Reinsel, John Gantz, and John Rydning. Data age 2025: the digitization
of the world from edge to core. Seagate, 16, 2018.

[53] Eduard Gibert Renart, Javier Diaz-Montes, and Manish Parashar. Data-Driven
Stream Processing at the Edge. In 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), pages 31–40, May 2017.

[54] RIOT-OS. Riot os crypto module. https://api.riot-os.org/group_\
_sys__crypto.html.

[55] RIOT-OS. Riot-os. https://github.com/RIOT-OS/RIOT, 2020.

[56] Michel Rottleuthner, Thomas C Schmidt, and Matthias Wählisch. Eco: A
hardware-software co-design for in situ power measurement on low-end iot sys-
tems. In Proceedings of the 7th International Workshop on Energy Harvesting
& Energy-Neutral Sensing Systems, pages 22–28, 2019.

[57] Ramon Sanchez-Iborra, Jesús Sánchez-Gómez, Salvador Pérez, Pedro J Fernán-
dez, José Santa, José L Hernández-Ramos, and Antonio F Skarmeta. Enhanc-
ing lorawan security through a lightweight and authenticated key management
approach. Sensors, 18:1833, 2018.

[58] V. K. Sarker, J. Peña Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund.
A Survey on LoRa for IoT: Integrating Edge Computing. In 2019 Fourth
International Conference on Fog and Mobile Edge Computing (FMEC), pages
295–300, June 2019.

[59] Yuya Sasaki. We do not have systems for analysing iot big-data. In CIDR,
2020.

[60] Yuya Sasaki. A survey on iot big data analytic systems: Current and future.
IEEE Internet of Things Journal, 9(2):1024–1036, 2022.

[61] Barak Shani. On the bit security of elliptic curve diffie-hellman. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 10174 LNCS:361–387, 2017.

76 Bibliography

[62] Zehua Sun, Huanqi Yang, Kai Liu, Zhimeng Yin, Zhenjiang Li, and Weitao Xu.
Recent advances in lora: A comprehensive survey. ACM Trans. Sen. Netw.,
18(4), nov 2022.

[63] Maria Xekalaki, Juan Fumero, Athanasios Stratikopoulos, Katerina Doka,
Christos Katsakioris, Constantinos Bitsakos, Nectarios Koziris, and Christos
Kotselidis. Enabling transparent acceleration of big data frameworks using
heterogeneous hardware. Proc. VLDB Endow., 15(13):3869–3882, sep 2022.

[64] Xueying Yang. Lorawan: vulnerability analysis and practical exploitation.
Delft University of Technology. Master of Science, 2017.

[65] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
page 10, USA, 2010. USENIX Association.

[66] Steffen Zeuch, Ankit Chaudhary, Bonaventura Monte, Haralampos Gavri-
ilidis, Dimitrios Giouroukis, Philipp Grulich, Sebastian Breß, Jonas Traub,
and Volker Markl. The nebulastream platform: Data and application man-
agement for the internet of things. In Conference on Innovative Data Systems
Research (CIDR), 2020.

[67] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: State-of-the-art
and research challenges. Journal of Internet Services and Applications, 1:7–18,
5 2010.

[68] Qihao Zhou, Kan Zheng, Lu Hou, Jinyu Xing, and Rongtao Xu. Design and
implementation of open lora for iot. IEEE Access, 7:100649–100657, 2019.

[69] Michele Zorzi, Alexander Gluhak, Sebastian Lange, and Alessandro Bassi.
From today’s INTRAnet of things to a future INTERnet of things: a wireless-
and mobility-related view. IEEE Wireless Communications, 17(6):44–51, De-
cember 2010.

