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Abstract

An Electroencephalography (EEG)-based Brain-Computer Interface (BCI) is a sys-
tem able to connect the human brain and external devices by analyzing EEG signals,
translating the brain activity patterns into instructions for an interactive application.
Initially, EEG-based BCI solutions were developed for medical purposes in clinical
and rehabilitation applications, primarily to assist patients in regaining normal life
functions. Beyond this original goal, these systems have also gained importance
in non-medical fields such as cybersecurity and neuroscience applications. On this
account, this thesis shows how the EEG signal can be directly exploited for solving
person biometric identification, emotion recognition, and limbs activation classifi-
cation tasks. Since most existing EEG-based biometric systems don’t exploit the
time-frequency information of EEG signals, this thesis introduces a novel identifi-
cation system using graph representations, where nodes represent EEG channels
signals and edges denote the Functional Connectivity (FC) measure between pairs
of channels. The model, based on Graph Convolutional Neural Networks (GCNNs),
integrates spatio-temporal and functional features, capturing local and global brain
activity. Tested on PhysioNet and Multi-subject, Multi-session, and Multi-task
Database for investigation of EEG Commonality and Variability (M3CV) datasets,
the method demonstrated strong generalization across various human states (resting
and active) and outperformed State-Of-the-Art (SOTA) EEG biometrics techniques
in specific tasks. Regarding emotion recognition, has been proposed an innovative
framework, namely Empátheia, able to encode EEG signals as compact images,
preserving the original spatio-temporal information, and recognizing the associated
emotion. Using the Processing and transfeR of Interaction States and Mappings
through Image-based eNcoding (PRISMIN) framework, the original EEG signals are
encoded as images, or atlases, following a spatio-temporal layout. Then, different
deep learning models have been designed and tuned to classify the emotions captured
in the produced atlases. Tests on the SJTU Emotion EEG Dataset (SEED) dataset
showed high performance and efficient data representation, suggesting new possibili-
ties for EEG-based emotion analysis. Instead, a novel multi-stream 1D Convolutional
Neural Network (CNN) architecture is proposed for limbs activation classification.
This method processes EEG signals through four convolutional streams with varying
kernel sizes to capture information at different time scales. The resulting features are
combined and fed to a dense classifier to determine limbs movement. Experiments on
the PhysioNet EEG dataset showed that this model outperforms existing methods
in both cross-subject and intra-subject settings.
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Chapter 1

Introduction

In recent years, advancements in technology and machine learning algorithms have in-
creased interest in EEG-based applications. EEG can facilitate continuous monitoring
of fluctuations in human cognitive states under different tasks, finding developments
in both the healthcare field and in research across various application domains areas.
The promising future of EEG-based technologies has encouraged the scientific com-
munity to study brain activities, thus opening up new directions for EEG research.
General researchers from a wide range of areas of expertise, including computer
science, psychology, education, data analysis, engineering, gaming, and health, have
explored this technology from different points of view, finding related content and
research trends relevant to their respective areas. Since classical Human-Computer
Interaction (HCI) problems are mostly restricted to vision-based or manual interfaces
with the majority of other designs not being extensively adopted [1], exploiting EEG
unique and peculiar characteristics, represent an alternative or support solution to
these tasks. In fact, EEG is recognised to offer the potential for an approach that uses
intuitive and natural human mechanisms of cognitive processing, by means of BCIs,
to facilitate HCI or enabling new solutions in a variety of tasks such as healthcare,
where EEG signal has been utilised to facilitate effective control of a robot for motor
imagery classification [2], epileptic seizure detection [3] [4], depression recognition [5],
vigilance estimation [6], sleep disorders [7], mental fatigue detection [8], and gaming
interaction [1]. In biometric identification, which utilises EEG-based systems to
decide whether to reject or accept the claiming identity of a subject [9], and in
emotion recognition, understanding human emotions using specific brain signals
evoked by certain emotional states [10]. The reason for choosing this signal is
threefold. First, human privacy is naturally preserved because sensitive information
is not collected through the EEG medium. Second, EEG is a biosignal and can’t
be affected by spoofing attacks, granting a higher level of security. Third, because
EEG grants a very high temporal resolution and can take readings every millisecond,
meaning it can record the brain’s activity in real-time. Among the others, three
of the most exciting fields still barely explored through EEG are person biometric
identification, emotion recognition, and MI limb activation classification.

An individual’s identity constitutes a distinctive combination of characteristics,
experiences, physical traits, and personality attributes that differentiate them from
all other individuals. This identity encompasses both objective elements, such
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as name, age, gender, and physical attributes, and subjective elements, including
beliefs, experiences, emotions, and personal relationships. In a digital society, the
need to have a safe and reliable method of identification of the person is crucial
in a multiplicity of fields: in cybersecurity, for granting a reliable authentication
method for devices and network access, for protecting sensitive data and confidential
information, for preventing online fraud and unauthorized access; in finance, for
allowing identity verification for financial transactions, for avoiding credit card fraud
and online transactions; in passport and visa control, for airport and transportation
security and screening; and in national and public security for supporting the
border control and immigration, improving detection of criminals and terrorists
and identification of missing or unidentified people. Moreover, confirming human
identity becomes even more crucial as many human activities shift into cyberspace,
continuously exposed to dangers and fraud attempts that require new security
standards to prevent identity theft or spoofing. As pointed out in [11], for a reliable
biometric have been identified seven criteria to be used when assessing the suitability
of any trait for use in biometric identification, namely Universality, Uniqueness,
Permanence, Collectability, Performance, Acceptability, Circumvention. Based on
the research of Jain et al. [11]. Currently, there is no gold standard for biometric
identification matching these criteria, even though different methods have been
proposed, including fingerprint recognition [12], iris recognition [13], palm vein
recognition [14], face recognition [15]. A technology that has been garnering research
interest in recent years in the security field is EEG. This technology allows for the
measurement of electrical potentials generated by the human brain by applying
electrodes integrated into a portable and non-invasive headset to the subject’s scalp.
Subsequently, with the use of a BCI, it is possible to record the brain waves and
send the signals to a machine able to perform a specific task [16, 17], e.g., EEG
signal classification [18], multimodal interaction [19–21], and biometric identification.
This kind of signal offers unique advantages compared to other biometric modalities.
Unlike the classic biometric methods such as fingerprints and palm recognition,
EEGs are inherently linked to vital biological functions, making it considerably
more challenging to circumvent this type of physiological-based biometrics. In
addition, different from methods such as face and fingerprint recognition, in which
the sample can be faked with photos or replicas, EEG requires the real-time and
continuous brain activity of the individual. EEG can potentially provide continuous
authentication [22], meaning it can continuously verify a user’s identity while they
are interacting with a system and can be recorded passively without the subject’s
active participation or awareness. This last aspect can be helpful in scenarios where
user consent or cooperation might be challenging. Given its superior temporal
resolution, usually in the order of milliseconds, and given its complex dynamic
characteristics, it is regarded as a strong biological signal for biometric applications,
alongside others like Electromyography (EMG) and Electrocardiography (ECG).
Although EEG offers a number of advantages over traditional identification methods,
research on EEG-BCI-based identification systems is still in its early stages. There
are several approaches to utilize EEG as a biometric modality: some rely on the use
of Event-Related Potentials (ERPs) [23], variations in electrical potential resulting
from a visual, somesthetic, or auditory stimulus. These can be cumbersome as they
require the user to be subjected to stimuli such as Visual-Evoked Potential (VEP) [24]
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or Auditory-Evoked Potential (AEP) [25], also necessitating extra equipment like
headphones and screens, in addition to BCIs. Another limitation of ERPs analysis
concerns the fact that it ignores non-phase-locked signals [26]. Another line of
research that has recently gained traction is the one that focuses on resting-state
EEG [27], which examines the brain’s neural activity in the absence of specific stimuli
or tasks. While resting-state offers great flexibility, it is challenging for individuals
to maintain. Although it does not require active involvement from the user, unlike
ERPs, users may experience intrusive thoughts or emotions that make it difficult to
remain in a true resting state during the identification process. To overcome this
problem, current research is focusing on a system capable of operating independently
of a specific state or stimulus. A significant limitation of current systems is that they
usually represent EEG signals using a Fourier-based power analysis, which ignores
temporal information, while a Time-frequency analysis can better characterize the
oscillations contained in the EEG data [26].

Emotions are a key human trait that can be defined as a biological state associated
with neurophysiological changes that are linked with thoughts, feelings, behavioural
responses, pleasure, or displeasure sensations [28] and can affect almost every aspect
of our existence, such as, among others, social interactions, relational life, work
productivity, and even HCI. Although different communication channels can be
used to express emotions, e.g., facial expressions, voice pitch, and posture, it can
be not easy to understand these cues that convey additional information about a
person [29]. As a consequence, emotion recognition through automatic approaches
can be beneficial in diverse, relevant scenarios. A first example regards the diagnosis
of depressive states or post-traumatic stress disorders (PTSD) [30] to identify if
a patient is experiencing pain during a treatment [31], another interesting case
study concerns the diagnosis of Parkinson’s Disease (PD) [32] to understand if a
patient exhibits emotional impairments when emotionally elicited, a last example
is the detection of fake emotions during an interrogation in court [33]. Nowadays,
this type of technology is increasingly being used in a wide range of application
fields. As a matter of fact, many works in the current literature try to address the
emotion recognition task by exploiting facial traits [34,35], body movements [36,37],
speech [38], multimodal approaches [39–41], or even more complex data such as brain
electrical activity [9,42,43]. Concerning the latter, it can be measured through EEG,
which extracts brainwaves through the use of surface electrodes. As extensively
described in Sec. 2.4, five different waves are retrieved with the EEG, i.e., delta,
δ ∈ [1.5Hz − 4Hz] [44], theta, θ ∈ [5Hz − 8Hz] [45], alpha, α ∈ [9Hz − 14Hz] [46],
beta, β ∈ [15Hz − 40Hz] [47], and gamma, γ ∈ [25Hz − 140Hz] [48]. These waves
respond to specific activities, including daydreaming or active thought, via working
memory and attention. What is more, brainwaves are also related to emotion
processing, where specific patterns in high-frequency bands are associated with
positive, neutral, and negative feelings through time-frequency analysis [49]. As
can be observed in Figure 1.1, positive emotions show an increment in energy for
beta and gamma frequency bands, whereas neutral and negative emotions present
decreased beta and gamma energy. While the neural patterns of negative and neutral
emotions have similar patterns in beta and gamma bands, the latter have higher
energy of alpha oscillations. Brainwaves are commonly acquired through BCIs and,
unlike other types of digital information, collecting EEG data can quickly become
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There exist specific neural patterns in high frequency
bands for positive, neutral and negative emotions

Time

F
re

q
u
e
n
c
y
 b

a
n
d
s

D
e
lt
a
  

  
  

T
h
e
ta

  
  
 

A
lp

h
a
  

  
  
B

e
ta

  
  
  

G
a
m

m
a

Figure 1.1. Emotions captured via EEG signals. The differential entropy energy feature
[50] (scaled in [0,1]) is represented for each frequency band (in Hz) over time (in
ms), highlighting specific patterns in higher frequency ranges corresponding to specific
emotions. Adapted from [49].

complex and cumbersome, depending on the number of channels and the range of
emotions that need to be monitored. As for other digital resources, compression
techniques can support several critical aspects, including the reduction of storage
space, which assumes particular importance in contexts where storage is expensive or
limited, such as in mobile devices, drones, robots, and, in general, embedded systems;
transmission efficiency, which becomes crucial in environments where bandwidth
is bounded or communication channels are constrained, such as in long-distance
monitoring; compatibility and scalability, where data compression allows us for easy
scaling or conversion of data to different formats that can be compatible with various
devices, applications, or protocols; among other advantages.

Since BCI systems allow people to send messages or commands to an electronic
device only by means of brain activity instead of muscular activity, they can provide
an alternative communication and control channel for people with limited motor
function to improve the quality of their lives. One kind of EEG-based BCI system
is based on the recording and classification of circumscribed and transient EEG
changes in association with the imagination of different types of movements. MI
can modify the neuronal activity in the primary sensorimotor areas in a very similar
way as observable with a real executed movement, so as a result it can serve to
generate self-induced variations of the EEG [51] [52], it may be seen as mental
rehearsal of a motor act without any overt motor output. MI, it is undoubtedly
one of the most fascinating and valuable fields for EEG-based interfaces. Thanks to
EEG devices, it is possible to design low-cost, high-performance systems capable of
significantly improving the quality of life for a wide range of individuals with motor
dysfunctions [53–56]. It is well-known that methodologies addressing MI focus on
interpreting predominant brain areas that are activated when a subject mentally
simulates movements or actions without actual physical execution [57–59]. Figure 1.2
shows a clear Event-Related Desynchronization (ERD, reduction in power) pattern
in alpha and beta frequency bands during hand MI in the contra-lateral motor areas
of the cortex, while that of the resting state diagram does not. The nature of these
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Figure 1.2. Averaged topographical distribution of power of 25 subjects in the upper alpha
band (10–12 Hz) and upper beta band (23–25 Hz) during hand MI. Blue indicates ERD.
Adapted from [63].

imagined activities depends on their intended goals, which can range from simple
device interactions and performing rehabilitation exercises to piloting mechanical
prostheses [60–62]. Unsurprisingly, recent years have seen remarkable results in
complex tasks, thanks to the ever-increasing use of modern BCIs. These interfaces
allow for the acquisition of EEG signals with increasingly accurate and coherent
spatio-temporal content. Determining the motor intentions of an individual through
the analysis of EEGs is a challenging task that concurrently holds considerable
potential in aiding subjects with motor dysfunctions. Moreover, thanks to the recent
advances in artificial intelligence models and EEG acquisition devices, such analysis
can be carried out with ever higher accuracy. The latter aspect is of great importance,
since the EEG analysis of subjects whose mental efforts are focused on moving limbs
is frequently used for crucial tasks, including the control of interactive interfaces
and prosthetic devices. Since 1996, the Graz BCI system has been proposed to
discriminate between three simple limb motor imagery tasks (left hand, right hand,
right foot), designing a BCI able to help patients with severe motor impairment (e.g.,
amyotrophic lateral sclerosis) to interact with their environment through voluntary
modification of their EEG exploiting band power estimations from three bipolar EEG
channels [64]. To confirm whether motor imagery could be available for patients with
severe motor impairment, a tetraplegic patient had learned to operate an electrical-
driven hand orthosis by discrimination of two mental states to restore the hand grasp
function [65]. With respect to motor imagery of simple limb movement, several parts
of limbs like the hand (forearm, postbrachium) and foot (shank, thigh) are involved
in compound limb movement imagination, which may activate the neuron oscillation
in multiple functional areas of cerebral cortex and, at the same time, also can satisfy
the requirements of multiple instructions output of control information in MI-based
BCI systems. The research on compound limb motor imagery has great significance
for limb function rehabilitation for patients suffering from severe motor injury.

For person biometric identification, motivated by these observations and existing
literature, this thesis introduces a novel identification system capable of discerning



6 1. Introduction

a subject based on EEG signals across various human states. In detail, given a
person multi-channel EEG signal, the proposed approach is able to represent the
pre-processed signals as a complete graph where each node represents an EEG
electrode, as the signal time-frequency spectrogram and an edge between two nodes
represents the FC across that electrodes pair, expressed as the Phase-Locking Value
(PLV). Finally, the provided graph that embodies local and global information of
the subject’s brain, both in the spatial and temporal domain, is used as input
for a Graph Neural Network (GNN) classifying the subject identity. An extensive
experimental study is conducted on the PhysioNet and M3CV public benchmark
datasets, assessing the generalization capacity of the designed method across diverse
human states, including resting states (eye-open and eye-closed) and active states
during the execution of four distinct tasks, as well as a mixed protocol. The proposed
system is compared with the most advanced EEG biometrics techniques, showing
that the proposed method overcomes the state-of-the-art in specific tasks.

To address the emotion recognition problem, is introduced the original Empátheia
1 system, which encodes EEG data into images, referred to as atlases, before
classifying the underlying emotion. In detail, the proposed approach pre-processes
multichannel EEG signals and generates spatio-temporal atlases using an encoder
based on Processing and transfeR of Interaction States and Mappings through
Image-based eNcoding (PRISMIN) framework [66]. This framework compresses
brain signals into a coarse visual representation, i.e., an image. Then, the system uses
a deep learning-based pipeline as a classifier that recognizes emotions. Specifically,
the architecture is composed of branches based on convolutional, recurrent, and
transformer models designed and tuned to capture the spatial and temporal aspects
of an emotion represented by the atlas. Extensive experiments were conducted for
both the encoder and classifier. In particular, two encoding types, i.e., short-rainbow
and grey-scale, and four different models, i.e., one based exclusively on a CNN,
two based on mixtures of CNN and RNN, and a last based on a transformer, were
tested to find an effective emotion recognition method. The Empátheia system was
evaluated on the SEED dataset [49,50]. The proposed approach significantly reduced
the dataset size, thus enabling the implementation of less computationally intensive
models. In addition, it allows us to train faster while retaining high performance on
the emotion recognition task.

Instead, for MI limb activation classification, is proposed an innovative architec-
ture based on a modular multi-stream 1D CNN. The input EEG signal is processed
by four convolutional streams, which differ in the size of convolutional kernels, thus
allowing the extraction of information at different time scales. The resulting 1D
feature maps are then fused together and provided to a dense classifier to identify
which limb the subject intended to move. A comprehensive experimental study
has been performed on the PhysioNet EEG motor movement/imagery dataset, the
reference data collection for MI application field, for two reasons: to investigate if
shallow models with more streams achieve better results with respect to deeper mod-
els with fewer streams with this specific type of data, and to show how the proposed
model overcomes the key works of the current literature in both cross-subject and
intra-subject analysis.

1from ancient Greek en-, “inside”, and pathos, “sentiment, feeling”. Today, it is translated as “Empathy”.
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1.1 State of the Art

In this section, the literature on the current state of the art regarding methods for
EEG biometric identification, emotion recognition, and limb activation is discussed.
In particular, the current literature is reviewed from three perspectives, namely,
tasks and states (for biometric identification only), extracted features, and used
classifiers.

1.1.1 EEG Person identification

In this section, the works in the current SOTA regarding methods for EEG biometric
identification are discussed. In particular, the current literature is reviewed from
three perspectives, namely, tasks and states, used features, and used classifiers.

Tasks and States

Authentication techniques relying on external stimuli-based protocols exploit the
inherent uniqueness of human brain potentials generated in response to such stimuli,
which are called ERPs. These stimuli are typically auditory (AEPs) or visually
(VEPs), and as reported in [67], the latter are the most used. Different eliciting
protocols were proposed for VEPs stimulation in literature. In [68] VEPs are elicited
showing images of celebrities, food or words. Zhao et al. [69] uses three frame-based
black-and-white alternating stimuli modulated by a flash signal, a periodic flicker
signal, and a pseudorandom m-sequence. In [70] are used two different eliciting
protocols: in the first, 8 images displaying geometric shapes followed by a black
screen on an LCD screen are shown; in the other, 62 images displaying capital letter
characters, lowercase letter characters, and digits ranging from 0 to 9 followed by
a black screen are shown. Gui et al. [71] collected EEG signals triggering VEPs
while the participants were asked to silently read an unconnected list of texts, which
included 75 words. Steady-State Visual-Evoked Potentials (SSVEPs) are potentials
generated in the brain in response to visual stimuli that flicker at a specific frequency,
these potentials are often used because of their excellent signal-to-noise ratio and
relative immunity to artifacts [72]. In [73], they used a device employed to elicit
SSVEPs consisting of a square array of 9 green LEDs, whose flickering frequency
can be manually tuned at four different elicitation frequencies, namely at 6, 12,
18, and 24Hz. In [74], subjects were exposed to flashing images on-screen at five
stimulus frequencies of 6.67 Hz, 7.50 Hz, 8.57 Hz, 10 Hz, and 12 Hz. Min et al. [75]
designed an eliciting protocol where SSVEPs signals were triggered by a flickering
grid-shaped visual array based on Korean letters. However, users subject to this
kind of visual stimuli could suffer serious fatigue that may induce discomfort, health
hazards and deterioration of system performance [76]. For this reason, another
VEP variant called Steady-State Motion Visual-Evoked Potentials (SSMVEPs), was
proposed. SSMVEPs slightly differ from SSVEPs; in fact, these brain potentials can
be triggered, showing movement patterns in contraction and expansion, resulting in
less discomfort to subjects compared to flickering images. Gao et al. [74] proposes an
elicit protocol in which black and white rings alternately contract and expand were
shown on a screen at eight different stimulus frequencies of 6 Hz, 8 Hz, 10 Hz, 12
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Hz, 14 Hz, 16 Hz, 18 Hz, and 20 Hz. Concerning AEPs, Seha et al. [77, 78] proposes
a protocol where 4 auditory tones at 500, 1000, 2000, and 4000 Hz modulated by
sinusoidal at 40, 44, 48, 54 Hz are presented simultaneously to the participant’s ears
to elicit the brain response. Since ERPs, VEPs, and AEPs signals are characterized
by being dependent on a time-locked external stimulus that must be repeated in
a controlled environment and require the use of additional equipment, are difficult
to use in real scenarios. For this reason, has emerged another line of research that
solely utilizes EEG signals acquired from subjects in resting-state, without the need
for external stimuli. Various studies [79–83] have delved into resting-state biometric
authentication. However, a fundamental issue arises from the fact that users cannot
consciously choose to remain in a resting state. This renders it impractical in
real-world scenarios where users may engage in mental or physical tasks that prevent
them from maintaining the resting state, resulting in a general degradation of the
identification system. Motor Imagery (MI) is another protocol that does not need
external stimuli, which involves the user imagining the movement of a body part
without physically performing it. Das et al. [84] protocol is designed to collect
EEG signals corresponding to a series of right-arm, left-arm, right-leg and left-leg
imaginary movements. Four different images are employed as stimuli for eliciting the
desired responses and are sequentially shown in random order on an LCD monitor.
Chuang et al. [85] uses a different protocol Motor Imagery (MI) consisting of different
mental tasks in which subjects were asked to imagine performing different tasks like
moving fingers, repeating a specific sport motion, singing a song, etc. Compared to
resting protocols, Motor Imagery (MI) protocols tend to produce signals with less
noise. On the downside, research works have reported that they can cause mental
fatigue in users [85], which can affect the accuracy of the user authentication process.

The nature of EEG signals is to be sensitive to all the changes caused by
imaginary mental tasks, physical activities, mood fluctuations, and sudden emotions.
Therefore, an identification system should be robust to the entirety of these variables,
independent of specific stimuli and/or states. Indeed, several studies [86,87], including
the present one, focus on the development of identification systems that can generalize
across diverse human states.

Features

The majority of works in the literature apply feature extraction techniques from
the EEG signal recorded by electrodes. Two distinct categories of features can
be identified: uni-variate and bi-variate. Uni-variate features are extracted from
individual electrodes without establishing relationships between signals recorded
from different electrodes. Several studies used uni-variate features as Power Spectral
Density (PSD) [77, 82, 88], which represents the power distribution of EEG series
in the frequency domain, Short-Time Fourier Transform (STFT) [72] and Wavelet
(WT) [71,89], used to convert the input signal from the time domain into the time-
frequency domain, Mel-frequency Cepstral Coefficients (MFCC) [73, 77,90], deriving
a robust characterization of the temporal and spectral properties of the EEG signal,
and entropy measures [91] (e.g., fuzzy entropy) which estimate signal complexity.
Features based on Gaussian Filtering (GF) [77], Autoregressive (AR) [73,90], and
Chebyshev type I infinite impulse Response (IRR) [69] were also proposed for EEG
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biometric.
A critical problem with uni-variate features lies in their susceptibility to al-

terations in EEG amplitudes, often stemming from inherent physiological or psy-
chological factors like circadian rhythms [92, 93], substance assumption [94], or
variances in signal acquisition methodologies [95]. In contrast, bi-variate features
also capture information regarding the interconnection of signals extracted from
distinct electrodes, establishing relationships between different parts of the brain, and
according to La Rocca et al. [82], are less sensitive to the amplitude changes of EEG
signals compared to uni-variate features. Such measures are called brain connectivity
measures, and there are several (FC, Effective Connectivity (EC)) based on the
specific measured correlated brain activities. According to Fingelkurts et al. [96],
FC is the temporal correlation between spatially remote neurophysiological events,
expressed as deviation from statistical independence (temporal correlation) across
these events in distributed neuronal groups and areas. Friston et al. [97] defines FC as
statistical dependencies among remote neurophysiological events and is an observable
phenomenon that can be quantified with measures of statistical dependencies, such
as correlations, coherence or transfer entropy. FC is an effective tool to estimate the
coordinated activation over distinct brain regions in the EEG domain, and several
connectivity metrics have been defined in the literature to measure it from the EEG
signal. La Rocca et al. [82] investigate Spectral Coherence (COH), a measure of
frequency-specific correlation between two EEG signals, providing information on
the phase relationship between the signals in different frequency bands. A 100%
Correct Recognition Rate (CRR) on 108 subjects in resting state was achieved
using a match-score fusion approach of the COH features. Kim et al. [81] derive a
Phase-Lag Index (PLI)-based FC matrix for different brain regions, concatenating in
the eigenvectors extracted from each matrix single feature vector. The PLI estimates
pair-wise phase synchrony between two time-series signals, captures the intrinsic
phase coupling and reflects the asymmetry of the distribution of the phase difference
between two signals ranging from 0 to 1. PLV is a measure of phase synchronization
between two or more time series in the frequency domain tested in [91, 98]. The
obtained results indicate that PLV is a stable, lightweight, promising metric of eeg
biometric. Behrouzi et al. [98] compares PLV to Covariance (COV) in the same
work, another FC metric that computes the covariance matrix to measure the linear
correlation of two electrode signals computed in the time domain. Comparable
results to PLV features are obtained in terms of accuracy, space and computational
time. In [91, 99] Cross-Correlation (COR) is used to measure the linear relationship
between EEG signals from different electrodes using a correlation coefficient, such
as Pearson’s correlation, to compute the strength and direction of the relationship.
Riera et al. [99] applied Mutual Information (MI), a metric that can measure the
nonlinear as well as linear dependence of two variables, to create a multi-feature set
of uni-variate (Fourier Transform (FT), AR and bi-variate features (MI, COH, COR).
Wang et al. [86] represented the EEG signals (electrodes) as a brain network graph,
concatenating in a single feature vector connectivity (e.g., COR, PLV), node central-
ity (e.g., node degree, page rank) and global network (e.g., Transitivity, Modularity)
features from each node. In addition to FC, effective connectivity corresponds to the
intuitive notion of coupling or directed causal influence, and refers explicitly to the
influence that one neural system exerts over another [97]. Min et al. [75] measures
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effective connectivity using Granger Causality (GC), this metric provides information
about directional interactions between brain regions, identifying causal relationships
of two simultaneously measured signals with directional information. The main
issues observed in previous works are related to the use of ERPs, unsuitable for real
scenarios [75], the exclusive use of resting state [81,82,99] or single human states,
ignoring the real-world scenario of mixed states [86,98]. In the presented work, the
feature extraction differs from the previously reported methods. Specifically, to
maximize the utilization of information captured by the electrodes, local features
are combined with global features into a graph structure that, for the first time,
integrates both the local spatio-temporal information of the individual channel,
represented by the nodes as the STFT spectrogram of each channel, and the global
brain FC, represented by the edges as the PLV between each pair of channels.

Classifiers

Most of the research on EEG employs on linear discriminators such as Support
Vector Machine (SVM) [75,79,80,90], K-Nearest Neighbors (KNN) [72,79], Linear
Discriminant Analysis (LDA) [77–79,99] or other classifiers that measures features
vectors distance, e.g., Mahalanobis [82, 86], Manhattan [73] and Cosine [70]. The
main limitation for linear classifiers is that they tend to perform poorly when the
type of data varies over time and is not stable, as is the case with EEG signals. For
this reason, more complex non-linear classifiers that leverage deep learning (e.g.,
CNNs, Recurrent Neural Networks (RNNs)) have been proposed to address this
issue. Regarding CNN, different works [84, 88, 90, 100] use a multiple layers CNN
architecture followed by a dense layer to extract most discriminative features and
classify them for people identification or authentication purposes. In particular,
CNNs are used to learn a deep representation directly from the raw EEG time-series,
without extracting any handcrafted feature. The main weakness for these work
belongs to the classifiers training, in fact they rely on EEG data generated using
specific resting or ERP protocols, making the proposed systems prone to changes in
the human state. Wang et al. [91] uses a different kind of graph convolution, based on
Chebyshev polynomials. In particular, they represent EEG signal as a graph based
on within-frequency and cross-frequency FC estimates, and the use of GCNNs to
automatically capture deep intrinsic structural representations from the EEG graphs
for person identification. Concerning Deep Neural Networks (DNNs) architectures,
they are used to classify the person’s identity given hand-crafted features extracted
from the raw signal. For example, the scheme used by Kim et al. [81] explores the
use of Functional Network, a deep model used for person identification that exploits
local and global concatenated features extracted from FC matrices computed on five
brain quadrants. Similarly, the work from Gui et al. [71] focuses on a Feed-Forward
Neural Network used to classify spatio-temporal features based on WT from VEPs
signals. Concerning RNN-based methods, they tend to focus on spatial and temporal
information, which can be naturally captured by recurrent architectures. Sun et
al. [101] and Das et al. [83] propose similar systems consisting of a Conv-Long-Short
Term Memory (LSTM) architecture composed by multiple convolutional 1D layers
followed by two LSTM layers. Given a raw EEG, the proposed system firstly extracts
deep features using CNNs, then captures the inherent spatio-temporal information
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using the recurrent layers for the final user identification. In relation to Encoder-
Decoder approaches, Du et al. [87] compares a proposed transformer-based approach
for the EEG person identification task that extracts features in the temporal and
spatial domains using a self-attention mechanism, against other Transformer-based
approaches as Lite Transformer [102] and Evolving Attention (EA) Transformer [103].
Behrouzi et al. [98] integrates variational Auto Encoders (AEs) with GNN capturing
dynamics from EEG time-series to learn graph embedding from EEG FC input
both on resting and active states. In summary, current methods address the EEG
identification task using deep learning approaches based on CNNs, RNNs, graph
models, AEs, or a combination of these architectures. Building upon this foundation,
this thesis introduces a model that strategically harnesses GCNN with a custom
FC graph structure to capture both single-channel spatio-temporal information and
cross-channel FC.

1.1.2 EEG Emotion Recognition

In this section, the current works in SOTA regarding methods for EEG emotion
recognition are discussed. In particular, the current literature is reviewed from two
perspectives, namely, the adopted features classifiers.

Features

An important aspect of EEG emotion recognition is the feature extraction from brain
signals, which can affect the classification accuracy. After signal pre-processing, for
instance, downsampling [18] and band-pass frequency filtering [104], EEG features
can be divided into single-channel and multichannel features. The former class was
generally the most common choice in previous work due to its proven effectiveness
[105], and includes, among others, PSD [106], Differential Entropy (DE) [50], and
Wavelet Features [107]. The second class has instead become the preferred option
in recent years, especially with the evolution of deep learning approaches for EEG
emotion recognition, resulting in various solutions available in the literature exploiting
CNN, RNN, or graph-based architectures [108]. Miao et al. [109] employ a band-pass
filter to process the EEG signal for each spatial channel across five frequency bands
associated with Delta, Theta, Alpha, Beta, and Gamma rhythms. Subsequently, the
DE feature is computed for the EEG signal on each spatial channel. Liu et al. [110]
leverage a band-pass filter to isolate standard frequency bands from EEG signals,
specifically including the ranges of (1-7 Hz), (8-13 Hz), (14-30 Hz), and (30-45 Hz).
Subsequently, the data are transformed into two-dimensional features, from which
Pearson Correlation Coefficient (PCC), Principal Component Analysis (PCA), and
statistical descriptors such as variance, mean, kurtosis, and skewness are extracted
for each channel to train a CNN. In their study, Li et al. [111] use two directional
RNN modules capable of navigating the EEG spatial domains both horizontally
and vertically, effectively forming a comprehensive linkage of the electrode locations.
This method allows the extraction of high-level features for each EEG electrode,
while concurrently aiding in the formation of features corresponding to various brain
regions. In [49], a 256-point Short-Time Fourier Transform with a non-overlapped
Hanning window of 1s is used to extract five frequency bands of EEG signals. Then
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DE features are calculated for each frequency band. In [112], the original EEG is
firstly decomposed into five constituent sub-bands, from which features were then
extracted using time, frequency and nonlinear analysis.

Classifiers

Regarding CNN-based approaches, they tend to focus on spatial information derived
from multiple EEG channels. Liu et al. [110], for example, utilize a Butterworth
band-pass filter on the EEG channels and restructure the data for integration
into a specialized deep neural network. This network includes a CNN, a sparse
autoencoder (SAE), and a deep neural network (DNN), each trained independently
to improve convergence speed. Liu et al. [113] incorporate spatial data into input
signals via an attention mechanism and make use of a pre-trained convolutional
capsule network for feature extraction alongside an additional double-layer capsule
network. Li et al. [114] present an alternative example emphasizing the frontal lobe
and employing the Papez circuit theory. They implement a frontal lobe double
dueling DQN (FLD3QN) methodology, rooted in reinforcement learning, utilizing
EEG channels combined with a bifrontal lobe residual CNN (BiFRCNN) to facilitate
emotion recognition. Miao et al. [109] introduce a 3D deep residual learning model
designed to examine EEG signals spanning various frequency bands. They apply
group sparse regression to optimally select frequency bands and employ a 3D deep
residual network to classify features. Finally, Hu et al. [115] present a scaling layer
within their convolutional network designed to derive spectrogram-like features from
EEG data. This layer employs diverse convolutional kernels to detect patterns at
multiple scales, thereby removing the requirement for alternative feature extraction
techniques such as DE.

Concerning RNN-based methods, they tend to focus on spatial and temporal
information, which can be naturally captured by recurrent architectures. For instance,
the study by Li et al. [116] explores the variations in emotional expression across
the brain’s left and right hemispheres. They employ four distinct RNNs within
two specific brain areas to examine spatial correlations. Moreover, they develop a
subnetwork to merge these hemispheres, improving the extraction of features for
emotion recognition. In a similar study, Zhang et al. [117] employ a multidirectional
RNN to examine long-range contextual signals in EEG data to detect spatial changes
linked to human emotions. They apply projection matrices to both spatial and
temporal states to locate areas rich in emotional content. The research conducted by
Guo et al. [118] utilizes domain adaptation to diminish the variability in EEG signals
across sessions by creating a spatio-temporal feature extractor. These features are
subsequently aligned for emotion classification. Yang et al. [119] employ a blend of
LSTM and CNN networks to study spatio-temporal features within raw EEG signals.
The LSTM is used for capturing contextual information, whereas the CNN is tasked
with detecting inter-channel correlations through a 2D signal format. Finally, In
the work by Du et al. [120], they present an attention-based LSTM incorporating
a domain discriminator (ATDD-LSTM) for extracting spatial features across EEG
channels. The method is centered on capturing nonlinear connections between
electrodes to enhance the selection of EEG channels and reduce variations in features
between various subjects and sessions.
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Graph-based methods make use of the inherent configuration of BCI devices
to create graph-like structures. Liu et al. [121] propose a global-to-local feature
aggregation network (GLFANet) that analyzes spatial and frequency domain features
in EEG channels using topological graphs. This network incorporates both global
learners, with graph convolutional blocks, and local learners, using convolutional
blocks, for EEG signal feature extraction. Zhong et al. [122] emphasize left and
right hemisphere coupling in emotion recognition through a regularized graph neural
network (RGNN), examining both local and global EEG channel relationships. They
highlight the informative nature of pre-frontal, parietal, and occipital regions. Song
et al. [123] implement a dynamic graph convolution neural network (DGCNN) to
capture multichannel EEG features, learning an adjacency matrix that represents
EEG channel relationships for feature discrimination. In another approach, Zhou
et al. [124] develop a progressive graph convolution network (PGCN) to identify
both coarse and fine-grained emotional features, utilizing a dual-graph module to
encapsulate dynamic functional connectivity and static spatial brain region data.
Finally, Yin et al. [125] present a system combining graph convolutional neural
network (GCNN) and LSTM network to analyze EEG signals. The GCNNs generate
domain features from DE processed signal segments, and the LSTMs then extract
temporal features and classify emotions by channel relationship.

1.1.3 EEG Limbs Activation

In this section, the works in the current SOTA regarding methods for EEG limbs
activation are discussed. In particular, the current literature is reviewed from two
perspectives, namely, used features, and used classifiers.

Features

In order to increase the Signal-to-Noise Ratio (SNR) and reduce the presence of
artifacts, a labor-intensive pre-processing is commonly needed before interpreting the
EEG signals, and this represents a significant obstacle to the broad use of MI EEG-
based BCI. Effective feature extraction methods are crucial for better functioning of
the system that will benefit from noise-free data containing only the information
really relevant to the classification of the limb from MI EEG data. One of the most
successful paradigms for data pre-processing is Independent Component Analysis
(ICA) [126]. In the work proposed in [127], a channel optimization approach of
EEG signals ICA is proposed to minimize the effect of artifacts on channel selection.
Since ICA-based MI-BCI systems are sensitive to EEG channels and the quality of
the training data, this work is mainly focused on a novel channel selection scheme
able to pick only optimal channels resulting in improved performance of the overall
system thanks to the proposed strategy. Authors in [128] and [129], on the other
hand, focus their work on the dimensionality reduction of EEG signals through an
iterative multi-objective optimization for channel selection algorithm and Granger
causality [130], respectively. Another classical approach commonly used in literature
is the Common Spatial Patterns (CSP). Gaur et al. [131], proposed a method able to
examine multiple time segments within a trial rather than depending on a single time
point. They found that inter-subject variability has been reduced to some extent, as
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evidenced by the lower standard deviation. Moreover, their solution has performed
significantly better than the existing state of the art both on stroke patients and
on healthy individuals. Instead, the approach presented in [132] introduces an
enhanced complex-valued common spatial pattern, which aims to analyze EEG
signals by decomposing them into spatial patterns through covariance. The primary
objective of their method is to maximize the variance between signals associated
with distinct classes while minimizing the variance between signals within the same
class. WT is an alternative feature for MI EEG aimed at extracting a time-frequency
representation of a given EEG MI signal. Xu et al. [133] use WT to convert specific
EEG channels, namely electrodes C3, Cz, and C4, of multichannel EEG signals into
two-dimensional time-frequency images to derive the feature of motor imagery EEG
signal and train a deep classifier. The authors in [134] propose a method that uses
WT for the EEG feature extraction phase and a simple Multilayer Perceptron (MLP)
with a single hidden layer for classification. They applied it to both mental and MI
tasks to demonstrate the versatility of the proposed approach. Similar to the work
reported in [134], the authors in [135] present an algorithm for cursor manipulation
on a screen through a BCI. In this case, a WT is used for the feature extraction
stage to train a hybrid system made up of a SVM and an MLP was developed.
The research outlined in [136] centers around a pre-processing stage designed to
decompose µ and β rhythms from EEG signals. The approach employs uncorrelated
transform complex common spatial patterns to enhance the independence between
the identified rhythms. Another approach involves the use of different aggregate
features, for instance, the work reported in [137] differs from the previously mentioned
approach because aggregates different time and frequency domain features extracted
from the signal, namely mean, variance, skewness, kurtosis, zero crossings, absolute
area under the signal, and peak-to-peak distance, to train a deep classifier. An
alternative solution for analyzing MI tasks is reported in [138], where a PLV-based
method, linked with the synchronization between EEG signals from different areas
of the brain, is presented to discriminate tasks changes in cerebral rhythms, when a
subject move or think left/right-hand movement. Zhang et al. [139] design a novel
deep learning model called Graph-based Convolutional Recurrent Model (CGRAM)
able to efficiently learn spatial information representing the input EEG as a graph,
extracting attentional temporal dynamics by means of a recurrent attention network.
Since in the standard recurrent module the temporal cues are usually accumulated
to the last time step, eventually losing some critical information in early time steps,
the proposed RNN model assigns weights to different temporal cues and aggregates
all information for the final classification. Finally, some methods directly use a
deep convolutional model to extract the most significant feature maps from the
input EEG. Dose et al. [140] employ a CNN within an end-to-end framework to
simultaneously extract features and classify EEG signals. This approach eliminates
the necessity for ad-hoc features, resulting in a substantial enhancement in both
intra-subject and cross-subject accuracies compared to prior non-deep methodologies.
Instead, Huang et al. [141] aimed to propose a deep learning architecture introducing
the local reparameterization trick into CNNs to directly process the EEG signals.
In this way, the approach can generate a (statistically) effective gradient estimator,
effectively reducing the variance and thereby making the classification accuracy
higher and converging faster.
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Classifiers

Regarding MI EEG different approaches have been proposed to classify the raw signal
or the features extracted mentioned in previous section. In particular, concerning
CNN methods, Huang et al. [141] deploys a simple 4-layer CNN architecture where
each convolutional layer has 32, 16, 8, and 4 kernels, respectively. [140] proposes
a CNN that consists of two convolutional layers with 40 kernels per layer. The
former layer only performs convolution along the time axis, while the latter layer
only performs convolution along the EEG channel axis. The classification is carried
out by means of a Fully Connected (FC) layer. Karacsony et al. [142] employs a
CNN in which the first convolutional layer performs temporal filtering, applying 100
filters along the time axis with a kernel size of 25 samples. The resulting temporally
filtered feature maps are then passed to a second convolutional layer, which handles
spatial filtering across EEG channels at each time step, producing 100 feature maps.
This spatial filter also reduces the dimensionality across channels, resulting in 1D
feature maps. These 1D maps, after temporal and spatial processing, are further
processed through two additional convolutional layers, which refine the features and
extract higher-level abstractions, each yielding 50 feature maps. Concerning LSTM
methods, the paper from Zhang et al. [137] proposes an LSTM network with an
attention mechanism for classifying left/right-hand movements using EEG signals.
After EEG signals cleaning, a wide range of time and frequency domain features are
extracted from each EEG segment, including mean, variance, and relative power in
different frequency bands and given as input to a multi-layer LSTM network. Each
layer contains LSTM cells that capture both long-term and short-term temporal
dependencies in the EEG data. The attention mechanism is used to assign higher
weights to time steps that contain more relevant information for classification. In
contrast, the approach presented in [139] introduces a solution based on a CGRAM
network, where a graph structure is initially constructed to represent the spatial
arrangement of EEG electrodes. A convolutional recurrent model is then applied
to learn EEG features across both spatial and temporal dimensions, emphasizing
the most distinctive temporal intervals. On top of the RNN, a recurrent attention
module is used to assign weights to different temporal cues, rather than relying on
traditional accumulative temporal information.

1.1.4 Contributions and outline

This section reports in brief the contribution of this thesis work with respect to
the state-of-the-art. Concerning EEG biometric identification an innovative graph
representation of the EEG signal, able to integrate the time-frequency oscillations of
the EEG and the brain functional connectivity has been presented. Then, a GNN
able to extract and exploit distinctive features from the proposed graph structure is
used in order to identify the subject, leading to better performance and enhanced
capacity to generalize over diverse human states. A comprehensive investigation
of the proposed system evaluated on EEG signals of diverse human states from
the public PhysioNet and M3CV datasets, alongside a comparison with SOTA
approaches.

Regarding EEG emotion recognition, an original emotion recognition framework,
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namely Empátheia, has been deployed. The system provides a spatio-temporal atlas
representation for EEG data is provided thanks to a custom encoder based on the
PRISMIN framework. Then, to classify the emotion represented in the atlases, a
multi-branch classifier, each one designed to capture spatial and temporal features of
an image-encoded emotion, is used. The system, thanks to the compression capacity
of the atlases, provides an alternative way to treat and manage large collections of
EEG signals to support several critical issues, including storage space, embedded
systems, transmission efficiency, and many others. An extensive experimental study
has been performed to explore different encoding strategies and classifiers to retain
a high performance on the SEED benchmark dataset despite the significant data
quantization produced by the PRISMIN encoder.

Finally, with respect to EEG limb activation, a modular multi-stream 1D CNN
architecture has been developed. The main novelty of the model is the use of a
multi-stream strategy, where parallel kernels with different sizes on each stream are
able to retrieve meaningful information from the same data at different time scales
without the need for pre-processing methods. An extensive ablation study has been
performed, and it has emerged that with this specific type of data, shallow models
with more streams achieve better results than deeper models with fewer streams.
Then, comparative experiments on the PhysioNet EEG motor movement/imagery
dataset show how the proposed model overcomes the key works of the current
literature in both cross-subject and intra-subject analysis.
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Chapter 2

The EEG signal

Electroencephalography is a method to record the electrical voltages produced
from the spontaneous electrical activity of the brain. The EEG signal enables the
recording of fluctuations in bioelectric potential related to brain activity that can
detected using electrodes placed on the scalp and appropriate instrumentation. In
1924, Hans Berger, through the invention of a rudimentary electroencephalograph,
successfully recorded signals from his son’s head, observing the first temporal patterns
of brainwave activity. To fully understand how to exploit the EEG signal, it is
essential to be familiar with the brain’s areas and functions, as well as how these
are linked to various brain functions or potential disorders. In this chapter, an
anatomical description (Sec.2.1) and a functional overview (Sec.2.2) of the human
brain are first provided. Then, Sec.2.3 presents the genesis of the EEG signal, while
the associated rhythms are reported in Sec.2.4. Finally, the signal acquisition and
processing systems are mentioned in Sec.2.5.

2.1 Brain anatomy

The brain is divided into three parts: a central part known as the diencephalon
(whose primary structure is the thalamus) and two symmetrical parts, the cerebral
hemispheres, which form the telencephalon. The two hemispheres are separated
by the interhemispheric fissure, which extends to the white matter nucleus called
the corpus callosum. Along with the Rolandic and Sylvian fissures, this fissure
divides each hemisphere into four lobes: frontal, parietal, temporal, and occipital
(Figure 2.1). Each lobe is further divided by grooves into convolutions, within which
specific motor and sensory projection areas are located. The brain also contains
four cavities (the lateral, third, and fourth ventricles) filled with cerebrospinal fluid.
The majority of the diencephalon is occupied by numerous small nuclei forming the
thalamus, which acts as a relay and processing station for sensory information en
route to the cerebral cortex. The thalamus is involved in all sensory systems except
the olfactory system and also plays a key role in voluntary movement, regulation of
the sleep-wake cycle [144], maintaining the proper balance between excitation and
inhibition, emotional responses [145], and certain aspects of memory capacity [146].
The walls of the hemispheres consist of grey matter (the cerebral cortex), rich in
neurons, which covers the white matter formed by nerve fibers. The main white
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Figure 2.1. The Two Hemispheres. The brain is divided into two hemispheres (left
and right), each of which has four lobes (temporal, frontal, occipital, and parietal).
Furthermore, there are specific cortical areas that control different processes. Adapted
from [143].

matter nuclei include the aforementioned corpus callosum, located beneath the
interhemispheric fissure, and the fornix or cerebral trigone, a laminar structure
located beneath the corpus callosum, separated from it by a transparent layer (the
septum pellucidum). Embedded within the white matter are nuclei of grey matter,
the most significant being: the hippocampus or Cornu Ammonis, which receives
olfactory stimuli and participates in emotional mechanisms [147, 148]; the optic
thalamus, important for regulating sensitivity and responses to painful or emotional
stimuli; the striated nuclei (caudate and lentiform), which are centers for automatic
activities associated with conscious action [149]; and the hypothalamus (including
the optic chiasm, tuber cinereum, and the two mammillary bodies), which lies
beneath the thalamus and houses various regulatory centers for specific functions
(body temperature, appetite, urination, blood pressure, thirst, etc.) and is connected
to the pituitary gland [150]. The cerebellum is located in the posterior-inferior
region of the cranial cavity, between the brain and the medulla oblongata, and
is divided into two cerebellar hemispheres, joined by the cerebellar vermis. The
cerebellar cortex consists of three layers of grey matter: an outer molecular layer,
an intermediate layer, and an inner granular layer. The white matter (arbor vitae)
branches through the cerebellar cortex. The cerebellum (accounting for 10% of brain
mass) coordinates muscular movements, governs the sense of the body’s orientation
in space, and maintains balance [151]. The brainstem, composed of the medulla
oblongata (connected to the spinal cord), the pons (pons Varolii), and the midbrain,
contains all the afferent and efferent nerve fibers that connect the higher brain centers
to the spinal cord. The cranial nerves consist of twelve pairs (Figure 2.2), classified
as sensory (I-II-VIII), motor (III-IV-VI-XII), and mixed (V-VII-IX-X and XI) [152].
The first and second pairs (olfactory and optic) originate above the brainstem
and are considered part of the brain, while the third (oculomotor) and fourth
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Figure 2.2. The disposition of cranial nerves. Adapted from [154].

pairs (trochlear) arise from the midbrain; the fifth (trigeminal, with ophthalmic,
maxillary, and mandibular branches) and eighth pairs (auditory) originate in the
medulla and pons; the sixth (abducens) and seventh pairs (facial) arise from the
pons; and the ninth (glossopharyngeal), tenth (vagus), eleventh (accessory), and
twelfth (hypoglossal) pairs arise from the medulla. Within the brainstem, between
the cranial nerve nuclei and the major ascending and descending neural pathways,
lies the reticular system, which coordinates complex functions such as wakefulness,
swallowing, and respiration [153].

2.2 Brain function

The brain is the principal organ of the human nervous system and, from a physi-
ological standpoint, the primary center of somatic, relational, and intellectual life.
It is to the brain, and more precisely, to its cortex-that stimuli transmitted from
the periphery via sensory nerves arrive, where they are transformed into conscious
impulses and sensations. Voluntary responses originate from the cortex and are
transmitted to muscles and peripheral organs via efferent nerves. Although the brain
functions as a unified organ, certain regions are specialized for specific functions. For
instance, the visual sensory area is located in the occipital lobe; the auditory sensory
area is situated in the temporal lobes; the olfactory and gustatory sensory areas are
at the level of the hippocampus; and higher-order functions are controlled by the
frontal lobe. Thus, in general, the cerebral cortex can be divided into specialized
functional areas (projection areas) for different cerebral functions. However, the
concept of localization cannot be strictly defined, as each brain area integrates with
others in an overall framework of coordination. The cerebral cortex is functionally
divided into sensory, motor, and associative regions. The sensory cortex receives
nerve pathways that carry stimuli from across the body. Motor impulses originate
from the motor areas and are transmitted via the pyramidal pathway (typically, the
cortical centers of one hemisphere are related to regions of the opposite side of the
body). Associative areas integrate various sensations, store them, and contribute
to the complex process of consciousness, including ideation, will, awareness, and
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judgment. In both the sensory (left) and motor (right) cortices, there are areas
corresponding to specific parts of the body. The size of each area is proportional to
the sensory accuracy required for that specific body part. As regards intellectual
activity, current knowledge suggests that there is no specific area responsible for
the emergence of ideas or the localization of memory. Instead, these capacities are
believed to be distributed across the entire cerebral cortex and realized through the
association of different higher neural centers. Morover, the medulla regulates the
heart beat and the breathing, in fact it contains cardiovascular and respiratory cen-
ters that are able to monitor and regulate heart rate, blood pressure, the frequency,
and depth of breathing. The Varoli pons instead contains nuclei that collaborate
with those in medulla to modulate the rhythm and respiratory pattern, influencing
the transition between inspiration and exhalation.

2.2.1 Cortical neurons

The brain is made up of 1010 \ 1011 neurons [155]. Neurons consist of a central body,
called the soma, from which two types of extensions emerge: dendrites and the axon.
Dendrites are thick, short branches that extend near the soma and have the capacity
to transmit electrical impulses received from external sources or other neurons to
the cell body. The axon, a single long filament unique to each neuron, transmits the
nerve impulse to other neurons or tissues, such as muscles, in the direction it extends.
In fact, a bundle of several axons forms a nerve. The latter can transport information
and signals from the central nervous system to peripheral organs/tissues (efferent
nerves) or vice versa (afferent nerves), that is from the periphery to the Central
Nervous System (CNS). Each nerve cell is enclosed by a cellular membrane that
functions as a highly selective filter, extremely thin (0.005 µm thick), and consists
of two layers of phospholipids. Specific receptors for certain chemical substances
(both exogenous and endogenous) and specialized channels for the passage of ions
with positive (Na+, K+, Ca2+) or negative (Cl−) electrical charges are located on
the cell membrane. These channels can be opened or closed by specific biochemical
modifications of the membrane itself. Neuronal cells constitute, together with glial
cells, the nervous tissue. Glial cells outnumber neuronal cells and have a nourishing,
supporting and protective function for neurons, also having a role in nerve impulse
transmission. Communication between two neurons is made by synapses, also called
synaptic junctions, which act as connecting points, allowing the transmission of
information between neurons (inter-neuronal synapses) or with other cells (muscle,
sensory or endocrine cells), in the form of electrical signals (electrical synapses)
or chemical signals (chemical synapses). The cerebral cortex plays a primary role
in bioelectrical activity. There are various types of cortical neurons, which are
not randomly distributed across the surface of the cortex but are arranged in an
organized fashion, forming what are known as cortical layers. The cortex, composed
of 1.5–4 mm of grey matter, is generally divided into six sublayers (Figure 2.3) that
contain neurons and fiber bundles [156]. Two main types of cortical neurons can
be distinguished: pyramidal cells and non-pyramidal cells. Additionally, there are
various horizontally oriented nerve fibers that extend between adjacent regions of
the cortex, as well as vertically oriented bundles that extend from the cortex to
more distant regions or down to the spinal cord. Pyramidal cells have a conical



2.2 Brain function 21

I

II
IIIa

IIIb

IIIc

IV

Va

Vb

VIa

VIb

1°
1a
1b

1c
2
3a1

3a2

3b

4

5a

5b

6a1

6a2

6b2

6b2

Cytoarchitecture Myeloarchitecture

Figure 2.3. Generalized scheme of cortical layering. Adapted from [157].

triangular-shaped body, with the base pointing downward and the apex directed
toward the cortical surface, resulting in a perpendicular arrangement relative to the
cortical surface [158]. Pyramidal cells are among the largest neurons in the brain.
Due to their branching structure, the overall length of their dendrites can reach
several centimeters. These cells are heavily involved in voluntary movement guided
by vision, playing a significant role in cognitive abilities, such as object recognition
tasks. Pyramid cells (Figure 2.4) are composed of:

• a single long, branched axon that acts as an output for other neurons;

• a single long apical dendrite that descends from the apex of the cell body
through the various cortical layers and finally branches into different endings.
Pyramidal neurons respond to short depolarizing stimuli, generating action
potentials lasting between 0.5 and 1 ms;

• basal dendrites that originate from the base of the cell body. The tree of basal
dendrites is composed of a small number of dendrites. They do not reach the
same length as the apical dendrite, but they also have numerous branches;

• dendritic spines, small protrusions on the dendrites that receive excitatory
signals. The density of dendritic spines on a neuron is correlated with the
number of connections it forms with afferent axonal terminals and can be
considered an indicator of the complexity of its functions.

The non-pyramidal cells have a small cell body and their dendrites, practically
without spines, branch in all directions in the immediate vicinity of the cell; with
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Figure 2.4. Basic components of a pyramidal cell. Adapted from [159].

very rare exceptions, the axons do not leave the grey matter, and project short axons
to other local neurons. They do not have a preferential orientation with respect to
the surface of the cortex and perform a function purely as inhibitory interneurons.
In fact, these neurons release GABA [160], the main inhibitory neurotransmitter
in the CNS, particularly at the level of synapses of the CNS, where it is able to
regulate neuronal excitability and muscle tone.

2.2.2 Neural groups

As previously mentioned, the cerebral cortex is a continuous laminar layer of grey
substance that covers the white substance of the cerebral hemispheres: it represents
the outermost part of the brain in vertebrates. It consists of neurons, glia and nerve
fibres and is about 2-4 mm thick. The human cerebral cortex plays a central role
in complex cognitive mental mechanisms or functions such as thinking, awareness,
memory, attention, and language. All brain functions are located in the cortex,
which covers the cerebral hemispheres and in which all information is processed and
integrated. The cortex is the result of the particular cerebral evolution of primates,
and during this evolution, its volume has increased faster than the volume of the
skull, forming a large number of cracks called furrows and gyrus, whose ridges are
called turns. Some grooves are always present in the human brain, and they are the
reference to divide the cortex of each hemisphere into four lobes: frontal, parietal,
temporal and occipital (Figure 2.1). It has long been known that certain areas of
the brain are engaged in specific tasks, both cognitive and motor. Each is assigned
to one or more specific functions:

• The frontal lobe houses the motor cortex and premotor cortex, playing key
roles in learning, memory, and, on the left side (Broca’s area), in the formation
and control of speech. It is essential for planning and executing purposeful,
learned behaviors and is also the center for many inhibitory functions [161];

• The parietal lobe includes the primary somatosensory cortex. The left hemi-
sphere of this lobe plays a dominant role in language comprehension, word
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Figure 2.5. The Brodmann map. 4, primary motor cortex; medial 6, supplementary
motor area; lateral 6, premotor cortex; 3, 1 and 2, (primary) somatic sensory cortex; 40,
secondary somatic sensory cortex; 17, primary visual cortex; 18 and 19, visual association
cortex; 41 and 42, primary auditory cortex; 22, auditory association cortex. Adapted
from [166].

memory, and mathematical abilities, whereas the right hemisphere is primarily
responsible for visuospatial functions [162,163];

• The temporal lobe contains the auditory processing area and is involved in af-
fective processing, emotional reactions, visual recognition, auditory perception,
and memory. The left temporal lobe is crucial for speech and word selection,
while the right temporal lobe aids in interpreting speech intonation and the
sequence of sounds [164];

• The occipital lobe integrates all visual information, including input that influ-
ences posture and balance [165].

Each lobe is then divided in turn by grooves and folds into circumvolutions in which
there are other distinct functional subregions, connected to each other by tracts
of axons that start from one population of neurons and end in another. In the
literature, a widely used subdivision of the cerebral cortex is that of Brodmann,
who identified 47 precise areas (Figure 2.5) with distinct characteristics [166]. In
particular, it is possible to distinguish between several areas that are related to
certain specific tasks, such as the primary sensory area (areas 3-1-2) and secondary
(areas 5 and 7), the primary visual area (area 17) and secondary (area 18, 19), the
primary motor area (area 4), the premotor area (6). In the sensory cortex (left) and
motor (right), there are areas that relate to specific body parts. The size of each of
these areas is proportional to the sensory accuracy required for the specific body
part. This gives rise to a representation known as the homunculus 2.6, a visual map
of how different parts of the body are represented at the cortical level. The larger the
areas are, the more important they are for sensory perception. Some sensory areas
related to the lips and hands are much wider than the areas representing the central
parts of the body and the eyes. These groups of cortical neurons undergo cycles of
activity in which they are sequentially recruited, engaged in processing activities,
and then released. During normal brain function, these networks are subjected
to rhythmic activity occurring at frequencies ranging from 1 to over 100 Hz. The
underlying neuronal activity proceeds at a frequency of thousands of hertz, but all
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of the measurable external potentials are in the EEG range. Neuronal subgroups
have the ability to isolate themselves from adjacent neurons through the mechanism
of lateral inhibition. This mechanism consists of the inhibition, by the stimulated
neurons, of the lateral zones to themselves through their own inhibitory cells. For
this purpose, sensory receptors exploit specialized membrane zones, which are useful
for transducing the signal and modifying the opening or closing of the ion channels
with the generation or not of an action potential. This way the excited area of the
cortex will be well-defined and corresponding to the specific part of the body source
of the stimulus. By contrast, through lateral inhibition [167], the lateral neurons will
be inhibited through stimulation of lower intensity received by the more stimulated
neurons, thus distinguishing them from the former. This is the device that allows
the CNS, for example, to discriminate between two stimuli occurring at two close
points. The coordinated activity of different regions is evidenced by rhythmic waves,
which are distinguished at particular positions according to specific brain activities
or stimuli. This cyclical pattern of activity produces an identifiable rising and falling
of measurable rhythms, which has a time course in the order of seconds and shows
great variability. As a result, it is possible to identify the dominant rhythms present,
each indicating the general state of activation or relaxation of a given region.

2.3 EEG signal genesis

The activity of the CNS is mainly connected to the current that develops in the
synapses between dendrites and axons (asso-dendritic synapses), dendrites and
dendrites (dendro-dentric synapses), and axons and axons (asso-axonic synapses).
A negative polarity potential of the order of 60-70 µV can be measured between
the inside and outside of the cell body membrane. The information transmitted by
the nervous system is called Action Potential (AP). A stimulus must pass a firing
threshold, about −55µV , to generate a AP, while a weak impulse does not generate



2.3 EEG signal genesis 25

an action potential. Neurons have a resting potential of about −70µV , but it can
change in case of depolarization or polarization of the membrane. If the opening of
the ion channel, a pore-forming membrane protein that allows ions to pass through
the channel pore, results in a net gain of positive charge across the membrane, the
membrane is said to be depolarized as the potential comes closer to zero. This
is referred to as an Excitatory Post-Synaptic Potential (EPSP), as it brings the
neuron’s potential closer to its firing threshold (about −55µV ). If, on the other
hand, the opening of the ion channel results in a net gain of negative charge, this
moves the potential further from zero and is referred to as hyperpolarization. This
is an Inhibitory Post-Synaptic Potential (IPSP), as it changes the charge across the
membrane to be further from the firing threshold. These post-synaptic potentials have
a duration ranging from ten to a hundred ms, higher than that of the action potential,
and a maximum amplitude of 20 µV , which tends to attenuate in propagation. This
amplitude is not sufficient to trigger, on its own, the action potential in another cell.
Each neuron is made up of a multitude of dendrites and receives a large number
of synapses from different neurons. These potentials are subject to summation,
spatially and/or temporally. More specifically, if a cell is receiving input at two
synapses that are near each other, their post-synaptic potentials add together. If
the cell is receiving two excitatory post-synaptic potentials, they combine so that
the membrane potential is depolarized by the sum of the two changes. If there are
two inhibitory potentials, they also sum, and the membrane is hyperpolarized by
that amount. If the cell is receiving both inhibitory and excitatory post-synaptic
potentials, they can cancel out, or one can be stronger than the other, and the
membrane potential will change by the difference between them. Regarding the
temporal case, when a cell receives inputs that are close together in time, they are
also added together, even if from the same synapse. Thus, if a neuron receives an
EPSP, and then the pre-synaptic neuron fires again, creating another EPSP, the
membrane of the post-synaptic cell is depolarized by the total of the EPSPs. The
EEG tracing is the result of the sum of the synchronized post-synaptic potentials of
a large number of neurons belonging to populations located below the scalp recorded
over time. The closest structure to the scalp is the cerebral cortex, so the EEG
reflects the activity of cortical neurons beneath the electrodes. Cortical neurons
are pyramidal and non-pyramidal. Pyramidal neurons are among the largest in the
brain and make up about 3

4 of cortical neurons. As mentioned above, non-pyramidal
neurons, also called inter-neurons, communicate at short distances due to short
dendrites. For a potential change to be detected on the surface, it is necessary
that the dendritic arrangement is ordered, otherwise, if the cell arrangement is
random, a zero current would result. Conversely, the pyramidal cells are arranged
vertically, perpendicular to the surface and parallel to each other. This geometric
and orderly arrangement promotes sufficient synchronism in activation and makes
these neurons the generators of the EEG. In fact, these cells, due to the different
states of polarization of dendrites and soma, present a region of positive charge,
referred to as a source, and a region of negative charge, referred to as a sink. The
result is a potential difference between the apical and basal regions of the neuron.
Thus, the effect of the post-synaptic potential can be represented by a dipole radially
oriented to the cortex, the so-called "dipolar fields". In particular, the apical dendritic
membrane, due to depolarization, is electronegative compared to soma and basal
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dendrites, which are, therefore, electropositive. This phenomenon generates an ionic
current flowing from the positive to the negative pole through the extracellular
medium. The post-synaptic potential influences the signal detected on the surface
through three parameters:

• the excitatory or inhibitory nature;

• the intensity;

• the location in relation to the measurement site.

The intensity of the post-synaptic potential depends on the ion variation of the
membrane, due to the ionic currents passing through it, which in turn depend on
the concentration of the neurotransmitter. Post-synaptic potentials are called ’local
potentials’ because they only transmit over short distances. This is due to two
factors:

• the current leakage, because the membrane is not a good insulator;

• the cytoplasm is resistant to electrical flux.

For both these factors, the potential is reduced as it propagates through the membrane
and moves away from the source site. For this reason, non-pyramidal cortical cells
do not appear to make a significant contribution to the signal recorded on the skin
because each cell produces a very small current flow in the immediate vicinity, but
due to a phenomenon known as ’conduction volume’, this is spread throughout the
brain. Volume conduction (or “electrical spread” [169]) refers to the complex effects
of measuring electrical potentials a distance from their source generators [170], in fact,
there could be some biological tissue that fills the space between an electrical source
and the sensor (e.g., EEG electrodes). These tissues conduct the electrical signals,
causing them to spread and refract. This potentially alters the appearance of the
signal once it reaches the electrodes. The whole body, including the head, consists
of more than 80% of water and thus acts as a good conductor of electrical potentials.
For this reason, other electrical signals, concerning eye movement, muscle and heart
activity, can be transmitted through the head by volume conduction. When an EEG
signal is recorded, small amounts of other signals from non-neuronal physiological
sources will inevitably be included. Since several layers, like the scalp, skull, and
many others, cover the brain, the signals produced are attenuated hundreds of times.
For example, the skull attenuates the signal about 100 times more than soft tissues.
Most of the noise is generated inside the brain (internal noise) or above the scalp
(system noise or external noise). Therefore, only large populations of active neurons
can generate enough potential to be recorded using electrodes positioned on the
scalp. It can be concluded that an input synaptic stimulus generates dipoles and
therefore current flows which, thanks to the strongly ordered arrangement, can be
summed in time and space and measured, bearing in mind that these measurements
will also show potentials arising from other physiological activities diffused due to
the conduction volume.
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2.4 Electroencephalography and EEG rhythms
The individual neuronal dipoles that add up change in amplitude and direction over
time, giving rise to continuous fluctuations of the surface EEG signal. The EEG is,
therefore, a complex waveform which includes several frequency components. The
main EEG rhythms have been identified through clinical and research experience,
and the associated frequency ranges were subsequently determined. In fact, it
is preferable to define these EEG components as "component bands" rather than
"frequencies", because what more accurately distinguishes them is their physiological
significance and visual appearance rather than the use of specific frequencies. Indeed,
a particular component may appear outside the typical frequency range. Follows a
description of the EEG waves (Figure 2.7) that can be observed in normal background
brain activity:

• Delta: has a frequency of 4.0 Hz or below. It tends to be the highest in
amplitude and the slowest waves. It is normal as the dominant rhythm in
infants up to one year, and in stages 3 and 4 of sleep in adults [171], it is also
an attention indicator during mental tasks [44].

• Theta: has a frequency of 5 to 8 Hz and is classified as "slow" activity. Theta
waves appear as consciousness slips towards drowsiness. Theta waves have
been associated with access to unconscious material, attentional processing
and in navigation an episodic memory [172]. Larger contingents of theta wave
activity in the waking adult can be caused by various pathological problems
like fibromyalgia and depression [173,174] or mental disorders like Attention
Deficit Hyperactivity Disorder (ADHD) [172];

• Alpha: has a frequency between 9 and 14 Hz. It is usually best seen in
the posterior regions of the head on each side, being higher in amplitude
on the dominant side. It appears when closing the eyes and relaxing and
disappears when opening the eyes or alerting by any mechanism (thinking,
calculating) [175]. It is the major rhythm seen in normal, relaxed adults. Over
the life span, alpha activity becomes dominant during early adulthood [176]
and is involved in encoding and retrieval of new information [46];

• Beta: is characterized by "fast" activity. It has a frequency of 15 to 40 Hz.
Rhythmical beta activity is encountered chiefly over the frontal and central
regions. A beta wave is the usual waking rhythm of the brain associated
with active thinking, active attention, focus on the outside world, or solving
concrete problems, and is found in normal adults [177]. It may be absent or
reduced in areas of cortical damage [178]. It is generally regarded as a normal
rhythm. It is the dominant rhythm in patients who are alert or anxious or
have their eyes open;

• Gamma: has a frequency between 25 and 140 Hz. It is involved in various
cerebral functions, such as perception, attention, memory, consciousness, and
motor control [179], and can be increased in amplitude via meditation [180].
Altered gamma activity is a biomarker in many mood and cognitive disorders
such as major depression [181] and schizophrenia [182].
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Figure 2.7. EEG raw signal and the relative decomposition into frequency bands.

2.5 Electrodes and positioning systems
An EEG system is therefore able to transform analog signal (i.e. brain potentials)
into a digital equivalent that can be stored and analysed. Brain electrical activity
is conventionally recorded by means of bio-potential electrodes placed on the head
or in the ears. There are two main possible electrodes solutions to record these
bio-potentials:

• wet electrodes: The silver/silver chloride (Ag/AgCl) electrode, or "wet elec-
trode," is the most commonly used type in clinical practice for measuring
electrical activity due to its ability to reduce skin-electrode impedance via an
electrolyte gel. However, wet electrodes have several drawbacks: they require
significant time to reach a low impedance level, and the gel can dry within
hours, causing impedance to increase. They’re unsuitable for long-term EEG
monitoring, especially in high-density setups, as the gel may form bridges
between close electrodes. Additionally, their setup is time-consuming, requires
professional handling, and may be uncomfortable due to abrasive paste and
gel;

• dry electrodes: are considered a promising alternative for long-term EEG mon-
itoring, as they eliminate the need for scalp preparation and save setup time.
They come in three types: contact, non-contact, and insulating electrodes.
Contact dry electrodes touch the scalp directly with a spiked metal array,
sometimes even penetrating the outer skin layer for stability and conductivity.
Non-contact electrodes use capacitive coupling through an insulating layer,
while insulating electrodes have a non-conductive base and also rely on capac-
itive coupling. Contact electrodes are preferred for EEG due to their lower
impedance. However, dry electrodes present high impedance, leading to noise,
interference, and movement artifacts. To address these issues, shielded EEG
cables are essential to reduce interference, shielding the signal from ambient
noise and preventing wire movements from generating interference.
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Figure 2.8. Comparison between wet and dry biopotential electrodes: (left) wet electrode
that sits on the surface using electrolytic gel. Dry electrodes (right) do not require
extensive preparation since they pierce the outer layers of the skin and achieve a low-
impedance pathway to recording neural signals. Adapted from [183].

Modern EEG systems are equipped with delicate and accurate electrodes, differential
amplifiers, special filters, analog-to-digital converters and instruments for recording
and storing data. Once the analog signal is acquired it is amplified, so that it can
be digitized accurately. Once amplified, the signal is converted from analog to
digital, through an A/D converter. Depending on the purpose of the study, different
sampling frequencies can be used, common uses are: 100, 200, 500, 1000, 2000
samples per second. In general, the raw EEG signal has distortions and alterations
due to artifacts that can be internal or external. External artifacts are called system
artifacts, as they are noise or interference generated by the instrumentation or its
improper management. In particular, among the external artifacts are: interference
at 50/60 Hz generated by the system power supply, impedance oscillation, faulty
cables, unbalanced impedance of the electrodes and electrical noise generated by
electronic components. Internal artifacts are associated with the subject and have
a physiological nature. Among these, the most important ones to eliminate or
attenuate are those related to the movement of the body of the subject, muscle
movements, heart beat, eye movement, called blink, sweating and breathing of the
subject. In order to remove these artifacts that may compromise the use of the signal,
different filtering techniques can be adopted and will be subsequently discussed..

Standard positioning system 10/20

The conventional method for electrode placement, known as the 10-20 system [184],
establishes the distance between two adjacent electrodes as a percentage of the
total front-back and left-right distance of the skull, with these percentages being
10% and 20%. The electrodes are marked by a letter and a number. The letter
identifies the lobe or area from which the electrode is acquiring the signal. In the
conventional case, the letters F, T, C, P, O correspond to frontal, temporal, central,
parietal, and occipital areas, respectively, with Fp referring to the pre-frontal lobe.
Even numbers are assigned to the right side of the brain, while odd numbers are
assigned to the left side. Electrodes on the midline are labelled with the letter
z [185]. For EEG signal recording, a referential system is primarily used. In this
method, one or two electrodes serve as references for the system, generally Cz or, for
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example, a pair of electrodes near the ear or above the mastoid. Each electrode is
then connected to one input of the differential amplifier, and the reference electrode
to another. The EEG recording line generated in this way is commonly referred to
as a "channel." Other techniques that do not use a single electrode as a reference
employ the average signal across the electrodes as the reference for the system.
The pairs of signals (derivations) fed into the amplifiers can be acquired in two
different modes, depending on specific experimental requirements: in monopolar
mode, one signal of each pair corresponds to an electrode at an active site, while
the other serves as a reference signal. The reference can be obtained either through
a physical reference electrode placed at an electrically neutral site (such as the tip
of the nose, earlobe, or chin) or through a "virtual" electrode, where the reference
is obtained as the average of all electrode signals. In this way, the potential of
each electrode is measured relative to the neutral electrode or the average of all
electrodes, highlighting the level of electrical activity underlying the active site. In
bipolar mode, on the other hand, both electrodes are placed at active sites, and the
signal detected corresponds to the difference between the activities at the two sites.
Typically, in bipolar derivation, pairs of adjacent electrodes along the coronal or
sagittal lines are connected to the amplifiers (e.g., F7-F3, F3-Fz, Fz-F4, etc.). Besides
the reference electrode, another physically necessary electrode for EEG recording
is the ground electrode. Therefore, for single-channel monopolar acquisition, three
sensors are required (one active, one reference, and one ground). For two-channel
monopolar acquisition, an additional active electrode is used, totalling four sensors.
When using surface electrodes, the electrical signal output from the sensor is weak
(typically ranging from 25 to 100 µV ) and thus needs to be amplified before it can be
transmitted, processed, and visualized. An EEG amplifier must, therefore, be capable
of capturing very low-amplitude electrical signals from a high-impedance source and
amplifying them by more than 1000 times without introducing distortions within
variable frequency bands ranging from 0 Hz to 100 Hz or more. The fundamental
property of an appropriate biological amplifier is that it is a differential amplifier,
which is an electronic device that amplifies the difference between two sites and
generates the difference signal as output. It features two input signals connected to
its terminals, along with a ground connection; the two input signals are defined as
the active signal and the reference signal, and the recording between the two sites
represents a single EEG channel. The use of differential amplifiers is essential to
separate the useful EEG signal from noise sources that generally appear in phase
on both inputs, including offset, drift, and interference. A key characteristic of
electroencephalographic amplifiers is the input impedance value, which must be 100
to 1000 times greater than the electrode’s output impedance. The standard 10–20
system (Figure 2.9), which comprises a total of 19 sites, 8 on the left side, 8 on the
right side and 3 in the middle, did not include electrodes in the inferior chain (at
the level of the preauricular point). Thus, the inferior-basal and anterior part of
the temporal lobe, which preferentially picks up activity originating or propagating
from the mesial temporal structures, was not sampled [186] [187]. Given that several
diseases (e.g., temporal lobe epilepsy due to hippocampal sclerosis, autoimmune
epilepsy, Alzheimer’s disease) are characterized mainly by mesial temporal pathology,
this region needs to be targeted through additional scalp electrodes in standard
recordings. For the reasons outlined above, [184] strongly recommend to use 25
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Figure 2.9. Electrode locations of International 10-20 system (left) and 10-10 system
(right) for EEG recording. Adapted from [188,189].

electrodes as a minimum for all standard recordings. The use of fewer electrodes, but
no less than 19 electrodes, is acceptable if technical limitations do not permit the
use of the full 25-array. Standard electrode set-ups provide an incomplete coverage
of the patient’s brain but represent a compromise between the everyday routine,
given that additional electrodes require additional time and effort of technicians, and
reliable detection of all epileptogenic activity. For these reason High Density EEG
(HD-EEG), which refers to the use of 64-256 electrodes, has become an established
tool over the past 10 years. Technical developments have made it easier to apply
a large number of electrodes, which is particularly helpful in the clinical context.
Geodesic electrode systems is a term used for equally distributed electrodes over a
curved space, like the head. These systems provide dense and even sampling over
the entire scalp, neck, and cheeks, allowing the detection of brain activity which
could be otherwise missed. The development of digital EEG and the introduction of
high-density EEG and source localization methods made it necessary to increase
the electrode arrays. Therefore, a modification of 10-20 nomenclature with the
definition of 10-10 combinatorial nomenclature (Figure 2.9) has been proposed
and accepted by the American Clinical Neurophysiology Society (ACNS) and by
the International Federation of Clinical Neurophysiology (IFCN). The modified
combinatorial nomenclature is an extension of the 10-20 system, and it entails
positioning more than 70 electrodes on the scalp, placed along 11 sagittal chains and
9 coronal chains. The modified 10-10 terminology replaces the inconsistent T4/T3
and T6/T5 terms with the consistent T8/T7 and P8/P7.
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2.6 BCI

A BCI can be seen as a system able to translate the brain activity patterns of
a person into messages or instructions for an interactive application, this task is
measured and processed by the system. Brain signals are captured using invasive or
non-invasive 2.10 set of electrodes from the signal acquisition module. Then, the
signal processing module extracts only the information needed from the original
raw signal. The signal acquisition module comprehends data pre-processing, feature
extraction and classification algorithms sub-modules. Finally, the translated signals
are passed on to the user through the application interface, and by exploiting the
feedback mechanism, real-time results can be produced and understood by the user.
A typical life cycle representation of a BCI system is shown in Figure 2.11. According
to the task exist different BCIs specialized in capturing potentials related to specific
brain tasks:

• P300 based BCIs: BCIs specialized in capturing P300 [190] (or P3) waves
that are ERP. This kind of wave appears with a latency between 300 and 600
ms after an external stimulus, but it isn’t linked to the physical attributes
of the stimulus but reflects the processes involved in stimulus evaluation or
categorization.

• SSVEP based BCIs: SSVEPs [191] are the neural responses to visual stimula-
tion at specific frequencies that appear in the EEG signal. The frequency of
the acquired EEG wave matched with the stimulus frequency or harmonics
of the stimulus frequency. The visual cortex shows electric activity in the
same frequency band (and harmonic frequencies) at which the retina is stimu-
lated [192]. These potentials can be observed mainly in electrodes over the
occipital and parietal lobes of the brain when a subject is looking at a light
source flickering at a constant frequency. So, these potentials are the results of
repeated stimulation of the visual cortex.

• Motor imagery based BCIs: with respect the two previous BCIs this one
uses brain activity produced spontaneously by the user and not after an
external stimulus. This kind of activity called motor imagery [58]is consciously
generated by the person to trigger specific BCI commands.

2.6.1 Signal acquisition

To acquire the brain signals different approaches are possible:

• invasive techniques: in this approach, the electrodes are placed directly into
the brain cortex of the person;

• semi-invasive techniques: in this approach, the electrodes are placed only on
the exposed surface of the brain cortex, not in-depth;

• non-invasive techniques: in this approach the electrodes are placed only on
the scalp of the person measuring electrical potentials produced by the brain.
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Figure 2.10. Classification of BCI signal acquisition technologies. Adapted from [193].
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Figure 2.11. BCI system standard life cycle. The three main modules are reported, i.e.,
the signal acquisition, data processing, and application modules.

Compared to more invasive methods, EEG BCIs guarantee better usability but
the extracted signal suffers from poor spatial resolution and considerable amount
of noise because of same time background activity: during the recording of signal,
various observations and conclusions can affect the target information signal. For
these reasons, all the possible background activities that can add noise to the signal
need to be mitigated in a pre-processing step.
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2.6.2 Artifact removal

When EEG signals are collected through procurement apparatus then there are
artifacts and noises such as heart beats, eye blinks and other disturbed factors that
are commonly part of the signal. These activities, not related to the desired signal,
are always present and should be filtered to obtain higher SNR. SNR is the ratio
between the desired information or the power of a signal and the undesired signal or
the power of the background noise. This measure is used to compare the level of a
desired signal to the level of background noise and is defined as follows:

SNR = Psignal

Pnoise
0 ≤ SNR ≤ inf (2.1)

where Psignal is the signal power and Pnoise is the noise power. To get a clean signal,
ready for feature selection/extraction and classification phases, pre-processing can be
crucial to maximize SNR. There are different possible approaches for this purpose.

Independent Component Analysis (ICA)

The concept of ICA was first proposed in the engineering field of signal processing
[194]. In the simplest terms, ICA algorithms are a family of methods designed to
unmix linearly mixed signals using only recorded information about time course, e.g.,
blind to detailed models of the signal sources as required by earlier signal processing
approaches [195]. EEG sources project near-instantly to and sum linearly at the
scalp electrodes. The relatively sparse interconnection of cortical EEG source areas
suggests that their activities may, given sufficient data, indeed be near independent.
Thus, EEG may be reasonably modelled as a linear mixture of the activities from
multiple brain and non-brain sources with (near)independent time courses. The data
sent to ICA are the recorded EEG channel data rearranged in a matrix of n channels
(rows) by t time points (columns). During the analysis, channel location information
is not used at all. ICA performs a blind separation of the data matrix (X), based only
on the criterion that resulting source time courses (U) are maximally independent.
Specifically, ICA finds a component unmixing matrix (W) that, when multiplied
by the original data(X), returns the matrix (U) of independent component time
courses:

U = WX (2.2)

where X and U are n × t matrices and n × n matrices, respectively. ICA [196]
considers EEG signals and artifacts as something independent, preserving data
during artifacts elimination. EEG data is divided into spatial-fixed and temporal-
independent components. It reaches the best performance, having a considerable
amount of data available, and works particularly well at removing ocular signal
artifacts.

Common Average Reference (CAR)

Common Average Reference (CAR) [197] is calculated by taking the average of all
electrodes on the scalp. In principle, the average reference approximates an ideal
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reference. The underlying principle is that the sum of potential fields (e.g., brain
potentials) in a conductive sphere is exactly zero when measured over the sphere’s
surface (e.g., the human head). The approximation to a zero (i.e., inactive) reference
is limited by the fact that EEG recordings can cover only 2

3 of the head. In general,
let R be the original reference electrode and let Ei be any other electrode. Any
recording at a given site actually shows the difference in potential between the
electrode in that site and the reference (Ei − R). Mathematically, re-referencing to
the average reference is computed by subtracting the average of all electrodes from
each channel:

(Ei − R) − (E1 − R) + (E2 − R) + ... + (En − R)
n

= (2.3)

= (Ei − R) + R − (E1 + E2 + . . . + En)
n

= (2.4)

= Ei − (E1 + E2 + . . . +E n)
n

= (2.5)

= Ei − 0, under the assumption that (E1 + . . . + En) = 0. (2.6)

Therefore, in the limiting case in which the assumptions of the average reference are
met, any channel would represent ideal voltages, as the reference becomes zero. CAR
emphasizes components that are present in the majority of electrodes and reduces
such components. In this way, it functions as a high-pass spatial filter (accentuates
components with highly focal distributions). On the other hand, components that
are present in most of the electrode population but absent or minimal in the electrode
of interest may appear as ’ghost potentials’ in CAR recordings.

2.6.3 Signal Filtering

Noise sources in EEG signals can appear as oscillating frequencies. Specifically,
low-frequency noise often results from factors like head movements, electrode wire
shifts, and scalp perspiration, showing up as slow drifts in the EEG signal over
several seconds. On the other hand, high-frequency noise arises from sources like
electromagnetic interference and muscle contractions, particularly in facial and neck
muscles, creating rapid up-and-down fluctuations in the EEG signal. The frequencies
of high and low noise sources can sometimes overlap with the EEG frequency band
of interest; however, they are generally lower or higher than typical EEG frequencies.
By reducing the signal power at frequencies outside the desired range, it is possible
to minimize the noise while preserving the signals of interest. This technique is
known as filtering. Filtering in the EEG process occurs at two stages: first, during
data collection, called online filtering, and then again during pre-processing, called
offline filtering. When EEG data are recorded, the EEG amplifier typically includes
a filter that limits frequencies above a set threshold. Known as the low-pass filter
cutoff, this filter “passes” lower frequencies while reducing higher ones. A low-pass
filter is essential in digital EEG recording (and for any digital signal) to prevent
aliasing, a distortion that happens when high-frequency signals are sampled at a rate
below their frequency, creating an artificial low-frequency artifact in the recorded
signal. Offline filtering allows for more thorough noise removal compared to online
filtering. Unlike online filtering, offline filtering enables the application of various
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filters to observe their effects on the data, with the flexibility to revert to the original
data and adjust filter settings as needed. One practice in offline filtering is to define
a high filter and a low filter, going to isolate only a band of frequencies of interest,
this is called band-pass filter.
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Chapter 3

EEG Person Identification

This chapter describes the architecture designed to solve the person biometric
identification task from the EEG signal. Initially, an overview of the proposed method
is presented, and then the EEG data pre-processing, the graph representation, and
the classifier are introduced in detail.

3.1 Proposed method

In this section, the proposed method is described in detail. The latter is comprised
of three main components. The first step is the pre-processing, which deals with
EEG signal cleaning from artifacts and noise. Given the EEG, the system produces
a clean signal starting from the raw acquisition and restricts the frequencies to the
ones that are most significant. The second consists of converting the pre-processed
signal into a graph. In detail, a graph representation computing the time-frequency
and FC features from the pre-processed EEG is derived. Finally, the last components
consist of the GCNN trained on the EEG graphs to discriminate among different
identities where the generated EEG graphs are fed into for graph feature extraction
and classification. In particular, given a person multi-channel EEGs, the proposed
approach is able to represent the pre-processed signals as a complete graph where
each node is an EEG electrode, as the signal time-frequency spectrogram, and an
edge between two nodes represents the FC across that electrodes pair, expressed as
the PLV. Finally, the provided graph that embodies local and global information
of the subject’s brain in both the spatial and temporal domain is used as input
for a GNN for classifying the subject identity. The architecture is based on two
spline convolutional layers designed and tuned to capture the most discriminative
features from the graphs. Extensive experiments were conducted to assess the
generalization capabilities of the proposed architecture in different scenarios. A set
of four experiments has been performed to assess the performance of the system
under different conditions, training the model using a variety of EEG signals related
to multiple brain states (resting, activity, mixed) using different segmentation length
for the EEG signal to find the most suitable one. The proposed architecture is
reported in Figure 3.1.
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Figure 3.1. Architecture overview of the system.

3.1.1 Pre-processing

This section presents more in-depth the pre-processing operations applied to the
raw EEG signal. As a first pre-processing step, for each time step, the CAR of the
signals at all electrodes is computed and subtracted from the raw EEG signal. This
allows the reduction, or in the best case, complete removal, of noise components
that are common to all channels, such as environmental signals or noise that is
relevant in a recording context. Then, a band-pass Finite Impulse Response (FIR)
filter with Hamming window up to 42.5 Hz is implemented to restrict the available
frequencies only to the most relevant range (0-42.5 Hz), and subsequently ICA is
applied to remove muscle, Electrooculogram (EOG), and ECG artifacts from the
signal. Finally, the filtered EEG recordings are divided into frames of length 1s with
a 50% overlap.

3.1.2 EEG Graph

After cleaning the raw EEG signal from noise and artifacts, a graph representation
of the clean EEG signal is created. For the sake of clarity, the terms channel and
electrode are exchangeable, since the information contained in a single channel
is provided by a single electrode. Given a N -channels (i.e., N -electrodes) EEG
signal X = {x1, ..., xN }, is represented as a complete undirected graph, defined
as G = (V, E , V, U). Within this representation, we have that each EEG channel
xi is represented by a node vi in the node set V = {v1, ..., vN }, E ⊆ V × V is the
edge set, V refers to a node features matrix, and U refers to a weighted adjacency
matrix. Regarding the node features matrix V, each entry V[i] contains the energy
spectrogram of the channel xi computed as the STFT magnitude:

V[i] = |STFT [w, m]| = |
K−1∑
k=0

h(k)xi[k + mH]e−i 2π
K

wk|, (3.1)

Where h ∈ RK : [h(0), h(1), ..., h(K − 1)] is the Hann window function [198], K
is the window length, 0 ≤ w ≤ K, is the frequency, m is the index of the sliding
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window, xi[k + mH] is an element of xi, and H = ⌊K
2 ⌋ is the hop length, the

number of samples between the start of two consecutive windows in the signal
windowing process. Thus, the node set V can be formulated as a node feature matrix
V ∈ RN×K×H .

Concerning the weighted matrix U, the latter is formulated as an edge feature
matrix U ∈ RN×N , where each entry u(i, j) represents the PLV measured between
channels i and j. PLV analyzes responses to a repeated stimulus and identifies
time points where the phase difference between signals remains consistent across
trials, indicating phase-locking. Given two series of signals xi, xj , and a frequency of
interest f , the process computes a measure of phase-locking between the components
of xi, xj at frequency f for each latency [199]. In detail, the PLV for two signals
xi, xj and their respective frequencies fp, fq is defined as:

U[i, j] = PLV (xfp

i , x
fq

j ) = | 1
N

N∑
n=1

ei∆ϕr(tn)| (3.2)

where ∆ϕr(t) = |ϕxi(t) − ϕxj (t)| mod 2π, ϕx(t) is the instantaneous phase of the
signal x(t) obtained by applying the Hilbert transform, and N is the number of
trials. The PLV is defined in the interval [0, 1] and captures the inter-trial variability
of the phase over time. This measure is directly proportional to the phase coupling
across the trials, being zero in the absence of phase coupling and increasing as the
coupling becomes stronger.

3.1.3 Classifier

The primary challenge in extending classical convolutional neural networks to analyze
graph inputs lies in the design of graph convolutional filters. The proposed classifier
makes use of a convolution operator, called SplineCNN [200], which aggregates
node features in local neighborhoods weighted by a trainable, continuous kernel
function. Let k = {k1, ..., kd} be a non-decreasing sequence of real numbers, i.e.,
ki ≤ ki+1, i = 1, .., d. The ki are called knots, and k is the knot vector, defining
a d-dimensional kernel size. Let ((Nm

1,i)1≤i≤k1 , ..., (Nm
d,i)1≤i≤kd

) represent d-open
B-Spline bases of degree m based on equidistant knot vectors [201]. where the i-th
B-spline basis function of m-degree, denoted as Ni,m(u), is defined as:

Ni,0(u) =
{

1 if ui ≤ u < ui+1

0 otherwise

Ni,m(u) = u − ui

ui+m − ui
Ni,m−1(u) + ui+m+1 − u

ui+m+1 − ui+1
Ni+1,m−1(u)

(3.3)

where u ∈ [ui, ui+1) is an half-open interval, called the i−th knot span; it can
have zero length, since knots need not be distinct. Then, the proposed continuous
convolution kernel is defined as functions gl : [a1, b1] × ... × [ad, bd] → R, with:

gl(u) =
∑
p∈P

wp,l · Bp(u) (3.4)

where wp,l ∈ W is a trainable parameter of the weight matrix W, with 1 ≤ l ≤ Mim,
for each of the Min input feature maps and for each element p from the cartesian
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product P = (Nm
1,i)i × ... × (Nm

d,i)i of the B-spline bases, while Bp is the product of
the basis functions in p:

Bp(u) =
d∏

i=1
Nm

i,pi
(ui) (3.5)

Given the kernel functions b = (g1, ..., gN ) and the input node features matrix V,
the convolution operator for a node i is defined as:

(f ∗ g)(i) = 1
|N (i)|

Min∑
l=1

∑
j∈N (i)

V[j, l] · gl(u(i, j)) (3.6)

where N (i) represents the neighborhood set of node i ∈ V. The proposed classifier
is composed of two Spline convolutional layers followed by a max pooling, to reduce
dimensionality, and a dropout layer set to 0.8, to mitigate possible over-fitting
during the training [202]. The two Spline CNN layers have a kernel size of 32 and
16, respectively. The last layer is a dense, fully connected layer that provides the
subject ID as an output. Batch Normalization (BN) [203] is applied before Spline
convolution and dense layers to accelerate the training process and make it more
stable. The proposed GCNN architecture is summarized in Figure 3.1. Finally, the
model is trained using the categorical cross-entropy loss, which is defined as follows:

LCE = −
B∑

b=1

C∑
c=1

yc
b log ŷc

b , (3.7)

Where yc
b and ŷc

b correspond to the ground truth and predicted class probability,
respectively, C is the number of classes, and B is the batch size.
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Chapter 4

EEG emotion recognition

This chapter describes the architecture designed to solve the emotion recognition task
from the EEG signal. Initially, an overview of the proposed method is presented, then
the spatio-temporal representation for EEG data, and the classifiers are introduced
in detail.

4.1 Proposed method

In this section, the proposed method is described in detail. The latter is made up of
two main components. Since the main goal of this system is to transform large EEG
datasets into compact, time-driven images, the first component is a signal-to-image
encoder. Given the EEG, the encoder is able to convert the original raw EEG
signal into compressed images, called atlases, incorporating spatial and temporal
information from the original input, according to different possible color space
encodings. The second consists of a deep classifier trained on the produced compact
images to discriminate among different emotions associated with the original signal
and preserved in the encoded atlases. In particular, given a person multi-channel
EEGs, the proposed approach is able to represent the raw EEG signals as a compact
image following a time-driven layout where rows and columns of the encoded image
represent, respectively, the channels and time frames of the EEG signals. Finally,
the provided atlases that embody spatial and temporal information of the original
EEG are used as input for a deep classifier to recognize the emotion associated
with the original input. Extensive experiments were conducted for both the encoder
and classifier to assess the generalization capabilities of the proposed architecture
in different scenarios, exploring not only the performance in terms of emotion
classification accuracy, but also evaluating the computational and compression
aspects of the proposed approach. In particular, two encoding types, i.e., short-
rainbow and grey-scale, and four different models, i.e., one based exclusively on a
CNN, two based on mixtures of CNN and RNN, and a last based on a transformer.
The proposed architecture is reported in Figure 4.1.
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Figure 4.1. Architecture overview of the Empátheia system. The PRISMIN encoder
transforms EEG signals associated with emotions into 2D atlases, which are then utilized
by the Empátheia classifiers for emotion recognition.

4.1.1 PRISMIN encoder

A common initial step in many studies involves the direct pre-processing or feature
extraction of EEG data to eliminate artifacts, such as ocular artifacts, or to isolate
specific features, like particular frequency bands, from the original signal. The
Empátheia system, however, adopts a distinct strategy, utilizing the PRISMIN
framework in its pre-processing phase to convert raw EEG signals into coarse spatio-
temporal image atlases that depict emotional states. Specifically, the open-source
PRISMIN framework [66] encodes attributes and user states into compact, lightweight
2D images, facilitating easy manipulation and transmission. This framework enables
the encoding of session data into image atlases and includes runtime tools for
capturing and encoding specific attributes during interactive sessions. In terms of
signal compression, as highlighted by Fanini et al. [66], the temporal arrangement
coupled with lossless image formats, particularly in cases of gradual pixel variations
[204], yields optimal compression ratios. Moreover, the framework is designed for
computational efficiency, employing encoding and decoding routines that operate
seamlessly on either CPUs or GPUs. In the presented work, the main focus is to
design an encoder based on PRISMIN that can transform large EEG datasets into
compact, time-driven image atlases [205]. To achieve this, PRISMIN allows the
definition of the prism class, i.e., a custom data encoder. Specifically, a given prism
P provides:

• A refract method to define how incoming data is encoded as well as the layout
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Figure 4.2. Examples of Pq-generated atlases using (top) a short-rainbow color space and
(bottom) grey-scale. Each row represents a different EEG channel, pixel color is the
encoded voltage over time (x-axis).

adopted in the final image atlas. In this work, spatio-temporal atlases are used,
although different methods can be used to implement the refract method.

• A bake method to write the actual atlas on disk, using specific image format and
bit-depth. This can be implemented as an on-demand routine, for instance, to
control write accesses on server-side storages within service-based deployments
of the PRISMIN framework.

To adapt P to handle EEG signals, they must be described so that the refract
method can accept them. Intuitively, EEG records are represented by streams of
voltage values captured by the C channels of a BCI device over a given time period
T for a specific EEG session. Formally, a session S containing the brain signals can
be defined via the following matrix:

S(c, t) = v, (4.1)

where v ∈ R corresponds to the voltage value of a given channel c ∈ C at a given
time instant t ∈ T . With this formalization, the session matrix S can be used to
define a time-driven layout for the generated atlases, where rows and columns of
the encoded image represent, respectively, the channels and time frames of the EEG
signals.

A quantization error is indeed introduced by refraction of voltages (values v)
on both short-rainbow and grey-scale. Quantization error in PRISMIN depends in
this specific scenario on: 1) voltage ranges, 2) color space adopted, and 3) image
bit-depth. An in-depth analysis is described in Fanini et al. [66,205]. Specifically,
given ∆v as voltage range and bit-depth b to encode incoming values, the maximum
quantization errors for grey-scale (ϵgs) and short-rainbow (ϵsr) are given by:

ϵgs = ± ∆v

2b+1 ; ϵsr = ± ∆v

2b+3 . (4.2)

After defining the refract and bake methods, a quantized voltage session prism Pq

can be initialized to encode EEG signals into atlases. By applying Pq over the EEG
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dataset, the atlases A = (A1, A2, ..., An) can be computed, where n corresponds to
the number of samples in the EEG collection. Examples of Pq-generated atlases
using two different color spaces are shown in Figure 4.2.

4.1.2 Empátheia classifier

To perform EEG emotion recognition on the encoded atlases A, a classifier must
be implemented. Due to the innovative 2D image representation of A, a natural
choice for classification would be a CNN model. However, since the atlases capture
spatio-temporal features associated with specific emotions, alternative architectures,
such as those based on RNNs or transformers, may also prove effective. The
following sections detail several models that can be employed as classifiers within
the Empátheia system.

Conv classifier

The first classifier, depicted in Figure 4.1(a), is a simple CNN architecture since the
encoded EEG signals are effectively transformed into images. Specifically, it consists
of two convolutional layers, each followed by batch normalization and max pooling
operations, as well as the ReLU activation function, which is defined as follows:

f(x) =
{

x if x > 0;
0 otherwise.

(4.3)

The uniqueness of these convolutions lies in their kernel size, which is sufficiently
large, such as 16×16, to capture the temporal aspects embedded within the atlas.
These layers are tasked with extracting feature maps from the input atlases, which,
following a flattening operation, are subsequently classified using a series of three
dense layers. These dense layers consist of fully connected layers interspersed with
dropout layers to improve the model’s ability to generalize and abstract features.
Additionally, the first two dense layers utilize a ReLU activation function, while
the final layer employs a softmax function to calculate the probability distribution
across the set of available emotions as follows:

σ(x)i = exi∑K
j=1 exj

, (4.4)

Where xi indicates the i-th class score, K corresponds to the number of classes, i.e.,
the emotions, while xj is used to normalize the obtained score over all the available
classes. Finally, the model is trained using the categorical cross-entropy loss, which
is defined as follows:

LCE = −
K∑
i

yi log ŷi, (4.5)

Where yi and ŷi correspond to the ground truth and predicted class probability,
respectively, while K is the number of classes.
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ConvLSTM classifier

The second classifier, shown in Figure 4.1(b), takes inspiration from methods
that combine CNN and RNN models to classify the spatio-temporal characteristics
of EEG signals [118, 119], the ConvLSTM model takes a different approach from
the initial model, employing three types of convolutions: standard, depthwise,
and separable convolutions. These layers are designed to maximize the temporal
information encoded in the atlases A, with the resulting feature maps then processed
by a bidirectional LSTM layer [206]. This LSTM layer includes both forward and
backward layers, allowing it to examine the input from both temporal directions.
Independent of the flow direction, the LSTM architecture consists of memory cells
with input, forget, and output gates, along with cell and hidden states. Formally,
the LSTM at a given time step t and the previous hidden state ht−1 is defined as:

it = σ (Wi · [ht−1, xt] + bi) , (4.6)
ft = σ (Wf · [ht−1, xt] + bf ) , (4.7)
ot = σ (Wo · [ht−1, xt] + bo) , (4.8)
ct = ft ⊙ ct−1 + it ⊙ ĉt, (4.9)
ht = ot ⊙ tanh (ct), (4.10)

Where σ is the sigmoid activation function; Wi, Wf , Wo, and bi, bf , bo indicate the
weight matrices and bias terms for the input, forget, and output gates, respectively;
[ht−1, xt] is the concatenation of the previous hidden state ht−1 and the input at time
step t; ⊙ denotes element-wise multiplication; ct and ĉt correspond to the updated
and candidate cell state at time step t, respectively; while tanh is the hyperbolic
tangent activation function. Finally, the model is trained using the same categorical
cross-entropy loss described in Eq.(4.5).

ConvGRU classifier

The third classifier, represented in Figure 4.1(c), follows the same structure as the
ConvLSTM introduced in Sec. 4.1.2 and is trained using the categorical cross-entropy
loss presented in Eq.(4.5). However, instead of employing a bidirectional LSTM layer,
ConvGRU leverages the Gated Recurrent Unit (GRU), a different type of recurrent
neural network capable of handling temporal data while using fewer parameters
than an LSTM, often achieving comparable performance. Specifically, the GRU has
a simpler memory cell structure, incorporating update and reset gates along with
candidate and hidden states, which are formally defined as follows:

zt = σ (Wz · [ht−1, xt] + bz) , (4.11)
rt = σ (Wr · [ht−1, xt] + br) , (4.12)
ĥt = tanh (Wh · [rt ⊙ ht−1, xt]) + bh, (4.13)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt, (4.14)

Where σ is the sigmoid activation function; Wz, Wr, Wh, and bz, br, bh are the
weight matrices and bias terms for the update gate, reset gate, and candidate cell
state, respectively; [ht−1, xt] is the concatenation of the previous hidden state ht−1
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Figure 4.3. Detailed protocol used during experiments on SEED dataset.

and the input at time step t; ⊙ denotes element-wise multiplication; while tanh
represents the hyperbolic tangent activation function.

Vision Transformer

The last classifier, shown in Figure 4.1(d), is a fine-tuned version of the Vision
Transformer (ViT) [207]. The ViT model, inspired by the NLP Transformer, splits
the input images into patches to provide a sequence of linear embeddings given as
input to a transformer, the same way as tokens in NLP applications. Starting from
the encoded atlas A as a 2D image x ∈ RH×W ×C , it is handled into a sequence of
flattened squared patches xp ∈ RN×(P 2·C), where H, W are the image height and
width, respectively, C represents the number of channels, P is the dimension of each
patch, and N = HW

P 2 is the total number of patches. To embed each patch into the
model dimension D, a trainable linear projection E is applied, thus obtaining an
embedding sequence z0, which is defined as:

z0 = [xclass; x1
pE; x2

pE; ...; xN
p E] + Epos, (4.15)

where E ∈ R(P 2·C)×D, and Epos ∈ R(N+1)×D. Furthermore, a learnable 1D position
embedding is added to each patch embedding to retain positional information, then
a learnable class embedding (z0

0 = xclass) is prepended to the patches sequence,
representing the image label y (Eq. 4.18) at the output (z0

L) of the L-layers
transformer encoder. The resulting sequence of embedding vectors is the input of
the transformer. The transformer uses a constant latent vector of size D and is
composed of alternating layers of Multiheaded Self-Attention (MSA) [208] and a
two-layer perceptron, both preceded by a Layernorm (LN) layer and followed by a
residual connection. Finally, a classification head, implemented as a linear layer, is
attached to z0

L. Formally, the transformer blocks are defined as follows:

zt = MSA (LN (zℓ−1)) + zℓ−1, (4.16)

z′
ℓ = MLP

(
LN

(
z′

ℓ

))
+ zℓ, (4.17)

y = LN
(
z0

L

)
, (4.18)

where ℓ = 1 ... L. Finally, the model is trained using the same categorical cross-
entropy loss described in Eq.(4.5).
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Chapter 5

EEG limbs activation

This chapter describes the architecture designed to solve the limb activation classifi-
cation task from the EEG signal. Initially, an overview of the proposed method is
presented, then the system architecture and the classifier are introduced in detail.

5.1 Proposed method

The proposed deep architecture is a CNN that approximates the function m:
Rb×s×cin → Rb×|L|, which maps each EEG in b to a probability distribution. In
detail, we have:

• b ∈ N ≥ 1 represents the number of EEG trials in each batch given as input
to the CNN during the training and inference phases. As pointed out in [209],
this hyperparameter must be accurately chosen based on the problem being
treated and the available hardware since it directly affects the performance,
both in means of computational costs and of classification result;

• s ∈ N ≥ 1is the number of samples for each EEG trial calculated as s = ⌊r · t⌋,
where r ∈ R > 0 indicates the sampling rate, expressed in Hertz (Hz), and
t ∈ R > 0 the recording time in seconds (s). Each EEG trial used in the
training and testing phases for this work has a fixed length;

• cin ∈ N ≥ 1 is the number of EEG channels recorded during the experiments.
This parameter mainly depends on the device used for recording the data. In
this work, are used all the available data for each trial;

• L is the set of classes (also called labels) of each trial in the used dataset,
corresponding to {Al, Ar} for the PhysioNet dataset, where Al and Ar mean
left or right arm activation, respectively. Each trial is labelled either Al or Ar.

The proposed model m is composed of two primary sub-modules: a set of convo-
lutional streams, ms, detailed in Sec. 5.1.1, which are designed to extract diverse
features from the input, and the classifier, mc, discussed in Sec. 5.1.2, that outputs
a tensor of probabilities (in the form of logits) for L.
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5.1.1 Convolutional Streams

A convolutional stream msi ∈ ms consists of one or more convolutional blocks,
each comprising 1D convolutional layers. All convolutional streams share the same
architecture, differing only by the parameter k, which specifies the kernel size for
each stream. The purpose of varying kernel sizes is to enable feature extraction from
each channel at multiple temporal scales. Let the kernel size of the first stream be
k1. For each subsequent stream i, the kernel size is defined as ki = ki−1 + 2. For
instance, if k1 = 3, then k2 = 5, k3 = 7, k4 = 9, and so on, following ki = ki−1 + 2.
Each convolutional block contains two 1D convolutional layers with kernel size k,
padding ⌊k

2 ⌋, stride 1, and a ReLU activation function applied after each layer. Every
convolutional block, except the final one, includes an additional 1D convolutional
layer with stride 2 to reduce sample length. Following the last convolutional block,
a 1D Adaptive Max Pooling layer standardizes the input length while maintaining
the number of channels, and a flattening layer reshapes the resulting feature map
for classifier compatibility. A convolutional stream approximates the function
msi : Rb×s×cin → Rb×(cout·p), where cout = 64 is the number of output channels of
the final convolution, and p = 48 is the final output dimension of the Adaptive
Max Pooling layer. In this model, the optimal number of streams is 4, with kernel
sizes k set to 7, 9, 11, and 13 for ms1, ms2, ms3, and ms4, respectively. Further
parameter details are in Table 5.1. Figure 5.1 depicts the proposed multi-stream
CNN architecture.

Layer Input channels Output channels Stride Padding
1D Conv. cin 256 1

⌊
k
2

⌋
ReLU - - - -

1D Conv. 256 256 1
⌊

k
2

⌋
ReLU - - - -

1D Conv. 256 256 2
⌊

k
2

⌋
1D Conv. 256 127 1

⌊
k
2

⌋
ReLU - - - -

1D Conv. 127 64 1
⌊

k
2

⌋
ReLU - - - -

1D Adap.
Max Pooling 64 64 - -

Table 5.1. Layers and parameters for each stream of the proposed model, where the output
of each stream is in Rb,64,48 and the kernel size is k, that is equal to 7, 9, 11 and 13 for
ms1 , ms2 , ms3 , and ms4 , respectively.

5.1.2 Classifier

The classifier block mc consists of a series of fully connected layers that take as input
the concatenated, flattened feature maps generated by the convolutional blocks from
each stream msi ∈ ms. Each fully connected layer is preceded by a dropout layer,
which mitigates excessive neuron co-adaptation by randomly dropping each neuron
and its connections with a fixed probability during training. Additionally, all linear
layers except the final one are followed by a ReLU activation function to introduce
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Layer Input features Output features Dropout %
Dropout - - 50%
Linear 64 · 48 · 4 6,145 -
ReLU - - -

Dropout - - 50%
Linear 6,145 |L| -

Table 5.2. Layers and parameters for the classifier of the proposed model, where L is the
set of labels.

Figure 5.1. The architecture of the proposed model. The latter is composed of four CNN
streams, which are defined in Table 5.1, and a set of fully connected layers, which are
defined in Table 5.2

nonlinearity. The classifier block approximates the function mc : Rb×(cout·p·|ms|) →
Rb×|L|. The parameters selected for the model in the results are listed in Table 5.2.
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Chapter 6

Experimental results

This chapter reports on the implementation details and experimental results of
all EEG applications presented and discussed. For person biometric identification
the PhysioNet and M3CV datasets have been used. The proposed limb activation
system makes use of the motor imagery subset of Physionet, while, for emotion
recognition, a compressed version of the SEED dataset has been deployed to perform
all experiments. For each task, an extensive set of experiments has been executed to
assess the performance of each system against SOTA works.

6.1 EEG Biometric identification

6.1.1 Dataset

The proposed method has been evaluated on the public benchmarks PhysioNet
EEG Motor Movement/Imagery Dataset [210] and M3CV EEG-based biometric
competition dataset [211]. PhysioNet consists of over 1500 one- and two-minute
EEG recordings, obtained from 109 subjects using a BCI2000 system equipped with
64 wet electrodes arranged according to the 10-10 system [212] at a sampling rate of
160Hz. Each subject was acquired for a total of 14 trials in four different human
states: one trial in resting state with eyes-open (EO), one trial in resting state with
eyes-closed (EC), six physical movements trials (PHY) in which the subjects are
required to move their fists or feet, and six motor imagery movements trials (IMA)
in which the subjects are required to imagine moving their fists or feet without any
physical movements. Two one-minute baseline runs (one with eyes open, one with
eyes closed), and three two-minute runs of each of the four following tasks:

• A target appears on either the left or the right side of the screen. The subject
opens and closes the corresponding fist until the target disappears. Then, the
subject relaxes.

• A target appears on either the left or the right side of the screen. The subject
imagines opening and closing the corresponding fist until the target disappears.
Then, the subject relaxes.

• A target appears on either the top or the bottom of the screen. The subject
opens and closes either both fists (if the target is on top) or both feet (if the
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target is on the bottom) until the target disappears. Then, the subject relaxes.

• A target appears on either the top or the bottom of the screen. The subject
imagines opening and closing either both fists (if the target is on top) or both
feet (if the target is on the bottom) until the target disappears. Then, the
subject relaxes.

Out of the 109 subjects included in the dataset, 4 were excluded. Specifically,
subjects 88, 92, and 100 were sampled at 128 Hz instead of 160 Hz, while subject
106 had only a partial recording in some trials. The pre-processing described in
Section 3.1.1 has been adopted only to these 105 subjects, resulting in 1672 frames
each for the experimental phase. M3CV consists of over 12000 epochs of EEG
signals obtained from 106 subjects using a BrainAmp EEG amplifier and Easycap
multichannel EEG caps equipped with 64 electrodes arranged according to the
standard 10–20 system at a sampling rate of 250 Hz. Each subject was acquired
for a total of 14 trials in different human states: two trials in resting state with
eyes-open (EO), two trials in resting state with eyes-close (EC), four movements
trials (PHY) in which the subjects are required to move their hands or ankle, and
six evoked potentials trials. The whole set for this competition was divided into
three parts: Enrollment Set, Calibration Set, and Testing set. The Enrollment Set
provides the 1st session of EEG from 95 subjects, the Calibration set provides the
EEG data of the 2nd session from 20 subjects, and the Testing set is hidden and
used to evaluate the performance of the algorithm in the competition. In the present
work, only the EO, EC and PHY states are used from the enrollment set, and the
preprocessing described in Section 3.1.1 has been adopted only to these 95 subjects,
resulting in 464 frames each for the experimental phase.

6.1.2 Implementation details

The proposed system was implemented using the PyTorch [213] and PyTorch Geo-
metric (PyG) [214] frameworks. All experiments were performed using 80/10/10%
splits for training, validation, and test sets, respectively. All models were trained
using the Adam optimizer [215] for 100 epochs using the same hyper-parameters,
i.e., 0.05 learning rate, 10−12 weight decay, and a batch size of 200. The experiments
were executed using an AMD EPYC 7301 16-core Processor with 64 GB of RAM
and an RTX QUADRO 6000 GPU with 24 GB of RAM.

6.1.3 Experimental protocol

For EEG-based person identification technology to be considered realistic and viable,
it is crucial to ensure the stability and robustness of the system. This entails that the
model should consistently and accurately recognize individuals based on their EEG
signals, even when they are in different emotional states (hereinafter "states"), such as
feeling happy, sad, or engaged in focused thinking. A series of different experiments
were carried out to assess the effectiveness and practicality of the proposed system
in EEG biometrics. PhysioNet and M3CV datasets provide EEG signals in the
EO, EC, PHY, and IMA states and are used to assess the system’s generalization
capability. Three experiments have been devised, centered around these four states
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to evaluate the performance of the system in diverse scenarios. The details of the
experiments are outlined below.

Experiment 1 - Single human state: in this first experiment the system is trained
and tested only on EEG signals related to a single fixed state among EO, EC, PHY,
IMA. A five-fold cross-validation scheme with shuffling was applied for evaluation.

Experiment 2A/2B - Rest vs Activity: In these experiments, the system is
trained solely on resting signals (EO/EC) and tested only on activity-related signals
(PHY/IMA), and vice versa. These experiments were carried out to determine
whether the system, trained only with resting-state EEG signals, is capable of
generalizing over activity-related signals and vice versa. In these experiments, the
dataset has been randomly divided into 4:1 as a training set and test set, respectively.

Experiment 3 - Mixed states: In these experiments, the system is trained
and tested on a mixture of resting signals (EO/EC) and activity-related signals
(PHY/IMA). This experiment has been designed to observe how the system performs
in a realistic scenario where the signals to be classified are not specific to a particular
human state but can vary, emulating what happens in the human brain where,
even without external stimuli, the states might sudden alternate due to emotions or
intrusive thoughts. A five-fold cross-validation scheme with shuffling was applied for
evaluation.

Experiment 4 - Segmentation length: In EEG identification methods, a consensus
regarding the optimal segmentation length has not yet been reached. Wang et al. [91]
and Du et al. [87], for instance, adopted a segmentation length of 1 second with a 50%
overlap in their works. In contrast, Thiago Schons et al. [100] employed a 12-second
segmentation length with a 1% overlap. The variance in sample segmentation lengths
among different methodologies can result in substantial differences. To address this,
are conducted evaluations on distinct dataset splits, each with lengths of 1s, 5s, and
12s, and overlaps of 50% and 80%, respectively. This experiment aims to explore
how much the system performance is affected by the chosen segmentation length.

Table 6.1. Experiments results - Training and testing within each human state. Results are
reported as test stage accuracy (average ± standard deviation of 5-fold cross-validation)

State PhysioNet M3CV
EO → EO 99.90 ± 0.09% 99.82 ± 0.22%
EC → EC 99.98 ± 0.03% 99.59 ± 0.32%
PHY → PHY 99.98 ± 0.01% 99.97 ± 0.01%
IMA → IMA 99.97 ± 0.01% -
MIX → MIX 99.98 ± 0.02% 99.05 ± 0.06%
PHY → REST 99.54 ± 0.01% 97.96 ± 0.00%
IMA → REST 99.50 ± 0.02% -
REST → PHY 96.70 ± 0.00% 97.40 ± 0.01%
REST → IMA 97.50 ± 0.00% -
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Table 6.2. SOTA comparison on PhysioNet Dataset on single states. Results are reported
as test stage accuracy (average ± standard deviation of 5-fold cross-validation)

Method EO → EO EC → EC PHY → PHY IMA → IMA
FuzzEn + SVM [91] 84.14 ± 0.83% 83.73 ± 0.71 % 77.93 ± 0.59% 80.84 ± 0.18%
Raw + CNN [91] 96.89 ± 0.77% 67.43 ± 47.36 % 97.96 ± 1.55% 97.42 ± 0.83%
Graph + Mahalobis [86] 99.07 ± 0.19% 97.56 ± 0.24% 99.74 ± 0.13% 99.61 ± 0.11%
ConvLSTM [83] 98.00% 99.95% - -
COH + Mahalobis [82] 96.26% 97.50% - -

Graph VAE [98] 99.78 ± 0.04% 99.04 ± 1.69%
99.65 ± 0.08%*
99.19 ± 0.23%*

99.62 ± 0.05%*
99.53 ± 0.11%*

PLV + ChebConv [91] 99.97 ± 0.03% 99.88 ± 0.03% 99.99 ± 0.02% 100.00 ± 0.00%
Lite Transformer [87] 83.77 ± 17.39% 85.57 ± 22.24 % 99.76 ± 0.01% 99.65 ± 0.08
EA-Transformer [87] 98.45 ± 1.17% 98.19 ± 3.14% 99.93 ± 0.00% 99.90 ± 0.01
TST [87] 100.00 ± 0.00% 99.96 ± 0.06% 99.97 ± 0.01% 100.00 ± 0.00%
Our 99.90 ± 0.09% 99.98 ± 0.03% 99.98 ± 0.01% 99.97 ± 0.01%
* Behrouzi et al. divide the IMA and PHY datasets into two subsets: IMA/PHY-LR (left or right fist

only) and IMA/PHY-B (both fists).

Table 6.3. SOTA comparison on PhysioNet Dataset Training on resting states and testing
on activity states. Results are reported as test stage accuracy (average ± standard
deviation of 5-fold cross-validation)

Method REST→ PHY REST→ IMA
FuzzEn + SVM [91] 16.16 ± 0.01% 15.61 ± 0.00%
Raw + CNN [91] 49.26 ± 3.85% 52.51 ± 2.26%
Graph + Mahalanobis [86] 69.98 ± 0.38% 69.47 ± 0.64%
ConvLSTM [83] - -
COH + Mahalanobis [82] - -
Graph VAE [98] - -
PLV + ChebConv [91] 85.40 ± 1.62% 87.03 ± 2.53%
Lite Transformer [87] 87.37 ± 1.10% 89.03 ± 0.73%
EA-Transformer [87] 89.47 ± 0.34% 90.66 ± 0.39%
TST [87] 97.29 ± 0.03% 97.45 ± 0.13%
Our 96.70 ± 0.00% 97.50 ± 0.00%

6.1.4 Results

Each experiment described in 6.1.3 was performed on both PhysioNet and M3CV
datasets in order to test the robustness of the proposed model on signals acquired
with different protocols and both on dry and wet headsets. Subsequently, in order
to compare the performance of the proposed system also with other state-of-the-art
models, an extensive comparison with the above was performed for each experiment.
At present, methods on EEG person identification exploit different features and
classifiers, varying from classical linear models to most advanced deep architecture. In
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Table 6.4. SOTA comparison on PhysioNet Dataset training on mixed states and testing on
mixed states. Results are reported as test stage accuracy (average ± standard deviation
of 5-fold cross-validation)

Method MIX → MIX
FuzzEn + SVM [91] 73.45 ± 0.10%
Raw + CNN [91] 99.85 ± 0.06%
Graph + Mahalanobis distance [86] 96.22 ± 0.23%
ConvLSTM [83] -
COH + Mahalanobis [82] -
Graph VAE [98] -
PLV + ChebConv [91] 99.98 ± 0.02%
Lite Transformer [87] 98.16 ± 0.65%
EA-Transformer [87] 99.90 ± 0.01%
TST [87] 99.90 ± 0.03%
Our 99.98 ± 0.02%

the experiments, are used as baselines a set of classical approaches, e.g., Convolutional-
LSTM, denoted as ‘ConvLSTM’, SVM with fuzzy entropy features (FuzzEn), denoted
as ‘FuzzEn+SVM’, CNN with raw EEG time-series inputs, denoted as ‘Raw+CNN’,
and Mahalanobis discriminator with COH features, denoted as ‘COH+Mahalanobis’,
in conjunction with State-of-the-art methods, such as graph-based approaches,
e.g., Graph Variational Autoencoder (VAE), denoted as ‘Graph VAE’, Chebyshev
Convolutional GNN with PLV features denoted as ‘PLV+ChebConv’, and different
recent transformer-based approaches which combine CNN and attention mechanism,
e.g., EA-Transformer, denoted respectively as ‘EA-Transformer’, ‘Lite Transformer’,
and ‘TST’. Finally, the proposed method performance is compared against the
baseline results for each experiment reported in Section 6.1.3.

6.1.5 Evaluation and State-Of-The-Art comparison

The results of each method for experiments 1, 2a, 2b, and 3 are summarized in Table
6.1, while experiment 4 results are reported in Figure 6.1. In the first experiment, the
model was trained and tested on the same human state, achieving an average accuracy
above 99% in each state on PhysioNet, while on the M3CV dataset, an accuracy of
99.82% is reached for state EO, 99.59% for state EC, and 99.90% for state PHY.
In this experiment, the presented model had a very high identification performance
for each single state, both on PhysioNet and M3CV datasets. In experiment 2a,
since the training and testing were performed using signals in different states, the
performances on PhysioNet and M3CV are slightly degraded compared to other
experiments. However, the system was able to generalize over diverse states using
abstracts learned from resting states to classify PHY and IMA state samples. In
particular, on the M3CV dataset, the model trained on resting state data and tested
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on PHY data is able to achieve an average accuracy of 98.30%. While on PhysioNet,
the model tested on PHY and IMA data is able to reach an average accuracy of
96.70% and 97.50%, respectively. Experiment 2b is introduced for the first time in
this work, in fact none of the SOTA work have ever trained their models on activity
states and tested on resting state. This experiment highlights that the proposed
model has a stable and reliable performance also in this scenario, achieving excellent
performance both on PhysioNet and M3CV. In particular, on the M3CV dataset, the
model trained on PHY data and tested on resting data is able to achieve an average
accuracy of 98.20%. While on PhysioNet, the model trained on PHY and IMA
data is able to reach an average accuracy of 99.54% and 99.50%, respectively. This
experiment can provide another method of comparison for future works in order to
understand how the proposed model can generalize on unseen data. In experiment 3,
where signals in diverse states were mixed, the proposed model achieved an average
accuracy of 99.98% on PhysioNet and 99.05% on M3CV, confirming the robustness
already emerged from other experiments. Finally, experiment 4 compares different
segmentation lengths and overlaps percentages to find the best window. As reported
in 6.1, six different configurations have been involved in this experiment, three
window lengths of size 1s, 5s, and 12s, respectively, and two overlap ratios for the
moving window of size 50% and 80%. From the results, it is clear that a 1s or 5s
moving window with a 50% overlap ratio is sufficient to provide enough training
data for the model to generalize. Moving toward a higher overlap ratio doesn’t
lead to better performances but rather implies a longer training time because of
the increased amount of data. On the other side, increasing the window length to
12s leads to huge performance degradation, not allowing a proper generalization
for the model caused by the reduced amount of training data. Indeed, 1s and 5s
options yields similar performance, the experimental results show that the best one
is the 1s 50% overlap option. In experiment 1, the performance of the proposed
model is investigated in the same single state. The system has been trained and
tested on a single-state subset of PhysioNet and M3CV. The results are shown
in Table 6.2. The experimental outcomes demonstrate that the presented method
exhibits state-of-the-art performance on PhysioNet in each state compared to all
other methods in the current literature when the data remains within the same
state. Experiment 2a was performed in order to observe how robust the proposed
approach to state changes is and to assess its generalization capability. Therefore,
the model has been trained only on EO and EC data and tested only on PHY or IMA
data. The obtained results are compared with SOTA in Table 6.3. Differently from
experiment 1, experiment 2 entails training and testing the models across diverse
states, using data acquired in different states under different conditions. This leads
to a degradation of most methods in the SOTA, especially those relying on univariate
features. In general, all the other methods degraded their performance, Graph-based
methods drop their accuracy by around 15-30%, Lite and EA-Transformer by around
10 to 15%, CNN by up to ∼ 50%, and SVM by up to ∼ 65%. The proposed method
has a much lower degradation compared to almost all the other, dropping only 3.28%
and 2.47% in PHY and IMA, respectively. Compared to [91], the proposed model
has an improvement of 11.3% and 10.47%, tested on PHY and IMA, respectively.
Compared to Transformer-based approaches, the introduced system outperforms
Lite-Transformer and EA-Transformer both on PHY and IMA, finally the TST is
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Figure 6.1. Results of the proposed model on different frame length and overlap obtained
on PhysioNet following experiment 2a protocol on IMA data.

outperformed on IMA identification of 0.05%, while it presents a slight increase in
accuracy on PHY identification of 0.59%. Finally in experiment 3, where signals
in diverse states were mixed, the proposed model achieved an averaged accuracy
of 99.98%, achieving SOTA performance also in this context. It suggests that the
system is robust and effective also in scenarios where multiple states are mixed in the
training set and is able to learn to extract features universal to all states, confirming
its flexibility and generalization capability. Results from experiment 3 are reported
in Table 6.4. Notably, unlike all the other SOTA methods, the proposed system
has the same excellent performance on two distinct public datasets that have been
acquired with two different acquisition protocols using both dry and wet electrodes
and different headsets, a further indication of the robustness and reliability of the
proposed model.

6.2 EEG emotion recognition

This section assesses the effectiveness of the proposed approach in EEG emotion
recognition. In detail, Sec. 6.2.1 introduces the public dataset used to evaluate
the Empátheia system. Sec. 6.2.2 reports the implementation details required to
reproduce the experiments. Sec. 6.2.3 examines the performance of the PRISMIN
atlas encoder. Finally, Sec. 6.2.4 evaluates the Empátheia classifier through ablation
studies and a state-of-the-art comparison.

6.2.1 Dataset

The dataset used to train and test the Empátheia system is the SEED [49], a public
collection focusing on the EEG emotion recognition task. The dataset is composed of
15 subjects, 7 males and 8 females, all right-handed students of Shanghai Jiao Tong
University. A total of 6 clips were shown to the participants of the experiment, and
each clip was associated with negative, neutral, and positive emotions. Finally, each
emotion has 5 corresponding emotional clips. Each trial comprehends a 5-second
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Trial k-2 Trial k-1 Trial k Trial k+1 Trial k+2

Hint of start

5 sec

Movie clip
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assessment
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Rest

15 sec

Figure 6.2. Detailed protocol used during experiments on SEED dataset.

Figure 6.3. Data augmentation strategy example.

hint before each clip, a roughly four-minute-long clip, followed by 45 seconds for self-
assessment, and is concluded with 15 seconds of rest. The dataset is provided already
pre-processed by the authors. In detail, the original EEG data was downsampled
to a sampling rate of 200 Hz. Then, visual inspection of the data was performed
on the new EEG signals, and recordings significantly affected by EMG and EOG
interferences were manually excluded. EOG data, recorded during the experiments,
was also utilized to identify blink artifacts within the recorded EEG data. To mitigate
noise and remove artifacts, the EEG data has been processed using a bandpass
filter with a range of 0.3 to 50 Hz. Subsequently, to the preprocessing process, EEG
segments corresponding to the duration of each movie were extracted. Each channel
of the EEG data was then divided into non-overlapping epochs of equal length, i.e.,
1 second. For a single experiment, approximately 3300 clean epochs were obtained.
The detailed acquisition protocol for a single trial is summarized in Figure 4.3.

Table 6.5. Dataset reduction using PRISMIN encoding.

D Baseline C-Rate Augmented C-Rate
DGS 998 MB 6.9x 744 MB 9.2x
DSR 670 MB 10.3x 907 MB 7.6x

Regarding the acquisitions, EEG signals were collected using the 62-channel ESI
NeuroScan System at a sampling rate of 1000 Hz, according to the international
10-20 system for 62 channels. Furthermore, the authors down-sampled the signals to
200 Hz and applied a 0-75 Hz bandpass frequency filter. The resulting EEG signal
segments correspond to the duration of each clip; therefore, their length can slightly
differ when considering distinct segments.
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6.2.2 Implementation details

The Empátheia system was implemented using the PyTorch framework1. All ex-
periments were performed using 80/10/10% splits for training, validation, and test
sets, respectively. All models were trained using the AdamW optimizer for 100
epochs using the same hyper-parameters, i.e., 1e-03 learning rate and a batch size
of 64. Standard classification metrics, i.e., accuracy, precision, recall, and F1-score,
were employed to assess the system. The experiments were executed using an AMD
EPYC 7301 16-Core Processor with 64 GB of RAM and an RTX QUADRO 6000
with 24 GB of RAM.

6.2.3 PRISMIN encoder evaluation

The first component to be evaluated is the PRISMIN encoder tasked with the atlas
generation. In particular, since the primary focus of the encoder is to reduce the
SEED dataset size, its assessment revolves around the compression rate (C-Rate) of
the input dataset. To achieve this goal, this thesis explores the effectiveness of two
different encodings, i.e., linear gray-scale (GS) and short-rainbow (SR) mappings,
during the implementation of the refract and bake methods discussed in Sec. 4.1.1.
The resulting compressed datasets are reported in Table 6.5. In detail, for each
sample trial in the SEED collection, the devised PRISMIN encoder generates a
PNG atlas containing either its GS or SR encoding. The resulting atlas represents
the entire EEG trial and has a final shape of 62×10800, corresponding to the
number of channels and recording length of the captured EEG signals. Note that
the width of the generated atlases depends on the corresponding session length.
Therefore, to ensure that all image-encoded signals have the aforementioned shape,
the atlases are cropped on the left and right sides by up to 10% of their width. These
portions are generally less relevant for emotion recognition as they are associated
with the start and end of an EEG acquisition. From this procedure, the PRISMIN
encoder effectively constructs two new datasets, i.e., DGS and DSR, corresponding,
respectively, to the grey-scale and short-rainbow encodings, that both maintain the
number of samples of the original SEED dataset, i.e., 675. However, due to the
performed compression, the resulting collections manage to significantly reduce the
original dataset size by a factor of 10.3x and 6.9x, attesting to a disk space of 670
MB and 998 MB for the GS and SR encoding, respectively.

The direct conversion of the SEED dataset using the described PRISMIN encoder
effectively reduces the collection size. Despite that, the generated atlases depict a
coarse representation of the original EEG signals and do not allow deep learning
models to learn the emotion recognition task. What is more, even works analyzing
EEG signals from the SEED dataset tend to suffer from this issue, which is generally
addressed by applying a data augmentation strategy through slicing of the original
recordings [110, 112]. Thus, following this rationale, starting from the beginning
of the generated atlases, they are sequentially split into smaller ones by extracting
sub-frames of shape 62×1000, as depicted in Figure 6.3, with a 200 pixels overlap
on the x axis among subsequent sub-frames. This approach, already used in different
literature works [109,110,112], is adopted to partially preserve middle information

1Source code is available at: https://github.com/Prometheus-Laboratory/2024_prismin

https://github.com/Prometheus-Laboratory/2024_prismin
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among subsequent frames, limiting emotions cut-off. With this configuration, the
resulting DGS and DSR datasets, used to evaluate the Empátheia classifiers, contain
9450 samples instead of 675 and enable the implemented models to perform emotion
recognition, as reported in Sec. 6.2.4.

Even after the reported data augmentation strategy, DGS and DSR still con-
siderably reduce the original SEED dataset size by factors of 9.2x and 7.6x for
the GS and SR encodings, respectively. Interestingly, for the GS encoding, when
considering smaller image portions, the PRISMIN encoder further compresses the
atlases, resulting in an even smaller collection. This outcome is possibly due to the
reduced amount of noise in the grey-scale sub-frames and suggests that additional
encoding strategies can be explored in the future to improve the atlas generation.
Summarizing, the PRISMIN encoder generates coarse atlases containing emotions
from EEG signals and significantly reduces the SEED dataset size with both GS
and SR encodings even when applying a data augmentation strategy, thus satisfying
the need for a smaller collection to train different types of deep learning models.

6.2.4 Empátheia classifier evaluation

This section presents ablation studies and a state-of-the-art comparison to demon-
strate the effectiveness of the Empátheia system. Specifically, the former is discussed
in Sec. 6.2.4, which examines various aspects of the implemented architectures. The
literature comparison is presented in Sec. 6.2.4.

Ablation study

A comprehensive set of experiments was conducted to rigorously assess the per-
formance of the Empátheia classifiers when applied to an innovative input source,
specifically the PRISMIN-generated atlases. Ablation studies were meticulously
carried out on both gray-scale and short-rainbow encodings, namely datasets DGS
and DSR, using various kernel sizes (K ∈ {3, 5, 16}), learning rates (LR ∈ {1e-3,
2e-3, 5e-4}), and, for recurrent models, a range of hidden unit counts (U ∈ {30, 50,
70}). In the context of the ViT model, evaluations were executed under differing
learning rates (LR ∈ {1e-4, 1e-5, 1e-6}) and numbers of attention heads (H ∈ {8, 16,
32}), with a patch size of 16 × 16 and a transformer encoder of 12 layers. The results
obtained on the development set are reported in Table 6.13 for the Conv classifier,
Table 6.6, Table 6.7, Table 6.8 for the ConvLSTM classifier, Table 6.9, Table 6.10,
Table 6.11 for the ConvGRU classifier, and Table 6.12 for the ViT classifier. The
best model in each table for the grey-scale encoding is highlighted in green, while the
best for the short rainbow is in blue. The decision to utilize a convolutional approach
for feature extraction from the atlas was informed by the benchmarking results
in Avola et al. [216]. In that benchmark, vanilla CNN, LSTM, and GRU models
were evaluated on raw EEG signals, with CNNs demonstrating superior accuracy
for this type of data. As seen in the tables, all Empátheia classifiers show strong
performance on the emotion recognition task with the generated atlases, achieving
accuracies up to 83.5%. Within convolutional-based classifiers, the Conv model
displays slightly lower performance compared to the ConvLSTM and ConvGRU
architectures, showing accuracy differences of 13.8% and 8.6% on the DGS and
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DSR datasets, respectively. These findings suggest that recurrent models effectively
capture the temporal evolution of emotions within the atlases through their recurrent
layers. Moreover, the kernel size in convolutional layers appears to critically impact
overall performance. Specifically, wider kernels (i.e., K = 16) enable the ConvLSTM
and ConvGRU models to achieve superior performance, indicating that temporal
information is also effectively captured within their convolutional receptive fields.
Additional key hyperparameters influencing model performance include the learning
rate and, for recurrent models, the number of hidden units. Learning rate impacts
model convergence and exhibits improved metrics when smaller LR values are paired
with larger kernels and vice versa. This outcome indicates that a slower progression
along the error surface during training, using smaller LR values (e.g., 5e-4), allows
the model to thoroughly analyze broad receptive fields in conjunction with temporal
information. Conversely, a faster progression, with higher LR values (e.g., 2e-3),
enables the model to avoid over-focusing on noise-capturing smaller kernels, given
the coarse representation of EEG signals in the atlases. For recurrent architectures,
such as ConvLSTM and ConvGRU, hidden unit counts of U = 50 or 70 appear
optimal for capturing emotion-related details within an atlas, particularly when
combined with lower LR values, as illustrated in Table 6.11. Regarding ViT, it
underperforms relative to Conv-based architectures, with accuracy reductions of
23.5% and 20.3% compared to ConvGRU on datasets DGS and DSR, respectively.
Nevertheless, the number of attention heads significantly impacts performance. As
depicted in Table 6.12, ViT achieves improved results with an increased number of
attention heads (i.e., H = 32), suggesting that higher model complexity is beneficial
for the proposed encodings. The encoding type further impacts model performance,
with Conv classifiers demonstrating better results using short-rainbow encoded
atlases from DSR, while recurrent classifiers like ConvLSTM and ConvGRU achieve
enhanced metrics on gray-scale mappings, or DGS. This suggests that temporal
dynamics of emotions, which recurrent architectures capture more effectively, are
better represented through grey-scale encoding. Thus, it can be inferred that em-
ploying different encodings could yield significantly varied results depending on the
architecture used.
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Figure 6.4. Test set confusion matrices results of Conv (a), ConvLSTM (b), ConvGRU (c),
and ViT (d) models.

Regardless of the underlying hyper-parameter configurations, all Empátheia
classifiers exhibit stable performance across all classification metrics. Specifically,
accuracy, precision, recall, and F1 scores are consistently aligned, suggesting that
the models provide balanced performance without bias towards any particular class,
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Table 6.6. ConvLSTM LR=1e-3.

D K U Acc Prec Recall F1
DGS 3 30 77.3% 77.5% 77.3% 77.4%
DSR 3 30 73.7% 73.4% 73.8% 73.6%
DGS 3 50 79.1% 79.7% 79.1% 79.4%
DSR 3 50 75.4% 75.5% 75.1% 75.3%
DGS 3 70 80.1% 80.1% 80.1% 80.1%
DSR 3 70 76.4% 75.8% 76.1% 76.0%
DGS 5 30 77.7% 78.5% 77.8% 78.2%
DSR 5 30 74.5% 74.3% 73.9% 74.2%
DGS 5 50 77.5% 78.0% 77.6% 77.8%
DSR 5 50 74.5% 73.8% 73.7% 73.8%
DGS 5 70 74.8% 74.2% 73.9% 74.0%
DSR 5 70 71.6% 70.2% 70.2% 70.2%
DGS 16 30 80.0% 80.6% 80.0% 80.3%
DSR 16 30 76.4% 76.3% 76.0% 76.2%
DGS 16 50 79.7% 79.5% 79.8% 79.6%
DSR 16 50 76.4% 75.3% 75.8% 75.5%
DGS 16 70 82.1% 82.0% 82.1% 82.1%
DSR 16 70 77.6% 77.8% 77.7% 77.8%

Table 6.7. ConvLSTM using LR=2e-3.

D K U Acc Prec Recall F1
DGS 3 30 75.9% 76.4% 76.0% 76.2%
DSR 3 30 62.1% 62.2% 62.1% 62.2%
DGS 3 50 78.6% 78.6% 78.6% 78.6%
DSR 3 50 69.5% 69.5% 69.4% 69.5%
DGS 3 70 77.0% 77.2% 77.0% 77.1%
DSR 3 70 68.1% 68.3% 68.0% 68.2%
DGS 5 30 75.6% 75.5% 75.7% 75.6%
DSR 5 30 66.8% 66.8% 66.9% 66.8%
DGS 5 50 75.0% 75.0% 75.0% 75.0%
DSR 5 50 66.3% 66.3% 66.3% 66.3%
DGS 5 70 77.8% 78.2% 77.9% 78.0%
DSR 5 70 68.8% 69.2% 68.8% 69.0%
DGS 16 30 74.0% 74.3% 74.1% 74.2%
DSR 16 30 65.4% 65.7% 65.5% 65.6%
DGS 16 50 77.2% 77.8% 77.2% 77.5%
DSR 16 50 68.3% 68.8% 68.2% 68.5%
DGS 16 70 76.8% 76.6% 76.8% 76.7%
DSR 16 70 73.0% 73.2% 73.0% 73.1%

effectively minimizing false positives and accurately identifying positive instances for
each emotion. This indicates that the learned weights are robust and can accurately
abstract the emotion represented in the PRISMIN-extracted atlas. This outcome is
also observable in Figure 6.5 and Figure 6.4, which depict, respectively, accuracy
curves during training using the best hyper-parameters for each model and the
confusion matrices computed on the test set. As shown in Figure 6.5, recurrent
models maintain high performance on the development set throughout their training.
Conversely, the ViT and Conv classifiers exhibit more pronounced overfitting, leading
to reduced performance metrics compared to the other models. Specifically regarding
CNNs, this behavior becomes more apparent in the confusion matrices related to the
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Figure 6.5. Training set accuracies results of Conv (a), ConvLSTM (b), ConvGRU (c),
and ViT (d) models.
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Table 6.8. ConvLSTM using LR=5e-4.

D K U Acc Prec Recall F1
DGS 3 30 80.6% 80.7% 80.6% 80.7%
DSR 3 30 73.9% 74.2% 74.0% 74.1%
DGS 3 50 80.6% 80.5% 80.6% 80.6%
DSR 3 50 76.3% 74.4% 74.4% 74.4%
DGS 3 70 80.5% 80.9% 80.7% 80.8%
DSR 3 70 75.5% 74.8% 74.5% 74.6%
DGS 5 30 78.7% 78.4% 78.7% 78.6%
DSR 5 30 74.4% 72.5% 72.7% 72.6%
DGS 5 50 82.8% 83.0% 82.9% 82.9%
DSR 5 50 76.4% 76.7% 76.6% 76.6%
DGS 5 70 76.1% 76.2% 76.2% 76.2%
DSR 5 70 71.6% 70.4% 70.4% 70.4%
DGS 16 30 79.6% 80.0% 79.7% 79.8%
DSR 16 30 75.4% 73.9% 73.6% 73.7%
DGS 16 50 80.0% 80.7% 80.0% 80.3%
DSR 16 50 75.4% 74.6% 73.9% 74.2%
DGS 16 70 81.7% 81.8% 81.8% 81.8%
DSR 16 70 76.0% 76.1% 76.1% 76.1%

Table 6.9. ConvGRU using LR=1e-3.

D K U Acc Prec Recall F1
DGS 3 30 71.7% 75.3% 71.7% 73.5%
DSR 3 30 67.8% 68.1% 67.8% 68.0%
DGS 3 50 76.5% 77.7% 76.5% 77.1%
DSR 3 50 73.3% 73.6% 74.3% 73.4%
DGS 3 70 80.3% 80.7% 77.8% 79.2%
DSR 3 70 77.5% 76.5% 75.5% 75.4%
DGS 5 30 79.2% 79.5% 79.3% 79.4%
DSR 5 30 76.3% 75.3% 77.0% 75.6%
DGS 5 50 79.7% 79.7% 79.8% 79.8%
DSR 5 50 77.0% 75.5% 77.5% 76.0%
DGS 5 70 77.1% 78.0% 77.1% 77.6%
DSR 5 70 74.3% 73.9% 74.9% 73.9%
DGS 16 30 79.3% 79.6% 79.4% 79.5%
DSR 16 30 76.3% 75.4% 77.1% 75.5%
DGS 16 50 77.7% 77.8% 77.8% 77.8%
DSR 16 50 75.3% 73.7% 75.5% 74.1%
DGS 16 70 75.5% 76.6% 75.6% 76.1%
DSR 16 70 75.3% 75.9% 75.3% 75.6%

test set, where the Conv classifier commits more errors. Concerning ViT, as pointed
out by Khan et al. [217], transformer architectures lack inherent inductive biases
(prior knowledge) for processing visual data. They typically require large amounts
of training data to discern the underlying modality-specific rules. This increased
complexity results from the larger number of parameters, as shown in Table 6.14.
For this reason, the ViT model presents the highest overfitting value (approximately
40%), requiring significantly more data to generalize effectively. In fact, unlike
CNN-based models equipped with built-in translation invariance, weight sharing,
and partial scale invariance, transformer networks must autonomously infer these
image-specific concepts from the provided training examples. Based on the experi-
mental results, it is evident that the ViT architecture is unsuitable for the objectives
of this work. Specifically, compared to other models, ViT not only exhibits the
lowest classification accuracy but also requires substantial computational resources
for parameter and weight management, as reported in 6.14. Interestingly, all models
tend to misclassify samples predominantly associated with negative and neutral
emotions. This observation suggests that these categories share common patterns in
the generated atlases, indicating that further exploration of the atlas generation by
the PRISMIN encoder might enhance the final classification performance. Finally,
Table 6.14 compares the best configurations among the reported ablation studies
to underline the effectiveness of the devised solutions in classifying the GS and SR
encodings. As can be observed, recurrent models achieve the highest performance,
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Table 6.10. ConvGRU LR=2e-3.

D K U Acc Prec Recall F1
DGS 3 30 76.7% 76.5% 76.7% 76.6%
DSR 3 30 71.9% 71.4% 72.0% 71.7%
DGS 3 50 73.9% 74.6% 74.0% 74.3%
DSR 3 50 67.1% 67.8% 67.0% 67.4%
DGS 3 70 66.1% 69.7% 66.1% 67.9%
DSR 3 70 59.8% 63.4% 59.8% 61.6%
DGS 5 30 73.0% 72.8% 73.0% 72.9%
DSR 5 30 66.2% 66.2% 66.1% 66.1%
DGS 5 50 73.8% 73.7% 73.9% 73.8%
DSR 5 50 67.1% 67.0% 66.9% 66.9%
DGS 5 70 73.0% 74.9% 73.0% 73.9%
DSR 5 70 66.2% 68.1% 66.1% 67.0%
DGS 16 30 81.9% 82.5% 81.9% 82.2%
DSR 16 30 74.3% 75.0% 74.2% 74.5%
DGS 16 50 82.8% 83.0% 82.9% 82.9%
DSR 16 50 75.1% 75.5% 75.1% 75.2%
DGS 16 70 81.7% 82.1% 81.8% 82.0%
DSR 16 70 71.6% 72.9% 71.6% 72.2%

Table 6.11. ConvGRU LR=5e-4.

D K U Acc Prec Recall F1
DGS 3 30 82.2% 82.5% 82.2% 82.4%
DSR 3 30 73.4% 73.7% 73.4% 73.6%
DGS 3 50 79.6% 80.9% 79.7% 80.3%
DSR 3 50 72.4% 79.4% 79.6% 79.5%
DGS 3 70 83.5% 83.9% 83.6% 83.7%
DSR 3 70 80.3% 78.1% 76.6% 77.3%
DGS 5 30 77.8% 78.0% 76.8% 77.4%
DSR 5 30 69.6% 72.6% 70.4% 71.5%
DGS 5 50 71.8% 73.5% 71.9% 72.7%
DSR 5 50 65.1% 68.4% 65.9% 67.2%
DGS 5 70 77.0% 77.3% 77.0% 77.2%
DSR 5 70 69.6% 72.0% 70.6% 71.3%
DGS 16 30 75.5% 75.3% 75.6% 75.4%
DSR 16 30 68.7% 70.1% 69.3% 69.7%
DGS 16 50 72.2% 74.2% 72.3% 73.2%
DSR 16 50 65.2% 69.1% 66.3% 67.6%
DGS 16 70 81.0% 81.5% 81.0% 81.2%
DSR 16 70 69.8% 75.1% 69.8% 72.4%

with ConvGRU being the best model on both DSR and DGS datasets. This demon-
strates that temporal information is preserved in the coarse representation of EEG
signals transformed into atlases, indicating that architectures with recurrent elements
can exhibit varying performance depending on internal design but should be the
preferred choice, especially when applied to the proposed input representation.

State-of-the-art comparison

To conclude the evaluation of the Empátheia classifier, a state-of-the-art comparison
was conducted using the SEED dataset. The results are presented in Table 6.15.
As can be observed, the Empátheia system achieves performance comparable to
many existing works in the literature. This finding is noteworthy, considering
that the generated atlases represent a coarse transformation of the EEG signals
utilized by other approaches. This suggests potential room for improvement in the
presented PRISMIN encoder. Furthermore, existing solutions, even those with the
highest performance, employ advanced yet complex models to handle the fine-grained
details of EEG signals. However, this complexity comes at the cost of increased
computational demands and the necessity for larger datasets. In contrast, as
demonstrated in Table 6.5, the Empátheia classifiers achieve the reported performance
with a dataset of lower quality that requires less disk space to store, enabling the
use of lightweight models. For instance, Table 6.16 compares the best-performing
Empátheia classifier, ConvGRU, with existing architectures from a computational
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Table 6.12. ViT classifier ablation.

D H LR Acc Prec Recall F1
DGS 8 1e-4 56.4% 51.5% 53.8% 52.6%
DSR 8 1e-4 57.1% 52.3% 54.3% 53.3%
DGS 8 1e-5 55.7% 52.4% 52.1% 52.7%
DSR 8 1e-5 60.0% 56.7% 57.5% 57.1%
DGS 8 1e-6 56.1% 53.3% 53.5% 53.4%
DSR 8 1e-6 53.7% 52.4% 52.0% 52.2%
DGS 16 1e-4 58.2% 55.2% 55.4% 55.3%
DSR 16 1e-4 59.7% 57.7% 58.4% 58.1%
DGS 16 1e-5 56.2% 53.8% 54.4% 54.1%
DSR 16 1e-5 58.8% 55.7% 56.6% 56.1%
DGS 16 1e-6 54.7% 52.8% 53.2% 53.0%
DSR 16 1e-6 52.7% 50.5% 51.3% 50.9%
DGS 32 1e-4 57.3% 57.7% 56.9% 57.3%
DSR 32 1e-4 60.0% 59.0% 59.6% 59.4%
DGS 32 1e-5 55.0% 56.3% 54.6% 55.4%
DSR 32 1e-5 55.5% 56.0% 55.3% 55.6%
DGS 32 1e-6 60.0% 59.7% 59.6% 59.6%
DSR 32 1e-6 53.9% 53.0% 53.6% 53.3%

Table 6.13. Conv classifier ablation.

D K LR Acc Prec Recall F1
DGS 3 1e-3 69.7% 70.5% 69.7% 70.1%
DSR 3 1e-3 66.6% 65.9% 66.6% 66.3%
DGS 3 2e-3 58.1% 57.0% 58.0% 57.5%
DSR 3 2e-3 71.1% 71.5% 71.1% 71.5%
DGS 3 5e-4 63.5% 67.7% 63.5% 65.6%
DSR 3 5e-4 71.6% 71.3% 71.6% 71.5%
DGS 5 1e-3 66.8% 66.9% 66.8% 66.9%
DSR 5 1e-3 70.6% 72.6% 70.7% 71.6%
DGS 5 2e-3 57.1% 71.8% 57.1% 63.6%
DSR 5 2e-3 62.2% 72.4% 62.8% 67.3%
DGS 5 5e-4 68.9% 69.6% 68.9% 69.3%
DSR 5 5e-4 71.1% 71.5% 71.1% 71.3%
DGS 16 1e-3 63.4% 64.7% 63.4% 64.1%
DSR 16 1e-3 71.7% 72.8% 71.7% 71.3%
DGS 16 2e-3 54.8% 60.4% 54.8% 57.4%
DSR 16 2e-3 64.6% 65.7% 64.6% 65.1%
DGS 16 5e-4 65.1% 65.9% 65.1% 65.5%
DSR 16 5e-4 67.1% 69.5% 67.1% 68.3%

standpoint. Not only is the proposed model noticeably smaller than existing solutions,
but it also processes individual trials significantly faster, approximately 45 times
faster, using similar hardware. This underscores the rationale behind the Empátheia
system and highlights the advantage of its PRISMIN encoder, which reduces the
dataset size and, consequently, improves computational efficiency in terms of model
size and training speed, thereby demonstrating the effectiveness of the proposed
approach.

6.3 EEG limbs activation

In this section, the dataset, experimental setup, and experimental protocol are
presented first. Subsequently, the results obtained from the intra-subject and cross-
subject experiments, along with a comparison to the current literature, are discussed.

6.3.1 Dataset

The PhysioNet EEG motor movement/imagery dataset has been used for the experi-
mental phase also in this work, in fact it is the reference dataset for motor imagery
experiments. In particular, only the subset of the data related to left and right limb
activation has been used here. The description of the dataset has already been done
in Section 6.2.1. No pre-processing steps were used on the dataset samples. This
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Table 6.14. Best ablation configurations comparison.

Model D Acc Prec Recall F1 FLOPS* Params
Conv DGS 69.7% 70.5% 69.7% 70.1%

0.1G 28.6M
Conv DSR 71.7% 72.8% 71.7% 71.3%
ViT DGS 75.5% 75.4% 75.5% 75.4%

40.16G 86M
ViT DSR 72.6% 72.1% 72.2% 72.2%
ConvLSTM DGS 82.8% 83.0% 82.9% 82.9%

0.037G 0.13M
ConvLSTM DSR 77.6% 77.8% 77.7% 77.8%
ConvGRU DGS 83.5% 83.9% 83.6% 83.7%

0.035G 0.14M
ConvGRU DSR 80.3% 78.1% 76.6% 77.3%

* Number of floating point operations per input.

Table 6.15. State-of-the-art performance comparison.

Model Acc Prec Recall F1
MFBPST-3D [109] 96.79% - - -
DNN-SAE [110] 96.77% - - -
TANN [111] 93.34% - - -
SVM [49] 86.65% - - -
DBN [49] 86.08% - - -
ConvGRU (our) 83.50% 83.90% 83.60% 83.70%
DTCW-SRU [112] 83.13% 82.24% 81.53% 81.24%
ConvLSTM (our) 82.80% 83.00% 82.90% 82.90%
LRM. [49] 82.70% - - -
KNN [49] 72.60% - - -
Conv (our) 71.70% 72.80% 71.70% 71.30%
ViT (our) 60.00% 59.70% 59.60% 59.60%

choice is due to the robustness of the CNN models in extracting features also in
contexts in which the data present some noise.

6.3.2 Implementation details

The final model architecture employed in the experiments was determined by consid-
ering the optimal configuration that emerged from the ablation study delineated in
Section 6.2.4. Consequently, the model comprises four distinct streams in ms, each
containing two convolutional blocks. The kernel size for the first stream is set to
k = 7 to analyze a sufficiently wide temporal window. In the experiments, the best
results are obtained with one convolutional block, one final convolutional block, and
one pooling block. The structural delineation of each of these blocks is explained in
detail in Table 5.1. The classifier, mc, comprises two linear layers, as depicted in
Table 5.2. The model has been implemented by using the Pytorch framework, while
the EEG data has been handled with the MNE framework [218]. The model has
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Table 6.16. State-of-the-art computational comparison.

Model Params Time* GPU FLOPS
MFBPST-3D [109] 9M 33s RTX3090 -
DTCW-SRU [112] 2.45M 27s RTX3090 -
ConvGRU (our) 0.3M 0.66s Quadro RTX6000 0.6G

* training time required to analyze a single trial.

been trained and tested on a machine with a 2-core Intel Xeon CPU at 2.2 GHz, 13
GiB of RAM and an nVidia Tesla T4 GPU bundled with 16 GiB of GDDR6 RAM.

6.3.3 Experimental protocol

This work is focused on two types of experiments: cross-subject (Section 6.3.3) and
intra-subject (Section 6.3.3) classification of MI-based EEGs.

Cross-subject

The following is the formal definition of the cross-subject classification task. Given
a pool E =

⋃
1≤i≤N (xi, yi) of N labelled EEGs belonging to all the subjects, a

model is trained on a subset Et ⊂ E to identify patterns in EEG signals to predict
the thought action, and its performance is evaluated on a subset Ev ⊂ E, where
Et ∩ Ev = ∅ and Et

⋃
Ev = E. Each sample (x, y) ∈ E is formed by an EEG record

x ∈ Rs×cinof a fixed duration of s samples and cin channels, and a label y ∈ L that
indicates the action being thought by the subject in that trial.

Intra-subject

Intra-subject classification has been structured as follows. For each subject Si ∈ S in
a pool S of subjects, where Si =

⋃
1≤i≤N (xi, yi) is a collection of N labelled EEGs of

a single subject, a model is trained on a subset Et ⊂ Si to identify patterns in EEG
signals and predict the thought action. Its performance is evaluated on a subset
Ev ⊂ Si where Et ∩ Ev = ∅ and Et ∪ Ev = Si. As in section 6.3.3, each sample
(x, y) ∈ E is formed by an EEG record x ∈ Rs×cin and a label y ∈ L. At the end
of the process, a model is produced for each subject, and the final intra-subject
performances are calculated as the mean of the performances of each model.

6.3.4 Results

In this section, the results obtained in the performed intra-subject and cross-subject
experiments, together with the comparison with the current literature, are presented.

Performance metrics

Given the intricate nature of EEG data, which is characterized by high dimensionality
and susceptibility to noise, it is imperative to employ a variety of metrics to com-
prehensively assess the model performance on the validation sets. In the following
paragraphs, the metrics employed for measuring the goodness of the proposed model
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Figure 6.6. The four metrics computed for the cross-subject experiments. For each of the
metrics, a box plot is provided, which allows a better overview of the metrics distribution
and their variability in the 10 folds.

are described [219].
Accuracy: Represents the ratio between correctly classified samples and their total
amount within the dataset. Hence, the accuracy gives an overall measure of model
performance.
Precision: Represents the ratio between correctly classified positive samples and
the number of positive predictions. Precision quantifies the number of true positive
predictions among the total number of positive predictions made, reflecting the
model’s reliability in predicting positive instances.
Recall: Represents the ratio between correctly classified positive samples and the
number of positive samples. The recall represents the proportion of actual positive
instances that the model correctly identified, providing insight into the model’s
sensitivity to positive instances.
F1 Score: Represents the relation between precision and recall using their harmonic
mean. F1 offers a balanced measure of the model’s performance, especially when
the class distribution is imbalanced. Accuracy, precision, recall, and F1 score are
critical for assessing the model’s ability to make correct predictions and minimize
errors, providing insights into the model’s reliability in real-world applications.

Cohen’s K Represents the agreement between two annotators that classify the
items, and also considers the agreement obtained by chance, ranging in [-1, 1] [220]:

kC = accuracy − pe

1 − pe
(6.1)

where pe represents the expected agreement, assuming both annotators assign
labels at random. Cohen’s k thus quantifies the alignment between the model’s
classifications and expert annotations, accounting for chance agreement, and thereby
adds a critical validation layer, which is particularly important in medical contexts
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Figure 6.7. Confusion matrix for the cross-subject experiment on the PhysioNet dataset.
Al and Ar are, respectively, the labels for left and right arm activation.

where reliability is paramount. In cross-subject experiments, applying diverse metrics
is essential, given the inherent variability and complexity stemming from differences
in subject characteristics, behaviors, and responses. This comprehensive metric
approach enables a detailed assessment of the model’s generalization, reliability, and
robustness across subjects. In contrast, intra-subject experiments generally present
reduced variability, allowing for a streamlined evaluation with fewer metrics, which
remains sufficient to capture the model’s performance within individual subjects.
The selected metric set offers a rigorous method for assessing model performance,
uncovering insights and nuances that might otherwise be overlooked with a narrower
evaluative scope, as often seen in prior studies.

6.3.5 Evaluation and State-of-the-art comparison

It is important to note that many studies [134] [135] [142] primarily showcase the
accuracy metric due to its simplicity, which provides a quick overview of model
performance. However, this approach can overlook important subtleties and imbal-
ances in the evaluation process. In contrast, the introduced methodology, similar
to the approaches in [129] and [137], employs multiple complementary metrics, as
detailed in Section 6.3.4, to ensure a nuanced understanding of model performance
and to provide a more comprehensive insight into its reliability and effectiveness.
Furthermore, including both cross-subject and intra-subject evaluations distinguishes
the proposed work from the norm, offering a level of depth found in only a few
studies, such as [128], [129], [140], and [137]. This rigorous approach enables a
thorough assessment of model performance and adaptability across various subjects
as well as within individual subject contexts. By focusing solely on one type of
evaluation, critical insights and nuances integral to a comprehensive understanding
of model behavior and efficacy may be overlooked.

Cross-Subject results

In cross-subject experiments, the proposed model achieves state-of-the-art results
compared to related work. As shown in Figure 6.8, the validation loss reaches
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Table 6.17. Comparison with the related work on the PhysioNet dataset. Bold values are
the best ones in their respective columns.

Work Year Subjects
Within-subject

accuracy
Cross-subject

accuracy
[134] 2013 109 68.2% -
[135] 2014 100 75% -
[136] 2016 24 80.1% -
[141] 2022 50 92.4% -
[138] 2014 103 - 71.6%
[132] 2014 56 - 72.4%
[139] 2020 105 - 74.7%
[142] 2019 105 - 80.5%
[128] 2016 85 63.6% 60.1%
[140] 2018 105 86.5% 80.4%
[137] 2020 103 98.3% 83.2%
[129] 2021 105 98.3% 83.6%

Ours 2023 105 99.4% 85.9%

its minimum around the twentieth epoch; thereafter, the model begins to overfit,
attaining a mean accuracy score of µ = 85.9. This accuracy is calculated by averaging
the maximum accuracy of each fold, consistently surpassing the previous state-of-the-
art score reported in [129] by approximately 2.3%. Notably, the latter study, along
with the work in [128], employs a SVM classifier, necessitating a data pre-processing
step to remove noise and artifacts. This pre-processing can significantly impact
classification results, as there is a risk of discarding relevant information critical to
the task. In contrast, the use of CNN-based approaches, as proposed in this thesis
and in studies such as [140] and [142], allows for the direct input of raw EEG data into
the CNN model. This is possible because CNNs can automatically extract relevant
features from the input data while effectively capturing local patterns and filtering
out irrelevant information, making the model robust for real-world applications. The
normalized confusion matrix for the experiments, presented in Figure 6.7, indicates
that left-arm samples are classified with higher accuracy. The boxplot in Figure 6.6
provides a detailed examination and comparison of the metrics discussed in Section
6.3.4 for the cross-subject experiments. It is observed that accuracy, precision, recall,
and F1 scores predominantly fall within the 84% to 90% range, demonstrating the
model’s strong performance and effectiveness in correctly identifying and classifying
instances across subjects. In contrast, Cohen’s k values range from 68% to a maximum
of 81%. The relative decrease in Cohen’s k compared to the other metrics highlights
potential inconsistencies in instance classification, hinting at the presence of false
positives/negatives that may impact inter-annotator reliability. This variation among
metrics underscores the complex dynamics of model performance and reinforces the
importance of employing multiple metrics to ensure the reliability and validity of
the model’s predictive capabilities across diverse experimental conditions. It is also
noteworthy that the feature extraction component of the pipeline is fully managed
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(a) (b) (c) (d)

Figure 6.8. Loss values for training (a) and testing (b) phases on the PhysioNet dataset
using 10-fold cross validation, and accuracy values for training (c) and testing (d) phases
on the PhysioNet dataset using 10-fold cross validation. Both accuracy and loss refer
to the cross-subject experiment. Each line in the plots represents the i-th fold, while
the value µ represents the average value obtained among the several folds. Formally,
let M ∈ Rkf ×e be the accuracy matrix, where kf is the number of folds in the cross-
validation and e the maximum number of epochs, µ = 1

kf

∑
1≤i≤kf

max(Mi) is equal to
the mean of the maximum accuracy reached for each fold. In the experiments, kf = 10
and e = 100.

by the streams through learned convolutions, which automatically filter and extract
meaningful information from the data. This approach allows researchers to avoid
the need for manually defining algorithms for noise reduction or channel selection,
enabling a greater focus on the neural network’s architecture.

Intra-Subject results

The results of the intra-subject experiments are highly encouraging, yielding a µ
value of 0.996, where µ is calculated as the mean of the maximum accuracy scores per
subject for each fold. This indicates that nearly all subjects were correctly classified,
as illustrated in Figure 6.9. In contrast to Figure 6.8, which uses a line plot to depict
cross-subject variations from a single training and validation process, Figure 6.9
utilizes a bar plot to convey intra-subject variability across multiple training sessions
relative to the number of subjects. The bar plot effectively represents and contrasts
discrete, categorical data points, facilitating clear comparisons between individual
subjects. The choice of different plot types in Figures 6.8 and 6.9 is crucial
for accurately conveying the distinct aspects of the neural network’s performance
and variability in both cross-subject and intra-subject contexts. Furthermore, the
previous state-of-the-art accuracy of 0.983, as reported by [129] and [137], falls
short by approximately 1.3% compared to the accuracy achieved by the proposed
method. Despite both studies achieving equal intra-subject accuracy, it is noteworthy
that [129] conducts experiments with 105 subjects, while [137] involves 103 subjects.
Furthermore, among the works utilizing deep learning-based approaches, the highest
results are consistently observed, with the exception of the study by [129], which
employs an SVM. The strong performance of the latter can be attributed to the
automatic selection of channels based on their relevance during MI tasks.
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(a) (b) (c) (d)

Figure 6.9. Bar plots of loss (a,b) and accuracy (c,d) per subject on the PhysioNet dataset
using 10-fold cross-validation for intra-subject experiments. Each bar represents a subject
of the dataset, and the grey part of the bar represents the variability among the several
folds of the considered measure.

Ablation study

In this section, the choices made during the selection of the architecture of the final
model are discussed. The several experiments have been made using a split At of
the PhysioNet dataset D as the training set, with |At| ≈ 0.7 · |D|, and a test set Av

such that At ∪ Av = D and At ∩ Av = ∅. This ablation study consisted of several
experiments that focused on different parts of the network: the number of streams
and their depth, the structure of the convolutional block, and the depth of the
final classifier. Figure 6.10 provides a quantitative representation of the conducted
experiments. Each experimental configuration is systematically illustrated with three
distinct bar plots representing accuracy, the number of parameters, and the average
time taken for each training epoch on the benchmark machine, as described in
Section 6.3.2. The y-axis delineates the scale of the applied metrics, with percentage,
quantity, and time (in minutes) clearly represented. The x-axis portrays the varying
values of the parameter being examined. Since more than one run was executed for
each unique configuration, the bar plots include representations of fluctuations among
the runs. These variations are illustrated through a black line superimposed on each
box, offering a comprehensive view of the inherent variability in each configuration.
This design enables a nuanced understanding of the relative stability and reliability
of the tested parameter values.

Number of streams

This experimental phase consisted of changing the number of streams of the model,
and each stream follows the structure described in Section 5.1.1. According to the
results shown in Figure 6.10a, the number of parameters and the time required for
the training proportionally increases as the number of streams increases. On the
contrary, the accuracy value does not follow this trend. In fact, while with 1, 2, and
3 streams, the maximum value is comparable, with 4 streams, the accuracy increases
significantly. This behavior is due to the bigger kernel size in the latest streams,
thus allowing the extraction of information from a bigger temporal interval.
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(a) Results about the number of streams
in ms.

(b) Results about the number of convo-
lution blocks in each stream.

(c) Results about the starting kernel size
(i.e. the value of k in ms1 , which is
progressively increased by 2 in the
following streams).

(d) Results about the replacement of Max
Pooling layers with 1D Convolutions
at the end of the convolution blocks.

(e) Results about the presence of Batch
Normalization between convolutions
in convolutional blocks.

(f) Results about the number of linear
layers in mc.

Figure 6.10. Results of ablation studies on the structure of the proposed architecture. The
features plotted are the accuracy on the PhysioNet dataset using 10-fold cross-validation,
the number of parameters of the model, and the average minutes per training epoch.

Number of streams

In this experimental phase, several convolutional blocks per stream have been tested.
The number of blocks ranged from one to three. The structure of convolutional
streams and blocks follows the description provided in Section 5.1.1. According to
the results shown in Figure 6.10a, the highest accuracy value is achieved by using
two convolutional blocks. This is amenable to the fact that a single block is not able
to extract fine-grained features, while using three blocks, the signal results to be
too much processed, thus leading to losing part of the information from the original
signal. It is worth noting that the number of parameters and average training time
are not proportional, as seen in Figure 6.10a. This is due to the fact that when a
single convolutional block is used, the final convolution of the block having stride 2
is removed, where instead b inner convolutional blocks, i.e., all the convolutional
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blocks except the last one, have b · 3 convolutions.

Kernel size

In this experimental phase, different kernel sizes for several streams have been tested.
In detail, the kernel size of the first stream has been set, respectively, to a size of
[3, 5, 7]. Then, the size of subsequent streams has been computed by following the
process defined in Section 5.1.1. As depicted in Figure 6.10c, this parameter does
not have a significant impact on the final accuracy.

Learned pooling

In this experimental phase, tests were conducted to determine which layer, between
convolution and max pooling, must be placed at the end of the convolutional block
to achieve the best results. As shown in Figure 6.10d, the learned convolution allows
us to get better accuracy results at a slightly higher computational cost compared
to the max pooling alternative, which is not a learnable layer. These findings are in
line with the current state-of-the-art, as the trend in CNNs is to completely replace
pooling operations [221].

Batch normalization

In this experimental phase, the effectiveness of batch normalization has been tested.
In detail, the batch normalization layer is tested after the first two convolutional
layers of each convolutional block. Batch normalization is a technique adopted to
reduce the internal covariate shift of batches, thus speeding up the convergence and
solving various initialization problems [203]. From the results shown in Figure 6.10e,
normalizing batches reduces accuracy and slightly increases the training time. The
decrease in accuracy is due to the smoothing effect of batch normalization on signals
within the same batch, which results in the loss of several peaks in the signals and
makes the samples too similar. Regarding the increasing training time, instead, it is
simply due to the additional operation performed.

Depth of classification layers

In this last experimental phase, the depth of the linear layer has been tested. Such
depth consisted of a number of layers ranging from 1 to 3. As shown in Figure 6.10f,
the highest accuracy value was achieved using two classification blocks, although
the average training time and the number of parameters remained similar across all
configurations.
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Chapter 7

Conclusions

7.1 EEG identification

This thesis presented a novel model for EEG-based person identification. The model
consists of three components: a pre-processing component in charge of signal cleaning
from artifacts and noise using established procedures. In this way, the presence of
background noise such as muscle, EOG, and ECG artifacts is limited, which could lead
to a degradation of the system’s ability to recognize identity. A graph representation
component based on Phase-Locking Value and EEG spectrogram to represent both
temporal and spatial information from EEG signals, focusing on the most relevant
features for the identification task. This innovative representation allows integrate
in a single data structure of both time-frequency and brain functional connectivity
information of the original EEG signal; And a classification component based on
GNNs and Spline convolution to classify the extracted features. This component
is able to extract and exploit the most distinctive features from the graph input,
leading to better performance being able to generalize also over different human
states. An extensive set of experiments was conducted to evaluate the generalization
capability of the system under different conditions and against the best SOTA works
already present in literature. The system has been trained, tested, and evaluated on
different combinations of resting and activity state signals, including, for the first
time in literature, a novel experiment which provides for the training of the model
only on activity states and testing on resting state signals. Furthermore, to make
the model evaluation more comprehensive and exhaustive, another experiment has
been proposed to explore the impact of different EEG frames length on the system
performance. The experiments suggest that the use of longer EEG frames leads to
a smaller training dataset, slightly decreasing the identification accuracy. Besides,
the application of GNN requires sufficient data to ensure its performance. The
outcomes demonstrated that the proposed method is effective and robust against
different human states and on signals acquired with both on dry and wet headsets,
on two public benchmarks reaching State-of-the-art results. As future work, since
the biometric identification system proposed in this thesis has been evaluated on
all publicly available EEG datasets composed solely of single-session data, a more
complex dataset will be acquired. This dataset will incorporate multi-session data,
where each subject’s EEG sessions are recorded at varying time intervals from the
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initial session, and will include a larger pool of distinct subjects. Such an approach
could enhance the robustness of the system in more challenging scenarios, extending
beyond single-session acquisitions, while providing a larger volume of data to further
validate and improve the model’s generalizability across diverse conditions and
sessions. Additionally, although the system has been trained and tested to solve the
proposed task reaching acceptable time also for real-time application, e.g. in sensitive
environments requiring high-security authentication, its performances are expected
to improve significantly with the adoption of high-end hardware. In this thesis,
commonly available mid-range hardware was used, which suggests that leveraging
on more advanced computing resources could further optimize efficiency, accuracy,
and general performance. Moreover, the applicability of this system to real-world
use cases is closely tied to technological advancements and the acceptability of
EEG devices. At present, EEG acquisition systems tend to be invasive, bulky,
and susceptible to noise, which limits their widespread adoption. In the future,
miniaturization of EEG devices and improvements in their design could make them
more user-friendly, less prone to noise, and better suited for practical, everyday
applications.

7.2 EEG emotion recognition

This thesis presented the Empátheia system, which performs emotion classification
from EEG signals using a reduced amount of data. The proposed approach consists
of two main components: the PRISMIN encoder and the Empátheia classifier. The
PRISMIN encoder generates coarse atlases—2D images encoded using grey-scale or
short-rainbow mapping—to represent the captured emotion within EEG signals. This
representation significantly reduces the input dataset, enabling the implementation
of lightweight models and faster training times. The second component, the Em-
pátheia classifier, utilizes deep neural networks tailored to capture spatio-temporal
characteristics present in the atlases to perform emotion classification. Multiple
and different tests on public reference datasets, i.e., SEED, have been performed
to define the most accurate network that could classify emotions. The PRISMIN
encoder reduced the dataset size by up to 10.3 times. The Empátheia classifiers
achieved competitive performance in line with several existing literature works.
However, due to the coarse nature of the atlas representation, they fell short of
the best-performing approaches. Nevertheless, these results suggest ample room for
improvement in both the PRISMIN encoder and Empátheia classifier. Furthermore,
ablation studies on various Empátheia classifier hyper-parameters revealed stable
performances across all experiments. The mixed models exhibited higher metrics
due to their internal configurations, demonstrating the atlas ability to accurately
represent emotion from EEG signals. The performed experiments showed that,
among the tested models, the ConvGRU achieved the best results. As a potential
avenue for future research, exploring additional encoding strategies is warranted,
given their varying performance depending on the underlying architecture. This
indicates that new strategies for the PRISMIN encoder could yield improved results.
Additionally, implementing more advanced models as Empátheia classifiers could
potentially compensate for the coarse representation derived from the atlases, for
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example, integrating the capability of recurrent architectures to capture temporal
information with the attention mechanism [222, 223]. Moreover, the adoption of
different datasets will be explored in order to have a deeper analysis of the sys-
tem performance under different conditions to verify also the scalability for larger
amounts of data. Also, some recent techniques, e.g., Neural Dynamic Classification
(NDC) algorithms [224], Dynamic Ensemble Learning (DEL) approaches [225], Finite
Element Machine (FEM) [226], Domain Adaptation (DA) strategies [227], FC [228],
and self-supervised learning [229] could provide a guideline about possible strategies
to apply to compressed signals.

7.3 EEG limbs activation

Finally, this thesis proposed a novel multi-stream 1D CNN model for classifying
EEG signals related to the MI application field. The main novelty of the model is the
use of the multi-stream strategy, where parallel kernels with different sizes on each
stream are able to retrieve meaningful information from the same data at different
time scales. Comparative experiments on the reference dataset, i.e., PhysioNet EEG
motor movement/imagery data collection, for this type of application context, i.e.,
MI, show that the proposed method outperforms the current state-of-the-art in
cross-subject and intra-subject experiments. Furthermore, the introduced approach
demonstrates a marked advancement over related works, primarily attributed to the
utilization of a more extensive and diverse array of metrics. This comprehensive
evaluation methodology enables a more nuanced and thorough understanding of
model performance, thus ensuring the validity and reliability of derived findings
across varied contexts and applications. Finally, a consistent ablation study has been
conducted to assess the performances of multiple feature extraction streams and their
structure, which led to the best model configurations surpassing the previous results
in the literature. The biggest limitation of the proposed method is the optimization,
by having different streams, it is more difficult to optimize the proposed architecture
for different reasons. Firstly, the higher number of hyper-parameters that must
be correctly tuned. In addition, the definition of the architecture itself can be
non-trivial, e.g., number of streams, depth of the streams, streams of the same length
or not, and more. In future research, to further evaluate the performance of the
proposed method, the system will be tested with additional state-of-the-art datasets,
and a more complex dataset will be collected, integrating multi-session data, where
each subject’s EEG session is acquired at different time intervals from the first, and
a greater number of distinct subjects. While the current results demonstrate the
effectiveness of the approach, expanding the evaluation to include other datasets
will provide a more comprehensive understanding of its capabilities and robustness,
assessing the generalizability of the proposed method across different conditions.
Additionally, will be explored potential modifications and enhancements of the
method, e.g., by considering attention mechanisms, to verify if it is possible to reduce
the number of streams or the number of convolutional layers.
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7.4 Ethical aspects
Wearable devices capable of measuring and recording physiological signals are
becoming increasingly accessible to the general public, offering improved affordability
and enhanced signal quality. However, the data generated by these devices raise
significant ethical concerns that remain largely overlooked. Users often lack a clear
understanding of how this data can be utilized to uncover sensitive information
about them, and developers may not fully anticipate how the physiological data
collected today could be repurposed in the future for entirely different applications.
The potential widespread adoption of EEG wearables introduces a critical set of
challenges related to research ethics and legal compliance. As new technologies
emerge to interface directly with the brain, they bring with them heightened risks of
privacy violations. According to the General Data Protection Regulation (GDPR),
which took effect in 2018, brain data is classified as sensitive data, requiring stricter
protections compared to standard personal data. This classification imposes more
rigorous standards for processing and securing such data, reflecting the significant
impact that misuse could have on individuals’ lives. EEG devices have the capacity
to reveal a wide range of information about individuals, including health conditions,
mental disorders, psychological traits, and cognitive states, potentially leading to
issues such as discrimination based on neural data [230]. Some researchers argue that
due to the sensitive nature of EEG data, individuals may not fully realize the breadth
of information being extracted from their brains [230]. Consequently, scholars like
Farisco et al. [231] emphasize that informed consent in biomedical applications must
adhere to three key principles, namely: the disclosure of all necessary information,
the subject’s ability to comprehend this information, and the voluntariness of their
participation [231]. In the context of commercial EEG applications, companies and
manufacturers are required to secure valid consumer consent by providing specific,
clear, and unambiguous information regarding the processing of sensitive data. Under
GDPR, this includes disclosing the identity of the data controllers, the purpose of
data processing, and the activities involved. Considering these factors, privacy and
data protection stand out as essential elements for ensuring a smooth and ethical
transition to a society increasingly shaped by BCI technologies.
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SEARCHER (Smart unmannEd AeRial vehiCles for Human likE
monitoRing) project in collaboration with the Ministero della Difesa.
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was to be the task leader of WP1, in particular, to report on existing
datasets for the urban segmentation task and related SOTA.
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