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This paper investigates the use of reinforcement learning for the fuel-optimal guidance

of a spacecraft during a time-free low-thrust transfer between two libration point orbits in

the cislunar environment. To this aim, a deep neural network is trained via proximal policy

optimization to map any spacecraft state to the optimal control action. A general-purpose

reward is used to guide the network toward a fuel-optimal control law regardless of the specific

pair of libration orbits considered and without the use of any ad-hoc reward shaping technique.

Eventually, the learned control policies are compared with the optimal solutions provided by

a direct method in two different mission scenarios, and Monte Carlo simulations are used to

assess the policies’ robustness to navigation uncertainties.

Nomenclature

𝐴𝜋 = advantage function

𝐶 = Jacobi integral

𝑐 = effective exhaust velocity, km/s

𝑑min = minimum distance of the spacecraft trajectory from the target orbit, km

E
𝜏
r𝒗s = expected value of a vector 𝒗 with respect to 𝜏

𝑓 = spacecraft dynamical model

𝐽 = merit index

𝑚 = spacecraft mass, kg

𝑚𝑝 = consumed propellant mass, kg

∗Postdoctoral Research Associate, Department of Systems & Industrial Engineering, lorenzof@arizona.edu
†PhD Candidate, Department of Systems & Industrial Engineering, andreascorsoglio@arizona.edu
‡Assistant Professor, Department of Mechanical and Aerospace Engineering, alessandro.zavoli@uniroma1.it
§Professor, Department of Systems & Industrial Engineering, robertof@arizona.edu
Presented at the 2021 AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Virtual, August 9 - 11, 2021, paper number AAS 21-610.



𝐻 = number of time-steps per episode

Np𝝁,𝚺q = Gaussian distribution with mean 𝝁 and covariance 𝚺

𝑄 𝜋 = Q-function

𝑅 = reward

𝒓 = position vector, km

𝒙 = state vector

𝒙̃ = augmented state vector

𝐾 = total number of training steps

𝑡 = time, s

𝑻 = thrust, kN

𝒖 = control vector

𝑉 𝜋 = value function

𝒗 = velocity vector, km/s

𝒛 = vector containing position and velocity

𝛾 = discount factor

𝜃 = neural network’s parameters

𝜇 = gravitational parameter, km3/s2

𝜋 = control policy

𝜎𝑥 = standard deviation of Gaussian random variable 𝑥

𝜏 = trajectory

Φ = discrete-time dynamical model

𝜔 = angular velocity of the Earth-Moon system, rad/s

Subscripts

𝑓 = final value

ℎ = value at ℎ-th time-step

𝑖 = initial value

𝑝𝑖 = value referred to body 𝑝𝑖 , 𝑖 “ 1, . . . , 3

max = maximum value

Superscripts

˚ = reference value

‹ = optimal value

𝑇 = transpose
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I. Introduction
In the last decades, an increasing interest has been expressed in the exploitation of libration point orbits (LPOs) for

innovative space missions, due to their peculiar characteristics. Indeed, their fixed relative configuration with respect to

both primary celestial bodies (usually Sun-Earth or Earth-Moon) and their periodicity make those orbits especially

suitable for a wide range of applications, such as deep-space observation, as for the NASA-ESA-CSA James Webb Space

Telescope [1], or support to future manned missions to the moon, as for the proposed Lunar Orbital Platform-Gateway

[2].

The design of optimal spacecraft trajectories in multi-body systems is a high-dimensional and highly-nonlinear

problem, further complicated when low-thrust electric motors are considered for the orbital maneuvers. Dynamical

system methods are typically used to construct zero-fuel transfer trajectories between LPOs, also known as heteroclinic

connections, by looking for intersecting stable and unstable invariant manifolds [3, 4]. In the presence of low-thrust

propulsion, special attainable sets are generally used in conjunction with invariant manifolds to define a first-guess

trajectory [5], which is then optimized using indirect methods based on the Pontryagin maximum principle. However,

indirect methods are highly sensitive to the first-guess solution, limiting their range of applicability to multi-body

systems because of the chaotic dynamics [6]. In most cases, continuation methods are used in conjunction with indirect

methods to provide robustness during the initialization process [7]. Designing closed-loop control laws for optimal

transfers between distant orbits/states in the circular restricted three-body problem (CR3BP), able to run in real-time

onboard, poses even additional challenges. Traditional Keplerian-based guidance approaches have been extensively

used to provide spacecraft with closed-loop control capabilities [8], but they usually fail to deal with complex nonlinear

dynamical models or they require abundant computational resources on the flight hardware. A few guidance techniques,

mainly based on Floquet theory, have been specifically devised for spacecraft control in multi-body environments [9, 10],

but they are limited to station-keeping applications around unstable periodic orbits.

In an effort to increase the autonomy and robustness to failures and model uncertainties of next-generation spacecraft,

guidance systems based on artificial deep neural networks (DNNs) have become increasingly popular within the aerospace

community. Such systems exploit the low computational times and the high accuracy in function approximation of

DNNs to compute an optimal state-feedback control policy in real-time on the onboard hardware [11]. The DNN is

trained offline (i.e., on the ground) to solve an optimal control problem (OCP) by leveraging on training data either

provided by an “expert”, typically a numerical solver, or collected by the network itself during repeated simulations

of the considered mission scenario. In the former approach, known as behavioral cloning (BC), the learning process

reduces to a supervised learning task: the goal is to generalize the expert behavior, provided in the form of a set of

optimal trajectories, in order to correctly cope also with unseen scenarios. Some recent applications of BC to space

guidance and control problems include, but are not limited to, the computation of minimum-time [12] and mass-optimal

[13] interplanetary trajectories, the optimal control of a spacecraft during powered descent maneuvers [14], also starting
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just from raw camera images [15, 16], and the real-time generation of optimal trajectories for the atmospheric reentry of

hypersonic vehicles [17, 18]. Conversely, in the latter approach, known as deep reinforcement learning (RL), learning

occurs by trial and error rather than by looking at expert demonstrations. The policy network, or agent, repeatedly

interacts with the considered environment and receives, at each training step, a scalar reward, which depends on the

current spacecraft state and control. The control policy is progressively refined so as to maximize the cumulative

reward received along a trajectory, which accounts for both the merit index and the violation of the constraints of the

original OCP. In recent years, reinforcement learning has been extensively exploited for Lunar [19], planetary [20, 21]

and asteroid [22] landing guidance, robust interplanetary trajectory design [23–25], and terminal guidance during

interception [26, 27] or rendezvous [28] maneuvers. A systematic comparison between a BC and RL approach has been

realized for the case of in-orbit proximity operations [29].

A third AI-based solution approach to optimal control problems that is worth mentioning is the use of physics-

informed neural networks to solve the two-point boundary value problem coming from the application of the Pontryagin

minimum principle. This approach has been recently applied to retrieve optimal planar orbit transfers [30].

In particular, several research papers dealt with the use of deep learning methods for the solution of optimal control

problems in the cislunar environment. More precisely, D’Ambrosio et al. [31] computed a minimum-time energy-optimal

transfer trajectory with control constraints between a 𝐿1 Halo and a 𝐿2 Halo orbit by using a combination of indirect

methods and physics-informed neural networks. LaFarge et al. [32] used proximal policy optimization, a policy gradient

RL algorithm, to devise a robust fuel-optimal guidance law between two Lyapunov orbits with the same energy in

the presence of perturbed initial conditions and navigation errors, by leveraging on the knowledge of the zero-fuel

heteroclinic connections between them. Sullivan et al. introduced a multi-reward proximal policy optimization algorithm

to design both minimum-propellant and minimum-time low-thrust transfers between two southern 𝐿2 Halo orbits

[33, 34] and from an 𝐿1 Lyapunov/Halo orbit to an 𝐿2 Lyapunov/Halo orbit [35]. An algorithmic modification defined

as the “moving reference” has been successively introduced by the same authors [36] to autonomously construct the

reference optimal trajectories to recover with reinforcement learning during the network training. Guzzetti compared a

Q-learning-based controller with more traditional station-keeping techniques for the maintenance of unstable symmetric

periodic orbits within CR3BP dynamics [37]. A fuel-optimal impulsive station-keeping maneuvering strategy has

been also found by Bonasera et al. via proximal policy optimization to stay on a 𝐿2 quasi-Halo trajectory using

a Sun–Earth–Moon point mass ephemeris model with solar radiation pressure [38]. Furthermore, an actor-critic

reinforcement learning approach was successfully exploited by Scorsoglio et al. [39] and by Sullivan et al. [40]

for close-proximity guidance applications in the cislunar environment. However, the great part of the works on RL

for spacecraft guidance in the cislunar environment exploited a reward function that relies on environment-specific

knowledge, provided externally to the controller in a BC-fashion, thus hindering the cross-applicability and robustness

typical of model-free RL methods.
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This paper, instead, aims at developing a simple and efficient learning procedure of general validity, which does not

make use of any prior knowledge about the problem solution or of any pre-computed reference trajectory, as carried

out in previous works on the topic [32], and which could be readily applied to devise an autonomous guidance system

for cislunar orbit transfers. To this end, a novel reward function, which only relies on the minimum distance from the

target orbit and the fuel consumption, is proposed. A state-of-the-art algorithm, named proximal policy optimization

(PPO),[41] is used to optimize the guidance law within the RL framework. Numerical results are presented for two cases

study, which refer to low-thrust transfers between planar LPOs in the Earth-Moon CR3BP. The solutions found with the

RL approach are first compared with the optimal trajectories provided by a traditional direct optimization technique.[42]

The robustness of the obtained closed-loop guidance laws is then assessed throughMonte Carlo campaigns performed

in perturbed scenarios featuring increasing levels of navigation errors.

II. Problem Statement
In this section, the spacecraft dynamics are described in detail, and the cislunar transfer problem is mathematically

formulated as an optimal control problem.

A. Dynamical Model

The circular restricted three-body problem (CR3BP) is used to describe the system dynamics. In this model, the

motion of the spacecraft, or third body (𝑝3), is determined by the gravitational attraction of two spherically symmetric

celestial bodies, namely the primary body (𝑝1), with gravitational constant 𝜇𝑝1 , and the secondary body (𝑝2), with

gravitational constant 𝜇𝑝2 . The two celestial bodies are supposed to move about a common center of mass (𝐵) along

circular orbits, with an angular velocity equal to 𝜔 “

c

𝜇𝑝1`𝜇𝑝2
𝑑𝑝1𝑝2

, where 𝑑𝑝1 𝑝2 is the (constant) distance between the two

bodies. The mass of 𝑝3 is considered negligible if compared to the masses of the other two bodies: as a consequence,

the third body has no gravitational influence on the other two. In the Earth-Moon CR3BP, the primary body coincides

with the Earth, while the secondary body with the Moon.

Let us introduce a non-inertial reference frame N “ p𝐵; 𝒙̂, 𝒚̂, 𝒛q with origin in the center of mass 𝐵, the x-axis

directed from 𝑝1 to 𝑝2, the z-axis directed as the angular momentum of the two primary bodies, and the y-axis forming

a right-handed triad. So, frame N rotates counterclockwise about axis 𝒛 with angular velocity 𝜔 with respect to a

correspondingly defined inertial reference frame I “ p𝐵; 𝒙̂I , 𝒚̂I , 𝒛Iq. A view of the inertial and rotating reference

frames from the positive z-axis is reported in Fig. 1.

A planar problem is considered in this manuscript for the sake of simplicity: the spacecraft is supposed to move in

the same orbital plane as the two primary bodies. Nevertheless, as already shown in a number of research works by the

authors on model-free reinforcement learning for spacecraft guidance [23, 29], the extension to a three-dimensional

problem is straightforward and does not represent a challenge for the presented solution method. An increase in the
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Fig. 1 Inertial I and rotating N reference frames.

average neural network training time should be anyway expected when facing the three-dimensional problem as a direct

consequence of the increase in the number of inputs and outputs (and, thus, network dimensions).

The spacecraft, with initial mass 𝑚0, is equipped with a low-thrust engine with maximum thrust 𝑇max and effective

exhaust velocity 𝑐. The control thrust at any time can be expressed as

𝑻 “ 𝑇𝑥 𝒙̂ ` 𝑇𝑦 𝒚̂ (1)

So, the following condition must hold along the whole spacecraft trajectory

∥𝑻∥ ď 𝑇max (2)

The spacecraft state 𝒙 at any time 𝑡 in frame N is completely described by its position 𝒓 “ r𝑥 𝑦s𝑇 , velocity

𝒗 “ r𝑣𝑥 𝑣𝑦s𝑇 and mass 𝑚, that is, 𝒙 “ r𝒓𝑇 𝒗𝑇 𝑚s𝑇 . The time evolution of the spacecraft state is governed by the

equations of motion 9𝒙 “ 𝑓 p𝒙,𝑻q, written as
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9𝑥 “ 𝑣𝑥

9𝑦 “ 𝑣𝑦

9𝑣𝑥 “ 2𝑣𝑦 ` 𝑥 ´
p1´𝜇qp𝑥`𝜇q

𝑟3𝑝1𝑝3
´

𝜇p𝑥´1`𝜇q

𝑟3𝑝2𝑝3
`

𝑇𝑥
𝑚

9𝑣𝑦 “ ´2𝑣𝑥 ` 𝑦 ´
p1´𝜇q𝑦

𝑟3𝑝1𝑝3
´

𝜇𝑦

𝑟3𝑝2𝑝3
`

𝑇𝑦

𝑚

9𝑚 “ ´
∥𝑻 ∥
𝑐

(3)
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where the distances of the spacecraft from the primary and secondary body are evaluated as

𝑟𝑝1 𝑝3 “

b

p𝑥 ` 𝜇q2 ` 𝑦2 (4)

𝑟𝑝2 𝑝3 “

b

p𝑥 ´ p1´ 𝜇qq2 ` 𝑦2 (5)

and where 𝜇 “
𝜇𝑝2

𝜇𝑝1`𝜇𝑝2
indicates the mass ratio of the primary and secondary body.

All the physical quantities in Eq. (3) are made nondimensional by using as the unit of length the distance between

the primary and secondary body 𝑙˚ “ 𝑑𝑝1 𝑝2 , as the unit of time the orbital period of the secondary body divided by 2𝜋,

𝑡˚ “ 1{𝜔, as the unit of velocities 𝑣˚ “ 𝑙˚{𝑡˚ and as the unit of masses the initial mass of the spacecraft 𝑚˚ “ 𝑚0.

The “free” CR3BP equations of motion, that is, without the control term, admit a well-known integral, the Jacobi

integral 𝐶, defined as

𝐶p𝒙q “ 2
„

1´ 𝜇

𝑟𝑝1 𝑝3
`

𝜇

𝑟𝑝2 𝑝3
` 0.5p𝑥2 ` 𝑦2q

ȷ

´
`

𝑣2𝑥 ` 𝑣2𝑦
˘

(6)

The Jacobi constant represents the specific mechanical energy of the spacecraft in the rotating frame, and it maintains

constant along any ballistic trajectory. The free CR3BP equations of motion also admit five different equilibrium points

in the orbital plane of the primary and secondary body, called Lagrangian points: three collinear points along the axis

joining the primary with the secondary, denoted by 𝐿1, 𝐿2, and 𝐿3, and two equilateral points, specular with respect to

the x-axis, denoted by 𝐿4 and 𝐿5, at the vertex of two equilateral triangles with the two bodies.

The values of all the Earth-Moon CR3PB constants and of the spacecraft’s engine characteristics in nondimensional

units are summarized in Table 1. The same data used in Ref. [43] have been considered in this manuscript for the sake

of a fair comparison.

𝜇 𝑙˚, km 𝑡˚, s 𝑣˚, km{s 𝑚˚, kg 𝑇max 𝑐

1.2151ˆ 10´2 3.8440ˆ 105 3.7519ˆ 105 1.0245 1000 4ˆ 10´2 28.7306

Table 1 Values of the Earth-Moon system’s constants and of the spacecraft’s characteristics.

B. Optimal Control Problem

The spacecraft is supposed to be initially in a given state 𝒙𝑖 “ r𝒓𝑇
𝑖
𝒗𝑇
𝑖
1s𝑇 in a Lyapunov orbit around 𝐿1, denoted

as Ly1. The objective is to find the optimal control thrust 𝑻‹ that drives the spacecraft, within a maximum transfer

time 𝑡max, towards a given Lyapunov orbit around 𝐿2, named Ly2, while minimizing the propellant consumption. The
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corresponding optimal control problem can be mathematically formulated as follows

P :
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max
𝑻

𝑚p𝑡 𝑓 q

s.t. : 9𝒙 “ 𝑓 p𝒙,𝑻q, 𝑡 P r0, 𝑡 𝑓 s

∥𝑻∥ ď 𝑇max, 𝑡 P r0, 𝑡 𝑓 s

𝒙p0q “ 𝒙𝑖 P Ly1

𝒙p𝑡 𝑓 q P Ly2

𝑡 𝑓 ď 𝑡max

(7)

Figure 2 shows an example of these two Lyapunov orbits.
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Fig. 2 Initial (in blue) and target (in red) Lyapunov orbits.

III. Reinforcement Learning
The fundamental concepts behind reinforcement learning are outlined in this section. First, a mathematical

formulation of the optimal control problem as a Markov decision process (MDP) is introduced. Then, the general-

purpose delayed reward function devised for the cislunar transfer problem at hand is described. Eventually, details on

the architecture used for the control policy network and how learning is achieved through proximal policy optimization

are presented.

A. Markov Decision Process

To properly match the mathematical framework of reinforcement learning, the OCP in Eq. (7) is recast as an

equivalent discrete-time MDP. To this aim, time is discretized over a grid with 𝐻 ` 1 uniformly spaced points between
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the initial time 𝑡𝑖 “ 0 and the maximum time 𝑡max: 0 “ 𝑡0 ă 𝑡1 ă . . . ă 𝑡𝐻 “ 𝑡max. Subscript “ℎ” will be used to

identify quantities at time 𝑡ℎ, with ℎ “ 0, . . . , 𝐻. The time-step of the grid is Δ𝑡 “ 𝑡max{𝐻. A sequence of 𝐻 time steps

is indicated as an episode.

An “augmented” spacecraft state 𝒙̃ is introduced, which includes also time 𝑡 and the Jacobi integral 𝐶. The

augmented state at time 𝑡ℎ`1 is obtained by numerically propagating the state 𝒙ℎ between time 𝑡ℎ and time 𝑡ℎ`1 through

Eqs. (3), assuming that the thrust 𝑻 “ 𝑻ℎ is constant in magnitude and direction during the whole time-step, and then by

evaluating the Jacobi integral at the final time of the trajectory segment. Hence

𝒙̃ℎ`1 “ Φp𝒙̃ℎ,𝑻ℎq “ r𝒙𝑇ℎ`1 𝐶p𝒙ℎ`1q 𝑡ℎ ` Δ𝑡s𝑇 (8)

A closed-loop control law is used to drive the spacecraft toward the desired final orbit. Specifically, the controller

returns at every time step 𝑡ℎ a control action 𝒖ℎ as the output of a state-feedback control policy 𝜋: 𝒖ℎ “ 𝜋p𝒙̃ℎq. In order

to ensure that the thrust 𝑻ℎ meets the imposed constraint on the maximum modulus (see Eq. (2)), a peculiar definition of

the action has been devised. Specifically, the action 𝒖ℎ returned by 𝜋 at time 𝑡ℎ is

𝒖ℎ “ r𝑢̃ sin 𝜙 signpcos 𝜙qs P r´1, 1s ˆ r´1, 1s ˆ t´1, 1u (9)

where 𝜙 is the angle between 𝑻ℎ and the x-axis of frame N . The actual thrust 𝑻ℎ can be easily computed from 𝒖ℎ using

Eq. (1), with

∥𝑻∥ “
𝑢̃ ` 1
2

𝑇max (10)

𝑇𝑥 “ ∥𝑻∥ signpcos 𝜙q

b

1´ sin2 𝜙 (11)

𝑇𝑦 “ ∥𝑻∥ sin 𝜙 (12)

The parameter 𝑢̃ P r´1, 1s has been preferred over the thrust modulus as RL algorithms typically work better with

parameters whose value is centered about zero. This mixed-integer definition of the action has the advantage, over a

more traditional Cartesian definition 𝒖 “ r𝑇𝑥 𝑇𝑦s, to inherently meet the constraint on the maximum thrust provided by

the spacecraft engine, without the need to introduce additional penalty terms inside the reward function. Moreover, as

opposed to a definition in spherical coordinates 𝒖 “ r𝑢̃ 𝜙s, the discontinuity of the control around 𝜙 “ 0 is eliminated.

At the end of every time step 𝑡ℎ, the controller receives also a reward 𝑅ℎ “ 𝑅p𝒙̃ℎ, 𝒙̃ℎ`1, 𝒖ℎq, which measures the

“desirability” of the transition from state 𝒙̃ℎ to state 𝒙̃ℎ`1 due to control 𝒖ℎ. The reward function devised for this

application will be described in detail in Sec. III.B.

The goal in an MPD is to find the control policy 𝜋‹ that maximizes a performance index 𝐽, which is the expected

9



discounted return 𝐺p𝜏q obtained along a trajectory 𝜏 “ tp𝒙̃0, 𝒖0q, . . . , p𝒙̃𝐻´1, 𝒖𝐻´1q, 𝒙̃𝐻u

𝐽p𝜋q “ E
𝜏„𝜋

r𝐺p𝜏qs “ E
𝜏„𝜋

«

𝐻´1
ÿ

ℎ“0
𝛾ℎ𝑅ℎ

ff

(13)

where 𝛾 P p0, 1s is a discount factor, usually close to 1, which is used to give more importance to short-term rewards.

Overall, the discrete-time MDP can be mathematically formulated as follows

M :

$
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%

max
𝜋
𝐽p𝜋q

s.t.: 𝒙̃ℎ`1 “ Φp𝒙̃ℎ, 𝒖ℎq, ℎ “ 0, . . . , 𝐻 ´ 1

𝒖ℎ “ 𝜋p𝒙̃ℎq, ℎ “ 0, . . . , 𝐻 ´ 1

𝒙̃0 “ r𝒙𝑇
𝑖
𝐶p𝒙𝑖q 0s𝑇

𝑡𝐻 “ 𝑡max

(14)

B. Reward Function

A suitable definition of the reward function is the key to the success of an RL procedure in a given environment. For

this reason, devising a satisfactory-good reward function is also the most challenging part of using RL as an optimization

method.

When tackling an OCP with RL, one of the major limitations of RL is its poor constraint-handling capability.

Indeed, as stated by Eq. (14), MDPs allow only scalar rewards. Thus, terminal and path constraints cannot be separately

accounted for, and all constraint violations must be included in the reward function as weighted penalty terms.

In this respect, control/state path constraints are often well handled by RL. Indeed, whenever one of these constraints

is not met either the agent receives an immediate negative reward, thus allowing for frequent rewards, or the episode

is forced to terminate prematurely, thus informing the agent that it should not visit that specific state again. Instead,

teaching the agent to effectively cope with terminal constraints, as in this study, is a much more challenging task. In this

case, the cumulative effect of all actions can be generally judged only at the end of the episode, when the agent receives

a delayed negative reward as a response to the terminal constraint violation.

In both scenarios, the weighting factors play a pivotal role, as they control the relative importance of the various

terms (merit index and constraint violations). As a consequence, a proper (and typically very time-consuming) tuning of

these weights is generally required to avoid the creation of a number of spurious sub-optimal solutions the search could

get trapped into.

An environment-dependent “shaping” of the reward function [44] is often adopted in RL applications to space

guidance problems [20] to simplify the agent’s task during training and speed up the learning procedure. In this case, an
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a priori knowledge about the, more or less approximate, shape that the optimal, or a good suboptimal, guidance profile

should have is exploited to devise a frequent definition of the reward, which keeps the agent close to this reference

path, thus ensuring the satisfaction of the problem constraints. While performing at first glance, reward shaping has

the drawback of requiring some information about the structure of the optimal solution, or even the exact solution

of relaxed versions (e.g., without uncertainties) of the problem at hand [35, 43]. Furthermore, being the shaping

problem-specific, even modest variation in the mission parameters may turn a previously well-devised reward function

completely ineffective, typically leading to the need of devising another reward function from scratch, which makes the

overall procedure very time-consuming.

In cislunar transfer problems, proper shaping of the reward function is a non-trivial task, as, in principle, neither the

problem solution nor an approximation of the optimal trajectory is known in advance. Furthermore, slight changes

to the initial and/or target spacecraft conditions usually bring large changes to the optimal solution, as a result of the

chaotic three-body problem dynamics. Thus, a non-sparse reward function that both guarantees the control policy

optimality and it is applicable to a wide class of transfer problems in cislunar space, without the use of any a priori

information, is hard, if not completely impossible, to devise. Instead, this manuscript proposes a simple and effective

sparse reward function. This reward can be easily applied to other problems in the cislunar environment (e.g., different

pairs of Lyapunov orbits) without significant effort. Indeed, without any information about the shape of the optimal

trajectory, the performance of the agent (i.e., the final distance of the spacecraft from the target Lyapunov orbit) can be

just determined at the end of the episode.

Specifically, a minimum-propellant low-thrust transfer from a specified initial state 𝒙𝑖 P Ly1 to any state in Ly2 in a

maximum mission time 𝑡max is searched for. So, the reward function must be devised in such a way as to both minimize

the total propellant consumption and effectively handle periodic terminal conditions. To this aim, a delayed reward is

used: the agent receives a non-zero reward only at the end of each episode, that is, at step 𝐻. The terminal reward 𝑅𝐻 is

made up of two terms

𝑅𝐻 “ ´0.1max t0, 𝑑min ´ 𝜀u ´ 𝑚𝑝 (15)

In particular, 𝑑min is the minimum distance, in space 𝒓, 𝒗, between the whole spacecraft trajectory and the target

Lyapunov orbit. Let us denote with 𝒛 “ r𝒓𝑇 𝒗𝑇 s𝑇 the vector made up of position and velocity at a given time (that is,

the state vector without the mass). By indicating with 𝒛𝑛𝑛
ℎ

P Ly2 the nearest neighbor of 𝒛ℎ along the target Lyapunov
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orbit, 𝑑min can be evaluated as

𝑑min “ min
ℎPt0,...,𝐻u

𝑑ℎ (16)

𝑑ℎ “



𝒛ℎ ´ 𝒛𝑛𝑛
ℎ





𝒛𝑛𝑛
ℎ



 (17)

𝒛𝑛𝑛ℎ “ argmin
𝒛PLy2

∥𝒛ℎ ´ 𝒛∥ (18)

The nearest neighbors 𝒛𝑛𝑛
ℎ
, ℎ “ 0, . . . , 𝐻, are computed by exploiting a k-d tree partitioning of the space Ly2, which

allows speeding up the nearest neighbor search procedure by quickly eliminating large portions of the search space,

thanks to the tree properties. An example of computation of 𝑑min for a sample trajectory is shown in Fig. 3, by

considering position only for visualization purposes.
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H−1
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H

dmin
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Fig. 3 Schematic of the evaluation process for the minimum distance 𝑑min.

The final time is set to be the time at which the closest approach between the spacecraft and the target orbit occurs

𝑡 𝑓 “ 𝑡ℎ̂ with ℎ̂ “ argmin
ℎ

𝑑ℎ (19)

The second term in the reward, 𝑚𝑝 , instead, indicates the total propellant mass consumed up to time 𝑡 𝑓 , that is

𝑚𝑝 “ 𝑚 ℎ̂ ´ 𝑚0 (20)

A tolerance on the violation of the terminal constraint 𝜀 “ 1ˆ 10´3 is allowed, as done in similar works. [23] The

weighting factor 0.1 between the mass and constraint violation term in the reward function has been selected empirically
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after a tuning procedure with different values (e.g., 0.01, 0.1, 1, and 10), as it showed the best performance on average.

It is worthwhile to note that the reward function presented above does not exactly match an MDP formulation, as

the reward at the last time step depends on the spacecraft states at all the previous times. However, a “pure” MDP

formulation can be easily restored if the minimum distance between the spacecraft trajectory and the target orbit up to

time 𝑡ℎ, 𝑑min,ℎ, is added to the augmented state vector 𝒙̃ℎ. In this way, the minimum distance at time 𝑡ℎ`1 can simply be

evaluated as 𝑑min,ℎ`1 “ min t𝑑min,ℎ, 𝑑ℎ`1u, so that the reward at any time only depends on the state-action-next-state

transition, and the Markov property is retained.

C. Policy Network

In policy gradient deep reinforcement learning a deep neural network with parameters (i.e., weights and biases) 𝜃 is

used to parameterize the control policy 𝜋, and defined as policy network 𝜋𝜃 . So, the optimal policy 𝜋‹ is found by

directly looking for the optimal network’s parameters 𝜃‹, thus turning the problem into a parametric optimization one.

A stochastic policy is commonly used to favor a wider exploration of the search space in the first phases of the

training procedure. In this case, the expression 𝜋p𝒖|𝒙̃q indicates the probability of taking action 𝒖 in state 𝒙̃. A diagonal

Gaussian action distribution is used in this work: given the current state 𝒙̃ℎ as input, the policy network returns the mean

value of the action components 𝝁𝜃,ℎ, while the standard deviations 𝝈𝜃,ℎ are treated as additional network biases, thus

not dependent on the current input. In the training phase, the actual action is sampled from the Gaussian distribution. So

𝒖ℎ „ 𝜋𝜃p¨|𝒙̃ℎq “ Np𝝁𝜃,ℎ,𝚺𝜃,ℎq (21)

with 𝚺𝜃,ℎ “ diagp𝝈𝜃,ℎ 𝝈
𝑇
𝜃,ℎ

q the covariance matrix. After training or during independent evaluations, instead, the

policy is deployed as a deterministic law by switching off exploration: 𝒖ℎ “ 𝝁𝜃,ℎ.

A fully-connected network architecture with 3 hidden layers has been used, where the width (i.e., the number of

neurons) of the hidden layers is an increasing function of the number of network inputs and outputs. This architecture

comes from the idea that the network complexity should increase with the dimension of the function domain to correctly

approximate the relations between the different input variables and the output values. This network configuration has

been already adopted in similar research works on deep reinforcement learning for spacecraft guidance, achieving

high performance [20, 23, 25]. Specifically, the input layer consists of 𝑛𝑖 “ 7 neurons, the output layer of 𝑛𝑜 “ 3

neurons, and the three hidden layers have width 𝑙1 “ 𝑘 𝑓 𝑛𝑖 , 𝑙2 “
?
𝑙1𝑙3, and 𝑙3 “ 𝑘 𝑓 𝑛𝑜, respectively. The proportionality

factor 𝑘 𝑓 “ 5 has been preferred over the one originally proposed in the literature (i.e., 𝑘 𝑓 “ 10) as it showed faster

convergence properties during a preliminary tuning procedure. All the neurons in the hidden layers feature the hyperbolic

tangent (tanh) as the activation function, while the neurons in the input and output layers use a linear (lin) activation

function. A schematic of such a policy network is shown in Fig. 4.
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Fig. 4 Policy network.

D. Proximal Policy Optimization

In this manuscript, the policy network training is performed by proximal policy optimization (PPO), a model-free,

policy gradient algorithm developed in 2017 by OpenAI and almost unanimously considered as the state-of-the-art for

control problems with both discrete and continuous action spaces [41].

In PPO, a so-called “clipped policy objective function” 𝐽clip is used in place of 𝐽 to constrain the policy 𝜋𝜃 to

stay in a small range 𝜖 , named clip range, around its previous value 𝜋𝜃old , and avoid too large policy updates between

consecutive training iterations, which usually cause a performance collapse. 𝐽clip is defined as

𝐽clipp𝜃, 𝜃oldq “ E
𝜏„𝜋𝜃

«

1
𝐻

𝐻´1
ÿ

ℎ“0
min t𝑟ℎp𝜃q𝐴𝜋𝜃 , clipp𝑟ℎp𝜃, 𝜃oldq, 1´ 𝜖, 1` 𝜖q𝐴𝜋𝜃 u

ff

(22)

In particular, 𝑟ℎp𝜃q represents the probability ratio between the updated and the previous policy

𝑟ℎp𝜃, 𝜃oldq “
𝜋𝜃p𝒙̃ℎq

𝜋𝜃oldp𝒙̃ℎq
(23)

while 𝐴𝜋𝜃 , denoted as advantage function, quantifies by how much the total reward improves by taking a specific action
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𝒖 in the state 𝒙̃, instead of randomly selecting the action according to 𝜋𝜃 . Specifically

𝐴𝜋𝜃 p𝒙̃, 𝒖q “ 𝑄 𝜋𝜃 p𝒙̃, 𝒖q ´𝑉 𝜋𝜃 p𝒙̃q (24)

𝑄 𝜋𝜃 p𝒙, 𝒖q “ E
𝜏„𝜋𝜃

«

𝐻´1
ÿ

ℎ1“ℎ

𝛾ℎ
1´ℎ𝑅ℎ1

���� 𝒙̃ℎ “ 𝒙̃, 𝒖ℎ “ 𝒖

ff

(25)

𝑉 𝜋𝜃 p𝒙̃q “ E
𝜏„𝜋𝜃

«

𝐻´1
ÿ

ℎ1“ℎ

𝛾ℎ
1´𝑘𝑅ℎ1

���� 𝒙̃ℎ “ 𝒙̃

ff

(26)

with 𝑄 𝜋𝜃 p𝒙̃, 𝒖q and 𝑉 𝜋𝜃 p𝒙̃q the Q-function and value function, respectively.

In order to compute the advantage function during policy optimization, a second DNN, named Critic, is trained

concurrently to the policy network, named Actor. Just like the Actor, the Critic receives as input the current state 𝒙̃ℎ,

but returns as output an estimate 𝑉̂ℎ of the value function 𝑉 𝜋𝜃 p𝒙̃ℎq. In this work, the same DNN is shared for both

the control policy and value function estimation (i.e., a fourth output 𝑉̂ is added to the three policy-related outputs in

the network shown in Fig 4). Once an approximation of the value function is known, the advantage function can be

computed by using the so-called generalized advantage estimator (GAE) [45]

𝐴̂ℎ “

𝐻´1
ÿ

ℎ1“ℎ

p𝛾𝜆qℎ
1´ℎ

`

𝑅ℎ1 ` 𝛾𝑉̂ℎ1`1 ´ 𝑉̂ℎ1

˘

(27)

where 𝜆 is a hyperparameter named the GAE factor.

Since the DNN returns also an estimate of the value function, an additional term 𝑒 related to the quality of the value

function estimate 𝑉̂ must be added to the clipped objective function 𝐽clip in order to correctly update the set of network

parameters 𝜃. So, a so-called “surrogate” objective function 𝐽ppo is used as merit index

𝐽ppop𝜃, 𝜃oldq “ 𝐽clipp𝜃, 𝜃oldq ´ 𝑐𝑣𝑒p𝜃q (28)

where

𝑒p𝜃q “
1
2
E

𝜏„𝜋𝜃

»

–

1
𝑁

𝐻´1
ÿ

ℎ“0

˜

𝑉𝜃p𝒙̃ℎq ´

𝐻´1
ÿ

ℎ1“ℎ

𝛾ℎ
1´ℎ𝑅ℎ1

¸2
fi

fl (29)

is the mean-squared error on the value function and 𝑐𝑣 is a hyperparameter named value function coefficient.

As in all policy-gradient RL algorithms, in PPO two different phases alternate at every training iteration. In the

policy rollout phase, 𝑛𝑤 worker agents run the most up-to-date policy network in parallel in as many independent

realizations of the environment for 𝑛𝑒 complete episodes each. Concurrently, a deterministic version of the policy is

run in an evaluation environment (equal to the training one, in this case), and the corresponding value of the surrogate

objective is saved. The 𝑁 “ 𝑛𝑤𝑛𝑒 training trajectories just collected are then randomly split into 𝑛𝑏 mini-batches and

used in the policy update phase to update the network parameters 𝜃 by performing, sequentially, 𝑛sga stochastic gradient
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Algorithm 1 Proximal policy optimization (PPO)
1: function PPO(M, net)

Ź Input: environmentM, policy network architecture net
Ź Hyperparams: clip range 𝜖 , episodes per rollout 𝑁 , learning rate 𝛼, training iterations 𝐾

2: Randomly initialize 𝜃p0q with dimensions defined by net
3: Initialize the batch J Ð ∅
4: for 𝑘 Ð 0, 𝐾 ´ 1 do
5: Initialize the batches Dp𝑘q Ð ∅, Rp𝑘q Ð ∅, Ap𝑘q Ð ∅
6: for 𝑖 Ð 1, 𝑁 do
7: Run 𝜋𝜃p𝑘q

in the environment for a episode and store the new
trajectory in Dp𝑘q and rewards-to-go in Rp𝑘q

8: Compute the approximate advantages 𝐴̂ℎ based on the current
value function estimate 𝑉̂ , and store them in Ap𝑘q

9: end for
10: Run 𝝁𝜃p𝑘q

in the environment for a episode and store the value
of the surrogate objective in J

11: Randomly split the data in Dp𝑘q, Rp𝑘q and Ap𝑘q in 𝑛𝑏 mini-batches
12: 𝜃new Ð 𝜃p𝑘q

13: for 𝑗 Ð 1, 𝑛𝑏 do
14: for 𝑠 Ð 1, 𝑛sga do
15: Update the network parameters through SGA on an estimate

of the surrogate objective in Eq. (28) evaluated using the data
in the 𝑗-th mini-batch

𝜃new Ð 𝜃new ` 𝛼p𝑘q ∇𝜃 𝐽
ppop𝜃, 𝜃newq

ˇ

ˇ

𝜃new

16: end for
17: end for
18: 𝜃p𝑘`1q Ð 𝜃new
19: end for
20: return 𝜃‹ “ argminJ
21: end function

Fig. 5 Pseudo-code for proximal policy optimization algorithm.

ascent (SGA) iterations on each mini-batch. A constant, or slowly decreasing, learning rate 𝛼 is used to define the step

size of each SGA iteration. The training process is stopped when a total number of training iterations equal to 𝐾 is

reached. The value of the parameters that yielded the maximum value of the surrogate objective in the evaluation

environment is returned as putative optimum. A pseudo-code of the PPO algorithm is reported in Fig. 5.

E. Algorithm settings

The numerical results presented in the next section have been obtained by using Ray [46], an open-source library that

contains a wide set of improved and highly-parallel algorithms for reinforcement learning, among which a state-of-the-art

implementation of PPO. The main hyperparameters of PPO (namely, the clip range, the learning rate, and the number

of mini-batches for SGD) have been tuned by trial-and-error on the problem at hand, and the best-found values are
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reported in Table 2.

Table 2 PPO hyperparameters.

Hyper-parameter Symbol Value

Training iterations 𝐾 1500
Discount factor 𝛾 0.9999
GAE factor 𝜆 0.99
Clip range 𝜖 0.05
Value function coefficient 𝑐𝑣 0.5
Parallel workers 𝑛𝑤 56
Number of episodes per worker 𝑛𝑒 10
Number of mini-batches 𝑛𝑏 7
SGA epochs per update 𝑛sga 50

A decreasing, piecewise linear learning rate 𝛼 has been used

𝛼p𝑘q “ 𝛼𝑖 ` p𝛼𝑖`1 ´ 𝛼𝑖q
𝑘 ´ 𝑘𝑖

𝑘𝑖`1 ´ 𝑘𝑖
, 𝑖 “ 0, . . . , 3 (30)

The values of the training step 𝑘𝑖 and learning rates 𝛼𝑖 at the five switching points are reported in Table 3.

Table 3 Learning rate trend.

𝑖 0 1 2 3 4

𝑘𝑖 0 375 750 1125 1500
𝛼𝑖 5ˆ 10´4 5ˆ 10´5 1ˆ 10´5 5ˆ 10´6 1ˆ 10´6

IV. Numerical Results
This section presents the numerical results for two study cases. The first one refers to a transfer from a 𝐿1 Lyapunov

orbit (Ly1) to a 𝐿2 Lyapunov orbit with roughly the same energy level (Ly
p𝐴q

2 ). In the second case, the transfer starts

from the same orbit but a 𝐿2 Lyapunov orbit with slightly higher energy is targeted (Ly
p𝐵q

2 ).

Orbit 𝒓𝑖 𝒗𝑖 𝑇 𝐶

Ly1 r0.8104000 0 0s𝑇 r0 ` 0.2681030 0s𝑇 2.9771360 3.1237338

Lyp𝐴q

2 r1.1910000 0 0s𝑇 r0 ´ 0.2373133 0s𝑇 3.4937505 3.1238893

Lyp𝐵q

2 r1.1880000 0 0s𝑇 r0 ´ 0.2114158 0s𝑇 3.4619924 3.1342709

Table 4 Lyapunov orbits used as study cases.

Table 4 presents the position 𝒓𝑖 and velocity 𝒗𝑖 vectors used to generate the three Lyapunov orbits here considered,
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as well as their orbital period 𝑇 and Jacobi constant 𝐶. The position and velocity referred to orbit Ly1 correspond to the

initial spacecraft state. The maximum flight time is set to 𝑡max “ 6, and a time grid with 𝐻 “ 40 steps has been used.

So, the time step is Δ𝑡 “ 0.15.

In the following sections, the two trajectories found in a deterministic scenario are compared with the optimal ones

provided by a direct optimization technique. Then, the robustness of the closed-loop control policies in the presence of

navigation uncertainties is investigated by means of Monte Carlo campaigns.

A. Training

k

(a) Cumulative reward vs training iteration.
k

(b) Distance from target orbit vs training iteration.

Fig. 6 Convergence behavior of the RL policies during training. Values are smoothed with a moving average on
a 15-step window.

The evolution of the cumulative reward and of the terminal error (i.e., the minimum distance from the target orbit)

during the training of the two RL policies related to the mission towards Lyp𝐴q

2 and Lyp𝐵q

2 are presented in Figure 6.

The shaded region around each curve represents the range of variation of the depicted quantity over the 𝑛𝑤 parallel

training environments. Both test metrics improve almost monotonically on average during the training, with just a few

drops, which are related to the stochastic nature of the control policy. The width of the shaded regions suggests that

the considered test metrics vary significantly among the different parallel training environments. This wide range of

variation is probably a direct consequence of the high complexity of the optimization problem, featuring several locally

optimal solutions.

Note that the network performance in term of cumulative reward worsen when a target orbit with different energy is

considered. This is mainly due to the increase in propellant mass required for reaching the orbit Lyp𝐵q

2 , as the spacecraft

must change its energy during the transfer. On the contrary, the minimum distance of the trajectory from the target orbit

reaches similar values in the two scenarios.

Training the network took about 6 hours on a computer equipped with a 56-core Intel(R) Xeon(R) E5-2680 v4
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@2.40GHz, for either test case. However, it is here worthwhile to remark that, once the trained network is deployed

(either on a target flight hardware or when used in simulations) the computational cost for evaluating the optimal control

at any time step is almost negligible, being equivalent to that of a few small-size matrix multiplications.

B. Optimal Trajectories

L2L1

Fig. 7 Optimal trajectories found by PPO and GPOPS between same-𝐶 Lyapunov orbits.

Figures 7 and 8 show the optimal trajectories (black curves) found by PPO towards Lyp𝐴q

2 and Lyp𝐵q

2 , respectively,

and the corresponding control along the transfers (gray arrows). For the sake of comparison, the optimal solutions

(light-orange curves and arrows) obtained by a direct optimization technique with GPOPS-II [42] are also reported. An

overview of the obtained results is presented in Table 5, where the final trajectory return 𝐺, flight time 𝑡 𝑓 , consumed

propellant mass 𝑚𝑝 (by supposing 𝑚0 “ 1000 kg), and minimum distance from the target orbit 𝑑min for both PPO

and GPOPS solutions are reported. One can easily note that the trajectories found by PPO and GPOPS in the case

of equal-𝐶 Lyapunov orbits are almost superimposed. However, the two control laws are quite different from each

other. In particular, while the optimal control by GPOPS features a typical bang-off-bang profile with two clear burns,

one at the departure and one at the arrival, the PPO solution front-loads the thrust in the first part of the trajectory

but never reaches the maximum thrust level. On the contrary, the spacecraft is injected into a stable manifold of the

target Lyapunov orbit and the second half of the transfer is purely ballistic. This difference in the control law has a

major impact on the transfer time, which decreases by about 13% from GPOPS (5.99) to PPO (5.23), and on the overall

propellant consumption, which is almost four times larger (+0.45 kg), but still remaining less than 0.1% of the initial
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L2L1

Fig. 8 Optimal trajectories found by PPO and GPOPS between different-𝐶 Lyapunov orbits.

spacecraft mass. When considering the transfer towards Lyp𝐵q

2 , the differences between PPO and GPOPS trajectories

are more apparent. The considerations concerning the different use of the propulsion done for the previous test case still

apply, but the terminal PPO burn arc is significantly larger. The overall consumption is also larger for PPO (almost

double) with respect to GPOPS, but a solution with a shorter transfer time is indeed found. In either study case, the

terminal error 𝑑min is well below the desired threshold.

When considering the numerical differences between the PPO and GPOPS solutions, one should take into account

the fact that the two dynamical models are not exactly the same. In fact, the RL framework requires a discrete-time

model, and the thrust is assumed constant in magnitude and direction over each time step. On the opposite, GPOPS

relies on a continuous-time formulation of the optimal control problem and the thrust can be switched on/off at any time.

For this reason, GPOPS is able to find a solution where the spacecraft thrusts for arbitrarily short periods at maximum

throttle, which is indeed the proper use of propulsion, and this explains the lower propellant consumption. In theory, the

use of a smaller step size in the MDP formulation would make the dynamic model more similar to a continuous-time

one, thus potentially improving the accuracy and optimality of the control policy. However, this also makes the problem

progressively harder to be solved via RL as it increases the search space dimensions. As a result, a trade-off on the

step size is typically necessary to find a good balance between the accuracy of the solution and the complexity of the

resulting control problem.

Despite PPO being inherently unable to converge to the optimal control found by GPOPS, the trajectories found

are quite close both in shape and in final spacecraft mass to the optimal solutions, and both of them converge, with
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satisfactory high precision, to the final target orbit. This confirms the validity of the reward function here devised, which

is capable of guiding the network towards the solution of a time-free problem and with terminal periodic constraints

without the need for any a-priori information about the putative optimal solution. Future works will attempt at defining

the RL action space in such a way as to have thrusting arcs of arbitrary time length, with the aim of attaining a propellant

consumption closer to that of the optimal solution.

A major advantage of the proposed procedure over a direct optimization method such as GPOPS-II is the

computational time in inference, i.e., when the controller is deployed onboard. Indeed, the time required by a direct

optimization method is highly dependent on the initial guess of the optimization procedure, and it generally varies from

a few seconds to several minutes on the basis of how close this guess is to the optimal trajectory. When used onboard the

spacecraft for guidance purposes, a direct method is typically run within a model predictive control (MPC) framework

to compute a new optimal trajectory at each guidance step starting from an updated estimate of the spacecraft state. In

this case, the initial guess of every optimization run is the optimal trajectory computed at the previous guidance step,

which, depending on the step size and uncertainty level, is usually close enough to the new solution to maintain the

computational time in the order of seconds and make the methodology suitable for real-time applications. Conversely,

the onboard computational time of a neural network controller is only dependent on the neural network dimensions

and on the hardware architecture, being just determined by one forward pass of the network per guidance step. This

operation only involves matrix multiplications, thus it is extremely fast, usually in the order of a few milliseconds.

Table 5 Optimal trajectories overview.

Target
orbit 𝐺

𝑡 𝑓 𝑚𝑝 , kg 𝑑min

PPO GPOPS PPO GPOPS PPO GPOPS

Lyp𝐴q

2 5.560ˆ 10´4 5.233 5.986 0.556 0.108 5.940ˆ 10´4 ă 1ˆ 10´7

Lyp𝐵q

2 1.441ˆ 10´3 4.183 5.895 1.441 0.661 7.467ˆ 10´4 ă 1ˆ 10´7

C. Autonomous Guidance in Presence of Navigation Errors

During the actual space mission, the spacecraft trajectory may deviate significantly from the nominal one because

of the presence of external disturbances and model uncertainties that may affect the system dynamics. One of the

most common sources of uncertainty for the guidance system is the presence of navigation errors, which are related to

measurement noise and/or inaccuracies in the orbital determination that lead to imperfect knowledge of the spacecraft

state.

To assess the robustness of the obtained closed-loop control policies against navigation uncertainties, a moderate

level of Gaussian noise has been added to the deterministic observation of the spacecraft position, velocity, and mass
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that the onboard guidance system receives at time 𝑡ℎ:

𝒙̃ℎ “ rp𝒙ℎ ` 𝛿𝒙ℎq𝑇 𝐶ℎ 𝑡ℎs𝑇 (31)

being:

𝛿𝒙ℎ “ r𝛿𝒓𝑇ℎ 𝛿𝒗
𝑇
ℎ 𝛿𝑚ℎs „ Np05,𝚺q P R5 (32)

where 𝚺 “ diag
`

𝜎2𝑟 𝑰2, 𝜎
2
𝑣 𝑰2, 𝜎

2
𝑚

˘

is the covariance matrix, with 𝜎𝑟 , 𝜎𝑣 and 𝜎𝑚 the standard deviations on the observed

spacecraft position, velocity, and mass, and with 𝑰𝑛 (respectively, 0𝑛) indicating an identity (respectively, null) matrix of

dimension 𝑛 ˆ 𝑛 (respectively, 𝑛 ˆ 1). The Jacobi constant 𝐶ℎ is evaluated using the spacecraft state 𝒙ℎ ` 𝛿𝒙ℎ.

Table 6 Results of the Monte Carlo campaign.

Target
orbit

Uncertanty
level

𝑡 𝑓 𝑚𝑝 , kg 𝑑min, 10´3 Δ𝐶, 10´4

mean std mean std 1𝜎 2𝜎 3𝜎 1𝜎 2𝜎 3𝜎

Lyp𝐴q

2

ˆ1 4.84 0.22 0.56 2.00ˆ 10´4 0.99 1.61 1.93 3.66 3.67 3.69
ˆ2 4.69 0.25 0.56 3.00ˆ 10´4 1.49 2.35 2.94 3.66 3.69 3.72
ˆ5 4.46 0.27 0.56 8.00ˆ 10´4 2.29 3.88 4.91 3.68 3.75 3.83

ˆ10 4.27 0.30 0.56 1.70ˆ 10´3 3.46 5.96 7.15 3.70 3.84 4.00

Lyp𝐵q

2

ˆ1 4.20 0.14 1.46 8.56ˆ 10´2 1.99 3.27 7.35 7.31 11.45 15.36
ˆ2 4.15 0.23 1.44 1.18ˆ 10´1 3.21 7.95 11.24 10.66 16.79 18.11
ˆ5 3.90 0.29 1.36 1.13ˆ 10´1 6.34 12.78 16.21 16.71 19.24 20.78

ˆ10 3.70 0.32 1.32 1.03ˆ 10´1 10.38 19.03 24.50 17.89 21.91 24.58

By assuming a base error level defined by 𝜎𝑟 “ 10 km, 𝜎𝑣 “ 10 cm{s and 𝜎𝑚 “ 100 g, the controller was tested

on four uncertainty levels, with magnitude 1, 2, 5, or 10 times that of the base level. For each study case, four Monte

Carlo campaigns, involving the deployment of the optimal PPO policy in 1000 realizations of the corresponding

observation-uncertain environment, have been performed. Table 6 reports, for each mission scenario and uncertainty

level considered, the mean value and standard deviation of the transfer time 𝑡 𝑓 and of the consumed propellant mass 𝑚𝑝 .

The minimum distance from the target orbit 𝑑min and the difference between the actual and the target Jacobi constant

Δ𝐶 are also presented, in terms of the values below which fall the 68.3% (1𝜎), 95.5% (1𝜎), and 99.7% (1𝜎) of the

trajectories, respectively.

The first study case (i.e., mission towards Lyp𝐴q

2 ) shows that the trained policy is quite robust to navigation errors,

even when an uncertainty level 10 times the base one is accounted for. The trajectory never deviates much from the

nominal one and the terminal error is consistently low in all rollouts. Since the differences between the Monte Carlo

trajectories are not appreciable, the corresponding plots are here omitted for the sake of conciseness. The variations in

propellant consumption are negligible too.
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L2L1

(a) Small uncertainty (ˆ1).

L2L1

(b) Medium uncertainty (ˆ2).

L2L1

(c) High uncertainty (ˆ5).

L2L1

(d) Very high uncertainty (ˆ10).

Fig. 9 Monte Carlo simulations for the mission toward Lyp𝐵q

2 with different navigation error levels.
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Conversely, in the second case study (mission towards Lyp𝐵q

2 ), the trained policy seems robust only to low levels

of navigation errors. In fact, both the final error in the Jacobi constant and in the spacecraft state grows considerably

when a 5x or 10x uncertainty level is considered. This is apparent in Fig. 9, which shows the Monte Carlo trajectories

(light-gray curves), alongside the optimal trajectory by PPO (black curve) for different levels of navigation errors. In

both study cases, the mean transfer time decreases as the level of uncertainty increases. This phenomenon is probably

related to the increase in errors in terminal conditions, but further investigations are due for a better understanding of

this unexpected effect.

As a final remark, it is worthwhile to stress that the main objective of this study was not to train a single control

policy to solve different transfer problems when deployed onboard, but, instead, to devise a general training methodology

capable of finding optimal control laws for different mission scenarios. For this reason, the same transfer environments

were used both for training and evaluation. Nevertheless, the robustness of the guidance laws has been tested against the

presence of navigation uncertainties not included in the training environment, which indeed represents a more realistic

operative scenario for the proposed guidance algorithm.

V. Conclusion
A novel approach for generating an autonomous guidance law for cislunar orbit transfers based on reinforcement

learning (RL) is presented in this paper. Proximal policy optimization (PPO) is used to find the optimal control law

along a low-thrust orbit transfer from a Lyapunov orbit around the 𝐿1 Lagrangian point to a Lyapunov orbit around the

𝐿2 Lagrangian point in the Earth-Moon system.

The major contribution of this paper is the definition of a reward function of general validity, which does not rely

on any previous knowledge about the problem solution. Being solely dependent on the minimum distance from the

target orbit and on the fuel consumption, the proposed reward function allows for the solution of time-free problems

with periodic terminal conditions, and can be easily extended to other cislunar transfer scenarios. This is a significant

improvement over previous works, where the guidance law was heavily reliant on a preliminary-computed deterministic

solution of the transfer problem, either obtained by using dynamical system theory or by solving an optimal control

problem. Moreover, a peculiar definition of the action space is devised, which allows enforcing implicitly the constraint

on the maximum thrust while overcoming discontinuity problems typical of more traditional definitions of the control

(e.g., in spherical coordinates).

The preliminary numerical results shown in this paper confirm the validity of the proposed approach in two study

cases, where the target orbit has the same energy level or slightly higher energy than the departure one, respectively.

When considering the problem of finding a nominal optimal trajectory, RL converges to an interesting solution, quite

different from the (putative) global optimum indicated by a direct optimization method (GPOPS-II). In particular, RL

attempts to front-load the control effort in the first part of the trajectory, flying along a stable manifold of the target orbit
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in the second half of the transfer. While slightly sub-optimal in terms of propellant expenditure, this trajectory is close

in shape to that obtained by GPOPS.

The optimality of the nominal solution is not the only aspect to take into account when considering the problem of

autonomous guidance along cislunar orbit transfers. In this respect, a Monte Carlo analysis was carried out to show the

robustness of the PPO-trained policy to navigation errors. To this end, several levels of uncertainties were considered.

Very promising results were found; in fact, the transfer between equal-𝐶 Lyapunov orbits is almost insensitive to this

source of errors when using as guidance law the policy trained by RL, thus justifying the increase in propellant of the

nominal solution. Similar results were obtained for the study case concerning the transfer between Lyapunov orbits

of different energy, but here medium/high levels of navigation errors may significantly affect the transfer, leading to

non-negligible terminal errors. The robustness performance of the policy could of course be improved by training the

policy directly in a stochastic environment featuring the same sources and level of perturbations as expected in the

actual mission. Future investigations should be thus aimed at improving the robustness of the policy by considering the

presence of other sources of uncertainties, among which are unmodeled errors in the dynamical model and control

actuation errors. Also, the methodology should be extended to a three-dimensional scenario to support the investigation

of transfers from/towards Halo or Near-Rectilinear orbits.
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