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Abstract. Password-Authenticated Key Exchange (PAKE) allows two
parties to establish a common high-entropy secret from a possibly low-
entropy pre-shared secret such as a password. In this work, we provide
the first PAKE protocol with subversion resilience in the framework of
universal composability (UC), where the latter roughly means that UC
security still holds even if one of the two parties is malicious and the
honest party’s code has been subverted (in an undetectable manner).

We achieve this result by sanitizing the PAKE protocol from oblivious
transfer (OT) due to Canetti et al. (PKC’12) via cryptographic reverse
firewalls in the UC framework (Chakraborty et al., EUROCRYPT’22).
This requires new techniques, which help us uncover new cryptographic
primitives with sanitation-friendly properties along the way (such as OT,
dual-mode cryptosystems, and signature schemes).

As an additional contribution, we delve deeper in the backbone of com-
munication required in the subversion-resilient UC framework, extending
it to the unauthenticated setting, in line with the work of Barak et al.
(CRYPTO’05).
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1 Introduction

Authenticated Key Exchange (AKE) allows two parties to generate a shared
high-entropy secret and mutually authenticate by means of identifiers such as
public keys, signatures or shared passwords. As such, AKE allows two parties
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to establish a secure channel. Due to its sensitive nature, malicious actors may
have a particular interest in undermining the security of AKE protocols (e.g., by
leaking the password of an honest party, or by establishing a shared key with-
out authentication). To this extent, AKE protocols are typically designed in the
setting of multi-party computation, where the adversary controls the communi-
cation channels and can corrupt some of the parties. Corrupted parties either
simply follow the protocol (so-called semi-honest corruptions), or deviate arbi-
trarily from its intended execution (so-called malicious corruptions).

This threat model is widely adopted in the literature. However, it relies on the
assumption of having access to uncorrupted parties that run the protocol exactly
as prescribed. Unfortunately, as shown by the shocking Edward Snowden’s rev-
elations, the latter assumption may not hold in practice, as the machine of an
honest party could have been compromised in an undetectable manner, both in
the case of its hardware (e.g., via backdoored components) or its software (e.g.,
via algorithm-substitution attacks, purposefully designed leaky constructions,
or mistakenly instantiated protocols). Such undetectable corruptions enable an
adversary to launch so-called subversion attacks, which may cause the target
compromised machine to covertly exfiltrate information or behave in an unex-
pected manner upon receiving a specific triggering input.

A possible mitigation consists in equipping parties with cryptographic reverse
firewalls (RFs), as first defined by Mironov and Stephens-Davidowitz [27]. These
objects allow to sanitize inbound and outbound messages of the party they are
attached to, thus destroying any potential side-channel while preserving func-
tionality and security of the underlying protocol. The idea here is that protocol
designers can instantiate parties and their respective RF on different physical
machines on the same local network in order to achieve security in the presence
of subversion attacks.

While the original formalism of [27] only accounted for standalone security,
where each protocol is run in isolation, the setting of RFs has recently been
extended to the universal composability (UC) framework by Chakraborty, Magri,
Nielsen and Venturi [18]. The latter ensures that, once a designed protocol is
proven to be secure, subversion resilience holds even if that protocol is arbitrarily
composed with other protocols. This lifts the requirement of redoing the security
analysis from scratch for each individual composition setting, thus yielding a
modular design of subversion-resilient cryptographic protocols.

1.1 Password-Authenticated Key Exchange

In this work, we focus on instantiating Password-Authenticated Key Exchange
(PAKE) in the subversion-resilient UC (srUC) framework [18], in which parties
can derive a high-entropy secret key and verify their identities by means of a
shared password. Given that passwords are considered to be low-entropy, the
security definition of PAKE must take into account the fact that the adversary
can guess the password with non-negligible probability. Thus, a protocol realiz-
ing PAKE is secure if no adversary is able to break it with probability better
than guessing the password outright. Moreover, the PAKE functionality restricts
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the ideal adversary to only perform online password guesses. In other words, the
transcript of a PAKE protocol must not help the adversary to perform a dictio-
nary (i.e., offline) attack.

1.2 Our Results

Our main contribution consists in constructing the first UC PAKE protocol
with security in the presence of subversion attacks, via RFs. Following [18],
we consider a setting where each party is split into a core (which has secret
inputs and is in charge of generating protocol messages) and a RF (which shares
no secrets with the core and sanitizes the outgoing/incoming communication
from/to the core using random coins). Both the core and the RF are subject to
different flavours of corruption, modelling different kinds of subversion attacks.

In order to avoid simple impossibility results, we follow [18] and only consider
the so-called specious subversions, in which a subverted core looks like an honest
core to any efficient test, yet it may signal private information to the subverter
via subliminal channels, or trigger an unexpected behaviour whenever a specific
triggering message is received.

Our PAKE protocol is obtained by sanitizing the UC randomized equality
protocol from oblivious transfer (OT) by Canetti et al. [12]. As an added bonus,
this construction allows us to introduce several building blocks of independent
interest in the srUC framework in a modular and natural manner. As we explain
in the next section, essential changes to the original building blocks’ design are
needed, including the definition and the realization of sanitizable variants of
intermediate ideal functionalities, new sanitation-friendly properties for crypto-
graphic primitives, and extensions to the srUC model itself.

One difficulty in the realization of PAKE is that one cannot rely on authen-
ticated channels. As shown by Barak et al. [7], this difficulty can be tackled
generically by first designing a PAKE protocol assuming authenticated chan-
nels, and then compiling it into another protocol without authenticated channels
using the concept of “split functionalities”. Such functionalities basically allow
the adversary to disconnect parties completely, and engage in separate execu-
tions with each one of the two parties, where in each execution the adversary
plays the role of the other party. We follow a similar recipe in the design of our
PAKE protocol. In particular, we first realize subversion-resilient randomized
equality, which is essentially PAKE with authenticated channels, assuming the
existence of a functionality for sanitizable authenticated communication (which
already appeared in [18], and is denoted by FSAT). Following [7], we then define a
weaker split-authenticated (sanitizable) variant sFSAT that allows the adversary
to partition parties, and prove that a modification of their transformation allows
to lift any protocol that multi-realizes a functionality F assuming authenticated
channels to one that realizes the corresponding “split version” (i.e., sF) without
any assumption on channels, even in the presence of subversion.

In the process, we realize sFSAT by sanitizing the protocol of [7, Section 4.2],
introducing a new notion of key-sanitizable signature schemes with a matching
security property. This improves on an open problem from [18], where the authors
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were only able to realize FSAT assuming the presence of a PKI and by moving
to a “three-tier model” variant of the framework, in which each party has an
additional operative component that may only be honest or malicious. Even if
used exclusively throughout the setup phase of the protocol, providing access to
an operative component that is immune to subversion is a strong assumption
that definitely weakens any result achieved in the framework: indeed, the three-
tier model provides a trivial solution to counteract specious corruptions of the
core for any functionality, as the operative is in principle allowed to run any
protocol on behalf of the core. On the contrary, we realize the backbone of
communication among components in the two-tier model without assuming a
PKI, although only for the unauthenticated setting (i.e., sFSAT).

Finally, we apply the aforementioned transformation to our randomized
equality protocol, and realize subversion-resilient PAKE by constructing a pro-
tocol with access to the split version of the randomized equality functionality.

1.3 Technical Overview

Below, we provide an overview of the technical contributions, explaining the
main ideas and tools behind our subversion-resilient PAKE protocol.

Sanitizing OT. Defining oblivious transfer in the presence of subversion attacks
is a tricky task, as the (non-sanitized) functionality would allow a (specious)
receiver to obtain exactly one of the inputs of the sender, which may act as a
trigger if sampled maliciously. Similarly, it would allow a (specious) sender to
sample the inputs in a leaky manner and send them over to a corrupted party. For
this reason, in our sanitizable OT ideal functionality FsOT (depicted in Fig. 1),
both firewalls are allowed to blind the sender’s inputs by means of a blinding
operation. This way, the sender’s firewall can sanitize the sender’s randomly
chosen inputs, and the receiver’s firewall can sanitize the inbound inputs.

Fig. 1. Our sanitizable OT functionality FsOT, with ∗ being an appropriate blinding
operation for the input domain.

Here, we introduce a different technique compared to that of the seminal frame-
work. Namely, the functionality allows firewalls to explicitly contribute to the
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sanitation, and disregard their contribution whenever the overall party related to
that firewall is malicious. From a formal standpoint this is allowed, as there exists
a corruption translation table that maps corruptions of individual components
of a party to a corruption for the entire party, and currently the srUC framework
only supports static corruptions, so the functionality knows in advance which
parties are corrupted. This also makes sense for what concerns simulation: once
we have mapped components to a malicious party we shouldn’t simulate any-
thing that occurs within that malicious party. As an example, while handling
a malicious sender in a protocol realizing FsOT, it suffices for the simulator to
only forward to FsOT the malicious sender’s input messages. Indeed, the notion
of blinding may not even be well-defined.

In order to instantiate FsOT, we start by considering dual-mode cryptosys-
tems as in Peikert et al. [28]. Briefly, in these cryptosystems the party holding
the secret key specifies a decryption branch upon generating the keypair, and the
party holding the public key specifies an encryption branch for each ciphertext.
Decryption succeeds only for ciphertexts generated on the decryption branch.
Moving to the subversion setting, we introduce a new primitive that we call san-
itizable homomorphic dual-mode cryptosystems that extends dual-mode cryp-
tosystems by additionally providing: (1) a procedure to carry out homomorphic
operations on ciphertexts (e.g., Enc(m1) ∗ Enc(m2) = Enc(m1 ∗ m2)), (2) a pro-
cedure to maul an encryption key pk to a different encryption key ˜pk, and (3) a
procedure to maul a ciphertext under encryption key ˜pk to a ciphertext of the
same message under encryption key pk. Looking ahead, item (1) allows firewalls
to sanitize the messages input to the OT, and items (2, 3) allow to first blind a
public key, introducing a layer of sanitation, and align encryptions accordingly,
stripping that layer of sanitation away to preserve correctness. The construction
from DDH of [28, Section 5] can be extended to verify our newly introduced
properties in a straight-forward manner.

Finally, we instantiate the functionality by proposing an appropriate sani-
tation of the protocol of [28, Section 4], which unfolds as follows. The receiver
produces a key pair that may only be used to decrypt values on the encryption
branch matching the choice bit σ and sends the public key towards the sender.
This key is sanitized once by each firewall. Upon receiving the (sanitized) key,
the sender encrypts value xb on encryption branch b, for b ∈ {0, 1}, and for-
wards these ciphertexts towards the receiver. Each firewall removes one layer of
sanitation from the ciphertexts, so that the receiver can successfully decrypt the
ciphertext on branch b = σ.

In the security proof, we first show that the construction is strongly sani-
tizing, i.e., a specious core with a honest firewall is indistinguishable from an
incorruptible core with a honest firewall, by using the aforementioned proper-
ties. After that, the simulation becomes extremely close to the one of the original
protocol, as it leverages on the two (computationally indistinguishable) modes
of the CRS to map the behaviour of the adversary to consistent queries to FsOT.

We conclude the section by remarking that, exactly as in the original protocol
of [28], it is possible to re-use the same CRS across multiple protocol runs. Hence,
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we obtain a protocol that multi-realizes FsOT (i.e., a protocol that realizes the
the multi-session sanitizable OT functionality F̂sOT).

Sanitizing Randomized Equality. Canetti et al. [12] instantiate the ran-
domized equality functionality by proposing a protocol that relies on OT and
roughly unfolds as follows: for an n-bit password, each party runs FOT n-times
as the sender, inputting two random strings for each OT run, and n-times as
the receiver, inputting the i-th bit of their password in the i-th run. Intuitively,
the sender of each batch of OTs is able to choose the same random strings that
were selected by the receiver only if the passwords are the same, and all these
strings can be combined to derive a common shared key.

After defining FsOT, designing a protocol that realizes the randomized equal-
ity ideal functionality FRE in the subversion setting becomes immediate. In order
to thwart information leakage originating from a biased sampling of the ran-
dom strings, as well as inbound input-triggering strings, both firewalls blind the
sender’s inputs in both OT batches with locally-sampled random strings. The
trick to preserve correctness leverages on the symmetrical structure of the pro-
tocol: namely, random strings used for the i-th OT in which a core acts as the
sender are re-used for the i-th OT in which the same core acts as the receiver.

Split Functionalities in the srUC Model. A PAKE protocol establishes
(over an unauthenticated channel) a secret key among parties that share a com-
mon password. Thus, it makes little sense to build a PAKE protocol in a setting
that already assumes the existence of authenticated channels.

The problem of achieving any form of secure computation (including pro-
tocols such as PAKE) in the UC unauthenticated channel setting was first
described by Barak et al. [7]. In their setting, all the messages sent by parties
can be tampered with and manipulated by the adversary unbeknownst to honest
parties. The authors show that, while in this model it is not possible to achieve
the same guarantees as with authenticated channels, meaningful security can
still be provided: namely, the worst the adversary can do is split honest parties
into independent execution sets before the protocol run, and act on behalf of all
(honest) parties that are not within the same set. This way, even though honest
parties can run the entire protocol with the adversary without even noticing it,
they can rest assured that they will complete the entire run of the protocol inter-
acting with the same set of parties since the start. In [7], this notion is captured
in what the authors call split functionalities. One central result of [7] consists of
showing a generic transformation for which any protocol UC n-realizing some
n-party functionality F relying on authenticated channels can be compiled into a
similar protocol that UC-realizes the split functionality sF , but now just relying
on unauthenticated channels.

Given that [18] exclusively refers to authenticated channels, which are for-
malized with the “sanitizable authenticated transmission” functionality FSAT, in
this work we extend the notion of split functionalities to the srUC model. More
specifically, we show that the generic transformation of [7] for split protocols
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carries over to our setting whenever the underlying unauthenticated channel is
sanitizable. The latter notion is captured by the split version of FSAT, that we call
sFSAT. This functionality allows the adversary to split parties in different authen-
tication sets in a “link initialization” phase, before any message is exchanged.
After that, the behaviour is exactly the same as FSAT, except that the adversary
may deliver arbitrary messages to parties within different authentication sets.

A crucial component of the transformation is the construction of a proto-
col realizing sFSAT. For that, we introduce a new primitive that we call key-
sanitizable signatures that: (1) provides a procedure to maul a verification key
vk into ˜vk, (2) a procedure to maul a signature under verification key vk into a
signature under verification key ˜vk, and (3) is equipped with a function f such
that f(vki, ˜vkj) = f( ˜vki, vkj), with ˜vki and ˜vkj being verification keys mauled
under the same randomness. We show that the BLS signature scheme [10] is a
key-sanitizable signature scheme, with f being a bilinear map. In our protocol for
sFSAT, parties exchange locally-generated keys, which are used to “initialize the
link” by determining a session ID sid, and to sign messages that are exchanged
through the link. Firewalls sanitize these keys and re-align signatures accordingly
to preserve correctness, and the bilinear map allows parties to recompute the
same sid in the presence of firewalls mauling the keys. We note however that the
bilinear map restricts the protocol to the 2-party setting, which in turn restricts
the transformation to only capture 2-party functionalities in the srUC model.

Once a protocol for sFSAT is in place, one can simply white-box inspect the
proofs of [7] and adapt them to the srUC setting. The core result is a lemma
stating that any protocol 2-realizing a 2-party functionality F in the wsrUC
model assuming FSAT can be compiled into a protocol realizing sF in the wsrUC
model assuming sFSAT. Given that any n-party functionality F can be n-realized
in the wsrUC model by the subversion-resilient GMW compiler of [18], we also
obtain a theorem stating that any 2-party split functionality can be realized
in the wsrUC model using only unauthenticated channels (in the sFSAT-hybrid
model), matching [7, Theorem 10]. As in traditional UC, a protocol poly-realizing
a functionality roughly means that polynomially-many instances of that protocol
may re-use the same setup.

The Final PAKE Protocol. At last, we combine all our ingredients together
to realize PAKE in the subversion setting. First, we apply the split transfor-
mation to the protocol realizing FRE in the authenticated setting, obtaining a
protocol that realizes sFRE in the unauthenticated setting. Then, with a sim-
ilar argument to that of Dupont et al. [22], we argue that sFRE is sufficient
to instantiate FPAKE. This can be shown by exhibiting a trivial protocol in the
sFRE-hybrid model that exclusively interacts with sFRE, and by showing that
the power of splitting parties in sFRE can be mapped to the power of performing
password queries in FPAKE.

We observe that, as a corollary of the generic result of the previous paragraph,
one also gets a protocol realizing sFRE by relying on the srUC GMW compiler
from [18], although with worse efficiency than our concrete construction from
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DDH. For that, we provide a hand-wavy comparison of the two constructions by
considering communication and round complexity.

Importantly, in this work we consider a PAKE functionality that only pro-
vides implicit rather than explicit authentication. This means that, while parties
can be assured by the functionality that any other party capable of deriving the
same session key must possess the password, there is no direct assurance that
the counterpart has successfully computed the session key upon completion of
the protocol. This decision was made for two primary reasons: (1) it streamlines
our results, as explicit mutual authentication typically requires incorporating
additional “key confirmation” steps at the protocol’s conclusion, which would
complicate our protocol with the need for further sanitation processes, and (2)
in many practical scenarios, such as secure channels, explicit authentication is
not a requirement. Moreover, in our setting, mutual explicit authentication is
inherently provided by any higher-level protocol that utilizes our PAKE as a
foundation. For instance, in applications involving secure messaging, the act of
successfully exchanging messages serves as explicit confirmation that both par-
ties share the same session key.

Moreover, as a technical remark stemming from the srUC model, the PAKE
functionality we realize implicitly includes the wrapper of [18] that simply adds
dummy firewall parties in order to prevent trivial distinguishing from the envi-
ronment. This also holds for FRE, but causes no differences in the behaviour of
both functionalities. For a cleaner presentation and following [18], we omit the
wrapper when using hybrid functionalities.

1.4 Related Work

Next, we discuss related works on the topics of reverse firewalls, subversion-
resilient cryptography in general, and PAKE.

Reverse Firewalls and Subversion. Reverse firewalls were introduced by
Mironov and Stephens-Davidowitz [27], who showed how to construct reverse
firewalls for oblivious transfer (OT) and two-party computation with semi-honest
security. Follow up works showed how to construct reverse firewalls for many
other cryptographic primitives and protocols including: secure message transmis-
sion and key agreement [19,21], interactive proof systems [24], and maliciously
secure MPC for both the case of static [16] and adaptive [17] corruptions. How-
ever, most of these constructions lack modularity, as the security of each firewall
is proven in isolation and does not extend to larger protocols when combined
with other firewalls. This was addressed by Chakraborty, Magri, Nielsen and Ven-
turi [18] with the proposal of the Subversion-Resilient Composability framework
(srUC). The srUC allowed for the first time to build and to analyse subversion-
resilient protocols under composition. [18] shows how to sanitize the classical
GMW compiler [25] for MPC under subversion. Towards that, it also introduces
the concept of sanitizable commitment and sanitizable commit-and-prove.

More recently and concurrently to this work, an alternative framework for
subversion-resilient UC was put forward by Arnold et al. [4]. Compared to [18],
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this new framework captures reverse firewalls in the plain UC model, but char-
acterizes subversion by exclusively allowing an adversary to tamper with the
function generating the randomness of a protocol. This rules out simple subver-
sion attacks which [18] (and our paper) accounts for, such as having a specious
core change its input to part of its secret state upon receiving a specific triggering
value.

Ringerud [29] explored the problem of achieving subversion-resilient AKE
in a standalone fashion (i.e., without reverse firewalls or watchdogs), providing
intuition on why realizing this primitive appears to be hard in such an adversarial
setting.

Additional work on subversion includes algorithm substitution attacks
[6,9,20], parameter subversion [2,3,8,23], Cliptography [5,31,32], subliminal
channels [33,34] to list a few. We refer to [18,27] for further related works,
such as watchdogs and self-guarding.

PAKE. The seminal work by Canetti et al. [13] formalizes PAKE as an ideal
functionality, and proposes an efficient protocol securely realizing this function-
ality in the setting of malicious corruptions and under universal composabil-
ity [11], i.e., when protocols can be arbitrarily composed with other protocols.
The description was later extended to explicit mutual authentication in [12,26],
in which parties are able to tell whether they effectively authenticated or not.
Our work is the first to achieve subversion-resilient PAKE in the UC framework.

1.5 Organization

In Sect. 2, we give a concise introduction to the subversion-resilient UC frame-
work of [18]. In Sect. 3, we define and instantiate sanitizable oblivious trans-
fer. In Sect. 4, we instantiate a subversion-resilient protocol for the randomized
equality ideal functionality. In Sect. 5, we define and instantiate the sanitizable
split-authenticated functionality, and port the transformation of Barak et al. [7]
that allows to remove authenticated channels from our reference framework. In
Sect. 6, we combine the results of previous sections to achieve subversion-resilient
PAKE. Finally, in Sect. 7, we conclude the paper with a few related open prob-
lems for further research. See Fig. 2 for a visual representation of how our results
are linked to one another.

2 A Brief Recap of Subversion-Resilient UC

We give a brief overview of subversion resilience in the UC framework (srUC for
short). We refer the reader to [18] for further details, and to [11] for a complete
treatment of the UC framework.
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Authenticated Communication (FSAT) Unauthenticated Communication (sFSAT)

DME from DDH [28]

Thm. 1

SHDME (Def. 1)

Thm. 2

(Multi-realizing) FsOT

Thm. 3

FRE
Thm. 7

BLS [10]

Thm. 5

KS-EUF-CMA +
IDComb (Def. 2, 3, 4)

Thm. 6

sFSAT

sFRE

Thm. 8

FPAKE

GMW (srUC) [18] Thm. 4 Any 2-party sF

Fig. 2. A visual summary of the contributions of this paper. All the functionalities
are realized in the srUC framework of [18]. DME stands for Dual-Mode Encryption.
SHDME stands for Sanitizable Homomorphic DME. KS-EUF-CMA stands for Key-
Sanitizable EUF-CMA. IDComb is a shorthand for Consistent Identity Combinability.

2.1 Corruption Types

Each party Pi in the protocol is modelled as two independent parties: a core Ci,
which hosts the code associated with the protocol (and may contain secrets),
and a firewall Fi, which may intervene on all the messages associated with their
respective core (both inbound and outbound). Since cores and firewalls are inde-
pendent parties, they may also be corrupted independently. The model of [18]
specifies that the relevant corruption cases for the core are Honest, Mali-
cious, or Specious, while the ones for the firewall are Honest, SemiHonest,
or Malicious. Mapping the corruption possibilities for the parties Pi = (Ci,Fi)
in a regular UC functionality gives rise to the following corruption translation
table (Table 1):
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Table 1. The corruption translation table of [18].

Core C Firewall F Party P in F
Honest SemiHonest Honest
Specious Honest Honest
Honest Malicious Isolate

Malicious Malicious Malicious

Specious Corruption. A specious corruption is a type of subversion where
the subverted core looks indistinguishable from the honest core to any efficient
test. The main idea is that we consider corruptions where a core Ci has been
replaced by another implementation ˜Ci which cannot be distinguished from Ci

by black-box access to ˜Ci or Ci. Intuitively, a specious corruption can be thought
of as a subversion that remains undetectable.

Isolate Corruption. Isolate is a weaker type of corruption that models the
setting where a malicious firewall simply cuts the communication of an honest
core with the outside world. This is typically modelled as a Malicious corrup-
tion in the authenticated setting, and as a MITM attack in the unauthenticated
setting, and can therefore be safely dropped from the analysis.

Strong Sanitation. A firewall is strongly sanitizing if an adversary is unable to
distinguish an execution of the protocol with a specious core equipped with an
honest firewall from an execution of the protocol with an honest core equipped
with an honest firewall. As shown in [18], whenever the firewalls are strongly san-
itizing, the Specious core and Honest firewall case is the same as considering
an Honest core and an Honest firewall.

2.2 Ideal Functionalities

There are two types of ideal functionalities in srUC: sanitizable functionalities
and regular functionalities. Sanitizable functionalities are the ones where cores
and firewalls explicitly interact with the functionality. For that, sanitizable func-
tionalities expose, for each party Pi, an input-output interface IOi that interacts
with the core Ci, and a sanitation interface Si that interacts with the firewall
Fi. Regular functionalities have the same flavor of the functionalities used in
the UC framework, where the functionality will only communicate with parties
and is not aware of cores and firewalls. The goal of considering regular func-
tionalities is that it is perfectly valid and desirable to be able to build protocols
that realize a regular functionality (e.g., coin tossing) under subversion attacks.
However, since there is no support for sanitation interfaces in regular functional-
ities, the model considers a wrapped version of the functionality F , denoted by
Wrap(F), that handles all the boilerplate code of translating the combinations
of corruptions of cores and firewalls to corruptions of parties in F . The wrapper
also passes any message coming from the functionality and directed to party Pi

to the corresponding core Ci and firewall Fi, and it is needed to avoid trivial
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distinguishing attacks in the UC framework, since the actual protocol will be
implemented with cores and firewalls. For what concerns security definitions,
two separate notions are presented in [18], according to the type of functional-
ity that is being realized: subversion-resilient UC (srUC) security for sanitizable
ideal functionalities, and wrapped subversion-resilient UC (wsrUC) security for
regular ideal functionalities. We refer the reader to [18] for the formal definitions
and further details.

2.3 Communication Channels

In all the protocols of [18], communication is mediated by a sanitizable ideal func-
tionality for authenticated communication FSAT, which fundamentally embeds
three capabilities:

• It allows to distribute a setup (e.g., a CRS) by means of a Setup algorithm.
• It provides secure channels between cores and their respective firewall.
• It provides authenticated channels between firewalls.

In what follows, we report a variant of the description of FSAT that does not
include the first capability. This is a design choice that allows to better separate
setup and communication: indeed, the former may be captured by a separate
ideal functionality Fcrs.

Functionality FSAT

– On input (Send,Pi,Pj , a) on IOi, it forwards the tuple on Si. As in the orig-
inal description, we assume that a is sent at most once from honest parties.

– On input (Send,Pi,Pk, b) on Si, it leaks the tuple to the adversary S, and
internally stores the tuple.

– On input (Deliver, (Send,Pi,Pk, b)) from the adversary, where the Send
tuple is stored, it outputs (Receive,Pi,Pk, b) on Sk and deletes the tuple.

– On input (Receive,Pi,Pm, c) on Sm, it outputs (Receive,Pi,Pm, c) on IOm.

An important observation is that FSAT induces a core-to-core authenticated chan-
nel. While this is an acceptable backbone of communication for our protocols
in Sects. 3 and 4, it makes little sense to instantiate PAKE by already assum-
ing authenticated channels. In Sect. 5, we overcome this limitation by defining a
weaker functionality sFSAT that models the unauthenticated setting by allowing
the adversary to partition parties, in line with the work of Barak et al. [7].

3 Sanitizing Oblivious Transfer

In this section, we first propose a sanitizable ideal functionality for oblivious
transfer that will be used as a building block for the sanitation of randomized
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equality in Sect. 4. Secondly, we recap dual-mode cryptosystems, define saniti-
zable homomorphic dual-mode cryptosystems, and exhibit an instantiation for
this new primitive from the DDH assumption. We use the latter notion to sani-
tize the generic framework for OT of Peikert et al. [28], obtaining a protocol for
the sanitizable oblivious transfer functionality FsOT. Finally, we argue that, in
line with the instantiation of [28], our protocol can reuse the same CRS across
multiple runs, thus realizing the multi-session extension of FsOT (also denoted
by F̂sOT).

3.1 Sanitizable OT

Following the ideas presented in the technical overview in Sect. 1.3, we describe
sanitizable ideal functionality for oblivious transfer FsOT, in which both firewalls
may intervene in the sanitation of the sender’s inputs.

Functionality FsOT

FsOT is a sanitizable ideal functionality that interacts with the sender S = (CS,FS)
and the receiver R = (CR,FR), parameterized by input domain I ⊆ {0, 1}n and
a blinding operation ∗ : I2 → I.

Interface IOi:

Upon receiving a query (sender, sid, (x0, x1)) from CS on IOS:
Record (sender, sid, (x0, x1)) and forward the tuple on Si. Ignore subse-
quent commands of the form (sender, sid, ·).

Upon receiving a query (receiver, sid, σ) from CR on IOR:
Check if a record (sender, sid, (x̂0, x̂1)) exists. If this is the case, check
the following:

* The message (blind, sid, ·) was sent to FsOT on SS. If S is malicious
according to the corruption translation table, mark this check as
passed.

* The message (blind, sid, ·) was sent to FsOT on SR. If R is malicious
according to the corruption translation table, mark this check as
passed.

If the conditions above hold, output (sid, x̂σ) to R, sid to the adversary
S, and halt. Otherwise, send nothing to R but continue running.

Interface Si:

Upon receiving a query (blind, sid, (x′
0, x

′
1)) from FS on SS:

If S is malicious according to the corruption translation table, do nothing.
Otherwise, check if a record (sender, sid, (x0, x1)) exists. If so, update
the tuple to (sender, sid, (x̃0, x̃1)), with x̃b = xb ∗ x′

b. Otherwise, do
nothing. Ignore future commands of the form (blind, sid, ·) on SS.

Upon receiving a query (blind, sid, (x′′
0 , x′′

1 )) from FR on SR:
If R is malicious according to the corruption translation table, do nothing.
Otherwise, check the following:

* A record (sender, sid, (x̃0, x̃1)) exists.
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* A message (blind, sid, ·) was sent to FsOT on SS. If S is malicious
according to the corruption translation table, mark this check as
passed.

If the conditions above hold, update the tuple to (sender, sid, (x̂0, x̂1)),
with x̂b = x̃b ∗x′′

b . Otherwise, do nothing. Ignore future commands of the
form (blind, sid, ·) on SR.

The ideal functionality is parameterized by a blinding operation ∗, which
may be tailored to the input domain of choice (e.g., for additive blinding,
x0 ∗ x′

0 = x0 ⊕ x′
0; for multiplicative blinding, x0 ∗ x′

0 = x0x
′
0). Furthermore, the

functionality disregards blinding inputs from firewalls of parties that, accord-
ing to the corruption translation table, are malicious. As discussed throughout
the technical overview in Sect. 1.3, this is reasonable: the corruption status of
individual components can be determined in advance (as we are in the static
setting), and their combined behaviour can be considered as a single party by
following the corruption translation table. If the joint party is malicious, we do
not have to simulate anything related to messages internally exchanged by the
adversary. In particular, the blinding operation may not be well-defined at all.

3.2 Sanitizable Homomorphic Dual-Mode Encryption

Dual-mode cryptosystems operate like traditional public-key cryptosystems,
except for the following differences. First, they introduce the notion of encryp-
tion branches, for which the key generation algorithm takes as an additional
input a branch σ ∈ {0, 1}. The party holding the public key can choose either
branch b ∈ {0, 1} over which to encrypt a message. The party holding the secret
key is able to decrypt the ciphertext successfully only if σ = b. Second, they
rely on a common-reference string that may be setup either in messy mode or
decryption mode. These modes are computationally indistinguishable and induce
different algorithms for the generation of a trapdoor, yielding different security
guarantees: in messy mode, the sender has statistical security and the receiver
has computational security, whereas in decryption mode the security properties
are mirrored. We refer the reader to [28, Section 3] for the formal definition and
further details.

Sanitizable Homomorphic Dual-Mode Cryptosystems. Looking ahead,
we need to augment dual-mode cryptosystems to allow the sanitation of public
keys, ciphertexts, and plaintexts related to ciphertexts. For that, we formally
define sanitizable homomorphic dual-mode cryptosystems in what follows.

Definition 1 (Sanitizable Homomorphic Dual-Mode Cryptosystems).
A sanitizable homomorphic dual-mode cryptosystem consists of a tuple of algo-
rithms (Setup, KeyGen, Enc, Dec, FindMessy, TrapKeyGen, HomOp, MaulPK,
AlignEnc) with the following properties:
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1. Dual-mode cryptosystem: The tuple of algorithms (Setup,KeyGen,Enc,
Dec,FindMessy,TrapKeyGen) constitutes a dual-mode cryptosystem.

2. Homomorphic ciphertexts: For every σ ∈ {0, 1}, for every (pk, sk) ←$

KeyGen(σ), for every ci ←$ Enc(pk, σ,mi), with i ∈ {0, 1} and mi ∈ {0, 1}n,
HomOp(m0,m1) produces a new ciphertext of message m0 ∗m1, i.e., HomOp(
c0, c1) = Enc(pk, σ, (m0 ∗ m1)).

3. Consistent key sanitation: For every σ ∈ {0, 1}, for every (pk, sk) ←$

KeyGen(σ), for every ρ ∈ {0, 1}n, MaulPK(pk, ρ) outputs a new encryption key
˜pk with the following property. For every c̃ ←$ Enc(˜pk, σ,m), with i ∈ {0, 1}
and m ∈ {0, 1}n, AlignEnc(c, ρ) produces a new ciphertext c under public key
pk, i.e., AlignEnc(c̃, ρ) = c, where c = Enc(pk, σ,m).

Intuitively, MaulPK and AlignEnc are defined as a (symmetric) tuple of algo-
rithms as firewalls will first sanitize the outbound encryption key by running
MaulPK with some randomness. Then, upon receiving any ciphertext encrypted
under the new mauled public key, the firewall will “strip” the layer of sanita-
tion by using the same randomness used for MaulPK, outputting a ciphertext
containing the same message for the non-mauled public key pk.

Remark 1. The MaulPK, AlignEnc, HomOp algorithms are outputting keys and
ciphertexts implicitly combining the randomness of their inputs. This is essential
in the context of sanitation, as it allows a firewall to run these algorithms to
combine their “good randomness” to destroy subliminal channels stemming from
values with “bad randomness” output by their core.

Instantiation from DDH. We briefly recap the instantiation of dual-mode
cryptosystems from DDH of [28, Section 5]. In what follows, we denote G as the
group description on a cyclic group G of prime order p for which DDH is hard,
with generators g, h.

• The CRS is a tuple (g0, h0, g1, h1), with different trapdoors according to the
mode of operation.

• KeyGen(σ) = ((gr
σ, hr

σ), r) = ((pk1, pk2), sk) = (pk, sk).
• Enc(pk,m, b) = (gs

bh
t
b, pks

1pkt
2m) = (c1, c2).

• Dec(sk, c) = c2/cr
1.

The DDH cryptosystem is compatible with all the additional interfaces we intro-
duced in Definition 1, and we define algorithms matching the newly introduced
properties in a straight-forward manner:

• MaulPK(pk, ρ): Output pkρ.
• AlignEnc(c, ρ): Parse c = (c1, c2). Output c̃ = (cρ

1, c2).• HomOp(c0, c1): Output c0c1.

Theorem 1. The DDH cryptosystem of [28] with the additional algorithms spec-
ified above is a sanitizable homomorphic dual-mode cryptosystem, assuming that
DDH is hard for G.

The theorem follows by inspection of the newly-introduced algorithms. A formal
proof is given in the full version.
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3.3 A Generic Framework for Sanitizable OT

As shown in the generic framework of [28, Section 4], having access to a dual-
mode cryptosystem allows the instantiation of FOT in a natural manner: the
receiver uses its choice bit σ as the selected decryption branch, and the sender
encrypts each of its inputs xb on a separate encryption branch b ∈ {0, 1}. The
receiver will only be able to decrypt the ciphertext on branch σ = b.

Sanitizing the Framework. From a high-level perspective, our sanitized pro-
tocol leverages homomorphic ciphertexts to blind the sender’s inputs and uses
consistent key sanitation to sanitize the receiver’s outbound encryption key and
realign the inbound ciphertexts for decryption purposes. These operations also
destroy any potential subliminal channel linked to the original ciphertexts or to
the keys. In Fig. 3, we depict a protocol run showing only the firewall of the
sender, since the firewall of the receiver behaves exactly in the same way.

Fig. 3. A sanitation of the generic framework of Peikert et al. [28], realizing FsOT. The
receiver’s firewall is omitted, as it runs the same code as FS.

Theorem 2. The protocol in Fig. 3, parameterized by mode ∈ {mes, dec}, real-
izes the sanitizable functionality FsOT in the (FSAT,Fcrs)-hybrid model under
static corruptions. For mode = mes, the sender’s security is statistical and the
receiver’s security is computational; for mode = dec, the security properties are
reversed.

Intuitively, we first show that the firewalls are able to thwart all subversion
attacks (both inbound and outbound). Then, we simulate similarly to the original
proof, with the twist that we do not have to simulate inputs of malicious parties
(as per the considerations in the technical overview). We defer the formal proof
to the full version.



Key Exchange in the Post-snowden Era 117

3.4 Multi-session FsOT

Informally, a multi-session ideal functionality in UC is an ideal functionality that
allows “multiple runs” of the functionality using the same setup. As a concrete
example, the commitment functionality FCOM allows a committer to commit to
a single value; to produce another commitment a new and independent instance
of (the protocol realizing) FCOM must be spawned with a brand new setup. In
contrast, the multi-session functionality FMCOM allows a committer to perform
poly-many commitments using the same setup. Hence, using multiple instances
of FMCOM has the same effect as using a single instance of FMCOM.

Moving to our case, we note that the generic framework of [28] actually
realizes the multi-session version of FOT (also denoted as F̂OT). Given that our
protocol in Fig. 3 has the same structure as the protocol of [28], we observe
that we can reuse the same CRS across multiple runs, each with a distinct sub-
session ID. The presence of subverted cores does not impact this property, as
the sanitation operated from the firewalls uses independently-sampled random
strings for each sub-protocol run.

4 Sanitizing Randomized Equality

In this section, we present our sanitized protocol for the (regular) randomized
equality ideal functionality FRE that relies on authenticated channels (i.e., FSAT)
and FsOT, following the construction of Canetti et al. [12].

4.1 Description of FRE

We describe a variation of the randomized equality ideal functionality FRE of [12],
with technical improvements from Dupont et al. [22].

Functionality FRE

The functionality FRE is parameterized by a security parameter λ. It interacts
with an initiator I = (CI,FI), a responder R = (CR,FR), and the adversary S via
the following messages:

Upon receiving a query (NewSession, sid, I, R, wI), from I:
Record (I, R, wI) and send a message (sid, I, R) to S. Ignore all future
messages from I.

Upon receiving a query (ok, sid) from S:
Send a message (wakeup, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, wR) from R:
• If wR = wI, choose skey ←$ {0, 1}λ and store skeyI = skeyR = skey.
• If wR �= wI, then set skeyI ←$ {0, 1}λ, skeyR ←$ {0, 1}λ.

In both cases, ignore subsequent inputs from R.
Upon receiving a query (NewKey, sid,P, K), P ∈ {I, R} from S:

• If any of the following conditions hold, output (sid, K) to party P:
– P is corrupted.
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– wI = wR, and the peer of P is corrupted.
• Otherwise, output (sid, skeyP) to party P.

Ignore all subsequent (NewKey,P) queries for the same party P.

4.2 Randomized Equality from OT

We sanitize the RE from OT protocol of [12, Section 2.2] by using FsOT, restrict-
ing to implicit mutual authentication as per the considerations in the technical
overview. Compared to the non-sanitized protocol, we parameterize the input
domain I and the respective blinding operation ∗, in line with the description
of FsOT. For ease of exposition, we depict the protocol in Fig. 4 assuming 1-bit
passwords. The n-bit password case runs exactly in the same way except that (i)
it uses n OTs within the multi-session sanitizable OT functionality F̂sOT, and (ii)
it computes keys using operator ∗ with n random strings rather than only one.
In order to preserve correctness, we leverage the symmetry of the protocol. In
particular, the values each party retrieves from the batch of OTs in which they
act as receivers embeds the random strings that are used by both firewalls, and
these strings are the same also for the other OT batch. This also thwarts both
input triggering attacks, as well as information leakage.

Theorem 3. The protocol in Fig. 4 wsrUC-realizes the FRE ideal functionality
in the (FsOT,FSAT)-hybrid model under static corruptions.

Fig. 4. A sanitizing protocol for FRE from sanitizable OT with a 1-bit password.
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Within the proof, we first show strong sanitation of firewalls, and then proceed
similarly to [12]. We defer the formal proof and an explicit analysis of correctness
to the full version.

5 Subversion-Resilient Split Functionalities

In this section, we extend the notion of split functionalities of Barak et al. [7]
to the srUC framework. Informally, we want to show that, for any well-formed1

regular 2-party2 ideal functionality F , there exists a protocol that realizes the
2-party sF functionality with wsrUC-security in the CRS model. More formally,
the goal of this section consists in proving an adaptation of [7, Theorem 10] to
our setting, i.e.:

Theorem 4. Let F be a (regular) 2-party UC functionality. Then, assuming
key-sanitizable signatures with consistent identity combinability, there exists a
protocol that securely realizes the 2-party split functionality sF in the wsrUC
model.

Towards that, we follow the same strategy as [7] and proceed in the following
three stages:

– Link initialization: The first step consists in building the sanitizable split-
authenticated functionality sFSAT that parties will use to communicate on.
The sFSAT functionality can be seen as the split version of the FSAT function-
ality.

– Multi-session security : As the second step, we show that when authenticated
channels are available, any functionality can be “poly-realized” in the wsrUC
model. Here, poly-realizing a functionality informally means that security of
the protocol implementing the functionality still holds even when multiple
(i.e., poly-many) instances of the protocol share the same setup. For that, we
show that the subversion-resilient GMW protocol from [18] poly-realizes any
functionality in the wsrUC model.

– Unauthenticated channels : Finally, we adapt the generic transformation of [7]
that transforms any protocol π that 2-realizes a 2-party functionality F given
authenticated channels (i.e., FSAT) in the wsrUC model into a protocol that
realizes sF given access to sFSAT in the wsrUC model.

Next, we look at each of these stages individually towards demonstrating Theo-
rem 4.

1 The “well-formed” property is to rule out unrealistic functionalities as explained
in [7,15].

2 We restrict our attention to 2-party functionalities (in contrast to [7]) as the theorem
relies on the sanitizable sFSAT functionality that we only show how to realize for the
2-party setting.
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5.1 Building Link Initialization

In this section we formally define sFSAT (i.e., the split version of the sanitiz-
able authenticated channel functionality FSAT of [18]) and build a protocol that
realizes it in the 2-party setting in the srUC model. For that, we introduce the
notion of key-sanitizable signatures and show that it can be instantiated with
the BLS signature scheme [10].

Description of sFSAT. The sFSAT functionality has a similar structure to
FSAT, with the addition of having a link initialization phase. In contrast with
FSAT, the only guarantee provided by the functionality is that each party will
be interacting with the same entity throughout the entire protocol run, but that
entity could either be the expected party or the adversary itself. We describe
sFSAT next.

Functionality sFSAT

sFSAT is a sanitizable ideal functionality that interacts with an adversary S and
a set of parties, each composed of a core C and a firewall F. The functionality
consists of the following communication interfaces.

Initialization

– Upon activation with input (Init, sid) from party P: Parse sid = (P, sid′)
where P is a set of parties that includes P. Forward (Init, sid,P) to the
adversary S.

– Upon receiving the message (Init, sid,P, H, sidH), from S: Verify that H ⊆ P,
that the list H of party identities includes P = (C,F), and that for all recorded
sets H ′ either (i) H ∩H ′ contains only corrupted parties (as per the standard
corruption transition table in Table 1) and sidH �= sidH′ , or (ii) H ′ = H
and sidH = sidH′ . If any of the check fails, do nothing. Otherwise, output
(Init, sid, sidH) to P and record (H, sidH) if not yet recorded.

Message Authentication

– Upon receiving the message (Send, sid,Pi,Pj , m) on IOi where Pj ∈ P: Out-
put the tuple on Si.

– Upon receiving the message (Send, sid,Pi,Pj , m̃) on Si: Add the tuple to
an (initially empty) list W of waiting messages. The same tuple can appear
multiple times in the list. Then, leak the tuple to S.

– Upon receiving the message (Deliver, (Send, sid,Pi,Pj , m̃)) from S:
• If Pj did not previously receive an (Init, sid, sidH) output, do nothing.
• Else, if Pi is in the authentication set H of Pj , and Pi is uncorrupted,

then: if there is a tuple (Send, sid,Pi,Pj , m̃) ∈ W, remove one appear-
ance of the tuple from W and output (Receive, sid,Pi,Pj , m̃) on Sj .
Otherwise, do nothing.

• Else (i.e., Pj received (Init, sid, sidH), and either Pi is corrupted or Pi /∈
H), output (Receive, sid,Pi,Pj , m̃) on Sj , regardless of W.

– Upon receiving the message (Receive, sid,Pi,Pj , m̂) on Sj , output the tuple
on IOj .
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The functionality consists of a preliminary initialization phase and the actual
message authentication phase. In the initialization phase, the adversary controls
how parties will be partitioned in the respective authentication sets. Intuitively,
parties within the same authentication set will be able to communicate as if
there was an authenticated channel between them. It is however possible for the
adversary to participate in different authentication sets on behalf of all corrupted
parties and any party outside of that authentication set. In the message authen-
tication phase, honest parties will transmit messages in an authenticated fashion
within the same authentication set. However, they may very well receive mes-
sages out of the blue from the adversary on behalf of any party that is corrupted
or outside the authentication set.

With respect to sanitation, whenever a core sends a message m with des-
tination Pj on IOi, the message is output on Si. This means that m is output
to a firewall that will decide if/how to sanitize m to m̃ in any arbitrary way,
without involving the functionality in the sanitation process. Once the firewall
determines the message m̃ to send to Pj , m̃ is leaked to the adversary. Accord-
ing to the partition of parties performed in the link authentication phase, the
adversary has different capabilities:

• If the recipient party is within the same authentication set, the message is
added to a message queue, and the adversary can exclusively control its deliv-
ery time. This behaviour is indeed equivalent to FSAT, in which the message is
stored and then output to the recipient party whenever the adversary decides
to do so.

• If Pi is corrupted or the parties are in different authentication sets, the adver-
sary may deliver arbitrary messages to Pj , disregarding the message queue.

Whenever the adversary allows the delivery of a message, that message is output
to the firewall Fj . Similarly to the sending phase, Fj may now modify the message
arbitrarily without involving the functionality. Once a (potentially different)
message m̂ is determined by Fj , it is delivered by the functionality to Cj .

We stress that, as it is the case for FSAT, cores and their respective firewall
are allowed to freely communicate through secure channels. This is achieved by
means of Send messages (from a core to its firewall), and Receive messages
(from a firewall to its core). In principle, a firewall may send back any message to
its core, even if it was not related to any Deliver message from the adversary.

Key-Sanitizable Signature Schemes. In the construction of FSA of [7,
Section 4.2], parties exchange locally-generated keys and sign their messages in
order to preserve the split-authenticated security of the communication chan-
nel. However, in order to avoid subversion attacks, both inbound and outbound
verification keys have to be appropriately sanitized by firewalls, breaking cor-
rectness in the verification of the signature. In order to overcome this limitation,
we introduce a new notion that we call key-sanitizable signature schemes.

Informally, a key-sanitizable signature scheme allows to maul the verifica-
tion key from vk to ˜vk by means of an algorithm MaulVK that takes as input
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randomness ρ. The same randomness may be re-used by an algorithm AlignSig
to align an (accepting) signature σ produced under secret key sk, producing a
signature σ̃ that verifies with mauled key ˜vk. The latter operation should also
be invertible, meaning that the signature σ may be re-computed from σ̃ and ρ.
We formally define this notion as a natural extension of traditional signatures in
Definition 2, introducing a matching security notion in Definition 3 that extends
EUF-CMA security to account for the newly introduced algorithms. This new
security notion is implied in a black-box manner by any EUF-CMA scheme
supporting the aforementioned algorithms.

Definition 2 (Key-sanitizable signature scheme). A key-sanitizable sig-
nature scheme consists of a tuple of polynomial-time algorithms (KeyGen,Sign,
Vrfy,MaulVK,AlignSig,UnAlignSig) with the following properties:

1. Correctness: For every (vk, sk) ←$ KeyGen(1λ), for every σ ←$ Sign(sk,m)
with m ∈ {0, 1}n, Vrfy(vk, (m,σ)) = 1.

2. Consistent key sanitation: For every (vk, sk) ←$ KeyGen(1λ), for every
ρ ∈ {0, 1}n, MaulVK(vk, ρ) outputs a new verification key ˜vk with the following
property. For every σ ←$ Sign(sk,m) with m ∈ {0, 1}n, AlignSig((vk, σ,m), ρ)
produces an accepting signature σ̃ for message m verifiable by verification key
˜vk, i.e., Vrfy( ˜vk,AlignSig((vk, σ,m), ρ)) = 1, where ˜vk = MaulVK(vk, ρ) and
σ = Sign(sk,m).

3. Alignment invertibility: For every (vk, sk) ←$ KeyGen(1λ), for every
σ ←$ Sign(sk,m) with m ∈ {0, 1}n, for every ρ ∈ {0, 1}n, for every
˜vk = MaulVK(vk, ρ), for every σ̃ = AlignSig((vk, σ,m), ρ), the algorithm
UnAlignSig returns the original signature σ, i.e., UnAlignSig(( ˜vk, σ̃,m), ρ) = σ

Definition 3 (Key-sanitizable EUF-CMA security). A key-sanitizable sig-
nature scheme is key-sanitizable existentially unforgeable against chosen message
attacks (KS-EUF-CMA) if the probability of the adversary A winning the fol-
lowing game is negligible:

– Sample (vk, sk) ←$ KeyGen(1λ) and a blinding factor ρ ←$ {0, 1}n, and run
A(vk, ρ). Compute ˜vk = MaulVK(vk, ρ).

– Upon receiving a query from A with message m, compute σ = Sign(sk,m) and
AlignSig((vk, σ,m), ρ). Respond with σ̃ and add m to a list M.

– Challenge A to produce a signature σ̃∗ on message m∗ /∈ M that verifies
under ˜vk.

– Upon receiving a response (m∗, σ̃∗), A wins if Vrfy
˜vk(m

∗, σ̃) = 1.

Lemma 1. Any EUF-CMA signature scheme that supports algorithms MaulVK,
AlignSig, and UnAlignSig, as defined in Definition 2, is also KS-EUF-CMA.

The proof consists of a black-box reduction to EUF-CMA, and is deferred to the
the full version.
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Combining Verification Keys. Looking ahead, the link initialization phase of
the protocol realizing sFSAT relies on the determination of session IDs via (iden-
tifying) verification keys of parties, which get sanitized by firewalls in different
directions. For instance, in the 2-party setting, core Ci has access to vki and ˜vkj ,
and core Cj has access to ˜vki and vkj , with ˜vki, ˜vkj being appropriate sanitations
of vki, vkj using the same randomness ρi. For this reason, we additionally define
an appropriate generic algorithm that allows to combine these keys either way
to output the same value.

Definition 4 (Consistent identity combinability). A key-sanitizable sig-
nature scheme has consistent identity combinability if it supports an algorithm
IDComb with the following property:

IDComb(vki,MaulVK(vkj , ρ)) = IDComb(MaulVK(vki, ρ), vkj).

Instantiation from BLS. We report the BLS signature scheme [10] in the
following.

• KeyGen(1λ) = (sk, vk) = (x, gx)
• Sign(sk,m) = H(m)sk

• Vrfy(vk, (m,σ)): Check ê(σ, g) = ê(H(m), vk)

The BLS signature scheme is already compatible with all the additional inter-
faces required by a key-sanitizable signature scheme. Moreover, bilinear maps
immediately induce the consistent identity combinability property:

• MaulVK(vk, ρ) = vkρ

• AlignSig((vk, σ,m), ρ) = σρ

• UnAlignSig((vk, σ̃,m), ρ) = σ̃ρ−1

• IDComb(vki, vkj) = ê(vki, vkj)

Theorem 5. The BLS signature scheme [10] with the additional algorithms
specified above is a key-sanitizable signature scheme with KS-EUF-CMA security
and consistent identity combinability, assuming that H is a random oracle and
that CDH is hard for G.

The theorem follows by inspecting the newly-introduced algorithms, and by
observing that the BLS signature scheme is EUF-CMA. We defer the formal
proof to the full version.

Realizing sFSAT. We now describe a protocol that realizes sFSAT in the 2-
party setting, which follows a similar structure to that of [7, Section 4.2]. The
link initialization phase is depicted in Fig. 5, and the message authentication
phase in Fig. 6. A verbose description of the protocol can be found in the full
version.
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Fig. 5. Diagram of the protocol implementing the link initialization phase of sFSAT.

Theorem 6. The protocol depicted in Figs. 5, 6 realizes the sFSAT functional-
ity, assuming a KS-EUF-CMA signature scheme with consistent identity com-
binability and the presence of secure channels between cores and their respective
firewall.

Intuitively, the proof runs as the one for the non-sanitized protocol of [7], except
that the blinding operations of firewalls thwart subversion attacks, and consis-
tency between keys is obtained by using IDComb. We defer the formal proof to
the full version.

5.2 Multi-realizing any Ideal Functionality in the wsrUC Model

Next, we prove the following lemma.

Lemma 2. For any regular (well-formed) ideal functionality F there exists a
protocol π that n-realizes F in the wsrUC model assuming authenticated channels
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in the presence of static and malicious adversaries for n = poly(λ). Moreover,
the protocol π is such that all instances of π use a single instance of Fcrs.

Informally, such a protocol can be obtained from the adaptation of the GMW
compiler to the srUC framework shown in [18]. The formal proof of the lemma is
essentially [7, Theorem 13] verbatim, except that we replace results for the UC
framework with their counterparts in the srUC framework, shown in [18] (e.g.,
the UC composition theorem and the GMW compiler). We defer the formal proof
to the full version.

5.3 Realizing Generic Split Functionalities

We finally show that any protocol π that wsrUC-2-realizes a 2-party function-
ality F in the FSAT-hybrid model (i.e., using authenticated channels) can be
compiled into a protocol Π that wsrUC-realizes the split 2-party functionality
sF in the sFSAT-hybrid model (i.e., using unauthenticated channels). The sF
functionality is exactly the same as in [7]. Indeed, since we wsrUC-realize a reg-
ular ideal functionality F assuming FSAT, our end goal is to wsrUC-realize the
split counterpart of F assuming sFSAT, which is also a regular ideal functionality.

Lemma 3. Let G be a setup functionality, let F be a 2-party ideal functionality,
and let πF be a protocol that securely 2-realizes F in the wsrUC model with

Fig. 6. Diagram of the protocol implementing the message authentication sFSAT, split
in each of the interfaces.
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authenticated communication (i.e., FSAT) and a single instance of G. Then, there
exists a protocol ΠF wsrUC-realizing the split functionality sF using a single
instance of sFSAT and a single instance of G.
To prove this theorem, we adapt the proof of [7, Lemma 4.1] to the wsrUC
model. First, we describe the protocol ΠF , which is obtained by adapting the
compiler presented in [7]. In particular, the compiler of [7] transforms a protocol
πF realizing functionality F in the UC FMAUTH-hybrid model into a protocol
ΠF realizing functionality sF in the UC FSA-hybrid model. This result can be
mapped to our setting by replacing FMAUTH with FSAT, and FSA with sFSAT,
with the crucial detail that messages coming from sFSAT are forwarded to the
instance of the protocol πF on the respective interface (i.e., IO or S), rather
than having a single interface for each party. Then, we simply follow the proof
of [7, Lemma 4.1] accounting for the additional communication between cores
and firewalls and for the presence of specious cores, as per the srUC framework.
We defer the description of ΠF and the formal proof to the full version.

Putting it All Together. We showed that the split functionalities notion
of [7] can be cast in the subversion-resilient UC model in the same way as in
standard UC. Namely, one can build a protocol n-realizing a functionality for
the authenticated channel setting and simply invoke Lemma 3 to obtain security
of the split version of the protocol in the unauthenticated channel setting (albeit
only for 2-party functionalities). Since there exists a protocol 2-realizing any
regular ideal functionality in the authenticated setting (by using the srUC GMW
compiler of [18], as per Lemma 2), there also exists a matching 2-party protocol in
the unauthenticated setting realizing the split version of the same functionality,
yielding Theorem 4.

6 Sanitizing PAKE

So far we have only referred to the FRE functionality, in which the adversary is
unable to perform any (online) password guesses. In order to move to PAKE,
we first provide a description of FPAKE, highlighting its differences with respect
to FRE. Then, similarly to [12], we argue that our protocol in Sect. 4 can be
compiled in a protocol for sFRE by invoking a result of Sect. 5. Finally, we show
that sFRE is sufficient to trivially realize FPAKE. We conclude the section by
highlighting that it is also possible to obtain a protocol for sFRE by using the
general-purpose result given by Theorem 4 (which internally relies on the srUC
GMW compiler). In that regard, we provide a hand-wavy performance compar-
ison of such a protocol with our instantiation from DDH.

6.1 Description of FPAKE

The behaviour of FPAKE is conceptually close to that of the FRE we described
in Sect. 4.1, with the important difference that the adversary is now allowed
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to perform (online) password guesses in order to influence the keys output by
the functionality. In what follows, we provide a formal description of the FPAKE

functionality [12] that embeds minor variations to achieve consistency with FRE,
and technical improvements from Dupont et al. [22].

Functionality FPAKE

The functionality FPAKE is parameterized by a security parameter λ. an initiator
I, a responder R, and the adversary S via the following queries:

Upon receiving a query (NewSession, sid, I, R, wI) from I:
Record (I, R, wI), mark it as fresh, and leak (sid, I, R) to S. Ignore all
future messages from I.

Upon receiving a query (ok, sid) from S:
Send a message (wakeup, sid, I, R) to R. Ignore all future (ok) messages.

Upon receiving a query (Respond, sid, I, R, wR) from R:
Record (R, I, wR) and mark it as fresh.

Upon receiving a query (TestPwd, sid,P, w′) from the adversary S:
If P ∈ {I, R} and there exists a record of the form (P, ·, w) which is fresh,
then:

• If w′ = w, mark the record as compromised and return ”correct
guess” to S.

• If w′ �= w, mark the record as interrupted and return ”wrong guess”
to S.

Upon receiving a query (NewKey, sid,Pi, K) from S, where |K| = λ:
If Pi ∈ {I, R} and there is a record of the form (Pi,Pj , wi) that is not
marked as completed, with Pj being the peer of Pi, then:

• If any of the following conditions hold, output (sid, K) to party Pi:
– Pi is corrupted.
– This record is fresh, there exists a record (Pj ,Pi, wj) with wi =

wj , and Pj is corrupted.
– This record is compromised.

• If this record is fresh, both parties are honest, and there exists a
record (Pj ,Pi, wj) with wj = wi, choose skey ←$ {0, 1}λ. Output
skey to Pi, and append skey to the record (Pi,Pj , wi).

• If this record is fresh, both parties are honest, and there exists a
record (Pj ,Pi, wj , skey) with wj = wi, output skey to Pi.

• If none of the above rules apply, choose skey′ ←$ {0, 1}λ and output
it to party Pi.

In any case, mark the record (Pi, ·, wi) as completed.

Variations in the srUC Setting. As for FRE, we restrict our attention to
implicit mutual authentication (as discussed in Sect. 1.3), and the functionality
provides no security whatsoever whenever the adversary is able to guess an
honest party’s password.
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Shortcomings of PAKE Functionalities. Recent works have raised technical
concerns regarding the definition of PAKE functionalities widely used across
the literature. Specifically, Abdalla et al. [1] observed that several definitions,
including the one of the seminal paper of Canetti et al. [13], allow the adversary
to set the key output by an honest party even without knowing the password.
Similarly to Dupont et al. [22], our definitions of FRE and FPAKE do not embed
this shortcoming.

Additionally, Roy and Xu [30] show an impossibility result proving that any
2-party FPAKE may be instantiated by an incorrect 0-round protocol. In order to
overcome this limitation, they show that either (i) the underlying PAKE protocol
is assumed to be correct; (ii) the simulator gets limited in power; or (iii) a third
party responsible for routing messages is introduced in FPAKE. For this work,
we solve this shortcoming by considering approach (i), following the spirit of
discarding “trivial protocols” in the context of UC (e.g., the empty protocol),
as discussed by Canetti et al. [14].

6.2 From FRE to FPAKE

The protocol we presented in Sect. 4 realizes FRE in the presence of subversion
attacks in the authenticated setting. Proceeding as [12], we convert it to a pro-
tocol for sFRE, obtaining the following theorem:

Theorem 7. There exists a protocol that wsrUC-realizes the sFRE ideal func-
tionality in the (Fcrs, sFSAT)-hybrid model under static corruptions. The protocol
is based on the DDH assumption, runs in a constant number of rounds, and has
a communication complexity of O(n) group elements per session key.

Proof (Theorem 7). The proof of this theorem is the proof of [12, Theorem 2]
verbatim. First, we observe that the multi-session version of FRE can be imple-
mented by having access to the multi-session version of FsOT (each new session
of FRE uses a new invocation of the protocol for FsOT). Then, we observe that
our protocol in Sect. 3 implements the multi-session version of FsOT in the Fcrs-
hybrid model. Hence, we can invoke Lemma 3, which allows us to replace FSAT

with sFSAT, yielding a protocol for the split version of randomized equality (i.e.,
sFRE).

All that remains to show is that FPAKE can be instantiated from sFRE. Intuitively,
the power of the adversary to disconnect parties in sFRE can be mapped to
TestPwd queries in FPAKE, as the adversary is allowed to run FRE with an
arbitrary password by impersonating a disconnected party’s peer.

Theorem 8. There exists a protocol in the sFRE-hybrid model that instantiates
FPAKE in the presence of subversion attacks.

Dupont et al. [22] exhibit a trivial protocol in the sFRE-hybrid model that realizes
FPAKE. In particular, their protocol exclusively interacts with sFRE. This fact
allows to port their protocol and its related proof to our setting in a straight-
forward manner, as intuitively such a protocol inherits the structure and the
security properties of sFRE. We report the formal proof in the full version.
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6.3 A Hand-Wavy Performance Comparison

An alternative route to obtain FPAKE consists of invoking Theorem 4 to obtain
a protocol wsrUC-realizing sFRE, and then applying the transformation of The-
orem 8. In particular, as per Lemma 2, this protocol relies on the srUC GMW
compiler of [18]. In order to establish an informal comparison with our instantia-
tion from DDH (given by Theorem 7), we first observe that both these protocols
rely on Lemma 3 to move from the authenticated setting to the unauthenticated
setting. Hence, it suffices to compare the protocols in the authenticated setting.
For our hand-wavy comparison, we compare round complexity and communica-
tion complexity.

Our instantiation from DDH, as per Fig. 4, essentially relies on n runs of
FsOT that share the same CRS. By our specific instantiation of FsOT, each party
sends 1 public key and 2 SHDME encryptions (= 4 group elements) for each bit
of the password. Hence, our protocol runs in 2 rounds (by batching messages for
sOTs) with a communication complexity of O(n) group elements.

On the other hand, the instantiation from the srUC GMW compiler requires
each party to (i) generate its random tape jointly with its peer; (ii) commit to
its input; (iii) prove in zero-knowledge that each step of a semi-honest protocol
realizing FRE was executed correctly. (i) requires 3 rounds: 1 for committing to
some locally-generated randomness and 2 from the coin tossing functionality. (ii)
requires 1 round. (iii) requires at least the same number of rounds of a semi-
honest execution of an r-round protocol realizing FRE. Hence, we end up with
at least 4 + r rounds. We then observe that the coin tossing functionality of [18,
Section 4] relies on the sanitizable commitment functionality (presented in [18,
Section 3]), which is realized by computing and forwarding bit-wise commitments
(each containing 2 group elements) under the DDH assumption. Given that the
input to the semi-honest instantiation of FRE is an n-bit password, and that the
random strings used to generate the random tape have size λ, the communication
complexity of the first two steps is already O(n + λ).

We conclude that our instantiation from DDH has a better round and com-
munication complexity even prior to the run of the compiled semi-honest instan-
tiation of FRE of the protocol from GMW. We further remark that, in step (iii),
the protocol from GMW requires the generation of re-randomizable NIZK argu-
ments for each message of the protocol, hindering the efficiency further.

7 Conclusions

We presented the first subversion-resilient UC protocol for PAKE. We formal-
ized and instantiated oblivious transfer in the subversion setting, and extended
the framework to the unauthenticated setting, providing an implementation for
its respective backbone of communication (i.e., sFSAT) in the two-tier model
without assuming a PKI. Finally, we instantiated FPAKE by replacing, in a san-
itized protocol for FRE, the FSAT assumption with sFSAT. Several interesting
research questions remain open, such as fully instantiating FSAT in the two-tier
model, expanding the notion of split functionalities in the srUC model to the
n-party setting, extending the framework to adaptive corruptions, weakening
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trusted setups to be subvertable, and achieving explicit mutual authentication
for randomized equality and PAKE.
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