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Abstract: The growing need to address natural and human-induced disasters while pro-
tecting territory remains a key focus for the scientific community. Effective emergency 
management, especially during wildfires, requires coordinated responses to safeguard 
lives and assets. This study develops hazard maps to aid emergency planning in Italy and 
estimate territorial resilience indicators. Focusing on wildfire ignition hazards in Ischia, 
the study uses a probabilistic model based on fifteen years of wildfire data (2009–2023). 
By analyzing ignition points and employing a Poisson distribution, it correlates ignition 
probabilities with vegetation types. The hazard maps reveal that wildfire risk is primarily 
influenced by the wildland–urban interface and vegetation characteristics, emphasizing 
the need to integrate territorial and urban factors into wildfire forecasting. The findings 
also suggest areas for refining the model to enhance risk mitigation strategies. 
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1. Introduction 
Predicting wildfire behavior and spread remains one of the greatest challenges for 

current management programs aimed at developing strategies for restoring affected areas 
[1]. Fires, an integral part of social and ecological systems, require innovative techniques 
for more effective management. The increase in the number and devastating effects of 
fires, exacerbated by climate change and vegetation alterations [2–4], has made proactive 
actions and new strategies for wildfire risk management essential. 

As a result, there is broad interest among the scientific community regarding the 
necessity to focus more attention on modeling the behavior and spread dynamics of 
wildfires [5]. It is now well-known that, in addition to posing a potential threat to 
ecosystems and urban–rural interface areas [6], wildfires can also cause alterations to the 
soil and the microorganisms within it. Fire suppression efforts are significantly aided by 
road access, which suggests, like the findings of Ager et al. [7], that the likelihood of a 
large fire increases with distance from roads. This could partly be attributed to reduced 
suppression efficiency in those more remote areas. As wildfire management strategies, 
also identification of notable differences in pine regeneration, overall plant cover, and 
plant community composition based on pre-fire treatments suggests that, while fire 
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severity remains the primary factor influencing vegetation changes, pre-fire treatments 
can still affect post-fire plant communities [8]. 

Traditionally, wildfire modeling and study were based on engineering and fire 
safety, control strategies, as well as the emissions of smoke and pollutants, damaging the 
air quality [9], into the atmosphere. However, given the increasing frequency and extent 
of wildfires affecting ever-wider natural areas, leading to substantial alterations in 
hydrological and ecological processes, it is now essential to consider the territory’s 
response, including recovery times and the evolution of post-fire soil conditions [10]. 
Numerous studies, for example, the research conducted by Borja et al. [11], indicate that 
over the long term, the impact of hillslope stabilization techniques on vegetation 
regeneration gradually decreases across nearly all soil properties and ground covers. 
Depending on temperature and duration, the degradation, pyrolysis, and combustion of 
carbon can lead to soil structure breakdown, altering its infiltration capacity, increasing 
erosion rates, and making it more susceptible to dangerous debris flows and landslides 
[12,13]. Therefore, the development of new tools that allow for the prediction and 
anticipation of wildfire spread is crucial for outlining specific prevention and planning 
programs. This prediction model could be based on mathematical and mechanical 
parameters [14,15], machine learning techniques, such as neural networks trained on 
databases [16] or agent-based models which are largely applied to wildfire event 
management [17]. 

In this context, the secondary effects related to wildfires are becoming increasingly 
central to the design of more resilient infrastructure systems capable of functioning 
effectively in complex environments subject to multiple hazards [18]. There is an urgent 
need to shift towards more resilient policies that effectively address fire-related issues 
while ensuring long-term sustainability, as shown by Arango et al. [19]. This shift does 
not mean reducing efforts in wildfire suppression but emphasizes the need for greater 
focus and investment in areas like prevention and protection [20] and especially in the 
field of wildfire evacuation [21]. 

Studies performed over the last decade quantify the dynamic interactions 
characterizing these phenomena, and it is becoming evident that without considering the 
dynamic complexity of natural disasters, impact assessments tend to underestimate risk 
and provide misleading information regarding emergency management priorities and 
planning [22,23]. Small disturbances in a single system could trigger a series of cascading 
failures in other systems, thereby inducing further damage to other infrastructures. 

Wildfire risk is addressed through multiple approaches, with some focusing on 
correlating the phenomenon with predisposing factors, while others aim to define metrics 
for predictive models to support risk management. In Europe, wildfire risk assessment 
typically considers the medium and long-term effects on the territory, recognizing the 
potential to trigger or exacerbate other natural events in areas already vulnerable to 
specific conditions. For instance, in Bulgaria, Borisova et al. [24] propose a flexible, 
location-specific framework for assessing and mapping wildfire risk, particularly in the 
context of natural heritage and resource management. This framework integrates 29 
indicators across five thematic groups—covering hazards, vulnerability, and emergency 
response—and evaluates risk at the forestry subdivision level, the smallest unit of forest 
management. Geospatial technologies are employed to analyze data and generate risk 
maps. 

In France, Caron et al. [25] introduce a novel probability analysis method in the pre-
processing stage to predict wildfires, focusing on rare events. The study, based on wildfire 
data from several French departments between 2015–2022, utilizes a calibrated regression 
model to predict the probability of at least one fire occurring on a given day. This model 
distinguishes itself by incorporating fires of all sizes and causes, rather than focusing on 
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large-scale fires, and demonstrates a balanced approach between log loss and Expected 
Calibration Error. 

In Spain, Liz-López et al. [26] present the Wildfire Assessment Model (WAM), a deep 
learning-based method designed to predict the economic and ecological impacts of wild-
fires in regions such as Castilla y León and Andalucía. The WAM utilizes a residual-style 
convolutional network to assess atmospheric variables and the greenness index, estimat-
ing resources needed, control and extinction time, and expected burned area. The model 
is pre-trained with 100,000 examples of unlabeled data and fine-tuned with a smaller da-
taset of 445 samples. This pretraining improves the model’s ability to predict wildfire sce-
narios, offering enhancements over baseline models and demonstrating practical applica-
tions through regional assessment maps. 

In Italy, where wildfires exhibit a significant seasonal pattern, Arima et al. [27] pro-
pose a Poisson model for zero-inflated spatial counts, addressing measurement error, ex-
cess zeroes, and spatial dependencies. Bayesian inference is applied using MCMC 
through the R package NIMBLE. The model is tested using MODIS satellite data from two 
neighboring Italian regions during the summer of 2021, incorporating socio-economic and 
environmental risk factors. The results indicate the model’s effectiveness in analyzing 
wildfire occurrences and providing valuable insights into spatial risk patterns. 

In the United States, Keeping et al. [28] developed a new model for predicting the 
daily probability of wildfire occurrence at approximately 10 km spatial resolution using a 
generalized linear modeling (GLM) approach. This model incorporates improvements in 
variable selection, predictor range identification, and compression minimization through 
an ensemble of model runs. It successfully predicts geospatial fire patterns, interannual 
variability, and regional seasonal cycles. 

Gonzalez-Mathiesen et al. [29] explore the challenges of integrating wildfire infor-
mation into spatial planning processes in Victoria (Australia) and Chile. The study iden-
tifies key elements that hinder the development of effective wildfire risk management, 
including identification, co-generation, reframing, and implementation. It finds that these 
planning systems often fail to incorporate dynamic wildfire data, limiting the potential 
for improving resilience to wildfires. 

Finally, Wei et al. [30] apply the Convolutional Non-homogeneous Poisson Process 
(cNHPP) model to quantify wildfire ignition risks on power delivery networks. Unlike 
traditional fire danger indices, the cNHPP model accounts for both instantaneous and cu-
mulative environmental factors, as well as spatial–temporal dependencies across network 
segments. This model is applied to major transmission lines in California, using historical 
fire, meteorological, and vegetation data to estimate wildfire risks. 

This study presents a comprehensive investigation into wildfire occurrence probabil-
ity on the island of Ischia, Italy, focusing on the identification of ignition points, the deter-
mination of wildfire causes, and the hazard assessment across different land cover classes. 
The article is organized as follows. The introduction outlines the research objectives and 
perspectives. Section 2 describes the materials and methods, including the mathematical 
models and key considerations. Section 3 presents the results of the wildfire ignition mod-
eling, while Section 4 provides a discussion of these findings and their limitations. Finally, 
Section 5 concludes the study and outlines future research directions. 

2. Materials and Methods 
The objective of this study is to deepen the understanding of the spatial and temporal 

patterns of wildfires and to contribute to the development of effective risk mitigation strat-
egies through hazard maps. Figure 1 illustrates the workflow used to achieve this objec-
tive. The model integrates the analysis of available ignition point data, statistical modeling 
to assess the likelihood of wildfire ignition, and hazard mapping to identify high-risk 
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areas. This approach enables the development of targeted strategies to mitigate the im-
pacts of wildfires and supports better-informed decision-making in wildfire management 
and land-use planning. 

 

Figure 1. Flow chart of the model procedure for estimating wildfire ignition probability. 

The research was structured in several phases to systematically address the study’s 
objectives. The initial phase involved a preliminary investigation into the location of igni-
tion points on the island of Ischia. Field data, combined with satellite imagery, were used 
to precisely map the historical locations of wildfire occurrences. This step was pivotal for 
detecting patterns in the spatial distribution of wildfires across different land cover types, 
providing a basis for further analysis and understanding of risk factors related to specific 
vegetation characteristics. 

An analysis of wildfire ignition causes (2009–2023) was subsequently conducted. By 
examining weather data, human activities, and environmental factors, the study identified 
both anthropogenic and natural ignition triggers. Although this extended observation pe-
riod is not usually considered long-term in seasonal trend analysis, it allowed for the iden-
tification of extended patterns and seasonal variations in wildfire occurrences. This pro-
vided valuable insights into the recurring conditions that contribute to wildfire risk. Next, 
the island’s cover land was categorized into homogeneous classes based on the identified 
ignition points. These classes were defined by land use patterns, vegetation types, and 
topographical features. This classification was designed to streamline the analysis by 
grouping areas with comparable fire risk factors, enabling hazard estimation and subse-
quent risk mapping. This method supports targeted wildfire risk assessment in regions 
with analogous environmental and structural characteristics, improving the precision and 
applicability of the study’s findings. 

Following Papakosta et al. [31] the study developed a probabilistic wildfire predic-
tion model using the Poisson distribution, based on readily available spatial–temporal 
datasets to enhance their operational applicability. Critical variables influencing the pre-
dictions include meteorological conditions, land cover types, and indicators of human ac-
tivity. That is, a Poisson distribution model was applied to estimate the likelihood of wild-
fire occurrences within each land cover class. This model, suitable for critical event anal-
ysis, was integrated with spatiotemporal analysis to incorporate both geographic and 
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temporal aspects of ignition points. Additionally, a chi-square test was conducted to val-
idate the model hypothesis and confirm the reliability of the results. The test was used to 
verify whether the observed frequencies of ignition fires over a fifteen-year period (from 
2009 to 2023) [32] in one or more categories matched the expected frequencies. This step 
aims to assess the significance of the observed patterns and the accuracy of land cover 
classifications. The chi-square test results reinforced the robustness of the Poisson distri-
bution model in predicting wildfire occurrences across different land cover types. 

Finally, the study estimated both local and regional wildfire hazards for land cover 
classes. Local hazard estimates provided detailed insights into the specific risk levels 
across distinct regions of the island, while the regional hazard estimation offered a com-
prehensive overview of wildfire risk for Ischia as a whole. These findings are expected to 
inform future land management and fire prevention strategies, and evidence-based deci-
sion-making to mitigate wildfire risk effectively. 

2.1. Preliminary Investigation of the Location of Ignition Points 

To estimate fire propensity and thus determine the hazard level of the representative 
area, a preliminary analysis was conducted involving the collection of data on past wild-
fire events over a defined observation period. This included identifying the representative 
vegetation species related to the ignition points. The research targeted wildfires that oc-
curred from 2009 to 2023, encompassing the last fifteen years of monitoring activity. Data 
were sourced from the Campania region geoportal and the wildfire register, which pro-
vided access to historical records detailing the perimeters of fire-affected areas. These rec-
ords, maintained by the Forest command of the Carabinieri of the Campania region, were 
essential for accurately mapping past wildfire occurrences and analyzing vegetation types 
associated with ignition points [32]. Between 2009 and 2023, approximately 132 wildfires 
were recorded on the island of Ischia, affecting an estimated 265 hectares in total. To fa-
cilitate deeper analysis and structure the subsequent phases of research, each wildfire in-
cident was systematically categorized according to specific parameters, including: 

- year of occurrence: enabling an understanding of annual variations and potential 
trends over the observation period; 

- fire identifier: a unique reference code for each incident, ensuring precise tracking 
and reference in datasets; 

- fire date: capturing the exact timing of each incident to help identify seasonal or 
weather-related patterns; 

- location and area burned: specifying the geographic location and the size of each af-
fected area to allow for spatial analysis in relation to land cover types, vegetation, 
and proximity to urban zones. 

This classification framework lays the groundwork for detailed statistical modeling, 
allowing for a classification of the underlying factors influencing wildfire occurrence and 
facilitating targeted hazard assessments. 

An initial comparative analysis found that from the total of the 132 wildfires recorded 
over the observation period, 90 incidents occurred during the peak wildfire suppression 
campaign period (15 June –30 September), with the remaining 42 fires occurring sporadi-
cally across other months. Following this categorization, the next step involved integrat-
ing shapefiles that provided the exact locations of each ignition point. These spatial data 
were essential for assessing the characteristics of the surrounding terrain and vegetation. 
Due to data limitations, it was necessary to manually reconstruct the perimeter of each 
fire using AutoCAD software 2025 [33], followed by their georeferencing in QGIS 3.38 
[34], as depicted in Figure 2. 
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Figure 2. Reconstruction and georeferencing of fire perimeters obtained from the fire register of the 
Campania region. 

After the step of the georeferencing for recorded fires, the next phase focused on 
combining the gathered data with thematic maps available in QGIS [34]. This step aimed 
to pinpoint the precise location of ignition points and required integrating various spatial 
data layers to capture relevant environmental and geographic details. This process uti-
lized essential information derived from both raster and vector layers, covering the fol-
lowing categories: 

 Vegetation, land use, and land cover: it provided insight into the type and distribu-
tion of vegetation, which is critical for assessing fire risk based on fuel availability. 

 Perimeters and urban areas: it offered a spatial reference for fire perimeters and prox-
imity to urban areas, important for understanding potential risks to human infra-
structure. 

 Road and trail networks: these layers helped identify access routes, essential for eval-
uating potential fire spread and planning for suppression logistics. 

 Local meteorological data: climate factors, such as temperature, humidity, and wind 
patterns, were incorporated to reflect their influence on fire behavior and ignition 
likelihood. 

 Digital elevation model (DEM) [35]: this layer was used to analyze the topography of 
the study area, considering slope and elevation, which significantly impact fire 
spread dynamics. 

This multi-layered approach allowed for a comprehensive spatial analysis performed 
by the investigators visually in GIS 3.38, ensuring that ignition points were accurately lo-
cated in the study area. 

Before conducting the subsequent investigations, the habitat map of the Campania 
region provided by ISPRA [36] and reported in Figure 3, was used to identify the charac-
teristic urban and natural areas of the island. 
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Figure 3. Nature map of the Campania region: habitat map [36]. 

Based on this territorial classification, the study proceeded to identify the vegetation 
species distributed across the entire island, which are detailed in Table 1. This classifica-
tion linked specific vegetation types to their associated fire risks, as different land use 
types and distributions will also influence ignition likelihood and potential intensity of 
fires. 

Table 1. Vegetation types with relative area distribution in Ischia Island. 

Vegetation Type Area (ha) 
Bramble 138.56 
Mesomediterranean scrub 70.21 
Vineyards 1157.92 
Thermomediterranean oak forests 400.19 
Garrigue  110.79 
Chestnut woods 538.68 
Pine forests  64.54 
Scrub 172.66 
Extensive crops and complex agricultural systems 339.41 
Broom fields 4.63 
Reed beds and other formations dominated by helophytes 22.96 
Orchards 6.48 

The areas summarized in Table 1 provide an overview of the distribution of vegeta-
tion types across the island. This approach is illustrated through the representation of 
point elements, as highlighted in Figure 4. By linking ignition points to distinct morpho-
logical features, this step enhances the accuracy of the fire hazard model, providing a more 
detailed spatial understanding of ignition likelihood across the study area. 
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Figure 4. Ignition points related to the fire events that occurred from 2009–2023. 

The final step in this phase involved the exclusion of urban areas, as they lack ignition 
points. Urban areas are likely to experience multiple ignition points, whether intentional 
or accidental. However, these ignitions are typically short-lived due to the limited availa-
bility of combustible materials and the prompt detection and suppression of fires. The 
vegetation types associated with wildfire ignition on Ischia include bramble, Mediterra-
nean scrub, vineyards, thermos Mediterranean oak forests, garrigue, chestnut woods, pine 
forest, scrub, and extensive crops and complex agricultural systems. 

First, the analysis brought out that 75% of the vegetation types present on the island 
(9 out of 12) have been involved in wildfire ignitions over the last fifteen years. This find-
ing suggests that these vegetation types, in line with land cover patterns, are located in 
areas more vulnerable to ignition hazards. Additionally, the chemical and physical char-
acteristics of these species can facilitate rapid combustion, highlighting their role in fire 
risk across the island. As mentioned above, such points are also more vulnerable to sus-
tainment of ignition [37,38]. 

2.2. Analysis of Wildfire Ignition Causes (2009–2023) 

Alongside the reconstruction of fire perimeters on Ischia from 2009 to 2023, an inves-
tigation into the potential causes of these fires was essential to identify any recurring fac-
tors. Understanding the causes was guided by examining the previously identified igni-
tion points. In this context, two primary factors emerged as significant contributors to fire 
ignitions: 

1. closeness to the road and/or trail network 
2. presence of an urban–rural interface zone. 

The analysis of ignition point locations in relation to these factors showed that 65% 
of ignition points were near road or trail networks, while 62% were within urban–rural 
interface areas. In these zones, the closeness of human infrastructure to natural areas in-
creases the likelihood of ignition, either accidentally or intentionally. 
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The high density of roads and trails across all sides of the island, as depicted in Figure 
5, supports the observation that over half of the fire ignitions may be attributed to human 
activity. These findings highlight the potential influence of human actions, whether acci-
dental or deliberate, in areas where access to vegetation is facilitated by nearby infrastruc-
ture. 

The spatial mapping of ignition points, integrated with road and trail network layers, 
enables the identification of potential correlations between wildfire ignition causes and 
geographic features. This geospatial visualization contributed to the systematic categori-
zation of urban zones into the vegetation classification β4 in Table 2 below. The subsequent 
analysis of potential correlations between ignition points and the influencing factors de-
picted in Figure 5 provided a robust epistemological basis for excluding β4-classified areas, 
justified by the absence of ignition events over an extended temporal horizon. 

 

Figure 5. Correlation between ignition points, main road and trail networks, and urban areas on the 
island. 

2.3. Grouping of Land Cover into Homogeneous Classes 

In this study, vegetation types with similar fire behavior potential were grouped into 
unified classes to streamline analysis. This approach was applied to all remaining vegeta-
tion types that were not associated with a specific characteristic species, ensuring con-
sistent classification across the dataset. The group type classification is summarized in 
Table 2. 
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Table 2. Vegetation types and homogeneous land cover classes. 

Homogeneous Land Cover Clas-
ses (𝞫) Vegetation Type Area (ha) 

Permanent crops and vineyards 
(𝞫𝟏) 

 Extensive crops and complex agricultural systems 
 Vineyards 
 Orchards 

1500.01 

Shrublands, thickets, and scrub 
(𝞫𝟐) 

 Scrub with Pistacia lentiscus 
 Mesomediterranean scrub 
 Bramble 
 Garrigue 
 Reed beds and other formations dominated by helophytes 
 Broom fields 

518.69 

Tall vegetation (𝞫𝟑)  Chestnut woods 
 Pine forests and Thermomediterranean oak forests 

988.08 

Urban areas and others (𝞫𝟒)  Parks, gardens, and green areas 1458.45 
Cliffs, slopes, rock formations, 
quarries, and beaches (𝞫𝟓)  143.94 

After establishing the new land cover classifications, the resulting map is displayed 
in Figure 6. 

 

Figure 6. Homogeneous land cover class map. 

The process of matching ignition points to homogeneous land cover classes yielded 
the following percentage distribution. This analysis links each homogeneous land cover 
class (βi) with the corresponding number of associated ignition points and calculates the 
percentage (%) of ignition points for each class. The percentage is determined by dividing 
the number of fires in each homogeneous class by the total number of recorded fires, 
providing insights into the relative fire occurrence across different land cover types: 

• Permanent crops and vineyards (β₁): 56 ignition points—percentage of 42.42% 
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• Shrublands, thickets, and scrub (β₂): 46 ignition points—percentage of 34.85% 
• Tall vegetation (β₃): 30 ignition points—percentage of 22.73% 
• Urban centers and assimilated areas (β₄): 0 ignition points—percentage of 0.00% 
• Cliffs, slopes, rock formations, quarries, and beaches (β₅): 0 ignition points—percent-

age of 0.00%. 

The analysis of recorded ignition points confirmed the absence of ignition events 
within urbanized areas and rocky terrains characterized by minimal or no vegetation 
cover. Conversely, it highlighted the vegetation cover classes that are more susceptible to 
fire ignition, as shown in the map in Figure 7. 

This map provides a visual representation of regions with heightened susceptibility 
to wildfire, underscoring the critical need for targeted fire prevention strategies in areas 
characterized by dense and highly flammable vegetation. 

 

Figure 7. Distribution of ignition points within the homogeneous land cover classes (βi). 

The distribution of ignition points across the homogeneous land cover classes (βi) 
demonstrates varying levels of fire susceptibility based on land use. The percentage of 
ignition points is calculated as the ratio of the number of fires occurring within a specific 
vegetation class to the total area occupied by that class across the island. This metric pro-
vides a standardized measure of fire incidence relative to vegetation type, enabling mean-
ingful comparisons across different regions or land classifications. Specifically, the per-
centage of ignition points for each class, calculated as the number of fires in that homoge-
neous class relative to the total area it occupies, is as follows: 

• permanent crops and vineyards (β₁) account for 3.72% of the ignition points. 
• shrubs, bushy areas, and maquis (β₂) show a higher percentage at 8.85%. 
• high-stem vegetation (β₃) is associated with 2.99% of the ignition points. 

Thus, for areas of equal size, the vegetation class most prone to ignition is represented 
by shrubs, bushy areas, and maquis, followed by permanent crops and vineyards, with 
high-stem vegetation being the least susceptible. This indicates that certain vegetation 
types, particularly dense scrublands and maquis, exhibit a higher propensity for ignition 
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due to their structural and compositional characteristics. Conversely, areas with more es-
tablished, taller vegetation, such as high-stem trees, demonstrate comparatively lower 
susceptibility to ignition. 

These observations align with the characteristics of the plant species in the class most 
susceptible to fires, as these species are predominantly distributed throughout the central 
and southern regions of Ischia. This distribution places them in close proximity to easily 
accessible roads and natural pathways, which further increases their exposure to ignition. 
The combination of highly flammable vegetation and the accessibility of these areas con-
tributes to an increased likelihood of ignition in these regions. 

The species grouped within the “permanent crops and vineyards” classes are widely 
distributed across all four slopes of the island, representing the class with the largest area 
(exceeding 1500 hectares) and consequently highlighting a high rate of involvement in 
establishing a significant number of ignition points. 

High-stem vegetation is primarily concentrated in the central part of the island, par-
ticularly around Mount Epomeo (altitude of 787 m a.s.l.). The number of ignition points 
associated with this vegetation type is lower than in other classes, likely due to its location 
in higher-altitude, steep, and less accessible areas of the island. This inaccessibility reduces 
the likelihood of ignition, as these areas are more isolated from human activity and po-
tential ignition sources. The characteristics of this vegetation type, combined with its chal-
lenging terrain, make it less prone to wildfire ignition compared to other, more accessible 
vegetation classes. 

2.4. Poisson Distribution: Spacial–Temporal Analysis and Chi-Square Test 

Observations on the location of wildfire ignition points on Ischia from 2009 to 2023 
identified three key factors that contribute to forest fire ignition: 

• vegetation type at the ignition point; 
• closeness to road networks and/or trails, which may facilitate human access and thus 

potential ignition sources; 
• urban–rural interface zones, where the close proximity of human infrastructure and 

natural areas increases the likelihood of fire ignition. 

Given these factors, we now evaluate the probability that, within a defined area and 
time frame, one or more ignition events may occur in the future, as depicted in Figure 8. 
Such an assessment is crucial because, while wildfires are frequently linked to human ac-
tivities and can be unpredictable, they display a continuity within specific homogeneous 
areas that are more prone to ignition. 

The island is divided into cell sizes 500 m by 500 m, as shown in Figure 9. From a 
total number of 336 cells, only 212 (63% of the total number) refer to land and exclusively 
contain the plant species associated with the previously examined land cover classes, 
namely β1, β2, and β3. 

We model the spatial–temporal distribution of ignition points using a Poisson pro-
cess, whose non-stationary geographic intensity is described by the function λ(x), defined 
in a geographic domain R2 where x represents a couple of coordinates of a generic point 
of interest within the domain itself. 

The application of the probabilistic Poisson model implies that ignition points are 
“statistically independent” and locally “equiprobable.” From statistical independence, it 
follows that the events previously recorded during the observation period do not influ-
ence the spatial and temporal localization of future ignitions [39]. 

For a given area, the probability that the number K of ignition points in the area 
equals n within the time interval [0, t] is represented by the discrete Poisson distribution 
as shown in Equation (1). 
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𝑃(𝐾 = 𝑛) = (𝜆∆𝑡)௡𝑛! 𝑒ିఒ∆௧ (1)

Equation (1). Poisson Distribution Law. 
where: 

• n ∈ N represents the number of ignition points considered; 
• 𝜆 represents the Poisson Hazard Rate, i.e., the average rate of events related to a spe-

cific area and a given time horizon 
(∆𝑡 = 1, where ∆t is the lenght of time interval considered); 
• ଵఒ represents the average waiting time expressed in years for an event, commonly 

referred to as the return period. 

In order for the Poisson process with intensity 𝜆 > 0, the following conditions hold: 

• K(0) = 0: counting of events starts from the initial moment; 
• K(t) has independent increments; 
• the number of events in any interval of length t > 0 has Poisson (λt) distribution (sta-

tionarity of increments); 
• ௉[௄(௛) ୀ ଵ]௛ = 𝜆: in a very small time interval [0, h], the probability of a single event 

approaches 𝜆ℎ in the limit; 
• ௉[௄(௛) வ ଶ]௛ = 0: in a small time interval [0, h], the probability of more than one single 

event approaches zero faster than h in the limit. 

Considering only the time variable, it is as if all the ignition events recorded from 
2009 to 2023 lose their regional classification and occur in a homogeneous land cover, be-
ing classified based on the year of occurrence. Now consider three areas, each covering 
land cover classes: 𝜷𝟏 , permanent crops and vineyards 𝜷𝟐 , shrublands, bushes, and 
scrublands, 𝜷𝟑, tall vegetation, three different specific rate 𝛌’ are calculated, respectively 𝝀′𝞫𝟏, 𝝀′𝞫𝟐 e 𝝀′𝞫𝟑, by dividing the ignition points of each homogeneous class and years. 𝝀′𝜷𝒊 = 𝒏(𝜷𝒊)𝒏𝒖𝒎. 𝐲𝐞𝐚𝐫𝐬. 𝒐𝒃𝒔. (2)

Equation (2). Average specific rate of events occurring over the annual time period 
within the homogeneous land cover class 𝛽௜ 
where: 
• 𝝀′𝜷𝒊: average specific rate of ignition points occurred in 𝜷௜; 
• 𝒏(𝜷௜): number of times ignition points which occur in 𝜷௜; 
• 𝒏𝒖𝒎. 𝒚𝒆𝒂𝒓𝒔. 𝒐𝒃𝒔.: number of years within the observation period during which igni-

tion events were recorded across the homogeneous land cover class 𝜷௜. 
The spatial distribution of ignition points is integrated into the numerical model to 

estimate the annual probability of one or more fires occurring within a single grid cell Bj. 
The analysis of available datasets, combined with the integration of the land cover vector 
layer on the grid, revealed that ignition points are predominantly concentrated in areas 
classified as permanent crops and vineyards, shrublands, bushes, scrublands, and tall veg-
etation, collectively categorized under homogeneous land cover class as 𝛽௜ (i = 1,..,3). 

The rate 𝜆′ఉ௜ of the Poisson process associated with a single cell Bj 𝜆ఉ೔(𝐵௝) is to be 
proportional to the areal extent 𝐴ఉ೔(𝐵௝) of the three specified land cover types within the 
j-th cell). Accordingly, the computation of the parameters 𝜆ఉ೔(𝐵௝) is governed by the fol-
lowing equation. 𝜆ఉ௜൫𝐵௝൯ = 𝑚ఉ௜(𝐵௝)𝑛𝑢𝑚. 𝑦𝑒𝑎𝑟𝑠. 𝑜𝑏𝑠. 𝑥 𝐴ఉ೔(𝐵௝) (3)

Equation (3). Average rate of occurrence 𝜆ఉ௜஺௜(𝐵௝) in a j-th cell. 
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The value of 𝜆ఉ௜൫𝐵௝൯ 𝑖𝑠 equal to the average number of ignition points for the homo-
geneous land cover class 𝛽 (𝐸ห𝑛ఉ௜൫𝐵௝൯ห). 

The representation that approximates the value of the proportionality coefficient 𝑚ఉ௜ 
is described in the following Equation (4).  𝑚ఉ௜ =  ∑ 𝑛௜௄(𝐵௝)𝐴ఉ೔(𝐵௝)  (4)

Equation (4). Proportionality coefficient refers to each homogeneous land cover class 𝛽௜. 
Here, 

• ∑ 𝑛௜௄(𝐵௝): represents the sum of ignition points K for the homogeneous land cover 
class 𝛽௜ in the j-th cell; 

• 𝐴ఉ೔(𝐵௝): represents the area occupied by the homogeneous land cover class 𝛽௜ within 
the j-th cell, that is, the total area of the considered homogeneous land cover class. 
The estimation of parameters 𝜆ఉ௜(𝐵௝) for each cell allows calculation of the probabil-

ity of one or more ignition events occurring within the land cover class of each cell. 𝑃(𝐾) = [𝜆ఉ௜஺௜(𝐵௝) ]௞𝑘! 𝑒ିఒഁ೔ಲ೔(஻ೕ) (5)

Equation (5). Discrete Poisson probability distribution related to the cell 𝐵௝. 
After estimating the Poisson hazard rate (λ) for each cell combined rates of each ho-

mogeneous land cover class, it is essential to verify whether the rate derived from histor-
ical observations accurately represents the studied phenomenon. Additionally, it is advis-
able to assess the consistency of the ignition event data with the Poisson distribution. The 
validity of the chosen probability distribution model for representing the randomness of 
wildfire ignition can be statistically confirmed or refuted using the chi-square test. 

The chi-square test was used to verify whether the observed frequency values (igni-
tion events) align with the theoretical frequencies of the Poisson distribution [40]. The chi-
square test operates under several key assumptions: independence of observations, suffi-
ciently large expected frequencies, categorical data, comparison against a theoretical dis-
tribution, and adequately large sample size to ensure statistical reliability. While expected 
cell frequencies below five may not substantially impact the Type I error rate, they can 
significantly reduce the statistical power of the test. This underscores the necessity of em-
ploying large sample sizes to enhance the robustness and reliability of the results, partic-
ularly in cases involving small expected values [41]. 

To perform the chi-squared test, a sample consisting of n observations of a specific 
variable is partitioned into K distinct categories. For each category, the expected frequency 
is calculated, representing the frequency that would be observed under the assumption 
that the sample data follow the hypothesized distribution. The test involves assessing the 
concordance between the experimental distribution and the theoretical distribution by 
comparing the observed frequencies with the expected frequencies calculated using the 
lambda values for each land cover class according to the Poisson distribution. A greater 
deviation between the observed and expected values suggests a stronger deviation from 
the hypothesized distribution, which may indicate a significant relationship between the 
two variables under investigation. 

If the observed frequencies align exactly with the expected frequencies, it can be in-
ferred that the two variables are perfectly independent. To ensure the validity of the chi-
squared test, it is essential that the expected frequencies meet a minimum threshold of 
five; otherwise, the test may produce unreliable results, potentially leading to substantial 
deviations from the expected distribution. 
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Application to the Case Study 

By correlating the information obtained from the spatial–temporal analysis with the 
homogeneous land cover classes examined (𝛽௜), it was possible to derive the associated 
Poisson lambda. In this regard, the estimation was first carried out with reference to the 
occupation of the three homogeneous cover classes representative of the study in ques-
tion: 
• 𝜆ఉଵ஺ଵ: for the homogeneous land cover class designated as “permanent crops and 

vineyards” encompassing a total area of 1500.01 ha 
• 𝜆ఉଶ஺ଶ: for the homogeneous land cover class designated as “Shrublands, bushes, and 

scrublands “ encompassing a total area of 518.69 ha 
• 𝜆ఉଷ஺ଷ: for the homogeneous land cover class designated as “Tall vegetation” encom-

passing a total area of 988.08 ha. 

Afterward, the ignitions that occurred in the last fifteen years (2009–2023) were rec-
orded and categorized according to each of the three examined classes: 

• “permanent crops and vineyards” 𝑛ଵ௞(𝛽1): 56 
• “Shrublands, bushes, and scrublands” 𝑛ଶ௞(𝛽2): 46 
• “Tall vegetation” 𝑛ଷ௞(𝛽3): 30. 

Using the spatial distribution maps of land cover classes and ignition events gener-
ated in QGIS, a preliminary quantitative analysis was conducted on the two least im-
pacted land cover classes, specifically “permanent crops and vineyards” and “tall vegeta-
tion”, This analysis was performed prior to the calculation of the Poisson rate λ and aimed 
to investigate the absence of ignition events within the specific cells associated with these 
classes over the past fifteen years. 

For the land cover class corresponding to “permanent crops and vineyards”, which 
is extensively distributed across the island’s territory, particularly near inhabited areas, 
the potential inclusion of urbanized fractions within individual cells was systematically 
analyzed. 

The results were presented in the scatter diagram shown in Figure 8, which highlights 
the observed trends. 

 

Figure 8. Distribution of ignitions related to the homogeneous land cover class “permanent crops 
and vineyards” as a function of the percentage of the urban fraction in the occupied cell. 
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This analysis aimed to confirm whether cells with a relatively high proportion of ur-
banized areas exhibited low or nearly zero ignition occurrences during the observation 
period, as anticipated. In areas characterized by high urban density, the probability of 
wildfire ignition in small vegetation patches is significantly reduced, primarily due to the 
limited time available for arsonists to start a fire. Furthermore, documenting human-ini-
tiated ignition is very challenging, especially in urban areas where such incidents are often 
rapidly suppressed. The results depicted in the scatter diagram (Figure 8) confirmed this 
hypothesis, showing no recorded ignition points in cells where the proportion of urban 
areas exceeded a 50% threshold. However, to ensure a statistically robust and representa-
tive estimation of the Poisson rate λ for the homogeneous land cover class “permanent 
crops and vineyards,” all cells within this class were included in the analysis. While the 
high urban fraction in these cells suggests a reduced probability of arson, Figure 9 demon-
strates that the hypothesis of potential ignition from natural causes (such as spontaneous 
combustion or lightning) or accidental causes still holds true. 

 

Figure 9. Grid cells in dark green simultaneously occupied by the homogeneous land cover class 
“permanent crops and vineyards” and the homogeneous land cover class “urban centers and as-
similated areas” with a percentage greater than 50%. 

For the class corresponding to tall vegetation, cells with an occupancy rate exceeding 
75% were predominantly located at higher elevations on the island. A geographical anal-
ysis was performed to verify whether the absence of ignition events within these cells 
correlated with altitude. 

Specifically, the maximum elevation of each cell within this class was recorded and 
analyzed in relation to the topographical features of the corresponding area, as illustrated 
in Figure 10. 
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Figure 10. Distribution of ignitions related to the homogeneous land cover class “tall vegetation” as 
a function of the maximum elevation of the corresponding cell. 

An analysis of the scatter diagram illustrating the distribution of ignition events in 
tall vegetation as a function of the maximum elevation for all occupied cells (Figure 10) 
revealed that ignitions within this class occur exclusively below an elevation threshold of 
approximately 550 m. Consequently, in Figure 11, following the same methodology used 
for permanent crops, all grid cells within this class were included in the calculation of the 
Poisson rate λ, even those located at elevations greater than or equal to 550 m, to ensure a 
representative estimation of the fire hazard associated with this land cover class. 

 

Figure 11. Grid cells, in dark green, occupied by the homogeneous land cover class “tall vegetation” 
with an elevation greater than 550 m a.l.s. 
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These cells represent a portion of the island’s territory that is particularly difficult to 
access, and therefore, more challenging to ignite. This accessibility issue explains why no 
ignitions have been recorded in these areas during the past fifteen years of observation. 

With regard to the location of the 132 fires recorded during the observation period, 
the average ignition event rate for each individual cell 𝐵௝, based on the spatial distribution 
of the respective land cover class within the cell, was calculated as follows: 𝐸ห𝑛ఉ௜൫𝐵௝൯ห  =  𝜆ఉ௜஺௜൫𝐵௝൯  =  𝑚ఉ௜𝑛𝑢𝑚. 𝑦𝑒𝑎𝑟𝑠. 𝑜𝑏𝑠.  𝑥 𝐴ఉ௜൫𝐵௝൯ (6)

Equation (6). Discrete Poisson probability distribution related to the cell 𝐵௝. 
Where the following values are obtained according to Equation (4): 

• 𝑚ఉଵ = 0.0373 
• 𝑚ఉଶ = 0.0887 
• 𝑚ఉଷ = 0.0304 

The average ignition event rate for each class 𝛽௜, referring exclusively to the time 
variable “years of observation,” was instead calculated as stated in the previous Poisson 
hazard rate equation. 
• 𝜆ఉଵ  =  3.7333 
• 𝜆ఉଶ  =  3.0667 
• 𝜆ఉଷ  =  2.0000 

Once the lambda values associated with the individual grid cells and the homogene-
ous land cover classes, based on the observation period, were obtained, the subsequent 
step was to determine the parameters required for applying the chi-square test, in both 
spatial and temporal analysis. 

Furthermore, two separate tests were applied to evaluate the accuracy of the ex-
pected results: 
1. spatial validation of parameter 𝜆ఉௌ; 
2. temporal validation of parameter 𝜆ఉ். 

The application of the chi-square test was carried out with reference to an explana-
tory table containing the representative data for each examined homogeneous land cover 
class (𝛽௜). 

For the spatial validation of the chi-square test the following graphical representa-
tions in Figure 12a–c show the observed frequencies of fires within the homogeneous land 
cover classes and the corresponding probability. 

 
(a) 
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(b) 

 
(c) 

Figure 12. Spatial analysis: (a) relative frequency and probability distribution for 𝛽ଵ; (b) relative fre-
quency and probability distribution for 𝛽ଶ; (c) relative frequency and probability distribution for 𝛽ଷ. 

After computing the frequencies for the three distinct homogeneous land cover clas-
ses, the subsequent step involved validating the statistical representativeness of the Pois-
son rate lambda (λ). This involved comparing the observed fire frequencies with the ex-
pected frequencies derived from the Poisson distribution model, thereby verifying the ro-
bustness and precision of the lambda estimates for each class. According to the spatio-
temporal analysis performed, which facilitated the estimation of the spatial and temporal 
rates of the Poisson distribution, the chi-square test was applied to both the classes defined 
by the spatial parameter as in Table 3 (vegetation cover type) and those categorized by the 
temporal parameter (individual year of observation). 

Table 3. Spatial validation test results. 

Homogeneous Land Cover 
Classes (𝜷𝒊) 𝝀𝜷𝑺 Degree of Free-

dom 
Threshold Value 𝝌𝟐 𝒗𝒂𝒍𝒖𝒆 Test Result 

Permanent crops and vine-
yards (𝛽ଵ) 

0.0200 4 9.488 3.4930 positive 

Shrublands, thickets, and 
scrub (𝛽ଶ) 

0.0258 3 7.815 5.3774 positive 

Tall vegetation (𝛽ଷ) 0.0154 2 5.991 0.7861 positive 
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For the temporal validation of the dataset, the chi-square test was applied by first 
partitioning the recorded fire occurrences over the observed period (2009–2023) within 
each homogeneous land cover class, as illustrated in Table 4. 

Table 4. Number of fires over the observed period in the homogeneous land cover classes. 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 𝛽ଵ 3 4 4 6 5 1 6 2 15 / 3 / 6 / 1 𝛽ଶ 3 6 6 5 1 1 2 3 6 / / 1 4 5 3 𝛽ଷ 8 1 3 5 1 1 1 1 3 / 4 / / 1 1 

For the temporal validation of the chi-square test the following graphical representa-
tions in Figure 13a–c show the frequencies of fires calculated in the homogeneous land 
cover classes and the probability comparisons. 

 
(a) 

 
(b) 
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(c) 

Figure 13. Temporal analysis: (a) relative frequency and probability distribution for 𝛽ଵ; (b) relative 
frequency and probability distribution for 𝛽ଶ; (c) relative frequency and probability distribution for 𝛽ଷ. 

Following the calculation of frequencies for the three distinct homogeneous land 
cover classes, the subsequent step involved validating the statistical representativeness of 
the Poisson rate lambda (λ) as showed in Table 5. This was achieved through the applica-
tion of the previously described Table 4, which facilitated the comparison of observed fire 
frequencies with the expected frequencies derived from the Poisson distribution model, 
thereby ensuring the reliability and precision of the lambda values for each class. 

Table 5. Temporal validation test results. 

Homogeneous Land 
Cover Classes (𝜷𝒊) 𝝀𝜷𝑻 Degree of Freedom Threshold Value 𝝌𝟐 𝑽𝒂𝒍𝒖𝒆 Test Result 

Permanent crops and 
vineyards (𝛽ଵ) 

3.7333 6 12.592 1.903 positive 

Shrublands, thickets, 
and scrub (𝛽ଶ) 

3.0667 5 11.071 3.046 positive 

Tall vegetation (𝛽ଷ) 2.0000 4 9.488 6.929 positive 

The equations presented in Section 2 are now applied to estimating the local wildfire 
ignition hazard on the island of Ischia based on the homogeneous land cover classes ana-
lyzed in Section 3. 

3. Results 
In this section, the results are discussed in accordance with the procedure outlined in 

Section 2. 
After completing the validation of the statistical representativeness of the parameters 𝜆ఉ௜஺௜, (for spatial validation) and 𝜆ఉ௜, (for temporal validation), the analysis focused on 

calculating the probability that the number of ignition events 𝐾 = 0 occurs within a year 
for each grid cell associated with a specific land cover class. 𝐾 = 0 → 𝑃ఉ௜ൣ𝑛௜௞൫𝐵௝൯  =  0൧ = 𝜆ఉ௜஺௜(𝐵௝)଴0! 𝑒ିఒഁ೔ಲ೔൫஻ೕ൯ 

Using the Poisson probability distribution, the probability for 𝑛௄ = 0 over a one-year 
time horizon was calculated for the j-th cell, which is occupied by the homogeneous land 
cover class. 
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Subsequently, the probability of observing a number of ignition events 𝐾 ≥ 1 was 
determined as the complement of the probability for 𝐾 = 0: 𝐾 ≥ 1 → 𝑃ఉ௜ൣ𝑛௜௄൫𝐵௝൯  ≥  1൧  =  1 − 𝑃ൣ𝑛ఉ௜൫𝐵௝൯  =  0൧ 

The Poisson probability distribution 𝑛௄ ≥ 1 over a one-year time horizon was calcu-
lated for the j-th cell, which is occupied by the homogeneous land cover class 𝐵௝. 

The corresponding return period for each cell was calculated as follows: 𝑇௥[𝑦𝑒𝑎𝑟𝑠] = 1𝑃ൣ𝑛௜௞൫𝐵௃൯ ≥ 1൧ (7)

Equation (7). Return period for 𝑃ൣ𝑛௜௞൫𝐵௃൯ ≥ 1൧. 
Upon completing the acquisition of the local hazard levels and the corresponding 

return times for the j-th cells within each land cover class, the next step involved calculat-
ing the ignition probabilities for the individual homogeneous land cover classes 𝛽௜. 𝑃ఉ೔(𝑛௜௄  ≥  1) = 1 − 𝑃ఉ೔൫𝑛௜௞൫𝐵௝൯ = 0൯ (8)

Equation (8). Probability estimation 𝑃ൣ𝑛௜௞൫𝐵௃൯ ≥ 1൧. 
Given the probabilities of observing one or more ignition events within a year for 

each land cover class, the corresponding return time was calculated using Equation (7). 
Next, based on the ignition probabilities of the individual land cover classes present 

within each grid cell, the corresponding return times were then calculated. For each cell, 
the overall probability of observing one or more ignition events (𝑃ఉ௜ൣ𝑛௜௄൫𝐵௝൯ ≥ 1൧) within 
the annual time frame was calculated by summing the probabilities of all homogeneous 
land cover classes present in that cell: 𝑃ఉ௜ൣ𝑛௜௄൫𝐵௝൯ ≥ 1൧ = ∑ [1 − 𝑃ఉ೔൫𝑛௜௄൫𝐵௝൯ = 0൯]ଷ௜ୀଵ  (9)

Equation (9). Probability for 𝑛௜௞ ≥ 1 obtained by summing the probabilities recorded 
for each homogeneous land cover class present within the j—th cell. 

Where 𝑛௜௄ represents the number of land cover classes contained within the indi-
vidual cell. The study was divided into two specific analyses, considering the categoriza-
tion of grid cells based on their land cover class. 

The first analysis focused on land cover classes 𝛽ସ (“urban centers and assimilated 
areas”) and 𝛽ହ (“cliffs, slopes, shorelines, quarries, and beaches”). For these classes, an 
ignition probability close to zero was assumed based on the data recorded in the Wildfire 
Registry of the Campania Region. This assumption is supported by the fact that no igni-
tion events were documented in these areas during the observation period from 2009 to 
2023: 𝑃ఉర, ఉఱ(𝑠, 𝑡) ~ 0. 

The absence of ignition events in these classes is attributed to minimal vegetation 
cover and reduced fuel availability, alongside geographical or infrastructural conditions 
that further decrease the likelihood of ignition. 

The second analysis examined the classes 𝛽ଵ , 𝛽ଶ  and 𝛽ଷ , considering the special 
conditions for 𝛽ଵ and 𝛽ଷ, influenced, respectively, by the presence of urban areas and the 
elevation of the terrain. 

In this context, the probabilities and their respective return times were calculated as 
follows in Table 6. 
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Table 6. Probabilities and return times for homogeneous land cover classes 𝛽௜. 
Homogeneous Land Cover Classes (𝜷𝒊) 𝐏𝛃𝐢(𝐧𝐢𝐤 = 𝟎) 𝐏𝛃𝐢(𝐧𝐢𝐊 ≥ 𝟏) 𝐓𝐫[𝐘𝐞𝐚𝐫𝐬] 

Permanent crops and vineyards (𝛽ଵ) 0.0240 0.9760 1.02 
Shrublands, thickets, and scrub (𝛽ଶ) 0.0466 0.9534 1.05 

Tall vegetation (𝛽ଷ) 0.1354 0.8646 1.16 

These probability values in column 𝑃ఉభ(𝑛௜௞ = 0) represent the probability of record-
ing zero ignition events in a year for the respective land cover classes 𝛽௜. Consequently, 
the complementary probability was calculated to determine the likelihood of observing 
one or more ignition events 𝐾 ≥ 1 within the same timeframe. Moreover, the return time 
yielded the following results is depicted. By analyzing the data derived from the calcula-
tions described above, a map was generated to illustrate the distribution of probabilities 
associated with the j-th grid cells. 

Specifically, the ignition probability for each examined grid cell was distributed as 
shown in Figure 14. 

 

Figure 14. Hazard map of probability ignition points in Ischia Island. 

Analyzing the results obtained, it emerged that in an area covered by the examined 
land cover classes 𝛽ଵ, 𝛽ଶ and 𝛽ଷ, totaling approximately 5300 hectares and appropriately 
divided into 212 cells, about 60% shows a probability between 0.0100 and 0.0200 of re-
cording one or more ignitions (K > 1) within the annual time frame, while around 40% 
shows a probability close to 0 in the same time period. As expected, most of the cells as-
sociated with the highest ignition probabilities are characterized by the co-presence of the 
three examined land cover classes and, at the same time, are adjacent to the main road 
and trail networks of the island, where arson activities are more frequent and predictable. 
Furthermore, these areas are characterized by the presence of fuels capable of ensuring 
rapid fire spread (shrublands, vineyards, scrublands, chestnut trees, and oaks), but above 
all, by the absence of interruptions to the continuity of these fuels, which could otherwise 
create gaps that might slow down or even stop the fire. 
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4. Discussion 
The study outlined in Section 2 aims to analyze the spatial–temporal patterns of wild-

fire occurrences on the island of Ischia, with the ultimate goal of developing strategies for 
wildfire risk mitigation. The study is organized into several phases, outlined in Figure 1, 
including data collection, land cover classification, and the application of statistical mod-
els, such as the Poisson distribution and chi-square test, used to validate the sample data 
in order to obtain robust hazard maps. 

By categorizing the island’s land cover into homogeneous classes (e.g., permanent 
crops and vineyards, shrublands, and tall vegetation), the study simplifies the analysis 
while improving the accuracy of hazard estimations. This classification highlights the var-
ying susceptibility to fire risk, with certain vegetation types more prone to ignition due to 
their physical and chemical properties. By combining these thematic layers, the analysis 
achieved a more reliable foundation for subsequent wildfire risk assessment and map-
ping, allowing for precise evaluations aligned with the physical and environmental char-
acteristics of the region. For instance, scrublands and shrub thickets were found to be the 
most vulnerable, representing 8.85% of the ignition points, followed by vineyards and 
permanent crops at 3.72%. These findings underscore the importance of vegetation man-
agement in wildfire prevention, suggesting that more frequent interventions (e.g., clear-
ing, controlled burns) could be beneficial in high-risk areas. By systematically categorizing 
these vegetation types, the study laid the foundation for more accurate hazard estimation 
across various land cover classes, contributing to a targeted approach in wildfire risk as-
sessment. 

The study detailed in Section 2 focuses on analyzing the spatiotemporal patterns of 
wildfire occurrences on the island of Ischia, aiming to support the development of effec-
tive wildfire risk mitigation strategies. The methodology was structured as a multi-phase 
process to systematically address the research objectives and ensure comprehensive anal-
ysis. 

Initially, historical wildfire event data from 2009 to 2023 were collected and analyzed 
to identify ignition points and their spatial distribution. The ignition points were georef-
erenced through satellite imagery and field data, then integrated with thematic geospatial 
layers, encompassing vegetation types, land use patterns, and proximity to urbanized ar-
eas. This integration facilitated a detailed stratification of the land cover into homogene-
ous categories—such as permanent crops and vineyards, shrublands, and tall vegeta-
tion—which formed the analytical basis for the wildfire assessment. 

In Section 3, a probabilistic modeling approach was adopted, using the Poisson dis-
tribution to estimate wildfire ignition probabilities across specific land cover classes over 
time. The model was validated through chi-square tests, ensuring statistical robustness of 
the results. The analysis incorporated critical factors such as vegetation type, road prox-
imity, and elevation, providing nuanced insights into wildfire risk dynamics. 

The results highlighted the susceptibility of different land cover classes: shrublands 
and thickets were identified as the most vulnerable, accounting for 8.85% of ignition 
points, followed by permanent crops and vineyards at 3.72%. These findings emphasize 
the necessity of integrating physical and environmental variables into wildfire hazard as-
sessments to enhance predictive accuracy. 

The analysis of the results revealed that for cells associated with the land cover clas-
ses 𝛽ଵ, 𝛽ଶ and 𝛽ଷ, the probability of a wildfire ignition in the upcoming year is always 
greater than zero. 

To validate the dataset and its distribution, a chi-square test was applied. This provided 
both spatial and temporal validation, which is essential to account for the unique character-
istics of wildfires, particularly their dependence on land use and seasonal trends [42]. 
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Finally, the estimation of local and global wildfire hazards across homogeneous land 
cover classes provides valuable insights for policymakers and land managers. On a local 
scale, identifying high-risk areas, as shown in red in Figure 14 enables more effective and 
targeted interventions, such as the strategic allocation of firefighting resources and im-
proved land use planning. 

5. Conclusions 
This study contributes to understanding wildfire risk on the island of Ischia by 

providing a detailed spatial–temporal analysis of ignition points and hazard estimations 
for various land cover types. The use of Poisson distribution modeling, validated through 
a chi-square test, establishes a robust framework for assessing wildfire risks in Mediterra-
nean regions. The findings offer a foundation for developing targeted mitigation strate-
gies in future research. 

Despite the study’s approximations, primarily due to the limited availability of input 
data for calculating ignition probabilities, the resulting hazard map effectively identifies 
areas most predisposed to wildfires. High probabilities of ignition, combined with inten-
sity and vulnerability factors, significantly impact the resilience of the site and are likely 
to continue doing so. 

The creation of regionalized hazard maps emerges as a crucial resource for forecast-
ing and prevention activities, as well as for the efficient allocation of resources in the man-
agement and planning of the territory. By analyzing factors that predispose specific areas 
to fire, this study enables the proactive identification of regions requiring targeted inter-
ventions for risk reduction and mitigation efforts. 

Specifically, the findings of this study could inform future land-use planning, im-
prove surveillance, and enhance monitoring activities, particularly in areas of high natural 
and landscape value. In these regions, wildfires tend to have a more substantial ecological 
and social impact and are more challenging to manage due to the topography, as illus-
trated by the historical fire data from 2009 to 2023. 

These considerations underscore the need for additional security and surveillance 
measures, such as installing thermal cameras along paths near roads and urban areas. 
Such measures would help counteract harmful activities and reduce the likelihood of 
wildfire ignition. Additionally, it is essential to develop a constantly updated plan for ef-
ficient firefighting operations by civil protection teams, ensuring rapid responses in the 
island’s most vulnerable and challenging areas. 

The model’s robustness could be improved by incorporating proximity criteria for 
roads and trails. Integrating the distance between ignition points and access routes would 
facilitate the analysis of correlations between arson events and the accessibility or usabil-
ity of pathways leading to ignition sites. This addition would offer a more nuanced un-
derstanding of the spatial dynamics influencing wildfire occurrences. 

Another critical aspect is the potential domino effect of wildfires. Post-event land-
slide susceptibility maps should be analyzed to assess whether wildfire-induced soil deg-
radation, in combination with heavy rainfall, serves as a precursor to landslide mobiliza-
tion. This investigation would yield essential insights for mitigating secondary hazards 
associated with wildfires and enhancing comprehensive risk management strategies. The 
analysis also highlights the critical importance of urban–rural interface zones, where in-
creased human activity renders existing vegetation more susceptible to fires. In these 
zones, preventive planning is essential to avoid catastrophic consequences, not only for 
infrastructure but also for the local population. Therefore, drafting up-to-date evacuation 
plans aligned with the identified hazards is vital for ensuring the safety of residents in the 
event of a wildfire. 
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