
Evaluating The Vulnerability Detection Efficacy Of
Smart Contracts Analysis Tools

Silvia Bonomi1[0000−0001−9928−5357], Stefano Cappai1, and Emilio
Coppa2[0000−0002−8094−871𝑋]

1 Sapienza University of Rome, Rome, Italy
bonomi@diag.uniroma1.it, cappai.1844363@studenti.uniroma1.it

2 LUISS University, Rome, Italy. ecoppa@luiss.it

Abstract. Smart contracts on modern blockchains pave the way to the devel-
opment of novel application design paradigms, such as Distributed Applications
(DApps). Interestingly, even some safety-critical systems are starting to adopt
such a technology to devise new functionalities. However, being software, smart
contracts are susceptible to flaws, posing a risk to the security of their users and
thus making crucial the development of automatic tools able to spot such flaws.
In this paper, we examine 11 real-world DApps that participated in security au-
diting contests on the Code4rena platform. We first conduct a manual analysis of
the vulnerabilities reported during the contests and then assess whether state-of-
the-art analysis tools can identify them. Our findings suggest that current tools are
unable to reason on business logic flaws. Additionally, for other root causes, the
detectors in these tools may be ineffective in some cases due to a lack of generality
or accuracy. Overall, there is a significant gap between auditors’ findings and the
results provided by these tools.

Keywords: Smart Contract · Vulnerability · Testing Tools · Blockchain.

1 Introduction

Distributed Ledger Technologies (DLTs) and Decentralized Applications (DApps) [12,
10], implemented through smart contracts, have become essential components in various
modern solutions across diverse application domains, ranging from finance to agricul-
ture. Among all the interested domains from this technological advent, there are also
safety-critical systems [24] that are starting to adopt blockchains and smart contracts to
support new functionalities. Secure information sharing of sensible data with integrity
and confidentiality requirements [13], decentralized access control with privacy guar-
antee [1], continuous monitoring enabling certified removal of data in safety-critical
databases [15] and (food) tracking along the supply chain [34] are just few examples of
the increasing presence of DLTs and DApps in domains characterized by really high-
quality dependability and security standards. For instance, the community is exploring
the use of blockchains in the context of railway industry [35, 22, 32, 25, 26].

In safety-critical systems, more than in other domains, there is a huge attention to
the system development life-cycle that should follow security-by-design and continuous
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monitoring principles to ensure that bugs and anomalies are timely detected and re-
solved. Indeed, the system development is usually supported by guidelines provided by
certification standards and whose aim is to give recommendations to developers regard-
ing all the development process activities with a particular emphasis on the verification
and validation tasks and the maintenance aspects. Thus, it is a crucial requirement for
a safety-critical system that its software components are deeply tested to discover the
highest number of bugs and vulnerabilities before the system starts to be operational
and that monitoring is in place when the system gets operational to ensure fast detection
and patching at runtime.

This requirement becomes even more relevant if the system includes a software
module developed by using smart contracts. Indeed, differently from traditional software,
a smart contract is a piece of code deployed on top of a distributed ledger through the
execution of a transaction. The direct consequence is that, once it is deployed, it is
very hard to patch due to the immutability property of the underlying ledger. The
direct consequence is that the adoption of DLTs- and DApps-based solutions in safety-
critical systems requires increased attention to the verification and validation phase
which translates into the need for testing tools able to detect and discover bugs and
vulnerabilities with the highest accuracy possible3.

In response to these problems, over the past decade, both the research community
and the industry have initiated efforts to develop and explore software testing meth-
ods and security tools. The goal is to potentially identify bugs and vulnerabilities in
smart contracts before deploying these software components on blockchains. Similar
to traditional software, various techniques [17, 40, 29, 31, 30, 42, 33, 20, 3, 41] can help
developers detect the flaws.

The first aid to developers can come from lightweight static analysis tools [17, 40],
which can provide quick feedback about common security issues by performing a lo-
cal pattern-driven analysis. Being quite efficient, the community is starting to integrate
them even in continuous integration setups. However, they can be inaccurate, missing
crucial security flaws and reporting a large number of invalid reports, i.e., false positives.
To mitigate such problems, the community has explored different heavyweight analysis
frameworks based, e.g., on symbolic execution [29, 31, 30] and fuzzing [42, 33, 20], aim-
ing at better accuracy in exchange for worse scalability. Finally, formal approaches [3, 41]
have been investigated to bring stronger security guarantees but often require rethinking
the blockchain technologies or imposing constraints on the development.

As for traditional software, the community has launched several security auditing
platforms, such as Code4rena and Immunefi, where DApp developers can ask experts
to assess the quality and security of smart contracts in exchange for monetary rewards.

Considering the history of DLTs and smart contracts and the actual spreading of these
technologies between different application domains, most of the auditing are performed
on applications developed for the financial domain. However, many of the existing
vulnerabilities are not context-dependent (i.e., they affect the Solidity programming
language or the distributed environment hosting the blockchain) and thus the capability
of a testing tool to discover it has a global interest beyond the financial domain (e.g.,

3 https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/



Evaluating The Vulnerability Detection Efficacy Of Smart Contracts Analysis Tools 3

Access Control Vulnerabilities in Solidity Smart Contracts may lead to sensitive data
exposure in the healthcare domain).

Our contributions. In this practical experience paper4, we examine 11 real-world
DApps that participated in security auditing contests on the Code4Arena platform from
March to August 2023. We first conduct a manual analysis of the vulnerabilities reported
during the contests by the auditors to understand what are the most common security
issues emerging in real-world smart contracts. These contracts are particularly interesting
because, being part of well-known and relevant DApps, have been implemented by
experienced developers. We then report the results of running three state-of-the-art
tools on these DApps, assessing how their findings fare against auditors’ discoveries. In
particular, we considered two lightweight static analysis tools, namely SmartCheck and
Slither, and one heavyweight analysis framework based on symbolic execution called
Mythril. Our assessment suggests that current tools are unable to reason on business
logic flaws, the most frequent root cause of vulnerabilities for the 11 DApps that we
considered. Additionally, for other root causes, the detectors in these tools are ineffective
in some cases due to a lack of generality or accuracy. Overall, unfortunately, there is
still a significant gap between auditors’ findings and the results provided by these tools
suggesting the need for new developments in this context.

2 Background

Distributed Ledger Technologies and Blockchains. DLTs are an emerging class of
decentralized distributed systems that allow the recording of transactions of assets in
a digital ledger. Among them, blockchains gained huge popularity and are currently
the most widespread DLT. A blockchain, as the name suggests, is a particular type of
ledger where transactions are collected and stored in blocks and blocks are linked among
them using pointers i.e., inserting in a block 𝑖 the hash of the content of previous block
𝑖− 1. Each block is constructed by selecting submitted transactions and validating their
correctness and consistency with respect to the current ledger state. Once a block is
created, it needs to be chained to the current ledger. This is done collaboratively by
participants in the distributed systems that need to agree on the next block becoming
the head of the chain (i.e., on the last ledger state). Blockchains are currently attracting
a lot of attention due to their immutability property i.e., once a new block is created and
attached to the chain, it can not be easily altered. This is achieved by combining and
using together cryptographic primitives and robust consensus algorithms.

The Ethereum blockchain. Currently, many different blockchain implementa-
tions exist but currently the most widespread can still be considered the Ethereum
blockchain [39]. Firstly proposed by Vitalik Buterin in late 2013 the network became
live in 2015 with its native cryptocurrency called Ether (ETH). Since then, it evolved
adapting its internal mechanism and supporting additional features like smart contracts.
The Ethereum cryptocurrency is used to incentivise participants who perform compu-
tations and validate transactions and it can also be used to pay for transaction fees and
services on the Ethereum network. In Ethereum, every operation on the network requires

4 This paper is an extended version of a preliminary 2-page fast abstract presented at ISSRE
2023 [8] where the analysis was restricted to only 4 DApps and a single tool i.e., Mythril.
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a certain amount of computational resources that are measured in gas units i.e., the gas
is the unit to measure the amount of computational effort required to execute operations
or run smart contracts. Users must pay for gas in Ether when they execute transactions.

Smart contracts. A smart contract is a self-executing contract (i.e., a piece of
running software) with the terms of the agreement directly written into code. It is
executed on top of a blockchain and it automatically runs its functions when predefined
conditions are met by generating transactions on the blockchain. Smart contracts are
written in programming languages specifically designed for blockchain platforms, such
as Solidity for Ethereum. Smart contracts are deployed over all the blockchain nodes
and are executed by all the participants. This decentralization ensures that the contract’s
execution is transparent, secure, and resistant to censorship or manipulation.

Ethereum supports the execution of smart contracts thanks to a Turing-complete
virtual machine called the Ethereum Virtual Machine (EVM). Once deployed, smart
contracts operate autonomously and independently of any human intervention. In ad-
dition, they are immutable i.e., once the code is deployed on the blockchain, it cannot
be easily altered, patched or tampered with. While on one hand, such immutability en-
sures the integrity and reliability of the contract’s execution, on the other hand, it raises
potential significant dependability and security issues due to bugs and vulnerabilities.

3 Related Works

Smart contracts are currently used across many different domains ranging from DeFi
where they are used to offer financial services5 to Supply Chain Management where
smart contracts are used to improve transparency and traceability of products and goods
along the supply chain. This fast and large spreading is also pushing the scientific com-
munity to investigate security aspects connected to DApps. In particular, several smart
contract analysis tools have been proposed by the community building on top of different
techniques, such as lightweight static analysis [17, 40, 29], symbolic execution [31, 30],
fuzzing [42, 33, 20], and other verification techniques [3, 41].

Different experimental studies have already tried to assess and compare the detection
capabilities of such tools. In [43], authors analyzed several Code4rena contests using
Oyente [29], a symbolic execution framework which is, however, now deprecated and
unmaintained. They split findings into two groups: Machine Auditable Bugs (MABs)
and Machine Unauditable Bugs (MUBs). Their study aims to show the current state of
automatic tools, and how those tools seem not able to find MUB vulnerabilities. Our
contribution continues this investigation by enlarging the set of analyzed contests and
taking an orthogonal perspective, trying to shed light on the strengths and weaknesses of
different automatic tools when compared with human auditors. In [4], authors analyze
thousands of smart contracts already deployed on the blockchain, i.e., they scan the
bytecode of those contracts. They propose the skeleton concept: they found common
patterns in the bytecode of smart contracts, grouping them accordingly. However, this
approach could flatten the dataset excessively since most smart contracts are character-
ized by external calls to others, which often could be the actual source of vulnerabilities.

5 Examples of DeFi DApps are Compound, Aave, Uniswap, and MakerDAO.
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Moreover, by just looking at the bytecode, it could be very hard to identify some types of
vulnerabilities. In our study, we consider also the Solidity code of the DApps, including
tools that can process both Solidity and the resulting bytecode.

4 Experimental Study Methodology

This section presents key aspects characterizing our experimental study: the source for
our dataset (i.e., the auditing platform and the considered contests), the analysis tools,
and our experimental setup.

Security Auditing Platform. Code4rena (C4) is a community-driven competition for
smart contract audits. Any DApp developer can use it to launch a new contest involving
a specific project and define what code is in scope and what is not. There are three main
roles on this platform:

– Wardens: auditors in charge of reporting issues affecting a DApp. They are typically
human experts who, exploiting both manual and automatic tools, produce a detailed
report. Wardens are not forced to disclose their analysis strategies;

– Sponsors: DApp developers sponsoring the contest with a prize pool. The higher
the prize pool is, the higher the interest from advanced security auditors will be;

– Judges: experts rating the performance of wardens and deciding the severity and
validity of their findings. Judges are chosen by the C4 community among the best
wardens, according to their impartiality and accountability.

The prize pool is split into the following categories: High findings, Medium findings,
Quality Assurance (QA) findings (composed of Low and Non-Critical findings), Gas
Optimization findings, Analysis, and Bot Races. Usually, a contest lasts 1-3 weeks. High,
Medium, and Quality Assurance findings are reported by wardens within the contest’s
period. Wardens report these issues establishing the severity. After the submission
phase, the contest ends and judges analyze reports of wardens, checking for validity of
issues and correctness in severity assignment. Gas Optimization findings are suggestions
proposed by wardens to rewrite a better code that saves gas. Analysis reports are reports
that analyze the DApp as a whole, identifying the architecture weaknesses. Bot Races
are competitions among automatic tools developed by wardens. In the first hour of every
contest, bot race participants can submit reports obtained by the execution of their bot.
Only a few participants, who have already qualified during monthly bot qualifications,
can report findings during the bot races.

Considered Contests. C4 contests can naturally provide a significant dataset for smart
contracts. Indeed, they provide complex and real-world contracts that have reached
a strong maturity. Moreover, the evaluation performed by the judges over the reported
issues can naturally provide a ground truth that we can exploit in our experimental study.
Overall, we analyzed 11 contests from March to August 2023. Table 1 summarizes the
main characteristics of such contests, which involved 73 contracts, 15,562 SLOCs, and
130 vulnerabilities. Our selection of contests was aimed at exposing different types of
DApps and different complexities (in terms of number of smart contracts and SLOCs).
In the remainder of this section, we provide more details about these contests.
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DApp Date Type Contracts SLOCs
Humans Bots

High Medium High Medium

Ajna 2023/05 Lending 3 1,391 11 14 0 2

Asymmetry 2023/03 Derivative 4 460 8 12 0 0

Caviar 2023/04 DEX 4 741 3 17 0 0

Eigenlayer 2023/04 Derivative 7 1,393 2 2 0 0

ENS 2023/04 Service 9 2,022 0 7 0 0

Frankencoin 2023/04 Stablecoin 8 949 6 15 0 0

Juicebox 2023/05 Service 1 160 0 3 0 0

Livepeer 2023/08 Social 4 1,605 2 3 0 0

Llama 2023/06 Service 11 2,047 2 3 0 1

Shell 2023/08 Service 1 460 1 0 0 0

Stader 2023/06 Derivative 21 4,334 1 14 0 1

Overall 73 15,562 36 90 0 4
Table 1: Smart Contracts Dataset Overview.

Ajna. The Ajna protocol [2] is a lending and borrowing protocol. There were 3 main
contracts in the contest: GrantFund, which holds the treasury, i.e., an amount of tokens
that are used for the governance; PositionManager, a position of a lender in a given
pool; RewardsManager, which rewards a lender who decides to stake token.

Asymmetry. Asymmetry [5] aims at providing a solution to the centralization of the
staked Ether market through Liquid Staked Ethereum Derivatives. The contest involved
four smart contracts: SafEth, which allow a user to stake some funds; Reth, WstEth,
and SfrxEth, that contain methods to acquire rETH, wstETH, and sfrxETH tokens.

Caviar. Caviar [11] is an on-chain, gas-efficient automated market maker (AMM)
protocol for trading non-fungible tokens (NFTs), that allow users to deposit NFTs and
associated assets inside Liquidity Pools (LP). The contest covered three implementation
bits of the Custom Pools: Factory, which creates NFTs and holds protocol fees;
PrivatePool, which allows a developer to set which operations (buy, sell, exchange)
can be performed on the NTFs; EthRouter, used to perform actions across pools.

Eigenlayer. Eigenlayer [14] is stacking platform that allows users to (re-)stake their
ETHs and ERC20 tokens based on custom strategies, which can then be accepted by val-
idators. The contest involved 7 contracts: StrategyManager, which tracks stakers’ de-
posits of tokens; StrategyBase, which represents a base strategy; EigenPodManager,
which allows users to stake ETH; EigenPod, which allows users to stake ETHs on
Ethereum and restake them on EigenLayer; DelayedWithdrawalRouter, which con-
trols withdrawals of ETHs from EigenPods; Pausable and PauserRegistry, which
can extend other contracts and makes them pausable, i.e., stops their tasks.

ENS. The Ethereum Name Service (ENS) [16] is a distributed domain naming system
(DNS) based on the Ethereum blockchain. The most interesting contract proposed in the
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contest are: DNSRegistrar, which is in charge of the domain registration process ex-
ploiting a registry using a DNSSEC Oracle; DNSClaimChecker, which verifies DNS
name claims; OffchainDNSResolver, which handles the domain name resolution.

Frankencoin. Frankencoin [19] is a collateralized stablecoin token, dubbed ZCHF,
that tracks the value of the Swiss Franc. Out of 8 contracts included in the contest, four
were extremely crucial: Position, which represents the position in tokens for a user;
MintingHub, which creates positions; Frankencoin, which is the actual token; and
StablecoinBridge, which allows users to swap Frankencoin with other stablecoins.

Juicebox. The Juicebox protocol [23] is a programmable treasury, allowing users
to automatically mint NTFs when new funds are received in the context of a specific
treasury. A single contract (JBXBuybackDelegate) was investigated in the contest: it is
in charge of distributing tokens to a contributor according to its donation to the treasury.

Livepeer. Livepeer [27] aims at providing a distributed video live-streaming service
built on top of Ethereum. The contest covered the handling of the protocol rewards
for broadcasters, transconders, and orchestrators: BondingManager, which manages
the protocol staking and rewards; Treasury, which holds funds of treasury and ex-
ecutes proposals; LivepeerGovernor, an OpenZeppelin Governor implementation;
BondingVotes, which is tied to the transcoders selection process.

Llama. Llama [28] provides a governance framework to make life easier for DApp
developers. The contest included the main contracts behind the Llama architecture:
LlamaCore, which checks the execution of actions; LlamaExeutor, the actual executor
of the actions; LlamaPolicy, an ERC721 contract that defines roles and permissions.

Shell Protocol. Shell [37] offers a platform, called Ocean, that can compose any type
of DeFi primitive: AMMs, lending pools, algorithmic stablecoins, and NFT markets.
The contest included only the contract EvolvingProteus, which can offer a primitive
of the AMM implementation, i.e., a liquidity pool and its evolution over time.

Stader Labs. Stader [38] is a non-custodial staking platform for multiple Proof-of-
Stake networks through the liquid staking token ETHx. The contest involved: ETHx, the
actual ERC20 token; PermissionedPool and PermissionlessPool handle the de-
posit of ETHs;StaderOracle provides a source of exchange rates;StaderStakePools
Manager allows users to stake ETHs, mint ETHxs, manage staking rewards.

Analysis Tools. As discussed in Section 2, there exists a large number of smart contract
analysis tools. However, in this experimental study, we decided to focus on tools that are
well-known in the Ethereum ecosystem and that have been used in different academic
works as well as in security evaluations publicly disclosed by auditors. In particular, we
considered one lightweight pattern-based static analysis tool, called SmartCheck [40], a
more advanced yet still lightweight static analysis tool, called Slither [17], and then one
advanced heavyweight analysis tool based on symbolic execution [7], called Mythril [31].
We did not consider dynamic tools, e.g., fuzzers, or tools using formal verificationdue
to their non-trivial setup or lack of support for complex smart contracts.

SmartCheck. SmartCheck is a lightweight static analyzer that translates the Solidity
code of a smart contract into an XML-based intermediate representation. Then, it checks
the result with XPath patterns to detect four categories of issues: security, i.e., issues that
may lead to vulnerable states; functional and operational, i.e., issues affecting the logic
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or leading to performance degradation; developmental, i.e., issues causing problems at
deployment time. Overall, it has 43 issue detectors. We used SmartCheck 0.2.0.

Slither. Slither is Python framework for analyzing smart contracts. By translating
solidity code into a custom intermediate representation, called SlithIR, it allows to im-
plement detectors. It supports more than 80 detectors, covering different vulnerabilities
categories. Moreover, it is quite efficient at performing its analysis and thus developers
are starting to consider it within continuous integration setups. We used Slither 0.9.4.

Mythril. Mythril is a symbolic execution framework for EVM bytecode. It explores
the program state space of a smart contract by executing its code on symbolic inputs, i.e.,
inputs whose value is not apriori fixed. In particular, an interpreter evaluates the EVM
bytecode, constructing formulas to represent the data flows of the program computation.
Whenever the program meets a decision point, the framework evaluates using an SMT
solver whether the formula related to the decision is feasible, i.e., the smart contract can
take that specific path for an assignment of the inputs. Moreover, the framework can
use the solver to evaluate conditions related to well-known vulnerable patterns. Mythril
integrates 13 vulnerability detectors. In our experiments, we used Mythril 0.23.24.
Smart Contract Vulnerabilities. In the literature, smart contract vulnerabilities have
been classified according to different criteria [6, 21, 43, 36] and, in this paper, we group
them in four categories [6, 43]:

– Business Logic: any issue due to the erroneous application of the business logic
model. These flaws are strongly tied to the nature of a DApp;

– Solidity: any flaw due to the erroneous use of the Solidity language or unexpected
nuances of its design, e.g., rounding arithmetic rules;

– EVM: issues due to the EVM behavior, e.g. the gas block limit;
– Blockchain: problems resulting from the nature of the blockchain, e.g. untrustwor-

thy oracles or dependence on transaction order.
Experimental Setup. We now describe the setup adopted during our study.

We executed our experiments on a server equipped with two Intel Xeon E5-4610v2
CPUs and 256 GB of RAM, running on Ubuntu 22.04. The tools were executed under
Docker: for SmartCheck, we exploited the container image from the SmartBugs frame-
work [18], while, for Slither, we installed it on a vanilla Python 3 container image, and
finally, for Mythril, we used its official container image.

While SmartCheck and Slither are expected to terminate their analysis in just a few
minutes, Mythril, as most symbolic execution frameworks, can easily run for several
hours or even days. Hence, we decided to run the first two tools for up to two hours, while
leaving Mythril running up to 7 days. Tools were executed in independent experiments
and did not share their budget. SmartCheck and Slither do not have critical parameters
that need tuning. On the other hand, Mythril can work with five exploration strate-
gies (DFS, BFS, naive-random, weighted-random, and pending), which may affect the
generation of program states, possibly bringing different results. Hence, we performed
different experiments for each strategy and then considered the best result. Furthermore,
Mythril defines a Max Depth parameter, which limits the maximum depth for an exe-
cution path, thus bounding the analysis over a path, avoiding to waste the entire time
budget over a single path. We kept this parameter at its default value but then increased
it when investigating the results related to some specific contests.
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◧ ◧
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Freezing Active Position ◧ ◧
◧
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Arbitrarily Code Injection ◧ ◧◐ ■ 4
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Division by Zero DoS ◐ 1
Temporal DoS ◐ 1
Erroneous ERC721 Impl. ◐ 1
Erroneous Pausable Impl. ◐ 1

Overall 27 20 20 4 7 21 3 5 6 1 16 130
Table 2: Overview of the security issues identified by humans, bot, and analysis tools,
on the 11 contests, dividing them based on their vulnerability nature. Legend:
□: high severity issue. ◌: medium severity issue.
◧◐: the issue was found only by humans. ◧◐: the issue was found only by bots.
◨◑: the issue was found only by analysis tools. ■●: the issue was found both by
humans and tools. ■●: the issue was found both by bots and tools.
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5 Experimental Study Results

We now report the results of our experimental study involving the 11Code4rena contests
presented in Section 4. To evaluate the effectiveness of the three state-of-the-art analysis
tools, we relied on the reports submitted by humans, i.e., the wardens, and bots to
Code4rena, which have been validated by expert judges. Hence, these reports constitute
our ground truth about the critical issues affecting the smart contracts under auditing.
Our investigation has been targeted around the following research questions:

RQ1: Do the contests experience similar security issues?
RQ2: Are the analysis tools considered in this study effective at detecting such issues?
RQ3: Do the results of the tools align with their claimed detection capabilities?
RQ4: Is a more complex analysis able to bring significantly better results compared to a

lighter analysis?

5.1 RQ1: Contests versus Vulnerabilities

We start by analyzing the distribution of security issues across the contests. Table 2
provides a visual summary of the security issues that were reported either by a human
or by a bot (notice that an issue reported by a bot cannot be reported also by a human).
The shape of the symbols in the table represents the severity of the flaw: square for high
severity and circle for medium severity. Underlined symbols represent issues originally
identified by bots, while not underlined symbols represent problems originally reported
by humans. To help perceive the nature of vulnerabilities, we manually classified them
according to the groups presented in Section 4.

From a quick look at the table, from top to bottom, we can see that most vulnerabili-
ties, i.e., 74 out of 130, are related to the business logic of a DApp. Then, the second most
frequent group, with 40 out of 130 flaws, is the one involving Solidity-specific aspects.
Finally, 14 and 2 security problems derive from blockchain and EVM nuances, respec-
tively. When instead we look at the table from left to right, we can observe that different
contests were affected by different numbers and types of vulnerabilities. Nonetheless, we
can quickly notice that the vast majority of flaws have been found by humans, with only
4 issues reported by bots. In particular, bots mostly identified uses of unsafe functions
and their findings were always evaluated as medium-severity issues.

An interesting question is whether the DApp type is somehow connected to the
number of discovered flaws. Table 1 reports the type of each DApp. Lending DApps,
DEXs, and Stablecoin projects have reported significantly more vulnerabilities than
Derivative, Service, and Social DApps. In particular, the first set of DApps has seen
more than 19 issues every 1k of SLOC, while the second set has seen less than 7
issues every 1k of SLOC. We hypothesize that the first group contains DApps for which
the community has seen several hacks in the past and thus is quite careful with some
operations and more trained to recognize some vulnerable patterns. Strangely, Derivative
DApps should be part of the first group but instead fall into the second one. Differently,
Social DApps are a new thing in the blockchain environment, while Service DApps
have a unique behavior and are strongly dependent on the context. Hence, it could be
harder for auditors to spot uncommon issues in these types of DApps. Nonetheless, these
considerations must be taken lightly due to our limited dataset size.



Evaluating The Vulnerability Detection Efficacy Of Smart Contracts Analysis Tools 11

A
jn

a

A
sy

m
m

et
ry

C
av

ia
r

Ei
ge

nL
ay

er

EN
S

Fr
an

ke
nc

oi
n

Ju
ic

eb
ox

Li
ve

pe
er

Ll
am

a

Sh
el

l

St
ad

er

Contest
Results

Humans 25 20 20 4 7 21 3 5 5 1 15 126
Bots 2 1 1 4

Tools
Results

SmartCheck ■ ◐ ◧ 3

Slither ●●
●

■●
●◐

● ◧ 9

Mythril ◧● 2
Table 3: Comparison between humans and bots findings versus tools findings.
Legend: □: high severity issue. ◌: medium severity issue.
◧◐: the issue found at least by two tools. ■●: the issue found only by one tool.

Due to the lack of space, we cannot present in detail the vulnerabilities affecting the
contests. Hence, we refer to our technical report [9] for a more in-depth discussion.

5.2 RQ2: Tools versus Vulnerabilities

We now include in the scope of our discussion the three analysis tools that we considered
in our study. Table 2 visually depicts which security issues, originally reported either
by a bot or by a human, have been also detected by at least one of the tools during our
experiments: shapes with an empty right side have not been detected by any tool, while
full black shapes have been detected also by at least one of the tools under consideration6.

With a quick look, we can see that tools identified mostly flaws related to Solidity
aspects. This makes sense as this group of vulnerabilities is quite well-known and has
been targeted for a long time by state-of-the-art smart contracts analysis frameworks.
Tools were able to spot a few issues tied to nuances of the blockchain or the EVM.
Differently, they were unable to find any security flaw related to the business logic
group, which, however, was also the one with more reported vulnerabilities.

A more clear view of the tool efficacy is given by Table 3, where we report the count
of findings for each tool. Tools discovered 14 security flaws, among which 11 are unique
(see full black shapes in Table 2). In particular, Slither has found most of these flaws (9
out of 14), followed by SmartCheck (3 out of 14) and Mythril (2 out of 14).

An important observation is that, since we are considering publicly available tools,
DApp developers may have already run such tools on their projects. Hence, we believe
that these tools may have identified additional flaws but they were fixed before the contest.
We attempted to recover such information by looking for tool-specific configuration files
in the DApp repositories. Interestingly, 7 out of 11 DApps show evidence of Slither, only
one DApp was likely tested with Mythril, and none appear to have exploited SmartCheck.
However, 5 DApps used Solhint, a common alternative to SmartCheck.

6 Since we based our ground truth on the validated findings from bots and humans, there is
no case where a security issue has been identified only by a tool. Nonetheless, we manually
investigated any additional issue reported only by a tool: we could not demonstrate the validity
of such (unknown) flaws, i.e., we believe that these findings could be classified as false positives.
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Overall, unfortunately, the efficacy of the tools appears to be quite limited compared
to the auditors’ findings. The next research questions attempt to investigate these results.

5.3 RQ3: Tools in Theory versus Tools in Practice

Given the poor efficacy of the tools at finding the security issues, we investigated whether
such tools were equipped with adequate vulnerability detectors that could allow them to
report the problems that emerged in the contests. SmartCheck integrates 43 detectors,
Slither has 83 detectors, and Mythril includes 13 detectors.

Based on our analysis [9], among the 22 vulnerability types listed in Table 2, around
12 of them are targeted by at least one tool detector. Tools mostly consider issues due to
Solidity, EVM, and Blockchain, but struggle at devising detectors targeting the business
logic7. Unfortunately, even when detectors are available for a vulnerability type, they
were not always able to correctly find the related flaws for our contests.

One possible reason behind detector failures could be due to our time and memory
budget limits. However, both SmartCheck and Slither did not experience any timeout
or out-of-memory error. Differently, Mythril experienced several timeouts in the Ajna
contest, which may explain some detection failures. For instance, we believe Mythril
should be able to find the Integer Overflow in Ajna given a sufficient time budget.
Estimating such budget is quite hard since this tool explores the program state space,
which highly depends on the smart contract complexity: we observed a good correlation
between the analysis time and the number of SLOC8, requiring on average 42 hours for
each contest. Given our already large time budget (one week), increasing this limit could
be not a practical workaround for most developers. Another reason behind the failures
in Mythril could be the impact of the Max Depth parameter, which aims at limiting
state explosion. To investigate such hypothesis, we repeated the experiments setting the
parameter to 1000, which generated additional timeouts without improving the results.

Investigating why the detectors may fail, after ruling out scalability issues, is not
trivial as it requires a manual and issue-specific investigation. Due to the lack of space,
we only report two case studies. The first one is related to precision loss, with five known
instances but only three discovered by Slither and SmartCheck, which ship with a detector
for this vulnerability type. One missed issue is in Asymmetry, where precision loss arises
due to rounding rules in the case of a division after multiplication. However, the tools
only consider the inverse pattern, i.e., division before multiplication. Similarly, the tools
fail to detect an issue in Frankencoin because the division before multiplication is split
across different portions of code, making static analysis harder. Mythril, thanks to its state
space analysis, given the proper detector, should identify these flaws. Another interesting
case study is related to integer overflow, with 7 known instances but zero detections from
Mythril, which ships with a detector for this vulnerability type. In Ajna, Mythril fails
to detect an overflow because its detector does not cope with OpenZeppelin’s SafeMath
library, which can handle overflows at execution time but does not avoid them. In
particular, when SafeMath is used, Mythril incorrectly skips the overflow analysis.

7 The only exception is related to Missing Logic Checks where Mythril exploits assertions
embedded in the code to check specific logic conditions.

8 Table 1 does not report the SLOC of the imported libraries, which, however, are evaluated by
Mythril. For instance, Ajna requires to reason on more than 15,000 SLOC.
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Overall, tools may have the potential to improve their detection capabilities, even
when considering only non-business logic issues. Mythril has great potential due to its
powerful state space analysis but suffers from the lack of detectors and scalability issues,
while the other tools may benefit from more general pattern definitions.

5.4 RQ4: Analysis Complexity versus Tool Efficacy

One result emerging from our experiments is that SmartCheck and Slither found more
security flaws than Mythril. Moreover, Mythril has not discovered any high-severity flaw.
This is unexpected because Mythril is a state-of-the-art symbolic execution framework
that may in principle outperform simpler analysis frameworks, such as SmartCheck
and Slither, by exchanging scalability for efficacy. However, as already pointed out in
RQ3, Mythril does not ship with the same broad set of detectors as the other tools.
Nonetheless, looking at the detected flaws is only one side of the story when considering
automatic analyses. Indeed, a prominent concern is often the false positive rate. In our
experiments, Mythril produced 2 true positives (TP) and 61 false positives (FP), thus
with a precision of 3.28%. Slither performed significantly worse, with 9 TPs and 1061
FPs, thus with a precision of 0.46%. SmartCheck positioned between the two, with a
precision of 1.46%, 3 TPs, and 202 FPs. Overall, FPs are still a big problem for these
three tools, likely hurting their adoption. The more in-depth analysis from Mythril has
likely contributed to limiting the number of FPs but there is still room for improvement.
For instance, SmartCheck reported more than 30 Gas Limit DoS invalid alerts, which
can be ruled out when exploiting Mythril analysis. Additionally, we believe that Mythril
analysis can likely support the implementation of more powerful detectors, integrating
more general patterns. For instance, Mythril discovered a frontrunning vulnerability,
whose detection is likely out of reach for the two other tools. Similarly, the precision
loss issues split across two portions of code discussed in RQ3 is likely a good example
where a more global analysis can favor the implementation of more robust detectors.

6 Conclusions

In this paper, we report our practical experience when running three state-of-the-art
tools on smart contracts from 11 Code4rena contests. We have manually analyzed all
the security issues reported during the contests by humans and bots, classifying them in
common vulnerability types. Then, we observed that tools are unable to find business
logic security flaws, which were the most common vulnerable cause. Our observation
is consistent with another recent study [43]. We believe that a key idea to mitigate
such limitation would be to ask developers to formalize logic conditions through, e.g.,
assertions or invariant checkers, allowing tools such as Mythril to exploit them during the
analysis. Tools performed better on flaws related to Solidity, EVM, and the blockchain,
but their vulnerability detectors come with several limitations in terms of accuracy and
generality, which we believe could be mitigated by exploiting powerful analyses such
as the one used by Mythril. However, Mythril suffers from scalability issues due to its
underlying analysis, suggesting that it is not only a matter of engineering effort. It is
interesting to note that, among all analyzed DApps, some vulnerable contracts implement
common functions used as building blocks for safety-critical systems (e.g., the tracking
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coin logic implemented in Frankecoin is not different from the logic implemented to
track contaminated food) and thus the same performance of such tools extends to other
domains. There seems to exist still a big gap between the expectations of security levels
required from safety-critical systems and the capability of smart contract testing tools.
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