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Abstract

Human dynamics—how individuals move, interact, and perceive their environment—pose significant chal-
lenges for theoretical understanding and practical implementation in robotics, human-computer interaction,
and behavior analysis. Accurate models addressing these challenges are essential for developing intelligent
systems capable of effectively collaborating with or understanding humans. This Ph.D. thesis investigates
key aspects of human dynamics through Motion Forecasting, Social Navigation, and Egocentric Perception.

In Motion Forecasting, we explore both two-body pose prediction and global human motion prediction.
We present best practices for improving collaborative motion prediction [261]. We introduce a staged,
contact-aware framework for global human motion forecasting [282] that predicts human movements within
broader environmental contexts. Our model surpasses existing methods by incorporating contact points and
staged motion, enabling more accurate human pose and trajectory predictions.

In the context of social dynamics, we investigate the impact of latent variables on forecasting hu-
man interactions, especially in team-based settings. Introducing a role-based approach demonstrates that
understanding these latent social roles can significantly improve trajectory prediction in multi-agent sys-
tems [281]. This concept extends to Social Navigation [280], where a robot’s trajectory planning must
account for human movement and be processed in real-time. Human dynamics are incorporated into the
robot’s reinforcement learning path-planning framework via a social dynamics module. This module distills
human trajectories into latent codes, which serve as contextual input for the robot’s policy model.

We also address challenges in Egocentric Perception and Mistake Detection. By developing a novel
method, we tackle the need for real-time online detection of procedural mistakes from egocentric video
streams. Our approach, PREGO [93], introduces an innovative model that recognizes current actions and
predicts future ones to identify discrepancies and detect mistakes. We also present an extension of the lat-
ter, which offers an in-depth analysis and enhances the framework with an Automatic Chain of Thought
mechanism. This addition improves the model’s reasoning capabilities, enabling more nuanced error detec-
tion. Additionally, we contribute a framework for estimating social interactions and human meshes using
egocentric video, improving pose estimation accuracy by incorporating wearer-interactee interactions.

Beyond direct applications to human dynamics, this thesis includes a contribution to Topological Deep
Learning. We contributed to a technical paper introducing the first Python framework for Topological Deep
Learning [119], offering new tools for researchers exploring machine learning on non-Euclidean data struc-
tures.

Overall, this thesis explores human motion forecasting, social interaction modeling, and egocentric
perception while advancing methodologies in machine learning. The insights and tools developed contribute
to understanding human behavior and pave the way for further research in intelligent systems and interactive
environments.

Keywords: Motion Forecasting , Social Navigation, Egocentric Perception, Procedural Mistake, Topo-
logical Deep Learning, Mesh Estimation, Large Language Models (LLMs)
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Chapter 1

Introduction

Predicting human motion and social interactions, a crucial aspect of human dynamics, is necessary across
diverse domains, including robotics, sports analytics, and virtual reality. The inherent complexity of fore-
casting human behavior stems from many influential factors, encompassing environmental contexts, social
dynamics, and individual variability. Conventional modeling approaches frequently struggle to adequately
capture these intricate dynamics, facing challenges in the representation of multi-agent interactions and the
ability to adapt in real-time within dynamic settings. These limitations underscore the need for more sophis-
ticated methodologies to address human behavioral prediction’s nuanced and multifaceted nature. Further-
more, egocentric perception, where the viewpoint is limited to what the individual directly sees, introduces
additional challenges in procedural task monitoring, mistake detection, and social interaction understanding.
Thus, there is a pressing need for advanced models that can predict human motion and social interactions in
various contexts, identify errors, and adapt to dynamic environmental changes.

This thesis explores three core areas: motion forecasting, social navigation, and egocentric perception.
It explores innovative approaches that leverage deep learning, role-based interaction models, and social
dynamics to enhance the prediction and understanding of human behavior in complex environments. The
significance of these works lies in their potential to bridge the gap between theoretical models of human
behavior and practical applications in fields where understanding and predicting human motion is critical.
Human dynamics, whether in social environments, collaborative tasks, or individual motion patterns, are
central to advancing human-computer interaction, robotics, virtual reality, and team-based systems. Accu-
rate motion forecasting allows for improved interaction models in sports analytics, where predicting play-
ers’ future actions can provide a strategic edge. Similarly, anticipating human movements in robotics and
human-robot collaboration fosters smoother and more intuitive interactions, enhancing safety and efficiency
in shared environments. Furthermore, understanding procedural mistakes in egocentric videos is invaluable
in healthcare and manufacturing, where real-time mistake detection can prevent costly errors.

Chapters 2 and 3 expand upon these ideas by working on social and environmental dynamics, moving
beyond the limitations of isolated motion forecasting. Significant strides have been made in human motion
forecasting, but challenges remain, especially when incorporating social interactions and environmental
contexts.

Collaborative human motion forecasting, which focuses on predicting the future poses of multiple inter-
acting people, is a particularly underexplored area. By considering interactions between individuals, we aim
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Chapter 1. Introduction

to improve forecasting accuracy. While single-person techniques have yielded valuable insights, our work
shows that not all approaches transfer well to multi-person scenarios, especially when dealing with complex
social interactions [261].

Moreover, scene-aware global human motion forecasting, which considers the environmental context,
has emerged as a critical field. It plays a pivotal role in applications like virtual reality, robotics, and sports,
where predicting human trajectories and poses within a 3D environment is essential. To address these chal-
lenges, STAG [282] (STAGed contact-aware global human motion forecasting) models social interactions
and incorporates environmental elements such as contact points within the scene. This staged method im-
proves trajectory and pose prediction by first identifying fundamental scene interactions, then modeling the
global human trajectory, and finally refining fine-grained motion details. Through this, we significantly im-
prove state-of-the-art methods, particularly in environments with rich scene interactions.

Chapters 4, 5, and 6 expand on social interaction and modeling agent relationships. Social interaction
is critical in human dynamics, particularly in environments where individuals’ actions are tightly coupled
with those around them. In the context of motion forecasting, these interactions are complex and are often
guided by social norms, roles, and shared objectives. Team-based scenarios, such as sports, exemplify this
complexity, where their teammates and opponents influence each player’s movements. Recent advances in
role-based forecasting models have highlighted the importance of understanding these interactions, where
each participant assumes a specific function that significantly impacts their future actions. Role-based ap-
proaches, such as RolFor [281], demonstrate that leveraging latent roles through graph-based models can
enhance trajectory prediction by optimizing the relationships between roles. These insights underscore the
necessity of incorporating social roles when forecasting in multi-agent systems.

Beyond team sports, social interaction is also essential in human-robot collaboration, particularly in
shared environments. In Social Navigation, the agent must balance assisting the human while avoiding
interference with their movements. Human trajectories provide crucial cues for navigation, but these are
often partially observable from the robot’s egocentric perspective, presenting a significant computational
challenge. Social Dynamics Adaptation [280] (SDA) leverages reinforcement learning to infer social dy-
namics from limited observational data. SDA enables real-time adaptation in social navigation tasks by
encoding human trajectories and using historical state-action pairs, achieving state-of-the-art performance
in environments such as Habitat 3.0.

We have also contributed to implementing TopoModelx [119], a framework for Topological Deep Learn-
ing (TDL). Initially, we explored this framework to represent relationships between agents that extend be-
yond pairwise interactions to include more complex, multi-agent dynamics. While traditional deep learning
operates primarily on Euclidean domains, advancements in geometric deep learning (GDL) and TDL have
expanded the scope of machine learning to non-Euclidean data structures, such as hypergraphs and simpli-
cial complexes. These higher-order structures provide new ways to model complex interactions in human
dynamics. However, practical implementation remains challenging despite their potential due to the lack of
accessible software libraries.

Chapters 7, 8, and 9 explore Egocentric Perception within the context of social and environmental
interactions. This perspective, captured from the viewpoint of the camera wearer, offers unique insights into
human behavior, proving particularly valuable for applications in virtual reality (VR), augmented reality
(AR), and real-time behavior analysis. A significant challenge in this field is the limited visibility of the
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wearer’s body, as head-mounted cameras often fail to capture substantial portions of the body. While recent
advancements have leveraged scene context and ego-motion to estimate 3D body poses, many approaches
overlook the crucial role of social interactions in this process.

Our proposed framework, SEE-ME (Social Egocentric Estimation of body MEshes), represents a pi-
oneering effort to incorporate social interaction cues into the egocentric mesh estimation process. By
conditioning the latent diffusion model on the scene and the interactions between the camera wearer and
other agents, SEE-ME captures essential relational dynamics that significantly enhance pose estimation. We
quantify how factors such as interpersonal distance and gaze direction influence the quality of ego-mesh
estimation, ultimately achieving a substantial reduction in pose estimation errors.

Identifying procedural errors from egocentric videos in real-time is crucial in fields like manufacturing
and healthcare, where immediate detection can prevent costly outcomes. Procedural errors are inherently
open-set, meaning novel failures may occur, necessitating classifiers trained on correctly performed proce-
dures. To address this challenge, we introduce PREGO, the first online one-class classification model for
mistake detection in PRocedural EGOcentric videos [93]. PREGO combines an online action recognition
module to model ongoing tasks and a symbolic reasoning module to predict the next steps. Mistake detec-
tion is achieved by comparing the recognized action with the anticipated action. We evaluate PREGO on
two adapted egocentric video datasets—Assembly and EPIC—creating the AssemblyO and EPICO datasets
to establish benchmarks for online procedural mistake detection.

Extending upon PREGO, we further explore the realm of real-time procedural error identification in
egocentric videos. In this extended approach, we emphasize the role of LLMs in action anticipation, con-
ducting a thorough analysis of their potential in predicting procedural actions. Our research explores various
prompting schemes to effectively guide LLMs and investigates optimal strategies for aggregating outputs
from both branches to create a robust mistake-detection system. Additionally, we address the challenges
associated with per-frame evaluations, mainly focusing on the need for accurate predictions in dynamic
settings. Our experimental results highlight the challenges and opportunities of integrating dual-branch ar-
chitectures with LLM-based anticipation for open-set procedural mistake detection. This approach achieves
state-of-the-art performance, demonstrating its efficacy in online applications and opening new avenues for
future research in egocentric perception and procedural error detection.

A significant direction for future research lies in expanding the scope of egocentric perception for video
understanding. Specifically, we aim to leverage the capabilities of Vision-Language Models (VLMs) and
Large Language Models (LLMs) to enhance the analysis of egocentric videos. With their ability to integrate
visual and textual data, these models offer promising avenues for better understanding complex human
behavior from a first-person perspective. We aim to push the boundaries of procedural error detection,
human motion forecasting, and immersive applications such as augmented and virtual reality by utilizing
VLMs for scene interpretation and LLMs for action anticipation and reasoning.

Additionally, we plan to explore new methods for modeling social interaction in human motion forecast-
ing and social navigation. One possible approach is to develop graph-based models that capture multi-agent
interactions more effectively by incorporating higher-order relational dynamics between agents. This could
extend current topological representations, such as those explored in TopoModelx, to better model group
dynamics and collective behaviors. Furthermore, integrating reinforcement learning techniques with inter-
action models could enable agents to adapt more fluidly to changing social contexts in navigation tasks.
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Chapter 2

Best Practices for 2-Body Pose Forecasting

2.1 Introduction

Human 2-body pose forecasting predicts the future body poses of two people in interaction jointly. The
task is relevant to long-term pose tracking [12], to understanding interacting pairs in sports such as danc-
ing [108] and to the collaborative assembly in industry [78, 163], towards human-robot collaboration [274].
Considering the concurrent prediction of two bodies helps in cases where the people act synergistically.
However, this task has remained mostly unexplored and limited to the dataset of [108]1. Also, this differs
from the related task of human trajectory forecasting, where social interaction has been key to most recent
progress [165, 228, 230, 350].

There has been vast progress in single human pose forecasting [69, 112, 208], which has not transferred
to the 2-body counterpart. Single-person techniques [23, 66, 110] tested on two-people data underperform,
which is unsurprising, as they neglect the body-body motion correlations [108]. This motivates the current
work, where the most recent modeling advancements are analyzed and integrated. Here, we refer to the best
and complementary modeling aspects as best practices, which we leverage to bootstrap research on 2-body
forecasting.

We propose a systematic analysis of single-person skeleton-based best practices by considering three
processing stages (cf. Fig. 7.1): input representation, encoding, and decoding. For the first stage, we identify
Discrete Cosine Transform (DCT) [35, 108, 212, 214, 216] as an asset to cope with the periodic body
movements. For the second stage, we set to encode the body kinematics by Graph Convolutional Networks
(GCN), which power the vast majority of most recent techniques [108, 112, 212, 214, 216, 292] and subsume
general MLP-based formulations [112]. Here we evaluate as best practices the separability of space and time
dynamics [292], the learnable adjacencies versus kinematic trees [338], attention [108], and hierarchical
body representations [69]. Finally, for the third stage, we contrast the widely-adopted [208, 274, 292]
decoding with convolutional networks (a.k.a. Temporal Convolutional Network–TCN [18]) with the simpler
Fully Connected (FC) layers [112].

We propose a novel initialization technique for the learnable GCN parameters in the encoder. A large
body of literature asserts the importance of initialization for performance, convergence speed, and robust-
ness, and theory has been devised for MLP [105] and ConvNets [126, 166]. Up until recently, there has been
a limited necessity for ad-hoc GCN initialization theories since techniques leveraged mainly shallow net-

1Beyond [108], another multi-body dataset has been introduced by [90], but annotations are only available for one individual
at the time of writing.
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2.2. Related Work
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Figure 2.1: The general architecture of a 2-body pose forecasting model employing best practices. First, 3D joint
coordinates are mapped to frequencies by DCT coefficients, a best input representation practice. Secondly, body
kinematics are encoded by layers of a GCN σ(AsAtXW ), with separable space-time adjacency matrices σ(At, As),
learned unconstrainedly, upon our proposed parameter initialization. Thirdly, the FC-based decoder outputs future
poses for the two people, mapped to 3D coordinates with inverse-DCT (IDCT).

works with fixed graphs structures (e.g., the people neighbors[17, 180, 306], the kinematic tree [69, 338])
or spectral normalizations [152, 155]. Since we determine that unconstrained learnable GCN affinities are
best practices, we also develop a novel theory (See Sec. 2.3.4) and experimental study (See Sec. 2.4.3) on
the initialization of GCN parameters.

Integrating the selected best practices into a 2-body pose forecasting model yields a large-margin im-
provement of 21.9% wrt the state-of-the-art (SoA) on the most recent ExPI dataset [108]. The best-practice
model is also 5 times faster than the current best technique and only has 2% of its parameters. The improve-
ment is similarly consistent in generalization tests, across unseen actions with an overall improvement of
14.7% (cf. Table 2.2) and 14.2% for unseen actors (cf. Table 2.3). And the same best-practice model per-
forms on par (cf. Table 2.4) with the leading single-person pose forecasting techniques on the established
Human3.6M dataset [139], without any hyper-parameter tuning. The novel initialization, proposed for the
unconstrained learning of GCN affinities, contributes an average performance improvement of 3.5%, and it
increases stability, as it reduces the long-term forecasting performance variance by (at least) a factor of 2.

The main contributions are summarized as follows:

• We thoroughly evaluate all leading best practices from single-person pose forecasting and bootstrap
research on the 2-body task counterpart;

• We propose a novel theory and experimental study on the initialization of GCNs, applying to uncon-
strained learnable affinities, accounting for an increase in performance of 3.5% and a 2-fold increase
in stability;

• On a closed-set dataset configuration, the best-practice model outperforms the 2-body forecasting
SoA by a large margin of 21.9% while employing 2% of the parameters and running 5 times faster.

2.2 Related Work

Here we review related work from the field of human pose forecasting, specifically approaches of spatio-
temporal pose modeling and hierarchical body representations. Additionally, we review relevant literature
from initialization and multi-agent trajectory forecasting.

Human pose forecasting. Established methodologies for (single) human pose forecasting include Tem-
poral Convolutional Network [180], Recurrent Neural Network [94, 208, 214, 316] and Transformer Net-
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works [8, 108]. The MLP-based approach of [112] holds SoA performance.
Graph Convolutional Networks (GCN) [155, 338] are most popular on the task [69, 185, 274], due to

their simplicity and effectiveness. GCNs model the kinematic body part interactions by a plain adjacency
matrix at a fraction of the parameters of the otherwise required attention mechanism [108, 212]. In this
realm, [212] integrates DCT to consider motion frequency; [69, 186] adopt multi-scale hierarchical repre-
sentations, grouping joints to model relations between coarser body parts; [274, 292] factorize the spatial
and temporal adjacency matrices, and they propose to learn them, unconstrainedly, without kinematic tree
priors nor spectral normalization.

As we know, the only work that addresses multi-body pose forecasting is [319]. However, they utilize
datasets that do not contain highly interactive actions. For comparison, we ran their model with our setup as
a comparison with our proposed method (See Tab. 2.1). By contrast, for the task of 2-body pose forecasting,
[108] provides the solely-available dataset (ExPI) and the only 2-body-specific technique, adaptation of
[212] with cross-person attention. Not surprisingly, this outperforms single-person techniques.

Initialization. A proper initialization improves performance and accelerates convergence [168], limiting
vanishing and exploding gradients [105, 126]. Techniques have been concerned with initializing the weights
of linear [105] and convolutional [126, 166, 223] layers, generalizing from hyperbolic (tanh) to rectified-
linear unit (ReLU) activations. For GCNs, spectral techniques [155, 188, 363] rely on the spectral normal-
ization of the adjacency matrix to elude vanishing and exploding gradients, while spatial techniques [17]
resort to degree-normalized transition matrices, derived from the adjacency. In all prior study cases, the
graph connectivity is given. To the best of our knowledge, this work presents the first theoretical and em-
pirical analysis of GCN initialization in the case of unconstrained learnable graph connectivity and edge
weights.

Multi-agent trajectory forecasting. For trajectory forecasting, employed techniques include attention [135,
165, 350] and graph-based modeling [182, 230, 288]. The multi-agent relations may parallel the joint-joint
interaction. However, nodes in a graph of joints have a fixed cardinality and a semantic meaning (head, torso,
hand, etc.), which does not apply to general agent-agent graphs. Notably, best trajectory forecasting tech-
niques model the agent-agent interaction [135, 165, 182, 230, 288, 350], which aligns with the motivation
of this work, to forecast the poses of people jointly.

2.3 Methodology

We explore the best models for single-body pose forecasting [69, 112, 212, 214, 292] and select best prac-
tices for the 2-body task. We group and evaluate practices in three processing stages (cf. Fig. 7.1): 1)
input representation (Sec. 2.3.1); 2) encoding of the body kinematics in the observed frames (Sec. 2.3.2); 3)
decoding of the future poses (Sec. 2.3.3). In Sec. 2.3.4, we provide a theory for the proposed unconstrained-
GCN initialization. To facilitate reading, we mark with a green check ✓ the selected best practices upon
evaluation, cf. Sec. 8.5.2.

Problem formalization. Across T frames, we observe the motion of two human bodies B1 and B2, each
consisting of J three-dimensional joints. At time t, the 3D body pose of each person is given by correspond-
ing tensors B1

t ,B2
t ∈ R3×J . We define the concatenation of two bodies at timeframe t as xt = B1

t ||B2
t , thus
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the observed motion history in T frames is Xin = [x1, . . . , xT ] ∈ RT×3×2J . Our goal is to predict the future
N frames’ poses Xout = [xT+1, . . . , xT+N ] ∈ RN×3×2J .

Preliminaries on the encoder-decoder baseline. We adopt an encoder-decoder architecture [274, 292],
and following [338, 360], we encode the observed body parts and their kinematic interaction through a
GCN, defined as

Y = σ(AXW ), (2.1)

where A is the adjacency matrix, W learnable weights and σ an activation function. Other encodings such
as RNNs [58, 77] and MLPs [112] have been proposed, whereas we opt for a graph-based model to exploit
the non-euclidean nature of graphs. As a decoder, we examine either a single fully connected layer as in
[112] or a convolutional architecture [208, 292].

2.3.1 Input Representation

Most recent techniques [7, 112, 212, 214] use Discrete Cosine Transform (DCT) to represent 3D coordinate
input as frequencies, under the claim that this captures the dynamic patterns of moving people better.

Frequency encoding ✓

Given the j-th body joint and the t-th timeframe we define the i-th DCT coefficient as

F(X in)j,i =

√
2

T

T∑
t=1

xj,t
1√

1 + δi1
cos (α) (2.2)

α =
π

2T
(2t− 1)(i− 1), (2.3)

where the Kronecker delta function δij ∈ 0, 1 has null value if i ̸= j and 1 otherwise. After inference,
frequencies are remapped to the pose representation via the inverse DCT decoding function F−1. Previous
works [212, 216] truncate high frequencies to avoid jittery motion; we consider the impact of the number of
retained DCT coefficients and discover that employing all of them yields the best performances. Studies on
the impact of DCT coefficients are shown in Sec. 8.5.2 and Table 2.5.

2.3.2 Encoding Best Practices

Best-performing single-pose forecasting GCN encoders have considered two main aspects: the space-time
separability of adjacency weight matrices and learning the body kinematic graph connectivity and weights.
We detail these two aspects and empirically compare them in Table 2.5. Furthermore, we also consider
hierarchical representations of the skeleton proposed by [69], but this is not a best practice, as we determine
experimentally. Nor is it a good practice to add attention, as we discuss in this section and quantitatively
evaluate in the next.

Space-time separability ✓

Each graph’s intra-relations are expressed through a GCN-based framework that encodes the spatiotempo-
ral motion and the relationships between keypoints in one’s skeleton [292, 338]. Tensor X ∈ RT×2J×C

represents a couple’s skeleton pose and motion, adjacency matrices As ∈ RT×2J×2J and At ∈ R2J×T×T

are responsible for learning spatial and temporal interactions respectively, as in [292]. Matrices are fully
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learnable, no kinematic tree is used, and the model is free to grasp the relation between body joints. Thus,
this module is formulated as follows:

Y = σ(AsAtXW ), (2.4)

where σ is an activation function and W ∈ RC×C′
is a tensor of learnable weights defined as a convolution

with kernel dimension k = 1. Thus, it is conceptually similar to a fully connected layer. However, unlike
the MLP design of [112], GCN shares the weights of W across all channels.

Learning the graph connectivity and weights ✓

Some works [69, 338] use inductive biases based on the human body, such as kinematic trees or specifically-
devised connectivity weights. In contrast, others learn the graph adding a constraint on the optimization by
spectral normalization [153]. Instead, we follow what is done in the most recent work [292]: unconstrained
optimization of graph edges and weights i.e., we set Ast for nonseparable GCN and As, At in case of space-
time separable GCN as a fully learnable matrix. This is effectively a best practice, experimentally proven in
Table 2.5.

Attention
A GCN model equipped with attention is also known as a Graph Attention Network (GAT) [314]. In a GAT,
attention re-defines the adjacency matrix terms as a function of the node embeddings. We employ attention
to encode the relation between the two actor embeddings B1

h and B2
h:

B1
h = B1W1,B2

h = B2W2, (2.5)

Where B1,B2 ∈ RT×J×C andW1,W2 ∈ RC×C are learnable weights to map features in a high-dimensional
space. We use these features to calculate attention weights as follows:

η = softmax
(
σ(B1

hW3||(B2
hW4)

T)
)
, (2.6)

Where B1
h,B2

h ∈ RT×J×C , W3,W4 ∈ RC×1 and σ is a LeakyRelu activation function. We apply softmax
to get attention weights η ∈ RT×n×m constituiting n joints in B1 and m joints in B2 and reweight B1

h and
B2
h as follows:

B1
out = B1

hη,B2
out = B2

hη
T, (2.7)

Where B1
h,B2

h ∈ RT×J×C and B1
out, B

2
out are the outputs of attention module. We observe that in its more

common use [314], graph attention is used to estimate the interaction coefficients of the adjacency matrix
A. This is done by learning a function (general MLP) of two node embeddings. By contrast, when the
nodes of the graph are semantically given (body parts of a leader and follower person), one may learn the
interaction coefficient (i.e., each term of A) directly, with a joint function of all nodes (not just pairs). The
direct estimation results in better performance, as shown by the experiments in Sec. 2.4.3. Hence, the GCN
with fully-learned parameters is selected as a best practice rather than attention.

Hierarchical body parts
To the best of our knowledge, a high-level motion representation improves the prediction of human poses[186].
[69] achieves this by concatenating the higher level as an extra node and hand-crafting ad-hoc neighborhoods
of nodes.
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We integrate a module within the model that enables it to decrease the number of skeleton keypoints for both
bodies. We allow the model to naturally learn aggregations between nodes by excluding artificial aggrega-
tions while shifting between hierarchies. We employ a linear layer that learns an optimized aggregation
when downscaling, and the same is done when upscaling to retrieve the original size skeleton. Although
we gain a small improvement by adopting hierarchies, it becomes a limiting factor rather than a gain when
combined with other best practices.

2.3.3 Decoding Best Practices

In earlier works, convolutions have been employed for the decoding stage [98, 205, 292]. However, the
most recent SoA method chose a plain, fully connected layer [112]. In this section, we will analyze the two
solutions, and in Sec. 8.5.2, we will show why we choose the latter.

Convolutional-based decoder
In the convolutional-based decoder, convolutional layers applied to the temporal dimension are responsible
for estimating the pose. It aims to forecast the subsequent frames, t + 1 to t + n, given the first t frames.
This structure is known as Temporal Convolutional Network (TCN) [98, 205, 292].

FC-based decoder ✓

The decoder consists of a single linear layer [112] in charge of mapping the observed T frames to the
predicted N .

2.3.4 Novel Adjacency Matrix Initialization

We propose a novel initialization methodology, aiming to preserve variance during the forward pass, which
matches the preservation of gradients in the backward. Since over several layers a non-unit variance results
in vanishing or exploding signals, and neither of those is good for training, as they stall the gradient, we
aim to preserve the variance. To do that, under the assumption of a neural network consisting of only linear
layers and linear activation functions, [105] proposes to estimate the standard deviation by considering the
number of neurons in both the current and previous layer.

It is particularly relevant for our model because it comprises 8 layers while GCNs are often shal-
low [155]. We propose to randomly initialize the fully learnable matrices As, At, and W according to
a uniform distribution, whose bounds are defined in such a way that considers both the number of graph
nodes and the number of timeframes.

Convolutions on graphs that adopt a normalized adjacency matrix [155, 306] use a well-known graph and
do not let all nodes interact with each other. Furthermore, normalization avoids vanishing and exploding
gradient, yet it limits the performance and, in the end, fully-learnable yields the best performances [274,
292]. Here is the importance of randomly initializing an ad hoc fully learnable adjacency matrix, avoiding
exploding or vanishing gradients. The response from the Separable GCN at layer l, according to Eq. (2.4),
is

Xl+1 = σ
(
AlsA

l
tX

lW l
)
, ∀l. (2.8)

Let’s assume matrices As, At, and W to be independent, have zero mean [105, 126] and uniformly dis-
tributed. To constrain variance, hence stabilize training and avoid exploding or vanishing gradient, con-
straining the variance of the output product of nl neurons at layer l times W to 1 [126] is a sufficient
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condition, i.e.,
1

k
nlV ar[W l] = 1, ∀l, (2.9)

where k = 2 in the case of Re-LU activations, which are asymmetric [126] (while k = 1 for symmetric
activations such as the tanh). For the spatial matrix, rather than the number of neurons nl, we consider the
number of nodes v, which As integrates

1

k
(nlv)V ar[A

l
s] = 1, ∀l. (2.10)

Similarly, we consider t time frames to initialize the temporal matrix At,

1

k
(nlt)V ar[A

l
t] = 1, ∀l. (2.11)

When initializing W with a zero-mean uniform distribution, the constraint of Eq. (2.9) yields the fol-
lowing distribution for the initialization:

W l ∼ U

[
−
√
k

nl
,

√
k

nl

]
, ∀l. (2.12)

The spatial and temporal matrix constraints of Eqs. (2.10) and (2.11) translate to the following initializing
distributions for As and At respectively:

Als ∼ U

[
−

√
k

nlv
,

√
k

nlv

]
, (2.13)

Alt ∼ U

[
−

√
k

nlt
,

√
k

nlt

]
, ∀l. (2.14)

Action A1 A2 A3 A4 A5 A6 A7 Average ↓
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [214] 70 125 157 189 131 242 321 426 102 194 260 357 62 117 155 197 72 131 173 231 81 151 200 280 112 223 315 442 90 169 226 303
HisRep [212] 52 103 139 188 96 186 256 349 57 118 167 240 45 93 131 180 51 105 149 214 61 125 176 252 71 150 222 333 62 126 177 251
MSR-GCN [69] 56 100 132 175 102 187 256 365 65 120 166 244 50 95 127 172 54 100 138 202 70 132 182 258 82 154 218 321 69 127 174 248
MRT [319] 50 98 134 188 79 155 212 307 53 106 152 229 47 95 131 185 52 105 149 215 58 118 166 242 65 136 199 299 58 116 163 238
siMLPe [112] 49 102 137 177 88 180 244 336 57 122 174 254 45 100 137 182 50 103 144 206 59 126 175 250 77 164 134 348 60 128 178 250
XIA [108] 49 98 140 192 84 166 234 346 51 105 154 234 41 84 120 161 43 90 132 197 55 113 163 242 62 130 192 291 55 112 162 238
Ours 34 71 105 159 56 121 181 292 36 78 118 195 30 66 98 145 35 74 113 171 41 88 129 193 47 108 166 261 39 86 129 202

Table 2.1: Results in millimeters for ExPI Common actions split. Our model achieves state-of-the-art results in all
actions considered, at each predicted time instant.

Action A8 A9 A10 A11 A12 A13 A14 A15 A16 Average ↓
Time (msec) 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800

LTD [214] 252 333 387 174 228 268 139 184 217 239 324 394 175 226 259 148 191 220 176 240 286 143 178 192 146 193 226 177 233 272
HisRep [212] 157 219 257 134 190 233 96 146 187 195 283 358 121 169 206 92 129 160 129 193 245 80 104 121 112 154 187 124 176 218
MSR-GCN [69] 177 239 295 143 179 213 157 222 281 230 289 335 188 245 290 148 198 248 234 319 384 176 232 278 162 218 266 179 238 288
MRT [319] 170 231 308 145 199 270 141 245 338 225 327 481 131 180 253 120 169 238 165 229 322 110 151 209 105 144 201 146 205 291
siMLPe [112] 165 220 258 137 198 246 104 154 198 210 301 432 114 156 187 94 132 160 140 204 255 91 119 138 120 166 204 131 183 225
XIA [108] 156 216 256 126 175 213 96 152 205 191 287 377 118 165 203 91 129 162 122 183 232 81 107 128 106 150 185 121 174 218
Ours 113 164 203 114 167 209 85 136 183 153 231 304 100 148 188 82 125 162 91 138 179 79 109 132 85 124 156 100 149 191

Table 2.2: Results in millimeters for ExPI Unseen actions split. On average, we outperform the baseline considered
over short and long time horizons.
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2.4 Experiments

We thoroughly evaluate the proposed best practices on the most recent and challenging 2-body pose forecast-
ing dataset ExPI [108], comparing against the SoA and the best single-pose forecasting techniques adapted
to the task. The selected best practices also perform on par with the SoA in single-pose forecasting on the
established Human3.6M dataset [139].

2.4.1 Benchmark and baselines

Datasets. The dataset used for multi-body pose forecasting, ExPI [108], is a collection of two different
dancing pairs performing Lindy Hop sessions, dubbed “extreme human interaction” by the authors [108].
Data were collected in a multi-camera platform with 68 synchronized and calibrated RGB cameras and a
motion capture system with 20 mocap cameras. The missing points were manually fixed to ensure good data
quality. ExPI contains 115 sequences at 25 fps with 18 body joints for each of the two persons involved.
These agents are grouped in two couples, dubbed (A1

c ,A2
c), which perform 16 different actions. Actions A1

to A7 are common to both couples; A8 to A13 performed only by A1
c and A14-A16 by A2

c . Based on this,
ExPI provides three different splits to test the model on:

• Common. Training and test set are composed only of actions performed by both couples. The ones
belonging to A2

c define the train set, and A1
c’s the test set.

• Unseen. Differently from the previous one, this split has common actions to both A1
c and A2

c as the
train set and couple-specific actions as the test one. This subset allows us to test for generalization.

• Single. In this split, a single action from couple A2
c is used as a train set, and the same action from

couple A1
c as the test set. It allows testing how the model generalizes to a new couple for each action.

We also test on Human3.6M [139], an established dataset for single-person pose forecasting. It consists
of a total of 3.6 million poses, acquired at 25 fps, depicting seven actors performing 15-day real-life actions,
e.g., walking, sitting, and talking on the phone. Following [69, 212, 216], we train on subjects S1, S6, S7,
S8, S9, we use S11 for validation, and S5 for testing.

Evaluation metrics. We validate performance by the Mean per joint position Error, defined as the MPJPE
[139, 214] and renamed as JME in [108] at a future frame t:

LJME = LMPJPE =
1

V

V∑
v=1

||x̂vt − xvt||2, (2.15)

where x̂vt and xvt are the 3-dimensional vectors of a target joint and the ground truth, respectively. For
the joint evaluation of the 2-body position error, the two body poses are normalized into the same reference
system. In this work, we keep the MPJPE notation.

Baselines. We select the latest and best-performing single-body pose forecasting models, and we adapt
them to predict the motion of two people. XIA-Transformer [108] is the only 2-body pose forecasting
method in the literature. XIA uses a transformer to encode skeleton features and model the body-body
interaction via attention. We consider [319] the only multi-body model based on a Transformer architecture.
Due to the lack of multi-body pose forecasting models, we also compare them to single ones. LTD [214]
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consists of a cascade of GCN blocks acting on frequencies, and its extension, HisRep [212], inserts a motion
attention mechanism based on DCT coefficients operating on sub-sequences of the input. MSR-GCN [69] is
a hierarchical GCN-based technique that applies multi-scale aggregations, so coarser scales represent groups
of body joints and coarser motion. In Table 2.4 we compare ourselves, again, to LTD [214], HisRep [212]
and MSR-GCN [69] and, additionally, on two recent single-body models. SeS-GCN [274] adopts an all-
separable GCN with a teacher-student approach, and the SoA [112], which consists of MLPs encoding
spatial and temporal relationships.

Action A1 A2 A3 A4 A5 A6 A7

Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [214] 70 126 155 183 131 243 312 415 102 194 252 338 62 117 153 203 71 131 171 231 81 151 199 299 112 223 306 411
HisRep [212] 66 118 153 190 128 231 308 417 74 143 205 295 64 120 159 191 63 121 166 227 90 168 232 312 88 166 232 332
MSR-GCN [69] 64 108 136 170 119 210 282 385 79 144 189 265 59 103 134 173 65 118 162 225 86 151 201 283 96 178 255 362
MRT [319] 63 120 160 218 97 190 249 346 77 148 193 240 51 102 139 186 61 118 163 226 58 115 151 198 82 172 244 340
siMLPe [112] 60 113 145 200 104 202 268 373 76 150 205 305 58 110 151 203 64 123 163 218 76 152 207 277 93 180 254 341
XIA [108] 64 120 160 199 109 200 275 381 59 117 174 277 60 116 162 209 53 106 152 221 65 122 166 223 74 144 203 301
Ours 52 94 128 179 89 176 242 329 42 90 129 200 49 96 134 185 48 99 140 196 52 105 144 198 68 140 204 305

Table 2.3: Results in millimeters for ExPI Single actions split. We outperform in 6 out of 7 stocks all baselines
considered according to the MPJPE metric. For the other stocks our model is comparable with the current state of the
art.

2.4.2 Evaluation of human pose forecasting

We evaluate our model quantitatively and qualitatively on ExPI’s [108] provided splits. We further test our
model’s generalization power on the single-body dataset Human3.6M.

ExPI Common Actions. Table 2.1 shows the results obtained from our best model with our selected best
practices. These outperform every tested method by a large margin, both the SoA single-person and the
SoA 2-body pose forecasting techniques. The overall mean improvement is 22% over all actions and all
time horizons. In particular, on all actions, the improvement for short-term future predictions (200 msec) is
29% and 15% for the long-term.

ExPI Unseen Actions. Table 2.2 also showcases improvements using the proposed best practices. On
average, across all forecasting horizons, the improvement is 14%.

ExPI Single Actions. In Table 2.3, also for the case of single actions, the best practices report an average
improvement of 14.2%. They outperform all other tested techniques in 6 (out of 7) actions at all predicted
time horizons. It confirms the generalization of our model to new people.

ExPI qualitative. In Fig. 2.2, the current SoA, ExPI [108], is compared against the best-practice model
(Ours), qualitatively. The first three columns depict observations; the following four are future motion
predictions. The light-colored pictograms represent ground-truth motion. The best practices provide, in
general, better predictions. Best improvements are observed in the case of large motion displacements, cf.
the last two rows, action “Cartwheel”.
Evaluation of single-person pose forecasting. We test how the 2-body best practices transfer back to
single-person pose forecasting for a sanity check. In Table 2.4, observe that the best practices (Ours) yield
results within a small margin compared to SoA. Note that, for the sake of this experiment, we just run the
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MPJPE ↓
Time Horizon (msec) 160 400 560 1000

LTD [214] 23.4 58.9 78.3 114.0
HisRep [212] 22.6 58.3 77.3 112.1
MSR-GCN [69] 25.5 63.3 81.1 114.1
SeS-GCN [274] 29.0 64.0 84.4 113.9
siMLPe [112] 21.7 57.3 75.7 109.4
Ours w/o init. 27.3 64.6 83.1 116.3
Ours 26.8 63.1 81.1 113.2

Table 2.4: Error in millimeters on Human3.6M dataset. We show how our method adapted to single-person human
pose forecasting is comparable with the best-performing techniques on average.

Model Input Repr. Encoding Decoding MPJPE ↓ Param. ↓
Freq. Enc. ✓ Learn. ✓ Sep. ✓ Init. ✓ Att. Hier. FC ✓ 200 400 600 1000 (M)

1 [108] ✓ ✓ ✓ 55 112 162 238 8.5
2 Space-time GCN ✓ 108 152 255 379 1.08
3 (kin. tree) ✓ 81 129 183 260 0.18
4 ✓ ✓ 55 112 156 224 0.18
5 Input repr. practice ✓ ✓ ✓ 41 88 135 219 0.18
6 ✓ ✓ ✓ 53 106 148 216 0.18
7 Encoder practices ✓ ✓ ✓† 55 112 157 228 9.9
8 ✓ ✓ ✓ 51 104 148 223 0.18
9 Decoder practices ✓ ✓ ✓ 51 104 145 212 0.17
10 ✓ ✓ ✓ ✓ 41 89 133 208 0.17
11 ✓ ✓ ✓ ✓ ✓ 51 104 146 217 0.17
12 Best model ✓ ✓ ✓ ✓ ✓ 39 86 129 202 0.17

Table 2.5: Combinations of best practices. From left to right, we have frequency encoding, fully learnable connec-
tions, Space-time separability, initialization, attention mechanism, hierarchy, fully connected layer as a decoder. †: we
implement a Graph Attention Network (GAT) tailored for GCNs, similar in spirit to [108] designed for transformers.

2-body best-practice model as is. Without any hyper-parameter tuning. Furthermore, the initialization gives
an overall 2.4% over the counterpart model that does not use it.

2.4.3 Evaluation of Best Practices

In this section, we refer to Table 2.5 and thoroughly assess each selected practice. First, we select a baseline
GCN model. Secondly, we assess each practice’s performance, added as a standalone extension. Thirdly,
we integrate practices. Best practices are assessed based on their standalone performance improvement and
complementarity. Finally, in Table 2.6, we evaluate the impact of the proposed initialization in more detail.

Baseline selection. We first select a baseline model on which we test each best practice. We identify three
possible GCN-based encoder architectures:

• Space-time GCN [338]: this is a plain GCN model σ(AXW ) with learnable A (learnable connectivity
and graph weights)

• Space-time separable GCN with learnable kinematic tree: inspired by [338] and [292] to factorize the
adjacency matrix into two spatial and temporal learnable matrices, whereby the spatial connectivity
is constrained to the kinematic tree

• Space-time separable GCN with fully-learnable connections: lastly, we evaluate a space-time separa-
ble GCN with fully-learnable adjacencies matrices taking inspiration from [292].
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Figure 2.2: Visual comparison of our proposed best-practice model (Ours) against ExPI [108]. The first three columns
are observed, and the last four are predicted poses. Light-colored and dashed skeletons are GT, and darker and solid
ones are predictions. Note the improved larger-displacement motions (Cartwheel).

As shown in Table 2.5, the space-time GCN with separability (row 3) has an overall decrease of error by
25% compared to the base GCN (row 2). A considerable additional performance boost (18% over all frames)
s also given by using the separability and fully-learnable connections (row 4) instead of limiting the learning
procedure on the kinematic tree. The simple space-time separable GCN already outperforms XIA [108]
while having a fraction of the parameters, although XIA includes DCT representations and attention. Thus
GCN with separability and fully-learnable connections is a good baseline to build upon.

Standalone best practices. Table 2.5 shows input representation (row 5), encoding (rows 6-8), and de-
coding practices (row 9). When considering the input representation and decoding techniques, DCT, and
fully connected (FC) layer as decoder, it is clear that both have a considerable impact. The DCT provides a
significant boost in short-term predictions, up to 25%, while the FC-based decoder offers a more substantial
increase in long-term predictions, up to 7% against TCN (when the box is not ✓). Regarding the encoder
practices, the novel initialization procedure and a hierarchical architecture improve the chosen baseline by
5% and 4%, respectively. On the other hand, using the attention technique did not lead to any gain in
performance and is hence not considered a best practice.

Integrated best practices. Rows 10-12 in Table 2.5 refers to the combinations of techniques that per-
formed best independently.

Integrating the input representation using DCT coefficients and the FC-based decoder indicates how
these two methods can be used in addition to the standard method. Secondly, we include a Graph Attention
Network as explained in Sec. 2.3.2 to account for the interaction. The performance does not benefit from
it, and the number of parameters is considerably higher. Lastly, a hierarchical structure lowers performance
when combined with other practices, so we do not consider it a best practice. Our proposed initialization
improves our best practice model by another 3.5%.

Impact of initialization. Table 2.6 shows the average of multiple runs for different initialization methods
and the corresponding standard deviation. We compare our strategy with the Uniform sampling and the
two established methodologies of [105], and [126]. Our proposed initialization exceeds or is on par with the
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2.5. Proof on initialization

others on average, having more than 2.6% improvement over uniform sampling over the longer time horizon.
Note also the lower standard deviation of performance for our proposed technique, especially for the most
challenging long-term prediction horizon (at least 2x lower), which we interpret as improved stability.

MPJPE ↓
Time Horizon (msec) 200 400 600 1000

Uniform 39.7 ±0.7 87.6 ±0.7 132.2 ±0.5 207.7 ±1.1
Glorot et al.[105] 40.3 ±0.1 89.4 ±1.2 134.3 ±1.5 207.9 ±1.8
He et al.[126] 40.2 ±0.4 88.6 ±0.7 133.4 ±1.4 206.6 ±1.2
Ours 39.2 ±0.4 86.4 ±0.6 129.4 ±1.0 202.2 ±0.5

Table 2.6: Initialization procedures for best practices model.

2.5 Proof on initialization

Figure 2.3: Comparison of feature activation variances, at layers 0, 2, 4 and 7, estimated during the model training,
upon initialization with random “Uniform”, “Glorot” [105], “He” [126] against “Ours”, our proposed initialization
technique.

Here we provide more detailed proof for Eqs. 10-11, 13-14 of the main paper. At each layer l, we
assume learnable matrices W l ∈ RC×C′

, Als ∈ RT×2J×2J and Alt ∈ R2J×T×T to be independent, have
zero mean and be uniformly distributed. With T being the number of timeframes, J being the number of
joints in one person, and C and C ′ being the number of input and output channels.

First, we review and demonstrate the proposed initialization for the forward (Sec. 2.5.1) and back-
ward passes (Sec. 2.5.2). Then, in Sec. 2.5.3, we illustrate how the initialization results in better training
robustness.

2.5.1 Forward propagation

Let us consider a graph G = (V, E) to encode the body kinematics, with all joints at all observed frames as
the 2J × T nodes defining the vertex set V , and edges ϵ ∈ E connecting them.

Following up on Eq. (4) from the main paper, the response of a separable GCN [292] layer isY l = AlsA
l
tX

lW l

X l = σ
(
Y l−1

)
,

(2.16)

where X ∈ RT×2J×C is the C-dimensional embedding of each node.
W may be interpreted as a fully connected layer acting on each of the graph node embeddings separately,

i.e., on each of the joints from the two people at all times, for a total of 2J · T connections. W may be
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2.5. Proof on initialization

assumed to have C ′ neurons, i.e. to output n = C ′ neural activations per node. The matrices As and At act
on the spatial and temporal number of connections of the graph, respectively (please also see [292] for more
details). Specifically, As may be considered to model the interaction of each node with all 2J others at the
same frame, by means of nv = 2J neurons. Correspondingly, we may consider At to model the interaction
of each node with those of the same joint at all T times, by means of nt = T neurons.

The number of interactions corresponds to the number of terms that are summed. Assuming matrices to
be i.i.d. [126], the variance of the sum yields the sum of variances, thus

V ar
[
Y l

]
= nlnlvn

l
tV ar

[
AlsA

l
tX

lW l
]
. (2.17)

Assuming Als, A
l
t, and W l to have zero mean [126], the variance of the product of independent variables is

V ar
[
Y l

]
= nlnlvn

l
tV ar

[
Als

]
V ar

[
Alt

]
(2.18)

E
[(
X l

)2
]
V ar

[
W l

]
.

We consider the PReLU as our activation function, i.e.

σ
(
X l

)
= max

(
0, Y l−1

)
+ amin

(
0, Y l−1

)
, (2.19)

with a being a learnable parameter that, when set to 0, reduces to the ReLU2. This means that for a generic
a, E

[
X l

]
̸= 0. Let Al−1

s , Al−1
t , and W l−1 have symmetric zero-centered distributions [126]. This may then

be also implied for Y l−1, and we may write

E
[(
X l

)2
]
=

1 + a2

2
V ar

[
Y l−1

]
. (2.20)

Substituting for Eq. (2.20) in Eq. (2.18) we get

V ar
[
Y l

]
=

1 + a2

2
nlnlvn

l
tV ar

[
Als

]
V ar

[
Alt

]
(2.21)

V ar
[
Y l−1

]
V ar

[
W l

]
.

ConsideringL layers, this yields the following variance formulation for the entire separable GCN model:

V ar
[
Y L

]
= V ar

[
Y 1

] L∏
l=2

1 + a2

2
nlnlvn

l
t (2.22)

V ar
[
Als

]
V ar

[
Alt

]
V ar

[
W l

]
.

In order to have the same input and output signal variance for the entire model, it suffices to assume that
each layer l has the same input and output signal variances. This corresponds to setting the variance induced
by the multiplicative parameters to be 1 i.e.,

1 + a2

2
nlnlvn

l
tV ar

[
Als

]
V ar

[
Alt

]
V ar

[
W l

]
= 1. (2.23)

2Also recall that a small a e.g., 0.01, is the LeakyRelu and a = 1 is the linear case.
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Towards this goal, it suffices to set each parameter initialization variance as follows

1 + a2

2
nlvV ar

[
Als

]
= 1 (2.24)

1 + a2

2
nltV ar

[
Alt

]
= 1 (2.25)

1 + a2

2
nlV ar

[
W l

]
= 1 (2.26)

2.5.2 Backward propagation

Action A1 A2 A3 A4 A5 A6 A7 Average ↓
Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [214] 51 92 116 132 51 91 116 148 43 80 103 130 38 70 89 111 39 70 90 116 42 75 94 123 52 101 139 198 45 83 107 137
HisRep [212] 34 69 97 130 44 84 115 150 32 65 91 121 27 56 82 112 28 58 85 121 34 66 88 115 42 83 120 171 34 69 97 131
MSR-GCN [69] 41 75 99 126 54 96 129 180 41 74 98 135 34 61 82 106 33 59 79 109 42 71 93 124 57 103 146 210 43 77 104 141
MRT [319] 34 69 95 128 39 78 106 142 30 59 83 115 28 57 79 110 28 57 79 108 34 68 91 120 39 80 114 160 33 67 92 126
siMLPe [112] 32 69 94 115 44 93 122 160 33 73 102 138 26 61 87 114 28 60 84 112 32 69 93 123 45 94 127 171 34 74 101 133
XIA [108] 32 68 99 128 41 82 116 163 29 58 84 116 24 50 73 96 24 51 75 109 31 62 86 114 41 81 115 160 32 65 93 127
Ours 24 51 76 114 31 66 93 132 23 49 70 103 19 41 60 85 21 44 64 93 24 52 73 100 29 64 95 143 24 52 76 110

Table 2.7: Results in millimeters for ExPI Common actions split. Our model achieves state-of-the-art results in all
actions considered, at each predicted time instant.

Action A8 A9 A10 A11 A12 A13 A14 A15 A16 Average ↓
Time (msec) 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800 400 600 800

LTD [214] 106 136 155 91 119 135 72 96 116 95 123 146 85 106 116 74 91 101 86 115 137 98 125 134 85 110 124 88 113 129
HisRep [212] 86 120 142 73 104 128 54 82 104 101 144 476 61 82 94 49 67 80 73 105 129 53 73 86 64 89 104 68 96 116
MSR-GCN [69] 88 118 142 90 113 136 90 122 148 103 134 155 101 135 160 74 98 121 103 143 173 87 111 132 84 106 122 91 120 143
MRT [319] 89 121 161 79 108 145 69 100 147 97 133 174 71 96 127 66 88 117 83 113 149 72 98 132 67 92 121 77 105 141
siMLPe [112] 95 125 141 82 114 134 63 93 115 124 174 212 61 80 92 50 67 79 83 116 138 59 81 90 72 99 116 77 106 124
XIA [108] 82 116 142 69 97 120 52 79 104 95 137 171 58 80 93 51 70 84 70 105 134 53 73 88 63 88 104 66 94 116
Ours 68 95 115 66 95 116 52 78 103 86 124 150 54 76 91 47 68 84 59 86 108 53 77 94 53 77 94 60 86 121

Table 2.8: Results in millimeters for ExPI Unseen actions split. On average, we outperform the baseline considered
over short and long time horizons.

Action A1 A2 A3 A4 A5 A6 A7

Time (msec) 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000 200 400 600 1000

LTD [214] 51 99 129 163 61 110 150 229 53 96 131 188 46 81 106 142 44 79 106 147 53 100 162 176 70 133 163 198
HisRep [212] 51 93 114 127 51 91 116 162 43 80 100 126 38 70 88 118 39 70 90 125 42 75 93 123 52 101 137 188
MSR-GCN [69] 45 83 106 118 57 102 135 178 39 72 100 132 41 77 103 119 35 70 97 125 46 82 107 137 48 90 121 169
MRT [319] 36 69 93 123 44 81 106 138 41 76 96 114 30 61 81 105 33 64 88 121 34 64 83 104 42 83 114 157
siMLPe [112] 43 84 107 137 55 107 142 182 47 91 120 164 39 76 101 129 38 75 99 128 47 90 118 150 58 110 150 197
XIA [108] 43 84 115 131 53 99 136 185 35 68 98 140 37 74 106 128 29 59 86 125 39 72 94 119 43 82 112 152
Ours 34 63 86 115 41 79 105 138 27 55 77 110 31 64 88 119 27 55 77 107 30 58 78 103 38 78 109 154

Table 2.9: Results in millimeters for ExPI Single actions split. We outperform in 6 out of 7 stocks all baselines
considered according to the MPJPE metric. For the other stocks our model is comparable with the current state of the
art.

The gradient of a separable GCN is  ∂L
∂Xl = AlsA

l
t
∂L
∂Y l W̃

l

∂L
∂Y l =

dσ
dY l

∂L
∂Xl+1 ,

(2.27)

with W̃ ∈ RC′×C , while As and At have the same dimensionality as in the forward pass. Our backward
response number is ñl = C for W̃ , and it is still nv and nt for As and At, respectively, thus
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V ar

[
∂L

∂X l

]
= nlvn

l
tñ
lV ar

[
AlsA

l
t

∂L

∂Y l
W̃ l

]
. (2.28)

We let Als, A
l
t, W̃

l and ∂L
∂Y l be independent. Let us assume Als, A

l
t, and W̃ l’s to be zero-centered

symmetric distributions, and ∂L
∂Xl to have zero mean [126]. Similarly to the forward pass, we have to

consider the PReLU activation function.
If we assume that dσ

dY l and ∂L
∂Xl+1 are independent [126], we get

E
[
∂L

∂Y l

]
=

1 + a2

2
E
[

∂L

∂X l+1

]
= 0, (2.29)

E

[(
∂L

∂Y l

)2
]
=

1 + a2

2
V ar

[
∂L

∂X l+1

]
. (2.30)

Considering Eq. (2.28) and the assumed independence, we elaborate on Eq. (2.30) as follows

V ar

[
∂L

∂X l

]
= nlvn

l
tñ
lV ar

[
Als

]
V ar

[
Alt

]
(2.31)

V ar

[
∂L

∂Y l

]
V ar

[
W̃ l

]
,

=
1 + a2

2
nlvn

l
tñ
lV ar

[
Als

]
V ar

[
Alt

]
(2.32)

V ar

[
∂L

∂X l+1

]
V ar

[
W̃ l

]
.

For L layers, this yields

V ar
[
X2

]
= V ar

[
∂L

∂XL+1

] L∏
l=2

1 + a2

2
nlvn

l
tñ
l (2.33)

V ar
[
Als

]
V ar

[
Alt

]
V ar

[
W̃ l

]
.

In order to avoid exploding and vanishing gradients, a sufficient condition is to set the gradient of each
layer to maintain the signal variance throughout the backpropagation

1 + a2

2
nlvn

l
tñ
lV ar

[
Als

]
V ar

[
Alt

]
V ar

[
W̃ l

]
= 1. (2.34)

Finally, it suffices to set the variance initialization of each of the parameter matrices as follows:

1 + a2

2
nlvV ar

[
Als

]
= 1 (2.35)

1 + a2

2
nltV ar

[
Alt

]
= 1 (2.36)

1 + a2

2
ñlV ar

[
W̃ l

]
= 1 (2.37)

Note that the result in Eq. (2.34) resonates with what was obtained for the forward pass, in Eq. (2.23).
This ensures that the same initialization may be adopted to yield the signal and gradient requirements

both in the forward and backward passes.
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2.5.3 Training variance

The model output should maintain unit variance during training for the sake of activation functions and
robust training, avoiding vanishing gradient [105, 126]. This becomes more challenging when adopting
deeper networks, which regards our case, as we consider a separable-GCN twice as deep as the original one
of [292] (8 Vs. 4 layers).

In Fig. 2.3, we consider the variances of the feature activations at sampled layers during training and
compare the result of our proposed initialization against the “Uniform”, “Glorot” [105], and “He” [126]
techniques. Observe how “Ours” yields feature variances that are consistently closer to the desired unit
variance. This is especially true for the last layer (layer 7), arguably the most challenging.

2.6 AME results

Following [108], we also evaluate our model using a different metric for the error between poses, the Aligned
Mean per joint position Error (AME). Both poses are independently normalized in advance to avoid posi-
tional errors, to correct errors due to having a root joint as the origin, we use a rigid alignment transformation
T .

LAME =
1

V

V∑
v=1

||n̂vt − T (n̂vt, nvt)||2, (2.38)

where n is the coordinate x after normalization as defined above. The results are reported in Tab. 2.7, Tab.
2.9 and Tab. 2.8. Results are consistent with those reported in the main paper, expressed in terms of Mean
per joint position Error(MPJPE), as it favors comparability with other works [30, 69, 112, 212, 214, 216,
274, 292]

2.7 Implementation details

In this section, we thoroughly describe the implementation procedures that we have used in training and
testing. Furthermore, we describe the iterative approach used during testing.

2.7.1 Training and testing details

We use 10 frames as input and 10 frames as output during training. We use an iterative mechanism at test
time to make a 1-second prediction(25 frames). We exclusively use our predictions as input for subsequent
iterations. We extensively analyze the iterative mechanism impact in the supplementary materials. We adopt
the ADAM [150] optimizer and a learning rate of 1× 10−5, decayed to 5× 10−8 after 30K iterations. The
model converges in 40K iterations, i.e., the training takes 23 min on a single Nvidia P6000 GPU. We also
get an average prediction time on CPU3 of 0.07 seconds compared with the fastest [108]’s 0.4. At each
layer, we adopt batch normalization [138] and residual connections.

2.7.2 Iterative approach

We test different combinations of T input frames and N output frames (See Tab. 2.10) and notice that some
perform better than others. Most notable works in pose forecasting [108, 112, 292] use T = 50 input frames

3An AMD Ryzen 5 3600 6-Core processor.
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and N = 10 output ones. Conversely, the best results are obtained using T = 10 a mechanism [108, 212,
214] that iteratively feeds both parts of the observed history and new predictions as an input.

MPJPE (ms)↓
Input Frames Output Frames 200 400 600 1000

50 1 43 113 176 274
50 5 52 114 162 243
50 10 62 126 174 243
50 50 68 131 177 244
10 1 36 98 164 294
10 5 37 89 141 238

Used 10 10 39 86 129 202

Table 2.10: Results in millimeters on the ExPI dataset, on average common actions split. We show the impact that
different combinations of input-output frames have on performance. Using 10 input frames makes predictions in the
short term more accurate, helping results to be more stable in the long term.

2.8 Complete list of actions

This section lists (ref. Tab. 2.11) each action Ai, with i = 1, ..., 16. Refer to the supplementary material
in [108] for a more detailed explanation.

Action Name
A1 A-frame
A2 Around the back
A3 Coochie
A4 Frog classic
A5 Noser
A6 Toss out
A7 Cartwheel
A8 Back flip
A9 Big ben
A10 Chandelle
A11 Check the challenge
A12 Frog-turn
A13 Twisted toss
A14 Crunch-toast
A15 Frog-kick
A16 Ninja-kick

Table 2.11: List of actions and their corresponding names

Actions A1, ..., A7 are performed by both couples A1 and A2. Actions A8, ..., A13 are exclusive to
couple A1, and actions A14, ..., A16 to couple A2.

2.9 Sample videos

In addition, we include a video comparing the results of our and the current SoA’s model [108] qualitatively.
It is possible to see how our model is far more accurate when analyzing both basic and complex activities.
For comparison, we use the pre-trained model provided by [108] and showcase only 10 of their 50 input
frames to make it the same length as ours. Still, the number of output frames remains at 25 for both models.
We release videos on our project page at https://www.pinlab.org/bestpractices2body.
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2.10. Conclusion

2.10 Conclusion

This work has identified, reviewed, and experimentally evaluated best practices for 2-body pose forecasting,
to bootstrap research in the mostly unexplored task. Best practices have a large impact on SoA performance,
and the novel initialization adds further improvement in performance and stability. Notably, predicting the
future of two people in interaction yields better estimates than considering each person separately, so 2-body
forecasting is recommended for applications such as sports and collaborative assembly in factories.
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Chapter 3

Staged Contact-Aware Global Human
Motion Forecasting

Stage 2 Stage 3Stage 1

Figure 3.1: STAG forecasts scene-aware global human motion by three coarse-to-fine stages: (i) estimate the present
and future contact points (light red) given the scene and the ground truth body joints (red); (ii) predict the future tra-
jectory (dashed yellow), i.e. the future position of the root joints, given the past (solid yellow); (iii) predict the future
body joints (blue) from the observed ones (gray). Each stage of STAG conditions on the previous, so trajectory fore-
casting leverages future estimated contact points, and pose forecasting leverages both other estimates. Awareness of
the time-to-go (black arrow), the passing time between the current prediction and the end one, improves performance.

3.1 Introduction

Humans are inherently predicting the near future at all times [73, 79]. As humans and machines coexist
more, predicting human motion in the immediate future becomes critical for human-robot interaction, e.g.,
in industrial environments [59, 164, 275] or breaking-in-time to avoid collisions [106, 238, 366]. Human
motion forecasting generally includes local pose forecasting [109, 111, 213, 215, 217, 292, 339], in which
the joint locations are predicted with respect to the root joint, and global pose forecasting [211, 365, 367],
which takes into account the positions of joints and the root in relation to a global coordinate system.

One common issue in human motion forecasting is the omission of the environment. It leads to contrived
motion when the model is used in more realistic scenarios, such as ghost motions, i.e., phasing through solid
objects. To our knowledge, [211] is the only work that accomplishes scene-aware global human forecasting.
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They first process the scene and emphasize the human-scene interaction through contact points. Subse-
quently, they employ an end-to-end approach to model individuals’ trajectories and poses. Although contact
points have shown effectiveness, employing end-to-end modeling for both trajectory and pose is suboptimal.
The pose of an individual is influenced by their motion trajectory, interaction with the surrounding scene,
and the pose in previous frames. However, the pose is typically not the underlying cause of the pathway.
Essentially, global motion forecasting naturally aligns with a coarse-to-fine methodology that considers the
scene, the trajectory, and the human pose.

We propose a novel model for STAGed contact-aware global human motion forecasting (STAG) that
cascades three coarse-to-fine processing stages: (i) predicting the contact points, (ii) using them to forecast
the trajectories, (iii) estimating the body pose (see Fig.7.1). Our three-stage pipeline predicts the future
motion autoregressively, conditioning each stage on the previous ones. We condition the global motion on
end goals and propose a time-to-go temporal encoding of the remaining duration until the endpoints are
reached, i.e. informs the model on how many frames are missing.

We quantitatively evaluate the design choices of STAG and compare them to the SoA on the available
GTA-IM dataset [211]. Overall, we get up to a 21.1% improvement on the path error with 16.2% on
average, while on the pose error, we get up to 5.4% less error and 1.8% on average. We also show the
generalizability of STAG by testing it on CMU-Mocap [63], a well-established multi-person dataset without
scenes. To account for the missing scene, we only assume a planar ground. STAG sets a new SoA without
leveraging social cues, which SoA methods use [3, 102, 320]. Overall, our contributions are threefold:

1. We introduce a novel three-stage, coarse-to-fine model, which cascadedly processes the contact points,
the trajectories, and the poses of people.

2. We introduce a learnable temporal counter for the time-to-go to align the predictions with the missing
time before the endpoint.

3. We perform a thorough analysis on GTA-IM [211], where we set a new SoA, and generalize STAG to
the scene-less CMU-Mocap [63].

3.2 Related Work

We discuss literature relating to the three core aspects of contact-aware global human motion forecasting:
human-scene interaction (Sec. 3.2.1), trajectory forecasting (Sec. 3.2.2), and human motion forecasting
(Sec. 3.2.3).

3.2.1 Human-Scene Interaction

Human motion forecasting is inherently influenced by the scene context in which it occurs, thus, considering
the interaction between humans and their surroundings is crucial for motion forecasting.

In motion synthesis, this shift towards including more contextual information can already be seen [51,
123, 134, 318, 367], and some works in trajectory forecasting also consider contextual information [53, 95,
175]. In human motion forecasting, scene information has been widely disregarded, with only a few works
considering implicitly learning from the scene [41, 64]. However, this indirect modeling does not prevent
ghost motion, i.e. body parts passing through objects or the scene. To the best of our knowledge, only [211]
has investigated the explicit representation of human-scene interaction for human motion forecasting. [211]
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proposes a two-stage pipeline, first predicting future joint-scene distances, then using this information to
predict the global pose.

Working with scene context requires data that enables the model to infer environmental clues. 3D point
clouds provide dense information about surfaces and objects in the scene, which is ideal for human-scene
interaction and trajectory forecasting. STAG elaborates on the idea of contact maps and adds a component
of contextual knowledge through trajectory forecasting.

3.2.2 Trajectory Forecasting

Trajectory forecasting can be divided into two main categories: model-based and model-free approaches.
Model-based approaches [81, 128, 204, 311] impose physical constraints directly, while model-free ap-
proaches typically rely on implicitly learned physical plausibility [140, 273]. Some recent works [13, 353]
have combined the two. Model-free approaches employ a variety of deep learning techniques such as trans-
formers [313, 352], RNNs [129, 224] or GCNs [156, 225]. Deep learning approaches define the SoA on
multiple benchmarks [190, 191, 195, 227, 353]. STAG follows best practices of SoA methods, adopting
GCNs, attention, and trajectory endpoints. Additionally, we are the first to propose a temporal encoding for
the time-to-go, informing the current model prediction of how long it is missing before the endpoint.

3.2.3 Human Motion Forecasting

Human motion forecasting can be divided into (local) pose forecasting and global pose forecasting. Local
pose forecasting [109, 111, 213, 215, 217, 292, 339] only considers the position of the agent in relation to
its root, while global pose forecasting [211, 365, 367] takes the absolute position within the given scene
into account. Thus, global pose forecasting can be viewed as combining the trajectory and the (local) pose.
Many applications such as human-robot collaboration [59, 164, 275], autonomous driving [106, 238, 366],
sports [281, 351], augmented reality [294] or animation [234, 315] require knowledge about the global
position of the agent in the scene.

Many human pose forecasting works use 2D image data only [21, 83, 177, 264, 265, 357]. However,
in tasks such as industrial human-robot collaboration, where the agent’s and objects’ exact position in the
scene is crucial, 3D data is often used [34, 45, 336]. We consider a 3D point cloud for our task, as they offer
a rich scene representation. The agent in the scene can be represented as a graph of body joints or more
complex representations such as meshes [107, 124, 209, 245].

While delicate tasks may require a more specific human model, the skeletal representation (adopted in
STAG) suffices for human motion forecasting [109, 111, 213, 215, 217, 292, 339].

3.3 Methodology

STAG is designed as a three-stage model, which we overview in Sec. 3.3.1. The modeling of each stage is
detailed in Secs. 3.3.2-3.3.4.

3.3.1 Proposed STAGed contact-aware global motion modelling

Our novel approach for predicting contact-aware global human motion, named STAG, is designed in a
coarse-to-fine manner by using a three-stage pipeline (see Fig. 3.2). STAG is composed of a first stage
that computes the contact points between the 3D scene and the body (cf. Sec 3.3.2). The second stage
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uses the information from the previous stage and the past root trajectory to predict its future trajectory (cf.
Sec. 3.3.3). In the third stage, the historical movement of the body, together with the contact points and hu-
man trajectory end goals, are used to predict the future global pose upon temporally encoding the time-to-go
(cf. Sec 3.3.4).
Notation. We refer to S as the scene, R as the root joint trajectory, and to M as the global human motion.
S represents a 3D scenes, where S ∈ RN×3 contains N points, each expressed as a triplet (x, y, z). R =

[R0, . . . , RF ] is a sequence of root trajectories, where RT = [R0, . . . , RT−1] represents the observed ones
and RF = [RT , . . . , RF ] the ones to predict. Ri ∈ R3 represents the 3D root coordinates. Similarly
M = [M0, . . . ,MF ] is a sequence of global body poses, where MT = [M0, . . . ,MT−1] represents the
observed ones and MF = [MT , . . . ,MF ] the ones to predict and Mi ∈ MV×3 represents the pose at
timestamp i, consisting of V joints expressed as 3D coordinates.
Staged processing. In the first stage, the goal is to compute the contact points C defined as [C0, . . . , CT , . . . , CF ],
and Ci ∈ RV×4 [211] consisting of V points expressed as 4D coordinates, triplet (x, y, z) and one value
{0, 1} to indicate whether it is a contact point or not (cf. Sec 3.3.2). The second stage predicts the future
trajectory RF given the historical root coordinates RT , and the contact points C (cf. Sec 3.3.3). In the third
stage, the objective is to predict the future body poses MF by using MT , C and RF (cf. Sec 3.3.4).

3.3.2 Contact Point Estimation

In the first stage, the goal is to predict the contact points C between the global human body motion M and
the scene S (See Fig. 3.2). We use Point-Voxel CNN (PVCNN) [197] to model the scene S as a point cloud
and encode M as a spatio-temporal graph [292], to capture the movement’s proprieties. Following [211], we
first compute the distance matrix D ∈ RTV×N where each term represents the Euclidean distance between
each joint in time TV and the N points in the scene. Since D is based on distances, it is smooth over time.
We adopt a temporal encoding strategy of D based on the Discrete Cosine Transform (DCT) [215].

To leverage the DCT representation, we reformulate this problem by learning a mapping from the DCT
coefficients of the past distance matrix D to those of the future one D̂. Following [211], we leverage
PVCNN [197] to encode the 3D scene S, as well as the encoded motion MT and D’s DCT coefficients.

Following leading pose forecasting literature, we use Graph Convolutional Networks [156] to encode
the motion. Similarly to previous works [292, 335], we define a spatial adjacency matrix as As ∈ RT×V×V

to model the connections between joints and a temporal adjacency matrix At ∈ RV×T×T to capture the
temporal relationships.

M̄T = σ(AsAtM
TW ) (3.1)

We aim to obtain a latent vector representing the entire movement sequence and serving as a conditioning
variable. To compress spatial and temporal information, we propose using two separate MLPs, MLPS , and
MLPT :

M̃T =MLPS(MLPT (M̄
T )) (3.2)

Each MLP consists of two linear layers and an equal number of activation functions. From now on, we will
refer to this encoding technique as GCN-MLP. In summary:

D̂ = IDCT (MT + f(S, DCT (D), M̃T )) (3.3)
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Stage 1: Contact Point Estimation Stage 2: Root Forecasting Stage 3: Global Pose Forecasting
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Figure 3.2: Overview of STAG’s three-staged pipeline. Stage 1 takes the scene and the human motion in input
and predicts future interactions as contact points. Stage 2 feeds them to a trajectory forecasting model for a coarse
prediction, and Stage 3 then refines it to predict future human poses.

Where f represents the trainable point-cloud encoder [197]. Ultimately, we reconvert the distance matrix D̂

to the contact points as in [211] resulting in the predicted contact points C.

3.3.3 Root Forecasting

In the second stage, we propose to predict the person’s trajectory to account for future global motion. We
achieve it by predicting the future root joint RF from the past RT . The second stage integrates the scene
contacts C, estimated in stage one. RT is encoded twice, once by using DCT and secondly by using the
encoder described in Sec. 3.3.2. The formulation is similar, however, MT gets changed with RT in Eq. (3.2)
and the number of nodes V = 1, resulting in R̃T . The same encoding technique is used for the contact points,
where MT gets changed with C in Eq. (3.2) and results in C̃. The latter encodings are concatenated and
fed to an MLP, which decodes the feature dimension C and outputs R̂ ∈ RT×V×C .

R̂T =MLP (DCT (RT ) ∥ R̃T ∥ C̃)), (3.4)

where ∥ indicates a concatenation operation. Lastly, the IDCT reverts the transformation process to trajec-
tories so that RF = IDCT (R̂T ).

3.3.4 Global Pose Forecasting

For the third stage, we utilize the forecasted root trajectory RF and the contact points C obtained from the
preceding stages (see Fig. 3.2) as inputs. It enables us to predict the future pose and refine the trajectory,
ultimately yielding the future global motion of the agent. We also encode the past body motion MT as in
Sec. 3.3.2 and concatenate the latter information. The decoding occurs autoregressively, where each future
timeframe {i}Fi=T of the predicted body motion MF

i is computed sequentially. We propose to temporally
encode the scene contact points and the trajectory endpoints to raise the model understanding of the time-
to-go, i.e. how long before it reaches them. At each i, we also concatenate the root’s position RF

e , and the
contact points CF

e at the last frame F as end goal conditioning variables. Where respectively, RF
e ∈ RC

and CF
e ∈ RV×C .

HMF
i =MLP (M̃T ∥RFi+1 ∥RF

e ∥ C̃i+1 ∥ C̃F
e ), (3.5)

where HMF
i is the the embedding at time {i}Fi=T . Then we add the TE and decode the global body pose.

Time-to-go Temporal Encoding To insert time context, we use a learnable temporal encoder Te to encode
the time-to-go and add it to HMF

i . During the autoregressive process, Te measures how long is missing
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before the contact and endpoints are reached. To decode the global motion we use an MLP layer. In
summary:

M i =MLP (HM i + Te). (3.6)

3.4 Experiments

In this section, we detail the dataset and metrics, compare it to the current SoA [211], and perform an
extensive ablation on the staged modeling design and its components. Furthermore, we show how our
model compares with SoA.

Dataset. The GTA-IM dataset [41] is a large-scale synthetic dataset that captures human-scene interac-
tions, which consists of 50 different characters performing various activities in 7 scenes. We use [211]’s
proposed pre-processing, employing 4 of the scenes as our training set, the remaining 3 as the test set, and
21 out of the 98 human joints provided by the dataset. Videos are recorded at 30fps, and we train our
models to observe the past 30 frames and predict the future 60. We evaluate STAG in all its stages and
outperform [211].

[211] also considers PROX [124] but they do not distribute the pre-processed scene-to-pointcloud nor
the code for pre-processing. PROX is a real dataset captured using a Kinect-One sensor, and it contains
noise at frames (e.g. jittering and corrupted pixels) and in time (missing frames). Upon best efforts, we
could not replicate the pre-processed pointcloud, so we could not use it for comparison.

Metrics. The first stage is evaluated by the L2-norm between our predicted contact point and the ground
truth. For the second and third stages, we consider the Mean Per Joint Positional Error (MPJPE) across all
joints and all the future timeframes [211]. The global movement is called Path Error, and the Pose Error
represents the local body movement.

State of the art models and selected baserows. We evaluate STAG on the GTA-IM dataset and compare
it with the current leading techniques. LTD [215] utilizes a graph convolutional network to encode motion
representations in frequencies. DMGNN [187] employs a dynamic multiscale GNN for sequence encoding,
with a decoder based on GRU. SLT [321] focuses on motion synthesis and employs an autoencoder architec-
ture consisting of a multilayer perceptron as the initial stage, followed by motion generation using LSTM.
The top-performing technique is Mao et al. [211], which combines MLP and RNN for motion encoding and
employs an iterative prediction approach.

3.4.1 Comparison against SoA

First Stage - Contact points estimation. Table 3.1 is not present in [211]; thus, we ran their first stage
and compared it to ours (Sec. 3.3.2). We have an overall 9.2% improvement, and it is due to our body
movement’s encoder, which more accurately extracts the latent representations.

Second Stage - Global pose error. This section focuses on our second stage’s impact on the Path Error.
As in [211], we experiment with three configurations of our model: (i) no contact point to condition on, (ii)
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L2-norm (mm)
0.5s 1s 1.5s 2s mean

Mao et al. [211] 26.2 45.5 67.5 96 47.8
STAG 24.3 41.9 61.6 86,2 43.6

Table 3.1: Distance between the predicted contact points and the ground truth ones.

conditioning on the predicted contact points, and (iii) on the ground truth ones. With the original config-
uration (i), we note a decline in performance, indicating that the second stage necessitates supplementary
contextual information for accurate operation. This emphasizes the importance of considering the scene
when predicting overall bodily motion. When the predicted contact points (ii) are added, STAG has a 16.2%
more accurate prediction over the path error. Such improvement increases when considering the GT contact
points (iii), reaching a 21% decrease in mean over path error. (iii) also highlights that having precise contact
points coming from stage one can significantly improve the overall performance of the second stage.

Third Stage - Local pose error. As in the previous paragraph, we consider: (i) no contact point to con-
dition on, (ii) conditioning on the predicted contact points, and (iii) on the ground truth ones. In this case,
we outperform [211] in all settings, reaching 1.8% improvement in (iii) and 4% when considering GT con-
tact points. It demonstrates how our body movement encoder is more capable of creating reasonable latent
representations. While the improvement in pose may not be as pronounced as the improvement in path, it
is crucial to consider the 3D nature of the scenario and ensure coherent body movements by accounting for
the surroundings. With STAG, we observe an overall enhancement in both path and pose compared to the
SoA methods. The staged pipeline assigns equal importance to both tasks, leading to these improvements.

Path Error (mm) Pose Error (mm)
Models 0.5s 1s 1.5s 2s mean 0.5s 1s 1.5s 2s mean
LTD [215] 67.0 119.3 207.6 375.6 147.4 67.5 93.8 98.9 103.5 80.5
DMGNN [187] 82.7 158.0 227.8 286.9 156.2 47.5 69.1 85.6 95.3 64.9
SLT∗ [321] 45.9 117.0 186.7 267.1 121.8 70.8 181.4 150.2 196.0 112.6
Mao et al. [211] w/o contact 61.1 111.7 171.0 249.0 118.8 57.8 74.8 82.4 98.1 68.2
Mao et al. [211] w/ pred contact 58.0 103.2 154.9 221.7 108.4 50.8 67.5 75.5 86.9 61.4
Mao et al. [211] w/ GT contact 52.4 77.8 95.8 129.5 74.1 49.8 64.8 70.4 78.3 58.2
STAG w/o contact 64.0 133.0 210.4 302.0 141 55.8 72.9 82.8 96.2 67.1
STAG w/ pred contact 55.4 89,6 127.9 179.3 92.3 48.1 65.3 75.6 88.2 60.3
STAG w/ GT contact 50.3 65.1 70.1 99.2 60.0 46.9 61.5 68.0 76.3 55.6

Table 3.2: Path and pose error on the output obtained by pipelining the second and third stages on GTA-IM dataset.

3.4.2 Ablation study

We perform ablative studies to explore our model’s components extensively. The results in Table 3.3 con-
sider GT contact points and refer to the metrics used in Table 3.2. stages indicates the training mode of
the second stage module: 2-stage e2e means that stages two and three are learned in an e2e fashion, as is
done in [211]; 2-stage ft. indicates that stage two is pre-trained and fine-tuned during the training of stage
thee; 3-stage (STAG) is our proposed pipeline. end indicates whether the endpoint is used in the third stage.
TTG is flagged if the proposed time-to-go is used in the third stage. Regarding how many joints are used to
compute the contact points, we conducted a dedicated ablation study outlined in Table 3. The cont. column
indicates which joints we consider for contact. With ”all”, every body part is considered to estimate contact
with the scene. With ”feet”, only the feet can generate contact points, while with ”feet, wrist”, we consider
contact points involving both the feet and hands.
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The performance comparison in rows 1-3 reveals that even without the inclusion of end goals or TTG,
the three-stage pipeline surpasses the performance of the two-stage pipeline. When end goals are introduced
(rows 4-6), the performance gap becomes more apparent as they contribute to improved global performance.
Lastly, using TTG in autoregressive prediction introduces time context and significantly enhances the results
(rows 7-9). Moreover, it is preferable to consider the entire skeleton when calculating contact points, as the
3D scene is complex and involves multiple joints. Merely focusing on ground contact points (e.g., feet) or
the most probable contact points (e.g., feet and hands) leads to unsatisfactory outcomes, as indicated in rows
10-13.

3.4.3 Comparison against global motion SoA models

Here we are testing the generalization of STAG to predict global motion without a given scene. The task
aims to be comparable to other scene-free methods. The original version of STAG is evaluated under the
assumption of a ground surface beneath the individual. This assumption is implemented by converting the
floor into a scene representation as a 3D point cloud. Based on this information, the model estimates future
contact points. It is worth mentioning that unlike competing techniques such as [3, 320], our model does
not include multi-person joint forecasting or consider social relationships among individuals.

Dataset. We evaluate the performance of our model on additional datasets such as CMU-Mocap [63],
which is widely used for absolute pose forecasting. The CMU dataset is captured at a rate of 30 frames per
second (fps) using a marker system. Each sequence in the dataset consists of three individuals randomly
selected from different scenes and merged together [320].

Comparison with state-of-the-art. Our model is compared to SoA approaches, among which are HRI [213],
SocialPool [3], and MR-Trans [320]. HRI utilizes a motion attention mechanism to encode motion in both
spatial coordinates and frequencies. SocialPool, on the other hand, is an RNN-based model that employs
multiple GRU modules independently for each person in the scene, followed by a social module that con-
siders the features of all individuals in the scene. MR-Trans, currently considered the SoA model, is a
transformer-based approach that employs a discriminator to determine the suitability of pose and motion.
Lastly, we also adapt Mao et al. [211] to the additional dataset as is.
The proposed approach performs similarly to the current best technique [320] in terms of overall error.
However, when predicting future trajectories on the most challenging longer-term horizon, STAG slightly

Path Error (mm) Pose Error (mm)
stages end. TTG cont. 0.5s 1s 1.5s 2s mean 0.5s 1s 1.5s 2s mean

1 2-stage e2e × × all 55.8 77.7 87.5 121.5 71.3 48.8 64.15 70.7 77.9 57.8
2 2-stage ft. × × all 53.6 72.5 83.7 115.8 68.4 48.8 64.2 70.8 77.9 57.8
3 3-stage (STAG) × × all 53.4 72.4 84.1 117.8 68.5 48.8 64.2 70.9 78 57.8
4 2-stage e2e ✓ × all 55.7 79.2 95.2 128.3 75.3 47.1 61.8 68.5 76.7 56
5 2-stage ft. ✓ × all 51.9 68.7 78.1 113.1 65 47.1 61.8 68.5 76.6 55.9
6 3-stage (STAG) ✓ × all 51.6 68.3 76.8 108.4 64 47.1 61.9 68.4 76.8 56
7 2-stage e2e ✓ ✓ all 53.8 74.6 87.2 122.4 70 47.2 61.9 68.5 76.9 56
8 2-stage ft. ✓ ✓ all 50.8 66.1 72.6 104.7 61.6 47.1 61.8 68.4 76.6 55.9
9 3-stage (STAG) ✓ ✓ all 50.3 65.1 70.1 99.2 60 46.9 61.5 68 76.3 55.6

10 3-stage (STAG) ✓ ✓ feet 55.1 79.9 96.7 136.5 76.2 47.5 62.1 68.7 77.3 56.3
11 2-stage e2e ✓ ✓ feet, wrist 56.0 81.4 99.0 135.7 77.7 47.1 61.8 68.4 77.1 56
12 2-stage ft. ✓ ✓ feet, wrist 55.6 82.0 102.0 140.0 79 47.1 61.4 68.9 79.9 56
13 3-stage (STAG) ✓ ✓ feet, wrist 56.9 84.4 104.9 143.0 81.0 46.2 61.4 68.3 77.1 55.9

Table 3.3: Ablation study on the staged modeling.
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underperforms compared to MR-Trans. On pose error, STAG outperforms the previous SoA model [320] by
33.5%, and by 8.8% with respect to [211] on the most challenging longer-term horizon.

Path Error Pose Error Global Error
Models 1s 2s 3s 1s 2s 3s 1s 2s 3s
LTD [215] 0.97 1.73 2.62 0.98 1.21 1.37 1.37 2.19 3.26
HRI [213] 0.96 2.06 3.11 1.05 1.37 1.58 1.49 2.60 3.07
SocialPool [3] 0.96 2.01 2.96 1.03 1.41 1.71 1.15 2.71 3.90
MR-Trans [320] 0.60 1.12 1.71 0.79 1.05 1.22 0.96 1.57 2.18
Mao et al. [211] w/ pred contact 0.78 2.19 3.99 0.59 0.93 0.95 1.01 2.47 4.16
STAG w/ pred contact 0.71 1.43 2.02 0.57 0.76 0.87 0.95 1.70 2.29

Table 3.4: Path, pose and global error in meters on CMU-Mocap dataset.

3.5 Conclusion

This paper has addressed the prediction of global pose in a three-dimensional environment as the staged
modelling of three core elements: the scene, the human trajectory, and the pose. STAG is the first scene-
aware global forecasting model which splits trajectory and pose motion to match the coarse-to-fine nature
of the task. In fact, the pose of a person is the result of its motion pathway and the scene, rather than the
cause of it.

STAG yields SoA performance on GTA-IM, the sole available for testing scene-aware global forecasting.
STAG also sets the SoA on the CMU-Mocap dataset, under the assumption that the scene consists solely of
a flat ground surface, therefore generalizing the task of global forecasting, which earlier methods have
addressed without consideration of the scene.
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Chapter 4

About latent roles in forecasting players in
team sports

4.1 Introduction

Recent advances in visual recognition and sequence modeling have enabled novel objectives in athletic
performance and sport analytics [220, 231, 267]. One novel and challenging task is the multi-agent trajectory
forecasting (See Fig. 4.1) of the players as a result of their observed current motion [125, 183]. The difficulty
is due to tactics, tight interaction of team players, the antagonist behavior of opponents, and the role assigned
to each player in each action. Traditional trajectory forecasting techniques [9, 101, 114, 136, 226] fall
short in performance due to their general formulations and lack of sport-specific dynamics. Furthermore,
trajectory forecasting methods must deal with the variable numbers of people in each scene (usually absent
in games) and do not consider the presence of two opposing teams, the ball, or the finality in the given sport
(e.g. scoring). Most recent literature [125, 183] has started to address some of these objectives, but, to our
knowledge, none has modeled the role of players for specific actions.

We propose RoleFor, a novel graph-based encoder-decoder model that performs a robust prediction of
the players’ future trajectory, utilizing roles to comprehend their interactions. The players’ positions and
movements on the court often follow pre-defined schemes, so we assume that each player may be assigned
a specific role. By proposing a role-based ordering of nodes in the graph, it is possible to establish a player
order and learn specific role-specific relationships.

The current best performers in-game forecasting [183, 226] are based on graph convolutional networks
(GCN) [154], but they do not consider roles. On the contrary, we model latent roles as nodes in the graph.
Our RoleFor model is composed of an ordering and a relational module. The former is an Ordering Network,
which identifies latent roles and orders players according to them – we use a well-known sorting approxi-
mation [27] to order the latent projections of the players. In the latter, the game dynamics and trajectories
are modeled using RoleGCN, based on [293] where the nodes are the newly assigned roles, and the edges
are their relations. The adjacency matrix is learned, and each entry corresponds to learning the role-based
player interaction.

We assume roles exist, and many characteristics could dictate them – e.g., marking the opponent, pos-
sessing the ball, and identifying the attacking and defending teams. However, we assume no prior knowledge
about roles. Our goal is to learn latent roles with an end-to-end algorithm, only considering the future tra-
jectory of all players. To test our intuition about roles, we pre-processed the basketball dataset by assigning
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TEAM AWAY - TEAM HOME - BALL

Obs. 

GT.  
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Figure 4.1: Example of multi-agent trajectory forecasting. We only plot one player for each team and the basketball
for readability reasons.

roles based on different methods (Table 4.2) and using those in our RoleGCN. We produce SOTA results,
confirming that finding good roles can improve model performances. Nevertheless, we found that current
differentiable ordering methods face some limitations of backpropagation when inserted in complex models.
In summary, our contributions are:

• We experimentally demonstrate that leveraging roles yields SoTA in trajectory forecasting.

• We propose an Order Neural Network module that creates a latent representation of the player’s
coordinates and orders them accordingly.

• We build a RoleGCN that learns the relations among roles.

• We empirically demonstrate that the current differentiable ordering approaches have some difficulties
with backpropagation – enabling little to no gradients to flow through – when dealing with complex
models.

4.2 Related Work

Trajectory Forecasting The forecasting of pedestrian movement has been studied to deal with realistic
crowd simulation [249] or to improve vehicle collision avoidance [25]; it was also used to enhance the ac-
curacy of tracking systems [62, 250, 337] and to study the intentions of individuals or groups of people
[173, 333]. Different models have been proposed to predict such trajectories, like Long Short-Term Mem-
ory (LSTM) networks [131] with shared hidden states [9], multi-modal Generative Adversarial Networks
(GANs) [114], or inverse reinforcement learning [157]. This group forecasting scenario resembles Game
Forecasting, where it is necessary to model the movements of two opposing teams.

Game forecasting Associations such as National Basketball League or the English Premier League have
used sophisticated tracking systems that allow teams to gain insight into each game [43]. Variational Au-
toencoders (VAEs) were used to model real-world basketball actions, showing that the offensive player
trajectories are less predictable than the defense[84]. LSTM[283] were employed to predict near-optimal
defensive positions for soccer and basketball, respectively, as for predicting the player’s movements during
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the game [125]. Variants of VAEs have also been used [297] to generate trajectories for NBA players. NBA
player trajectory forecasting was also studied in [356] and [370], proposing a deep generative model based
on VAE, LSTM, and RNN [125, 131, 142] and trained with weak supervision to predict trajectories for an
entire team. Nonetheless, we did not encounter work estimating specific latent roles and learning the player
interaction on those bases.

GCN-based forecasting Adopting a graph structure makes it possible to encode information and quantify
shared information between nodes. SoA in pose forecasting learns specific terms for the specific joint-
to-joint relation [293, 340]. Graphs are also widely used in trajectory forecasting and can be considered
fully connected [183], sparse or weighted. These structures distinctly model the interrelationships between
nodes, and their combination can be a crucial factor. Also, Graph attention layers (GAT) are widely used
in trajectory forecasting [136, 184] to learn the inter-player dependencies. To model role-based interaction,
we use the SoA pose forecasting model [293]. Pose forecasting is relevant since it considers the fixed node
cardinalities and the learned interactions. However, players from various matches and teams do not have
a fixed order, which is not an issue with pose forecasting. This encourages us to learn and re-order the
players based on hidden roles.

Differentiable Ranking Sorting and Ranking are two popular operations in information retrieval that, in
our case, can be useful in identifying the role of players. When used in composition with other functions,
sorting induces non-convexity, rendering model parameter optimization difficult. On the other hand, the
ranking operation outputs the positions, or ranks, of the input values in the sorted vector. As a piece-wise
constant function, the computation of gradients is way more complex, preventing gradient backpropagation.
Several recent works [27, 65] provide an approximation of the above operations to be used in a learnable
framework.

4.3 Methodology

This section formally defines the problem and explains our strategy to tackle it, focusing on the role as-
signment and encoding methods. First, we briefly explain how the Role-based Forecasting model (RoleFor)
performs latent mapping, role assignment, and trajectory prediction. We also focus on the main components:
the Order Neural Network (OrderNN), which handles the ordering task, and the RoleGCN, which facilitates
the learning process of relationships between roles in a game.

4.3.1 Problem Formalization

We target to predict the future trajectory of all players, given the observed positions at past time frames. We
denote the players by 2D vectors xp,t representing player p at time t. The position of all players at time t are
aggregated into a matrix of 2D coordinates Xt ∈ R2×p. Motion history of players is denoted by the tensor
Xin = [X1, X2, ..., XT ], which is constructed out of the matrices Xt for frames t = 1, ..., T . The goal is to
predict the future K players positions Xout = [XT+1, ..., XT+K ].
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4.3.2 Role-based Forecasting model (RolFor)

RoleFor uses two main components, the first one being the OrderNN (Section 3.2.1), which orders players
according to their latent roles. We postulate the existence of latent roles that when learned in an end-to-end
architecture yield the best trajectory forecasting performance. From the OrderNN, we will consider R, the
role vector, instead of P , the position vector. Notice that R and P have equal dimensions. The graph is
now defined as G = (V, E), where the nodes indicate the roles of each player and the edges capture the
interaction among roles during the game. The graph G has |V| = T × R nodes, which represent all R
roles across T observed time frames. Edges in E are represented by a Spatio-Temporal adjacency matrix
Ast ∈ RRT×RT , relating the interactions of all roles at all times. Note that Ast is learned, i.e., the model
learns how players with different roles interact by learning how latent roles interact over time.

Order Neural Network

The Order Neural Network (Fig. 4.2) takes in input the initial coordinates Xin and maps them into a latent
space. Additionally, it orders the latent vector into optimal rolesXrole_in, thanks to the use of a differentiable
ranking method [27], which has the same dimensionality of Xin. Note that roles get the corresponding
position coordinates over subsequent time frames, so each role is now characterized by a spatio-temporal
trajectory. A straightforward example of a role assignment involves sorting players in ascending order based
on their Euclidean distance from the ball. This method is also used as a valuable proxy task, which we use
for ablation studies (see Section 4.4 Table 4.2). However, since RolFor is trained end-to-end, OrderNN is
free to learn the ideal ordering that yields the best forecasting performance.

ORDER NEURAL

NETWORK

RoleGCN

XIN

XOUT

DECODER

ORDER NEURAL NETWORK

2

1

9

3

8

10

Diff. ShufflingDiff. RankingLinear Embedding

Figure 4.2: Architecture of RoleFor and a zoom into Order Neural Network

The differentiable ranking method SoftRank, [27] is a recent differentiable implementation of the clas-
sic sorting and ranking algorithm, empirically shown to achieve accurate approximation for both tasks. It
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is designed by constructing differentiable operators as projections onto the permutahedron, i.e., the convex
hull of permutations, and using a reduction to isotonic optimization. The key takeaway of the method is to
cast sorting and ranking operations as linear programs over the permutahedron. More precisely, it formulates
the argsort and ranking operations as optimization problems over the set of permutations Σ. SoftRank also
relies on a regularization parameter ε, which creates a trade-off between the differentiability of the algorithm
and the optimum’s accuracy. The greater the regularization factor (ε → ∞), the further the approximation
will be from the permutation vertices, and the smoother the loss function gradient will be. And vice versa,
by picking an ε → 0, the algorithm will yield more accurate permutations with a lower degree of differ-
entiability. After learning the ranking, we order the players according to it by employing a differentiable
re-shuffling module. The outputs of SoftRank are noted as {si}ni=1 where n is the number of rankings con-
sidered. At this point, we use a so-called base matrix B with the number of rows and columns equal to the
number of rankings. B will be used to store the real rankings {pi}ni=0. We then compute a {∆i}ni=1 matrix,
which represents ∆i = pi − si for each position {pi}ni=0. The matrix ∆ is used as the input as a rescaling
function. The re-shuffle process is a weighted combination: it yields a real shuffling when the approximated
rankings are integer and a differentiable shuffling instead when the ranking is fractional. Mi = e(

−∆
scale

)2 can
be considered an array of weights for each position, with values closer to 1 being the predicted positions of
each player. Finally, this will be used to recall the initial coordinates in an ordered manner:

Pi =

{
x′i =

∑n
j=1Mj · xj

y′i =
∑n

j=1Mj · yj
(4.1)

RoleGCN

Once the latent roles are inferred, the graph G = (V, E) represents each node i ∈ V as the player’s role
while the edges (i, r) ∈ E connect all the roles and describe their mutual interaction. RoleGCN (Fig 4.2)
will capture the underlying graph’s relationships, both between different nodes on the court in the same time
frame and between one node and itself over different time-frames. GCN [154] is a graph-based operation
that works with nodes and edges. For nodes, it aims to learn an embedding containing information about
the node itself and its neighborhood for each node in the graph. Thus, the learned adjacency matrices yield
a quantitative description of the interplay among roles. The space-time cross-talk is realized by factoring
the space-time adjacency matrix (as in [293]) into the product of separate spatial and temporal adjacency
matrices Ast = ASAt. A separable space-time graph convolutional layer l is written as follows:

H(l+1) = σ(As−(l)At−(l)H(l)W (l)) (4.2)

It is similar to a classic GCN convolutional layer, where As−(l)At−(l) is the factorized matrix Ast−(l) of
a GCN [154] layer. The critical difference is better efficiency and allows full learnability of the former.

Decoder

First, we de-shuffle the permuted roles according to the inverse of B to return to the original coordinates’
position. The decoding is done with multiple temporal convolutional (TCN) layers [132] used to predict the
following frames. We adopt TCN due to its performance and robustness.
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4.4 Experimental Evaluation

In this section, we introduce the NBA benchmark dataset and metrics, the trajectory forecasting results and
investigate why learning E2E roles is challenging.

4.4.1 Dataset

For our experiments, we use NBA SportVU [84]. It contains players and ball trajectories for 631 games
from the 2015-2016 NBA season. Similar to previous work [297], we focus on just two teams and consider
all their games. We obtain a dataset of 95, 002, 12-second sequences of players and ball overhead-view
trajectories from 1247 games. Each sequence is sampled at 25 Hz, has the same team on offense for the
entire duration and ends in a shot, turnover, or foul. As in [84], the data is randomly split into train,
validation, and test sets with respectively 60, 708, 15, 244, and 19, 050 sequences.

4.4.2 Trajectory Forecasting Metrics

We use as metrics ADE (Average Displacement Error) and FDE (Final Displacement Error), as usual in
literature [9, 84, 114, 125, 183]. They are used to measure the error of the whole trajectory sequence and
the final endpoints for each player. Respectively:

ADE =
∥∥∥T̂c − Tc

∥∥∥2
2

(4.3)

FDE =
∥∥∥Êf − Ef

∥∥∥2
2

(4.4)

Each observation has five frames, which correspond to 2.0 seconds in a basketball scenario. The goal
is to forecast the successive ten frames (4.0 seconds). In Eq. 4.3, T̂c represents the prediction for all future
trajectories over the c = 1, .., 10 subsequent frames, and Tc is the ground truth. The same nomenclature is
used in Eq. 4.4, where E is the matrix for the endpoints and c = 1 since we are only considering the last
frame.

4.4.3 Trajectory Forecasting Results

So, do roles exist, and does learning the role interaction yield state-of-the-art performance? We answer this
question by considering the most straightforward ordering: Euclidean distance of players from the ball. In
Table 4.1, we report state-of-the-art techniques compared to the RolFor model, with the Euclidean distance
ordering of players from the ball. [183] proposes multiple predictions via latent interaction graphs among
multiple interactive agents. [114], similarly, is also a multi-modal model incorporating the social aspects of
the players as well. [136] is based on a sequence-to-sequence architecture to predict the future trajectories of
players. Lastly, [226] substitutes the need for aggregation by modeling the interactions as a graph. Similar
to [340], it needs a pre-defined graph, allowing the leaning procedure only on the given edges. RolFor in
Table 4.1 yields the SoA forecasting performance in terms of ADE, 5.55 meters, second best in terms of
FDE, 9.99 meters. It sorts players according to their Euclidean distance from the ball, arranging them into
a sequence of attackers (players detaining the ball in the considered action), alternating with defenders (not
detaining the ball). Each attacker is followed by its marker, which RolFor considers the closest to it in terms
of Euclidean distance. As for all other reported SoA algorithms, RolFor considers that the teams are known.
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Finally, "Oracular Permutation” means that RolFor uses distances at the last future step, i.e., step 10 in the
future. In contrast, any other reported algorithm uses only the observed five frames. We will investigate this
more thoroughly in the next section. A neural network can learn the Euclidean distance, and softRank [27]
should be able to sort the players according to it. Replacing the hand-defined distance computation with a
Neural Network should be as effective. We expect that a model with a sorting unit that learns sorting E2E in
relation to the final forecasting goal should be capable of doing better than this, assuming all modules were
effectively differentiable.

Table 4.1: Comparison of our model with SoTA models
Model ADE FDE
EvolveGraph [183] 5.73 8.65
Social-STGCNN [226] 6.42 10.04
STGAT [136] 7.06 12.54
SGAN [114] 5.88 10.36
RolFor + Oracular Permutation 5.55 9.99

Further Experiments on Euclidean Ordering

We delve deeper into the results of RolFor in Table 4.1 and analyze the importance of each hand-defined
Euclidean distance term in Table 4.2.

No ordering Vs. Simple ordering. The first forecasting result in the table neglects the player ordering and
learns interaction terms between players, arranged in random order. It yields 6.34/11.5 ADE/FDE meters
errors. Simple ordering stands for arranging all players in a list, according to their distance from the ball, at
the last (5th) observed frame. This uncomplicated ordering is only negligibly better than no order. A GCN
model may deal with players in random order well and only benefits from ordering if it is informative.

Distance from the ball and marking. Results in the third row of the Table 4.2 add marking to the ball
distance ordering. Each player in the attacker team is matched with one from the defender team according to
Euclidean distance. Performance improves in ADE, from 6.31 to 6.16 meters, and slightly degrades in terms
of FDE, from 11.1 to 11.28. Overall All distances are computed at the last observed frame. Furthermore,
all distances are plain Euclidean distances, which a simple Neural Network may replicate or improve with
E2E learning.

Distance from the ball and marking at future frames. The last row of Table 4.2 considers the furthest
future frame position for all distance computations. It should be noted that the model makes no assumptions
about future locations. Future information is simply utilized to place players in order. This motivates us to
replace the hand-defined ordering with an E2E-trained module, which we will do in the following section.

Table 4.2: Results for different types of ordering
Ball Dist. Obs. Future Mark ADE FDE
- - - - 6.34 11.5
✓ - - - 6.31 11.1
✓ ✓ - ✓ 6.16 11.28
✓ - ✓ ✓ 5.55 9.99
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4.4.4 End to end Model with latent roles

In this section, we leverage the full RolFor model, E2E trained. Here the first module, OrderNN, sorts
players into their roles in the action, then the RoleGCN module reasons on their role-based interaction.
Sorting into roles has benefited forecasting in Sec. 4.4.3. Here we assume that roles are latent variables,
which the OrderNN estimates, E2E, based on the best forecasting performance. In Table 4.3, we compare
the hand-defined baseline (ball and marking distance on the last observed frame, scoring 6.16/11.28) against
E2E model variants. E2E is learning to order, encode the role-role interaction, and forecast based on the
encoder. This model is performing poorly at 12.12./15.02 ADE/FDE. Is this because the OrderNN is in-
capable of ordering, or is it because the OrderNN is not fully differentiable? Moreover, the EuclDistEst
variant attempts to answer part of this question. Here we used a pre-trained Neural Network module to
approximate the Euclidean distance based on the player’s performance. We then use the pre-trained module
to sort players according to the ball. If the Euclidean distance estimator model were perfect, performance
would be 6.31/11.1 (ADE/FDE), cf. Table 4.2. EuclDistEst yields, however, 7.50/12.58. We attribute this
mismatch to the residual errors in the Euclidean distance estimation, which, as it seems, matters. More
surprisingly, E2E-finetune starts from the EuclDistEst variant, and it fine-tunes it, E2E. The error increases
to 12.08/14.97, so the model neglects the initialization and reverts to the E2E performance. We attribute the
discrepancy between EuclDistEst and E2E to the challenges in the SoftRank differentiability, as we further
analyze in the next section.

Table 4.3: Different training configurations for RolFor
Model Configuration ADE FDE
RolFor E2E 12.12 15.02
RolFor E2E-finetune 12.08 14.97
RolFor EuclDistEst 7.50 12.58
RolFor Best non-or. dist. 6.16 11.28

Table 4.4: Analysis of simulated errors in ordering
Model ADE FDE
Oracular Ordering 5.55 9.99
Light Swap 6.55 12.10
Light Insert 6.55 12.10
Light Swap + Light Insert 6.59 12.08
Heavy Swap + Heavy Insert 6.71 12.25

Analysis of the Order Neural Network

Here we focus on confirming our claims on the issues of the differentiability of Softrank. We set to order the
players according to their ascending distance from the ball, at a specific frame, given their 2D coordinates. It
allows us to test the first RolFor module, OrderNN, in isolation, cf.4.5. In Table 4.5, we compare OrderNN
E2E against OrderNN EuclDistEst. The first E2E trains the order of players and re-shuffles them. The
second supervises the network by tasking it to learn the Euclidean distance between the players and the ball
and then sort the distances according to SoftRank. We measure the ordering accuracy pord as the percentage
of players the models place in the correct order. In other words, we reproduce the top-k classification
experiment as [65]. The authors propose a loss for top-k classification between a ground truth class ord ∈ [n]
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and a vector of soft ranks ˆord ∈ Rn, which is higher if the predicted soft ranks correctly place y in the top-k
elements.

Table 4.5: OrderNN E2E against OrderNN EuclDistEst top-k accuracy
Model top-k Accuracy
OrderNN E2E 10 1,00%
OrderNN EuclDistEst 10 71,00%
OrderNN EuclDistEst 5 77,00%
OrderNN EuclDistEst 3 82,00%
OrderNN EuclDistEst 1 92,00%

Observe from Table 4.5 that learning Euclidean distances from 2D positions is an easier task for a deep
neural network since SoftRank yields 71% at the top-10 ordering accuracy pord. It is also interesting to
notice that when changing the top-k ordering accuracy into 5, 3, 1 we get similar results to [27]. By contrast,
learning the ordering E2E from the 2D coordinates yields surprisingly low performance. Note in the table
that OrderNN E2E achieves a top-10 ordering accuracy of only 1%.

4.4.5 Robustness of RolFor to ordering errors

How much does misordering impact forecasting? We measure ADE and FDE forecasting errors when
randomly altering the order provided by our best performing oracle RolFor (5.55/9.99 ADE/FDE, Table
4.2). In more detail, we consider the swap of two players Light Swap, which can occur if the distance
between them is relatively small. A more significant error can also occur, e.g., one role is not identified
correctly and a player is inserted at the wrong position, making the whole order slip. We name this Light
Insert. In Table 4.4, we consider the two potential sources of errors by randomly simulating one or both.
The results are coherent with what we said previously Table 4.3, where the RolFor EuclDistEst has a top-10
ordering accuracy of 71% yielding 7.50/12.58. At the same time, a Light Swap/Insert gives 6.55/12.10 in
ADE/FDE and 80% top-10 ordering accuracy. This last Table 4.4 highlights the importance of roles and
their impact on the final trajectory accuracy.

4.5 Conclusions

Our goal was to show that roles and social relations in sports are quantifiable and can be effectively used to
improve the current SoA models in game forecasting. We demonstrate that roles exist by testing different
permutations over players. Then, we encode the player’s coordinates into a latent space and use the encoding
to find an optimal latent role ordering. The model employed to perform trajectory forecasting is called
RolFor (Role Forecasting) and considers the input nodes of a graph indicating roles in a game. This single-
graph framework favors the relation between roles and time, allowing better learning of the fully-trainable
adjacency matrices for role-role and time-time interactions. The adoption of CNNs and the graph structure
of the input allows the requirement of parameters to be only a fraction of the ones used in Transformers,
GANs, and VAEs. Our observations emphasize the significant opportunity for future work to develop fully
differentiable ordering modules to enable learning latent role-based interactions in graph-based models, also
applicable to social networks and multi-agent systems.
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Chapter 5

Following the Human Thread in Social
Navigation

Figure 5.1: We present our novel Social Dynamic Adaptation model (SDA). The framework involves two stages of
training that allow the model to infer, given its past observations and actions, another agent’s Social Dynamics. In
the first training stage, the model embeds the followed agent’s trajectory, which, together with sensor perceptions,
compose the input to the model’s Social navigation Policy (π). The knowledge obtained from the human trajectory
strongly helps the navigation policy in finding and following an agent. However, this information is often not available
during deployment. In the second stage, SDA learns to adapt past statuses and actions, which are always available,
to the first stage’s Social Dynamics embedding ẑ. As depicted in the figure, the status contains depth maps and BB
detection of the person, if observable from the egocentric robot view. ẑ is then paired with current observations as
input to the frozen π.

5.1 Introduction
Traditional navigation techniques within Embodied Artificial Intelligence (EAI) have marked a crucial ad-
vancement by introducing robots into real-life environments. However, these techniques have primarily
focused on agents traversing vacant spaces. Conversely, the significance of social navigation within EAI has
steadily increased. Social navigation entails agents’ capacity to navigate human-centric environments while
considering human movements and behaviours. These agents need to be able to locate, track, and interact
with humans in a safe and socially acceptable manner. Previous studies predominantly characterized So-
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cial Navigation as a variation of PointGoal Navigation, wherein agents strive to reach specified destinations
while considering human movements [242, 331, 342]. Habitat 3.0 [255], a significant breakthrough in EAI,
introduces a lifelike environment seamlessly incorporating human avatars. This integration enables inves-
tigating human-agent interactions within a controlled, risk-free, dynamic environment. What sets Habitat
3.0 [255] apart is its ability to replicate complex scenarios where human intentions are constantly changing.
Nevertheless, this dynamism also presents particular challenges, such as collision avoidance and achieving
success in locating and following humans.

Despite notable efforts in collision avoidance and safety, most existing methods for Social Navigation
either rely on privileged information that is not available in real-world scenarios or do not adequately capture
the social dynamics and norms of human behaviour. For instance, [331] and [342] use a GPS and compass
sensor to provide the agent with perfect localization, which might be unrealistic even if using SLAM [82,
232] methods, whenever the human is not in the line of sight. While [242] and [346] do not account for the
social factors that influence human behaviour. Therefore, this limitation hinders their practical applicability
and adaptability to dynamic environments. [38], instead, models some social factors in the form of Proximity
Tasks but fails to account for the cooperative nature that a social agent must possess, restricting itself to
merely avoiding collisions with them. The current SoA model proposed in [255] necessitates privileged
information, such as humanoid GPS, which offers polar coordinates, detailing the accurate distance and
angle of the human from the robot, to attain high-performance outcomes. However, this requirement is
highly impractical in real-world environments during inference.

This paper proposes a novel Social Dynamics Adaptation model (SDA), shown in Fig. 5.2, that ef-
fectively solves the robot’s awareness of complex human behaviors, even temporarily losing sight of the
person and fast robot motion. Specifically, the first stage trains a base policy considering human trajectories
encoded into a latent vector. The latent vector is a low-dimensional, nonlinear projection of the human
trajectories, and it is trained end-to-end with the base policy to extract the social factors that led the robots
to choose better actions. The subsequent supervised adaptation stage regresses this latent vector using only
the robot’s state and action history. Unlike previous methods, such as [331] and [346], which often depend
on simulated privileged information or simplified social behavior models, our approach adapts to dynamics
resembling real-world conditions in real-time. In summary, SDA adapts and accounts for unpredictable hu-
man behaviors by exploiting privileged information during training and recovering this fundamental signal
during deployment when it is often impractical to compute. Finally, the deployed robot features the motion
policy, learned in the first stage, and the social dynamics, inferred from prior statuses and actions.

Out of extensive benchmarking, SDA outperforms the approach proposed in Habitat 3.0 [255] and a
second adapted best-performing method [38] from Habitat 2.0 [300]. We conduct a thorough experimental
evaluation of the core contribution of this work—learning to infer social dynamics from (privileged) infor-
mation about the person. Although our primary focus is on algorithm development, we also seek to improve
the robustness of our method for potential real-world applications. To this end, we conduct experiments
that bridge the gap to real-world scenarios by introducing noise to the input, reducing the refresh rate of the
sensors, and modifying the simulator to reflect more realistic human behavior. Our ablative studies reveal
that human trajectories are not only strong input information for the robot control policy but also provide
better supervision for inferring the social dynamics latent to the same policy. Other oracular information,
such as the humanoid GPS (direction and distance from the person to the robot), serves as powerful sen-
sors for the control policy but does not facilitate adaptable social dynamics for inferring human-robot-scene
interactions.
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5.2 Related Work
Embodied Navigation. Recently, there has been a surge in exploring indoor navigation within an embod-
ied framework [70]. This upswing has been facilitated primarily by the availability of large-scale datasets
comprising 3D indoor environments [44, 263, 286] and simulators designed for simulating navigation within
these dynamic 3D spaces [162, 276, 286]. Nevertheless, these simulators are not equipped to handle hu-
man entities within the environments, restricting the investigation to navigation tasks in scenarios where
the agent functions independently or, at most, alongside humans simulated via static meshes that simulate
movement [332, 346]. These simulated humans are treated as dynamic obstacles and lack compliance with
any social construct. This constraint has been effectively addressed with Habitat 3.0 [255], the simulator
used for this research. Habitat 3.0 introduces the capability to simulate the behaviours of humans engaging
in tasks within dynamic environments, thus overcoming the limitations mentioned above.

Thanks to these simulators the realm of EAI has witnessed the introduction of numerous tasks [70],
including PointGoal Navigation [331], ObjectGoal Navigation [20], Embodied Question Answering [330],
and Vision and Language Navigation (VLN) [11, 167]. Various modular approaches [37, 47, 48, 262, 266]
have been proposed to address the challenges of navigating through static, single-agent environments. These
approaches utilize maps constructed from depth images and conduct path planning directly on these maps.
However, these approaches are unsuitable in social settings where dynamic objects (humans) move within
the environment. This is because humans are observable only within the agent’s field of view (FOV).
Moreover, the agent must address the additional challenge of tracking and mapping. End-to-end RL-trained
policies [36, 242, 325, 342, 343], should be adapted to learn also social clues similarly to [38], where the
agent learned proxemics information about the humans moving in the environments thanks to two proximity
tasks. In this paper, instead, we try to learn social behaviours directly by internally modeling the humanoid
trajectories in the latent representation of the agent. Furthermore, differently from [38], the agent’s aim is
no longer just avoiding collisions. Still, it involves locating this dynamically acting human and following
them for a specified number of steps while maintaining a safe distance. This evolution of the task demands a
heightened level of social comprehension from the agent, requiring the anticipation of the person’s intentions
and the ability to trail them closely without compromising safety.

Socially-Aware Navigation. Research in robotics, computer vision, and the analysis of human social
behavior explored socially aware representations and models [229]. Extending from the realm of collision-
free multi-agent navigation [24, 55, 198, 312] and navigation in dynamic environments [14], researchers
have further expanded their investigations to encompass scenarios involving human presence [49, 54, 87,
116, 202].

The approach presented in [54] incorporates collision avoidance algorithms like CADRL [55] while
introducing common-sense social rules. This integration aims to reduce uncertainty while minimizing the
risk of encountering the Freezing Robot Problem [308]. Other works [49, 87] seek to model human-agent
interaction by employing techniques such as spatiotemporal graphs [202].

Typically, these methods undergo testing in a minimal number of environments that offer complete
knowledge about the human positions and velocities [49, 55], featuring simple obstacles and often assuming
collaboration between moving agents[49, 87]. In contrast, our focus revolves around SocialNav within
expansive indoor environments, characterized by partial knowledge about them, since the agent perceives
the environment only through its sensors from an egocentric perspective, and no information about the
velocity or position of the human is given to the agent. Our SDA addresses the missing information from
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Figure 5.2: Pipeline of the novel methodology proposed. First, we jointly learn to encode human trajectories and
a motion policy. In the next stage, given the previous states and actions, we infer the social dynamics and pass the
estimated latent vector to the frozen policy.

the interacting human position, inferring it from the robot’s history of actions and status.

Modelling dynamic environments. Simulated environments [179, 254, 309] offer privileged information
about the scene whose exploitation can be computationally intense or unfeasible during deployment. While
navigating social environments, it is vital to take into consideration human behaviour [158]. Ideally, one
would want to forecast people’s position for better path planning [244], but forecasting robot-person inter-
actions is significantly slower [261] than navigation policies, hence being challenging to be considered for
training or deployment. To overcome this problem, we leverage literature on system identification [4, 113]
to infer the encoded privileged information during robot navigation. Once encoded in a latent space during
the first training stage and used to train the primary policy, it is possible to asynchronously derive that same
information from the state-action history [171, 172, 192, 200, 256, 364], influenced by the signal we want
to identify. Unlike previous works, we are the first to identify the social dynamics (under the form of hu-
man trajectories), with the intuition that modeling human behavior is fundamental for efficient human-robot
collaboration.

5.3 Methodology
This section introduces SDA: a novel framework for social navigation that incorporates human trajectories
into the sequential decision-making process. The first stage of our approach focuses on encoding human
trajectories into a latent social context to represent the social dynamics that are functional to the agent mo-
tion policy. In the second stage, we introduce the Adapter module, which enables the estimation of social
information from the agent’s past behavior. Recovering this signal allows the robot to operate without ex-
plicitly representing human behavior. We detail the training process, trajectory modeling, and optimization
techniques utilized in our approach, highlighting its effectiveness in addressing the challenges of social
navigation.
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Problem formalization. The problem requires to locate and follow a humanoid in motion within an indoor
environment, maintaining a distance of 1 to 2 meters for at least k steps [255]. With the status xt, we
represent the agent’s “perception” at time t. We exploit depth images from different cameras placed on the
robot and a preprocessed version containing a humanoid detection bounding box. These perceptions are
processed with a ResNet [127] before being fed to the recurrent policy network, selecting the best action
at at time t. We use Decentralized Distributed Proximal Policy Optimization (DD-PPO) [331] to iteratively
improve the agent’s policy while maximizing rewards derived from interactions with several environments
executed in parallel, ensuring stability through controlled policy updates and lower training times.

The pipeline described above can be considered a baseline implementation that does not contain priv-
ileged information but relies only on the robot’s onboard sensors. To address the social aspect required
by the task, we consider additional details on the humanoid, e.g., “social dynamics”, defined as et−N :t−1,
where N refers to the trajectory length. et−n represents the position n steps before time t, and et−N refers
to the earliest position in the trajectory under consideration. The notation et−N :t−1 is used as a shorthand
to indicate the complete trajectory from N steps in the past to the current time, representing absolute x-y
coordinates. In the following sections, we describe how exploiting this information at training time can
improve performance during deployment when it is absent.

Stage 1: Social Policy. Recurrent policies such as DD-PPO take as input the current status, in our case,
a collection of depth images processed via a Resnet xt, and the action at the previous time-step at−1. We
add another input to this pipeline, namely a latent vector zt built by encoding the humanoid privileged
information et−N :t−1:

zt = µ(et−N :t−1) (5.1)

at = π(xt, at−1, zt) (5.2)

Intuitively, by training everything with the same objective zt encodes the social dynamics that led the agent
to maximize its reward, adapting to human movement patterns. Additionally, including trajectory data
allows the agent to learn from past interactions and experiences. In our approach, the trajectory encoder (µ)
is implemented as Multilayer Perceptrons (MLPs). The objective retains its usual formulation without any
explicit reference to the human trajectories:

LCLIP = Et
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(5.3)

where rt(θ) is the ratio of the probability of action at under the current policy and the previous one that is
being executed for gathering data. Ât represents the advantage function at time t, guiding the policy towards
actions that yield higher expected rewards.

Defining what information is considered “privileged” and why is essential. In our context, it refers
to detailed knowledge about the humanoid in the environment, such as the exact position of humanoids
defining a trajectory (traj.), or the relative position with respect to the agent often denoted as humanoid
GPS [255](hGPS). We can easily gather this information in simulated environments. However, collecting
them in real-life scenarios is often impractical. This distinction is crucial as it highlights the challenge of
transferring learned policies from simulation to the real world.
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Stage 2: Social Dynamics Regression. We aim to extract and exploit social cues directly from the robot’s
perception and eliminate the need for auxiliary devices like GPS trackers on humanoids. Inspired by [171],
we introduce the “social dynamics” module (Adapter), parametrized by an MLP ψ that takes as input the
recent history of the robot’s states xt−N :t−1 and actions at−N :t−1 to generate a new latent vector ẑt:

ẑt = ψ(xt−N :t−1, at−N :t−1) (5.4)

We obtain the state-action history by deploying the agent in the environment with optimal policy π∗

obtained after the first stage and the latent vector ẑt:

at = π∗(xt, at−1, ẑt) (5.5)

During this process, we optimize the Adapter, MLP, with a supervised regression objective, Mean
Squared Error (MSE), to recover the original information contained in zt that we compute relying on the
preferential information trajectory:

MSE(ẑt, zt) = ∥ẑt − zt∥22 (5.6)

Once we finalize the Adapter training, instead of relying on the privileged information, we can depend
upon the robot’s states xt−N :t−1 and actions at−N :t−1 to generate ẑt, serving as an estimate of the actual
latent social dynamics vector zt. Doing so enables the agent to estimate social dynamics online, improving
its performance in dynamic environments and enhancing its social navigation capabilities, freeing it from
dependence upon external sensors.

5.4 Results
Section 9.7.2 outlines our findings on Social Navigation, along with an ablation analysis of adaptable infor-
mation. Additionally, Section 5.4.2 offers a qualitative examination of our results, and an analysis of the
role played by the latent vector ẑt. A more detailed analysis and further qualitative results can be found in
the Appendix.

Simulator. We tested SDA on Habitat 3.0 [255], a simulation platform designed for human-robot interac-
tion within domestic settings. This platform offers precise humanoid simulation capabilities with a focus on
collaborative tasks such as Social Navigation and Social Rearrangement. It offers a vast library of avatars
featuring multiple genders, body shapes, and appearances. Furthermore, it employs an oracle policy to gen-
erate movement and behavior, enabling programmable control of avatars for navigation, object interaction,
and a range of other movements.

Baselines. The baselines we employ in our study are drawn from Habitat 3.0 [255] and consist of:

• Heuristic Expert: a heuristic baseline equipped with access to the environment map, employing a
shortest path planner to devise a route to the current location of the humanoid. The heuristic expert
operates on the following principles: When the agent is beyond a distance of 1.5 meters from the hu-
manoid, it employs a “find” behavior, utilizing a path planner to approach the humanoid. Conversely,
if the humanoid is within 1.5 meters, the expert executes a backup motion to prevent collision with
the humanoid.

Luca Scofano 45



5.4. Results

• Baseline: the current SoA method [255], a recurrent neural network policy trained with DD-PPO [331],
operates on a “sensors-to-action” paradigm. Inputs to this policy consist of an egocentric arm and
stereo depth sensors, a humanoid detector, and humanoid GPS coordinates, while the outputs are ve-
locity commands in the robot’s local frame. Table 5.1 compares our model in a realistic configuration,
where the humanoid GPS data are unavailable.

• Proximity tasks: we also adapted the Proximity Tasks defined in [38] and applied them to the base-
line [255]. These tasks were proposed for a different setup of SocialNav, where the agent acts in
an environment with multiple humanoids and must navigate from point A to point B while avoiding
collisions. We adapted the risk and compass proximity tasks to the SocialNav setting addressed in this
article. In this context, the risk has a low value (close to 0) when the agent is within 1 to 2 meters from
the humanoid and a value close to 1 when the distance is less than 1 meter or greater than 2 meters.
Similarly, given the presence of only one humanoid in the environment, the compass was redefined
to predict the angle between the humanoid and the agent. This adjustment aims to assist during the
following phase, enabling the agent to follow the humanoid while maintaining a safe distance and
staying aligned with the human. The proximity tasks are jointly trained with the policy and detached
during evaluation.

Metrics. We used the metrics for the SocialNav task as defined in [255]. Finding Success (S) is the ratio
of the episodes where the agent located and reached the human. Finding Success Weighted by Path Steps
(SPS) measures the optimality of the path taken by the agent wrt the optimal number of steps needed to
reach the human. Following Rate (F ) is the ratio of steps during which the robot maintains a distance of
1-2 meters from the humanoid while facing towards it relatively to the maximum possible following steps.
Collision Rate (CR) is the ratio of the episodes that ended with the robot colliding with the humanoid.
Episode Success (ES) measures the ratio of the episodes where the agent found the human and followed it
for the required number of steps, maintaining a safe distance in the 1-2 meters range.

Privileged information. In our work, the privileged information under consideration includes humanoid
GPS (hGPS) and human trajectories (traj.). Humanoid GPS is represented in polar coordinates, a method
of specifying a point’s position in a plane using two parameters: the distance from the point to the origin
(radius) and the angle formed between a reference direction (typically the positive x-axis) and a line con-
necting the origin to the point (polar angle or azimuth). In our context, the origin is defined as the robot’s
position; thus, its position is implicitly known along with that of the human. Conversely, trajectories solely
consist of information derived from the human’s position within the environment.

5.4.1 Quantitative Results

In Table 5.1, we present the results obtained in Habitat 3.0 [255] for the Social Navigation task. The table is
divided into three sections. The first one displays outcomes achieved by utilizing a heuristic expert endowed
with extensive information, including its position, map data, and the humanoid’s position, granting it a
competitive advantage over other methods. The subsequent section features models trained and tested using
ground truth (GT) data (Baselines and Stage 1), thus establishing an upper limit for techniques utilizing
more practical inputs feasible in real-world scenarios. Lastly, the final rows delineate results from methods
conducting inference without privileged information. The models that use privileged information (GT) show
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that S1 has lower performance than the two Baselines, especially in S and SPS. This is to be expected,
considering that while trajectories solely depict the movement of the human in the environment, hGPS
furnishes crucial details on locating the humanoid, offering insights into the distance and angle between
them. In the second stage, despite the absence of human trajectory input, SDA keeps the performance
level of Stage 1 by adapting to the social dynamics. Our model outperforms the baselines in the find task,
increasing S and SPS by 6%.

Our approach generally improves performance in the episode success (ES) metric, which occurs when
the agent finds the humanoid and follows it for 400 steps. However, we emphasize that the test-time episode
ends at 1500 steps or when the agent collides with the humanoid [255], not after the 400 follow steps. In this
context, S, SPS, and F metrics demonstrate how SDA, compared to the Baseline, more frequently locates
the humanoid, follows a more optimal path (on average 438 vs. 540 steps), and follows it for a longer
duration (390 vs. 218 steps). Therefore, as the agent follows the humanoid longer, it has more chances to
collide with it, given that the episode does not necessarily end after the required steps. In a scenario where
the test-time episode concludes either after 400 follow steps or immediately upon a collision between the
agent and the humanoid, SDA and the Baseline show a comparable collision rate (CR), 0.39, and 0.38,
respectively.

Table 5.1: Main results for Social Navigation. Within the table, GT denotes ground truth privileged information and
* corresponds to reproduced results.

Models hGPS traj. S ↑ SPS ↑ F ↑ CR ↓ ES ↑
Heuristic Expert [255] - - 1.00 0.97 0.51 0.52 -
Baseline [255] GT 0.97±0.00 0.65±0.00 0.44±0.01 0.51±0.03 0.55±0.01*
Baseline+Proximity [38]1 GT 0.97±0.01 0.64±0.00 0.57±0.01 0.58±0.03 0.63±0.02

SDA - S1 GT 0.92±0.00 0.46±0.01 0.44±0.02 0.61±0.02 0.50±0.01

Baseline [255] 0.76±0.02 0.34±0.01 0.29±0.01 0.48±0.03 0.40±0.02*
Baseline+Proximity [38] 0.85±0.02 0.41±0.02 0.37±0.01 0.58±0.02 0.41±0.01

SDA - S2 0.91±0.01 0.45±0.01 0.39±0.01 0.57±0.02 0.43±0.02

Adaptable information. Table 5.2 presents the results from Stage 1 (S1) and Stage 2 (S2) with the uti-
lization of various privileged information, such as Humanoid GPS (hGPS) and human trajectories (traj.).
During S1, particularly in S and notably in SPS, incorporating hGPS as an additional input leads to supe-
rior results. This advantage is likely attributed to hGPS containing implicit information about human and
robot positions, facilitating more efficient path selection, especially in SPS scenarios.

However, this pattern is not evident in S2, where trajectories typically provide more adaptable infor-
mation. As previously mentioned, hGPS inherently encompasses the robot’s position, posing challenges in
regressing this data during the second stage due to the lack of initial context regarding the robot’s location
relative to the environment. Furthermore, hGPS may be difficult to adapt when the human is detected and
disappears around a wall. Since hGPS comprises polar coordinates, the distance between the robot and
the human spans the wall. This issue does not arise when utilizing trajectories, as they do not require any
information about the robot and can be adapted solely based on depth images and detection information.

1Code refactored and adapted from [38] to Habitat 3.0.
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Table 5.2: Ablation studies for social dynamics estimation. GT denotes ground truth privileged information, and A

indicates the adapted information.
Models hGPS traj. hGPSA traj.A S ↑ SPS ↑ F ↑ CR ↓ ES ↑
S1 GT GT 0.94±0.01 0.58±0.00 0.45±0.02 0.64±0.03 0.52±0.01

S1 GT 0.93±0.00 0.62±0.01 0.46±0.01 0.64±0.02 0.48±0.01

S1 (Proposed) GT 0.92±0.00 0.46±0.01 0.44±0.02 0.61±0.02 0.50±0.01

S2 ✓ ✓ 0.57±0.06 0.21±0.04 0.05±0.01 0.30±0.02 0.02±0.00

S2 ✓ 0.70±0.02 0.31±0.02 0.05±0.01 0.70±0.03 0.03±0.01

S2 (Proposed) ✓ 0.91±0.01 0.45±0.01 0.39±0.01 0.57±0.02 0.43±0.02

5.4.2 Qualitative Results
We qualitatively demonstrate the results in our proposed SDA. Firstly, we showcase the agent’s ability to
locate the humanoid within the environment by moving around, followed by its capability to follow the
humanoid within the environment. Subsequently, we present two specific behaviors where the agent briefly
spots the humanoid and one where it moves backward to create space for passage. Fig. 5.3 shows an episode
where the agent and the human are located in different rooms at the start. Then, the agent begins its search
for the humanoid by navigating within the environment until the encounter takes place. After the encounter,
the agent then transitions into the follow phase.

Figure 5.3: The agent and the humanoid start the episode in separate rooms. The agent navigates through the envi-
ronment in search of the humanoid, and once found, begins to follow it.

Latent Analysis. We additionally explore the implications of our approach and the role of adapted human
behavior. In Figure 5.4, we present the distribution of inferred human behaviors using the latent variable ẑ,
computed across all timesteps in the test set. The t-SNE projection reveals four distinct behavioral stages in
a well-separated manner, highlighting key aspects of human-robot interaction:

• Find: The robot has not yet detected any human in its RGB camera frames and remains outside the
zone of interest, typically at a distance of 1-2 meters.
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• Seek: The human has been detected but is still beyond the zone of interest. The robot is moving
toward the person.

• Lost: The robot loses sight of the human it previously detected, but the person is still within the 1-2
meter range, prompting the robot to reorient.

• Follow: The human is actively being tracked by the robot, remaining within the 1-2 meter zone,
allowing the robot to continue following the person.

We also overlay dots from a representative experiment, where the color gradient from black to white
shows the progression of time. The plot effectively illustrates the robot’s adaptive behavior as it transitions
fluidly between modes: the robot starts in Find mode, shifts to Seek, and then enters Follow mode upon
detecting the person. At times, the human moves behind an obstacle, such as a wall, prompting the robot to
switch to Lost mode. Eventually, the robot reacquires the person and resumes following until the episode
ends.

Figure 5.4: Latent Analysis

5.5 Toward real-world scenarios
While simulated environments have advanced significantly, they still fall short in capturing the full unpre-
dictability of real-world interactions. To address this limitation, we take incremental steps toward real-world
scenarios by proposing tests that incorporate more realistic social behavior, constrained computational re-
sources, imperfect communication between the adaptation module and the primary policy, and noisy sen-
sors. Although conducted in simulation, our work aligns with standard practices in the Embodied AI liter-
ature [36, 38, 47, 48, 266, 342, 343, 346], which utilize simulated environments to rigorously evaluate and
iterate on agent behaviors. In contrast, “Sim2Real” studies are typically standalone works [99, 242] that
focus specifically on transferring policies and learned behaviors from simulated environments to real-world
applications. The anticipated conclusion is that more realistic human behavior and sensor readings likely
contribute to the sim-to-real gaps. However, incorporating realistic training samples can partially recover
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performance loss. Additionally, the performance gap identified between the Baseline [255] and our pro-
posed SDA remains consistent across metrics, underscoring the algorithmic novelty of our simulated-only
study.

ORCA. We have augmented the motion policy of humanoids in Habitat 3.0 by making them aware of the
robot presence, with reciprocal collision avoidance (ORCA) [291]. When used on two agents (or more), it
provides sufficient conditions for collision-free motion by letting each agent take half the responsibility of
avoiding pairwise collisions. In our case, however, it is applied only to the humanoid; meanwhile, the robot
still relies on its end-to-end policy. This removes unrealistic behaviors where the human sees the robot and
goes straight into it. Table 5.3 shows a lower collision rate (CR), 37% instead of 57% and a higher episode
success (ES) 48% vs. 43%; meanwhile, we notice a slight decrease in performance in the other metrics.

Table 5.3: Comparison of SDA performances on plain Habitat 3.0 versus the variant with ORCA.
SDA S ↑ SPS ↑ F ↑ CR ↓ ES ↑
Habitat 3.0 0.91±0.01 0.45±0.01 0.39±0.01 0.57±0.02 0.43±0.02

Habitat 3.0 + ORCA 0.90±0.01 0.43±0.02 0.38±0.01 0.37±0.01 0.48±0.01

Lower frequency updates. In Table 5.4, we simulate the scenario where the adaptation module works at a
lower frequency (and a low update rate) due to computational constraints that may arise during deployment.
In SDA, we update the ẑ vector at each timestep. We evaluated two scenarios where the update is performed
once every two or one hundred timesteps. Notably, only a slight performance decrease affects the metrics
related to the finding part of the task.

Table 5.4: SDA performance considering missing readers on Habitat 3.0.
Update Rate S ↑ SPS ↑ F ↑ CR ↓ ES ↑
1 (Proposed) 0.91±0.01 0.45±0.01 0.39±0.01 0.57±0.02 0.43±0.02

1/2 0.87±0.01 0.39±0.01 0.44±0.01 0.63±0.02 0.48±0.02

1/100 0.85±0.01 0.38±0.01 0.43±0.01 0.64±0.03 0.46±0.01

Noisy inputs. We evaluate the addition of noise on both the sensor input (depth images and bounding
boxes) and actuators. Table 5.5 presents the results after fine-tuning both SDA and Baseline policies for 1M
steps. We used Gaussian noise on the Bounding box human-detector, Redwood noise on the Depth camera
(the policy does not use the RGB) [61, 242], and Gaussian noise on the high-level actuators [61, 242],
the agent’s angle and velocity. Analyzing the results in Table 5.5, we note that the overall largest drop
in performance regards Finding Success (S), dropping from 91% to 81-83%. As a consequence of this,
the collision rate (CR) actually improves since the robot needs to follow the humanoid for less time. The
performance in follow (F) is mostly affected by noise in the bounding boxes (from 39% to 30%). The
performance in episode success is mostly affected by adding both depth camera and bounding box noise
(from 43% to 25%). Importantly, the gap between SDA and the Baseline [255] remains consistent across all
noise types and all metrics, which supports the validity of tests in simulated environments.
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Table 5.5: Ablation study with RedWood Noise on the Depth Camera, and Gaussian Noise on the Bounding Box and
Actuators.

Model Noisy Input S ↑ SPS ↑ F ↑ CR ↓ ES ↑
Baseline None 0.76±0.02 0.34±0.01 0.29±0.01 0.48±0.03 0.40±0.02

SDA None 0.91±0.01 0.45±0.01 0.39±0.01 0.57±0.02 0.43±0.02

Baseline Depth Camera 0.70±0.01 0.32±0.01 0.26±0.01 0.43±0.02 0.20±0.02

SDA Depth Camera 0.83±0.02 0.42±0.03 0.34±0.02 0.30±0.01 0.37±0.01

Baseline Bounding Box 0.73±0.01 0.30±0.01 0.24±0.01 0.44±0.02 0.15±0.02

SDA Bounding Box 0.83±0.01 0.41±0.02 0.30±0.01 0.28±0.02 0.35±0.02

Baseline Depth Camera + Bounding Box 0.69±0.01 0.33±0.01 0.25±0.01 0.44±0.02 0.21±0.02

SDA Depth Camera + Bounding Box 0.82±0.01 0.41±0.02 0.48±0.02 0.45±0.01 0.25±0.02

Baseline Actuators 0.71±0.01 0.29±0.01 0.24±0.01 0.42±0.02 0.31±0.02

SDA Actuators 0.81±0.01 0.41±0.02 0.35±0.01 0.42±0.01 0.40±0.02

5.6 Additional Results

The content is structured as follows:

• Metrics - Sec. 5.6.1 expands on the metrics presented in the primary paper and introduces supplemen-
tary ones, as exemplified in [255].

• Training Details - Sec. 5.6.2 outlines the training methodology, detailing the training stages, the use
of DD-PPO, and the hardware setup for training.

• Results - Sec. 5.6.3 includes a table listing all metrics along with an accompanying explanation of the
results.

• Error Analysis - Sec. 5.6.4 analyzes failure cases, identifying key areas where the model encounters
challenges, such as constrained movements and blind spots.

• Ablation Studies - Sec. 5.6.5 explores the adaptability of privileged information and trajectory length’s
influence on model performance.

• Qualitative Results - Sec. 5.6.6 showcases visual examples of episodes where the agent successfully
tracks or avoids collisions with humans, with accompanying qualitative analysis.

Moreover, we show some generated episodes in the enclosed supplementary video.

5.6.1 Metrics

In our main paper, we utilize metrics including Finding Success (S), Finding Success Weighted by Path
Steps (SPS), Following Rate (F ), Collision Rate (CR), and Episode Success (ES). However, Habitat
3.0 [255] introduces in their supplementary material additional metrics such as Backup-Yield Rate (BY R),
Total Distance (TD), and Following Distance (FD), providing further insights into the models. Similarly, in
our supplementary material, we also incorporate these metrics. Subsequently, a comprehensive explanation
will be given for all the former and latter metrics featured.
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(1) Finding Success (S): This metric, denoted S, evaluates whether the robot successfully locates the
humanoid within the maximum episode steps and reaches it within a close range of 1-2 meters while facing
toward it. It is represented as:

S =

1 if the robot successfully finds and reaches the humanoid,

0 otherwise

This metric provides a binary indication of the robot’s ability to locate and approach the humanoid within
the designated constraints.

(2) Finding Success Weighted by Path Steps (SPS): The SPS metric, calculated as SPS = S· l
max(l,p) ,

evaluates the efficiency of the robot’s path relative to an oracle with complete knowledge of the humanoid’s
trajectory and the environment map. Here, l represents the minimum steps an oracle would take to find
the humanoid, and p denotes the agent’s actual path steps. A higher SPS value indicates the robot’s more
efficient path toward finding the humanoid.

(3) Following Rate (F ): The following rate F quantifies the ratio of steps during which the robot
maintains a distance of 1-2 meters from the humanoid while facing towards it relative to the maximum
possible following steps. It is calculated as:

F =
w

max(E − l, w)

E denotes the maximum episode duration, and w represents the number of steps during which the agent
closely follows the humanoid. This metric provides insight into the robot’s ability to consistently track the
humanoid once it has been located.

(4) Collision Rate (CR): The collision rate CR measures the ratio of episodes that end with the robot
colliding with the humanoid. It is computed as:

CR =
Number of episodes ending in collision

Total number of episodes

This metric assesses the robot’s collision avoidance capabilities during interactions with the humanoid.
(5) Backup-Yield Rate (BY R): The backup-yield rate BY R quantifies the frequency with which the

robot performs backup or yield motions to avoid collision when the humanoid is nearby. A ’backup motion’
refers to a backward movement executed by the robot when the distance between the robot and the humanoid
is less than 1.5 meters. Similarly, a ’yield motion’ denotes a robot’s maneuver to avoid collision when the
distance between them is less than 1.5 meters and the robot’s velocity is less than 0.1 m/s. The BY R is
computed as:

BY R =
Number of backup or yield motions

Total number of episodes

This metric provides insights into the effectiveness of the robot’s collision avoidance strategies.
(6) Total Distance between the robot and the humanoid (TD): The TD metric evaluates the average L2

distance between the robot and the humanoid over the total number of episode steps. It is calculated as:

TD =

∑
L2 distance between robot and humanoid

Total number of episode steps

This metric measures the overall proximity between the robot and the humanoid throughout the episodes,
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providing insights into the effectiveness of the robot’s navigation and tracking capabilities.
(7) Following Distance between the robot and the humanoid after the first encounter (FD): The FD

metric assesses the L2 distance between the robot and the humanoid after the robot initially encounters
the humanoid. It quantifies the proximity between the two entities during the following stages of interac-
tion. The FD should ideally be maintained within 1-2 meters, indicating effective tracking and following
behavior. This metric is calculated as:

FD =

∑
L2 distance between robot and humanoid after first encounter

Total number of episode steps

The FD metric provides valuable insights into the robot’s ability to maintain an appropriate distance from
the humanoid target after initial contact, which is crucial for effective interaction and task completion.

(8) Episode Success (ES) measures the ratio of the episodes where the agent found the human and
followed it for the required number of steps, maintaining a safe distance in the 1-2 meters range.

5.6.2 Training details.

During training, we encode social dynamics using a ResNet, trained from scratch. The trajectory encoder
µ consists of a 3-layer MLP, and the output zt has a dimensionality of 128. The Adapter ψ comprises
alternating spatial and temporal MLP layers, with the output ẑt matching the dimensionality of zt. We
jointly train the policy π, the perceptions encoder (ResNet), and the social dynamics (Trajectory Encoder)
encoder µ during the first stage. In the second stage, everything is frozen except the Adapter. In Stage
1, we utilize DD-PPO [331] for 250 million steps across 24 environments, following the training protocol
presented in [255]. Furthemore, each time step is approximately 0.04 seconds, so we consider a trajectory
of 0.8 seconds. An entire episode of 1500 steps corresponds to almost a 1-minute long video. Inputs to
the policy are egocentric arm depth and a humanoid detector, and outputs are velocity commands (linear
and angular) in the robot’s local frame. This policy does not have access to a map of the environment. The
training process takes approximately four days. In Stage 2, we employ supervised learning for 5 million
steps across the same environments. The learning process lasts around 2 hours. Both stages utilize 4 A100
GPUs for efficient computation.

5.6.3 Results

In Table 5.6, we compare Baseline [255], Baseline+Prox. [38], and the novel SDA model on the additional
metrics proposed by [255]. We showcase a comparable Backup Yield Rate across the methodologies, mean-
ing that all models suggest an avoidance behaviour. Regarding Following Distance, all models, on average,
fall within the ideal 1-2 meters range, with SDA exhibiting a conservative behavior, i.e., SDA remains at
1.80 meters further from the humanoid. The Total Distance is lower for SDA and Baseline+Prox. than for
Baseline. This is due to the ability of the first two models to detect the human (SPS) earlier and to fol-
low it for a longer duration (F ). In summary, the inclusion of additional metrics such as BY R, TD, and
FD leads to analogous conclusions, as previously outlined in the main paper (Sec. 4.1). Specifically, it
underscores that the comprehensive advantage in adapting to social dynamics stems from following a more
optimal trajectory, maintaining it over an extended period, and ensuring a safe distance.

2Code refactored and adapted from [38] to Habitat 3.0.
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Table 5.6: Comparative evaluation of Social Navigation on Habitat 3.0 [255]. Within the table, GT denotes ground
truth privileged information and * corresponds to reproduced results. Beyond what is reported in Table 1 of the main
paper, we additionally report here: (1) Backup-Yield Rate (BYR), (2) The Total Distance between the robot and the
humanoid (TD), and (3) The “Following” Distance (in meters) between the robot and the humanoid after the first
encounter (FD).

Models hGPS traj. S ↑ SPS ↑ F ↑ CR ↓ BYR TD FD ES ↑
Heuristic Expert [255] - - 1.00 0.97 0.51 0.52 0.24 2.56 1.72 -
Baseline [255] GT 0.97 0.65 0.44 0.51 0.19 3.43 1.70 0.55*
Baseline+Prox. [38]2 GT 0.97 0.64 0.57 0.58 0.17 3.15 1.66 0.63
SDA - S1 GT 0.92 0.46 0.44 0.61 0.18 3.70 1.83 0.50
Baseline [255] 0.76 0.34 0.29 0.48 0.13 5.18 1.64 0.42*
Baseline+Prox. [38] 0.85 0.41 0.37 0.58 0.14 4.24 1.57 0.41
SDA - S2 0.91 0.45 0.39 0.57 0.12 4.24 1.80 0.43

5.6.4 Error Analysis

We include in Fig.5.5 We analyze the distribution of failure causes in social navigation analyzed by watching
100 failed episodes and categorizing the failures into five types:

• Constrained Movements (28%): The robot cannot avoid collision due to environmental constraints.

• Blindspot (25%): The robot cannot perceive the human due to blind corners or side collisions.

• Not Found (22%): The robot does not detect the humanoid within 1500 simulation steps.

• Moving Backwards (22%): The robot yield space backwards but fails to avoid collisions.

• Walking into a Humanoid (3%): Frontal collisions with the humanoid are the least common cause.

The failure analysis offers valuable insights into areas needing improvement. Walking directly into the
humanoid is very unlikely and represent the worst scenario. As can be seen from Table 5.3, by including
ORCA, we reduce the collision rate by 20 percentage points and this scenario will likely disappear. With
ORCA, humans can either slow down or slightly change their direction, particularly for Constrained Move-
ments and moving Backwards. Constrained Movements and Not Found could be improved by high-level
planning capabilities that devise better exploration strategies to locate the person and let the robot back off
until there is enough space to let the human pass. The addition of a microphone sensor could also help locate
humans in the scenario in which someone could call their robot.

5.6.5 Additional Analysis

In the next section, we conduct a failure case analysis of SDA , examining the adaptability of privileged
information and performing an ablation study on its design.

Fig. 5.6(left) illustrates the trend of the First encounter step over episode during Stage 2. The plot
confirms that using trajectories facilitates the robot’s finding the person, which it achieves after only approx.
450 steps, while the hGPS and hGPS+traj take more than 700 steps. Finding the robot first results in higher
S and SPS metrics, but it may incur larger chances of collision (CR metric), due to having to then follow
it for longer, cf. Sec. 9.7.2.
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Figure 5.5: Failure Cases Analysis on 100 episodes

Fig. 5.6(right) illustrates the average distance between the agent and the humanoid after the first encounter.
While hGPS and hGPS+traj stay at approx. 4 meters, the proposed trajectory-based approach ranges between
1.5 and 1.9, thus well within the 1-2 meter range, which yields the success in the task of following (larger
F metric, but encompassing a larger risk of collision– CR metric).

Figure 5.6: (left) Training step (x-axis) Vs the number of steps which it takes the robot to find the humanoid (y-axis),
in the finding task; (right) Training step (x-axis) Vs the average distance which the robot manages to keep itself at
from the humanoid (y-axis), in the task of following.

Design Analysis. RMA [171] was used to adapt an agent from simulation to real-world deployment. In
contrast, SDA encodes human behavior in trajectories, which can be inferred at test time to develop a socially
aware navigation policy. While RMA encodes the environment configuration vector et with information
only at time t, we feed an entire trajectory encoding the position in the 20 timesteps up to time t. As shown
in Table 5.7, encoding the human position only at time t results in unsatisfactory performance, making the
direct application of RMA relatively poor. In fact, it achieves just 3% of Episode Success (ES) against the
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43% of SDA.

Table 5.7: Ablation on the length of trajectories to consider during Stage 1
# States Considered S ↑ SPS ↑ F ↑ CR ↓ ES ↑
1 0.55±0.01 0.14±0.02 0.03±0.01 0.75±0.01 0.03±0.01

5 0.62±0.01 0.25±0.02 0.05±0.01 0.64±0.01 0.06±0.01

20 (Proposed) 0.92±0.00 0.46±0.01 0.44±0.02 0.61±0.02 0.50±0.01

50 0.70±0.02 0.29±0.02 0.08±0.02 0.78±0.02 0.08±0.01

Given the sequential nature of the states that get encoded, we also evaluated Transformers and MLPs
and ultimately selected the MLPs for SDA. In Table 5.8, we include this preliminary study. Note how the
choice of the new sequence modeling mechanism is not trivial and strongly affects performance.

Table 5.8: Ablation on the type of encoder to consider during Stage 1.
Encoder Type S ↑ SPS ↑ F ↑ CR ↓ ES ↑
MLP (Proposed) 0.92±0.00 0.46±0.01 0.44±0.02 0.61±0.02 0.50±0.01

Transformer 0.85±0.01 0.15±0.02 0.27±0.01 0.76±0.01 0.12±0.01

5.6.6 Qualitative results

The episode in Fig. 5.7 (top) illustrates the agent’s capability to track the human even when it is briefly
observed. As the agent searches for the target in the bathroom, the humanoid swiftly passes in front of the
door (Step 145) and disappears from the agent’s view again (Step 150). Due to learned social dynamics, the
agent exploits the humanoid’s behavior and begins to follow it. In the episode in Fig. 5.7 (bottom), the agent
has already located the human and its objective is to follow it. It is observed that at Step 340, the human
decides to move backward, prompting the agent to move backward as well, creating the necessary space for
passage by Step 360. Then, it continues its task of following.

Step 145Step 140 Step 150 Step 170

Step 310 Step 340 Step 400Step 360

Figure 5.7: We showcase two different episodes. On the top, the agent successfully follows the human after it swiftly
moves in front of the door. On the bottom, an episode where the human decides to move backward and the agent steps
back to make way.
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Limitations. Table 5.2 illustrates how the performance in stage 2 is affected by the adaptability of infor-
mation, underscoring its importance in evaluating the model’s effectiveness. Additionally, a limitation of
our approach is that the proposed model has been benchmarked solely in simulation, relying on training
information—such as trajectories—that may not be readily available in real-world settings.

5.7 Conclusions
Our study presents the Social Dynamics Adaptation model (SDA) for Social Navigation. Notably, it is the
first to integrate privileged human dynamics information during training while adapting it in the following
stage, enabling its application in realistic environments without relying on such privileged information. Our
findings underscore the non-trivial nature of adapting information, highlighting the necessity for selective
processes. In future research, we aim to extend our model by incorporating diverse human dynamics beyond
trajectories, enhancing the robot’s comprehension of human movement patterns.
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Chapter 6

TopoX: A Suite of Python Packages for
Machine Learning on Topological Domains

6.1 Introduction

Deep learning traditionally operates within Euclidean domains, focusing on structured data like images
[169] and sequences [299]. However, to handle more diverse data types, geometric deep learning (GDL)
[31, 40, 374] has emerged. GDL extends deep learning to non-Euclidean data by leveraging geometric
regularities like symmetries and invariances. Recently, Topological Deep Learning (TDL) [121] has gained
attention, exploring models beyond traditional graph-based abstractions to process data with multi-way
relations, such as simplicial complexes and hypergraphs. These extensions allow for the representation of
diverse data domains encountered in scientific computations [19, 86, 104, 118, 270, 277, 278, 341]. Despite
theoretical advancements, practical implementation faces challenges due to the lack of accessible software
libraries supporting deep learning models with higher-order structures.

In this paper, we present TopoX, an open-source suite of Python packages designed for machine learn-
ing and deep learning operations in topological domains. TopoX is organized into three Python packages:
TopoNetX, TopoEmbedX, and TopoModelX. These packages enhance and generalize functionalities
found in popular mainstream graph computations and learning tools, enabling them on topological domains.
What sets TopoX apart is its abstract general design and the exploitation of the resulting modeling flexi-
bility in the implementation of a broad spectrum of topological domains and TDL models (see Table 6.1).
Further, every domain in TopoNetX offers utilities to work with various components such as nodes, edges,
and higher-order cells. TopoNetX also supports computations using incidence matrices, (co)adjacency ma-
trices, and up, down, and Hodge Laplacians. From a representation learning point of view, TopoEmbedX
provides methods for embedding topological domains, or parts of these domains, into Euclidean domains.
TopoModelX offers a wide range of TDL models based on a comprehensive implementation of higher-
order message passing, built on the PyTorch framework [243].

The core objectives of TopoX are as follows: facilitate research in topological domains by providing
foundational code to understand concepts, and offer a platform to disseminate algorithms; broaden the ac-
cessibility of the field by delivering user-friendly topological learning algorithms to the machine learning
community; serve as a learning resource for topological domains and TDL, enriched by diverse examples,
notebooks, and visualization capabilities; and provide a unified application programming interface (API)
that operates on topological domains. Given that topological spaces generalize most data domains encoun-
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6.2. Implementation Overview

tered in scientific computations, its unified API offers multiple advantages: it enhances interoperability,
streamlines productivity, simplifies learning, and fosters collaboration. By providing a common framework,
it reduces maintenance, promotes code portability, and supports parallel computing.

6.2 Implementation Overview

The TopoNetX package is organized into three main modules: classes, algorithms, and transform.
The classesmodule implements numerous common topological domains, such as SimplicialComplex,
CellComplex, and more; inheriting from the abstract class Complex. The algorithmsmodule imple-
ments spectral methods, distance computation, and connected component analysis in topological domains.
The transform module facilitates conversions between different topological domains. TopoNetX uses
Numpy and Scipy backends, and offers toy datasets and examples to facilitate learning and improve un-
derstanding.

The TopoEmbedX package supports the learning of representations for all topological domains avail-
able in TopoNetX. This package contains the module classes, which implements topological represen-
tation learning algorithms that generalize the most popular graph-based representation learning algorithms.
These algorithms include DeepCell and Cell2Vec. The TopoEmbedX package has an API inspired by
scikit-learn [248] and utilizes the KarateClub [272] backends.

TopoModelX is a Python package for topological deep learning, providing efficient tools to implement
topological neural networks (TNNs). The package consists of two main modules: base and nn. The base
module implements higher-order message passing methods, allowing the construction of general-purpose
TNNs using the tensor diagram formalism introduced in [121] and surveyed in [241]. The nn module
implements various TNNs on popular topological domains, such as simplicial complexes, cell complexes,
hypergraphs, and combinatorial complexes. Each implementation includes a corresponding Jupyter note-
book tutorial for a user-friendly initiation into TDL. TopoModelX leverages PyTorch and PyG (PyTorch
Geometric) backends [88]. The TopoModelX package is the outcome of a coding challenge that crowd-
sourced the implementations of TDL models [240].

: 0-cell

TopoNetX TopoEmbedX

: 1-cell : 2-cell

TopoModelX

Add a cell Embed a cell
Build a TNN that passes messages 

between cells

Figure 6.1: Building blocks from the three packages of the TopoX software suite. Left: TopoNetX enables build-
ing topological domains such as cell complexes. The figure demonstrates adding a 2-cell on a cell complex with
TopoNetX. Middle: TopoEmbedX enables embedding of topological domains inside a Euclidian space. The figure
illustrates embedding a 0-cell, a 1-cell and a 2-cell from a cell complex inside a Euclidean space with TopoEmbedX.
Right: build a topological neural network (TNN) that processes data via higher-order message passing on a cell com-
plex with TopoModelX.
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6.3. Comparison and Interaction with Other Packages

Comparison between TopoNetX and other Python packages
Packages Domains Operations

TopoNetX
Graphs, colored hypergraphs, simplicial complexes,
path complexes, cell complexes, combinatorial com-
plexes

add_node, add_simplex,
add_cell, adjacency_matrix,
coadjacency_matrix,
incidence_matrix,
hodge_laplacian_matrix

NetworkX Graphs
add_node, add_edge, adjacency_matrix,
incidence_matrix, laplacian_matrix

HyperNetX Hypergraphs
add_node, add_edge, adjacency_matrix,
incidence_matrix

XGI Simplicial complexes, hypergraphs, dihypergraph
add_node, add_edge, adjacency_matrix,
boundary_matrix, hodge_laplacian

Comparison between TopoEmbedX and other Python packages
Packages Domains Embedding algorithms

TopoEmbedX
Graphs, colored hypergraphs, simplicial complexes,
path complexes, cell complexes, combinatorial com-
plexes

Cell2Vec, DeepCell, CellDiff2Vec, HigherOrder-
LaplacianEigenMap, HOPE, HOGLEE,

Karateclub Graphs
Node2Vec, Graph2Vec, Diff2Vec, GL2Vec, IGE,
Role2Vec, GraRep

Comparison between TopoModelX and other Python packages
Packages Domains Push-forward operators

TopoModelX
Graphs, (colored) hypergraphs, simplicial com-
plexes, path complexes, cell complexes, combinato-
rial complexes

(Higher order) message passing, merge operator,
split operator

DGL Graphs Message passing
DHG Graphs, hypergraphs Message passing, hypergraph message passing
PyG Graphs Message passing

Table 6.1: TopoX provides a user-friendly and comprehensive suite for building blocks and computing on topological
domains. The table shows a comparison between TopoX and other Python packages.

6.3 Comparison and Interaction with Other Packages

The libraries most closely related to TopoNetX are NetworkX [117] and HypernetX [193]. They
facilitate computations on graphs and hypergraphs, respectively. TopoNetX utilizes a similar API to
these two libraries to faciliaite rapid adoption of topological domains, such as simplicial complexes, cell
complexes, and colored hypergraphs. The XGI package [174] offers hypergraph functionalities similar to
HypernetX with additional support for simplicial complexes and directed hypergraphs.

The closest package to TopoEmbedX is KarateClub [272], which is a Python package consisting
of methods for unsupervised learning on graph-structured data. TopoEmbedX extends the functionality of
KarateClub to topological domains supported in TopoNetX. PyG and DGL (Deep Graph Library) [322],
which are two popular geometric deep learning packages that support deep learning models on graphs,
are closely related to TopoModelX. The DHG (Deep HyperGraph) package [86] supports deep learning
models defined on hypergraphs. All three of our packages feature a continuous integration pipeline and
are well-tested with code coverage of >=95% per package. This is comparable or better than many related
graph-based learning libraries, such as PyG, DGL, XGI, NetworkX, and HyperNetX.

6.4 Usage: Elementary Examples

TopoNetX provides an user-friendly interface which allows to create a complex in two main steps: first,
instantiate the complex; second, add cells to that complex, as shown in the three first lines of the code snippet
below. Processing data on a complex requires matrices that describe the (co)adjacency of the incidence
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relations among cells, as computed below.

c e l l _ c o m p l e x = Cel lComplex ( )
c e l l _ c o m p l e x . a d d _ c e l l ( [ 1 , 2 , 3 , 4 ] , r ank =2)
c e l l _ c o m p l e x . a d d _ c e l l ( [ 1 , 2 , 5 ] , r ank =2)
L2 = c e l l _ c o m p l e x . h o d g e _ l a p l a c i a n _ m a t r i x ( 2 )

The following code snippet shows how TopoEmbedX embeds edges of the Stanford bunny dataset using
the Cell2Vec algorithm [118]:

c e l l _ c o m p l e x = t n x . d a t a s e t s . s t a n f o r d _ b u n n y ( " c e l l " )
model = Cel l2Vec ( )
model . f i t ( c e l l _ c o m p l e x , nbhd_ type =" a d j " , nbhd_dim ={ " a d j " : 1} )

The following code snippet shows how to instantiate, and run the forward-pass of a simplicial neural network
(SNN) with TopoModelX:

s i m p l i c i a l _ c o m p l e x = t n x . d a t a s e t s . s t a n f o r d _ b u n n y ( " s i m p l i c i a l " )
f e a t u r e = s i m p l i c i a l _ c o m p l e x . g e t _ e d g e _ f e a t u r e s ( )
nbhd = s i m p l i c i a l _ c o m p l e x . h o d g e _ l a p l a c i a n _ m a t r i x ( 1 )
snn_model = SNN( i n p u t _ f e a t _ d i m , o u t p u t _ f e a t _ d i m )
snn_model ( f e a t u r e , nbhd )

TopoNetX provides a high-level declarative interface. In TopoEmbedX, each embedding algorithm is
compatible with all complexes available in TopoNetX. In TopoModelX, TNNs are classified according to
the topological domain upon which they are defined. In each package, the directories that contain examples
and notebooks offer an abundance of code snippets to assist users in starting their journey with TopoX.

6.5 ICML’23 TopoX Challenge

Graph neural networks (GNNs) have proven to be a powerful deep learning architecture for processing
relational data. More specifically, GNNs operate in graph domains comprised of pairwise relations between
nodes. Topological neural networks (TNNs) extend GNNs by operating on domains featuring higher-order
relations. Such domains, called topological domains, feature part-whole and/or set-type relations (Fig. 6.2)
[122], allowing a more expressive representation of the data. By operating on a topological domain, a
TNN leverages the intricate relational structure at the heart of the data. Topological deep learning [28, 122]
has shown great promise in many applications, ranging from molecular classification to social network
prediction. However, the adoption of its architectures has been limited by the fragmented availability of
open-source algorithms and lack of benchmarking between topological domains.

The challenge described in this white paper aims to fill that gap by implementing models in a uni-
fying open-source software. In doing so, the challenge contributes to fostering reproducible research in
topological deep learning. Participants were asked to contribute code for a published TNN, following
TopoModelX’s API [122] and computational primitives, and implement a training mechanism for the
algorithm’s intended task.

This white paper is organized as follows. Section 6.6 describes the setup of the challenge, including
its guidelines and evaluation criteria. Section 8.5.2 lists all qualifying submissions to the challenge and its
winners.
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6.6 Setup of the challenge

The challenge 1 was held in conjunction with the workshop Topology and Geometry in Machine Learning
of the International Conference on Machine Learning (ICML) 2023 2. Participants were asked to contribute
code for a previously existing TNN and train it on a toy dataset of their choice.

Guidelines Each submission took the form of an implementation of a pre-existing TNN listed in a survey
of the field [241]. These models fall into four categories, defined by their topological domain. All submitted
code was required to comply with TopoModelX’s GitHub Action workflow [122], successfully passing all
tests, linting, and formatting.

Each submission consisted of a pull request to TopoModelX containing three new files:

1. A Python script implementing a layer of the model in a single class using TopoModelX compu-
tational primitives. One layer is equivalent to the message passing depicted in the tensor diagram
representation for the model given in the survey [241].

2. A Jupyter notebook that builds a neural network out of the single layer, loads and pre-processes the
chosen dataset, and performs a train-test loop on the dataset. Defining training and testing in a Jupyter
notebook offers authors a natural way to communicate results that are reproducible, as anyone with
access to the notebook may run it to attain analogous results.

3. A Python script which contains the unit tests for all methods stored in the class defining the model
layer.

Teams were registered to the challenge upon submission of their pull request and there was no restriction
on the number of team members, nor on the amount of submissions per team.

The principal developers of TopoModelX were not allowed to participate. Consistent with the aims
of an open environment for sharing participation in this activity is completely voluntary and no support or
endorsement of any of the participating parties by any of the other participating parties is provided. All
submissions are the views of the individual participants only and should be taken, as is with all faults and
without any guarantee, promise or endorsement of any kind.

Evaluation criteria The evaluation criteria were:

1. Does the submission implement the chosen model correctly, specifically in terms of its message pass-
ing scheme? (The training schemes do not need to match that of the original model).

2. How readable and clean is the code? How well does the submission respect TopoModelX’s APIs?

3. Is the submission well-written? Do the docstrings clearly explain the methods? Are the unit tests
robust?

Note that these criteria were not designed to reward model performance, nor complexity of training. Rather,
these criteria aimed to reward clean code and accurate model architectures that will foster reproducible
research in topological deep learning.

1Challenge website: https://pyt-team.github.io/topomodelx/challenge/index.html
2Topology and Geometry in Machine Learning Workshop website: https://www.tagds.com/events/

conference-workshops/tag-ml23
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6.7. Submissions and Winners

Evaluation Method The Condorcet method [347] was used to rank the submissions and decide on the
winners. Each team whose submission respected the guidelines was given one vote in the decision process.
Nine additional reviewers selected from PyT-team maintainers and collaborators were also each given a
vote. Upon voting, participating teams and reviewers were each asked to select the best and second best
model implementation in each topological domain, thus making eight choices in total. Participants were not
allowed to vote for their own submissions.

Software engineering practices Challenge participants were encouraged to use software engineering best
practices. All code had to be compatible with Python 3.10 and a reasonable effort had to be made for the
code to adhere to PEP8 Python style guidelines. The chosen dataset had to be loaded from TopoNetX [122]
or PyTorch-Geometric [89]. Participants could raise GitHub issues and/or request help at any time by
contacting the organizers.

6.7 Submissions and Winners

In total, the challenge received 32 submissions, 28 of which adhered to the above outlined qualification
requirements. Out of the qualifying submissions, 23 unique models were implemented. All four topolog-
ical domains are represented in this set of models: 12 hypergraph implementations, 11 simplicial model
implementations, 3 cellular implementations, and 2 combinatorial implementations.

Table 6.2 lists all qualifying submissions. [241] contains additional information on the architectures and
message-passing frameworks for each of these models.

Table 6.2 also indicates the winning contributions, consisting of a first and second prize for each topolog-
ical domain, as well as honorable mentions. The winners were announced publicly at the ICML Workshop
on Topology, Algebra and Geometry in Machine Learning and on social medias. Regardless of this final
ranking, we would like to stress that all the submissions were of very high quality. We warmly congratulate
all participants.

6.8 Conclusion

We introduced the TopoX Python suite to cater to the computing, machine learning, and deep learning needs
within the realm of topological domains. The goal is to offer off-the-shelf solutions for graph computations
and learning in diverse topological settings, ensuring flexibility and fidelity to topological principles. How-
ever, we acknowledge that this can occasionally impact efficiency. Future efforts will be directed towards
optimizing TopoX to balance efficiency and adherence to topological concepts.
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Figure 6.2: Domains: Nodes in light blue, (hyper)edges in pink, and faces in dark red. Adapted from [122].
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6.8. Conclusion

Domain Model Task Level Computational challenge submis-
sion authors

N
od

e

E
dg

e

C
om

pl
ex

HG HyperSage [15] ✓ German Magai, Pavel Snopov

AllSetTransformer [57] ✓ Luca Scofano, Indro Spinelli, Si-
mone Scardapane,
Simone Fiorellino, Olga Zaghen,
Lev Telyatnikov, Claudio Battiloro,
Guillermo Bernardez (first place)

HyperGat [75] ✓ German Magai, Pavel Snopov

HNHN [76] ✓ ✓ Alessandro Salatiello (hon. men-
tion),
Sadrodin Barikbin

SC SCCONV [33] ✓ Abdelwahed Khamis, Ali Zia, Mo-
hammed Hassanin

SAN [103] ✓ Luca Scofano, Indro Spinelli, Si-
mone Scardapane,
Simone Fiorellino, Olga Zaghen,
Lev Telyatnikov, Claudio Battiloro
(first place)

CC CWN [29] ✓ ✓ Dmitrii Gavrilev, Gleb Bazhenov,
Suraj Singh (second place)

CAN [104] ✓ Luca Scofano, Indro Spinelli, Si-
mone Scardapane,
Simone Fiorellino, Olga Zaghen,
Lev Telyatnikov, Claudio Battiloro
(first place), Abraham Rabinowitz

CCC HOAN [120] ✓ ✓ Rubén Ballester, Manuel Lecha,
Sergio Escalera (first place), Aiden
Brent (second place)

Table 6.2: Model implementations submitted to the Topological Deep Learning Challenge. We organize original
models according to domain: hypergraph (HG), simplicial (SC), cellular (CC), and combinatorial (CCC). Task level
indicates the rank on which a prediction is made.
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Chapter 7

Social EgoMesh Estimation

7.1 Introduction

(a) Wearer’s first person view, looking at the interactee. (b) Third-person view of the wearer and the interactee in a
scene.

Figure 7.1: (Left) Frame from the input egocentric video stream. We experience the immersive subjective perspective
of the front-facing camera wearer, but the wearer is behind the wearable and, therefore, invisible. Still, we recognize
the points of interest of the wearer, parts of the scene where the action happens, and, most importantly, the interactee
engaged in communication with the wearer. (Right) Third-view reconstruction of the ego mesh of the camera wearer
by our proposed SEE-ME. Our vantage point reveals the surrounding environment, featuring a sofa and a person
from an overhead perspective, leading us to infer the wearer’s likely standing position. Specifically, vicinity and gaze
interactions are important cues for our reconstruction as we experimentally quantify.

Estimating the 3D motion of a person from an egocentric video sequence is a critical task with diverse
applications in virtual reality (VR) and augmented reality (AR). This research is motivated by the necessity
to realistically depict the entire body to enable total immersion in these environments [56]. The user typically
wears a camera in such videos, capturing their surroundings from a first-person perspective. Large field of
view (FOV) cameras can capture some body parts (hands, feet), which standard FOV cameras cannot, as
illustrated from the first-person perspective in Figure 7.1.

The task, dubbed egopose estimation, is influenced by the type of camera used to record the sequences.
Top-down head-mounted cameras have the best view of the wearer [305] but are intrusive due to the required
displacement from the face. Front-facing cameras solve the ergonomic issue, but the downside is that the
wearer is almost always invisible except when using very large FOV.

In [145], the authors introduce a two-stage framework for fish-eye head-mounted cameras, where a
traditional SLAM algorithm [296] provides the camera rotation and translation. Simultaneously, a neural

66



7.1. Introduction

network exploits visible body parts to predict the egopose. Recently, EgoEgo [181] proposed an updated
pipeline, relaxing the assumption on the large FOV. However, they still rely on (deep learning-based) SLAM
[302] to estimate the head’s rotation and translation, fed to a generative model [130] to synthesize the pose
for the rest of the body. These approaches exploit the video to extract the head pose, ignoring the surrounding
environment and the other actors in the scene that can provide essential cues for the egopose estimation.

For this reason, we propose a new social egocentric mesh estimation task and contribute with a novel
probabilistic framework for Social Egocentric Estimation of body MEshes (SEE-ME). Humans have a so-
cial nature and are often involved in social activities in real and virtual worlds, accomplishing tasks that
usually require cooperation and coordination. You2Me [235] explicitly captures the interplay between two
persons from a chest-mounted camera in a controlled environment where two people interact by conversing,
playing hand games, or doing sports. However, their approach does not extract high-level scene information
and predicts deterministic skeleton-like representation that may not be suitable for AR/VR applications.
In contrast with our work, [235] employs a person-centric coordinate system and does not estimate global
orientation or translation, while our approach enables end-to-end learning of both of them. [235] also re-
lies on OpenPose [42] to extract the interactee, which faces challenges in accurately estimating occluded
keypoints [196]. We exploit EgoHMR [361] to estimate the interactee’s mesh, which demonstrates robust-
ness against occlusions, by utilizing scenes as input. In contrast, our approach leverages the scene and
interactions to understand the invisible camera wearer’s pose, with no input body cues required.

The motivation behind our research stems from the wearer’s perspective, which highlights both their
surroundings and an overlooked aspect: the presence of another actor within the scene (see Figure 7.1).
Our unified approach links the generation of the egomesh to both the 3D scene depiction and the wearer’s
social interaction with the interactee. We do not rely on SLAM for the head’s orientation or translation
but predict them with our model. Our approach pioneers conditional Latent Diffusion in egocentric human
mesh estimation, which provides a notable speedup in generation times. We build the latent space encoding
human poses using a Variational Autoencoder (VAE) [151]. Subsequently, we perform conditional diffusion
on this latent space. The conditioning strategies aim to guide the process by modeling the 3D point cloud of
the scene in which the wearer moves and the estimated mesh of the interactee recovered from the egocentric
video feed. Our model depends on the 3D scene and other actors’ poses. Therefore, provided the wearer’s
pose, we can predict the interactee’s one even if it is not paired with an egocentric video stream.

To assess the performance of our approach, we evaluate it on EgoBody [362]: the solely available dataset
that features multiple individuals, an egocentric perspective, and an environment. We reach state-of-the-art
results, establishing the efficacy of environmental and social components. In our research, we thoroughly
examine the influence of social interactions on estimating the wearer’s egomesh. We establish when this
conditioning strategy has the highest impact. We use proxies for social interaction that can be extracted
from our setup. We demonstrate how proximity and eye contact between the wearer and the interactee bring
the most from our conditioning. Moreover, we study the effect of future knowledge about the interactee’s
motion, as we humans use the experience to predict and react to the future movements of the people around
us. Our framework, exposed to this information, provides a significant performance boost. To corroborate
the strength of our approach, we evaluate our model on the dataset GIMO [372], which is egocentric and
includes the environment but is not multi-person.

To summarize our contributions:

• We propose the task of social egomesh estimation. Emphasizing the role of other actors in 3D scenes
to account for the lack of information about the camera wearer.
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• We introduce SEE-ME, a monolithic framework based on latent diffusion capable of predicting both
the wearer and interactee poses with SOTA performances

• We perform an in-depth ablation study to highlight the scenarios in which modeling social interactions
brings the most benefits.

7.2 Related Work

Pose Estimation from third-person cameras. 3D pose estimation from images and videos in a third-
person perspective has seen significant research efforts in recent years. It can be broadly categorized into
two main approaches. The first approach aims to predict the positions of joints from images and videos di-
rectly [159, 206, 219, 246, 310, 375]. The second approach employs a parametric human body model [199]
to estimate the parameters of the body model based on images or videos [60, 147, 159, 160, 206, 344]. Re-
cent approaches have advanced the realism of human motion modeling by incorporating human dynamics.
This is achieved through the utilization of learned priors [268] or physics-based priors [96, 251, 269, 289,
334, 349]. These priors are inherently formulated within the human coordinate frame.

However, a notable challenge arises when dealing with egocentric videos, which we consider in this
study, where the whole body is often not visible because body joints are mostly hidden from view. By
considering the physical and social aspects, we aim to provide we aim to overcome this lack of information.

Motion Estimation from Egocentric Video. There is a growing emphasis on pose estimation from ego-
centric videos, where various hardware setups are utilized, including fisheye cameras [6, 133, 196, 304, 317],
outward-facing cameras [144, 235, 290, 345, 361, 362, 372], and additional inputs such as controllers and
synchronized headsets [146, 371], all aimed at estimating a person’s pose. None of them consider social
interactions. However, there has been a growing interest in incorporating interactions between people in
a given scene, as evidenced by numerous studies [148, 235, 361, 362]. Notably, [361, 362] both focus
on estimating the interactee without relying on any additional cues from the camera wearer. In contrast,
You2Me [235] predicts full-body wearer motions by observing the interaction poses of a second person in
the camera view. While this approach is effective for keypoint estimation, it lacks critical information nec-
essary for our task, such as body meshes, 3D scene details, and global rotation and orientation. Conversely,
our approach involves probabilistic human mesh estimation, incorporating scene information as well.

In [181], a distinctive method is proposed for multi-hypothesis human mesh estimation. This ap-
proach decouples the problem by estimating head movement, employing it as a conditioning variable for
a DDPM [130] model to generate plausible poses. In contrast, our approach eliminates the reliance on
a three-block process involving SLAM [302], Gravitynet, and Headnet [181]; tackling the problem as a
unified mesh estimation task. We employ a Latent Diffusion Model to generate the entire body without
preprocessing steps such as optical flow estimation and camera localization. Furthermore, our approach
incorporates the social component as a conditioning factor.

Probabilistic models for human pose estimation. Due to limited image or video observations and inher-
ent depth ambiguity, estimating a 3D human pose from a single image can give rise to numerous potential
solutions, mainly when body truncation is a factor. Recent research endeavors have approached this chal-
lenge by framing it as a generative process or predicting multiple hypothetical poses. In various studies, a
discrete set of hypotheses has been generated to address this issue, as seen in [26, 141, 161, 178, 181, 196,
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236, 326, 361]. We extend the advancements made in recent motion diffusion models [46, 52, 67, 303, 359].
Our approach further integrates conditioning on bystanders or individuals within the scene. It is crucial
to highlight that only [361] considers the 3D scene constraint. Our methodology uses the latent diffusion
process to capture the inherent ambiguity in pose estimation, incorporating flexible scene and social condi-
tioning techniques.

7.3 Methodology

Modeling social interaction requires solving a series of challenging tasks. Note, as done in [181, 362], we
pose the origin of our coordinate system as the camera of the wearer. First, we extract a 3D representation
of the interactee’s human body from a video stream. Subsequently, we need to position this representation
into a depiction of the 3D environment where the interaction occurs. Hence, this is the information that
SEE-ME exploits to recover the camera wearer’s mesh using only the egocentric video stream, where the
wearer itself is not visible. We showcase our pipeline in Figure 7.2. Before using social interaction and
scene description to drive the generation process, we train part of our model to encode human motion in a
latent space (Sec. 7.3.1). This dramatically reduces the dimensionality required to represent a person. In this
space, we learn to synthesize human motion from pure noise using latent diffusion processes (Sec. 7.3.2).

Problem formalization. Our objective is to generate a plausible representation of the camera wearer Pw,
conditioned on the other person in the scene Pi and the 3D scene S. We define the sequence of poses
of the camera wearer as Pw = {pw

k}Fk=1 ∈ RF×V , where F and V are the number of frames and the
parameters of the pose vector. Similarly, Pi = {pi

k}Fk=1 ∈ RF×V . Following literature [52, 201, 358, 359],
our poses vectors Pw and Pi contain pose, translation and rotation and represents the SMPL [199] body
representation. Finally, S is defined as a 3D scene point cloud, denoted as S ∈ RN×3, where N is the
number of points.
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Figure 7.2: SEE-ME framework. On the left, we present VAE’s training to learn a meaningful latent space by solving
reconstruction tasks. On the right, we extract and process our conditioning strategies. Corresponding to the 3D point
cloud representation of the scene and the interactee’s pose extracted from the video sequence. After the conditional
denoising process, we can output a SMPL representation of the wearer’s pose.
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7.3.1 Latent Human Representation

VAEs consist of an encoder-decoder generative architecture trained to minimize the reconstruction error.
We employ it to reduce the pose vector V dimensionality, projecting onto a manifold of feasible poses.
In this framework, the encoder network E , parameterized by ϕ, generates lower-dimensional embeddings
z ∈ Rn×D as outputs based on the input poses P = {pk}Fk=1. Following VAE literature [151], qϕ(z|p)
approximates the true posterior distribution of the latent space with a multivariate Gaussian with a diagonal
covariance structure:

qϕ(z|p) = N (z|µϕ(p), σ2ϕ(p)I), (7.1)

where µϕ(·) and σ2ϕ(·) are the encoder’s outputs. We sample from the approximated posterior zi ∼ qϕ(z|pi)
using:

zi = µi + σ2
i ⊙ ρ, (7.2)

where zi is a one-dimensional vector of size D, and ρ is sampled from a standard multivariate Gaussian
distribution. The decoder network D parametrized by θ maps the sampled values back to body poses pθ(p|z)
mapped into body meshes with the differentiable SMPL model. The network parameters are obtained by
optimizing the Evidence Lower Bound (ELBO) objective, as described in [151]. The motion decoder D
relies on a transformer decoder architecture [52, 252] with a cross-attention mechanism, taking f∗ zero
motion tokens as queries, where f∗ is the target sequence length, and a latent z ∈ R1×D as memory,
ultimately generating a human motion sequence p̂1:f∗ .

7.3.2 Ego-Mesh Estimation via Latent DDPMs

We utilize the latent-DDPM framework introduced in [271] and adapted for human motion synthesis in [52]
where the diffusion process occurs on a condensed, low-dimensional motion latent space. Latent DDPM
have a different approximated posterior g(zt|zt−1), denoted diffusion process, which gradually gradually
converts latent representations z0 = z into random noise zT in T timesteps:

g(zt|zt−1) = N (zt;
√
ᾱtzt−1, (1− ᾱt)I) , (7.3)

where ᾱt is a scaling factor specific to timestep t. Then, the reverse process dubbed denoising gradually
refines the noised vector to a suitable latent representation z0. Following [52, 72, 130, 271], we use the
notation {zt}Tt=0 to denote the sequence of noised latent vectors, with zt−1 = ϵψ(zt, t) representing the
denoising operation at time step t. Here, ϵψ refers to a denoising autoencoder trained to predict the denoised
version of its input.

Loss := Eϵ∼N (0,I),t[∥ϵ− ϵ(zt, t)∥22] . (7.4)

During the denoiser’s training, the encoder and decoder remain frozen. In the subsequent diffusion reverse
stage, ϵψ(zt, t) predicts ẑ0 through a series of T iterative denoising steps. Following this, the decoder D
translates ẑ0 into poses Pi and meshes in a single forward pass.

7.3.3 Social Conditioning

We introduce a novel conditioning strategy to embed the knowledge about social interaction into the gener-
ation of the wearer’s mesh. Part of the DDPM’s great success is the ability to incorporate signals c to drive
the trajectories of the (conditional) denoising process ϵψ(zt, t, c). We add a new domain encoder and exploit
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Table 7.1: Egocentric Pose Estimation Results. We activate and deactivate Scene and interactee conditioning to assess
their contribution. In each version, our framework improves SoA performances by a large margin. We obtain the best
results when the scene and interactee conditioning are present.

Models Conditioning EgoBody [362] Dataset

Scene Interactee MPJPE (mm)
Orientation

Error
Translation
Error (mm)

Acceleration
Error (mm/s2)

EgoEgo [181] 268 0.40 207 10.8
SEE-ME w/o Scene ✓ 138 0.51 174 3.07
SEE-ME w/o Int.ee ✓ 130 0.51 171 2.69
SEE-ME ✓ ✓ 126 0.48 164 2.67

our VAE to accommodate our two conditions. The first one compresses the scene’s point-cloud representa-
tion S using an MLP network τη consisting of several residual blocks to encode the global input scene into a
scene feature vector. To encode interactee’s poses Pi, we exploit our pre-trained VAE encoder. At training
time, we use ground truth poses; at test, we rely on SOTA egocentric mesh recovery algorithm EgoHMR
[361]. To inject these embedded conditions into the transformer-based denoiser, we apply cross-attention.
Then, the conditional objective is defined as follows:

L = Eϵ∼N (0,I),t,Pi,S[∥ϵ− ϵψ(zt, t, Eϕ(Pi), τη(S)∥22] , (7.5)

where Eϕ and τη stay frozen.

7.4 Experiments

In this section, we validate our model against the state of the art and showcase the qualitative results of our
approach. Additionally, we perform several ablation studies highlighting the impact of social interactions.
Below, we define the dataset and the reference metrics.

Dataset. We employ the EgoBody [362] dataset to assess our technique, the sole available egocentric
and social dataset featuring an environment and body meshes defined by parametric body models [199] for
both the wearer and the interactee. The dataset is recorded using Microsoft Hololens2 [1] and contains 125
sequences at 30 fps. The total number of frames is 220k, but, as in [362], we selectively use frames where
the interactee is within the wearer’s field of view. The training set comprises 90000 images, the validation
set consists of 23000 images, and the test set includes 62000 images. These recordings occur in 15 indoor
scenes, each accompanied by 3D representations, which are recorded using an iPhone 12 Pro Max running
a 3D Scanner App (for additional information, refer to [181]).

To enhance comparability, we also include the GIMO dataset [372] and benchmark SEE-Me without
Int.ee—meaning the variant of SEE-ME based solely on the scene, as GIMO contains only single-person
videos. Although this specific setup excludes social cues, we conduct this evaluation to further assess our
overall framework. This dataset features egocentric views in single-body environments, and we adapt our
model accordingly. It has been acquired from 11 different subjects performing actions in 19 3D scenes,
scanned using an Apple iPhone 13 Pro Max. The dataset includes up to 125,400 egocentric images captured
at 30 fps with a Hololens2 and 217 trajectories captured by an Inertial Measurement Units (IMU) system.
In total, GIMO contains approximately 129,000 frames
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Baselines. To estimate the wearer’s pose from a first-person perspective, we evaluate our model against
EgoEgo [181], the existing state-of-the-art model designed for estimating the wearer’s pose from an egocen-
tric video. EgoEgo is a probabilistic model based on DDPM [130] that leverages head poses as conditioning
to generate a plausible pose. The model consists of two modules. Firstly, it estimates the head pose by using
two sub-modules. The first module estimates the global orientation and translation of the camera based on
optical flow. The second module involves head pose estimation using DROID-SLAM [302]. By combining
these estimates, the output is the global position of the head, comprised of pose, orientation, and trajectory.
During the second phase, the estimated head is employed as a conditioning factor for a DDPM model, fa-
cilitating the generation of realistic poses. We employ EgoEgo’s [181] configuration, where body poses are
represented relative to the initial pose. Concerning the scene alignment, we adopt an approach in line with
EgoHMR[361].

Metrics. We consider the evaluation metrics commonly employed in the current literature on egocentric
human pose estimation [181, 361, 362].
Specifically, we evaluate the accuracy of our model by computing the error on the keypoints extracted from
the SMPL body representation, ignoring the mesh form factor. We use SMPL due to its widespread adoption
for representing virtual humans. The added realism brought by meshes allows for augmenting the fidelity of
interactions, for example, by modeling collisions. The Mean Per Joint Position Error (MPJPE) measures the
average Euclidean distance between the predicted and ground truth 3D positions of individual joints across
a sequence of frames:

MPJPE =
1

J × T

J∑
j=1

T∑
t=1

∥pj,t − gj,t∥2. (7.6)

We measure the Orientation Error using the Frobenius norm of the 3x3 rotation matrix of the reference
joint Apred predicted and ground truth AGT , expressed as follows:

Orientation Error = ||Apred −A−1
GT − I||2. (7.7)

To evaluate the error of the generated motion translation, we use the Euclidean distance between the
predicted trajectory rpred and the ground truth rGT :

Translation Error =
1

T

T∑
t=1

||rpredt − rGTt ||2. (7.8)

We then compute the acceleration for predicted poses apred and ground truth aGT , and we define the
Acceleration Error as their Euclidean distance. We employ millimeters (mm) for MPJPE and Translation,
millimeters per second squared (mm/s2) for Acceleration, and the Frobenius norm between the rotation
matrices for Orientation.

7.4.1 Comparison with SOTA

We quantitatively assess the camera wearer’s pose using the results from the EgoBody [362] dataset. As the
GIMO [372] dataset lacks any interactee, we benchmark only the SEE-ME variant, focusing solely on the
scene. Furthermore, we conduct several studies to explore the impact of social relation proxies and their
effects.
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(a) Video stream of the wearer’s egocentric view, not used in the model. (b) Wearer’s view of the interactee, extracted from the video stream.

(c) Prediction of the wearer’s pose by EgoEgo. (d) Prediction of the wearer’s pose by SEE-ME. (e) Ground truth wearer pose.

Figure 7.3: Front view of 3 frames extracted from an egocentric sequence. We compare SEE-ME (blue) with EgoEgo
(yellow), and the ground truth (green). In red we have the interactee’s poses, extracted from the egocentric video
sequence next to it, but not used in our model.

Social egocentric human pose estimation. Table 7.1 compares our model quantitatively against the cur-
rent leading technique [181]. We retrained the HeadNet module of their model on the EgoBody [362]
dataset, specifically targeting head rotation and translation distance estimation. The rest of the model’s
modules, initially trained on a large-scale motion capture dataset like AMASS [210], were frozen during
this process.

We improve the performance of MPJPE from 268mm to 126mm over the state-of-the-art [181] yielding
a 53% enhancement in MPJPE, 21% in Translation, and a significant 75% in Acceleration. The impact of
the interactee is evident, even when the wearer is not engaged in active interaction with it. Furthermore,
compared to [181], conditioning solely on the interactee enhances the performance from 268mm to 138mm
in MPJPE, giving a 49% increase and a substantial 72% improvement in the Acceleration error between
predicted and ground truth joints. Predicting the wearer’s pose conditioning on the scene alone allows a
direct comparison with EgoEgo, and our model proves again to boost performances. Going from 268mm to
130mm, we get a 51% MPJPE improvement, predicting the wearer’s pose from the scene alone We get 17%
and 75% improvements in translation and acceleration errors, respectively.

Models MPJPE (mm) Orientation Error Translation Error (mm)

PoseReg [348] 189 1.51 1528
Kinpoly-OF [207] 404 1.52 1739
EgoEgo [181] 152 0.67 356
SEE-ME w/o Int.ee 141 0.61 843

Table 7.2: Quantitative results on GIMO [372] dataset.

Egocentric human pose estimation. To reinforce the effectiveness of our approach, we further assess
SEE-ME using the GIMO dataset, as there is a scarcity of 3D social egocentric environmental datasets aside
from EgoBody. Thus we set to assess the quality of SEE-ME by the sole consideration of the scene. The
results shown in Table 7.2 are comparable to EgoEgo and they should be paralleled with SEE-ME w/o
Int.ee in the prior experiment, as the interactee is absent in GIMO. SEE-ME w/o Int.ee outperforms EgoEgo
on the orientation estimation but it yields a larger translation error as EgoEgo leverages information from
SLAM. Overall, on the general MPJPE performance, SEE-ME w/o Int.ee outperforms EgoEgo by 7.2%,

Luca Scofano 73



7.4. Experiments

Figure 7.4: The interactee (red) influences the wearer’s motion (blue).

which reasserts the quality of the proposed model, across different settings.

7.4.2 Qualitative results

We show the results obtained from SEE-ME qualitatively, comparing them to the state-of-the-art [181]. In
Figure 7.3, the input footage (a) is processed to extract the interactee’s pose by EgoHMR [361] (b), which is
then ingested by SEE-ME, alongside the encoding of the scene point cloud. The qualitative reconstructions
match the quantitative evaluation of Table 7.1 as SEE-ME (d) adheres better to the ground truth, than EgoEgo
(c) does. E.g. the actor stands up in (d) to attend to the interactee.

Figure 7.4 depicts a different qualitative study case: the interactee’s pose (red) conditions the generation
of the ego actor (blue), which SEE-ME successfully positions in front of it, taking plausible poses while
conversing.

7.4.3 Ablation studies

Social Interaction ablation. We explore the influence of social relations through ablation studies to gain
a deeper understanding of the interactee’s impact. To quantify interaction, we initially employ a straightfor-
ward proxy: the distance between individuals. This is achieved by categorizing distances into three ranges
based on the root joint. As illustrated in Table 7.3, the proximity of the interactee and wearer correlates
with more pronounced effects on the final results. Notably, the most substantial improvements are observed
in MPJPE (by 6%), Translation Error (by 9%), and Acceleration (by 23%) when considering proximate
interactions. The diminished performance in Translation and Acceleration beyond the 2-meter range is at-
tributed to the wearer moving toward the interactee. As individuals draw closer, there is a heightened relative
acceleration and translation, making it more susceptible to errors.

Wearer-Interactee
Distance Threshold (m)

MPJPE (mm)
Orientation

Error
Translation
Error (mm)

Acceleration
Error (mm/s2)

- 126 0.48 164 2.67
d > 2 132 0.48 183 2.76

1 < d < 2 128 0.49 161 2.73
d < 1 119 0.48 156 2.06

Table 7.3: Ablation study on the interpersonal distance between wearer and interactee. Conditioning on the inter-
actee’s pose works best when in close proximity.

The investigation in Table 7.4 aims to ascertain mutual gaze fixation between two individuals using
information derived from their respective head rotation matrices. Mutual gaze, a critical component of non-
verbal communication, can indicate interpersonal engagement. The proposed method relies on converting
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rotation matrices to Euler angles, extracting gaze directions, and evaluating the angular deviation between
these vectors. We employ 30◦ and 60◦ thresholds to determine whether two individuals are making eye
contact. We look at two data subsets for each threshold: one satisfying the condition and the other not.
Remarkably, both thresholds yield improved results when satisfied, affirming the initial intuition. The most
substantial improvement occurs when individuals are directly looking at each other (30◦), leading to en-
hancements in MPJPE from 127mm to 117mm (by 8%), from 175mm to 137mm in Translation Error (by
22%), and also enhancing the Orientation Error (14%), and Acceleration (by 9%) for when the condition
not being met.

Wearer-Interactee
looking at each other

FOV MPJPE
Orientation

Error
Translation

Error
Acceleration

Error
- - 126 0.48 164 2.67

No 127 0.48 173 2.71
Yes

60 123 0.48 157 2.57
No 127 0.50 175 2.79
Yes

30 117 0.43 137 2.54

Table 7.4: Ablation study on gaze directions. By considering an angle of 60 and 30 degrees, we asses if the wearer
and the interactee are looking at each other. If this is the case, the conditioning boots improve the performance even
more.

Finally, we examine a scenario in which the wearer possesses knowledge of the interactee’s future
movements. This is achieved by conditioning on future frames rather than on the present. As indicated in
Table 7.5, the MPJPE and the Translation Error exhibit improvements of 2% and 22%, respectively. The
latter’s enhancement can be attributed to the wearer’s anticipation of the interactee’s movements, reducing
Translation error.

Wearer’s input = present
Interactee’s input = x

MPJPE
Orientation

Error
Translation

Error
Acceleration

Error
x = present 126 0.48 164 2.67
x = future 123 0.48 128 3.40

Table 7.5: Ablation study on wearer poses conditioned on the interactee’s present and future ones. Even a little glance
into the future reduces the MPJPE.

Implementation details. Our framework consists of three main components: the encoder, the decoder,
and the denoiser. The reconstruction phase, which has 24 million parameters, is handled by the encoder and
decoder, while the generation phase involves the denoiser (9 million parameters) and the frozen decoder.
Each component has 9 layers 4 heads, and a latent space whose dimensionality is 256. The encoder and the
decoder both use standard transformer layers. Based on [359], the denoiser combines classical self-attention
on the latent vector with linear cross-attention between the latent vector and textual input. The batch size is
64 for the first phase and 128 for the second one, and the AdamW optimizer is used with a learning rate of
10−4. The diffusion steps are set to 1000 and 20 during training and inference. We train on 8 Tesla V100
GPUs for 3k epochs for both phases.

Limitations and Future Work. We do not inject any type of social relations knowledge externally but
leave the model free of learning from the dataset. This means that the quality of the predictions is highly
dependent on the training data distribution. While we recognize the presence of social relations in the uti-
lized dataset, EgoBody[361], we acknowledge that these relationships could be more effectively leveraged
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in more diverse and socially engaging datasets, such as EgoHumans [148] for which currently both mesh re-
covery and 3D point cloud are not available. Additionally, we recognize the potential to enhance our model
by exploiting large-motion datasets such as AMASS, and possibly others such as KIT, during the VAE
training for the reconstruction phase. This would allow us to capture movements beyond the constraints of a
single dataset. Currently, our model works without taking any wearer’s input, but considering its egocentric
observed body parts as additional data could be a research path to explore, and which could further improve
our performances.

7.5 Conclusions

In conclusion, accurately determining the 3D pose of the camera wearer in egocentric video sequences
is pivotal for advancing human behavior modeling in virtual and augmented reality applications. Despite
the challenges posed by limited visibility, SEE-ME has demonstrated that the pose of the wearer can be
reconstructed to an improved level of accuracy.

By solely utilizing a latent probabilistic diffusion model, our approach integrates conditioning tech-
niques that effectively capture both social interactions and the surrounding environment. Moreover, it is
straightforward and does not require any extra preprocessing or overhead compared to other methods that
utilize localization techniques. This development shows great potential for improving the realism and pre-
cision of egocentric video-based human behavior modeling, particularly for applications in augmented real-
ity/virtual reality (AR/VR) and embodied AI.

Luca Scofano 76



Chapter 8

PREGO: online mistake detection in
PRocedural EGOcentric videos

8.1 Introduction

Egocentric procedure learning is gaining attention due to advancements in Robotics and Augmented Reality
(AR) technologies. These technologies are pivotal to enhancing online1 monitoring systems, offering real-
time feedback, and improving operator efficiency in various fields. Recent works have produced numerous
datasets [22, 74, 80, 100, 143, 221, 260, 279, 279, 284, 301, 323, 376], methodologies aimed at advancing
procedure learning [100, 143, 203, 301, 324, 373] and error detection models [74, 279, 323]. Despite these
advancements, as outlined in Table 9.1, state-of-the-art methods typically focus on supervised and offline
mistake detection. They are unsuitable for situations requiring dynamic decision-making, specifically within
an online setting, or when errors occur unpredictably, thus defining these instances as open-set conditions.

In this work, we propose the first model to detect PRocedural errors in EGOcentric videos (PREGO),
which operates online, thus causal, and can recognize unseen procedural mistakes, fitting for open-set sce-
narios. We prioritize egocentric videos due to their highly detailed perspective, essential for accurately iden-
tifying steps within procedures. Additionally, the widespread use of egocentric cameras in industries [253]
necessitates the development of online error detection techniques to improve the safety and efficiency of
workers. The online attribute is achieved by analyzing input videos sequentially up to a given frame t,
ensuring that no future actions influence the current step recognition. On the other hand, open-set learning
is performed by exclusively exposing PREGO to correct procedural sequences when predicting mistakes,
following the One-Class Classification (OCC) paradigm [91, 354]. Any step within a procedure that signif-
icantly diverges from the expected correct patterns is identified as an error, allowing PREGO to recognize a
wide range of procedural mistakes without being confined to a restricted set of predefined ones.

PREGO’s architecture is dual-branched, as depicted in Fig. 9.1. The first branch, the step-recognition
branch, analyzes frames in a procedural video up to a current time t, aiming to classify the action being
undertaken by the operator. This branch can exploit the current state-of-the-art video-based online step
recognition model, [10, 324]. Concurrently, the second branch is in charge of step-anticipation, tasked
to predict the action at time t, based solely on the steps up to t − 1. We propose using a pre-trained

1Most workflows can be aided by online monitoring algorithms, which provide feedback to the operator in due course. How-
ever, they may lag due to processing or connectivity delays. We distinguish online from real-time, whereby the second has strict
requirements of instantaneous response.
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Figure 8.1: PREGO is based on two main components: The recognition module (top) processes the input video in an
online fashion and predicts actions observed at each timestep; the anticipation module (bottom) reasons symbolically
via a Large Language Model to predict the future action based on past action history and a brief context, such as
instances of other action sequences. Mistakes are identified when the current action detected by the step recognition
method differs from the one forecasted by the step anticipation module (right).

Table 8.1: Comparison among relevant models. In the modalities column, RGB stands for RGB images, H for hand
poses, E for eye gaze, K for keystep labels. Differently from previous works, we are the first to consider an egocentric
one class and online approach to mistake detection.

Ego OCC Online Modalities Task Datasets
Ding et al. [74] - Arxiv ’23 K Mistake Detection Assembly101 [284]

Wang et al. [323] - ICCV ’23 ✓ RGB+H+E Mistake Detection HoloAssist [323]
Ghoddoosian et al. [100] - ICCV ’23 RGB Unknown sequence detection ATA [100] and CSV [258]
Schoonbeek et al. [279] - WACV ’24 ✓ ✓ Multi Procedure Step Recognition IndustReal[279]

PREGO ✓ ✓ ✓ RGB Mistake Detection Assembly101-O, Epic-tent-O

Large Language Model (LLM) [307] for zero-shot symbolic reasoning through contextual analysis [115,
222, 298]. An error is detected upon a misalignment between the currently recognized action and the
anticipated one, thereby signaling a deviation from the expected procedure. Utilizing correctly executed
procedures as instances in the query prompt obviates the necessity for additional model fine-tuning and
leverages the pattern-completion abilities of LLMs. Our proposed approach is an abstraction from the video
content. Using labels allows for longer-term reasoning, as a label summarizes several frames. Also, this
approach is an alternative to the carefully constructed action inter-dependency graphs [16]. We demonstrate
that symbolic reasoning subsumes understanding lengthy procedures and the action inter-dependencies,
suggesting repositioning from semantic-based expressions of procedures to an implicit representation, where
only patterns of symbols have to be recognized and predicted. By representing procedures as sequences and
their steps as symbols, we let the predictor focus on the patterns that characterize the correct procedures.

To support the evaluation of PREGO, we adapt the procedural benchmarks of Assembly101 [284] and
Epic-tent [143], formalizing the novel task of online procedural mistake detection. In the adapted online
mistake detection benchmarks, which we dub Assembly101-O and Epic-tent-O, the model is tasked with

Luca Scofano 78



8.2. Related Work

detecting when a procedural mistake is made, thus compromising the procedure. The compromising mistake
may be a wrong action or a relevant action performed in such an order that the action dependencies are not
respected.

We summarize our contributions as follows:

• We present PREGO, the first method designed for online and open-set detection of procedural errors
in egocentric videos. PREGO’s online feature ensures causal analysis by sequentially processing input
videos up to a given frame, preventing future actions from influencing current step recognition.

• PREGO achieves open-setness by exclusively relying on correct procedural sequences at training
time, following the One-Class Classification (OCC) paradigm. This allows PREGO to identify a wide
range of procedural mistakes, avoiding confinement to a predefined set of errors and avoiding the need
for fine-grained mistake annotations.

• We propose using a pre-trained LLM for zero-shot symbolic reasoning through contextual analysis to
predict the next action.

• To evaluate PREGO, we introduce the novel task of online procedural mistake detection and re-
arrange existing datasets to provide two new benchmarks, referred to as Assembly101-O and Epic-
tent-O.

8.2 Related Work

8.2.1 Procedural Mistake Detection

Procedural learning has seen significant advancements with the creation of diverse datasets [80, 221, 260,
301, 376] that provide insights into both structured [22, 259, 323] and unstructured [68, 143] tasks, covering
a spectrum from industrial assembly [259, 260, 279, 284] to daily cooking activities [68, 170, 295]. Despite
the increased focus on this area, there is a notable lack of a unified methodology for mistake detection,
resulting in fragmented literature and scarce evaluations.

Datasets. ATA [100] is a procedural dataset designed for offline mistake detection in assembling activ-
ities. It only reports video-level mistakes annotations, making it impractical for frame-based applications.
Assembly101 [284] is a large-scale video dataset that annotates frame-level mistakes. The videos represent
actors assembling toys, and the dataset offers synchronized Ego-Exo views and hand-positions data. Another
recent assembling dataset with frame-level annotations is IndustReal [279]. However, the authors consider
a single toy, which results in a single procedure to be learned. Epic-tent [143] is a dataset with a different
domain, as it reports actors building up a tent in an outdoor scenario. The participants have different degrees
of expertise, and they naturally commit mistakes that have been annotated in Epic-tent. Holoassist [323] is a
recent dataset that presents egocentric videos of people performing several manipulating tasks instructed by
an expert. In this study, we employ [143, 284] datasets since they give insights into errors happening during
procedures in two different contexts, i.e., controlled industrial and outdoor environments2.

Methods. In Table 9.1, we report the main features of the recent approaches to Mistake Detection in
procedural videos. In [100], the authors train an action recognizer model and consider error detection a
semantic way of evaluating the segmentation results. Their method is thus explicitly offline, while PREGO

2At the time of writing [279, 323] were unavailable publicly.
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aims to promptly detect procedure mistakes as soon as they occur. By contrast, Assembly101 [284] and
Holoassist [323] apply the same error detection baselines on varying granularity but also operate offline,
requiring video segmentation. Ding et al. [74] use knowledge graphs for error identification, bypassing
video analysis and extracting procedural steps from transcripts, presenting a distinct methodology within
the procedural learning field. PREGO diverges from these works as it leverages the video frames to detect
the steps of the procedure online and leverages symbolic reasoning for an online assessment of the pro-
cedure’s correctness. Moreover, acknowledging that the mistake detection task shares many aspects with
the established field of Video Anomaly Detection, we design PREGO to work in an OCC framework. As
motivated in [91, 354], this choice ensures that PREGO is not constrained to detect only specific kinds of
errors, as it is trained on sequences that do not contain mistakes.

8.2.2 Steps recognition and anticipation

Step recognition is the task of identifying actions within a procedure. Indeed, a procedure is an ordered
sequence of steps that bring to the completion of a task. Step recognition is crucial in areas such as au-
tonomous robotics and educational technology. Recent contributions in this domain include [285], which
uses a novel loss for self-supervised learning and a clustering algorithm to identify key steps in unlabeled
procedural videos. [203] introduces an action segmentation model using an attention-based structure with
a Pairwise Ordering Consistency loss to learn the regular order of the steps in a procedure. They devise
a weakly supervised approach, using only the set of actions occurring in the procedure as labels, avoiding
frame-level annotations. [373] approaches the task by leveraging online instructional videos to learn actions
and sequences without manual annotations, blending step recognition with a deep probabilistic model to
cater to step order and timing variability. Notably, An et al. [10] proposed miniROAD explicitly targeting
online action detection. They leverage an RNN architecture and regulate the importance of the losses during
training to perform active action recognition.

On the other hand, step anticipation focuses on predicting forthcoming actions in a sequence crucial
for real-time AI decision-making. [2] addresses this by generating multiple potential natural language out-
comes, pretraining on a text corpus to overcome the challenge of diverse future realizations. Additionally,
the framework of [257] proposes solutions to future activity anticipation in egocentric videos, using con-
trastive loss to highlight novel information and a dynamic reweighing mechanism to focus on informative
past content, thereby enhancing video representation for accurate future activity prediction. Unlike prior
works, PREGO is the first model that anticipates actions via LLM symbolic reasoning in the label space.

8.2.3 Large Language Modelling and Symbolic Reasoning

LLMs are trained on large datasets and have many parameters, giving them novel capabilities compared
to previous language models [327]. LLMs have shown remarkable abilities in modeling many natural
language-related [307] and unrelated tasks [32, 115, 327]. Their next-token prediction mechanism aligns
with our action anticipation branch, where both systems aim to infer future actions based on collected data.

Recent research [85, 115, 189, 222, 239] has explored LLMs’ ability to operate as In-Context Learners
(ICLs), which means they can solve novel and unseen tasks. Given a query prompt with a context of input-
output examples, LLMs can comprehend and address the problems in this setting without further fine-tuning.
LLMs as ICLs have been used for a variety of tasks, including planning [239], programming [115, 189],
logical solvers [85], and symbolic reasoning [222].
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Some work has shown that LLMs can generate semantically significant patterns [222], while [329]
has explored LLMs’ in-context capabilities on semantically unrelated labels, where there is no relationship
between a token and its meaning. Recent works [237, 239] studied the opportunity to employ LLMs for
devising plans to accomplish tasks. In our mistake detection pipeline, we leverage ICL using an LLM as
our action anticipation branch. Given examples of similar procedures, such LLM continues sequences of
steps in a procedure, represented as symbols. The LLM acts as a symbolic pattern machine, continuing the
pattern of actions given a context of sequences performed goal-oriented, even if the sequences do not follow
a semantic scheme. This combines the challenges of predicting future actions and of having no semantics.

8.3 Methodology

PREGO exploits a dual-branch architecture that integrates procedural step recognition with anticipation
modeling, as depicted in Fig. 9.1. In the following sections, we elaborate on the problem formalization
(Sec. 9.3.1), present the branches for step-recognition (Sec. 8.3.2) and step-anticipation (Sec. 9.3.3), and
finally we illustrate the mistake detection procedure (Sec. 9.3.4).

8.3.1 Problem Formalization

We consider a finite set of N procedures {pi}Ni=1 that encodes the sequence of actions as pi = {ak}Ki
k=1

where K varies depending on the specific procedure i and ak ∈ A = {a|a is a possible action}. Each
procedure is also represented by a set of videos {vi}Ni=1 that are composed of frames vi = {fτ}Mi

τ=1 where
Mi is the total number of frames in the video i.
Fixed a frame fτ from a given video vi, PREGO’s task is double-folded: it has to (1) recognize the action
aτ corresponding to the frame fτ in the video and (2) predict the action aτ that will take place at time τ
considering only past observations until time τ − 1.
The step recognition task is performed by a module ρ that takes as input the encoded frames of vi up to
τ and returns an action aρτ . We then feed the module ξ, responsible for the anticipation task, with all the
aρ1, ..., a

ρ
τ−1 actions to have a prediction aξτ for the next action in the obtained sequence.

Finally, we compare aρτ with aξτ and we deem as mistaken the actions where a misalignment between the
outputs of the two branches occurs. For clarity, in the remainder of this section, we consider a single
procedure p associated with a video v.

8.3.2 Step Recognition

The step recognition module, denoted as ρ, receives encoded frames from vi up to τ as input and generates
the action aρτ . This module can be designed in a modular fashion under the condition that the model operates
online, meaning it lacks knowledge of future events. In our approach, we leverage MiniRoad [10], renowned
for its state-of-the-art performance in online action detection, its efficiency in computational complexity
(measured in GFlops), and parameter count.

Within this framework, with w representing the size of window W , the model forecasts the action aτ by
considering frames fτ−w, .., fτ . However, this approach yields redundant outcomes as the model frequently
predicts the same action for consecutive frames. We adopt a simple procedure to ensure consistency: we
only consider unique actions whenever the model predicts the same action for consecutive frames. The loss
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for this step recognition module is calculated through a Cross Entropy Loss, comparing the actual action aτ
with the predicted action aρτ .

8.3.3 Step Anticipation

We introduce a novel approach for step forecasting in procedural learning by harnessing the power of sym-
bolic reasoning [222] via a Language Model (LM). Specifically, we employ a Large Language Model (LLM)
as our ξ model for next-step prediction, feeding it with prompts from procedural video transcripts. These
prompts are structured in two parts: the first part comprises contextual transcripts C, Input Context in
Fig. 8.2, extracted from similar procedures to inform the LLM about typical step sequences and order. The
second part, Sequence in the Figure, includes the current sequence of actions up to a specific frame, fτ ,
detected by our module ρ, i.e.,

sτ = [aρ1, ..., a
ρ
τ−1] (8.1)

This approach enables the LLM to utilize in-context learning, eliciting its ability to anticipate subsequent
actions. Our framework operates in a zero-shot fashion, relying on the LLM’s ability to retrieve the cor-
rect sequence continuation without specific training or fine-tuning but only leveraging the positive examples
within the input prompts. Additionally, our method employs symbolic representations of the steps, convert-
ing the set of actions A into a symbolic alphabet Ω through an invertible mapping γ. Therefore, we can
express the symbolic predicted sequence as:

γ(sτ ) = [γ(aρ1), ..., γ(a
ρ
τ−1)] = [ω1, ..., ωτ−1] (8.2)

This conversion abstracts the actions from their semantic content, allowing the LLM to focus on pure sym-
bols and sequences, thus simplifying the complexity of predicting the following action.
Finally, the ξ module, given the examples C and the current symbolic transcript γ(sτ ) described in its
prompt, is required to output the most probable symbol ωτ to continue the sequence (see Figure 8.2). At
this point, we apply the inverse function of γ to retrieve the underlying step label, i.e., aξτ = γ−1(ωτ ).

8.3.4 Mistake Detection

We finally compare the outputs of the two modules to detect procedural mistakes. Precisely, we consider as
correct all the steps where the outputs of the two modules align with each other, while we deem as an error
the cases for which the two outputs diverge. That is:a

ρ
τ ̸= aξτ MISTAKE

aρτ = aξτ CORRECT
(8.3)

8.4 Benchmarking online open-set procedural mistakes

This section presents the benchmark datasets and the evaluation metrics used in our experiments. First, we
introduce the reviewed online variants of Assembly101 and Epic-tent (Sec. 8.4.1), and then we define the
proposed online metrics in Sec. 8.4.2.
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8.4.1 Datasets

We propose Assembly101-O and Epic-tent-O as a refactoring of the original datasets [143, 284], detailing the
selected labeling for online benchmarking, and the novel arrangement of training and test splits, to account
for open-set procedural mistakes.

Assembly101-O

Assembly101 [284] is a large-scale video dataset that enables the study of procedural video understand-
ing. The dataset consists of 362 procedures of people performing assembly and disassembly tasks on 101
different types of toy vehicles. Each procedure is recorded from static (8) and egocentric (4) cameras and
annotated with multiple levels of granularity, such as more than 100K coarse and 1M fine-grained action
segments and 18M 3D hand poses. The dataset covers various challenges, including action anticipation and
segmentation, mistake detection, and 3D pose-based action recognition.
Assembly101 for online and open-set mistake detection (Proposed) We introduce a novel split of the
dataset [284] that enables online, open-set mistake detection by design. Assembly101-O mainly encom-
passes two edits on [284], namely, a new train/test split and a revision of the length of the procedures.
The novel split encloses all the correct procedures in the train set, leaving the videos with mistakes for the
test and validation set. This modification is needed to allow models to learn the sequences of steps that
characterize correct procedures in a one-class classification fashion. In this way, models do not undergo
the bias of learning specific kinds of mistakes during training; instead, as they are exposed exclusively to
correct processes, they adhere to the OCC protocol and consider mistakes all actions that diverge from the
learned normalcy. As a further advantage, this saves all mistaken annotated videos for the test set, granting
better balanced correct/mistaken validation and test sets and a more comprehensive evaluation of mistake
detection. The second revision involves evaluating each video for benchmarking until the procedure is com-
promised, meaning until a mistake occurs due to incorrect action dependencies. Indeed, coherently with
the OCC protocol, models are tasked with learning the correct flows of steps that allow procedures to be
efficiently completed and considering sub-process after a mistake occurs creates a gap between the actions
in the train set and those in the test, which prevents the models from recognizing or correctly anticipating
the procedure steps. Moreover, this work proposes to focus on egocentric videos to be consistent with real-
world applications. Hence, we only leverage a single egocentric video from the four views available for
each video in [284].

Epic-tent-O

Epic-tent is a dataset of egocentric videos that capture the assembly of a camping tent outdoors. The dataset
was collected from 24 participants who wore two head-mounted cameras (GoPro and SMI eye tracker) while
performing the task. The dataset contains 5.4 hours of video recordings and provides annotations for the
action labels, the task errors, the self-rated uncertainty, and the gaze position of the participants. The dataset
also reflects the variability and complexity of the task, as the participants interacted with non-rigid objects
(such as the tent, the guylines, the instructions, and the tent bag) and exhibited different levels of proficiency
and uncertainty in completing the task.
Epic-tent for online and open-set mistake detection (Proposed) This section introduces a novel split for

the Epic-tent dataset [143], designed to be adapted for the open-set mistake detection task. It is labeled with
nine distinct mistake types. However, among these, “slow", “search", “misuse", “motor", and “failure" do
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Sequence type: c09c
Input Sequence: 
<BOS>, attach-wheel, attach-interior, 
attach-cabin, attach-bumper, 
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Figure 8.2: Two different representations of the actions in the prompt for the LLM model. On the left, the prompt is
represented using symbolic labels. On the right, the prompt encompasses the names of the actions in the transcript.
The context part of the prompt is fixed and retrieved from the dataset, while the recognition module extracts the current
sequence.

not represent procedural errors, since, when they occur, the procedure is not tainted. On the other hand,
the categories “order", “omit", “correction", and “repeat" are procedural mistakes, which we consider for
our task. Epic-tent is designed for the supervised error detection task and, differently from [284], every
reported procedure includes some mistakes, hampering the reproduction of the split procedure proposed
for Assembly101-O. Nonetheless, this dataset provides the confidence scores assigned to each frame by
the performer, indicating their self-assessed uncertainty during the task. Thus, we define a strategy for
splitting , reported in Sec. C of the supplementary materials, in which videos featuring the most confident
performers form the train set, while those showing higher uncertainty (and thus potentially more prone to
errors) populate the test set. This partitioning strategy holds encouraging promise, especially in real-world
scenarios where the accurate labeling of erroneous frames is hard to achieve or where the training of a
mistake detector can initiate immediately post-recording without necessitating the completion of the entire
annotation process. The resulting split comprises 14 videos for the training set and 15 for the test set.

The Epic-tent dataset showcases only egocentric videos recorded through Go-Pro cameras. This further
highlights the practicality and relevance of the proposed novel benchmark in open-scene contexts. The
videos in the test set are also trimmed up to the last frame of the first mistake occurring in the video, while
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Table 8.2: A comparative assessment between PREGO and the chosen baseline methods is conducted to detect pro-
cedural mistakes using the Assembly101-O and Epic-tent-O datasets.

Assembly101-O Epic-tent-O
Step Recog. Step Antic. Precision Recall F1 score Precision Recall F1 score

One-step memory Oracle 16.3 30.7 21.3 6.6 26.6 10.6
BERT [71] Oracle 78.2 20.0 31.8 75.0 5.6 10.4
PREGO Oracle GPT-3.5 29.2 75.8 42.1 9.9 73.3 17.4
PREGO Oracle LLAMA 30.7 94.0 46.3 10.7 86.7 19.1
OadTR for MD [324] OadTR [324] OadTR [324] 24.3 18.1 20.7 6.7 21.7 10.2
PREGO OadTR [324] LLAMA 22.1 94.2 35.8 9.5 93.3 17.2
PREGO MiniRoad [10] GPT-3.5 16.2 87.5 27.3 4.3 66.6 8.0
PREGO MiniRoad [10] LLAMA 27.8 84.1 41.8 8.6 20.0 12.0

those representing correct procedures are maintained unaltered.

8.4.2 Metrics

To assess the performance of our procedural mistake detection model, we use True Positives as a measure of
the model correctly identifying errors and True Negatives as a measure of accurately labeling steps that are
not errors. Thus, we rely on the Precision, Recall, and F1 score metrics to evaluate the performance of our
model. These metrics offer valuable insights into the model’s capability to identify and classify mistakes
within procedural sequences. More specifically, precision quantifies the accuracy when predicting mistakes,
minimizing false positives. Recall assesses the model’s capability to retrieve all mistakes, reducing the
number of false negatives. Finally, the F1 score is the harmonic mean of precision and recall, and it balances
failures due to missing mistakes and reporting false alarms.

8.5 Experiments

In this section, we present the results of our experiments on online and open-set mistake detection in proce-
dural videos. We contrast PREGO with several baselines that employ different mistake detector techniques
or use the ground truth as an oracle. The oracular scenario represents an upper bound for a given anticipation
method since the recognition branch does entirely rely on the ground truth. All the baselines are assessed
on the Assembly101-O and Epic-tent-O datasets, detailed in section 8.4.1. Evaluation metrics include pre-
cision, recall, and F1 score, as outlined in 8.4.2. Baselines are introduced in section 9.7.1, and the primary
results are analyzed in 8.5.2. Furthermore, we explore the influence of different prompt types in 8.6.2 and
the context in 8.5.4. Lastly, implementation specifics are discussed in 8.5.5, along with addressing certain
limitations.

8.5.1 Baselines

To estimate the effectiveness of PREGO, we evaluate its performance by comparing it against the following
baseline models based on the metrics presented in Sec. 8.4.2:
One-step memory We define a transition matrix considering only the correct procedures. Specifically,
given the set of the actions A in the training set with |A| = C, we define a transition matrix M ∈ RC×C

which stores in position (l,m) the occurences that action m follows action l. We then label as mistake the
actions occurring in the test split that do not correspond to transitions recorded in the training set.
OadTR for mistake detection The work [324] proposes a framework for online action detection called
OadTR that employs a Vision Transformer to capture the temporal structure and context of the video clips.
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The framework consists of an encoder-decoder architecture. The encoder takes the historical observations
as input and outputs a task token representing the current action. The decoder takes the encoder output and
the anticipated future clips as input and outputs a refined task token incorporating the future context. In
the context of procedural error detection, a mistake is identified when the output from the encoder does not
align with the one from the decoder.
BERT [71] We leverage the capability of BERT utilizing its specific [CLS] token to predict the correct or
erroneous sequence of action. More specifically, we fine-tune BERT using the next-sentence-prediction task,
where the model is trained to predict whether one sentence logically follows another within a given text. In
our context, we apply this to determine whether step B can follow another step A within a procedure. Here,
steps are defined as sets of two words, such as attach wheel, representing coarse actions. To perform this,
BERT is presented with pairs of sentences corresponding to actions A and B, tasking it with predicting the
sequential relationship between them. BERT’s advantage lies in pre-training on a vast text corpus, followed
by fine-tuning for our specific scenario. This process enables BERT to grasp contextual connections between
sentences, rendering it effective for tasks like classifying procedures and comprehending the logical flow of
information in text.

8.5.2 Results

We evaluate PREGO’s performance on two datasets, Assembly101-O and Epic-tent-O, and detail the results
in Table 9.6. We replaced the step recognition branch’s predictions with ground truth action labels to assess
the upper bound on performance without step detection bias defining the Oracle setting. This approach sim-
ulates a scenario where the video branch perfectly recognizes actions in the videos. The One-step memory
method considers only the previous action, while BERT reasons at a higher level of abstraction and leverages
past actions more effectively. This reduces false alarms but introduces a conservative bias in the form of
missing mistakes. PREGO outperformed all baselines by leveraging symbolic reasoning for richer context
modeling. PREGOLLama achieved the highest F1-score with a 45.6% improvement over BERT, demonstrat-
ing the effectiveness of symbolic reasoning. Among PREGO configurations, PREGOLLAMA performed 9%
better than PREGOGPT−3.5 on Assembly101-O, due to its more powerful symbolic representation. Similar
trends are observed on Epic-tent-O with metric values influenced by dataset characteristics (Epic-tent-O
allows for more diverse assembly procedures compared to Assembly101-O).

We move beyond oracle methods that rely on ground truth information and compare PREGO’s perfor-
mance against the established method OadTR [324] per-frame action detection and forecasting. PREGOLlama,
using the same method for step recognition, significantly outperforms OadTR for MD achieving a 102% im-
provement in F1-score (refer to Table 9.6 for detailed results). OadTR is restricted to processing fixed-size
video segments with a default window of 64 frames, resulting in the smallest F1-score. Indeed, it is insuf-
ficient for capturing the context of long procedures lasting an average of 7 minutes in Assembly101. The
improvement can also be attributed to PREGO’s symbolic step anticipation branch. Symbolic reasoning
allows PREGO to operate at a higher level of abstraction than video-based methods like OadTR. This ad-
vantage mitigates video-based approaches’ challenges with occlusion and forecasting fine-grained actions.

PREGOLLama can better learn the normal patterns of the procedures and detect deviations from them,
achieving the best results in terms of F1-score. In addition, PREGOGPT−3.5 incurs costs that scale with
the number of processed tokens, hindering its suitability for large-scale studies. LLAMA, being open-
source, facilitates cost-effective exploration of PREGO at scale. Compared to their oracle counterparts,
PREGOGPT−3.5 and PREGOLLama could potentially gain 54% and 11% improvement in F1-score, respec-
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tively. This suggests that the video branch’s accuracy bottlenecks overall performance. However, the oracle
recognition experiment also highlights the potential for improvement within PREGO itself. Other factors
influencing performance include the quality of symbolic inputs, semantic prompts, and the underlying LLM
architecture.

8.5.3 Performance of Different Prompt Types

We investigate the effect of different action representations in the prompt for the Step Anticipation task.
Following [222], we consider three ways of representing an action: numerical, semantic, or random symbols.
Numerical representation means that an action label is replaced with an index in the range [0,A], where A
is the total number of actions. Semantic representation implies that the action is represented by its action
label. Random symbol indicates that each action is assigned to a different symbol, such as a set of emojis.
This allows us to examine how the LLM can manage different levels of abstraction and expressiveness of
the input prompt. Fig. 8.2 illustrates an example of the same prompt in two representations, symbolic and
semantic.

Table 8.5 shows the experiment results using the described representations. We observe that all the dif-
ferent representations achieve close performance, with the random representation achieving the highest F1
score, 41.8, followed by the semantic and numerical representations, with 41.4 and 39.9, respectively. We
hypothesize that employing a numerical system to represent different actions might inadvertently introduce
a form of bias related to ordering. This type of bias occurs because the relationship between specific actions
and their corresponding numerical values is inherently arbitrary, lacking a natural or logical sequence. As
a result, the numerical mapping can obscure the characteristics of the actions being represented, leading to
potential challenges in accurately anticipating or predicting future actions based on these numerical repre-
sentations. Remarkably, the semantic representation achieves a comparable performance even though words
can introduce bias or ambiguity into the model. This indicates that PREGO can handle the natural language
input and extract the relevant information for the step anticipation task. Surprisingly, the random symbol
representation has the highest performance amongst the other representations, even though the model does
not have any semantic or numerical association with them. This suggests that the model effectively learns
the temporal structure of the actions from the input history, regardless of the symbol representation.

8.5.4 Performance of Different Prompt Context

We examine two alternative ways of writing a prompt (Table 8.4) for the PREGO method: prompting with a
less representative context Vs. a more elaborate one. The less informative prompt, labeled as “Unreferenced-
Context" in Table, requests PREGO to produce the next step without providing the model with the informa-
tion that the contexts are sequences and that the output required is a symbol. The context is simply given as
“Context", the current sequence is given as “Input", and the next step is requested as “Output". The more
elaborate prompt, labeled “Elaborate" in Table, has a more complex prompt for both the context and the
output. The context is given with the sentence “Given the sequences of the following type:", the sequence
to be completed as “Complete the following sequence", and the output “Sequence is completed with". The
three prompts are shown in Fig. 1 of the supplementary materials.

The results show that the referenced-context prompt achieves the best F1 score (41.8). The other two
alternatives perform similarly, reaching an F1 score of 41.4 and 40.5. The detailed prompt structure is
the most effective way of writing a prompt for the PREGO method, as it clearly conveys the essential
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Table 8.3: Performance of PREGO with different prompt representations for Procedural Mistake Detection evaluated
via F1 score, precision and recall on the Assembly101-O dataset.

Precision Recall F1 score
Numerical 26.7 78.6 39.9
Semantic 27.8 81.3 41.4
Random 27.8 84.1 41.8

Table 8.4: Impact of prompt variations on PREGO - Unreferenced-Context, Elaborate, and Referenced-Context
prompts. Evaluated via F1 score, precision and recall on the Assembly101-O dataset.

Precision Recall F1 score
Elaborate 26.9 82.4 40.5
Unreferenced-Context 27.3 85.2 41.4
Referenced-Context (PREGO) 27.8 84.1 41.8

information and the objective of the task.

8.5.5 Implementation Details

PREGO is trained on two P6000 GPUs using the Adam optimizer, a batch size of 128, a learning rate of
1e−5, and a weight decay of 1e−4. For Assembly-101-O, we use the pre-extracted TSN frame level features
from [284]. For Epic-Tent-O, we extract the features using the same method. The training process takes
approximately 4 hours. PREGO achieves 0.02 fps on an NVIDIA Quadro P6000, meeting our needs without
real-time constraints.
Limitations Across the currently available procedural datasets with annotated mistakes, the number of
procedures only ranges up to hundreds, which is a limitation for current deep learning techniques. The
original Assembly101 [284] dataset encompasses 330 procedures; our proposed Assembly101-O inherits
only the procedures without mistakes as the learning set, namely 190 procedures; similarly, both Epic-
tent [143] and Epic-tent-O only include 29 videos depicting the same task. We acknowledge the need for a
large-scale dataset for online mistake detection and leave it as a future work. Indeed, more procedures will
likely let the models generalize better, improving their capability to deal with multiple plausible procedures.

8.6 Ablation Study

Here, we present the results on step anticipation using two different Large Language Models (LLMs) (c.f.
Sec. 8.6.1) and compare them with the case of oracular step recognition (c.f. Sec. 8.6.1). We also investigate
the effect of different semantic prompts on the performance of the LLMs (c.f. Sec. 8.6.2).

Luca Scofano 88



8.6. Ablation Study

Table 8.5: Performance of PREGO with different prompt representations for Procedural Mistake Detection evaluated
via F1 score, precision and recall on the Assembly101-O dataset.

Precision Recall F1 score
Numerical 26.7 78.6 39.9
Semantic 27.8 81.3 41.4
Random 27.8 84.1 41.8

8.6.1 Step Anticipation

Llama Vs GPT-3.5 In this section, we evaluate the performance of different LLMs for procedural mistake
detection with symbolic inputs. We follow the Step Anticipation setting described in Sec. 9.3.3 and compare
the LLAMA-2 model [307] with the OpenAI GPT-3.5 method. We report the results in Table 9.6, using
F1 score, precision and recall as the evaluation metrics. The Table shows that the OpenAI GPT-3.5 method
achieves the highest F1 score on the Assembly101-O dataset. We conclude that the OpenAI GPT-3.5 method
is the most effective LLM for procedural mistake detection, as it can better learn the normal patterns of the
procedures and detect deviations from them. We chose LLAMA as the LLM for the experiments on Epic-
tent and the ablation studies due to its open source, accessible nature, and performance, which is almost on
par with GPT-3.5.

Oracular Evaluation To evaluate the action anticipation model’s performance, we replace the step recog-
nition branch’s predictions with the ground truth action labels. This experiment mimics a situation where
the video branch can perfectly recognize the actions performed in the videos. We refer to the last two rows
in Table 9.6, comparing them with PREGO and the other baseline methods. As expected, the oracle recog-
nition experiment outperforms the PREGO model, achieving an F1 score of 46.3 and 44.1 with LLAMA
and GPT-3.5, respectively, compared to 35.8 and 31.2 of PREGO, and indicating that the accuracy of the
video branch is a bottleneck for the overall performance. However, the oracle recognition experiment also
reveals our model’s potential for improvement. Other factors influence the model’s performance, such as
the quality of the symbolic inputs, the semantic prompts, and the LLM architecture.

8.6.2 Performance of different prompt types

We investigate the effect of different action representations in the prompt for the Step Anticipation predic-
tion. Following [222], we consider three ways of representing an action: numerical, semantic, or random
symbols. Numerical representation means that an action label is replaced with an index in the range [0,A],
where A is the total number of actions. Semantic representation implies that the action is represented by its
action label. Random symbol indicates that each action is assigned to a different symbol, such as a set of
emojis. This allows us to examine how the LLM can manage different levels of abstraction and expressive-
ness of the input prompt. Fig. 8.2 illustrates an example of a prompt in the three different representations.

Table 8.5 shows the experiment results using the described representations. We observe that all the dif-
ferent representations achieve close performance, with the numerical representation achieving the highest
F1 score, with 33.4, followed by the random representation, 33.2. We hypothesize that the numerical repre-
sentation is easier for the model to understand and predict the next step, as it reduces the number of tokens
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to be generated. Indeed, an action index requires only four tokens, whereas the emojis and the action labels
require at least eight tokens. Remarkably, the semantic representation achieves a comparable performance
even though words can introduce bias or ambiguity into the model. This indicates that the model can handle
the natural language input and extract the relevant information for the step anticipation task. Surprisingly,
the random symbol representation has a comparable performance to the other representations, even though
the model does not have any semantic or numerical association with them. This suggests that the model can
learn the temporal structure of the actions from the input history, regardless of the symbol representation.

8.7 Conclusion

We have introduced PREGO, a one-class, online approach for mistake detection in procedural egocentric
video. PREGO predicts mistakes by comparing the current action predicted by an online step recognition
model with the next action, anticipated through symbolic reasoning performed via LLMs. To evaluate
PREGO, we adapt two datasets of procedural egocentric videos for the proposed task, thus defining the
Assembly101-O and Epic-tent-O datasets. Comparisons against different baselines show the feasibility
of the proposed approach to one-class online mistake detection. We hope that our investigation and the
proposed benchmark and model will support future research in this field.
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Chapter 9

Leveraging LLMs with Chain of Thought
and In-Context Learning for Mistake
Detection in Procedural Egocentric Videos.

9.1 Introduction

Detecting procedural errors from videos has recently gained increasing interest due to its potential to yield
substantial benefits across several fields. The capability to detect mistakes in videos of individuals perform-
ing tasks like recipe execution, object assembly or handling complex workflows is promising, as it greatly
enhances the training and learning experience by providing real-time feedback. This immediate feedback
has the potential to allow for timely corrections, enabling faster skill development and acquisition and a
safer learning environment in hazardous sectors such as surgery or aviation.

Advanced mistake detection models will become a fundamental asset to ensure precision, safety and ef-
fectiveness in several procedural applications. These characteristics bolster the generation of new datasets [22,
74, 80, 100, 143, 221, 260, 279, 284, 301, 323, 376] and methodologies, aimed at pushing forward the evo-
lution of procedure learning [100, 143, 203, 301, 324, 373] and error detection models [74, 279, 323].
Currently, existing approaches to mistake detection vary widely. Some methods focus on action detection,
aiming to identify specific types of errors, such as missing steps or incorrect step orders [233]. These ap-
proaches emphasize tracking the sequence of actions and evaluating whether each action adheres to the
correct procedure flow. In contrast, other models avoid action detection entirely and instead monitor modi-
fications made to the assembled object to verify procedural completeness [39, 50].

An ideal Procedural Mistake Detection (PMD) model should possess two key properties: robustness to
diverse types of mistakes and the ability to provide online feedback in a timely manner. First, a mistake
detection system should be capable of identifying any deviation from the correct workflow, regardless of
the nature of the error. While there is a finite set of correct ways to perform a procedure, the number of
possible mistakes is virtually limitless. To achieve this comprehensive capability, we use the One-Class
Classification (OCC) framework which involves training the model exclusively on videos of correct execu-
tions and then testing it on a mixed set of correct and incorrect procedures — similar to anomaly detection
methods [91, 354]. Second, the model should have online capabilities to deliver feedback quickly enough
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to help users correct mistakes promptly, minimizing the reinforcement of incorrect actions 1. Additionally,
the model should be suitable for real-world uses. By adopting an egocentric perspective, we offer a learn-
ing experience that mirrors how humans naturally perceive and interact with tasks, enhancing usability and
deployment feasibility. This perspective aligns well with real-world scenarios, making the model more suit-
able for practical applications during task execution.

PREGO [92] introduces a dual-branch system designed to detect procedural mistakes by identifying
mismatches between the outputs of two distinct modules. The first branch, a step recognition module,
processes the input video and identifies the current action being performed. The second branch, an step
anticipation module, predicts the following action based on the sequence of previous actions through a
language model. PREGO identifies a mistake by flagging frames where the recognized action diverges from
the anticipated action, highlighting inconsistencies between the predicted and expected outcomes.

This work builds on the contributions of PREGO [92], expanding its scope and refining key components
to enhance procedural mistake detection. While PREGO’s evaluation of Large Language Models (LLMs)
focused on a single model and a fixed approach, laying the groundwork for future developments, we conduct
a comprehensive evaluation of LLMs as step anticipators to address these limitations, achieving state-of-
the-art results on Assembly101-O and Epic-tent-O [92]. Specifically, we explore a broader range of LLMs,
fine-tune them using Low-Rank Adaptation (LLoRA), and experiment with various prompting strategies,
including Zero-Shot, Few-Shot, and Automatic Chain of Thought (Auto-CoT) [368], with the latter notably
enhancing the predictive capabilities of the anticipation branch.

Furthermore, the recognizer’s frame-by-frame predictions are prone to noise which disrupts the con-
tinuity of action sequences. To address this, we improve PREGO’s original approach by moving beyond
fixed window aggregation and investigating alternative strategies to mitigate noise and improve prediction
accuracy. Additionally, we introduce frame-level metrics to provide a more precise evaluation, aligning the
action recognition module’s output with the anticipation module’s input. Given the online nature of the task,
we emphasize the importance of accurate and timely per-frame evaluations in dynamic scenarios to ensure
effective mistake detection and minimize delays.

Our contributions include: (1) the exploration and benchmarking of multiple LLMs to improve upon the
foundations laid by PREGO’s approach, (2) finetuning the LLM anticipator with LLoRA for better adap-
tation to procedural tasks, (3) experimenting with various prompting methods, including Auto-CoT which
improves the overall performances, (4) evaluating frame-level metrics for more accurate system performance
compared to the original fixed window approach, and (5) investigating the impact of different aggregation
techniques on the robustness and cohesion of mistake detection systems. Through extensive experimen-
tation, we demonstrate both the challenges and opportunities of dual-branch architectures and LLM-based
step anticipation for open-set mistake detection. Our results highlight the potential of integrating step recog-
nition and anticipation within a unified framework for online procedural error detection, providing a more
adaptable and effective solution for real-world applications.

1We differentiate this online setup from a real-time setup, which aims for immediate responses by allowing slight delays in
processing while still providing effective feedback.
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Table 9.1: Comparison of relevant models in procedural mistake detection. In the modalities column, RGB refers to
RGB images, H stands for hand poses, E represents eye gaze, and K indicates keystep labels. Our approach is the first
to adopt an egocentric, one-class and online method for detecting procedural mistakes.

Model Egocentric (Ego) One-Class (OCC) Online Modalities Task Datasets
Ding et al. [74] - ArXiv ’23 K Mistake Detection Assembly101 [284]
Wang et al. [323] - ICCV ’23 ✓ RGB+H+E Mistake Detection HoloAssist [323]
Ghoddoosian et al. [100] - ICCV ’23 RGB Unknown Sequence Detection ATA [100], CSV [258]
Schoonbeek et al. [279] - WACV ’24 ✓ ✓ Multi Procedure Step Recognition IndustReal [279]
Lee et al. [176] - CVPR ’24 ✓ ✓ RGB Mistake Detection EgoPER [176]
PREGO [92] ✓ ✓ ✓ RGB Mistake Detection Assembly101-O, Epic-tent-O

Proposed ✓ ✓ ✓ RGB Mistake Detection Assembly101-O, Epic-tent-O

9.2 Related Works

9.2.1 Procedural Mistake Detection

Procedural learning has made notable progress with the development of diverse datasets [80, 221, 260,
301, 376], offering valuable insights into both structured [22, 259, 323] and unstructured [68, 143] tasks.
These datasets span a wide range of applications, from industrial assembly [259, 260, 279, 284] to everyday
cooking activities [68, 170, 295]. Despite the growing interest in this field, the lack of a standardized method
for mistake detection has resulted in limited evaluation and fragmented literature.

9.2.2 Dataset

Assembly101 [284] is a large-scale video dataset that provides frame-level mistake annotations. It fea-
tures videos of actors assembling toys, with synchronized Ego-Exo views and annotated hand positions.
IndustReal [279] focuses on a single toy, which leads to a single procedure being learned. Epic-tent [143]
is a dataset that covers a different domain of unscripted actions that capture actors assembling a tent out-
doors. The participants exhibit varying levels of expertise and naturally make mistakes, which have been
annotated. ATA [100] is a procedural dataset created for offline mistake detection in assembling activities.
However, it provides only video-level mistake annotations, limiting its usefulness for frame-based applica-
tions. HoloAssist [323] provides egocentric videos of individuals performing multiple manipulation tasks
following expert instructions. CaptainCook4D [247] is tailored for evaluating procedural activities, specifi-
cally focusing on the culinary domain. While comprehensive, [247] incorporates both procedural errors and
attentional lapses. For our purposes, the latter category falls outside the scope of our investigation, yielding
such dataset unsuitable. Notably, [176] introduced a novel egocentric procedural error dataset consisting
of videos depicting various errors within the cooking domain. In this study, we propose a new benchmark
building upon PREGO tilize the datasets from [143, 284] as they provide insights into procedural errors in
two distinct settings: controlled industrial and outdoor environments.

9.2.3 Methods

Table 9.1 presents an overview of the core characteristics of recent methods for Mistake Detection in pro-
cedural videos. Ding et al. [74] propose a method for procedural learning that utilizes knowledge graphs to
identify errors. Their approach is based on textual transcripts, ignoring the use of visual cues coming from
videos.

In [100], the authors train an action recognition model and treat error detection as a semantic evaluation
of the segmentation results. On the other hand, Assembly101 [284] and HoloAssist [323] apply the same
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error detection baselines on varying granularity but also run offline, requiring video segmentation and labels
during training, thereby limiting their ability to detect previously unseen errors. In [279], the authors address
the problem of Procedure Step Recognition, which focuses on recognizing the correct completion of steps
rather than the partial execution of activities. EgoPER [176] proposes a framework composed of an action
segmentation module and a constrastive module for detecting errors unseen during training. PREGO [92]
leverages video frames to detect procedural steps and incorporates symbolic reasoning for evaluating the
procedure’s correctness. Its objective is to identify mistakes online as soon as they occur, ensuring prompt
detection. Additionally, it is designed to function within an OCC framework, which allows it to detect a
wide range of errors since it is trained on sequences without mistakes, without any constraint on specific
errors [91, 354].

9.2.4 Step recognition

Step recognition, the process of identifying discrete actions within a structured procedural sequence, is
fundamental to progress in domains such as autonomous robotics and educational technology.

Zhuang et al. [203] introduce an action segmentation model that employs an attention-based architecture
coupled with a Pairwise Ordering Consistency (POC) loss function. This approach effectively captures the
correct sequence of procedural steps. Their innovation lies in developing a weakly-supervised method that
requires only the set of actions in a procedure as input, eliminating the need for labor-intensive frame-level
annotations. In Shah et al.[285], a novel loss for self-supervised learning is combined with a clustering
algorithm to detect key steps in procedural videos without using any labels. [373] tackles the task by utiliz-
ing online instructional videos to learn actions and sequences without manual annotations, combining step
recognition with a deep probabilistic model to account for step order and timing variability. An et al. [10]
introduced MiniROAD, the state-of-the-art online step recognizer, which utilizes an RNN architecture and
adjusts loss importance during training to perform online action recognition. However, existing methods like
MiniROAD perform detection on a frame-by-frame basis, which can be limiting in practical scenarios that
require recognizing sequences of actions rather than isolated frames. This limitation is particularly apparent
in real-world situations where understanding the broader context of sequential actions is crucial. To over-
come this, we introduce aggregation techniques to improve the coherence of action recognition, addressing
the frame-level limitation inherent in current methods.

Moreover, the approach proposed in Shen et al. [287] also highlights the importance of understanding
actions in a more holistic manner rather than treating each frame in isolation. Yet, while PREGO focuses
on detecting procedural mistakes using an OCC-based approach with LLMs for action anticipation, [287]
targets action segmentation and progress estimation with task graphs.

9.2.5 Step Anticipation

Conversely, step anticipation predicts upcoming actions in a sequence, which is important for real-time AI
decision-making. [2] generates multiple possible natural language outcomes, leveraging pretraining on a
text corpus to handle the variability in future actions. [218] employs a two-level hierarchical approach,
integrating both high-level human intentions and low-level action sequences, improving action anticipation
in the long term. The pipeline consists of two models: the first extracts intentions and classifies actions, and
the second generates future actions, conditioning human intentions to narrow down the uncertainty set of
future actions.
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Furthermore, the framework presented in [257] addresses future activity anticipation in egocentric
videos by employing a contrastive loss to emphasize novel information and a dynamic reweighting mecha-
nism that prioritizes informative past content. This approach improves video representation, leading to more
accurate predictions of future activities. While we adopt a similar dual-branch architecture as in PREGO
[92]. However, we omit symbolic reasoning, instead leveraging the actual semantic labels to harness the
reasoning capabilities of LLMs through an Automatic Chain of Thought.

9.2.6 Reasoning tasks with Large Language Models

Large Language Models (LLMs), trained on vast datasets and equipped with numerous parameters, exhibit
advanced capabilities beyond those of earlier language models [327]. They have demonstrated exceptional
performance in both natural language processing tasks [307] and non-language tasks [32, 115, 327]. The
next-token prediction mechanism of LLMs closely parallels our action anticipation framework, as both aim
to predict future outcomes based on accumulated data.

Recent research [5, 85, 115, 149, 189, 222, 239] has investigated the ability of LLMs to function as
In-Context Learners (ICLs), meaning they can solve novel and unseen tasks without requiring additional
fine-tuning. When provided with a query prompt that includes a context of input-output examples, LLMs
can understand the problem and generate appropriate solutions within this framework. LLMs as ICLs have
been applied to a wide range of tasks, including planning [5, 239], programming [115, 189], logical problem-
solving [85], and symbolic reasoning [222]. In addition to ICL, other paradigms, such as Chain-of-Thought
(CoT) [328] and Automatic Chain-of-Thought (ACoT) [368], have been employed to enable LLMs to reason
through their responses step-by-step, improving their ability to plan and articulate their thought process
explicitly.

Previous research has shown that LLMs can generate semantically meaningful patterns [222, 369], while
other work [329] has explored their in-context learning abilities with semantically unrelated labels, where
there is no direct relationship between a token and its meaning. Recent studies [149, 237, 239] have inves-
tigated using LLMs for creating task-oriented plans

The approach in [149] is the most similar to ours, as it employs a Socratic method [355] that uses video
features to predict subsequent actions with an LLM. Socratic Models (SMs) are a framework that utilizes
structured dialogue between pre-existing foundation models, each leveraging its unique capabilities based
on its training data distribution. However, while PALM integrates an Action Recognition Model (ARM) and
a Vision-Language Model (VLM) to generate text prompts for long-term action anticipation, we diverge
by using a dual-branch architecture: one branch dedicated to video recognition for action detection and the
other utilizing an LLM for action anticipation.

In our mistake detection pipeline, we integrate In-Context Learning (ICL) and Automatic Chain of
Thought (ACoT), utilizing an LLM as part of our action anticipation branch. ACoT enables the model to
automatically generate intermediate reasoning steps, breaking the problem-solving process into smaller, log-
ical steps. The approach helps the LLM to externalize its reasoning, enhancing its effectiveness in managing
complex, sequential tasks.

9.3 Methodology

The proposed system leverages a dual-branch framework that integrates the recognition of procedural steps
with anticipation modeling, as shown in Fig. 9.1. In the following sections, we elaborate on the problem
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Figure 9.1: Our proposed model is based on two main components: The recognition module (orange) processes the
input video in an online fashion and predicts actions observed at each timestep; the anticipation module (blue) reasons
symbolically via a Large Language Model, utilizing automatic Chain of Thought (ACoT) reasoning to predict the
future action based on past action history and a brief context, such as instances of other action sequences. Mistakes
are identified when the current action detected by the step recognition method differs from the one forecasted by the
step anticipation module.

formalization (Sec. 9.3.1), present the branches for step-recognition (Sec. 9.3.2) and step-anticipation (Sec.
9.3.3) and finally we illustrate the mistake detection procedure (Sec. 9.3.4).

9.3.1 Background

Let us consider a finite collection of N procedures {pi}Ni=1, where each procedure encodes a sequence of
actions as pi = {ak}Ki

k=1. Here, Ki varies depending on the specific procedure, and each action ak belongs
to the set ak ∈ A = {a|a is a possible action}. Additionally, each procedure is represented by a set of
videos {vi}Ni=1, which consist of frames vi = {fτ}Mi

τ=1, with Mi indicating the total number of frames in
video i. Given a specific frame fτ from video vi, our task is two-fold: we must (1) identify the action aτ
corresponding to the frame fτ and (2) predict the action aτ that will occur at time τ , relying solely on past
observations up to time τ − 1.

The step recognition task is handled by a module ρ, which takes the encoded frames of vi from the
start up to frame τ as input and outputs an action aρτ (Sec. 9.3.2). Subsequently, we input all the actions
aρ1, ..., a

ρ
τ−1 into module ξ, which is responsible for the anticipation task, allowing it to predict the next

action in the sequence as aξτ (Sec. 9.3.3).
Finally, we compare aρτ with aξτ designating actions as mistaken when there is a misalignment between

the outputs from the two branches (Sec. 9.3.4). For clarity, the rest of this section will concentrate on a
single procedure p associated with a video v.

9.3.2 Step Recognition

The step recognition module referred to as ρ, takes encoded frames from vi up to frame τ as input and
produces the action aρτ . In our approach, we utilize MiniRoad [10], which is well-known for its exceptional
performance in online action detection, as well as its computational efficiency in terms of GFlops and
parameter count.
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In this setup, with w indicating the size of the windowW , the model makes predictions for the action aτ
by examining the frames fτ−w, .., fτ . This approach often results in redundant predictions, with the model
frequently assigning the same action to consecutive frames. To address this issue, we explore methods for
aggregating redundant and similar actions (Sec. 9.6).

The loss for this step recognition module is calculated through a Cross Entropy Loss, comparing the
actual action aτ with the predicted action aρτ .

9.3.3 Step Anticipation

We employ an LLM as our ξ model for next-step prediction, feeding it with prompts from procedural
video transcripts and exploiting its reasoning ability thanks to Automatic Chain of Thought (ACoT) [368].
Our framework operates without specific training or fine-tuning, leveraging only the reasoning from ACoT
(See Fig. 9.1) and few-shot prompts. These prompts consist of two components: the first one, contextual
transcripts C, is derived from similar procedures (i.e., different procedures for the same toy) to provide the
LLM with information about typical step sequences and their order. The second part, Sequence sτ , includes
the current sequence of actions up to a specific frame, fτ , detected by our module ρ, i.e., the sequence sτ up
to frame fτ is defined as sτ = [aρ1, ..., a

ρ
τ−1]. Where aρi represents the action detected by module ρ at frame

i.
The prompting occurs in two stages. First, we employ an ACoT mechanism of ξ as an intermediate step

ϕτ . This ACoT process uses C, sτ , and an additional prompt to explicitly stimulate reasoning. Then, we use
the output of ϕτ along with C and sτ to predict the next most probable action. By breaking down the task
into smaller logical steps, the LLM can leverage the contextual transcript C and the current action sequence
sτ to generate intermediate reasoning steps, bridging the gap between observed and future actions.

9.3.4 Mistake Detection

Ultimately, we analyze the outputs of the two modules to identify procedural errors. Specifically, we classify
steps as correct when the outputs of both modules match, while we label cases as errors when the outputs
differ. That is: a

ρ
τ ̸= aξτ MISTAKE

aρτ = aξτ CORRECT
(9.1)

We compare two different evaluation settings: aggregated and frame-level. In both cases, the input data
to the recognizer is aggregated; this is done by compressing multiple window frames’ actions in a single
one by considering the most frequent action and then merging adjacent actions. While in the first case, we
directly compare the anticipator’s output to that aggregated input, in the frame-level case, we have to expand
it to the original dimensionality.

9.4 Experimental Setup

9.4.1 Dataset

In our experiments, we relied on Assembly101-O and Epic-tent-O, novel splits of the original Assembly101
[284] and Epic-tent [143] datasets proposed in PREGO [92].
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Assembly101-O includes two major modifications: a revised train/test split and an adjustment to the
length of procedures. In the novel split, all correct procedures form the training set (adhering to the OCC
protocol), while videos containing mistakes are reserved for the test set.

Additionally, this approach allocates all annotated mistake videos to the test set, resulting in a more
balanced evaluation with both correct and mistaken procedures for testing, leading to a more thorough and
realistic assessment of mistake detection.

The second modification involves benchmarking each video only until the procedure is compromised by
a mistake caused by incorrect action dependencies. This ensures that the knowledge the model learns from
the correct procedures during training can be fully exploited since evaluating sub-processes after a mistake
would create a disconnection between the actions in the training and test sets, which could prevent models
from accurately recognizing or anticipating procedure steps. Furthermore, the authors focus exclusively
on egocentric videos to align with real-world applications, leveraging only one egocentric view of the four
available in the original dataset [284].

Epic-tent is labeled with nine distinct types of mistakes, but not all are relevant to procedural errors. For
example, categories such as “slow", “search", “misuse", “motor", and “failure" do not represent procedural
errors since they do not compromise the procedure itself. Conversely, the categories “order", “omit", “cor-
rection", and “repeat" do represent procedural mistakes, and these are considered in our task. Unlike [284],
which allows for a clean split between correct and mistaken procedures, every reported procedure in Epic-
tent includes some mistakes. Despite this, the Epic-tent dataset provides performer confidence scores for
each frame, representing their self-assessed uncertainty during the task. PREGO [92] devises a strategy to
form Epic-tent-O: videos featuring the most confident performers from the training set, while those with
higher uncertainty—likely to contain more errors—are allocated into the test set. This methodology offers
considerable potential for real-world applications, particularly in contexts where precise frame-level error
labeling is challenging. A key advantage is that mistake detection systems can initiate training immediately
post-recording without the delay typically associated with annotation processes. Epic-tent-O was partitioned
into 14 training videos and 15 testing videos. The Epic-tent dataset consists exclusively of egocentric videos
captured through Go-Pro cameras, underscoring the practicality and relevance of this benchmark in open-
scene environments. Additionally, the videos in the test set are trimmed to the last frame before the first
detected mistake, while videos depicting correct procedures remain unaltered.

9.4.2 Metrics Definition

We work with a sequence of frames, each representing a procedure, where all actions are correct except for
the last one, which is a mistake. A mismatch between the prediction of the step recognition and the ones of
the step anticipation indicates the presence of a mistake, while no mismatch means the procedure is correct.
To assess the performance of our procedural mistake detection model, we follow the evaluation proposed in
PREGO: we use True Positives as a measure of the model correctly identifying errors and True Negatives
as a measure of accurately labeling steps that are not errors. Thus, we rely on the Precision, Recall, and
F1 score metrics to evaluate the performance of our model. These metrics offer valuable insights into the
model’s capability to identify and classify mistakes within procedural sequences. Precision quantifies the
accuracy when predicting mistakes, minimizing false positives. Recall assesses the model’s capability to
retrieve all mistakes, reducing the number of false negatives. Finally, the F1 score is the harmonic mean of
precision and recall, and it balances failures due to missing mistakes and reporting false alarms.

To establish a method-agnostic evaluation metric, we focus solely on the model’s ability to classify ac-
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tions as correct or erroneous. While our approach incorporates an online action detection component, we
do not directly assess its general step recognition capabilities—instead, our evaluation centers on the accu-
racy of distinguishing between correctly and incorrectly performed actions. This decision stems from the
limitations of metrics that blend recognizer and anticipator module performances, which can lead to unfair
comparisons with approaches employing alternative prediction strategies. Given the expected class imbal-
ance in ego-centric mistake detection tasks and the critical importance of identifying errors, the mistakes are
considered as mistakes as the positive class in our evaluation framework.

When evaluating frame-level metrics (see Sec. 9.7.3), we consider corner cases such as the best, worst,
and random scenarios (see Sec. 9.7.1) for clarity. To ensure a fair comparison, we use balanced accuracy
as the evaluation metric, the average of true positive and true negative rates. This is useful to mitigate the
impact of dataset imbalance, which would otherwise lead to an unfair comparison.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (9.2)

See Tab. 9.7 for experiments’ results.

9.5 Large Language Models as Step Anticipators

This section comprehensively analyzes how an action anticipator operates using various techniques and
methodologies. We begin by evaluating the performance of several large language models (LLMs) using in-
context learning with few-shot examples (Sec. 9.5.1), which allows us to determine which model performs
best in this setting. Once the most effective LLM is identified, we investigate different prompting strategies,
starting from a system prompt’s impact, including zero-shot, few-shot, and Automatic-Chain-of-Though
prompting (Sec 9.5.2). In advance, we explore the potential improvements by fine-tuning each prompting
method to enhance the model’s performance (Sec. 9.5.3). Lastly, we perform a speed analysis, comparing
different prompting methods (Sec. 9.5.4).

All experiments use ground truth aggregated labels of the Assembly101-O dataset as the output of the
predictor’s branches. This approach ensures that our performance analysis remains objective and untainted
by errors from the step recognition branch, allowing for a more accurate evaluation of the step anticipator’s
capabilities.

9.5.1 Model Selection

In this analysis, we evaluate the performance of various LLMs, as shown in Table 9.2 when using few-shot
context. The results demonstrate a clear performance hierarchy among the tested models, with LLAMA 3.1
8B emerging as the superior performer across all metrics. LLAMA 3.1 8B achieved the highest accuracy
at 47.40% and the best F1 score of 48.40%, significantly outperforming its counterparts. The performance
trend correlates with model size and recency, suggesting that larger, more recently developed models benefit
from architectural improvements and more extensive pre-training. This is exemplified by the LLAMA 3.1
8B model, which leverages its 8 billion parameters to capture more complex patterns and better generalize
the assembly task. The superior performance of LLAMA 3.1 8B could be attributed to several factors,
including potential advancements in its training methodology, the quality and diversity of its training data,
and possible optimizations for general task comprehension. An exciting pattern observed across all models
is the substantial disparity between Precision and Recall scores. The consistently high Recall scores, peaking
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at 91.30% for LLAMA 3.1 8B, indicate that these models identify relevant assembly steps. However, the
markedly lower Precision scores suggest a tendency towards overprediction, resulting in false positives. This
discrepancy highlights the inherent complexity of the assembly prediction task, where models must balance
comprehensive step identification with selective precision.

Table 9.2: Results of different LLMs on Assembly101-O.

Model Accuracy Precision Recall F1

Mistral 7B 35.20 28.60 88.90 45.60
Gemma 9B 31.90 27.20 85.60 43.50
Phi 3 medium 4k instruct 39.60 29.50 88.70 46.20
LLAMA 2 7B 36.3 30.7 94.0 46.3
LLAMA 3 7B 36.40 29.80 87.30 45.60
LLAMA 3.1 8B 47.40 33.80 91.30 48.40

9.5.2 Prompt Analysis

System prompt. The results in Table 9.3 highlight the positive impact of combining Automatic-Chain-
of-Though (ACoT) reasoning with Few-Shot (FS) examples on the performance of LLAMA 3.1 8B across
different modalities in the Assembly101-O dataset. In all prompting scenarios, the system prompt is written
as:

System: I am going to provide an input sequence that represents a sequence of actions. Your task is to
predict the next action of the last sequence based on the patterns observed in the provided input. Limit
yourself to only answer with the predicted sequence, and follow the same format given as input.

This prompt consistently offers essential context about the task, improving the model’s performance,
particularly in accuracy and precision.

In Zero-Shot (ZS) settings, the instruction prompt is presented as:

System: Below is an instruction that describes the task, paired with an input. Write a response that
appropriately completes the request.

In Few-Shot prompting, this is enhanced by adding examples of input sequences and corresponding
responses to guide the model.

We explore two different input representations: a textual and a numerical one: in the first, we represent
an action by its name and natural language, e.g., attach-wheel; in the second one, we use the index
associated with the action triplet. For instance, in the textual modality, accuracy improves by 6.8%, and
precision increases from 31.80% to 33.80%, reflecting a 6.3% gain. Similarly, in the numerical modality,
including the system prompt boosts accuracy by 8.2% (from 40.10% to 43.40%) and precision by 4.6%
(from 30.40% to 31.80%).

The improvements can be attributed to the system prompt and FS examples, which provide explicit
context and structure, enabling the model to better understand the task’s nuances and generate more accurate
and relevant predictions.
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Table 9.3: Results of LLAMA 3.1 8B on Assembly101-O adding a system prompt.

System Prompt Modality Accuracy Precision Recall F1

✓
Textual 47.40 33.80 91.30 48.40

Numerical 43.40 31.80 92.30 46.20

X
Textual 44.40 31.80 87.30 46.10

Numerical 40.10 30.40 93.30 46.60

Prompting Methods. When comparing ZS, FS, and ACoT prompting methods, ACoT emerges as the
clear winner (Table 9.4), particularly when using the pre-trained model (Base), across both textual and
numerical tasks. In the ACoT approach, automatic ACoT reasoning is employed, where the LLM is queried
twice: first, to generate an internal reasoning step for the answer, and then to use this reasoning, combined
with a few examples (as in FS), to derive the final answer. This two-step process allows the model to not
only provide an explanation for its decision but also leverage the reasoning and examples to produce a more
accurate and robust output. This superiority can be quantified: for example, in the textual modality, the
ACoT base achieves a 51.40% accuracy, which is approximately 81% higher than the ZS base (28.40%) and
8.4% higher than the FS base (47.40%). In terms of the F1 score, the ACoT base (50.40%) outperforms the
ZS base (42.40%) by 18.9% and the FS base (48.40%) by about 4.1%. This difference is less pronounced
in numerical tasks, where the ACoT base achieves an accuracy of 40.40%, 47.4% higher than the ZS base
(27.40%), and 8% higher than the FS base (37.40%).

These differences can be attributed to how these methods prompt the model. ZS and FS methods direct
the model to generate answers straight from the input without guiding it through intermediate reasoning.
While this may suffice for more straightforward tasks, it often falls short when dealing with more complex
tasks that require deeper understanding.

ACoT, by contrast, excels in these scenarios because it prompts the model to break down the task into
a series of logical, intermediate steps before concluding. This approach mirrors the "self-explanation" cog-
nitive strategy, where breaking down and explaining each step improves problem-solving abilities. This
explains why ACoT significantly outperforms ZS and FS, especially in tasks that demand nuanced under-
standing and intermediate reasoning.

9.5.3 Finetuning Analysis

We analyze the performance of LLAMA 3.1 8B when fine-tuned on Assembly101-O (Table 9.4). Contrary to
the common expectation that fine-tuning enhances performance by adapting the model to the task’s specific
characteristics and distribution, this is not consistently observed. In both the ZS and FS methods, fine-
tuning offers no significant improvement across metrics, with some cases showing similar or even lower
precision and recall values. Notably, in the ACoT method, fine-tuning consistently results in a decrease
in performance, particularly in terms of precision, suggesting that fine-tuning may not always provide the
anticipated benefits.

This phenomenon can be explained by considering the dataset’s nature and ACoT prompting’s capabil-
ities. Fine-tuning typically helps when there is sufficient data to prevent overfitting, allowing the model to
generalize better. However, when the dataset is small, as in this scenario, fine-tuning may cause the model to
overfit the specific examples seen during fine-tuning, capturing noise rather than functional general patterns.

For ACoT, the base model’s ability to handle complex reasoning through its intermediate steps seems
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Table 9.4: Results of LLAMA 3.1 8B on Assembly-101-O with different prompt methods, modalities, and inference
modes.

Prompt Modality Mode Accuracy Precision Recall F1

ZS

Textual Base 28.40 27.30 98.30 42.40
Textual Finetuned 28.40 27.30 99.30 42.40

Numerical Base 27.40 27.10 98.70 43.60
Numerical Finetuned 27.20 27.80 98.40 42.60

FS

Textual Base 47.40 33.80 91.30 48.40
Textual Finetuned 46.40 30.80 97.30 45.40

Numerical Base 43.40 31.80 92.30 46.20
Numerical Finetuned 45.40 32.10 87.30 46.60

ACoT

Textual Base 51.40 34.80 90.30 50.40
Textual Finetuned 46.40 31.80 85.30 47.60

Numerical Base 40.40 31.20 93.30 41.60
Numerical Finetuned 40.10 32.80 84.30 40.60

sufficiently robust, and it does not benefit from the additional adjustments that fine-tuning provides. Fine-
tuning might disturb these established reasoning pathways, leading to a decline in performance. This sug-
gests that ACoT is inherently well-suited to tasks requiring deep reasoning, making it less dependent on the
benefits of fine-tuning, especially in scenarios with limited data.

9.5.4 Speed Analysis

Table 9.5 presents a speed test comparison of different prompting methods—ZS, FS, ACoT—using LLAMA
3.1 on the Assembly101-O dataset. The results indicate that ZS is the fastest method, with an average pro-
cessing speed of 0.208 seconds per sample. FS is slightly slower at 0.216 seconds per sample, representing
a marginal 3.8% rise in processing time compared to ZS. ACoT, while offering superior accuracy and rea-
soning ability, is the slowest, taking 0.315 seconds per sample, which is a 51.4% increase in speed compared
to ZS. These differences in speed can be attributed to the inherent complexity of each method. ZS and FS
prompt the model to generate answers directly, with FS introducing a minimal overhead due to the addi-
tional context provided by the few examples. On the other hand, ACoT requires the model to engage in
more complex, step-by-step reasoning, which naturally demands more computational resources and time.
While ACoT’s performance benefits are clear, these come at the cost of slower processing, which could be
a consideration in time-sensitive applications. Thus, the choice of prompting method should balance the
trade-off between speed and output quality based on the task’s specific requirements.

Table 9.5: Speed Test with LLama 3.1 on Assembly-101-O

Model Speed (s/sample)

ZS 0.208
FS 0.216
ACoT 0.315
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Figure 9.2: Class cardinality in Assembly101-O.

9.6 Aggregation Strategy

9.6.1 Step Recognizer Analysis

The action recognizer is the architecture module responsible for online action detection, a task extensively
explored in recent research due to its various possible applications. Several models have been proposed using
datasets such as Thumos [137], TVSeries [97], and Fine Action [194], with the current leading model being
MiniROAD [10]. The performance of MiniROAD on procedural datasets has been suboptimal, largely due to
two key factors: the shift in action distribution between the training and testing phases, and the inherent class
imbalance within the dataset. The distribution shift occurs because the actions seen during training often
differ from those encountered during testing, leading to poorer generalization. Additionally, Assembly101
contains a significant imbalance in class frequencies (see Figure 9.2), where common actions dominate the
dataset while less frequent yet crucial procedural actions are underrepresented. These challenges hinder
MiniROAD’s ability to effectively capture and recognize the full range of procedural actions in real-world
assembly tasks.

9.6.2 Frame Aggregation

These performance issues further degrade the results in subsequent stages. Specifically, they introduce sig-
nificant noise into the input sequence for the anticipator module. For example, if the model struggles to
differentiate between two actions, it may oscillate between them, predicting one and then the other over
small intervals. To provide a cleaner input for the aggregation module, we propose implementing aggrega-
tion strategies that reduce this noise and stabilize the action predictions. Our approach tackles this challenge
by introducing three distinct aggregation methods, as shown in Figure 9.3.
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Figure 9.3: Predictions bars: (a) Ground truth predictions, (b) Predictions using the recognizer,(c) First aggregation
strategy:, (d) Second aggregation strategy, (e) Third aggregation strategy

Each aggregation strategy’s performance will be evaluated using the Levenshtein similarity, which de-
rives from the Levenshtein distance. The similarity between two procedures A and B is defined as:

Levenshtein Similarity(A,B) = 1− ddev(A,B)

max(len(A), len(B))
(9.3)

where: ddev(A,B) is the Levenshtein distance between procedure A and B, which is the minimum
number of single-action insertions, deletions, or substitutions required to transform procedure A into proce-
dure B, and len(A) and len(B) represent the length of procedure A and B, respectively. Note that the term
max(len(A),len(B)) normalizes the score by the length of the longer procedure, ensuring that the ratio is
between 0 and 1.

First strategy

The first aggregation strategy (Figure 9.3.c) we propose consists of a two-step process. In the first step, we
calculate the mode for each non-overlapping sliding window of frames of a given length l. Because the
windows are non-overlapping, this approach introduces a slight delay in processing, which is a trade-off for
improved prediction stability. The mode, representing the most frequent action label within that window,
replaces all predictions in that window, ensuring consistency across the frames and removing the noise of
smaller portions wrongly predicted. In the second step, we apply the elimination of successive duplicates
to remove consecutive repeated action labels, which prevents redundant predictions. This cleaned output
serves as the input to the anticipation module, ultimately aiming to produce a more stable and accurate
sequence of action predictions.

Second strategy

The second aggregation strategy (Fig. 9.3.d) we propose employs a sliding window approach with a window
size of 1, allowing for overlapping portions of frames. In this method, we evaluate the mode within the
overlapping window that includes the last frame and its neighboring context. The prediction of the last
frame is then substituted with this mode, which captures the most frequent action label in that localized
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Figure 9.4: Levenshtein similarity for the proposed aggregation strategies. The maximum similarity is achieved by
the first strategy when using a window size of 500 frames.
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Figure 9.5: Histogram of the durations of the action in Assembly101-O

area. This method is designed with the intent to reduce delay, as it processes frames more dynamically
compared to non-overlapping windows.

Third Strategy

The third aggregation strategy (Fig. 9.3.e)uses a sliding window with a size of 1, similar to the previous
approach. To address the potential issue of the mode being incorrectly positioned within the window, we
opt to substitute the prediction of the central frame rather than the final frame, with some corrections for the
initial and final frames in the video. This adjustment ensures that the most frequent action label is applied
to a frame that is more representative of the overall context, thus enhancing the accuracy of the prediction.

Figure 9.4 illustrates that the first approach is the most effective in maximizing similarity.
Considering that datasets like Assembly101 are recorded at 30 fps and the average action lasts about

570 frames (Fig. 9.5), we selected 500 frames as a sensible trade-off between achieving high similarity and
minimizing the computational burden.
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9.7 Experiments

9.7.1 Baselines

To estimate the effectiveness of our model, we evaluate its performance by comparing it against several
baseline models based on the metrics presented in Sec. 9.4.2. This evaluation framework builds upon the
baselines initially introduced in PREGO [92], as detailed below:
One-step memory In PREGO [92], we defined a transition matrix considering only the correct procedures.
Specifically, given the set of actions A in the training set with |A| = C, we define a transition matrix
M ∈ RC×C , which records, in position (l,m), the number of occurrences where action m follows action l.
During evaluation, an action in the test split that does not correspond to a transition recorded in this training
set matrix is labeled as a mistake. This baseline provides a simple method for recognizing deviations from
standard procedural transitions.
OadTR for mistake detection The work in [324] presents a framework for online action detection called
OadTR, which uses a Vision Transformer to capture video clips’ temporal structure and context. The frame-
work consists of an encoder-decoder architecture: the encoder processes historical observations to output a
task token that represents the current action, while the decoder refines this task token by incorporating in-
formation from anticipated future clips. In the context of procedural error detection, we consider a mistake
to have occurred if the output from the encoder does not match the output from the decoder, indicating a
divergence between observed and expected actions.
BERT-based Mistake Detection We also leverage the capabilities of BERT [71], using its specific [CLS]
token to predict whether an action sequence is correct or erroneous. More specifically, we fine-tune BERT
with a next-sentence-prediction task, training the model to determine whether step B logically follows step
A within a given procedure. In our setting, each step is represented as a set of two words, such as attach
wheel, which describes coarse-level actions. During evaluation, BERT is presented with pairs of actions and
predicts whether the sequence of those actions is correct. The advantage of BERT lies in its pre-training on
a vast corpus of text, which helps it understand contextual relationships between procedural steps, making
it effective for classifying sequences and understanding the logical flow of actions.

In addition to these baselines, we introduce several new baselines to explore corner-case scenarios,
offering a broader perspective for comparison:
Best-Case Scenario In the best-case scenario, we assume that the anticipation branch always predicts the
correct action. This means that when the procedural context indicates a mistake is expected, the model will
predict anything other than the incorrect action, effectively identifying the mistake. Conversely, for correct
actions, the model will consistently make accurate predictions. This ensures that all mistakes are flagged
correctly, and all correct actions are anticipated without error, serving as an upper bound for the system’s
performance.
Worst-Case Scenario In the worst-case scenario, the anticipation branch always predicts the incorrect ac-
tion. Specifically, if a mistake is expected, the model fails to detect it, and if a correct action is expected, the
model still predicts an incorrect action. This serves as a lower bound, helping us understand the limitations
of our approach under adversarial conditions.
Random Anticipation In the random scenario, the anticipation branch provides random guesses for each
action, regardless of the procedural context. This baseline highlights the importance of a well-informed
anticipation module by comparing it against a model without contextual awareness of the sequence.

These baselines allow us to comprehensively evaluate our model’s performance across a range of con-
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Table 9.6: A comparative assessment between Ours and the chosen baseline methods is conducted to detect procedural
mistakes using the Assembly101-O and Epic-tent-O datasets.

Assembly101-O Epic-tent-O
Step Recog. Step Antic. Precision Recall F1 score Precision Recall F1 score

Best Oracle 0 0 0 - - -
Worst Oracle 0 0 0 - - -
Random Oracle 45 91 25 - - -
One-step memory Oracle 16.3 30.7 21.3 6.6 26.6 10.6
BERT [71] Oracle 78.2 20.0 31.8 75.0 5.6 10.4
PREGO [92] Oracle Llama 2 30.7 94.0 46.3 10.7 86.7 19.1
Ours Oracle Llama 3.1 34.80 90.30 50.40 10.6 93.5 22.4
OadTR for MD [324] OadTR [324] OadTR [324] 24.3 18.1 20.7 6.7 21.7 10.2
PREGO [92] OadTR [324] Llama 2 22.1 94.2 35.8 9.5 93.3 17.2
PREGO [92] MiniRoad [10] Llama 2 27.8 84.1 41.8 8.6 20.0 12.0
Ours MiniRoad [10] Llama 3.1 30.30 76.8 43 9.8 100 19.2

ditions, from ideal to highly challenging scenarios, providing a fair and robust comparison to gauge the
effectiveness of our proposed approach.

9.7.2 Sequence-Level Results

We evaluate our model, which utilizes Automatic Chain of Thought for intermediate reasoning, alongside
various baseline methods on two datasets, Assembly101-O and Epic-tent-O, as shown in Table 9.2. For this
evaluation, we replaced the step recognition predictions with ground truth action labels (Oracle setting) to
establish an upper bound on performance, simulating perfect action recognition by the video branch.

The comparison includes several baselines. The One-step memory method only considers the previous
action, while BERT takes a more abstract reasoning approach, leveraging past actions more effectively.
However, this leads to a conservative bias, reducing false alarms and missing some mistakes. PREGO
leverages symbolic reasoning to model richer contextual information, with PREGOLlama demonstrating the
strongest performance across most metrics.

In the Assembly101-O dataset, our model achieves a balanced performance, particularly in the F1-score,
outperforming many baseline methods. Similarly, on the Epic-tent-O dataset, our model attains competitive
precision and recall, highlighting its effectiveness in detecting procedural mistakes across different tasks.
Specifically, our model outperforms OadTR, which suffers from the limitations of fixed video segment
processing and benefits from leveraging semantic labels directly in reasoning processes, resulting in a 102%
improvement in the F1-score.

The results indicate that incorporating the Automatic Chain of Thought enhances intermediate reason-
ing, allowing our model to anticipate actions more effectively and detect deviations from normal procedure
patterns. This positions our model as a powerful alternative, with better procedural mistake detection per-
formance than symbolic reasoning-based approaches like PREGO and other baselines.

9.7.3 Frame-Level Results

During preprocessing, we split the action sequences into windows of fixed size n, selecting the most frequent
action within each window as the representative action. Then, we aggregate the actions to remove any
repetitions. We further experiment with frame-level metrics by computing the previously defined metrics
at the frame level. To achieve this, we reverse the agglomeration process, expanding the output of the
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Figure 9.6: With a window frame of size n > 1 there can be a mismatch between the ground truth window, whose
distribution is often not constant, and the expanded prediction, whose is.

anticipator back to the frame level. This can be done by simply keeping track of the original number of
frames in each window during aggregation. Due to the aggregation process and frame windowing, even the
best-case scenario does not achieve optimal performance, and the worst-case scenario does not result in an
F1 score of zero. See Fig. 9.6 for clarification.

In Table 9.7, we present the results on the Assembly101-O dataset for varying frame window sizes. To
provide a clearer comparison of our model, we report on corner cases in the table. Given that our anticipator
model is a Large Language Model (LLM) in this setting, we define three corner cases: the best case is when
the anticipator always predicts the correct next action, the worst case is when it consistently predicts the
wrong action, and the random case is when it predicts a random action from the set of possible actions. See
Sec. 9.7.1 for a deeper explanation of corner cases.

All predictions are made in an online manner similar to PREGO, the only difference is that the input is
not aggregated and the anticipator works at the frame level, meaning we predict the action associated with
each frame individually. We would expect the best and worst case to correspond to a 1 and 0 F1-score,
but that happens only when considering each frame individually, and no aggregation is performed. In the
other cases aggregation creates issues as explained before; to get an idea: on a total of 380110 frames, when
applying a window of size 200 and considering an oracular anticipator, we get 0.05% true positives, 6%
false positives, 94% true negatives, and 0 false negatives.
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Table 9.7: Performance metrics for different frame windows on the Assembly-101-O dataset.
Frame Window Accuracy Precision Recall F1 Balanced Accuracy

Best 1 100.00 100.00 100.00 100.00 100.0
Worst 1 0.00 0.00 0.00 0.00 0.0
Random 1 0.25 0.05 100.00 0.10 50.1
Ours 1 51.50 0.06 62.64 0.12 57.1
Best 50 98.42 2.95 100.00 5.73 99.2
Worst 50 0.00 0.00 0.00 0.00 0.0
Random 50 0.35 0.05 100.00 0.10 50.1
Ours 50 83.93 0.08 25.27 0.15 54.6
Best 200 93.93 0.78 100.00 1.55 97.0
Worst 200 0.01 0.00 0.00 0.00 0.0
Random 200 0.44 0.05 98.35 0.09 49.4
Ours 200 83.07 0.06 20.33 0.11 51.7
Best 400 88.08 0.40 100.00 0.80 94.0
Worst 400 0.03 0.00 0.00 0.00 0.0
Random 400 0.40 0.05 100.00 0.10 50.2
Ours 400 83.87 0.06 21.43 0.13 52.7

9.8 Limitations

While our dual-branch architecture for online procedural mistake detection demonstrates promising results,
several limitations must be acknowledged.

Although our model achieves strong performance on the Assembly101-O and Epic-tent-O datasets,
its generalizability to other procedural tasks is yet to be fully established. Different procedures or action
categories may require further framework adaptation to maintain effectiveness across diverse contexts. The
open-set nature of procedural mistakes presents additional complexities, as our model, while designed to
handle novel errors, may struggle with unforeseen or atypical actions that fall outside the trained action set.

Real-time processing constraints also pose a challenge. Our dual-branch architecture, particularly when
incorporating Large Language Models (LLMs), can introduce latency in inference, which is critical for
online applications. Optimizing the model for faster processing while maintaining accuracy remains an
ongoing endeavor.

Furthermore, relying on symbolic reasoning simplifies certain aspects of action prediction but may not
adequately capture the intricate semantic relationships between actions. Future investigations should explore
hybrid approaches that combine symbolic reasoning with richer semantic representations to enhance the
model’s predictive capabilities.

Finally, our evaluation metrics primarily focus on action recognition and anticipation accuracy. How-
ever, it is essential to consider other factors, such as the model’s robustness to noise, its ability to navigate
ambiguous scenarios, and the interpretability of its predictions. Addressing these limitations will be crucial
for advancing procedural mistake detection systems and ensuring their efficacy in dynamic, varied environ-
ments.
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9.9 Conclusion

This paper explores the challenging task of detecting procedural errors in egocentric videos online, focus-
ing on a dual-branch architecture that combines action recognition and anticipation. By leveraging Large
Language Models (LLMs) within the action anticipation branch, we use in-context learning and Automatic-
Cahin-of-Thought to demonstrate their ability to predict future steps based on prior actions. Our experiments
comprehensively analyze various prompting schemes and aggregation strategies to optimize performance in
online action recognition, highlighting the importance of effective, prompt formulation for LLM-based an-
ticipators.

Our results emphasize the challenges of per-frame evaluation in real-time action recognition systems and
show how symbolic reasoning, combined with predictive models, enhances procedural mistake detection.

Through extensive experimentation, we demonstrate the effectiveness of our dual-branch architecture,
achieving new state-of-the-art performances for online mistake detection. This underscores the potential
of integrating action recognition and anticipation in a unified framework for detecting procedural errors as
they unfold online. Future work could explore further refinements in symbolic representation and expand
the range of procedural tasks and environments in which our framework can be applied.
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Conclusion

This thesis explores the multifaceted landscape of human dynamics, focusing on three interconnected areas:
Motion Forecasting, Social Navigation, and Egocentric Perception. Through innovative approaches inte-
grating deep learning, role-based interaction models, and social dynamics, we make significant strides in
advancing the prediction and understanding of human behavior within complex environments.

In Motion Forecasting, we go beyond traditional single-person techniques to address multi-person sce-
narios and the influence of environmental contexts. Our work on two-body pose forecasting [261] and
contact-aware global motion forecasting [282] underscores the value of accounting for interpersonal in-
teractions and environmental factors, significantly improving the accuracy of human trajectory and pose
predictions. The staged framework further exemplifies how modeling contact points and motion stages can
enhance performance in challenging prediction tasks.

The research into Social Navigation highlights the critical role of latent variables and social interaction
cues in predicting human behavior, particularly in team-based scenarios and human-robot collaboration.
We present a role-based approach [281] that captures these latent dynamics to improve trajectory fore-
casting in multi-agent systems. Additionally, models like the Social Dynamics Adaptation (SDA) [280]
system contribute to real-time interaction in collaborative navigation tasks, establishing a new benchmark
in human-robot interaction. Moreover, developing topological tools, such as TopoModelx [119], expands
our capacity to represent complex, multi-agent dynamics through topological deep learning, enabling more
abstract representations of social interactions.

In Egocentric Perception and Mistake Detection, we present PREGO [93], the first real-time system for
detecting procedural errors from egocentric video streams. This model and its extended version integrate
action recognition and future action anticipation, aided by the Automatic Chain of Thought, to improve
mistake detection in dynamic environments. Our contributions also include the SEE-ME framework, which
incorporates social interaction cues for more precise mesh estimation from egocentric videos, marking a
significant step forward in first-person video analysis.

These contributions hold broad implications across fields such as robotics, virtual reality, sports ana-
lytics, and human-computer interaction. By enhancing the ability to predict and model human behavior in
diverse and dynamic contexts, this work paves the way for more intuitive human-robot interactions, safer
shared environments, and improved analytics in team-based activities.

There are exciting opportunities to expand upon this work. Future directions involve the integration of
Vision-Language Models and Large Language Models to enhance egocentric video understanding further,
potentially revolutionizing applications in augmented and virtual reality. Developing more advanced graph-
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based models for multi-agent interactions and incorporating reinforcement learning into social navigation
could lead to more adaptive and context-aware systems in motion forecasting and social dynamics.

In conclusion, this thesis contributes to theoretical models of human behavior and practical applica-
tions in areas where understanding and predicting human motion is critical. The methodologies and tools
introduced here contribute to the future of intelligent systems capable of anticipating, understanding, and
seamlessly interacting with human behavior in real-world environments.
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Future Work

Upon completing the research work of this thesis, several avenues remain open for further exploration.
One such avenue is enhancing the understanding of egocentric video data using Vision-Language Models
(VLMs). While the current work has laid the foundation for real-time mistake detection and pose estimation,
integrating models like CLIP or GPT-4Vision can bridge the gap between visual and semantic understanding
in complex, dynamic environments. Embedding VLMs into existing egocentric video frameworks makes
it feasible to process human actions and contextual and object-level understanding. This would allow sys-
tems to align visual inputs with natural language descriptions, thereby improving the recognition of routine
and more abstract tasks. Such advancements could revolutionize applications in augmented reality, virtual
assistants, and healthcare by fostering systems that interpret human behavior and environments with more
nuance, leading to adaptive, context-aware technologies.

Additionally, future research could advance the modeling of social interactions within multi-agent sys-
tems. Although significant progress has been made in understanding latent social roles and dynamics,
especially in contexts like team-based collaboration and social navigation, there remains much to explore
in terms of more sophisticated graph-based models. These models could capture the evolving complexity
of interactions among agents, particularly in dynamic environments involving human-robot collaborations
or group activities like sports. Incorporating topological and reinforcement learning methods could help
develop systems that adapt more fluidly to social contexts, predicting human trajectories and higher-order
agent interactions. These developments would pave the way for intelligent, interaction-aware agents capa-
ble of seamless collaboration in real-world applications, from factory automation and autonomous driving
to household robotics.
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