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A B S T R A C T

This work proposes a novel procedure to guide the development of machine learning models
for estimating the seismic demand in existing reinforced concrete (RC) buildings. The proposed
approach is organized across two scales. A large-scale (nonparametric) machine learning model
is first obtained by means of Gaussian Process Regression (GPR) using all candidate building
attributes and intensity measures. SHapley Additive exPlanations (SHAP) values are utilized
to facilitate its interpretation and to assist the rational selection of a small subset of intensity
measures, which is finally employed to develop a (symbolic) reduced-scale machine learning
model by means of Genetic Programming (GP). Simplified models of archetype buildings are
adopted to develop machine learning techniques at both scales, in such a way to alleviate the
simulation time for preparing large datasets. Refined models representative of actual buildings
are instead considered for the unbiased final assessment.

The proposed approach is applied to develop predictive machine learning models for the
maximum inter-storey drift in bare frames, pilotis frames and frames with infills under pulse-like
seismic ground motions. Consequently, the critical examination of the SHAP values revealed
the most significant intensity measures and unfolded interesting patterns depending on the
occupancy rate of the infills. Moreover, the final assessment demonstrates that this approach
allows the management of a non-homogeneous building stock consisting of very diverse
structural systems (i.e., spanning from existing buildings designed against gravity loads only
to buildings that comply with outdated seismic codes) while providing satisfactory predictions
of the seismic demand with minimum computational effort.

1. Introduction

The estimation of the seismic demand in structures subject to severe earthquakes is of utmost importance because of its
pivotal role in seismic risk assessment and mitigation. Performance-Based Earthquake Engineering (PBEE) provides a valuable
methodological framework in this regard: it comprises several steps, of which estimating the structural fragility is especially critical.
The structural fragility is the probability of exceeding a predefined Limit State (LS), expressed as Engineering Demand Parameter
(EDP), conditioned to different values of a designated ground motion Intensity Measure (IM). In order to quantify the seismic
risk, this conditional probability is then convolved with the results of a probabilistic seismic hazard analysis [e.g., 1,2]. Since the
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IM operates as an intermediate parameter between seismic hazard analysis (i.e., seismological attributes) and fragility analysis
(i.e., structural attributes), it holds a central importance in the assessment and mitigation of seismic risk [e.g., 3].

The selection of the optimal IM has been widely investigated for different structural systems, such as steel frames [e.g., 4,5] and
einforced concrete (RC) frames [e.g., 6–8]. Several criteria have been also proposed to judge the suitability of alternative IMs in
haracterizing the dominant features of the seismic ground motion. Previous research works agree that efficiency and sufficiency
re the most representative metrics to evaluate the predictive capability of an IM. Efficiency implies a relatively small dispersion of
he EDP of interest for a given IM, making the selected measure a good descriptor of the structural response [e.g.9,10]. A sufficient
M ensures the dependency of EDP on the IM only, while resulting as minimally correlated as possible with respect to the other
eismic ground motion features [e.g.11,12].

Initial studies in this field considered the use of scalar IMs. In particular, peak ground acceleration, peak ground velocity
nd spectral acceleration at the fundamental elastic period were among the first scalar IMs that were employed to derive the
ragility curves. Although this is basically attributable to the immediate availability of the corresponding hazard curves, it is now
ell-recognized that peak ground acceleration and velocity are poor predictors of damage [e.g., 13]. Spectral acceleration at the

undamental elastic period can be a reliable predictor of the EDP for regular, elastic structures whose dynamic response is dominated
y the first mode, but its accuracy for irregular or medium-tall structures is questionable because of the inability to account for the
nfluence of higher modes and/or the period elongation due to the inelastic behavior [14].

The unsatisfactory predictive capabilities of these simple scalar IMs has motivated further efforts towards the search for more
erforming alternatives. A large number of research works has advanced new scalar IMs. For instance, the spectral acceleration
veraged over a prescribed period range [15] was proposed to account for the period elongation of the structures under strong
eismic ground motion. Many studies [e.g., 16] have shown that considering the elongation of the fundamental period provides
significantly more efficient predictor of the structural response. This finding was confirmed for existing infilled RC frames by
’Reilly [17], who concluded that the seismic response is not biased by velocity-based ground motion characteristics of the seismic

ecord upon infill collapse when the average of spectral accelerations is employed. A growing mass of evidence is also emphasizing
he importance of alternative scalar IMs that depend on velocity, power, or energy [e.g., 18–21]. The application of such IMs was
ound especially useful for structures subject to pulse-like seismic ground motions [e.g., 22]. This is because pulse-like earthquakes
xhibit an impulsive velocity waveform facilitated by the directivity effect that reflects into the transmission of a large amount of
nergy to the structure in a relatively short time, whereas a more gradual energy transfer occurs in case of far-field, non-pulse-like
arthquakes [e.g., 23–25].

Several research works have implemented radically different approaches in the attempt to further improve the prediction of
elevant EDPs. A first group of research works has proposed the use of vector-valued IMs instead of a scalar IM. The advent of
ector-valued IMs originates from the idea that a relevant EDP may be better predicted by increasing the number of parameters
hat describes the properties of the seismic ground motions [26]. For instance, Baker and Cornell [27] proposed a three-parameter
ector-valued IM consisting of spectral shape, spectral acceleration at the fundamental elastic period, and a measure indicating
he spectral acceleration value at a second period (which can be roughly assumed twice the elastic first-mode period). Zengin
nd Abrahamson [28] proposed a vector-valued IM for near-fault pulse-like seismic ground motion consisting of the so-called
nstantaneous power and the spectral acceleration at the fundamental elastic period of the structure. The vector-valued IM proposed
y Theophilou et al. [29] includes the elastic first-mode period spectral acceleration and a normalized measure of the displacement
esponse spectrum area between the elastic fundamental period and the elongated period of the structure. A second group of research
orks has proposed the use of step-wise linear or nonlinear models to predict the relevant EDP in place of standard linear regression
odels. The first attempt of using a nonlinear regression model is likely due to Travasarou and Bray [30], who explored this

trategy to predict the seismically induced permanent displacements of slopes. Multi-linear and nonlinear regression models for
C buildings were developed by Vargas-Alzate et al. [31,32]. The search for more accurate predictions of the EDP by means of
onlinear relationships involving multiple IMs has evolved recently by leveraging on the ongoing developments in the field of
achine learning [e.g.,33].

Indeed, predictive and generalization capabilities of machine learning algorithms are very attractive for this task. Existing
pplications in this field can be classified depending on the target outcome of the prediction, namely EDPs or the entire time-
istory responses. They can also be classified based on the type of input data, namely IMs only or the entire seismic ground
otion records, possibly in combination with some building characteristics. For instance, Morfidis and Kostinakis [34] adopted
eural networks (consisting of a single hidden layer) to predict the seismic response of RC buildings. The training of the neural
etworks was performed by using far-field and near-fault natural seismic records whereas lumped plasticity models were adopted
or the buildings. Oh et al. [35] developed neural network models (consisting of two hidden layers) to predict maximum inter-storey
rift and maximum displacement of RC buildings under earthquake. Synthetic seismic ground motions were adopted to train the
eural networks whereas simplified shear-type linear elastic systems were considered for the buildings. Deep learning algorithms
ere adopted by Wen et al. [36] to predict both maximum inter-storey drift and peak floor acceleration of RC buildings under
arthquake. As far as the training phase, they considered far-field, non-pulse-like seismic ground motion records and distributed
lasticity models for the buildings. Demertzis et al. [37] compared the performance of several machine learning algorithms in
redicting the maximum inter-storey drift of RC buildings, which response was simulated by means of lumped plasticity models.
he prediction of the relevant EDP via machine learning algorithms in all these studies is accomplished through a suitable set of
Ms, facilitating the calculation of the fragility curves required in PBEE [38,39]. The number of adopted IMs varies between 4 [35]
nd 14 [34,37]. The time-history of the seismic ground motion is instead considered by Wen et al. [36] in place of IMs for predicting
2

he seismic response of RC buildings. Buildings’ attributes were considered as input data in other research works together with the
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IMs of the seismic ground motion. For instance, the elastic period for an assigned number of modes is considered by Oh et al. [35].
Number of floors, storey height, longitudinal column spacing, transverse span and seismic design intensity were taken into account
by Wen et al. [36]. Demertzis et al. [37] considered the total height of building, the ratios of the base shear experienced by the
walls along two horizontal orthogonal directions, and the structural eccentricity.

Although ongoing studies about machine learning techniques to predict the seismic demand are promising, they are based on
standard workflow that poses some critical issues. In fact, almost all the existing research leverages on complex nonparametric
achine learning models in the attempt to maximize their accuracy, even though compact symbolic machine learning models are
ore transparent and easier to use. Moreover, while the preparation of relevant databases by means of refined structural models

s useful to enhance the accuracy of the final predictions, it requires significant computational resources. Finally, machine learning
lgorithms have been tested so far on homogeneous databases consisting of structural systems with similar features. Their feasibility
n simultaneously dealing with structural systems that were built according to different design principles (i.e., structures designed
nder gravity loads and in compliance with some seismic codes) has not yet been investigated. In this context, machine learning
odels have been mostly carried out to predict the seismic demand in buildings under far-field, non-pulse-like earthquakes whereas

imited attention has been paid so far on pulse-like earthquakes. However, the effects of pulse-like earthquakes also deserve proper
onsideration because of their large damage potential [e.g., 23–25], and several structures, including recent ones, have not been
pecifically designed to withstand such type of seismic action.

This paper aims at addressing all these issues by proposing a new procedure for the development of machine learning techniques
o predict the seismic demand in RC buildings. Ultimately, the proposed methodology is meant at achieving a satisfactory trade-
ff among conflicting requirements, such as good predictive capability and minimum simulation time as well as interpretability,
oundness, easy and broad application of the final machine learning models. The goal of the present study is the prediction of a
elevant EDP (i.e., maximum inter-storey drift) for different typologies of RC frames (i.e., bare frames, pilotis frames and frames
ith infills) subject to pulse-like earthquakes by taking into account a set of IMs together with a few accessible building attributes.
he focus of this study is on existing RC structures, and then the considered stock for each typology ranges from buildings that were
esigned under gravity loads only to buildings that were provided with some seismic details.

. Prediction of the seismic demand through machine learning techniques

.1. Proposed approach

Machine learning algorithms can be powerful tools for estimating the EDPs in RC buildings subjected to seismic ground motion
iven a set of IMs. Nevertheless, their implementation presents some challenges, which can be attributed to both the final form of
ertain machine learning models and the computational resources needed to prepare large datasets. In fact, although several machine
earning models have been implemented to carry out good estimates of significant EDPs, almost all of them cannot be formulated
nto easy-to-use closed-form expressions [e.g., 34–37]. The preparation of the databases for machine learning algorithms is also a
ritical task. In this regard, the use of refined lumped plasticity models [e.g., 34,37] and, to a lesser extent, distributed plasticity
odels [e.g., 36] is preferred, but it presents some inconveniences. Indeed, the effort required for performing a large number of
onlinear time-history analyses with detailed structural models can be prohibitive for conventional computational resources. This
s why simplified structural models (i.e., shear-type models) have been also employed for this task [e.g., 35]. Additionally, a large
umber of details and their ranges of variation must be specified when refined structural models are employed for the numerical
imulation of the considered buildings stock. This, in turn, can be a serious effort when preparing non-homogeneous databases
onsisting of RC buildings designed according to different rules (i.e., buildings designed against gravity loads only or in compliance
ith different seismic codes).

Therefore, an efficient machine-learning-based framework able to overcome all these issues is proposed in the present work
or the development of predictive seismic demand models. Herein, machine learning models are developed through a two-scale
pproach. Initially, large-scale machine learning models are developed by taking into account all candidate IMs. Suitable tools are
hen implemented to interpret the corresponding predictive models. This step ensures the physical consistency of the predictive
odels, but also serves at estimating the relative importance of the candidate IMs and at disclosing useful trends/patterns with

espect to the specific building configuration (viz., bare frames, pilotis frames, and frames with infills). This step facilitates the
ational selection of a subset of most significant IMs, which is next employed to develop symbolic reduced-scale machine learning
odels. Although it is reasonable to expect a degradation of the predictive capacity, such compact models are more suitable for
ractical applications since they are given in a closed-form fashion and involve a fewer IMs. As far as the structural modeling
pproach is concerned, simplified models of archetype RC buildings based on a limited number of representative parameters are
dopted to develop machine learning techniques at both scales. This alleviates the total computational effort and allows to represent
he complex nonlinear behaviors of different RC buildings by means of general phenomenological models that depend on a few
arameters. This also allows for circumventing the need to specify all structural details and their range of variation, which becomes
ighly complex or even impractical when attempting to take into account a portfolio of buildings with significantly different
haracteristics. Because of the inherent approximation of such simplified building models, the final reduced-scale machine learning
odels are assessed against the results obtained from more refined models representative of actual RC buildings.

The procedure for the development of predictive models through machine learning is outlined in Fig. 1 and has been implemented
y combining different computer programs. Nonlinear time-history analyses of simplified and refined structural models are
erformed by means of Matlab and OpenSees, respectively, whereas all computations related to the development and interpretation
3

f machine learning models have been accomplished using Python.
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Fig. 1. Proposed workflow for the development of interpretable machine learning models to predict the seismic displacement demand.

2.2. Machine learning tools

Several techniques can be implemented to develop large-scale predictive models of the displacement demand for RC buildings
under pulse-like earthquakes. Gaussian Process Regression (GPR) is herein adopted because the database size in the present study is
not extremely large, and previous studies have demonstrated that it is capable of handling effectively less data compared to other
machine learning techniques [e.g.,40]. However, any other suitable technique can be adopted for this task. GPR is a nonlinear,
nonparametric regression algorithm based on Bayesian probability theory [41–44]. By resorting to a function-space-based formalism
to provide a concise overview of the GPR technique, it is first considered the regression problem consisting of the output 𝑦 of a
function 𝑓 given input 𝑥:

𝑦 = 𝑓 (𝐱) + 𝜖. (1)

Herein, 𝑦 represents the EDP value and 𝐱 is the vector collecting the selected explanatory variables. In the present study, the vector 𝐱
is partitioned into two subsets such that 𝐱 =

{

𝐛 𝐈𝐌
}

, where 𝐛 is the subset of the explanatory variables that refer to the considered
building while 𝐈𝐌 collects all the IMs of the seismic ground motion. Finally, 𝜖 is the so-called noise term. It is noted that both 𝑓
and 𝜖 are uncertain. The uncertainty regarding 𝑓 can be reduced by observing its output at different inputs. The noise term 𝜖 is a
random variable and follows a Gaussian distribution such that 𝜖 ∼ 

(

0, 𝜎2𝜖
)

: it is always present no matter how many inputs are
available, since it arises inevitably because of the error due to the use of the IMs for estimating the EDP in place of a nonlinear
time-history analysis. In particular, the function 𝑓 is distributed as a Gaussian process:

𝑓 (𝐱) ∼ 
(

𝑚 (𝐱) , 𝑘
(

𝐱, 𝐱′
))

. (2)

A Gaussian process  is a distribution over functions defined by a mean and a covariance function. The mean function 𝑚 (𝐱) reflects
the expected function value at input 𝐱 (i.e. the average of all functions in the distribution evaluated at input 𝐱):

𝑚 (𝐱) = E [𝑓 (𝐱)] . (3)

It is common expedient to assume the prior mean function 𝑚 (𝐱) = 0. The term 𝑘
(

𝐱, 𝐱′
)

is the covariance function and it models the
dependence between the function values at different input points 𝐱 and 𝐱′:

𝑘
(

𝐱, 𝐱′
)

= E
[

(𝑓 (𝐱) − 𝑚 (𝐱))
(

𝑓
(

𝐱′
)

− 𝑚
(

𝐱′
))]

. (4)

The function 𝑘 is the kernel of the Gaussian process. Now, it is supposed that 𝑛 nonlinear time-history analyses are performed for
a building stock by considering a suite of seismic ground motion records. This allows to prepare a training database 𝑡 =

{

𝐗𝑡, 𝐲𝑡
}

where 𝐗𝑡 is the matrix with on each row the inputs 𝐱𝑖 =
{

𝐛𝑖 𝐈𝐌𝑖
}

for 𝑖 = 1,… , 𝑛 while 𝐲𝑡 =
{

EDP1 … EDP𝑖 … EDP𝑛
}⊤

collects the corresponding outputs. This training database serves at predicting the 𝑝 outputs 𝐲∗ =
{

EDP∗
1 … EDP∗

𝑗 … EDP∗
𝑝

}⊤

corresponding to the matrix 𝐗∗ with on each row the new inputs 𝐱∗ =
{

𝐛∗ 𝐈𝐌∗
}

for 𝑗 = 1,… , 𝑝 by drawing 𝑓 ∗ from the posterior
4
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{

𝑓
(

𝐱∗1
)

… 𝑓
(

𝐱∗𝑗
)

… 𝑓
(

𝐱∗𝑝
)}

(i.e., 𝐟∗ is a sample of the function values). This is a conditional
ultivariate Gaussian distribution 𝜑

(

𝐟∗|𝐗𝑡, 𝐲𝑡,𝐗∗) whose mean and covariance matrix are:

𝐊
(

𝐗∗,𝐗𝑡
) [

𝐊
(

𝐗𝑡,𝐗𝑡
)

+ 𝜎2𝜖 𝐈
]−1 𝐲𝑡, (5)

𝐊
(

𝐗∗,𝐗∗) −𝐊
(

𝐗∗,𝐗𝑡
) [

𝐊
(

𝐗𝑡,𝐗𝑡
)

+ 𝜎2𝜖 𝐈
]−1 𝐊

(

𝐗𝑡,𝐗∗) , (6)

respectively, where 𝐊
(

𝐗𝑡,𝐗𝑡
)

is the covariance matrix between all training data, 𝐊 (𝐗∗,𝐗∗) is the covariance matrix between the new
ata while 𝐊

(

𝐗∗,𝐗𝑡
)

and 𝐊
(

𝐗𝑡,𝐗∗) are the mixed covariance matrices involving both training data and new data. All covariance
atrices are built by means of the selected kernel function 𝑘. Moreover, 𝐈 is the identity matrix. Hyperparameters optimization in

GPR is performed by maximizing the log-marginal-likelihood. This automatically performs a trade-off between bias and variance,
and hence avoids over-fitting phenomena. The maximum of the log-marginal-likelihood is found by means of a gradient-based
optimizer and, since local maxima might occur in the search space, the optimization problem is solved repeatedly by assuming
a different starting point each time to prevent the converge towards a sub-optimal solution. All starting points are determined
through Latin hypercube sampling technique, and the final value of the hyperparameters corresponds to the largest value of the
log-marginal-likelihood.

It is evident that GPR technique does not assume a functional form to predict the EDP. Moreover, it does not inherently provide
an explicit measure of feature importance like some other machine learning techniques. This does not facilitate the appraisal of
the role of building features and seismic intensity. Such limitation, in turn, does not reveal the manner in which the corresponding
machine learning model works to make the final predictions of the seismic demand given the building features and the seismic
intensity. It also hinders the possibility to check the consistency of the relationship between buildings’ features, seismic intensity
and seismic demand. There are, however, some tools that can shed a light on the inner work of machine learning models. The most
adopted approaches are the SHapley Additive exPlanations (SHAP) and, to a lesser extent, the Shapley Additive Global importancE
(SAGE), which are two game theoretic methods based on the Shapley value [45]. SHAP interpretation is especially appealing for the
present study since it can reflect the influence of the explanatory variables in every EDP value, and can also reveal both positive and
negative effects of the input explanatory variables, allowing to check the soundness of the final predictive models. Therefore, once
a large-scale machine learning model has been developed by means of the GPR technique, SHAP values are calculated. It is noted
that direct calculation of the exact SHAP values is time-consuming. Therefore, a simplified method known as KernelSHAP [46] is
implemented to approximate the SHAP values using all available data.

Apart from being useful to understand how machine learning models work, SHAP interpretation has been also proposed to assist
the selection of the most relevant explanatory variables involved into a model [47]. In this regard, recent studies have highlighted
that SHAP interpretation can outperform conventional approaches for features selection [48]. Therefore, the critical examination
of large-scale machine learning models developed by means of the GPR through SHAP interpretation is accomplished to reduce
the initial set 𝐱 to 𝐱 =

{

𝐛 𝐈𝐌
}

where 𝐈𝐌 ⊂ 𝐈𝐌. This, in turn, is adopted to develop reduced-scale machine learning models by
means of Genetic Programming (GP). This is a very common parametric regression technique that simulates biological breeding
and Darwinian evolution [49,50] in the attempt to infer symbolic predictive models from available data. Accordingly, a population
of candidate computer programs (i.e., a predictive model that includes the instructions for combining variables, constants and
operators) are manipulated iteratively through a sequence of genetic operators, namely selection, crossover and mutation. This
iterative procedure starts with a random population of computer programs and runs until a stopping criterion is not fulfilled. One of
the most critical issues in implementing GP algorithms is the uncontrolled growth of the model complexity. This phenomenon is also
known as bloat and identifies an excessive growth of the model complexity that leads to a small increment of the model accuracy
over the training dataset. In contrast, it often goes with a significant worsening of the predictive capability against new data. Out
of the available approaches to cope with bloat in GP [51], the strategy implemented in the present work assumes model accuracy
and model complexity as conflicting criteria as proposed by Ekart and Nemeth [52]. Therefore, tournament selection operator and
Pareto’s nondomination concept are implemented as follows:

• a number of candidate computer programs (the comparison set) is randomly picked from the current population;
• another computer program is randomly picked from the current population;
• if the new computer program is not dominated by any individual from the comparison set, then it is selected;
• otherwise (i.e., . if the new computer program is dominated by some individuals from the comparison set), the procedure is

repeated by randomly selecting another computer program from the current population.

A non-dominated solution is better than the others over some criteria but worse over the other criteria. While the root mean squared
error function is considered to quantify the model accuracy, the threshold function proposed by Ekart and Nemeth [52] is adopted
to measure the model complexity. Both objective functions are evaluated against the training database 𝑡 =

{

𝐗𝑡, 𝐲𝑡
}

, where 𝐗𝑡

is the matrix with on each row the inputs 𝐱𝑖 =
{

𝐛𝑖 𝐈𝐌𝑖

}

. Thanks to the symbolic formulation, reduced-scale machine learning

odels developed by means of GP can be readily adopted to predict the outputs 𝐲∗ corresponding to the matrix 𝐗
∗

with on each
row the new inputs 𝐱∗ =

{

𝐛∗ 𝐈𝐌
∗}. This facilitates their direct implementation, assessment, and interpretation.
5
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Fig. 2. Filling distribution of masonry panels within the considered RC buildings: bare frame (left); pilotis frame (center); infilled frame (right).

3. Seismic demand and intensity measures for RC buildings under pulse-like earthquakes

3.1. Numerical modeling of reinforced concrete buildings

Multi-story RC buildings representative of the majority of the existing Italian building stock are analyzed in the present work.
Hence, the present study focuses on existing RC buildings designed for gravity loads only or in compliance with outdated seismic
codes. The following typologies of RC buildings are analyzed (see Fig. 2): bare frames without masonry infills; pilotis frames with
infill-free ground floor; infilled frames with uniformly infilled stories.

As far as the development of machine learning models is concerned, the considered RC buildings are not intended to replicate
actual structures. Conversely, simplified phenomenological models of archetype RC buildings are considered in such a way to account
for the huge variability of existing RC building features by means of a few, yet relevant and accessible, data. The use of simplified
structural models alleviate the computational effort required to prepare the databases upon which machine learning models are
developed while ensuring their application to a large and non-homogeneous building stock. Accordingly, an equivalent shear-type
model (ESTM) is herein employed for this task, as shown in Fig. 3. The resulting multi-degree-of-freedom (MDOF) model consists
of a discrete, stick-like system of joint masses lumped at each floor level of the structure and connected by nonlinear shear springs
that simulate the lateral stiffness and strength characteristics of the structural members. The relevant backbone at each story is
then defined in terms of inter-storey shear-displacement relationship by assuming that column ends are restrained against rotation.
While flexural deformations are not negligible in new RC structures conforming to modern seismic codes, shear-type deformations
are usually prevalent in existing RC buildings designed for gravity loads only or in compliance with outdated seismic codes. In such
a case, the assumption of shear-type behavior allows to reproduce the seismic response of existing moment resisting frames with a
reasonable level of approximation as pointed out by previous studies [e.g., 53,54]. The effectiveness of the ESTM model has been
demonstrated in previous research works by comparing the results with those derived from more accurate nonlinear models [55].

A generalized degrading hysteretic behavior characterized by stiffness degradation, strength degradation and pinching is
implemented in the ESTM to represent the inelastic cyclic response of the frames at each story [56]. The overall cyclic behavior of
the constitutive model is illustrated in Fig. 3. It is governed by four parameters, namely 𝑝, 𝛼, 𝛽, and 𝛾. The post-yielding stiffness
is regulated by the strain hardening ratio 𝑝, namely the ratio between post-yield tangent and initial elastic tangent. The parameter
𝛼 controls the unloading stiffness degradation (i.e., unloading degradation is negligible when 𝛼 is larger than 20). The strength
degradation is governed by the parameter 𝛽 (if it is equal to 0, then no strength degradation due to energy dissipation occurs).
Lastly, the parameter 𝛾 denotes the pinching effect due to closing cracks during reloading (𝛾 = 1 represents a non-pinching hysteretic
behavior whereas 𝛾 = 0 corresponds to the maximum pinching effect). Moreover, 𝐾0 is the initial elastic stiffness and 𝜇 is the ductility
ratio while 𝐹𝑦 and 𝑢𝑦 are yield strength and yield displacement, respectively. Once the base shear seismic coefficient 𝐶𝑦 is assigned
(i.e., the ratio between the maximum base shear and the total weight of the structure), a large variety of structural behaviors can
be simulated in a straightforward way by tuning the model parameters 𝑝, 𝛼, 𝛽, and 𝛾.

Refined models of actual RC frames are instead adopted for the unbiased assessment of the final reduced-scale machine learning
models, as shown in Fig. 4. It is pointed out that buildings other than those adopted to develop machine learning models are
considered for this task. These refined models are developed using the open-source software platform OpenSees [57]. Beam with
fiber-hinges element objects are used to simulate the response of beams and columns. Since these structural members are expected
to experience nonlinear deformations at beam–column connections, plasticity is concentrated over specified hinge lengths of the
element ends, which is assumed to be equal to the cross-section height of the element itself. Beam with hinges element are actually
divided into three parts: two inelastic fiber-hinges at both ends and linear-elastic region in the middle [58]. Fiber section model
is adopted to directly account for uniaxial bending and axial force. Unlike other types of distributed plasticity elements where the
Gauss integration points distribute along the entire element length, the beam with hinges element localizes the integration points
in the hinge regions (namely, two integration points per hinge are used to represent the curvature distribution). Cracked section
properties are considered in the elastic portion of the beam–column elements. Inelastic fiber section are defined at the end of the
elements with constitutive relationships for both confined and unconfined concrete characterized by the uniaxial Kent–Scott–Park
concrete material object (Concrete01 of the OpenSees library) with degraded linear unloading/reloading stiffness and no tensile
6
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Fig. 3. Simplified numerical model of multi-storey RC frames: equivalent shear-type model and generalized degrading hysteretic behavior.

Fig. 4. Refined numerical model of multi-storey RC frames: concentrated plasticity model and stress–strain relationships for steel and concrete.

strength. A simple uniaxial bilinear model has been selected for the longitudinal reinforcement fibers (Steel01 of the OpenSees
library). The structural masses are concentrated at the nodes and a Rayleigh damping model is implemented.

The equivalent diagonal strut approach is employed in this study to simulate the in-plane seismic response of masonry infills
within, both, simplified and refined RC frame models. Although such a macro-modeling approach cannot simulate accurately the
complex response of structures under cyclic loading, it aligns with the scopes of the present study since it provides a simple, yet
efficient, tool to describe the contribution of the masonry panels to the global behavior of RC buildings. Each infill panel is thus
simulated using a single diagonal compression-only strut element. The in-plane seismic response of the infill panel is defined by a
multi-linear force–displacement backbone consistent with the constitutive model by Decanini et al. [59], as shown in Fig. 5.

The first branch of the lateral force–displacement skeleton curve represents the initial uncracked stiffness 𝐾0 up to the onset of
cracking at 𝐹𝑚𝑓 , and it is determined according to simple mechanical considerations. The second branch corresponds to the post-
cracking phase up to the development of the peak strength at 𝐹𝑚𝑓𝑐 . The stiffness at complete cracking 𝐾𝑚𝑓𝑐 and the peak strength
of the equivalent strut are computed following the procedure proposed by Decanini and Fantin [60], which takes into account
multiple failure mechanisms (i.e., bed-joint sliding failure mode, diagonal tension failure mode, diagonal compression failure mode
and corner compression failure mode). Lastly, the descending branch of the post-peak strength deteriorates linearly until reaching
zero residual infill strength at the ultimate displacement. Drift limits corresponding to cracking 𝑢𝑓 , peak 𝑢𝑓𝑐 , and collapse 𝑢𝑟 are
determined following the guidelines provided by Liberatore et al. [61].
7
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Fig. 5. Macro-model for the in-plane masonry infill response simulation.

Table 1
List of candidate IMs adopted to develop predictive machine learning models of IDI𝑚𝑎𝑥.
IM Definition

Peak ground acceleration, PGA max𝑡{𝑢̈𝑔 (𝑡)}
Arias intensity, 𝐼𝐴 (𝜋∕2𝑔) ∫ 𝑡𝑓

0 𝑢̈2𝑔 (𝑡)d𝑡
Spectral acceleration at 𝑇1, 𝑆𝑝𝑎,𝑇1 𝑆𝑝𝑎

(

𝑇1
)

Spectral seismic coefficient at 𝑇1, 𝐶𝑦,𝑇1 𝐶𝑦
(

𝑇1
)

Average spectral acceleration, 𝑆𝑎,𝑎𝑣𝑔
[
∏𝑞

𝓁=1 𝑆𝑝𝑎
(

𝑇𝓁
)]1∕𝑞

Peak ground velocity, PGV max𝑡{𝑢̇𝑔 (𝑡)}
Housner intensity, 𝐼𝐻 ∫ 2.5

0.1 𝑆𝑝𝑣 (𝑇 )d𝑇
Spectral velocity at 𝑇1, 𝑆𝑝𝑣,𝑇1 𝑆𝑝𝑣

(

𝑇1
)

Spectral relative input energy at 𝑇1, 𝐸𝑖𝑟,𝑇1 − ∫ 𝑡𝑓
0 𝑢̈𝑔 (𝑡) 𝑢̇𝑟 (𝑡)d𝑡

Relative input equivalent velocity spectrum intensity, VE𝑖𝑟SI ∫ 3.0
0.1

√

2𝐸𝑖𝑟 (𝑇 )d𝑇
Modified relative input equivalent velocity spectrum intensity, MVE𝑖𝑟SI ∫ 2𝑇1

0.2𝑇1

√

2𝐸𝑖𝑟 (𝑇 )d𝑇
Modified damping equivalent velocity spectrum intensity, MVE𝑑SI ∫ 2𝑇1

0.2𝑇1

√

2𝐸𝑑 (𝑇 )d𝑇
Modified effective cyclic energy, ECE max𝑡 ∫

𝑡+𝛥𝑡
𝑡

(

𝐸ℎ(𝑡) + 𝐸𝑑 (𝑡)
)

d𝑡
for 𝑢̇𝑔 (𝑡) = 𝑢̇𝑔 (𝑡 + 𝛥𝑡) = 0

Peak ground displacement, PGD max𝑡{𝑢𝑔 (𝑡)}
Spectral maximum displacement at 𝑇1, 𝑢𝑚𝑎𝑥,𝑇1 𝑢𝑚𝑎𝑥

(

𝑇1
)

Effective peak of input energy, 𝛥𝐸𝑖𝑟 max𝑡{𝛥𝐸𝑖𝑟(𝑡)}
Effective peak of dissipated energy, 𝛥𝐸ℎ+𝑑 max𝑡{𝛥

(

𝐸ℎ(𝑡) + 𝐸𝑑 (𝑡)
)

}
Effective peak of hysteretic energy, 𝛥𝐸ℎ max𝑡{𝛥𝐸ℎ(𝑡)}
Peak of input power, 𝑃𝐸𝑖𝑟

max𝑡{𝑃𝐸𝑖𝑟
(𝑡)}

Peak of dissipated power, 𝑃𝐸ℎ+𝑑
max𝑡{𝑃𝐸ℎ

(𝑡) + 𝑃𝐸𝑑
(𝑡)}

Peak of hysteretic power, 𝑃𝐸ℎ
max𝑡{𝑃𝐸ℎ

(𝑡)}

The contribution of masonry panels within the simplified structural model of the RC frames is numerically simulated by assuming
that the shear spring of the RC frame and the shear spring of the infill elements act in parallel at the same story level. A similar
assumption is made to account for the contribution of masonry panels within the refined models developed via OpenSees, where the
infill elements are simulated using the uniaxial Kent–Scott–Park concrete material object (Concrete01 of the OpenSees library)
as suggested by Noh et al. [62] and Di Domenico et al. [63]. Since this material model provides a parabolic stress–strain response
up to the maximum compressive strength, the actual deformation at peak strength is reduced by half of its actual value to obtain a
realistic estimate of the elastic stiffness (i.e., tangent line of the first linear branch of the response envelope).

3.2. Engineering demand parameter and intensity measures

The maximum inter-storey drift ratio IDI𝑚𝑎𝑥 is the target EDP. The list of candidate IMs that will be considered for its prediction
through machine learning models is provided in Table 1. Herein, 𝑡 stands for time and 𝛥𝑡 for the time interval, 𝑇 is the period, 𝑔
is the gravity acceleration, and 𝑡𝑓 is the total duration of the seismic ground motion whereas 𝑢̈𝑔(𝑡), 𝑢̇𝑔(𝑡) and 𝑢𝑔(𝑡) are the seismic
ground acceleration, velocity and displacement, respectively. The relative velocity time history is denoted as 𝑢̇𝑟(𝑡) while 𝑆𝑝𝑎 and 𝑆𝑝𝑣
are the pseudo-acceleration and the pseudo-velocity spectrum, respectively. On the one hand, 𝐸𝑖𝑟, 𝐸𝑑 and 𝐸ℎ are the relative input
energy, the total dissipated energy and the hysteretic energy, respectively. On the other hand, 𝑃𝐸𝑖𝑟

, 𝑃𝐸𝑑
and 𝑃𝐸ℎ

are the relative
input power, the total dissipated power and the hysteretic power, respectively. Finally, 𝑇𝓁 (with 𝓁 = 1,… , 𝑞) is the 𝓁th elastic period
of the structure (𝑇 being the fundamental period). A damping ratio of 5% is considered.
8
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Fig. 6. Comparison between original and modified ECE.

The inventory consists of 21 candidate IMs. It encompasses both non-structure-specific and structure-specific IMs as well as
acceleration-, velocity-, displacement-, energy-, and power-based IMs. This inventory of candidate IMs has been prepared taking
into account previous studies [e.g., 6,33,64], but some novelties are implemented in the present work.

The Effective Cyclic Energy (ECE) considered in Table 1 is a modified version of the original formulation by Kalkan and
Kunnath [65], who recognized that the peak-to-peak dissipated energy demand imposed on a single-degree-of-freedom (SDOF)
system over an effective ground motion duration is equivalent to the time interval between two zero-crossings of the velocity time
response. This aligns with the concept of Momentary Input Energy (MIE) developed by Hori and Inoue [66] and extended recently
by Fujii [67] as well as Fujii and Murakami [68]. Both effective cyclic energy and momentary energy, in fact, rely on the evidence
that input energy at the corner points of a half force–deformation hysteresis loop (i.e., when velocity time response is null during
reversal) is equal to the sum of damping and hysteretic energy, as the kinetic energy vanishes. Since this energy measure is defined
as the peak between two consecutive zeros of the velocity time response, it is directly linked to the peak absolute cyclic deformation
experienced by the structural system during the seismic ground motion. Thus, both ECE and MIE serve as structure-specific IMs of
the critical seismic energy transferred by impulsive ground motions to the structure in a single effective cycle. In the present study,
a modified version of the ECE is introduced to carry out an IM based on the seismic ground motion only that can be applicable
effortlessly to MDOF systems. In particular, instead of considering the velocity response, the peak value between two zero-crossing
points in the velocity seismic ground motion is considered. So doing, ECE only depends on the reversals of the seismic ground
velocity, without explicit involvement of the actual structural response. As an example, original and modified ECE are compared
in Fig. 6 considering an inelastic SDOF system subject to 2000 Yountville earthquake (Napa Fire Station #3). It is noted that the
peak structural response is related to a single effective hysteretic cycle, which causes a sudden excursion of the structure into the
inelastic range. It can also be observed that the proposed version of the ECE is a satisfactory proxy of the seismic demand, given it
relies solely on seismic ground motion while does not depend on structural features.

Regarding seismic energy, it has been recognized that it gradually increases and reaches the peak at the end of the seismic
ground motion in case of far-field earthquakes [69]. Conversely, it exhibits a more discontinuous trend in case of pulse-like near-
fault earthquakes [69]. Therefore, the effective peak values of relative input energy, total dissipated energy and hysteretic energy
in Table 1 correspond to their largest jumps over the total duration of the pulse-like seismic ground motion, which are denoted
as 𝛥𝐸𝑖𝑟(𝑡), 𝛥

(

𝐸ℎ(𝑡) + 𝐸𝑑 (𝑡)
)

, and 𝛥𝐸ℎ(𝑡), respectively. Similarly, peak values of relative input power, total dissipated power and
hysteretic power in Table 1 are their corresponding maxima over the total duration of the seismic ground motion, which are denoted
as 𝑃𝐸𝑖𝑟

(𝑡), 𝑃𝐸ℎ
(𝑡)+𝑃𝐸𝑑

(𝑡), and 𝑃𝐸ℎ
(𝑡), respectively. As far as the calculation of 𝛥𝐸𝑖𝑟, 𝛥𝐸ℎ+𝑑 , and 𝛥𝐸ℎ is concerned, there are no details

in the relevant literature, and thus it is inferred that their detection has been done manually thus far. An automatic procedure based
on the work by Tyson et al. [70] is implemented here, which consists of the following steps.

• Initially, energy values are scaled so that the maximum value is equal to one.
• The probability density estimate of the normalized energy value is next obtained via kernel density estimation (Normal kernel
9

is adopted for this task, and the number of points is down-sampled with a scale factor equal to 10).
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Fig. 7. Application of the proposed automatic procedure to identify the effective energy peaks.

Table 2
Hysteretic parameters for the simplified numerical models of
multi-story RC frames adopted for the development of machine
learning models.
𝐶𝑦 𝑝 𝛼 𝛽 𝛾

0.08 0.01 2.0 0.1 0.6
0.15 0.05 2.0 0.0 0.8
0.25 0.05 2.0 0.0 0.8

• The peaks in the probability density estimate of the energy are then identified, and those below an assigned threshold are
discarded because due to noise or attributable to numerical effects (the threshold is set to 2% of the highest peak in the
probability density estimate).

• Finally, all energy peaks are calculated as the difference of the energy values between two consecutive peaks of the probability
density estimate. The highest energy peak (i.e., effective energy) is considered as the IM.

As an example, Fig. 7 illustrates the application of the proposed procedure for the 1994 Northridge earthquake (Newhall – W Pico
Canyon Rd. station) and the 1979 Imperial Valley earthquake (EC Meloland Overpass FF station). Notably, the proposed statistic-
based criterion was able to recognize a very short energy plateau occurring for the 1979 Imperial Valley earthquake, and the energy
jumps preceding and following such a step have been automatically merged into a single one.

4. Numerical investigation

4.1. Buildings data

Simplified numerical models of archetype multi-story RC buildings with 2, 4, 6, 8 and 10 floor have been prepared to develop
he predictive machine learning models. The ranges of the fundamental period 𝑇1 are 0.575–1.951 s for bare frames, 0.475–0.560
for pilotis frames, and 0.120–0.325 s for infilled frames. Three combinations of model parameters are adopted for each frame in
rder to represent different degrading hysteretic behaviors commonly observed in existing residential Italian RC buildings. These
odel parameters are listed in Table 2, where the lowest 𝐶𝑦 value is associated with structures designed for gravity loads only [71],
hich were built without suitable reinforcement detailing and using materials with poor mechanical properties. The highest value
f 𝐶𝑦 denotes structures designed for seismic loads in compliance with outdated seismic codes dating back to the 90s [72].

The unbiased assessment of the final reduced-order predictive machine learning models is performed on 4-storey and a 6-storey,
hree-bay actual RC frames. Their overall geometries and structural details are provided in Fig. 8 and Table 3, respectively. The
ncracked concrete elastic modulus is 15.5 GPa whereas the concrete compressive strength is 27 MPa. Yielding stress of the steel
10

s 440 MPa. A Rayleigh damping model is assumed with a constant damping ratio equal to 5%. The modal analysis based on the
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Fig. 8. Overall geometry of the refined numerical models of the multi-story RC buildings adopted for the assessment of machine learning models (units in [m]).

Table 3
Structural details of the refined numerical models of the 4-storey and a 6-storey, three-bay RC frames adopted for the assessment
of machine learning models (legend: 𝑏 is the width of the cross-section; ℎ is the height of the cross-section; 𝑁𝑏𝑜𝑡, 𝑁𝑡𝑜𝑝 and 𝑁𝑙𝑎𝑡
denote the number of rebars on the top, the bottom and the lateral side of the cross-section, respectively; 𝜙𝑏𝑜𝑡, 𝜙𝑡𝑜𝑝 and 𝜙𝑙𝑎𝑡
denote the diameter of the rebars on the top, the bottom and the lateral side of the cross-section, respectively.
Number of floors Section 𝑏 [m] ℎ [m] 𝑁𝑡𝑜𝑝 𝜙𝑡𝑜𝑝 [mm] 𝑁𝑏𝑜𝑡 𝜙𝑏𝑜𝑡 [mm] 𝑁𝑙𝑎𝑡 𝜙𝑙𝑎𝑡

4

1 0.3 0.6 3 18 3 18 – –
2 0.3 0.6 4 18 3 18 – –
3 0.3 0.6 5 18 3 18 – –
4 0.3 0.6 5 18 3 18 – –
5 0.3 0.35 4 18 4 18 1 18
6 0.3 0.35 6 18 6 18 1 18

6

1 0.3 0.6 3 20 2 20 – –
2 0.3 0.6 3 20 2 20 – –
3 0.3 0.6 4 20 3 20 – –
4 0.3 0.6 4 20 3 20 – –
5 0.3 0.35 4 20 4 20 1 20
6 0.3 0.35 6 20 6 20 1 20

reduced cracked stiffness of the structural members provide the following values of the fundamental period 𝑇1: 0.967–1.165 s for
bare frames; 0.674–0.715 s for pilotis frames; 0.395–0.556 s for infilled frames.

Clay masonry infill consisting of 24 cm× 12 cm× 12 cm bricks with horizontal holes are adopted for both simplified and refined
models of pilotis frames with infill-free ground floor and infilled frames with uniformly infilled stories. Compressive strength and
shear strength (measured by diagonal compression test) are 1.20 MPa and 0.20 MPa, respectively, while the elastic modulus is 1050
MPa. Such typology for masonry panels is very common in old existing residential Italian RC buildings and is typically categorized
as a weak infill because of the significant perforation rate and the slenderness ratio resulting from the small thickness.

4.2. Seismic ground motion records

A set of 60 horizontal pulse-like seismic ground motions is selected through a procedure based on the Variational Mode
Decomposition technique [23,73]. The distributions of magnitude 𝑀𝑤, epicentral distance 𝐷, soil preferred shear-velocity 𝑉𝑠30,
and pulse period 𝑇𝑝 within the selected database of pulse-like seismic ground motion records are shown in Fig. 9. The ranges of
several seismic parameters are listed in Table 4.

4.3. Development of large-scale machine learning models

The search for the best predictive models using GPR is performed considering all the features, namely 𝐱 =
{

𝐛 𝐈𝐌
}

with
𝐛 =

{ }

and 𝐈𝐌 collecting all the IMs listed in Table 1. The candidate kernel functions are the following: rational quadratic
11
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Fig. 9. Main characteristics of the selected pulse-like seismic ground motion records.

Table 4
Minimum and maximum value of several seismic parameters within the selected database of pulse-like seismic
ground motion records.
Seismic parameter Minimum value Maximum value

Magnitude, 𝑀𝑤 5.0 7.5
Epicentral distance, 𝐷 [km] 4.4 98.2
Soil preferred shear-velocity, 𝑉𝑠30 [m/s] 186 1000
Pulse period, 𝑇𝑝 [s] 0.7 11.3
Closest site-to-source distance, ClstD [km] 0.07 35.7
Peak ground acceleration, PGA [cm/s2] 104.9 1245.0
Peak ground velocity, PGV [cm/s] 20.3 169.6
Arias Intensity, 𝐼𝐴 [cm/s] 28.2 1048.7
Significant duration, 𝑡𝐷 [s] 2.9 30.8
Housner Intensity, 𝐼𝐻 [cm] 29.2 505.8
Maximum spectral seismic coefficient at 𝑇1, 𝐶𝑦,𝑇1 [g] 0.3 2.9
Maximum spectral relative input energy at 𝑇1, 𝐸𝑖𝑟,𝑇1 [cm2/s2] 801.8 320,101.6
Seismic hazard energy factor, 𝐴𝐸𝑖𝑟 [cm2/s] 1492.4 342,021.1
Average spectral acceleration, 𝑆𝑎,𝑎𝑣𝑔 [cm/s2] 62.67 1824.14
Modified effective cyclic energy, ECE [kNcm] 1.90 35,645.77

Table 5
Performance metrics of the GPR models for displacement demand prediction of RC frames.
Metric Bare RC frames Pilotis RC frames RC frames with infills

Training
dataset

Validation
dataset

Training
dataset

Validation
dataset

Training
dataset

Validation
dataset

𝑅2 0.79 0.78 0.80 0.80 0.82 0.80
RMSE 0.31 0.33 0.30 0.32 0.34 0.36
MAE 0.23 0.23 0.23 0.24 0.23 0.25
MedAE 0.15 0.18 0.17 0.17 0.13 0.16
MAPE 0.16 0.16 0.24 0.24 0.32 0.39

kernel; radial basis function kernel; Matérn kernel (with smoothness equal to 1∕2, 3∕2 or 5∕2). Both isotropic and anisotropic kernel
variants are considered. The limited-memory Broyden–Fletcher–Goldfarb–Shanno optimization algorithm is used. It is remarked
that simplified (i.e., shear-type) building models are adopted to prepare the training and validation databases needed for the
development of large-scale models based on GPR (75% and 25% of the full database are considered as training and validation
databases, respectively).

Table 5 and Figs. 10–12 quantify the accuracy of the predictions and the efficiency of the IMs (i.e., the dispersion of the EDP given
IMs). Coefficient of determination 𝑅2, root mean square error RMSE, mean absolute error MAE, median absolute error MedAE, and
mean absolute percentage error MAPE are listed in Table 5. These statistical metrics rank among the most frequently employed in
machine learning regression and altogether can provide an unbiased evaluation of their performances [74]. The comparison between
actual and predicted values of the maximum inter-storey drift is displayed into Figs. 10–12. These plots also show the cumulative
distribution function 𝐹 for both maximum inter-storey drift values and residuals. All results into Table 5 and Figs. 10–12 are properly
disaggregated (i.e., actual data and predictions for training and validation sets are examined individually).

Results in Table 5 confirm a high robustness of the GPR models, wherein the statistics remain almost constant across all the
datasets. Figs. 10–12 also demonstrate an unbiased distribution of the residuals up to maximum inter-storey drift value equal to
2%. Above this threshold, GPR models underestimate the maximum inter-storey drift value. The degradation of the accuracy of
predictive models based on machine learning for increasing values of the drift was previously observed by Wen et al. [36]. It can
also be inferred from Table 5 and Figs. 10–12 that both accuracy and dispersion increase when moving from bare frames to pilotis
12

frames and frames with infills. This can be explained by observing that pilotis frames and frames with infills experience lower
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Fig. 10. Accuracy of the GPR model for predicting the maximum inter-storey drift of bare RC frames.

Fig. 11. Accuracy of the GPR model for predicting the maximum inter-storey drift of pilotis RC frames.
13
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Fig. 12. Accuracy of the GPR model for predicting the maximum inter-storey drift of RC frames with infills.

displacement demand values than bare frames, thereby promoting more precise predictions on average. However, the presence of
the infills complicate the dynamics of the structure, which is reflected in the increased dispersion in the predictions.

The coefficient of determination 𝑅2 in Table 5 is about 80% for all building configurations. This outcome is in agreement with
the best results obtained recently by Demertzis et al. [37] for pilotis frames under ordinary (i.e., non-pulse-like) earthquakes while
is slightly lower than the results carried out for bare frames and frames with infills. This is mainly attributable to the fact that
Demertzis et al. [37] considered buildings designed and built according to modern seismic codes. Conversely, the present study
addresses a more challenging situation, for which buildings designed for vertical loads only and built with materials having poor
mechanical characteristics are taken into account together with buildings designed in compliance with old and modern seismic
codes. The recent study by Wen et al. [36] is pertinent as well for a comparative assessment of alternative approaches. They found
a comparable coefficient of determination 𝑅2 for bare frames designed in accordance with modern seismic codes and subjected to
ordinary earthquakes in the range of drift values relevant for the present study.

4.4. Interpretation of large-scale machine learning models

Figs. 13–21 provide SHAP features importance plots, SHAP summary plots and features dependence plots of the GPR models
developed for predicting the maximum inter-storey drift of bare frames, pilotis frames and frames with infills. The analysis of the
SHAP features importance plots highlights the relative prominence of the considered explanatory variables (i.e., the importance of
each feature with respect to the others), but also outlines interesting trends that demonstrate a correlation of the relative features
importance with the frame filling rate (i.e., the filled surface area of the frame with respect to the total value).

A general overview of the SHAP features importance plots in Figs. 13, 16 and 19 reveals that the number of pertinent explanatory
variables influencing the prediction of maximum inter-storey drift is contingent upon the rate at which the frame is filled. On average,
the relative difference among the feature importance values for bare frames is less than that observed for pilotis frames and filled
frames. This, in turn, implies that a smaller subset of features can explain most of the maximum inter-storey drift values for pilotis
frames and filled frames while a larger number of variables is needed for bare frames.

As far as the building features are concerned, Fig. 13 shows that 𝑇1 has a moderate relative relevance to predict the maximum
inter-storey drift for bare frames. However, the larger the frame filling rate, the larger the relative importance of 𝑇1. In fact, Fig. 16
demonstrates that 𝑇1 is rather significant for pilotis frames compared to others features whereas it ranks among the best for frames
with infills, as shown in Fig. 19. The seismic coefficient 𝐶𝑦 is of utmost importance to estimate the maximum inter-storey drift
14

for RC frames regardless of their filling rate since it classifies systematically among the most important explanatory variables for
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Fig. 13. SHAP features importance diagram of the GPR model for predicting the maximum inter-storey drifts of bare RC frames.

Fig. 14. SHAP summary plot of the GPR model for predicting the maximum inter-storey drifts of bare RC frames.

Fig. 15. Features dependence plots of the GPR model for predicting the maximum inter-storey drifts of bare RC frames.
15
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Fig. 16. SHAP features importance diagram of the GPR model for predicting the maximum inter-storey drifts of pilotis RC frames.

Fig. 17. SHAP summary plot of the GPR model for predicting the maximum inter-storey drifts of pilotis RC frames.

Fig. 18. Features dependence plots of the GPR model for predicting the maximum inter-storey drifts of pilotis RC frames.
16
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Fig. 19. SHAP features importance diagram of the GPR model for predicting the maximum inter-storey drifts of RC frames with infills.

Fig. 20. SHAP summary plot of the GPR model for predicting the maximum inter-storey drifts of RC frames with infills.

Fig. 21. Features dependence plots of the GPR model for predicting the maximum inter-storey drifts of RC frames with infills.
17
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bare frames, pilotis frames and frames with infills, as demonstrated in Fig. 13, Fig. 16 and Fig. 19, respectively. It was found that
the coefficient of determination 𝑅2 dropped to 50% or even lower values when the seismic coefficient 𝐶𝑦 was tentatively removed
rom the candidate set of building attributes. Indeed, this was an expected result: since the building stock considered in the present
tudy includes structural systems having dissimilar behavior under seismic loads, they are expected to exhibit different values of
he seismic demand even if the seismic intensity is the same. Therefore, accounting for a representative parameter of the building
ehavior such as the seismic coefficient 𝐶𝑦 leads to improved predictions of the seismic demand. It is interesting to note that the
elative importance of 𝐶𝑦 and 𝑇1 exhibit opposite trends with respect to the frame filling rate. In fact, while the relative importance
f 𝑇1 grows up for increasing values of the frame filling rate, 𝐶𝑦 becomes less relevant compared to other features as the frame fills
p.

Regarding the earthquake features, ECE, 𝑆𝑎,𝑎𝑣𝑔 and 𝛥𝐸𝐻 stand out for their relative importance in predicting the maximum inter-
torey drift for bare frames, as it can be inferred from Fig. 13. In this case, 𝐼𝐻 and 𝑃𝐸𝑖𝑟

are also somewhat relevant. However, the
omparison of Figs. 13, 16 and 19 demonstrates that the relative importance of ECE, 𝑆𝑎,𝑎𝑣𝑔 and 𝛥𝐸𝐻 reduces as the frames are filled.
onversely, from being an explanatory variable of moderate relative importance for bare frames, 𝐼𝐻 becomes more important as the

rame fills up. There is no evidence from Figs. 13, 16 and 19 about a clear trend for 𝑃𝐸𝑖𝑟
, which is somewhat important to predict

he maximum inter-storey drift for bare frames and frames with infills, but it is almost negligible in case of pilotis frames. A further
M that deserves consideration for predicting the maximum inter-storey drift of RC frames is VE𝑖𝑟SI, whose relative importance is
odest for bare frames but attains a rather significant role for pilotis frames and frames with infills.

The consistency of these findings with previous studies deserves some considerations. In this regard, Fiore et al. [33] adopted
nother machine learning technique, namely Evolutionary Polynomial Regression (EPR) technique, to predict the maximum inter-
torey drift of a bare RC frame under different pulse-like earthquakes taking into account a smaller number of IMs. The present
tudy shares with the one by Fiore et al. [33] the following IMs: PGA; PGV; PGD; 𝐼𝐴; 𝐼𝐻 ; 𝑆𝑝𝑎,𝑇1 ; E𝑖𝑟,𝑇 1; VE𝑖𝑟SI; MVE𝑖𝑟SI. The analysis
eported by Fiore et al. [33] reveals that 𝐼𝐻 carries the utmost significance within such subset of IMs. The symbolic expressions
eveloped by Fiore et al. [33] also highlight that PGD and VE𝑖𝑟SI are somewhat important regarding this specific set of IMs.
hese results obtained by Fiore et al. [33] are in fully agreement with the SHAP features importance plot in Fig. 13, where it
an be observed that 𝐼𝐻 , PGD and VE𝑖𝑟SI rank at the first three positions, respectively, as far as such subset of IMs is concerned.
nterestingly, previous implementation of different machine learning models to predict the seismic demand in RC buildings under
ar-field earthquakes have further confirmed the important role of 𝐼𝐻 over alternative IMs [34,37]. Hence, it seems that there exists
general consensus among different machine learning models about the prominence of 𝐼𝐻 to estimate the seismic displacement

emand for different configurations of RC buildings, irrespective of whether the earthquake is pulse-like or not.
SHAP summary plots in Figs. 14, 17 and 20, as well as features dependence plots in Figs. 15, 18 and 21 are limited to the five

ost important IMs (according to the SHAP features importance plots in Figs. 13, 16 and 19). They display the SHAP values for each
ata point, with the color of the dots in Figs. 14, 17 and 20 representing the normalized actual data point value (red indicating high
alues and blue indicating small ones). Positive SHAP values signify that the feature tends to positively influence the prediction of the
utput, meaning the maximum inter-storey drift increases. These plots are useful to check the physical consistency of the GPR models
ith respect to the most influential explanatory variables. As expected, the lower 𝐶𝑦, the larger the maximum inter-storey drift. On

he contrary, the larger the IM (whatever it is), the larger the maximum inter-storey drift. It is noted that colormap interpretation in
igs. 14, 17 and 20 is not always immediate for a few IMs because of some outliers that prevent obtaining a uniform color scaling.
hese outliers are evident in Figs. 15, 18 and 21, which further confirm the expected general direct relationships between IMs and
aximum inter-storey drift. Within this framework, the impact of 𝑇1 on the maximum inter-storey drift predicted by the GPR models

s rather peculiar. While the relative influence of the period 𝑇1 is not very large for bare frames, it has a moderate impact for pilotis
rames, but without a clear relationship with the maximum inter-storey drift as it can be inferred from Fig. 17. The fundamental
eriod 𝑇1 seems especially important to predict the displacement demand for frames with infills: in such case, according to Fig. 20,
he larger is 𝑇1, the larger the maximum inter-storey drift.

.5. Development and assessment of reduced-scale machine learning models

The search for the reduced-scale predictive models of the maximum inter-storey drift in RC frames via GP is performed by
dopting a tree-based representation of the candidate solutions. The initial population is generated according to the ramped half-
nd-half method. This initial population is then manipulated iteratively thorough the following combination of genetic operators:
ournament selection (with a tournament size equal to 10), subtree crossover (with crossover rate equal to 0.90, where functions
nd leaves are selected as crossover point 90% and 10% of the times, respectively), point mutation (with mutation rate equal to
.15), and reproduction (by duplicating 5 candidate solutions within the current population to the next without changes). A constant
opulation size equal to 2000 and a maximum number of iterations equal to 100 are assumed. Common arithmetic, logarithmic,
xponential and power operators are selected as candidates for the model formulation (no logic operators are employed). Following
he examination of the large-scale models developed through GPR by means of SHAP interpretation in Figs. 13–21, the search for
he best predictive models using GP is constrained to a limited number of most important features, namely 𝐱 =

{

𝐛 𝐈𝐌
}

with
𝐈𝐌 =

{

𝐼𝐻 VE𝑖𝑟SI 𝑆𝑎,𝑎𝑣𝑔 ECE
}

. This is because they turn out to be the most important across all building configurations. The
evelopment of reduced-scale models based on GP algorithm is performed by means of the same training and validation databases
dopted previously for the elaboration of large-scale models via GPR, which were prepared using simplified (i.e., shear-type) building
odels.
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Fig. 22. Sensitivity of the GP models for predicting the maximum inter-storey drifts of RC frames using refined structural models.

Consequently, the following predictive models for the maximum inter-storey drift IDI𝑚𝑎𝑥 have been obtained by means of GP:

IDI𝑚𝑎𝑥 = − 1.08 + 0.02 log
(

−0.15𝐼𝐻

(

−ECE − 2.15𝐼𝐻 + 0.76 3
√

𝑆2
𝑎,𝑎𝑣𝑔+

0.58𝑆𝑎,𝑎𝑣𝑔 −
𝑆𝑎,𝑎𝑣𝑔

𝐶𝑦
+

1.56𝑆𝑎,𝑎𝑣𝑔

𝑇1

))

2 (bare RC frames),
(7)

IDI𝑚𝑎𝑥 = − 1.65 + 0.09
√

0.94 3
√

𝐼𝐻 + 1.98𝐼𝐻 + 0.09 log 𝐼𝐻+

0.05

√

√

√

√

√

ECE log (−1.43 + log 𝐼𝐻 )
𝐶𝑦

(pilotis RC frames),
(8)

IDI𝑚𝑎𝑥 = −2.14 + 0.76 log

⎛

⎜

⎜

⎜

⎜

⎝

15 + 1.32𝑇 +
0.01 3

√

𝐼8𝐻

(

0.46 3
√

𝑇 4
1 − 3

√

𝐼𝐻𝑇 4
1

)2

𝐶𝑦

⎞

⎟

⎟

⎟

⎟

⎠

(RC frames with infills), (9)

under the condition 0.3% ≤ IDI𝑚𝑎𝑥 ≤ 3%. The validity of Eqs. (7)–(9) is limited to the ranges of the involved parameters within the
training database, and the IMs therein must be expressed using the units reported in Table 5. Eqs. (7)–(9) can be readily adopted
for a rapid preliminary estimate of the maximum inter-storey drift for a broad portfolio of RC frames under pulse-like earthquakes.
They require only two variables related to the examined RC building (i.e., 𝑇1 and 𝐶𝑦). Moreover, they involve very few IMs. These
reduced-scale (parametric) models obtained through GP are fully consistent with large-scale (nonparametric) models developed by
means of GPR. In general, Eqs. (8)–(9) display a number of IMs lower than Eq. (7). This well reflects the results in Figs. 13, 16
and 19, from which is deduced that the number of most prominent variables decreases when moving from bare frames to pilotis
frames and frames with infills. In particular, the predictive model for bare frames given by Eq. (7) involves all candidate explanatory
variables with the only exception of VE𝑖𝑟SI. This is in agreement with Fig. 13, where the SHAP features importance plot for bare
frames confirms that VE𝑖𝑟SI belongs to a group of IMs with similar, yet low, relevance. The predictive models for bare frames and
pilotis frames share the same IMs with the exception of 𝑆𝑎,𝑎𝑣𝑔 , which is missing in Eq. (8). This evidence well align with the results in
Fig. 16, where it can be observed that 𝑆𝑎,𝑎𝑣𝑔 does not clearly stand out as relevant IM for pilotis frames. The fundamental period 𝑇1
is also missing in Eq. (8) while it appears in Eq. (7). This is attributable to the fact that 𝑇1 fulfills a certain role for pilotis frames, but
its ultimate influence on the maximum inter-storey drift is not unique in such case, as it can be observed in Fig. 17. As expected, it is
straightforward to infer from Eqs. (7)–(9) that the larger 𝐶𝑦, the lower is the seismic demand, regardless of the building typologies
(i.e., bare frame, pilotis frame, or frame with infills). Both 𝐶𝑦 and 𝐼𝐻 are involved in all possible configurations, thereby confirming
as the most critical variables in accordance with the outcomes of Figs. 13, 16 and 19. Notably, 𝐼𝐻 is the sole IM required to predict
the maximum inter-storey drift for frames with infills as per Eq. (9).

Once the final symbolic predictive models have been carried out, they are now assessed against new data obtained from refined
building models. In this sense, Fig. 22 is useful to further understand the impact of 𝐼𝐻 and ECE on the maximum inter-storey drift
as predicted by Eqs. (7)–(9) for bare frames (𝑇1 = 1.165 s), pilotis frame (𝑇1 = 0.715 s) and frame with infills (𝑇1 = 0.556 s). It is
noted that 𝑇1 for pilotis frame and frame with infills lies outside the range considered for the development of machine learning
models. This is irrelevant for the pilotis frame because the corresponding model given by Eq. (8) does not depend on 𝑇1. In case of
frame with infills, Eq. (9) is applied by replacing the actual value of 𝑇1 with the maximum value within the range considered for
the development of machine learning models (𝑇1 = 0.3250 s). Fig. 22 shows that, while both IMs equally contribute to the maximum
inter-storey drift for bare frames, ECE becomes less important in case of pilotis frames and is no longer relevant for frames with
infills. This evidence further confirms the consistency between reduced-scale and large-scale machine learning models for bare
frames, pilotis frames and frames with infills. As expected, the colorbars in Fig. 22 also displays that the maximum inter-storey drift
predicted by Eqs. (7)–(9) reduces when moving from bare frames to pilotis frames and frames with infills for assigned values of 𝐼𝐻
and ECE.
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Table 6
Performance metrics of the GP models for displacement demand
prediction of RC frames using refined structural models.
Metric Bare RC

frames
Pilotis RC
frames

RC frames
with infills

𝑅2 0.82 0.73 0.71
RMSE 0.25 0.26 0.33
MAE 0.18 0.19 0.22
MedAE 0.13 0.13 0.15
MAPE 0.18 0.17 0.21

Fig. 23. Accuracy of the GP models for predicting the maximum inter-storey drifts of bare RC frames using refined structural models.

The assessment of symbolic predictive models against new data generated from refined structural models is especially important
to quantify the approximation error due to the use of simplified structural models. Table 6 and Figs. 23–25 provide a comprehensive
view about the accuracy of the predictive models given by Eqs. (7)–(9). The reduction of 𝑅2 from about 80% in Table 5 to 75% in
Table 6 is attributable to two concurrent factors. On the one hand, the huge reduction in dimension of the machine learning models
facilitates their implementation in practical applications, but it unavoidably leads to a deterioration in accuracy, though the impact
is limited thanks to the careful features selection driven by SHAP interpretation. Moreover, simplified structural models make easy
the databases preparation (in terms of both simulation time and buildings data assignment), but approximation errors are expected
when they are considered in place of refined structural models.

While Table 6 and Figs. 23–25 provide evidence about the efficiency of the involved IMs, it is mandatory to assess the predictive
models in terms of sufficiency. In this regard, Fig. 26 confirms that residuals and seismological parameters are fully uncorrelated
each other since the slope coefficient of the corresponding linear regressions is about zero.

5. Conclusions

This study has introduced a novel approach for assisting the development of machine learning models to estimate the seismic
demand in reinforced concrete (RC) buildings. The proposed approach operates on two distinct scales. Initially, a large-scale
(nonparametric) machine learning model is obtained by means of Gaussian Process Regression (GPR) taking into account essential
building information and relevant intensity measures (IMs). Next, SHapley Additive exPlanations (SHAP) values are employed to
20

enhance interpretability and support the selection of a reduced set of intensity measures. This selected subset of features is then



Journal of Building Engineering 95 (2024) 110124G. Angelucci et al.
Fig. 24. Accuracy of the GP models for predicting the maximum inter-storey drifts of pilotis RC frames using refined structural models.

Fig. 25. Accuracy of the GP models for predicting the maximum inter-storey drifts of RC frames with infills using refined structural models.
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Fig. 26. Sufficiency of the GP models for predicting the maximum inter-storey drifts of RC frames using refined structural models (the dashed line indicates the
linear regression).

used to carry out the final (symbolic) reduced-scale machine learning model through Genetic Programming (GP). Simplified building
models are utilized to prepare the data needed to develop predictive machine learning models at both scales, and refined building
models are adopted for the final evaluations.

Predictive machine learning models for the maximum inter-storey drift in bare frames, pilotis frames, and frames with infills
nder pulse-like seismic ground motion are proposed utilizing this approach. The accuracy of the final predictive models is suitable
or preliminary evaluations and applications at regional scale, whereas the independence of the predictions from other seismological
arameters confirmed their sufficiency.

Notably, the proposed symbolic expressions to predict the displacement demand of RC frames under pulse-like earthquakes are
eady-to-use in future applications. As far as the building attributes are concerned, only the fundamental period and the base shear
eismic coefficient are required, and both are easily accessible. Several empirical formulations exist to predict the fundamental
eriod of RC frames from the height only [e.g., 75] whereas numerical values of the base shear seismic coefficient can be retrieved
rom existing literature and they mainly depend on the construction year [e.g., 71]. A limitation is due to the fact that a ground
otion prediction equation for ECE is not available yet. Moreover, it is understood that the symbolic expressions reported in the
resent study apply if and only if the input explanatory variables (i.e., building attributes and seismic intensity measures) fall within
he range of values of the adopted database.

The critical examination of the predictive machine learning models across both scales has demonstrated that Housner intensity
tands out for its importance for all building configurations. This evidence has been obtained for RC buildings designed against
ravity loads only or in compliance with outdated seismic codes when subjected to pulse-like earthquakes, but well agrees with
revious predictive machine learning models developed for ordinary (i.e., non-pulse-like) earthquakes, thereby suggesting that
ousner intensity can be designated as general, most representative IMs for all seismic scenarios.
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