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Abstract 

The present study developed several machine learning-based cost models to predict an 

efficient total economic cost per vehicle revenue-mile of urban public bus transport. The 

models were trained on a built-in dataset from 269 transit agencies providing urban 

services in the United States from 2015–2019. A feature selection strategy was 

implemented, finding that, for each proposed model, a subset of features determined a 

large impact on unit cost. These “core” features included commercial speed, average 

salary expenses per employee, vehicle productivity, and fleet ownership cost per vehicle. 

Machine learning techniques outperformed the linear regression method in terms of 

predictive power and robustness (understood as the dispersion of predictive power 

measures over the training sets). Based on SHAP values, the sensitivity analyses showed 

that the proposed models could be used to predict the impact of changes in some critical 

features on corresponding unit costs. The results may be useful for: (i) introducing 

regulatory constraints to the allocation of national public resources to local public bus 

transport services, aimed at minimizing the resources needed to provide a given level of 

service; (ii) defining the maximum economic compensation required by firms involved 

in competitive tendering for the allotment of service concessions, or firms with monopoly 

rights (by political choice and/or local public ownership); and (iii) improving service 

contract management and design by identifying key cost drivers of transit services. 
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1. Introduction 

In the United States and Europe, national and local governments play an active role in 

public transportation by providing subsidies to local public transport (LPT) service 

operators and funding expenditures (Verdeaux, 2003). A central issue in reform initiatives 

is the design of reimbursement systems, which usually reward operators for providing 

LPT services at cost-efficient levels.1 For this reason, it is crucial that policymakers in the 

LPT industry have access to analytical tools for cost prediction.  

The present research aimed at developing several machine learning (ML)-based cost 

models to predict an efficient total economic cost per vehicle revenue-mile of local public 

bus transport (LPBT) services. Accurate cost forecasting is essential for making informed 

decisions about budget allocations and resource utilization (Chou, 2009), as well as to 

improve service contract management and design. First, by exploiting the favorable 

incentive properties of yardstick competition (Shleifer 1985), a forecasting model might 

be used at a micro-level to define the maximum economic compensation required by firms 

involved in competitive tendering procedures for the allotment of service concessions, or 

firms with monopoly rights (by political choice and/or local public ownership). Second, 

at a macro-level, a forecasting model might be employed by policymakers to introduce 

regulatory constraints to the allocation of national public resources earmarked for LPBT 

services, aimed at minimizing the total resources needed for a given level of service. 

Third, if empowered with specific features (e.g., scale of service), a forecasting model 

might provide cost estimates that convey critical information for the design of 

(competitive or uncompetitive) procedures for the allotment of LPBT services (with 

respect to, e.g., the determination of network size or the number of vehicle revenue-

miles). Fourth, a forecasting model might identify key cost drivers, enabling 

policymakers to predict the impact of changes in some critical features on corresponding 

unit costs. This enables more efficient management of service contracts by providing 

information on key variables to be monitored and negotiated with transportation 

operators, and thus improving transparency in the use of public subsidies.  

The present study aimed to develop a methodological framework for incorporating ML 

approaches into the prediction of the total economic cost per vehicle revenue mile (vrm) 

 

1 See, e.g., Norway (Dalen and Gomez-Lobo, 1996, 2003), France (Gnagnepain and Ivaldi, 2002; 

Roy and Yvrande-Billon, 2007), Italy (Avenali et al., 2018)). 
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of LPBT services. Six ML methods were considered and compared with the conventional 

approach of Multivariate Linear Regression: K-Nearest Neighbors, Support Vector 

Regression, Multilayer Perceptrons, Random Forest, Gradient Boosting, and XGBoost.. 

The outcome is a set of ML-based cost models, where the predicted variable is the total 

economic cost per vrm of LPBT services and the predictors are features selected case by 

case, depending on (i) the nature of the data and (ii) the tradeoff between predictive power 

(accuracy and robustness) and interpretability.  

Despite the significant predictive capabilities of ML methods, their "black box" nature 

often limits interpretability. To address this challenge, a SHAP analysis was implemented 

(Lundberg and Lee, 2017), providing a deeper understanding of each feature’s 

contribution to the model’s outcome, namely in relation to cost predictions.2 The 

utilization of SHAP plots, in conjunction with policy goals, allows for further sensitivity 

analyses to assess the impact of relevant features on unit costs. Thus, sensitivity analyses 

were applied to highlight the marginal impact of efficiency gains obtained by 

manipulating cost-driving variables (controlled by either transport operators or public 

authorities). In particular, the present study considered: (i) features related to the service 

context (e.g., commercial speed), to consider the potential impact of congestion and 

orography on costs; (ii) features related to the service size (e.g., network size, vehicle 

revenue-miles), to highlight density and economies or diseconomies of scale; and (iii) 

features related to the production process (e.g., vehicle productivity, average hourly wage, 

percentage of electric vehicles). 

To train the models, data were collected from 269 transit agencies providing urban 

services in the United States between 2015–2019 (representing 85% of all agencies 

operating urban bus services in the United States). The primary data sources were the 

National Transit Database of the Federal Transit Administration (FTA) and the Public 

Transportation Vehicle Database of the American Public Transportation Association 

 

2 Usually machine learning models are black boxes where the interpretation of the features roles 

is difficult. SHAP values (SHapley Additive exPlanations) are a technique which relies on the 

Shapley values proposed within cooperative game theory (Shapley, 1951, 1953), and indeed 

estimates the marginal contribution of each feature by generating several permutations of the 

features and then combining the results obtained in terms of prediction differences from a 

reference prediction. 



5 

 

(APTA). These are public repositories of data on the financial, operating, and asset 

conditions of American transit systems.  

The paper is organized as follows. Section 2 comprises a review of the relevant literature. 

Section 3 presents the dataset and methodological framework of the present study. 

Section 4 presents model selection and results. Section 5 provides the results and policy 

implications of the present work, and Section 6 concludes the discussion. 

2. Literature review 

The relevant literature can be broadly divided into two major streams: (i) studies 

examining the cost structure of LPBT companies and LPBT cost forecasting, and (ii) 

studies examining ML applications for transport policy and cost estimation.  

Local public bus transport cost structures and forecasting  

Studies exploring the cost structures of LPBT companies have mainly focused on the 

estimation of variable and total costs. However, there has been significant debate over the 

determination of input and output measures (see Daraio et al., 2016, for a detailed survey). 

Input variables normally fall into two main categories: (i) “physical” production factors 

with their own measurement units (e.g., number of employees, number of driving vs. non-

driving employees, work hours, fuel consumption, number of vehicles in the fleet); and 

(ii) monetary costs, split into capital expenses (CAPEX) and operating expenses (OPEX). 

On the output side, variables used to measure production efficiency include vehicle-

kilometers (e.g., Cambini and Filippini, 2003), seat-kilometers (e.g., Farsi et al., 2007), 

and total-seat-kilometers (e.g., Gagnepain and Ivaldi, 2002). All of these measures are 

from the supply side. In contrast, variables related to production effectiveness (e.g., 

number of passengers, passengers by kilometer travelled) fall on the demand side (e.g., 

Bhattacharyya et al., 1995). Hedonic characteristics include service frequency, average 

commercial speed, and average fleet age (e.g., among others, Fraquelli et al., 2004; Shaw 

et al., 2005; Piacenza 2006; Cambini et al., 2007).3 Additionally, there is a lack of 

 

3 Higher speed implies lower operating costs, but also better service (i.e., passengers are 

transported in less time). Commercial speed also relates to external factors that are often outside 

operators’ control (i.e., the presence of preferential lanes or other measures to reduce congestion). 

Average fleet age refers to both efficiency and effectiveness, since a younger fleet is usually less 

expensive (in terms of fuel consumption and maintenance costs), has higher perceived quality 

(according to passengers), and emits less pollutants. 
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consensus on LPBT operators’ economies of scale. Boitani et al.’s (2013) cross-country 

analysis of 77 LPT companies operating in large European cities found diseconomies of 

scale, while Fraquelli et al. (2001) found that the average cost per seat-kilometer was U-

shaped, consistent with Avenali et al. (2016). Other studies have found economies of scale 

for urban systems, suggesting that such systems would not recover costs through marginal 

cost pricing (e.g., Cambini et al., 2007; Farsi et al., 2007). Specifically, Viton (1992), 

Colburn and Talley (1992), and Ripplinger and Bitzan (2018) investigated the cost 

structure of transit agencies in urban communities in the United States (the focus of the 

present study). The results indicated that the firms exhibited economies of scale over a 

wide service range.  

LPBT service cost structures may be summarized as follows: (i) they are labor (rather 

than capital) intensive, with the cost of fuel and ownership representing other important 

dimensions (see Table 3, which presents detailed information on the transit agencies 

included in the present sample); (ii) among the hedonic characteristics, commercial speed 

mainly explains their cost differentials, while average fleet age also plays a role; and (iii) 

there is no consensus on the presence of economies of scale in the provision of services. 

With regard to cost forecasting, Hensher et al. (2013) introduced a simplified 

performance-linked payment (SPLP) model that could be used to assess public subsidies 

for LPBT operators. The model internalized the effects of exogenous variables (not under 

the operator’s control, such as commercial speed) on the cost of LPBT services. However, 

the parameter estimates were not representative of any specific operating context, but 

based on reasonable assumptions for Australian metropolitan areas. Avenali et al. (2016, 

2018) estimated the unit cost of LPBT services in Italy using a piecewise regression 

model; they found that commercial speed was the most important cost driver, while 

economies of scale were low and limited to only small service bunches. The results also 

highlighted a positive correlation between bus fleet investments and the total service cost. 

In this context, the contribution of this paper lies in two main aspects. First, accuracy and 

robustness of the cost predictions of six ML methods – i.e., K-Nearest Neighbors, Support 

Vector Regression, Multilayer Perceptrons, Random Forest, Gradient Boosting, and 

XGBoost – are compared with those of linear regression (i.e., a traditional parametric 

approach). This allow us to assess significant improvements in public funding allocation 

enabled by a higher predictive power of ML approaches. Moreover, all of these methods 

were compared both with and without feature selection, resulting also in identifying most 
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influential cost drivers for urban bus transit service. Second, leveraging an integrated 

database (covering more than two-thirds of LPBT service production in the United States 

and nearly 85% of passengers carried from 2015–2019), the methodological framework 

incorporated ML approaches for the purpose of supporting policymaking in the transport 

sector (rather than supporting political ends), with respect to a particular orography (i.e., 

that of the United States). 

Machine learning applications for transportation policymaking and cost estimation 

ML approaches are becoming increasingly applied in the field of transportation policy 

and practice (Tizghadam et al., 2019). While some research has discussed how ML 

methods may be utilized to improve the performance of transportation data analytics tools 

(focusing on the quality and quantity of available data; e.g., Bhavsar et al., 2017), most 

studies have aimed at developing ML approaches to predict transportation system 

dimensions, including transportation demand (Salas et al., 2022; Plakandaras et al., 2019; 

Hagenauer and Helbich 2017), rail network performance (Gunduz et al., 2011; Li et al., 

2014), traffic conditions (Jacob and Abdulhai, 2010; Liu et al., 2019, Ma et al., 2020; 

Yang et al. 2020; Raju et al., 2022), road maintenance (Mahpour and El-Diraby, 2022), 

aircraft boarding (Schultz and Reitmann, 2019), bike-sharing demand (Xu et al., 2018; 

Gammelli et al., 2020) and inventory (Ceccarelli et al., 2021), dial-a-ride system planning 

(Marković et al., 2016), and electric vehicle performance (Chen et al., 2021; Liu et al., 

2021). While ML approaches to cost estimation are widespread in the literature, no prior 

research has developed an ML approach to predict the cost of transportation services. For 

instance, studies have proposed ML models for the purpose of estimating software costs 

(e.g., Huang et al., 2015; Catal, 2011), memory systems (Servadei et al., 2020), product 

life cycles (e.g., Yeh and Deng, 2012), construction projects (e.g., Hashemi et al., 2020), 

supply chain components (Bodendorf et al., 2021), and customized furniture 

manufacturing (Kurasova et al., 2021), among other components.  

3. Methodology 

This section describes the methodology that was applied in the present study to predict 

the unit costs of LPBT services and to identify key cost drivers. Figure 1 displays the 

analytical framework, which involved three main steps: (1) data collection (Section 3.1), 

(2) data pre-processing (Section 3.2), and (3) the implementation of predictive methods 

(Section 3.3, which also summarizes the main features of the six supervised ML models). 
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3.1 Data collection 

The FTA National Transit Database – a public repository of data on the financial, 

operating, and asset conditions of American transit systems – was the primary source of 

the analyzed data. Multiple NTD reports and annual data tables were then integrated into 

the FTA data. Specifically, for each year, relevant NTD data were taken from the “Service 

Annual Data Tables,” “Fuel and Energy Annual Data Tables,” “Employees Annual Data 

Service,” “Annual Database Operating Expenses,” and “Annual Database Revenue 

Vehicle Inventory.” In the Annual Database Revenue Vehicle Inventory, each item 

describes a specific purchase batch, including detailed information on fleet characteristics 

(e.g., number of buses, manufacturing year, vehicle size, power/fuel type, seating and 

standing capacity, useful life benchmark, average lifetime miles, annual miles).  

The NTD data lacked some critical information for the present analysis (i.e., bus purchase 

price), which was subsequently sourced from the APTA Public Transportation Vehicle 

Database. This enabled the analysis to estimate two crucial variables: annual vehicle 

depreciation and the residual value of vehicles. Following the literature (Williams, 1979; 

Viton, 1981; Berechman, 1987; Filippini and Prioni, 1994; Karlaftis and McCarthy, 1999; 

Piacenza, 2006; Cambini et al., 2007), the number of vehicles owned by each transit 

agency was used as a physical proxy of invested capital, while the net value of those 

vehicles was considered a proxy of the net invested capital. Therefore, the cost of capital 

was estimated by multiplying the residual value of the bus fleet with the weighted average 

cost of capital (WACC). In this case, the after-tax WACC was set to 4.41%, in accordance 

with Damodaran’s (2021) estimate for the United States transportation sector.  

The result was a built-in database of 269 full reporter transit agencies. For each agency, 

disaggregated data were available, with reference to general information, service features, 

personnel management, fleet characteristics, and economic costs. Monetary values were 

in 2019 prices (USD) and inflated in line with the United States Consumer Price Index. 

Table 1 presents the database details. 

[Table 1 near here] 

The transport operators included in the sample provided more than 1.4 billion vehicle 

revenue-miles, representing more than two-thirds of all LPBT service production in the 

United States and over 80% of all passengers carried. Of note, the dataset was 

characterized by a high level of inter-agency variability (see Tables A.1, A.2, and A.3 in 
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Appendix A for descriptive statistics). Specifically, the sample comprised transit agencies 

producing less than 100,000 vehicle revenue-miles per year and others offering more than 

tens of millions; transit agencies with an average fleet age of less than 3 years and others 

with a fleet aged more than 12 years; transit agencies with minibuses with fewer than 20 

seats and others with articulated buses with a capacity of more than 80 passengers; transit 

agencies that relied on conventional fuel buses and others that were early adopters of 

alternative power technologies (e.g., hybrid, full electric); transit agencies operating in 

large, congested cities (e.g., average speed lower than 10 mi/h) and others offering transit 

services in towns where traffic moved smoothly; and transit agencies taking different 

approaches to personnel management and employee remuneration, also influenced by 

local/state legislation and regulation. 

3.2 Data pre-processing 

To ensure that accurate and meaningful insights could be extracted from the data, a series 

of data pre-processing operations were employed. 

Feature engineering was implemented to build a dataset suitable for ML. In particular, 

important features (e.g., network turnover, percentage of transport operators, operator 

productivity, fleet ownership cost) were defined, combining individual components in 

Table 1, to constitute the final set of 39 features (see Table A.4 in Appendix A). The 

relevant input variables were identified according to the empirical and theoretical 

literature in the urban public transport sector (Daraio et al., 2016). 

The definition of total economic cost was based on the expense categories described in 

Table 2. In line with the literature (e.g., Wunsch, 1996; Avenali et al., 2018), the total 

economic cost per vehicle revenue-mile (i.e., the ratio between the total economic cost 

and the service size, measured as the number of vehicle revenue-miles) was estimated 

(henceforth referred to as the total cost per vrm, or unit cost). The total economic cost of 

the transit service was calculated as the sum of the cost components presented in Table 3, 

which also presents the average share of different cost items. Vehicle operating costs 

accounted for 46% of the total cost per vehicle mile, with more than 67% of these costs 

representing transport operators’ salaries and wages. Efficiency in personnel management 

(e.g., transport operators’ productivity or average hourly wage) was expected to be an 

important predictor of average unit cost, as expenses connected to fleet management 

significantly affect the economic performance of transit agencies. Indeed, almost 30% of 
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the total costs of these agencies relate to vehicle maintenance and depreciation. 

Consequently, vehicle usage (i.e., productivity, in miles) and characteristics (e.g., average 

age, seat and standing capacity) are critical factors for transit agency efficiency.  

[Table 2 near here] 

[Table 3 near here] 

The annual dataset integration consisted of merging all potential predictors and their unit 

costs into a single multiannual dataset. At this point, the data were explored and the 

quality of the dataset was verified (according to the absence of errors and duplicate data). 

Due to the differing scale of features, data normalization was applied. This resulted in a 

panel database of 1,345 observations related to 269 United States transit agencies that 

directly provided LPBT services from 2015–2019. To reduce data noise (e.g., smooth 

outliers) (Zimek et al., 2013), the features and output values (i.e., total cost per vrm) were 

averaged over the five early datasets from 2015–2019, to obtain the final dataset.  

Finally, a hold-out set strategy was applied. To assess the generalization of a predicting 

model, the dataset was split into a training set (Tr) (as in Ban et al., 2013) (used in the 

training phase) and a testing set (Ts). The ability to accurately predict the output of unseen 

observations depends, in part, on different extractions of Tr and Ts. K-fold cross-

validation was applied to evaluate the final performance of the model, with the average 

performance obtained over all k folds (i.e., different extractions) (Hastie et al., 2009). The 

dataset was split by randomly extracting a test set Ts, comprised of 20% of the data, and 

a training set Tr, comprised of the remaining 80%. To obtain reliable and balanced results, 

the sample was divided into groups based on quartiles of the output values, and an equal 

portion was extracted from different sample subsets, defined on the basis of the output 

value quartiles. Moreover, five random Ts extractions were performed to determine five 

different pairs of Tr and Ts (henceforth referred to as extractions and denoted 0–4), and 

all training and testing analyses were conducted for each pair. Thus, for each extraction, 

there were 215 Tr data and 54 Ts data. 

3.3 Predictive method  

This section describes the principles and application of the six ML methods that were 

applied in the present research to identify possible complex non-linear relationships 

between LPBT unit costs and service features. 
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3.3.1 Principles of the predictive methods 

The present study considered six ML techniques, comparing their performance to that of 

the traditional parametric approach of linear regression. In the Multivariate Linear 

Regression (MLR) parametric model (see, e.g., James et al., 2013), the input-output 

process is approximated as a linear function, with the output computed as a linear 

combination of features (also denoted predictors). As MLR is easy to compute and highly 

interpretable, it has been widely applied in transportation economics (e.g., Boitani et al., 

2013; Ripplinger and Bitzan, 2018). However, its predictive power may suffer when the 

process is characterized by non-linear interactions between the input and the output, as is 

often the case.  

K-Nearest Neighbors (KNN) regression is one of the simplest non-parametric models. 

For a given value k (set by the user), it predicts the output 𝑦 in correspondence of an input 

vector x, as the average output of the set of k samples in Tr that are closest to x (Bishop, 

2006). Due to its simplicity, the KNN method is often applied in practice (see, e.g., Ban 

et al., 2013; Kohli et al., 2021). However, it requires a large amount of memory for 

training, especially with a larger number of features, and its distance-based mechanism 

makes it sensitive to outliers and data imbalance.  

Support Vector Regression (SVR) is the simple regression adaptation of the Support 

Vector Machine (SVM) classification method (Boser et al., 1992). SVM training is 

formulated as a convex-constrained optimization problem; in principle, this can be solved 

efficiently. However, the dimension of the training problem rapidly increases in line with 

Tr size. Nonetheless, many decomposition algorithms have been applied to big data in a 

reasonable amount of time (see, e.g., Fan et al., 2008; Chang and Lin, 2011; Manno et al., 

2016; Manno et al., 2018), making the method very appealing for both classification and 

regression.  

Multilayer Perceptron (MLP) represents one of the most widely used neural network 

(NN) architectures (see, e.g., Bishop, 1995) in supervised ML. NNs are input-output 

structures composed of many processing units (i.e., neurons) that are connected to each 

other by weighted oriented connections. Each neuron elaborates the weighted sum of 

signals received from its incoming connections by means of a non-linear activation 

function to produce an outgoing signal, which is subsequently propagated to adjacent 

neurons. In MLP, neurons are organized into layers and connections are oriented from 
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the input to the output layer (see, e.g., Grippo et al., 2015). The MLP structure is 

particularly well suited to capturing complex non-linear relationships between variables. 

Moreover its universal approximation property has been demonstrated (see Leshno et al., 

1993). Accordingly, the MLP approach has been extensively applied in a variety of 

contexts (see, e.g., Qasim and Khadkikar, 2014; Laboissiere et al., 2015; Chelazzi et al., 

2021; Manno et al., 2021; Manno et al., 2022). Nonetheless, the highly non-linear and 

non-convex optimization problem that arises in the training of MLP remains a significant 

challenge. 

Random Forest (RF) (Ho, 1995) is a classification and regression ensemble method (see 

Dietterich, 2000) that is trained by building many decision trees (DTs) (Breiman et al., 

2017). In the regression task, the final prediction is based on an average of the DT 

predictions. This is done to prevent overfitting, which often occurs when a single DT is 

used. 

Gradient Boosting (GB) (Friedman, 2001) is a similar ensemble technique in which new 

DTs are iteratively added to reduce the errors made by already inserted trees. The gradient 

descent algorithm (see, e.g., Bertsekas, 1999) is used to minimize the loss function when 

adding a DT, and the iterative addition stops when no significant improvements are 

obtained. 

XGBoost is an efficient implementation of GB that has successfully addressed many ML 

challenges (Chen and Guestrin, 2016). For this reason, it has recently been applied to 

solving many practical problems (e.g., Pan, 2018; Li et al., 2019; Zheng and Wu, 2019). 

The above ML techniques reflect three different categories of approaches, which can be 

compared with the more conventional MLR approach. KNN is very simple and easy to 

use (thanks mainly to the straightforward training and the presence of only one 

hyperparameter to be tuned), but sometimes not sufficiently accurate. MPL and SVR are 

well suited to capturing non-linear relationships, so tend to be very accurate; however, 

they are less interpretable and prone to overfitting. RF, GB, and XGBoost, combining 

weaker and more interpretable learners, aim at a trade-off between predictive power and 

interpretability. Nevertheless, SHAP analysis was implemented to provide a deeper 

understanding of each feature’s contribution to the model outcomes, also gaining insights 

into the factors that influence cost predictions. 
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3.3.2 Description of the predictive experiments  

The described methods were applied to predict the total cost per vrm, which represents 

the dependent variable in all the models. MLR, KNN, SVR, MLP, RF, and GB were 

implemented using the Python sklearn package, while XGBoost was taken from 

https://xgboost.readthedocs.io/en/stable.4 

The independent variables (i.e., the potential predictors) for the unit cost estimation given 

as input to each model are the result of the feature engineering stage described in Section 

3.2. The MLR and six supervised ML models were compared under two different 

conditions: 

a. without features selection (i.e., considering all 39 features), and 

b. with feature selection. 

Feature selection can be used to improve model interpretability, applicability, and 

possibly predictive power (see, e.g., James et al., 2013). Commonly, some or many of the 

variables used in regression and classification models are not significantly relevant to/for 

the output, and they may generate unnecessary complexity in the resulting model. The 

removal of these variables can result in a model that is more easily applicable and 

interpretable. Moreover, their removal also simplifies the training optimization problem, 

which may substantially improve predictive power. 

Concerning the experiments without feature selection, the independent variables 

comprise all 39 features included in our dataset (Table A.4). In this case, for each of the 

five extractions and for each ML method, a grid search with 5-fold cross-validation was 

applied to the Tr to determine the best hyperparameter values. Subsequently, each ML 

method was trained with these hyperparameters on the entire Tr and tested on the Ts. Table 

A.5 (Appendix A) reports the hyperparameter values used in the grid search. 

With regard to the feature selection experiments, three different feature selection methods 

were considered: forward stepwise selection (FSS), backward stepwise selection (BSS), 

and recursive feature elimination (RFE). Briefly, FSS starts with an empty model and 

iteratively adds the most relevant features, BSS starts with a model with a full set of 

features and iteratively eliminates the most irrelevant ones, and RFE exploits the weights 

 

4 All experiments were conducted on a laptop AMD Ryzen 5 3500U 2.10 GHz with 8 GB of 

RAM. 

https://xgboost.readthedocs.io/en/stable


14 

 

assigned to features by the ML method to recursively select smaller and smaller sets of 

features. The present analysis focused on the results obtained using BSS, as this emerged 

as the best performing method in terms of the proportion of variance explained. The 

feature selection experiments were repeated for each extraction, method, and maximum 

number of selected features (ranging from 4–11). Moreover, for each method, feature 

selection was applied using the hyperparameter values obtained in the grid search of the 

prior experiment. Once the subset of features was determined, a further grid search using 

5-fold cross-validation was applied to determine new hyperparameter values that were 

better suited to the restricted setting. Subsequently, these hyperparameter values were 

used to train the method on the restricted Tr and test the trained model on the Ts. 

Of note, in the preliminary experiments, a “manual” feature selection method was tested, 

whereby multiple subsets of a few critical features were selected according to the degree 

to which they were assumed to explain unit costs and their ease of finding. Since the 

manual feature selection experiments yielded substantially lower accuracies than the 

standard feature selection approaches, they are not reported in the following.5 

For each method, extraction, and maximum number of selected features, the feature 

selection experiment that achieved the best performance on the corresponding Ts is 

reported. The coefficient of determination (R²), understood as a measure of model 

accuracy (i.e., predictive power), was used as the performance metric. Below, this method 

is referred to as the “best test set” approach. 

4. Model selection and results 

Table 4 displays the outcomes for the seven methods, both with and without feature 

selection, for each training set. It also reports, for each method: (i) the average R2 score 

(i.e., a measure of predictive power) over the five training sets and (ii) the standard 

deviation of R2 (i.e., a measure of robustness) over the five training sets. 

[Table 4 near here] 

First of all, concerning the experiments without feature selection, all the supervised ML 

models (except KNN) outperformed the standard MLR in terms of accuracy. In particular, 

 

5 The parsimonious paradigm, whereby ML techniques automatically select the best trade-off 

between predictive power and model simplicity (i.e., number of features), was also run. However, 

the main findings essentially coincided with the presented results. 
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MLR achieved a mean R2 testing accuracy of 0.748, RF obtained 0.782, and the mean 

R2  of SVR, MLP, GB, and XGBoost were all above 0.8, with MLP resulting the best 

performing one with R2 = 0.868. The poorest performance was obtained by the KNN 

model which showed to be too simple for the considered dataset. 

As is easily observed in Table 4, the feature selection strategy was very effective for each 

method, in terms of both predictive power and robustness. The only exception was related 

to the robustness of MLR (0.043), which outperformed that of MLR with feature selection 

(0.062). This was due to an improvement in the R2 score, which was more significant for 

some training tests over others. In general, feature selection improved predictive power 

and robustness while simultaneously simplifying the models (which selected, on average, 

only one-fourth of the features). Even when feature selection is applied, four supervised 

ML models (i.e., SVR, MLP, GB, and XGBoost) outperform the MLR method in terms 

of both the average amount of explained variance and robustness with respect to the 

different training sets. 

The research aimed at identifying models that would provide a good trade-off between 

model complexity and predictive power. Therefore, particular attention was given to 

models run under the best test set approach. Specifically, to maximize predictive power, 

for each training set 0, 1, 2, 3, and 4, the best model (in terms of R2) was selected using 

the best test set approach; these were, respectively, SVR (R2 = 0.846, 10 features), GB 

(R2 = 0.936, 11 features), MLP (R2 = 0.927, 7 features), MLP (R2 = 0.918, 9 features), 

and SVR (R2 = 0.924, 10 features).  

These models extracted information from a subset of the available features. However, 

some interesting and widely available features were never exploited for the estimation of 

unit cost, even if they were incorporated into the highly predictive models. To mitigate 

this drawback, one further model was selected that included the additional feature of 

network turnover, defined as the ratio between service scale (in vehicle revenue-miles) 

and network size (in directional route miles).6 This feature provides critical information 

for the design of (competitive or non-competitive) procedures for allotting LPBT 

services. The model with the largest R2 that also incorporated network turnover as a 

 

6 Directional route miles are the total number of miles in each direction that public transportation 

vehicles travel during revenue service, measured to the nearest hundredth of a mile and specified 

for each combination of mode and service with a fixed guideway. 
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feature was provided by the MLP method, constrained to 11 features under training set 3 

(R² = 0.904).  

Table 5 describes the six models applied to predict the unit cost of any LPBT service 

using the selected features. All models are labeled as “predictive method (MLR, KNN, 

SVR, MLP, RF, GB, and XGBoost) – extraction (‘e’) of the training set (0, 1, 2, 3, 4) – 

number of selected features (‘f’)”. For example, SVR-e0-f10 represents the model based 

on the Support Vector Regression (SVR) method, trained on extraction 0 of the training 

set, and using 10 features selected by the backward stepwise selection (BSS) method. 

As can be observed, given the objective of maximizing the accuracy of the cost prediction, 

no MLR model was selected, as there was always a more effective model. 

[Table 5 near here] 

To gain a deeper understanding of the underlying mechanisms driving model prediction, 

the SHAP values of every feature included in the proposed models were plotted (see 

Appendix B). This enabled the contribution of individual features to be identified, in 

terms of the direction and scale of their impact on the model outcome. For each proposed 

model, only a subset of the features determined larger impacts on unit costs. In addition, 

in several cases, there was overlap in the high-impact features between models (with 

respect to, e.g., average salary expenses per employee, operator productivity (annual 

miles), average speed, vehicle productivity (annual miles), and fleet ownership cost per 

vehicle). 

The proposed models were tested for a set of six LPBT services, of which three were 

provided by transit agencies that were not present in the database (i.e., from Lancaster, 

Sheboygan, and Tucson). Table 6 reports the features related to the models in Table 5 for 

these six services and the unit costs and average values predicted by each model. 

[Table 6 near here] 

The results demonstrated a high degree of predictive power in forecasting the total cost 

per vrm in the six case studies, with an average percentage error of approximately 6% 

between the predicted and the observed values. Moreover, the models showed low 

variance with respect to the different training sets, indicating robustness and reliability 

across a range of input data.  

Since the proposed models were trained on real-world LPBT services, they may be used 

by public authorities to define an upper bound for the economic compensation of firms 
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(both in competitive tendering procedures and when LPBT service allotments are not 

tendered out), so as to exploit the incentive properties of yardstick competition (Shleifer, 

1985). Indeed, the models’ predicted unit costs represent benchmark figures, achieved by 

an implicit comparison of the unit costs of real LPBT services (as the benchmark figures 

were generated by techniques trained on real-world data, they represent, for any bunch of 

identical or very similar services, “average” values of the corresponding unit costs).  

Within this framework, policymakers can select the ML models most suitable for their 

specific case based on the available data in their context. Once the models are developed, 

validated, and tailored to a specific country, public authorities can collect the necessary 

inputs for the proposed models. These inputs are generally either readily available, as they 

pertain to the operational characteristics of the LPBT service (e.g., service miles traveled, 

average commercial speed, fleet characteristics, route network extensions, cost of fleet 

ownership per vehicle), or are assumed to be target values determined by policymakers 

(e.g., operator productivity in terms of annual miles, average wage expenditures per 

employee). 

5. SHAP-based sensitivity analysis 

Public authorities may use the proposed models to estimate the impact of some variations 

in specific service features on expected unit costs. In particular, Figure 2 shows the impact 

of a subset of “core” features identified by the SHAP plot analysis of the proposed 

models, namely: average speed, average salary expenses per employee, vehicle 

productivity (annual miles), and fleet ownership cost (depreciation and cost of invested 

capital) per vehicle.7 

[Figure 2 near here] 

The proposed models highlighted that unit cost decreased as commercial speed increased. 

Indeed, lower commercial speed typically reduces the annual productivity of driving 

personnel. Thus, LPBT service provision may require a higher number of drivers (usually, 

the shift duration of any driver cannot extend over a pre-defined upper bound, also for 

safety reasons). In addition, higher commercial speed was associated with less fuel 

 

7 Figures 2 and 3 report the average values of all six predictions of the applied models. 
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consumption and less vehicle stress (by minimizing stop-and-go driving, which can 

negatively affect the engine and transmission system and increase maintenance costs).  

As expected, unit costs tended to increase in line with the average employee salaries, 

highlighting the importance of the local context in determining LPBT costs. This effect 

was particularly evident in larger cities, where wages were typically higher, generating 

higher total cost per vrm (see, e.g., the case of Washington). Additionally, lower annual 

vehicle productivity was associated with higher unit costs, as more vehicles were required 

to produce the same amount of vehicle revenue-miles. This finding has implications for 

cases when more service is needed during on-peak periods, but no further vehicles are 

available and thus new ones must be purchased/rented. Finally, bus fleets with higher unit 

ownership costs induced larger unit costs. This result was strictly linked to vehicle 

purchase costs and the cost of capital for transport providers. 

Even though the network turnover (and directional route miles) and the percentage of 

electric vehicles in the fleet were not highlighted as “core” features by the SHAP plot 

analysis, the effects of their possible changes were investigated since these features are 

of growing importance to policymaking. 

[Figure 3 near here] 

The proposed models highlighted that a raise in network turnover (given a fixed network 

and route structure) could generate a density economy and thus reduce the expected unit 

cost (see Figure 4); on the other hand, within congested metropolitan areas (see, in 

particular, the case of Washington), greater network turnover could generate a density 

diseconomy (given a fixed network and route structure), thereby raising the expected unit 

cost. Additionally, in the present analysis, as directional route miles increased while 

network turnover remained constant, possible scale economies could lower the predicted 

unit cost. 

Finally, Figure 3 shows that fleets with a higher percentage of electric vehicles were 

associated with larger unit costs, mainly due to the much more expensive depreciation 

and cost of the net invested capital (consistent with the literature on public transport 

electrification, e.g., Comello et al., 2021). Interestingly, as fleet sizes became very large 

(see, in particular, the case of Washington), unit costs increased at a decreasingly 

marginal rate.  
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The results of the sensitivity analyses were consistent with the initial expectations. This 

is particularly interesting, given that ML models incorporate non-linear functions, and it 

cannot be assumed that variations in key cost drivers will necessarily generate a coherent 

impact on the output. The present findings suggest that the ML models accurately 

captured the complex relationships between service features and unit costs in LPBT 

services, thereby increasing confidence in the validity of their predictions and their utility 

for policymakers.  

6. Conclusions 

The present study aimed to develop a methodological framework for incorporating ML 

approaches into the prediction of the total economic cost per vehicle revenue mile (vrm) 

of LPBT services. Six ML methods were considered and compared with the conventional 

approach of Multivariate Linear Regression. The outcome is a set of ML-based cost 

models, where the predicted variable is the total economic cost per vrm of LPBT services 

and the predictors are features selected case by case, depending on (i) the nature of the 

data and (ii) the tradeoff between predictive power (accuracy and robustness) and 

interpretability. The developed framework was implemented on a dataset containing 

information from 269 transit agencies providing urban services in the United States from 

2015 to 2019. 

When comparing standard MLR against six ML models on the dataset including all 

available features, five out of six ML models outperformed MLR in terms of testing 

accuracy, with MLP emerging as the most preferable one. Further results showed that the 

feature selection strategy was very effective for each method, in terms of both predictive 

power and robustness (understood as the dispersion of predictive power measures over 

the training sets). Moreover, the application of feature selection had the benefit of 

providing simpler models (incorporating, on average, only one-fourth of the available 

features). Even when feature selection is applied, four supervised ML models (i.e., SVR, 

MLP, GB, and XGBoost) outperform the MLR method in terms of both the average 

amount of explained variance and robustness with respect to the different training sets. 

This means that ML models have proven to be a more reliable approach with respect to 

different input data available for transport planners. 

Our application demonstrates the following key points: (i) ML models outperformed 

MLR in both testing accuracy and robustness. Robustness, measured as the dispersion of 
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predictive power across training sets, indicates that ML models provide a more reliable 

approach for transport planners given varying input data; (ii) ML models, such as MLPs 

and SVR, are adept at capturing non-linear relationships and tend to be highly accurate. 

Our dataset encompasses a diverse range of services, differing in size and service context 

(e.g., variations in rolling stock, percentage of low-emission vehicles, and average bus 

age). Traditional methods, such as linear regression, struggle to incorporate these 

complex non-linear relationships. In contrast, MLPs and SVR excel in modeling these 

relationships due to their superior expressive power (Bishop, 2006). 

Then, the primary advantage of using ML methods lies in their improved accuracy and 

robustness in cost prediction, particularly in the presence of non-linear relationships 

within heterogeneous datasets. Accurate cost forecasting is crucial for informed decision-

making regarding budget allocations and resource utilization (Chou, 2009), as well as 

enhancing service contract management and design. 

Moreover, the integration of SHAP analysis enhanced the interpretability of the ML 

models, facilitating more informed decision-making within the scope of this research. 

Indeed, for each proposed model, a subset of features determined a large impact on unit 

cost. These “core” features included: average salary expenses per employee, average 

speed, vehicle productivity, and fleet ownership cost per vehicle. The sensitivity analyses 

showed that unit cost decreased as commercial speed increased, and unit cost increased 

as annual vehicle productivity decreased, as more vehicles were required to produce the 

same number of vehicle revenue-miles. Additionally, costs tended to increase in line with 

the average employee salary and the unit ownership cost associated with the fleet. 

Therefore, the results of the sensitivity analyses suggest that transport planners can 

exploit the proposed models to accurately predict the impact of changes in some critical 

features on corresponding unit costs. 

Regarding some relevant policy variables, in some cases, increased network turnover was 

found to generate a density economy and thus reduce expected unit costs; on the other 

hand, in congested (metropolitan) areas (e.g., Washington), increased network turnover 

was found to generate a density diseconomy, thereby increasing the expected unit costs. 

Interestingly, fleets with a higher percentage of electric vehicles were associated with 

larger unit costs, mainly due to the much more expensive costs of depreciation and net 

invested capital. However, as fleet size became very large (see, e.g., the case of 

Washington), unit costs increased at a decreasingly marginal rate. 
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The present study suffered from some limitations, which may indicate directions for 

future research. First, as the models were top-down, they enabled prediction but were 

“black boxes” for transit operators. A bottom-up approach would both predict 

(average/maximum) efficient unit costs and make inefficiency causes clear to operators, 

highlighting key competitive insights. Second, when feature selection was applied, the 

ML methods focused on a restricted subset of features that were identified from a starting 

set of 39 features. Future research could re-run the analysis while constraining all methods 

(i.e., with and without feature selection) to learn from only a few critical features, such as 

the most frequently available features and the features whose measures relate to actual 

characteristics of the required service. 
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Tables 

Table 1 - Structure and individual components of the built-in database 

Major category Individual component 

General 

information 

Agency ID 

Reference year 

State 

City served 

Population of primary urbanized area served 

Service features 

Vehicle-miles 

Vehicle-revenue miles 

Directional route miles 

Unlinked passenger trips 

Passenger miles 

Average speed 

Fuel used (gallon equivalent) 

Personnel 

management 

Number of total employees 

Percentage of full-time employees 

Average salary expenses per employee 

Number of transport operators (i.e., drivers and movement personnel) 

Number of hours worked by transport operators 

Average hourly wage of transport operators 

Fleet 

characteristics 

Number of active fleet vehicles 

Average fleet age 

Average fleet length 

Average fleet capacity (seats + standing) 

Vehicles productivity (annual miles) 

Average lifetime miles of active fleet 

Percentage of power/fuel types 

Economic costs 

Operating expenses related to vehicle operations 

Operating expenses related to transport operators wages 

Operating expenses related to fuel/energy and lubricants 

Operating expenses related to vehicle maintenance 

Operating expenses related to facility maintenance 

Operating expenses related to general administration 

Vehicles depreciation costs 

Cost of invested capital 
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Table 2 - The categories of expenses included in the cost basis 

Category of expenses Cost items 

OPEX related to vehicle operations 

Expenses related to activities associated with dispatching and running 

vehicles to carry passengers. We define four main sets of items: 

- OPEX related to transport operators (i.e., drivers and movement 

personnel) wages; 

- OPEX related to fuel/energy and lubricants; 

- Vehicle depreciation costs 

- OPEX related to other vehicle operation activities (e.g., tires and 

tubes, outsourcing services and miscellaneous). 

OPEX related to vehicle maintenance 

Expenses incurred during all activities related to keeping vehicles 

operational and in good repair (e.g., maintenance workers’ salaries, spare 

parts, outsourcing maintenance, utilities and miscellaneous). 

OPEX related to facility maintenance 

Expenses include all activities related to keeping depots, structures, 

roadways, and other non-vehicle assets operational and in good repair (e.g., 

facility maintainers’ salaries, materials and supplies). 

OPEX related to general administration 

Expenses incurred to perform support and administrative activities (e.g., 

overall management, economic planning and control costs, membership 

fees, business consulting and information systems costs, salaries of 

personnel employed in general activities). 

Cost of invested capital 
The cost of a transit agency’s funds (debt and equity) with regard to urban 

bus services. 

 

Table 3 – The components of the average unit cost related to LPBT services  

Cost per vehicle-mile (USD/vrm) % Mean Min 
1° 

quartile 
Median 

3° 

quartile 
Max 

Coeff. of 

variation 

OPEX related to vehicle operations 45.8% 3.65 1.10 2.81 3.34 4.22 12.33 0.37 

OPEX related to transport operators wages 67.8% 2.47 0.33 1.83 2.30 2.91 9.46 0.41 

OPEX related to fuel/energy and lubricants 15.0% 0.55 0.18 0.42 0.51 0.64 1.40 0.33 

OPEX related to other vehicle operation activities 17.2% 0.63 0.02 0.39 0.55 0.77 3.03 0.60 

OPEX related to vehicle maintenance  15.1% 1.21 0.18 0.83 1.10 1.40 5.60 0.50 

OPEX related to facility maintenance  3.5% 0.28 0.00 0.13 0.22 0.36 3.47 0.91 

OPEX related to general administration 17.7% 1.41 0.15 0.89 1.22 1.70 7.92 0.59 

Vehicles depreciation costs 14.2% 1.13 0.02 0.84 1.05 1.34 3.46 0.40 

Cost of invested capital 3.6% 0.29 0.00 0.18 0.27 0.35 1.37 0.55 

Total economic cost 100.0% 7.96 2.48 6.14 7.48 8.98 24.55 0.36 
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Table 4 - Outcome of the predicting methods with and without feature selection 

  
Multivariate Linear 

Regression (MLR) 

K-Nearest- 

Neighbors (KNN) 

Support Vector 

Regression (SVR) 

Multilayer  

Perceptron (MLP) 

Random Forest  

(RF) 

Gradient Boosting  

(GB) 
XGBoost 

 Extraction R2 score # features R2 score # features R2 score # features R2 score # features R2 score # features R2 score # features R2 score # features 

Mean Model 

[without  

Feature 

Selection] 

0 0.685 39 0.514 39 0.728 39 0.737 39 0.792 39 0.722 39 0.808 39 

1 0.749 39 0.702 39 0.885 39 0.911 39 0.896 39 0.934 39 0.927 39 

2 0.804 39 0.471 39 0.804 39 0.884 39 0.771 39 0.851 39 0.872 39 

3 0.741 39 0.441 39 0.791 39 0.902 39 0.657 39 0.836 39 0.763 39 

4 0.759 39 0.702 39 0.909 39 0.906 39 0.792 39 0.826 39 0.902 39 

mean 0.748 39 0.566 39 0.823 39 0.868 39 0.782 39 0.834 39 0.854 39 

std.dev 0.043 0 0.127 0 0.073 0 0.074 0 0.085 0 0.076 0 0.068 0 

Mean Model 

[with 

Feature 

Selection] 

Best Test Set 

0 0.755 7 0.817 8 0.846 10 0.762 5 0.832 5 0.834 6 0.818 11 

1 0.91 9 0.869 6 0.924 7 0.923 9 0.929 8 0.936 11 0.922 10 

2 0.822 8 0.743 5 0.88 5 0.927 7 0.771 4 0.902 5 0.860 7 

3 0.793 10 0.831 6 0.908 7 0.918 9 0.73 7 0.891 11 0.848 10 

4 0.876 11 0.850 10 0.924 10 0.900 11 0.829 11 0.876 7 0.903 7 

mean 0.831 9 0.822 7 0.896 7.8 0.886 8.2 0.818 7 0.888 8 0.870 9 

std.dev 0.062 1.58 0.048 2 0.033 2.17 0.070 2.28 0.075 2.74 0.037 2.83 0.042 1.87 

Legend: 

 R2 < 0.60 

  0.60 ≤ R2 < 0.70 

 0.70 ≤ R2 < 0.75 

 0.75 ≤ R2  < 0.80 

 0.80 ≤ R2 < 0.85 

 0.85 ≤ R2 < 0.90 

 R2 ≥ 0.90 



Table 5 - Proposed cost models and related selected features 

 SVR-e0-f10 GB-e1-f11 MLP-e2-f7 MLP-e3-f9 SVR-e4-f10 MLP-e3-f11 

Average speed True True / True True True 

Vehicle-revenue miles / True / / / / 

Unlinked passenger trips / True / / / / 

Passenger miles / True / / / / 

Directional route miles / / / / / True 

Average passengers per 

vehicle 
True / / True True True 

Load factor / / / True / True 

Network turnover / / / / / True 

Average salary expenses 

per employee 
True True True True True True 

Average hourly wage of 

transport operators 
True / / / True / 

Operators productivity 

(annual miles) 
True True True True True True 

Operators productivity 

(annual seats miles) 
True True True / True / 

Percentage of transport 

operators (i.e., drivers 

and movement personnel) 

True True True True True True 

Number of active fleet 

vehicles 
/ True / / / / 

Average fleet length / / True / / / 

Vehicles productivity 

(annual miles) 
True / True True True True 

Average lifetime miles of 

active fleet 
/ / / True / True 

Percentage of hybrid 

diesel vehicles 
/ True / / / / 

Percentage of electric 

vehicles 
/ True True / / / 

Fleet ownership cost 

(depreciation and cost of 

invested capital) per 

vehicle 

True / / True True True 

Fleet ownership cost 

(depreciation and cost of 

invested capital) per seat 

(including standing) 

True / / / True / 
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Table 6 - Features of LPBT services and unit costs predicted by the proposed models 

City Lancaster Sheboygan Tucson Washington Cleveland Scranton 

Primary UZA Population 402,004 71,313 843,168 4,586,770 1,780,673 381,502 

Average speed 12.78 14.37 11.96 9.80 11.34 11.22 

Vehicle-revenue miles 3,138,121 599,904 8,458,300 36,511,319 12,157,936 903,318 

Deadhead miles 145,787 6,205 1,202,072 10,790,660 1,830,857 94,247 

Directional route miles 736.00 85.00 1,083.00 2,132.18 1,231.50 291.00 

Average passengers per vehicle 6.38 2.38 8.77 9.82 7.56 5.05 

Network turnover 4,263.75 7,057.69 7,810.06 17,123.94 9,872.46 3,104.19 

Average salary expenses per employee 45,211.04 35,060.77 43,922.60 70,985.51 54,855.27 41,557.80 

Average hourly wage of transport 

operators 
24.72 22.19 21.63 36.69 25.47 22.70 

Operators productivity (annual miles) 19,123.22 17,961.20 18,111.99 11,434.80 14,673.04 14,569.65 

Percentage of transport operators (i.e., 

drivers and movement personnel) 
79.2% 77.5% 72.6% 69.0% 61.6% 68.9% 

Fuel price (per gallon) 2.37 2.42 2.06 2.01 1.45 2.41 

Number of active fleet vehicles 94 21 246 1,604 338 33 

Average fleet age 6.91 11.10 9.15 8.78 7.85 5.45 

Average fleet length 36.28 32.14 40.00 41.27 42.62 35.00 

Average fleet capacity (seats + 

standing) 
48.31 42.38 59.19 67.16 64.82 69.55 

Vehicles productivity (annual miles) 33,172.89 29,547.38 39,751.66 28,783.44 41,070.14 32,546.61 

Percentage of diesel vehicles 34.0% 100.0% 81.7% 12.1% 68.9% 21.2% 

Percentage of CNG vehicles 0.0% 0.0% 18.3% 33.9% 31.1% 39.4% 

Percentage of hybrid diesel vehicles 66.0% 0.0% 0.0% 53.9% 0.0% 39.4% 

Percentage of electric vehicles 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 

Fleet ownership cost (depreciation and 

cost of invested capital) per vehicle 
55,396.67 27,484.80 37,805.13 49,527.55 44,182.01 54,570.84 

       

Total cost per vrm [USD/vrm]* 

(observed) 
6.75 4.71 6.94 17.45 11.56 8.83 

Total cost per vrm predicted by the 

proposed models [USD/vrm] 

      

SVR-e0-f10 7.08 5.34 6.83 14.89 10.26 8.80 

GB-e1-f11 6.97 5.66 7.39 16.96 11.07 8.13 

MLP-e2-f7 6.53 5.80 7.04 17.60 10.65 7.93 

MLP-e3-f9 6.95 5.39 6.90 16.75 10.49 8.80 

SVR-e4-f10 7.13 5.25 6.89 14.93 10.36 8.79 

MLP-e3-f11 7.00 5.34 6.89 16.21 10.56 8.97 

Mean 6.94 5.46 6.99 16.22 10.56 8.57 

% error w.r.t. 

observed unit cost 
2.8% 16.0% 0.7% -7.0% -8.6% -3.0% 

standard deviation 0.21 0.21 0.21 1.11 0.28 0.43 

* Since the LPBT services are produced in a period ranging from 2015 up to 2019, the observed monetary 

values are given in 2019 prices (in USD), consistently with the unit costs predicted by the proposed models.  
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Figures 

Figure 1 – The analytical framework developed to predict the unit cost of LPBT services 
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Figure 2 – Total cost per vrm as “core” service features increase/decrease 
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Figure 3 – Total cost per vrm as two important policy features increase/decrease 
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Appendix A 

In this document additional tables are reported for the methodology section (Section 4).  

Table A.1 - Some descriptive statistics related to service features of transit agencies included in the sample  

 Mean Min 1° quartile Median 3° quartile Max 
Coeff. of 

variation 

Vehicle-revenue miles (mi) 5,222,623 29,272 848,222 1,724,047 4,238,707 87,657,339 2.00 

Directional route miles (mi) 533 3.60 160 307 599 5,616 1.22 

Unlinked Passenger Trips 14,434,387 5,741 1,032,444 2,748,108 7,978,861 743,763,755 3.68 

Fuel Used (gallon equivalent) 1,644,671 5,286 197,255 423,389 1,303,923 37,704,550 2.42 

Average speed (mi/h) 13.29 4.71 11.79 13.05 14.56 27.77 0.20 

 

Table A.2 - Some descriptive statistics related to personnel management of transit agencies included in the 

sample  

 Mean Min 
1° 

quartile 
Median 

3° 

quartile 
Max 

Coeff. of 

variation 

Number of total employees 529 3 69 150 383 14,918 2.48 

Percentage of full time employees 0.84 0.00 0.78 0.92 0.98 1.00 0.24 

Average salary expenses per employee 

(USD) 
44,035.64 6,962.35 36,118.38 44,661.82 51,748.16 82,002.74 0.29 

Percentage of transport operators (i.e., 

drivers and movement personnel) 361 2 52 109 269 9,883 2.40 

Number of hours worked by transport 

operators 680,314 4,171 89,653 194,168 519,348 20,362,247 2.49 

Average hourly wage of transport 

operators (USD) 23.69 9.21 19.91 23.52 27.02 53.33 0.25 

 

Table A.3 - Some descriptive statistics related to fleet characteristics of transit agencies included in the sample  

 Mean Min 1° quartile Median 3° quartile Max 
Coeff. of 

variation 

Number of active fleet vehicles 174 1 30 58 142 3,964 2.19 

Average fleet age 8.70 1.00 7.28 8.55 10.04 22.50 0.27 

Average fleet length (feet) 36.48 17.00 33.65 36.63 39.63 52.23 0.12 

Average fleet capacity (seats + standing) 56 5 47 56 64 118 0.26 

Vehicles productivity (annual miles) 33,095 6,178 26,762 32,729 39,065 72,145 0.28 

Average lifetime miles of active fleet 283,976 11,730 212,457 276,850 335,549 3,295,098 0.51 

Percentage of diesel vehicles 0.68 0.00 0.48 0.80 0.99 1.00 0.48 

Percentage of CNG vehicles 0.15 0.00 0.00 0.00 0.14 1.00 1.92 

Percentage of hybrid diesel vehicles 0.09 0.00 0.00 0.00 0.11 1.00 1.82 

Percentage of electric vehicles 0.01 0.00 0.00 0.00 0.00 1.00 4.19 
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Table A.4 - Features included in the analysis 

Major category Features included in the analysis 

General 

information 

1 Population of primary urbanized area served 

Service features 

2 Average speed 

3 Vehicle miles 

4 Vehicle-revenue miles 

5 Dedhead miles [= 3 − 4] 

6 Seat revenue miles (including standing) [= 4 × 28] 

7 Directional route miles 

8 Network turnover [= 4/7] 

9 Unlinked passenger trips 

10 Passenger miles 

11 Average passengers per vehicle [= 10/4] 

12 Load factor [= 11/28] 

13 Fuel used (gallon equivalent) 

14 Fuel price (per gallon) [= (𝑂𝑃𝐸𝑋 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑓𝑢𝑒𝑙/𝑒𝑛𝑒𝑟𝑔𝑦)/13] 

Personnel 

management 

15 Number of total employees 

16 Percentage of full-time employees 

17 Average salary expenses per employee 

18 Number of transport operators (i.e., drivers and movement personnel) 

19 Percentage of transport operators (i.e., drivers and movement personnel) [= 18/15] 

20 Number of hours worked by transport operators 

21 Average hourly wage of transport operators 

22 Operators productivity (annual operations hours) [= 20/18] 

23 Operators productivity (annual miles) [= 4/18] 

24 Operators productivity (annual seats miles) [= 6/18] 

Fleet 

characteristics 

25 Number of active fleet vehicles 

26 Average fleet age 

27 Average fleet length 

28 Average fleet capacity (seats + standing) 

29 Vehicles productivity (annual miles) 

30 Average lifetime miles of active fleet 

31 Percentage of diesel vehicles 

32 Percentage of CNG vehicles 

33 Percentage of hybrid diesel vehicles 

34 Percentage of electric vehicles 

35 Percentage of hydrogen vehicles 

36 Percentage of other powertrains 

37 Percentage of low carbon buses [= 33 + 34 + 35] 

Economic costs 

38 Fleet ownership cost (depreciation and cost of invested capital) per vehicle [=
(𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎) 25⁄ ] 

39 Fleet ownership cost (depreciation and cost of invested capital) per seat (including standing) 
[= (𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 + 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑑 𝑐𝑎𝑝𝑖𝑡𝑎) (25 × 28)⁄ ] 

 

 



32 

 

Table A.5 - Hyperparameter space used to tune the ML methods with Grid Search* 

Gradient Boosting (GB)  

hyperparam. name grid values 

learning_rate 1, 0.1, 0.01, 0.05 

max_depth 2,3,4,5,6 

min_samples_split 2,5,10,15,20 

subsample 0.5,0.75,1 

n_estimators 100, 500, 1000, 2000 

  

Multilayer Perceptron (MLP)  

hyperparam. name grid values 

activation relu, logistic, tanh 

alpha 0.1, 0.5, 0.05 

hidden_layer_sizes (25,), (50,), (100,), (25,25), (50,25), (50,50) 

max_iter 100,200,500,1000 

solver adam, lbfgs 

  

Support Vector Regression 

(SVR) 
 

hyperparam. name grid values 

C 1, 10, 100, 1000 

gamma 0.1, 0.01, 0.001, 0.0001 

  

XGBoost  

hyperparam. name grid values 

learning_rate 0.1, 0.05 

max_depth 2, 5 

n_estimators 100, 500, 1000 

  

Random Forest (RF)  

hyperparam. name grid values 

max_depth 2,5,10,20 

min_samples_split 2,5,10 

n_estimators 100,500,1000 

  

K-Nearest-Neighbors (KNN)  

hyperparam. name grid values 

weights uniform, distance 

n_neighbors from 1 to 15 

algorithm auto, ball_tree, kd_tree, brute 

leaf_size 1,2,3,4,5,10,15,20,25,30 

p 1,2,3 

* For each of the used ML method, we have presented the tuned parameters, the other 

not listed in the table are the default ones (except for GB loss=huber and for MLP 

learning_rate=adaptive, early_stopping=True). 
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Table A.1 - The parameters used in the ML models selected 

ML model 
Number of 

features 
Extraction 

   

Support Vector Regression (SVR) 10 0 

Parameters 

C: 100 

Gamma: 0.001 

  

   

Gradient Boosting (GB) 11 1 

Parameters 

learning_rate: 0.05 

max_depth: 2 

min_samples_split: 2 

Subsample: 0.5 

n_estimators: 1000 

 

 
 

   

Multilayer Perceptron (MLP) 7 2 

Parameters 

activation: logistic 

alpha: 0.05 

hidden_layer_sizes: (50,25) 

max_iter: 100 

solver: lbfgs 

 

 
 

   

Multilayer Perceptron (MLP) 9 3 

Parameters 

activation: logistic 

alpha: 0.5 

hidden_layer_sizes: (100, ) 

max_iter: 500 

solver: lbfgs 

 

 
 

   

Support Vector Regression (SVR) 10 4 

Parameters 

C: 100 

Gamma: 0.001 

  

   

Multilayer Perceptron (MLP) 11 3 

Parameters 

activation: relu 

alpha: 0.5 

hidden_layer_sizes: (100, ) 

max_iter: 500 

solver: lbfgs 
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Appendix B 

This document displays the SHAP plots for each proposed model. A local regression 

using the Kernel SHAP function was performed for each model in the best test set. The 

final output, presented as violin plots, provides information on the contribution of 

individual features in terms of the direction and scale of their impact on the model 

outcome. In each summary plot, features are listed on the y-axis in order of importance 

from top to bottom, along with their mean SHAP values. The x-axis displays the SHAP 

values, indicating the degree of influence each feature has on the model output (positive 

or negative). A wider SHAP value (wider violin plot) signifies a greater impact on the 

model outcome. The color gradient illustrates the direction of this impact, with red 

indicating high values and blue indicating low values. 
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Model: SVR-e0-f10 

 

Model: GB-e1-f11 

 

Model: MLP-e2-f7 
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Model: MLP-e3-f9 

 

 

Model: SVR-e4-f10 

 

 

Model: MLP-e3-f11 
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