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Abstract

The study of the behavior of existing masonry structures has certainly been a
topic of great interest for long time, especially considering the large number of
existing buildings still in use in Italy and in several other Countries, both of
historic interest or commonly used, and their high vulnerability particularly when
seismic actions are taken into account.

Several modeling approaches have been developed over time, varying the level
of detail required in describing the structural response and the amount of in-
put parameters needed. Obviously, the greater the degree of accuracy requested
in the behavior description, the more detailed the available information regard-
ing the material and the entire structure shall be. In addition to classical mi-
cromechanical, macromechanical, and multi-scale finite element models, however,
macro-models are widely adopted approaches, especially between practitioners’,
and, more specifically, the equivalent frame model. Thanks to the combination of
a low computational burden and a reduced number of input parameters, in fact,
it is still possible to achieve a good level of accuracy and the possibility to study
the response to dynamic actions.

However, the adoption of advanced constitutive laws, appropriate for the ma-
terial that shall be described, is a crucial prerequisite for the equivalent frame
approach to be competitive in masonry modeling with respect to more detailed
modeling techniques. Indeed, the description of the characteristic phenomena of
the highly nonlinear masonry material, such as the presence of strength and stiff-
ness degradation, as well as plasticity and energy dissipation, cannot be ignored.

At the same time, classical equivalent frame approaches are based on assump-
tions, at the structural level, that can result overly idealized with respect to the
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real conditions observable in existing buildings, such as box-like behavior or good
connections between walls or between walls and floors. Out-of-plane flexural mech-
anisms, which can occur very easily, as observed in real structures’ behavior under
recent earthquake events, are therefore commonly neglected in favor of studying
in-plane mechanisms only.

This work focuses its attention, then, on the development of a macroelement
applicable in the framework of the equivalent frame approach. First, an enhance-
ment of the modified Bouc-Wen constitutive law presented in Liberatore et al.
(2019) is given, proposing the introduction of an additional flexibility increase
term to the damage term, with the aim of better reproducing the degrading be-
havior of masonry panels from a phenomenological point of view. The flexibil-
ity increase term, by acting as an expansion of the elastic displacement, affects
the loading and unloading bramches of the cyclic curve, enhancing the stiffness
degradation and affecting the dissipated energy. Thermodynamic admissibility
conditions in presence of damage and flexibility increase are studied, entailing
constraints on system parameters. Additional constraints arise from consistency
conditions on the transformation of the pure hysteretic system into the system
with damage and flexibility increase. This advanced constitutive law is then im-
plemented in a force-based beam macroelement with lumped nonlinear shear and
flexural hinges. A discussion on the degrading behavior in the dynamic field is
carried on. The force-based formulation is then extended to the dynamic field,
and considerations are made regarding the effects of different mass matrix evalu-
ation strategies. Beside the classical lumped mass approach, a distributed mass
approach consistent with the force-based formulation is introduced. Last, the de-
scription of the out-of-plane behavior is introduced, focusing on the degradation
effects due to one-way and two-way bending mechanisms. The force-based formu-
lation is extended to its three-dimensional components, and the nonlinear cyclic
behavior that describes the degrading mechanisms is accounted by introducing
two nonlinear flexural hinges in the out-of-plane direction.

Each implementation is validated through comparison with experimental re-
sults available in the literature and, in some cases, with the results obtained
through different numerical approaches.

In the end, the results of an experimental campaign involving a masonry wall



and an unreinforced masonry prototype building are also reproduced. The capabil-
ity of the model to describe the characteristics of real existing masonry structures
is then tested and confirmed.
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Chapter 1

Introduction

The use of masonry as a construction technology dates back at the beginning of
human civilization and architecture history. At the earliest stages, huge blocks of
stone were employed for megalithic constructions, while, about 6000 years ago, the
first raw bricks were employed at the beginning of the Mesopotamian civilization.
Since then, masonry has been succesfully employed for several centuries, modi-
fying brick and material technologies or even alternating the use of bricks with
natural stone elements, where environmental conditions allowed it. The solidity
and durability of the obtained structures, together with the low cost of the single
material elements, therefore, allowed this construction technology to be used for
a long time, until the early years of the XX century, when alternative materials,
such as steel or reinforced concrete, almost replaced it. Nevertheless, a huge part
of the architectural and hystorical heritage, as well as residential constructions, is
still constituted by masonry structures all over Europe.

Masonry is a composite material, resulting from the arrangement of bricks or
blocks of different sizes, which can be natural or artificial and disposed in a more
or less regular texture, and possibly connected with mortar. For instance, a simple
classification can be based on stone disposition in the construction and refinement
in the surface finish, as shown in 1.1. Mortar has been used since the beginning
of the Roman Age, with the purpose to act as a bond between the elements,
allowing to develop different textures and dispositions of the elements, to realize a
monolithic system. The need to obtain a system capable of avoiding discontinuities
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or fragile sections in vertical and orthogonal directions of the wall, encouraged the
realization of more refined textures, such as the Opus Quadratum, in which bricks
disposition realized a texture with orthostats and transversal elements.

(a) Rubble (b) Ashlar (c) Coursed ashlar

Figure 1.1: Stone masonry textures (from Lourenço (1998))

Due to the strong heterogeneity of the material created by these complex tex-
tures, different modelling techniques are available in the literature to reproduce its
static and dynamic mechanical behavior. Depending on the scale of the analyzed
specimen, as well as on the type of loading conditions and the particular response
that should be investigated and reproduced at the structural level, the need is to
find adequate computational tools being accurate and efficient. These should be
enough refined to reproduce as accurately as possible the mechanical performance
of the material, but also easy-to-use and rapid, in terms of computational costs.
At the same time, way too complex or refined models risk to remain limited to
small portions or simple walls, or to favor theoretical aspects to the detriment
of the analysis of a global performance. They may not, in fact, respond to the
demands of more articulated projects or the needs of practitioners.

Despite the large variety of arrangements and types of masonry available, the
main vulnerabilities of such material can be easily identified. Among these, the
main aspect is the low or zero tensile strength, to which a low resistance to hori-
zontal loads is linked, in favor of a high compressive strength and therefore a good
response to vertical loads. This makes masonry strongly disadvantaged in case
of both monotonic and cyclic loads in the in-plane and out-of-plane cases, and
to seismic actions. All these characteristics shoud be properly addressed when a
detailed performance assessment is required. Therefore, due to the poor tensile
strength of the mortar, fracture phenomena are triggered, which increase as the
load is increased. It becomes important, then, to explicitely model the highly
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nonlinear behavior of masonry, characterized by the evolution of damage, expe-
rienced in terms of loss of strength and stiffness and energy dissipation, as well
as the onset of irreversible plastic deformations. The constitutive laws that must
therefore be used, should take into account both damage and the phenomenon of
strain softening. When a detailed description of the various masonry components,
commonly adopted in micromechanical models, is not possible, the adoption of
phenomenological constitutive laws allows the description of the main in-plane
and out-of-plane mechanisms, both for flexural and shear mechanisms. The adop-
tion of macromechanical models based on the continuum mechanics, and more
specifically of macroelement models, allows the above requirements to be satisfied
under appropriate hypotheses, permitting a sufficiently realistic reproduction of
the structural performance, and compensating for the limited detail of the model.

1.1 Aims and objectives

As mentioned in the previous paraghraph, when choosing between the different
modeling strategies avialable to reproduce the behavior of masonry structures, it
is necessary to consider the type of analysis that has to be perfomed, being local
or global, the kind of structure to be modeled and the level of detail expected
when analyzing the structural response. To this end, simple but efficient models
are required, especially when complex structures or large scale investigations need
to be performed, in order to capture in an accurate but rapid way the structural
behavior.

In this framework, aim of this thesis can be summarized with the following
points:

• Propose a refined macroelement applicable in the context of the simplified
equivalent frame modeling approach. The proposed macroelement bases its
formulation of the enforcement of equilibrium in strong form, while lumped
hinges are considered to describe the nonlinearity of the masonry material.

• Regarding the consitutive law adopted for these latter, which describes the
flexural and the shear behavior, an enhancement of the modified Bouc-Wen
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hysteresis already presented in the literature is considered. This enhance-
ment, applicable also to other constitutive laws, consists of the introduction
of a flexibility increase term, which helps to reduce the stiffness of the loading
and unloading branches of the constitutive curve. Thus, a phenomenological
hysteretic law capable of describing the degradation phenomena that occur
in masonry due to external actions is introduced in the macroelement.

• The possibility to include the description of the main out-of-plane mech-
anisms that can occur in masonry structures is also introduced. Out-of-
plane mechanisms are often neglected in simplified approaches such as the
equivalent frame approach, causing important underestimation of the actual
structural behavior and failure modes.

• Finally, the model will be validated considering well-known experimental
tests available in the literature in the static field, while parametric analyses
will be performed to study the performance of the macroelement and the
evolution of damage in the dynamic field. Applications to more complex
cases, such as entire structures and experimental tests on small structures,
will be presented.

1.2 Structure of the thesis

The present thesis will be divided into 7 Chapters, including the Introduction. A
brief description of each of the chapters is given in the following.

• Chapter 2: Mechanical behavior and modeling techniques for ma-
sonry
The typical mechanical behavior of masonry is introduced, starting from
a brief recall of the single constituents to the description of the composite
material, to the main mechanisms involving the structural level. The main
modeling procedures and techniques are then revised, focusing in particular
on the macroelement and equivalent frame modelling approaches, in both
the in-plane and out-of-plane directions.
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• Chapter 3: Nonlinear hinges constitutive model
After a brief recall of the main characteristics of the classical Bouc-Wen
model, followed by a description of some of the multiple modifications that
can be found in the literature regarding the classical formulation, a modi-
fied Bouc-Wen model with damage and flexibility increase is proposed and
later validated by comparing the numerical outcomes with well-known ex-
perimental results available in the literature. Discussions on thermodynamic
admissibility and on Drucker’s postulate are made, as well as considerations
regarding the dissipated energy.

• Chapter 4: 2D macroelement formulation
The proposed macroelement, included in the framework of the equivalent
frame approach, and the adopted force-based formulation with lumped hinges
in both the static and dynamic cases are described. The performance of the
macroelement in the static field is validated. A squat and a slender panel are
then studied in the dynamic field, adopting different excitations. A slender
wall is then analyzed, considering linear and nonlinear dynamic excitations,
and its performance is compared to a 2D finite element model of the same
panel.

• Chapter 5: Three-dimensional macroelement formulation
In this chapter, the formulation of the 2D macroelement is extended to
the three-dimensional field, giving a detailed formulation for the force-based
beam element and the introduction of nonlinear hinges, with the aim of
reproducing the main out-of-plane flexural mechanisms typical of masonry
walls. The model is then validated through comparison with experimental
results available in the literature. A more refined formulation is then pro-
posed, to further enrich the model and capture complex two-way bending
mechanisms.

• Chapter 6: Case studies: experimental tests and numerical simu-
lations
Two case studies are analyzed, where the proposed equivalent frame model is
adopted to model an unreinforced wall and an unreinforced one-storey pro-
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totype, tested under static and dynamic loadings, respectively. The main
aspects of the experimental campaign are described, and comparison be-
tween the experimental and numerical outcomes are given, exploring the
capabilities of the proposed macroelement in reproducing real structural
behavior.

• Chapter 7: Conclusions
The final chapter contains the concluding remarks, highlighting the main
results obtained in the work and proposing future developments.
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Chapter 2

Mechanical behavior and modeling
techniques for masonry

The following Chapter intends to give a brief summary of the principal aspects
of the mechanical behavior of masonry, as well as the most diffused modeling
approaches available in the literature.

In particular, Section 2.1 deals with the main aspects of the mechanical be-
havior of masonry material, intended as a composite medium, and of masonry
structures. In this latter case, the local and global mechanisms developed dur-
ing the simultaneous application of vertical and horizontal loads are revised, with
particular attention to the in-plane and out-of-plane behavior of masonry panels.
Examples available in the literature are considered.

Section 2.2 focuses the attention on the Equivalent Frame Model (EFM), start-
ing from the hypoteses according to which the approach can be used, following
with the principal macromechanical models developed. A brief revision of the
most common modeling approaches, namely Finite Element Models (FEM) and
Discrete Element Models (DEM) and limit analysis, is also reported.

2.1 Masonry mechanical behavior

The heterogeneity resulting from the complex interaction between the single con-
stituents of masonry, strongly characterizes its behavior as a structural material,
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thus making it an interesting object of study. From a mechanical point of view,
three different constituents can be distinguished, namely units, mortar and in-
terface. While the first two affect the global behavior in terms of strength and
deformation, the latter is an expression of their mechanical interaction. Mechan-
ical characteristics can thus be evaluated through laboratory tests performed on
the single constituents or on small and large assemblages.

2.1.1 Mechanical behavior of the constituents

Compressive tests are widely employed in the literature for the evaluation of the
main parameters of masonry constituents.

Units can be investigated through axial tests to determine their compressive
strength, and the relationship between compressive and tensile strength can be
investigated through bi-axial tests. Instead, prismatic or cylindrical specimens are
adopted for the evaluation of mortar compressive response, to determine stiffness
characteristics such as Young’s modulus E and Poisson ratio ν and the compressive
strength. These all depend on the weakness and the type of mortar, and on the
applied confinement stress, while the tensile strength can be obtained through
indirect tensile or flexural tests. An extensive study on the variation of units and
mortar properties depending on different conditions can be found in McNary and
Abrams (1985). In general, while units exhibit a more brittle behavior with higher
strengths, mortar shows lower values of strength with higher deformations.

Van der Pluijm (1993), van der Pluijm (1997), Van der Pluijm et al. (2000)
and Drysdale et al. (1982) contain extensive studies on the behavior of unit-
mortar interface, which can be considered as the weakest constituent of masonry.
Tensile and shear tests are performed in order to evaluate the behavior of masonry
under tension, which appears to be ruled almost completely by the beahvior of
the interface. In general, depending on tests set-up and mortar type, low tensile
strength and softening behavior can be determined from tensile tests, together
with stiffness parameters such as the Young’s modulus E of the interface and the
corresponding Poisson ratio ν, while from flexural tests the mode I fracture energy
GfI can be determined. Moreover, shear tests on small assemblages pointed out
the shear behavior: a residual shear stress is reached after a peak phase and a
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softening branch; mode II fracture energy GfII can be evaluated, depending on
the applied compression load, and dilatancy can be also distingushed (Fig. 2.1).
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Figure 2.1: Van der Pluijm (1993): (a) shear stress-shear displacement curves for
different values of confining stress p; (b) dilatant behavior.

For a more detailed description regarding the consituent behavior, the previ-
ously cited literature can be referred.

2.1.2 Mechanical behavior of the composite material

Being a composite material with a nonhomogeneous and anisotropic behavior, the
response of masonry has to be investigated beyond the behavior of its single con-
stituents, also giving particular attention to the disposition and the bond between
these latter.

Tests on small assemblages can be useful to determine mechanisms that develop
in orthogonal, parallel and inclined directions with respect to unit-mortar joints,
even if they are not representative of the local or global mechanisms typical of full-
scale walls. Planes of weakness depending on mortar joint orientation and applied
stresses can be defined, with the respective modes of failure and strengths.

Uni-axial tension and compression and bi-axial tests are useful to identify the
main characteristics of the composite material.
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2.1.2.1 Uni-axial behavior

In general, masonry can be treated as a quasi-brittle material, showing an evi-
dent softening behavior in the post-peak phase, where a gradual decrease of the
strength of the system corresponds to increasing deformations. The presence of
micro-cracks in mortar or voids and inclusions in units, that progressively grow un-
der increasing stresses or deformations, facilitates the formation of macro-cracks.
When displacement or deformation controlled analyses are performed, the growth
of these macro-cracks results in a softening branch of the curve after the peak
load (Lourenço (1998)).
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Figure 2.2: Typical response under uni-axial tension (a), compression (b) and
shear (c) (modified from Lourenço (1998))

Figs. 2.2 (a), (b) and (c) show typical quasi-brittle stress-strain curves under
uni-axial tension and compression and pure shear, respectively. The softening
behavior is clearly visible in Figs. 2.2 (a) and (b), where by evaluating the integral
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of the stress-strain curves, fracture enery GfI and compressive fracture energy GcI

can be obtained for failure mode I. In general, being the compressive strength
much higher than the tensile one, compressive fracture energy assumes higher
values. Slip of the mortar-unit interface, denoted as failure mode II and giving
the response in Fig. 2.2 (c), is described as well by fracture energy mode II GfII .
It is noteworthy that for shear cases, softening depends also on a degradation of
cohesion, but it is common practice to neglect the effect of shear for continuum
models, as it depends on the interface, and to consider it only in micromechanical
models.

Compressive and tensile behavior under uni-axial states are now analyzed more
in detail, referring to experimental tests available in the literature.

Compressive mechanical properties are considered as more relevant charac-
teristics, since masonry mainly resists in compression while being very weak in
tension. This is mainly due to the bond between its constituents, mortar and
brick, which exhibits a weak behavior when subjected to tensile stress.

Being so relevant, numerous compressive tests performed on stacks of clay
units bonded with mortar under axial force applied in the direction normal to the
bed joints can be found in the literature (McNary and Abrams, 1985; Kaushik
et al., 2007).

Experimental tests in McNary and Abrams (1985) showed the tendency of
mortar to expand laterlally more than bricks during compressive tests, due to its
lower stiffness compared to that of bricks. However, the bond between mortar and
bricks and the friction that originates act as a lateral confinement in the interface,
originating shear stresses at the interface that result in an internal stress state
composed of a tri-axial compression state in the mortar and a biaxial tension in
the brick. Thus, vertical cracks initiate and proceed until failure. Strength and
deformation properties that lead to failure are then investigated, also referring to
previous theories such as those in Hilsdorf (1969), according to which the differ-
ence in the elastic properties of bricks and mortar induces failure, or in Atkinson
and Noland (1983), where nonlinear behavior of mortar is also considered. An-
alytical models are also obtained in following works (Kaushik et al., 2007). The
onset and propagation of cracks under compression uni-axial states are then in-
vestigated in Page (1981, 1983), being uni-axial state a particular case of bi-axial
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tests performed in the study. The variation of failure modes and crack develope-
ment is then studied under different orientation of the bed joints with respect to
the applied compressive stress (Fig. 2.3).

(a) ϑ=0◦

ϑ 

(b) ϑ=22.5◦

ϑ 

(c) ϑ=45◦

ϑ 

(d) ϑ=67.5◦

ϑ 

(e) ϑ=90◦

Figure 2.3: Page (1981, 1983): failure modes for uni-axial compressive loads with
different orientation ϑ for the bed joint direction

The behavior under uni-axial tension strongly depends on the strength of the
bond between mortar and units and on the orientation of tensile stress with respect
to the bed joints. For instance, when tensile stress are orthogonal to bed joints,
failure is ruled by the weakness of the bond between bed joints and units, and
the masonry tensile strenght can be equated to the weaker element between the
bond strength or the units strength (Lourenço, 1998). For tensile stresses parallel
to bed joints, either a zigzag cracks along bed and head joints or vertical cracks
along both bricks and units can occur, depending again on which is the weakest
element. The first case depends on the fracture energy of mortar joints, while
the second on the fracture energy of both head joints and units (Lourenço, 1998).
More detailed experimental tests can be found in Backes (1985).

A complete investigation of the tensile uni-axial behavior under different bed
joint orientation is carried out in Page (1981) and Page (1983), and reported in
Fig. 2.4.

The nonlinear behavior of mortar joints under combined shear and normal
stresses is also investigated in the literature (Van der Pluijm, 1993; Van der Pluijm
et al., 2000), being characterized by dilatancy effects, which is influenced by the
bond between mortar and units and by the presence of friction, which is increased
for higher compression stresses.

12



Chapter 2: Mechanical behavior and modeling techniques

(a) ϑ=0◦

ϑ 

(b) ϑ=22.5◦

ϑ 

(c) ϑ=45◦

ϑ 

(d) ϑ=67.5◦

ϑ 

(e) ϑ=90◦

Figure 2.4: Page (1981, 1983): failure modes for uni-axial tensile loads with dif-
ferent orientation ϑ for the bed joint direction

2.1.2.2 Bi-axial behavior

Bi-axial tests, representative of the behavior of in-plane loaded panels, are used
to determine failure surfaces in terms of principal stresses, considering also the
influence of bed and head joints. By acting as planes of weakness, and depending
on their orientation with respect to the principal stresses, these latter influence
the response of the specimen giving different properties and enforcing a strong
anisotropy in the composite material.

In Page (1983), an extensive study on the influence of the orientation of bed
joints with respect to principal stresses on the strength of half-scale square brick-
work panels is carried out. Bi-axial tests are performed varying the vertical to
horizontal compressive stess ratio. Results allowed to trace a three-dimensional
failure surface in terms of applied principal stresses and their orientation with
respect to the bed-joints. In general cases, a low influence of the joint orientation
on the strength evaluation was showed, and failure occurred by split of the panel
in the direction parallel to the free surface of the specimen when bi-axial stress
was applied. However, when one principal stress prevails on the other, cracking or
sliding failure modes occurred, strongly depending on the orientation of the bed
joint, and strength appeared to be heavily reduced (Fig. 2.5). Moreover, for most
of the principal stress ratios analyzed, uni-axial strength for loadings parallel to
the bed joints underestimated the biaxial compressive strength.

Further tests were performed in the literature for the investigation of bi-axial
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Figure 2.5: Page (1981, 1983): masonry bi-axial strength experimental results for
(a) ϑ=0◦, (b) ϑ=22.5◦, (c) ϑ=45◦

behavior of small specimens, allowing to trace nonlinear stress-strain relations for
brick panels considering the influence of bed-joints orientation, by both measuring
strains during the tests, (Dhanasekar et al., 1985; Naraine and Sinha, 1991), or
by adopting empirical relations to evaluate the strains corresponding to the peak
stresses (Naraine and Sinha, 1992). Also, different types of masonry have been
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investigated under bi-axial test, such as hollow clay brick masonry in Ganz and
Thürlimann (1982).

2.1.3 Mechanical behavior of masonry buildings

historical unreinforced masonry constructions are typically composed of load-
bearing walls, whose role is to sustain vertical and lateral shear loads, arranged in
orthogonal planes and connected with relatively flexible diaphragms. In general,
they show a good resistance when subjected to vertical loads, while exhibiting
a poor performance under horizontal ones. The low tensile strength proper of
the composite material and the high variability of the material texture and me-
chanical properties emphasize their high vulnerability to these loading conditions.
Moreover, critical issues are also represented by inadequate structural details, a
scarce quality of connections, such as those wall-to-wall or wall-to-diphragm, or
the presence of flexible diaphragms.

(a) (b) (c)

Figure 2.6: Collapse mechanisms of masonry structures: crumbling (a), out-of-
plane mechanism (b), in-plane mechanism (c)

Three main collapse mechanisms can then be identified, which are crumbling,
out-of-plane and in-plane collapse mechanisms (Fig. 2.6). The adoption of proper
textures or material properties can prevent the occurrance of crumbling. Under
these conditions, however, the most frequent failure happens because of out-of-
plane mechanisms, and when these are prevented, when good connections between
orthogonal walls or walls and diqphragms are present and thanks to proper bound-
ary conditions, in-plane mehcanisms can develop.
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In the following, in-plane and out-of-plane mechianisms are described, assum-
ing that crumbling is always prevented.

2.1.3.1 In-plane behavior

The observation of experienced damage in experimental tests performed on ma-
sonry walls subjected to horizontal in-plane cyclic loading conditions, simulating
seismic damage, has shown that two main collapse mechanisms can occur, namely
flexural and shear failure, to which different failure modes are associated (Magenes
and Calvi, 1997; Calderini et al., 2009). When flexural mechanisms occur, failure
mode strongly depends on the relation between the applied vertical load and the
compressive strength of the wall. If the vertical load is low with respect to the
compressive strength, failure occurs due to rocking (Fig. 2.7 (a)): an overturning
mechanism starts, with tensile flexural cracking at the corners, and the wall tends
to rotate about a toe, where crushing sub-vertical cracks develop, behaving al-
most like a rigid body. Conversely, for higher vertical loads, failure occurs due to
crushing of the compressed corner, from which a damage pattern characterized by
sub-vertical cracks oriented in the direction of the compressed toe starts to diffuse.
Two different failure modes can be distinguished for shear as well. First case is
shear diagonal cracking (Fig. 2.7 (b)), for which inclined cracks start to develop
at the center of the wall and propagate to the corners either following the joint
path or passing through the units, depending on the relative strength between
units, mortar and interface. Second failure mode is sliding (Fig. 2.7 (c)). This
is caused by formation of tensile cracks due to the reverse loading under cyclic
or seismic actions under low vertical loading or low friction conditions, forming
sliding planes along bed-joints usually located at the extremities of the panel.

Experimental tests have been performed to study the influence of geometric
parameters, boundary conditions, vertical load and mechanical parameters of the
material on the activation of the different failure modes.

For instance, the effect of geometry is investigated in Anthoine et al. (1995),
where two specimen with height to width ratio equal to 2 and 1.35 respectively
were tested, representing a slender and a squat wall. Loading conditions aimed at
reproducing those undergone by piers of common buildings during seismic events,
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(a) (b) (c)

Figure 2.7: In-plane collpase mechanisms of masonry walls: rocking (a), diagonal
cracking (b), shear sliding on a horizontal plane (c)

being a constant vertical load and a horizontal quasi-static action. Both ends
of the panels were considered fixed, thus enforcing double bending conditions.
Results show that the squat wall exhibited a brittle failure with diagonal cracks
in the center of the panel, with a dissipating shear behavior, while the slender one
showed a rocking mode, with almost no strength degradation, in which damage
was located at the top and bottom corners. S-shaped cycles were experienced in
this latter case, caused by opening and re-closure of the tensile cracks at the ends.
The results, together with a more detailed description of the tests, are reported
in Chapter 4.4, where they are adopted for comparisons with numerical results.
By performing a second test on the slender wall, increasing the vertical load, it
was also seen that a diagonal crack pattern developed.

In general, as pointed out in Calderini et al. (2009), rocking tends to prevail
in slender panels, while sliding occurs on in very squat panels. However, when
vertical load increases, diagonal cracking tends to prevail over the other modes
in moderately slender panels, going from crack propagation along the mortar
joints to crack propagation along the units for increasing vertical compression or
increasing ratios between mortar and block strength. Increasing interlocking of
blocks reduces the possibility to develop diagonal cracking through mortar joints
in faviour of the other failure modes. Crushing occurs for high levels of vertical
compression only.
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Experimental tests were made on more complex structures as well, such as
the 2-storey masonry building analysed in Magenes et al. (1995), highlighting the
variability of failure mechanisms that can occur in unreinforced masonry buildings
due to different loading or boundary conditions as well as geometric characteristics.

2.1.3.2 Out-of-plane behavior

Observations made on unreinforced masonry structures after strong earthquakes
showed that out-of-plane failure of the structural elements constitutes one of the
most serious life-safety hazard for this type of construction (Sorrentino et al.,
2017). Considering these observations, according to Lagomarsino et al. (2023),
out-of-plane mechanisms can be identified through the geometry of the build-
ing, layout of openings, structural details and restraints given by the structure.
The two main out-of-plane mechanisms that can occur are one-way and two-way
bending modes. The first represents the overturning of the entire wall with the
formation of a hinge located at the toe of the wall itself, behaving like a rigid
block, and assuming that displacements at the top of the wall are not restrained.
The second, instead, is a flexural mechanism that occurs when both the top and
base of the panel are restrained, for instance due to a good connection with the
upper diaphragm or the presence of a tie-rod. Two hinges are formed in this case
at the edges of the panel, and a third hinge forms in the middle, separating two
blocks (Fig. 2.8).

Different experimental tests were performed in the literature to investigate the
behavior of uncracked masonry walls, such as in Griffith et al. (2004, 2007). The
effect of material parameters is investigated, in fact uncracked and pre-cracked
conditions are analysed in static tests, showing that the uncracked walls exhibited
higher strength values with respect to the pre-crackes walls for the same value
of vertical compression. In general, both cases showed an initial linear elastic
behavior until the maximum tensile strength, followed by a nonlinear and a de-
creasing phase when cracks start to evolve, until failure. The curve shows to
almost reproduce the behavior of a rocking rigid block.

A comprehensive discussion about the main aspects influencing the out-of-
plane mechanisms activation is given in Abrams et al. (2017), where is pointed
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a) b)

Figure 2.8: Scheme of two possible OOP mechanisms: overturning of the entire
wall (a); flexural mechanism of the wall (one-way bending mechanism) (b) (mod-
ified from Lagomarsino et al. (2023))

out that beyond boundary conditions, which influence the development of either
one-way or two-way bending mechanism, an important role is played by flexural
restraints of walls intersections, size and location of openings, the quality of con-
nection between the structural elements and the level of axial force. Moreover, a
significant effect is that of the presence of in-plane damage, as the formation of
in-plane diagonal cracks due to shear loadings significantly weakens the out-of-
plane strength and stiffness, and vice-versa. Accounting for the effect of prior or
simoultaneous in-plane actions is then crucial. One last consideration regards the
use of dynamic or static analyses. Despite many linear static models are adopted
and developed for the estimation of individual walls response, dynamic and non-
linear analyses are more accurate and can allow to a better representation and
assessment of structural behavior.

2.2 Modeling techniques

Depending on the level of detail needed for the reproduction of masonry response,
a different scale of representation of the material can be chosen in the modeling
phase. Moreover, the information needed regarding the input parameter and the
computational cost of the analyses are important aspects that shall be accounted
for in the assessment of the structural response.
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Several approaches are available in the literature for modeling masonry con-
structions. In the following paragraph, the main are recalled.

2.2.1 Macroelement and equivalent frame models

Macroelement models are widespread modeling approaches adopted for the seismic
assessment of masonry structures, being the most used even between practitioners
and also included in international codes, thanks to the reduced computational cost
of the analyses in both 2D and 3D cases and the simple definition of the model
and the mechanical parameters. The nonlinear behavior of masonry structures in
static and dynamic cases is described in an accurate way, when proper assumptions
are satisfied.

The global structural response is usually analyzed when this approach is cho-
sen. The equivalent frame model is, in fact, based on the assumption that crum-
bling and local out-of-plane mechanisms are prevented, and an almost box-like
behavior is assumed Quagliarini et al., 2017; Cattari et al., 2021. Possible local
mechanisms, according to classical approaches, should be verified a priori through
previous local analyses. The behavior is related almost exclusively to the in-plane
capacity of the structural elements, even when 3D structures are modeled, and
only recently the attention has focused on the description of the out-of-plane
mehcanisms (Vanin et al., 2020b; Lagomarsino et al., 2023).

An essential task is a proper identification of the structural elements, namely
piers and spandrels. Piers are the vertical elements that can carry both vertical
and horizontal loads, while spandrels are the horizontal elements that couple the
response of continuous piers horizontally loaded. According to this approach,
macroscopic structural elements are defined a priori by the modeler through the
observation of post-earthquake damage localization and patterns on real buildings.
These showed that damage is commonly localized in piers and spandrels, which
then can be regarded as deformable elements, while their intersection can be
considered as rigid.

The identification of the location and length of piers and spandrels is straight-
forward when regualr walls are considered, but more complex when the geometry
of the structure shows irregular openings distribution. Numerous works can be
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found in the literature that discuss this topic (Quagliarini et al., 2017; Berti et al.,
2017; Lagomarsino et al., 2013; Parisi and Augenti, 2013; Camilletti et al., 2018;
Camata et al., 2022), and some examples are shown in Fig. 2.9.

Dimensioni: 14.5 x 6
[Il foglio è largo circa 14.6 una volta tolti i margini]

a)

b)

Figure 2.9: Examples of variants of equvalent frame schematization (modified
from Camata et al. (2022))

Nevertheless, one of the most adopted is that proposed in Dolce (1991), in
which an effective height is defined for piers through a simplified formulation that
accounts for the width of the element itself.

In general, being the macroelement modeling technique a simplified approach,
it is possible to identify several drawbacks. Even if, as stated before, few recent
works can be found in the literature that include the description of the out-
of-plane behavior, it is still an ongoing matter of study. In fact, considering
that out-of-plane mechanisms are prevented or completely decoupled from the in-
plane behavior can lead to underestimation of failure mechanisms or to misleading
results, as a simultaneous activation of both in-plane and out-of-plane collapse is
possible in real structures. Structural details are also not accurately represented,
and connections between orthogonal walls or walls and slabs is not described.

However, the development of computer codes based on macroelement methods,
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as that proposed by Lagomarsino et al. (2013), show the competitiveness of the
model, being also an efficient tool for practitioners.

According to D’Altri et al. (2019), macroelement models can be divided into
two main cathegories, namely equivalent beam or spring-based approaches. Spring-
based approaches model structural elements through nonlinear springs in series
that model a fictitious frame with an in-plane behavior, such as in Rinaldin et al.
(2016).

One of the first works is that of Chen et al. (2008), where two flexural springs,
one axial spring and three shear springs are considered in series to model the
main in-plane mechanisms of masonry piers, namely the rocking/toe crushing,
axial, bed-joint sliding and diagonal tension mechanicsms (Fig. 2.10). The model
results from the development of one presented in previous works for the analysis
of reiforced concrete walls.

a) Chen 2008
b) Penna et al 2014

Vanin 2019

a) b)

Figure 2.10: Spring-based macroelement, from Chen et al. (2008)

In Penna et al. (2014), an improvement of a previous formulation from Gam-
barotta and Lagomarsino (1996); Brencich and Lagomarsino (1998) is carried
on. A two-node mechanics-based macroelement capable of describing the bend-
ing–rocking behavior, the shear behavior and their mutual interaction is proposed
(Fig. 2.11). The shear response is decoupled from the axial–flexural response,
being concentrated in the central body; the axial-flexural behavior instead is con-
centrated at the top and bottom interfaces. Further developments are presented
in Bracchi et al. (2021) and Bracchi and Penna (2021).

The same model has also been further enriched in Vanin et al. (2020b) with

22



Chapter 2: Mechanical behavior and modeling techniques

the introduction of the description of the out-of-plane behavior considering a third
node located at midspan (Fig. 2.12). The two blocks are deformable in shear,
while the three interfaces enclose the flexural in-plane and out-of-plane behavior,
coupled with the axial deformations. The macroelement can also account for
second-order geometric effects, and can replicate the rigid block limit analyses of
one-way bending out-of-plane mechanisms.

a) Chen 2008
b) Penna et al 2014

Vanin 2019

a) b)

Figure 2.11: Kinematics of the macroelement (from Penna et al. (2014))

a)

a) Chen 2008
b) Penna et al 2014

Vanin 2019
b)

Figure 2.12: Deformation modes of the macroelement: (A) in-plane flexure only,
(B) in-plane flexure and shear and (C) out-of-plane response (Vanin et al. (2020b))

A bi-dimensional spring-based element which is worth mentioning in detail, is
the one developed by Caliò et al. (2012) and following works. Each macroelement
is constituted by a quadrilateral with four rigid edges connected by four hinges
and two diagonal nonlinear springs. An interface constituted by a discrete distri-
bution of nonlinear springs orthogonal to the panel side, that govern the flexural
behavior, allows the interaction between different panels. An additional longitudi-
nal spring controls the relative motion in the direction of the panel edge. Flexural
failure, diagonal shear failure and sliding shear failure are then reproduced under
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horizontal and vertical loads. A 3D enrichment of the model has been developed
in Pantò et al. (2017) and in Chácara et al. (2018), to evaluate the out-of-plane
strength and deformation behavior, in a bi-axial stress regime. In this case, addi-
tional degrees of freedom and additional links at the interface are used to simulate
torsion effects and out-of-plane mechanisms (Fig. 2.14). For the transversal links,
which control both the in-plane and out-of-plane flexural behavior, a modified
Takeda hysteresis is adopted in Chácara et al. (2018), as well as for the digonal
nonlinear links, while for the shear sliding links an elastic-perfectly plastic be-
havior is assumed, with the possibility of chosing between a Mohr-Coulomb or a
Turnsek-Cacovic yielding criterion.

a)

a) Chen 2008
b) Penna et al 2014

Vanin 2019
b)

a) b)

Figure 2.13: Modified from Caliò et al. (2012): basic macro-element in undeformed
and deformed configuration (a); macro-element discretization (b)

Peruch 2019

Raka 2015

Chacara 2018

Figure 2.14: Macroelement model: (A) initial plane mechanical scheme, (B) 3-
dimensional scheme with regular geometry, and (C) 3- dimensional scheme with
irregular geometry (from Chácara et al. (2018))

Other bi-dimensional macroelements, often refferred to in the literature, are
those proposed in Braga et al. (1990) and Brencich and Lagomarsino (1998).

24



Chapter 2: Mechanical behavior and modeling techniques

A macroelement for the 3D description of in-plane and out-of-plane mecha-
nisms, such as diagonal shear cracking, shear sliding, flexural cracking, toe crush-
ing and diagonal cracking under two-way bending, is proposed in Minga et al.
(2020). The macroelement consists in a rectangular block which interacts with
adjacent elements through cohesive interfaces along four of its faces, which are
used to model the nonlinear mechanisms.

One last type of macroelement models is the one proposed in Malomo and
DeJong (2021) and Malomo and DeJong (2022). This particular model, named
Macro-Distinct Element Model (M-DEM), is a finite-distinct macroelement model
that combines the efficiency of simplified approaches, such as the equivalent frame
approach, with interface-based discrete methods. It is capable of reproducing both
the in-plane and the out-of-plane mechanisms of a masonry panel, together with
their interaction, by means of an assembly of deformable finite element macro-
blocks connected by zero-thickness nonlinear interface springs (2.15). The local-
ization of the connection is determined a priori by defining an average slope that
simulates potential failure planes depending on masonry texture. Out-of-plane
behavior is simulated through the introduction of a vertical spring layer which
divides the bottom and top macro-blocks, and adequate interface models to re-
produce the behavior at the intersection between orthogonal walls is also added.
Good results are obtained on C-, U-, and I-shaped components characterized by
different masonry types and under quasi-static and dynamic loading conditions.

Dimensioni: 14.5 x 6
[Il foglio è largo circa 14.6 una volta tolti i margini]

a)

b) Figure 2.15: (A) Macro-Distinct Element Model (M-DEM) idealization, (B) in-
terface spring layout as a function of the aspect ratio, (C) tension-compression,
and (D) shear-compression constitutive laws implemented in the M-DEM model
(from Malomo and DeJong (2022))

25



Chapter 2: Mechanical behavior and modeling techniques

2.2.1.1 Equivalent Frame Model

In the following, the term "equivalent frame" is used for those macroelements
whose behavior can be described through beam elements with a 2D or 3D kine-
matic behavior, also called "equivalent beam-based approaches" in D’Altri et al.
(2019).

One of the first equivalent beam approaches is the one proposed in Tomaževič
(1978), where only shear forces in the piers were considered under horizontal loads,
while spandrels and nodes were considered a rigid.

Following models, such as Roca et al. (2005) and Belmouden and Lestuzzi
(2009), where both spandrels and piers were modeled as deformable elements
linked by rigid links, proposed the use of elastic-plasic constitutive laws for the
beam elements.

In Addessi et al. (2014), a 2-node beam element with a force-based equili-
brated approach for the nonlinear analysis of masonry structures is proposed. A
central deformable element with a no-tension constitutive behavior is considered
in series with a shear link with an elastic-plastic constitutive law. The model has
been later enriched in Liberatore and Addessi (2015) and Addessi et al. (2015)
by adding nonlinear lumped plastic hinges with an elastic-plastic behavior, and
a predictor-corrector algorithm that allows a proper description of the plasticity
in the strength domain. In particular, two flexural hinges and shear link are con-
sidered in series with a central elastic Euler-Bernoulli force-based beam element.
Activation of the nonlinear hinges is monitored during the different phases of the
analysis (Fig. 2.16).

One additional enrichment of the model is proposed in Sangirardi et al. (2019),
where the elastic-plastic constitutive behavior is replaced with a Bouc-Wen model
modified with the introduction of a damage scalar variable. Additional modi-
fications for the description of pinching are also considered. The model is also
described in 4.

The approach described in Lagomarsino et al. (2013) proposes a 2D nonlinear
beam with lumped plasticity. A bi-linear constitutive law without hardening and
with stiffness degradation is implemented. The model is used in Cattari et al.
(2018) for nonlinear dynamic analyses.
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Peruch 2019

Figure 2.16: Nonlinear hinge activation during two different phases of a pushover
analysis (from Liberatore and Addessi (2015))

Peruch 2019

Raka 2015

Figure 2.17: Forced-based, fiber-section elements (for masonry piers and span-
drels) in the 3D global system; distribution of Gauss–Lobatto points, section sub-
division into fibers and fiber nonlinear stress–strain law (from Raka et al. (2015))

One interesting equivalent frame model for unreinforced masonry structures is
the one proposed in Raka et al. (2015) and later enriched in Peruch et al. (2019).
The element formulation is based on a fiber-section Timoshenko frame element,
and the behavior is obtained by numerical integration of the nonlinear response
at monitored sections along the element through a Gauss-Lobatto integrations
scheme. Cross-sections are discretized, according to the fiber-section approach,
and can account for the axial and flexural behaviors and their interaction (Fig.
2.17). A cyclic shear phenomenological constitutive law is also added for the
description of shear behavior.

More recent formulations and applications of the equivalent frame approach
can be found in Pavanetto et al. (2020) and Cheng and Shing (2022), highlighting
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once more the interest shown in the research field for this modeling technique.

2.2.2 Finite Element Models (FEM)

Depending on the scale of representation required for the analysis, Finite Element
(FE) formulations constitute a widely adopted modeling procedure, thanks to the
possibiltity to choose the most suitable level of detail and to introduce complex
nonlinear constitutive laws which can account for advanced mechanisms such as
damage, plasticity or friction.

A brief summary of the main FE models available in the literature is presented,
divided according to the detail scale.

2.2.2.1 Micromechanical models

A detailed and accurate scale of representation is obtained when micromechanical
approaches are used. Local behavior can be described and the actual texture of
masonry is reproduced, implicitly taking into account the natural anisotropy of
the composite material.

Masonry components are modeled separately, and detailed or simplified mod-
eling strategies can be employed. According to the first case, bricks and mortar
can be represented through continuum models, considering their elastic and in-
elastic properties, while interface is modeled by adopting discontinuous elements
with potential crack/slip behavior (Fig. 2.18 (a)). In the second case, mortar
joints and interfaces are lumped into discontinuous elements localized at the av-
erage plane of the joint thickness, while brick dimensions are expanded and their
behavior can be considered as elastic (Fig. 2.18 (b) and (c)) (Lourenço, 1998).

Different constitutive laws are available in the literature for the constituents.
For instance, one of the first micromodels presented in the literature is the one
proposed by Page (1978), where bricks were modeled as elastic, while mortar joints
act as planes of weakness, being nonlinear interface elements with limited shear
strength, depending on the bond strength and the level of compression. Material
properties and failure criteria, in this case, were derived from experimental bi-axial
tests made on half scale brick panels.
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Mortar: continuum 
nonlinear model 

Bricks: continuum 
nonlinear model

Bricks-mortar
interface 

(a)

Mortar: interface 
nonlinear model 

Bricks: continuum 
nonlinear model

(b)

Bricks: continuum 
elastic model

Bricks: interface
nonlinear model

Mortar: interface
nonlinear model 

(c)

Figure 2.18: Different micromodeling techniques: (a) detailed micromodel, (b)
simplified micromodel with crack activation in blocks, (c) simplified micromodel
with bricks and interface (Gatta et al. (2019))

A first enhancement of this model, still today diffused for masonry structure
analyses, was proposed in Lourenço and Rots (1997), where the entire nonlinear
behavior given by shear sliding, compressive crushing and tensile cracking was
included in an interface model based on plasticity theories. More enhancements
of this latter and other proposed micormechanical models can be found in Gam-
barotta and Lagomarsino (1997); Oliveira and Lourenço (2004); Sacco and Toti
(2010); Addessi and Sacco (2016); Malomo et al. (2018).

The main drawback of micromechanical models is the high computational bur-
den, which often limits the use of these models to small portions or panels, even
though few examples of full-scale micromechanical models carried on recently,
thanks to advancements in computational tools, can be found in the literature
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(D’Altri et al. (2019)).

2.2.2.2 Macromechanical models

Macromechanical approaches model masonry as homogeneized continuum media,
not distinguishing between bricks or units, mortar and interface. Phenomeno-
logical constitutive laws are considered, derived either from the reproduction of
experimental tests performed on large assemblages or panels, or through homo-
geneization procedures that combine the behavior of the single constituents, in
order to obtain constitutive laws that can appropriately approximate the me-
chanical behavior of the structural element (Fig. 2.19). However, these models
are applicable when the dimension of the walls permit to consider that the stresses
along the length of the wall are substantially uniform, and the hypothesis of an
isotropic material can be adopted. Being an homogeneized medium, mesh dis-
cretization is not strictly correlated to the dimension of the constituents. This
allows to reduce the computational burden of the analyses and to be capable of
modeling both 2D or 3D systems, making it one of the most commonly adopted
modeling approaches for real complex structures.

Figure 2.19: Macro-modeling technique: masonry as a homogeneous material
(Gatta et al. (2019))

Based on these premises, it is an essential task to chose the most appropriate
constitutive law for the equivalent homogeneized material beahvior.

No-tension constitutive laws are one of the first approaches adopted, descend-
ing directily from the hypotesis in Heyman (1966). Masonry is idealized as an
isotropic material with completely null tensile strength (Maier and Nappi (1990);
Angelillo (1994); Alfano et al. (2000); Bruggi and Taliercio (2015); Bruggi et al.
(2018)). However, these approaches find limited employement in the study of real
cases, also due to their limited application to 3D structures. Moreover, post-peak
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behavior cannot be simulated, and even if the no-tensile hypotesis can be consid-
ered as conservative, it can lead to different failure mechanisms with respect to
those experimentally observed.

A large part of macromechanical models are based on Continuum Damage
Mechanics and Plasticity theories. Examples of damage models can be found in
Løland (1980); Lubliner et al. (1989); Lee and Fenves (1998); Valente and Milani
(2016), used in applications to concrete structures.

Figure 2.20: Damage Mechanics concepts: (a) RVE, (b) effective area Ã (Gatta
et al. (2019)). A0 initial transversal area; A reduced cross-sectional area due to
transverse strains

Continuum damage models are based on the assumption that the material is
treated as a continuum medium, whose strength is deteriorated due to the evolu-
tion of cracks under loading conditions. Kachanov (1958) proposed the introduc-
tion of an internal scalar variable, whitout a clear phisical meaning, whose role
was to measure the internal degradation state of the material. In further develop-
ments, the damage variable has been defined as a reduction of the cross-sectional
area due to microcracking (Fig. 2.20). Isotropic damage models consider, in the
simplest cases, a single scalar variable (Addessi et al., 2002), which multiplies
the the initial elastic stiffness tensor, giving a damaged stiffness tensor, while in
more refined cases one damage variable in tension and one in compression can be
implemented (Gatta et al., 2018). Strain or energy equivalence principles can be
considered for the damage formulation (Marfia, 2007).

Despite the assumption of an isotropic behavior results in sufficiently accurate
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results, orthotropic nonlinear models have also been developed in the literature
(Lourénço et al. (1997); Berto et al. (2002); Pelà et al. (2013); Gatta et al. (2019)).
However, an elevated number of mechanical properties, not always available for
historical constructions, are required to define material mechanical characteristics,
together with a higher computational cost required for the analyses. For these
reasons, their application is limited.

One last case are the macromechanical models based on fracture mechanics, i.e.
smeared-crack models. These are based on the theory proposed in Rashid (1968)
and developed in Rots and De Borst (1987); Jirásek (2011), according to which
masonry is treated as a continuum medium, where the total strain is decomposed
in an elastic and an inelastic part. This latter, called crack strain, is caused by
crack opening, thus being directly related to the traction transmitted across the
crack plane.

Figure 2.21: 3D finite element model of the fortress. The magnified portion shows
the adopted discretization (Degli Abbati et al. (2019))

The capability of this approach to model 2D and 3D complex structures al-
lowed a large variety of applications, not only on masonry historical buildings
(Elyamani et al., 2017; Degli Abbati et al., 2019, Fig. 2.21), but also for churches
(Milani and Valente, 2015) or bridges (Pelà et al., 2009; Addessi et al., 2021, 2022
Fig. 2.22).

To conclude, macromechanical FE models are one of the most utilized and
diffused approaches in commercial codes, thanks to the limited number of param-
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Figure 2.22: Finite element damage models of masonry bridges: a) San Marcello
Pistoiese bridge (Pelà et al., 2009); b) Ponte delle Torri in Spoleto (Addessi et al.,
2022).

eters that are input in the model and the reduced computational cost, in favour
of a good accuracy in the assessment of the response of both simple and more
complex structures.

2.2.2.3 Multi-scale models

Multi-scale approaches, which find their location between micro- and macro-
mechanical models, have recieved increasing attention in recent periods for the
study of heterogeneous microstructured materials. The structural problem is di-
vided in two scales of analysis: a representative volume element (RVE) is selected
at the microscale and its stress field is computed and then homogeneized at each
material point. This homogeneized constitutive response is then transferred at
the macroscale, where the response of an equivalent homogeneized medium is an-
alyzed at the structural level. A strain-driven formulation is adopted to evaluate
the macroscopic strain vector E at each material point of the macrolevel problem,
which is used as input data to solve the Boundary-Value Problem at the RVE level
to evaluate its stress-field. According to the Hill-Mandel equivalence principle, the
corresponding stress field Σ is evaluated at the macrolevel (Fig. 2.23).

Different proposals are available in the literature for a proper selection of the
RVE, considering different geometries, periodicity or non-periodicity (Fig. 2.24),
as it should be representative of the material-scale heterogeneity and boundary
conditions to obtain a suitable homogeneized behavior.
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Boundary
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E

Figure 2.23: Transition from the micro-scale to macro-scale in the multi-scale
approach (Gatta et al., 2019)

Figure 2.24: Examples of RVEs adopted for the derivation of homogeneized ma-
sonry mechanical properties: Anthoine (1995) a); Cavalagli et al. (2011) b); Tal-
iercio (2014) c); Stefanou et al. (2015) d); Milani (2011) e); (D’Altri et al. (2020))

Two main approaches can be adopted, namely a step-by-step multi-scale ap-
proach or an adaptive multi-scale approach (D’Altri et al. (2020)).

Step-by-step approaches can be distinguished according to different formula-
tion strategies. The choice of the most suitable continuum type applied at the
macrolevel has been widely debated in the literature, as both classical Cauchy
continuum (Luciano and Sacco, 1997; Zucchini and Lourenço, 2009), or Cosserat
continuum (Casolo, 2006; Addessi et al., 2010; De Bellis and Addessi, 2011; Ad-
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dessi and Sacco, 2012) can be adopted. Localization problems arise when Cauchy
continuum is adopted at the macrolevel, being the characteristic lengths of the
structural- and material-scales non-intrinsically accounted for in classical Cauchy
continuum models, and mesh-sensitivity issues tend to arise when material soft-
ening behavior appears (D’Altri et al. (2020)). Cosserat continuum, being a
higher-order micro-polar continuum, overcomes localization problems intrinse-
cally accounting for an internal length of the material. Other approaches can be
found that overcome localization issues through different strategies (Massart et al.
(2007); Bacigalupo and Gambarotta (2012)). Between the various homogeneiza-
tion procedures that can be adopted, it is worth mentioning Transformation Field
Analysis (TFA) procedure, which is based on the superposition of the effects
and requires the computation of localization and transformation tensors (Dvo-
rak, 1992; Sacco, 2009). Step-by-step and point-by-point transitions between the
structural- and the material-scale problems are usually considered in these ap-
proaches, requiring the adoption of the so-called FE2 approach, in which Finite
Element implementations are made at both the levels of analysis.

Regarding adaptive multi-scale approaches, the material-scale model is adap-
tively inserted and resolved on the structural-scale model thus estabilishing a
strong coupling between the two scales. A first-order homogeneized model is used
in a first phase to represent the structural response, until a threshold criterion is
reached and the interested area is replaced by an heterogeneous behavior. Exam-
ples can be found in Leonetti et al. (2018); Lloberas-Valls et al. (2012).

2.2.3 Other modeling approaches

2.2.3.1 Discrete Element Model (DEM)

The Discrete Element (DE) method, proposed originally in Cundall (1971) and
extensively revised in Lemos (2007), has the aim of representing masonry as an
assembly of distinct component blocks, representative of masonry units, with a
mechanical interaction located at their boundaries. As pointed out in Lemos
(2007), a classification of this kind of models can be made considering the shape
of the elements, dividing block DE models, composed of sets of polygonal or poly-
hedral bodies, which are the most widely used, and particle DE models, based on
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circular or spherical particles, aimed at a representation of the materials at a finer
scale.

Four main assumptions separe DE models from FE models. First, the entire
deformability of the system is located at the joints, while only in most recent
formulations the blocks are considered as deformable bodies, being originally valid
the assuption that blocks were rigid. Second, the interaction between blocks is
evaluated in sets of points or edge-to-edge contacts, without a continuous stress
distribution throughout the contact surface. Each block can thus be discretized
independently from the others (Fig. 2.25). Third, full separation between blocks
is allowed, and large displacements are considered. Last, time-stepping algorithms
are employed also in the solution of quasi-static problems.

Figure 2.25: Representation of contact between blocks by a) joint elements, and
b) point (vertex–edge) contacts. (Lemos (2007))

The mechanical behavior of contact can be represented through a hard (or
rigid) or a soft (or deformable) contact. In the first case, no overlap between
blocks is enforced; in the second case contact stiffness is defined in normal and
shear directions, and contact stresses depend on relative block displacements,
resulting in small overlap in compression.

Examples of the application of the DE method can be found in Alexandris
et al. (2004); Roca et al. (2010).

2.2.3.2 Limit Analysis

Limit analysis is based on the work of Heyman (1966), where plasticity principles,
originally porposed for steel frames, were adopted for the study of masonry struc-
tural systems. Three main assumptions are then made, that are that: i) masonry
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has no tensile strength; ii) the general stress levels are so low that the compres-
sive strenght of masonry is infinite; iii) sliding of one block upon another cannot
occur. Kinematic (upper-bound limit) and static (lower-bound limit) theorems
are then formulated to evaluate the collapse mechanisms and collapse multipliers,
i.e. the coefficient that multiplied to the external load value gives the collapse
condition. If a statically admissible state of equilibrium can be found between
the limits given by the two theorems, the structure does not reach the collapse
condition.

As pointed out in Heyman (1966), the plastic limit theorems are valid only
if the normality condition stands, that is if a simple frictional Coulomb law with
associated flow rule is assumed. However, some real cases showed no dilatancy
behavior, for which non-associative rules should be assumed.

On the overall, the limit analysis method is a powerful tool to realistically
identify the safety level of a structure or to gather information regarding collpase
mechanism activation, but no information are given regarding damage evolution
during the analysis progression or post-peak response and ultimate displacement.
Static theorem can be efficiently employed for the evaluation of equilibrium states,
especially for arches and vaulted systems, while kinematic theorem-based ap-
proaches are more suitable for the study of masonry structures. According to
this latter approach, Giuffrè (1991) proposed the decomposition of the structure
in rigid blocks, for which a specific collapse mechanism is identified a priori, based
on recurrently failure mechanisms actually observed in existing Italian buildings.

Recent advancements in the utilization of limit analysis for the analysis of
masonry constructions can be found in Giuffrè (1994); Carocci (2002); Orduña
and Lourenço (2005); Baggio et al. (2000), also considering, for instance, the
presence of friction at interfaces between rigid blocks in the last reference, or also
Betti and Vignoli (2011).
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Nonlinear hinges constitutive model

The use of advanced constitutive models to reproduce the nonlinear response
of highly complex materials such as masonry is an important topic, and still
presents challenging aspects. A large number of numerical tools use classical
hysteretic models, such as elastic or elastic-plastic models, which can lead to
oversimplified and less accurate results, not permitting to capture essential aspects
of the structural response such as the onset and evoution of damage. However,
several advanced hysteretic models can be found in the literature. In particular,
the Bouc-Wen model results to be one of the most versatile and accurate when
highly nonlinear responses shall be described.

In the following Chapter, a brief review of this model and of one of its modifi-
cations is reported, followed by an enrichment of this latter and its validation. In
particular, a proposal is made to enrich an existing Bouc-Wen model formulation
with damage to describe more accurately stiffness degradation. The description of
damage, that reduces the hysteretic force, is then accompanied by the introduc-
tion of flexibility increase, which increments the elastic displacement experienced
by the system. Both effects influence the energy dissipated by the system.

3.1 Bouc-Wen model

The Bouc-Wen model belongs to the class of endochronic models, initially formu-
lated by Valanis (Valanis, 1976), and is a smooth phenomenological constitutive
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law often used to describe a large variety of different behaviors, ranging from
structural elements to isolation devices or mechanical systems, and even soil be-
havior.

The first formulation was made by Bouc (Bouc, 1971), who proposed a model
able to describe the hysteresis phenomenon through a rate-independent functional.
This latter is defined through a first-order nonlinear differential equation, ex-
pressed in terms of internal variables of the system. Subsequently, the model has
been extended by Wen (1976), where a modification to the restoring force funcion
was implemented. Afterwards, the Bouc-Wen hysteretic model has been exten-
sively applied and modified to reproduce different hysteretic responses in multi-
ple fields of engineering, where both the static and dynamic excitations must be
accounted for, arriving to the definition of a proper class of models. A complete
review of the literature avialable regarding this model can be found in Ismail et al.
(2009), with particular attention dedicated to the consistency of the model, to its
main parameters and to the identification techniques adopted in the literature to
calibrate them, in order to reproduce the desired hysteretic behavior.

The original Bouc-Wen model, referred to a single degree of freedom system,
can be regarded as the arrangement in parallel of two devices, namely a linear
elastic spring and a nonlinear hysteretic element, as shown in Fig. 3.1 (a).

Fel = a k v

Fh = (1 - a) k vy z

F

v

a k

Fh

Felk

vy

1

1
a) b)

Figure 3.1: Bouc-Wen model: a) rheological element; b) force-displacement law.

Consequently, the total restoring force of the system can be expressed as the
superposition of the elastic and the hysteretic forces:

F = F el + F h (3.1)
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In particular, the elastic force can be expressed as:

F el = a k v (3.2)

where a governs the ratio between the initial tangent stiffness k and the asymptotic
post-yielding stiffness and can assume values included between 0 and 1, while v

is the total input displacement.
The hysteretic force term, instead, is evaluated as:

F h = (1− a) k vyz (3.3)

where, beside the aforementioned parameters, vy is the maximum absolute elastic
displacement and z is the hysteretic variable, which represents a non-dimensional
elastic displacement. The term vy z results in the dimensional elastic displacement.
According to this, limit bounds can be set for the hysteretic force F h:

|F h| ≤ (1− a) k vy (3.4)

The total input displacement v can be written as:

v = vy u (3.5)

where u is the total non-dimensional displacement, which has the meaning of an
equivalent ductility. It can be evaluated as the sum of the plastic (up) and the
elastic (z) non-dimensional displacements, consistently with the classical plasticity
theory:

u = z + up (3.6)

and by substituting Eq. 3.6 in Eq. 3.5, the input displacement becomes:

v = vy(z + up) (3.7)

In general cases, the relation between u, z and up can be expressed through
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the derivative of z with respect to u, that depends on z itself and sign(v̇) as:

dz
du

= f [z, sign(v̇)] (3.8)

and depends on the particular hysteresis considered. In particular, in the case of
the classic Bouc-Wen model, the differential equation is the following:

dz
du

= A− [β sign(zv̇) + γ]|z|n (3.9)

The parameters A, β, γ and n are non-dimensional quantities that govern
shape and size of the hysteretic cycles. In particular, n regulates the smoothness
of the transition from the initial elastic to the post-yielding branch, being more
abrupt when n assumes greater values; β and γ influence the shape of the cycle,
which results larger when β > γ and more S-shaped when β < γ, but have no
clear physical meaning; A is the initial stiffness of the u− z curve. By using these
parameters, a limit value for z can be set through the expression: [A/(β + γ)]

1
n .

However, it was mathematically demonstrated that the Bouc-Wen parameters
are formally redundant (Ma et al., 2004; Charalampakis and Koumousis, 2008b).
For this reason, the parameter A is usually fixed to a value equal to unity, and the
condition A/(β + γ) = 1 holds (Constantinou and Adnane, 1987; Charalampakis
and Koumousis, 2008a; Ma et al., 2004).

For the non-dimensional elastic displacement z, the limitation |z| ≤ 1 holds,
being the variable bounded between −1 and 1, which represent the asymptotic
values for large negative and positive u-values, respectively. The derivative dz/du
is bounded between (0, 1], where 0 is assumed when z reaches its limit values, while
1 holds for the elastic state, for instance the initial state and elastic unloading
branches, when present.

3.1.1 Thermodynamic admissibility

The thermodynamic admissibility of the classic Bouc-Wen model has been exten-
sively investigated in the literature, as the original formulation is not based on
proper thermodynamic conditions (Erlicher and Bursi, 2008). Typically, to over-
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come these issues, intervals regarding the β and γ parameters hold to restore the
thermodynamic admissibility condition (Erlicher and Point, 2004).

In general, according to Clausius-Duhem inequality, thermodynamic admissi-
bility requires that dissipated energy shall be non-decreasing, i.e. its time deriva-
tive shall be non-negative:

U̇h ≥ 0 (3.10)

For the pure hysteretic Bouc-Wen system, the condition in Eq. 3.10 can be
expressed as:

zu̇p ≥ 0 (3.11)

and thermodynamic admissibility can be studied according to Eq. 3.11 (Erlicher
and Point, 2004; Liberatore et al., 2019). From Eq. 3.6 it follows that:

u̇p =

(
1− dz

du

)
u̇ (3.12)

where, according to the previously mentioned conditions on the model parameters,
A = 1.

Substituting dz/du from Eq. 3.9 provides:

u̇p = [β sign(zv̇) + γ]|z|nu̇ (3.13)

and combining Eq. 3.11 with Eq. 3.13 leads to:

z u̇p = [β sign(zv̇) + γ]|z|nzu̇ ≥ 0 (3.14)

Moreover, by considering that |z|n ≥ 0, Eq. 3.14 can be simplified in:

[β sign(zv̇) + γ] z u̇ ≥ 0 (3.15)

The behavior of loading and unloading branches following this condition is
now analysed. In loading branches, where zv̇ ≥ 0, zu̇ ≥ 0, Eq. 3.15 is satisfied
for any choice of the parameters in their admissible ranges, that is 0 ≤ β ≤ 1,
0 ≤ γ ≤ 1.
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In unloading branches, where zv̇ < 0, zu̇ < 0, Eq. 3.15 becomes:

β ≥ γ (3.16)

meaning that S-shaped cycles are not thermodynamically admissible, and the basic
Bouc-Wen model requires the formulation of different enrichments to reproduce
them without violating thermodynamic admissibility (Liberatore et al., 2019).

Assuming the condition β + γ = A = 1, it follows:

β ≥ 1

2
(3.17)

For β > 1/2, this condition results in bulge hysteretic cycles, with positive
or negative u̇p, having increasing up over unloading branches with positive z and
decreasing up over unloading branches with negative z. When β = 1/2, the
unloading branches are linear elastic, with u̇p = 0 and up = const.

3.1.2 Drucker’s postulate

One of the major problems of the Bouc-Wen models, which has been often high-
lighted in the literature, is the violation of Drucker’s postulate (Drucker, 1950),
which results in the presence of displacement drifts, force relaxation and non-
closure of hysteretic loops for short loading-unloading paths (Charalampakis and
Koumousis, 2009; Kottari et al., 2014; Sivaselvan and Reinhorn, 2000). However,
when considering work-hardening materials, the postulate needs to be satisfied to
have consistent assumptions.

Different solutions to overcome this issue have been proposed in the literature,
such as the addition of hysteretic terms with negative energy dissipation (Casciati,
1989) or the addition of a stiffening factor in the hysteretic differential equation
(Kottari et al., 2014; Charalampakis and Koumousis, 2009).

In the present thesis, the assumptions made in the work of Liberatore et al.
(2019) are considered and here recalled, and conditions on the model parameters
hold.

To this end, a hysteretic element on which a force F h and a displcement v are
present, is considered. According to Drucker’s postulate (Drucker, 1950; Lubliner,
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2008), the element is work-hardening if the product of the time derivative of the
hysteretic force Ḟ h, and the velocity, v̇, is positive:

Ḟ h v̇ > 0 (3.18)

and the product of the time derivative of the hysteretic force and plastic velocity
is non-negative:

Ḟ h vy u̇
p ≥ 0 (3.19)

Being the hysteretic force F h proportional to z, according to Eq. 3.3, Drucker’s
postulate can be expressed, after simplifying, by the inequalities:

ż u̇ > 0 (3.20)

ż u̇p ≥ 0 (3.21)

From Eq. 3.20, it follows that dz/du > 0, which is satisfied in loading branches
for any choice of the parameters. In unloading branches, it can be shown that
Drucker’s postulate is satisfied if:

β ≤ 1

2
(3.22)

For β < 1/2, this latter condition results in S-shaped hysteresis cycles with
decreasing up when z is positive and increasing up when z is negative (Liberatore
et al., 2019). Thermodynamic admissibility and Drucker’s postulate can be both
satisfied over unloading branches assuming:

β =
1

2
(3.23)

implying that unloading branches are linear elastic and that up is constant.

3.2 Bouc-Wen model with damage

The need of reproducing the degrading behavior for nonlinear materials has led
to the development of a large number of modifications to the classic Bouc-Wen
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model in order to introduce strength degradation, stiffness degradation or both
(Baber and Noori, 1985; Sivaselvan and Reinhorn, 2000; Erlicher and Bursi, 2008;
Kottari et al., 2014).

The proposal made in Liberatore et al. (2019) is here taken into account to
reproduce the effect of degradation. A scalar damage variable D, based on the
Continuum Damage Mechanics, is introduced in the constitutive law. This latter
affects the hysteretic component of the restoring force through a modification of
the secant stiffness. Eq. 3.3 is then modified as:

F h = (1−D)(1− a) k vy z (3.24)

According to classical damage mechanics (Lemaitre and Chaboche, 1994), D
is bounded in the range [0, 1), where 0 corresponds to the undamaged state and
1 to the fully damaged state. It is worth noting that in the proposed formulation
the damage variable affects only the hysteretic force F h, which vanishes as D = 1,
whereas the elastic component does not. As a consequence, a residual elastic
stiffness persists in the completely damaged condition.

The damage variable D is defined as proportional to the dissipated energy Uh,
following the proposal in Baber and Wen (1981) and Baber and Noori (1985):

D = δD Uh (3.25)

where δD is the damage parameter (δD ≥ 0) having the dimension of the inverse
of an energy. The dissipated energy Uh can thus be considered as the damage
associated variable, ruling its evolution.

By introducing Eq. 3.25 in the expression of the hysteretic restoring force in
Eq. 3.24, it results:

F h = (1− δD Uh)(1− a) k vyz (3.26)

Damage progression is then ruled by the evolution law defined for the dissi-
pated energy Uh:

Uh =
1

δD

{
1− exp

[
− 2c δD

∫ u

0

z

1− cδDz2
d(ũ− z)

]}
(3.27)
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which allows to have a non-decreasing dissipated energy, from an initial null value
to an upper bound equal to 1/δD. A more detailed description of the model can
be read in Liberatore et al. (2019).

3.3 Bouc-Wen model with damage and flexibility

increase

Although the model with damage proved to capture the main aspects of the
degrading phenomena of masonry elements, especially in terms of strength degra-
dation, some limits emerged in the description of the real reponse of structural
elements, and a further enrichment was required. Thus, the model with damage
described in Liberatore et al. (2019) is modified in the present thesis to enclose a
more refined description of the stiffness degradation. In particular, to overcome
these limits, a flexibility increase term is introduced in the definition of the elastic
displacement, in terms of a factor equal to 1 + δKU

h. In the latter expression,
δK is the flexibility increase parameter, which has the dimension of the inverse
of an energy as well as the damage parameter δD. Eq. 3.7 becomes, with the
introduction of the new term:

v = vy[(1 + δK Uh)z + up] (3.28)

However, the evaluation of the hysteretic restoring force remains unvaried, as
in Eq. 3.3 or Eq. 3.24, in case of absence or presence of damage respectively. The
inequality |z| ≤ 1 and Eq. 3.4 are retained in both cases of absence or presence
of damage.

It is worth to notice the duality of damage and flexibility increase, given by
the different role played in the constitutive law. In fact, damage consists of a
reduction of the hysteretic force, whereas flexibility increase gives an expansion of
the elastic displacement.

46



Chapter 3: Nonlinear hinges constitutive model

3.3.1 Dissipated energy

Dissipated energy rules both damage and flexibility increase evolution laws. In
the following, the calculation of this latter in presence of damage and flexibility
increase is addressed, and its general properties are discussed.

The total energy U of the hysteretic element can be expressed as the compo-
sition of the elastic, U e, and dissipated energy, Uh, as follows:

U = U e + Uh (3.29)

or, in terms of their time derivatives:

U̇ = U̇ e + U̇h (3.30)

This latter can be evaluated as the product of the hysteretic restoring force
and the time derivative of the elastic displacement of the system:

U̇ = F h v̇ = (1− δD Uh)(1− a)kv2yz
d
dt

[
(1 + δK Uh)z + up

]
=

= 2c(1− δD Uh)[δK U̇hz2 + (1 + δK Uh)zż + zu̇p]

(3.31)

where:
c =

1

2
(1− a) k v2y (3.32)

The elastic energy term can be expressed as:

U e =
1

2
F h(1 + δKU

h)vyz (3.33)

and its maximum initial value, valid when Uh = 0 and denoted as sup0 U
e, is

attained for |F h| = (1− a) k v2y = 2 c and |z| = 1, so that:

sup0 U
e =

1

2
(1− a) k v2y = c (3.34)

In case of absence of flexibility increase, when δK = 0, the maximum initial
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value of elastic energy coincides with its maximum value:

sup0 U
e = supU e (3.35)

The time derivative of the elastic energy results as:

U̇ e =
d
dt

[
1

2
(1− δD Uh)(1− a) k v2y(1 + δK Uh)z2

]
=

= c[−δDU̇
h(1 + δKU

h)z2 + (1− δDU
h)δKU̇

hz2 + 2(1− δDU
h)(1 + δKU

h) z ż]

(3.36)

In general, total and elastic energy are functions of the dissipated energy,
being valid Eq. 3.31 and Eq. 3.36 respectively. Thus, an explicit expression for
the dissipated energy cannot be written generally. The time derivative of the
dissipated energy can, then, be derived on the basis of those evaluated for the
total and elastic terms, as:

U̇h = U̇−U̇ e = c
{
[(1−δDU

h)δKU̇
h+δDU̇

h(1+δKU
h)]z2+2(1−δDU

h)z u̇p
}

(3.37)

Solving with respect to U̇h gives:

U̇h

1− δDUh
=

2cz

1− c(δD + δK)z2
u̇p (3.38)

which is a first-order differential equation that governs the evolution of the dissi-
pated energy.

In case of pure flexibility increase (δD = 0, δK ̸= 0) the differential equation
reduces to:

U̇h =
2cz

1− c δKz2
u̇p (3.39)

whereas, in case of pure damage (δD > 0, δK = 0), it results:

U̇h

1− δD Uh
=

2cz

1− c δDz2
u̇p (3.40)

The term −δDU
h in Eq. 3.38 represents the effect of strength decay due to
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damage, while the term −c(δD+ δK)z
2 reproduces the effect of stiffness decay due

to the combination of damage and flexibility increase.
Strength decay can be considered as a special combination of damage and

flexibility increase. Setting δK = −δD, Eq. 3.38 becomes:

U̇h

1− δDUh
= 2 c z u̇p (3.41)

which is the differential equation governing the evolution of the dissipated energy
of a system with strength decay and no stiffness decay. It is worth to notice that
negative values of δK represent flexibility decrease. In the following, both positive
and negative values of δK will be considered for generality.

In case neither damage nor flexibility increase are present (δD = 0, δK = 0),
Eq. 3.38 reduces to the differential equation of a pure hysteretic system:

U̇h = 2 c z u̇p (3.42)

Lastly, integrating Eq. 3.38, the expression of the dissipated energy is obtained
as:

Uh =
1

δD

{
1− exp

[
− 2c δD

∫ up

0

z

1− c(δD + δK)z2
dũp

]}
(3.43)

and the damage evolution law results as:

D = 1− exp

[
− 2c δD

∫ up

0

z

1− c(δD + δK)z2
dũp

]
(3.44)

3.3.2 Thermodynamic admissibility

The thermodynamic admissibility condition is now investigated for the hysteretic
system with flexibility increase and for the hysteretic system with both damage
and flexibility increase.

Starting from the Clausius-Duhem inequality (Eq. 3.10), in the simple case of
pure hysteretic system, when neither damage nor flexibility increase are present,
it follows from Eq. 3.42 that:

zu̇p ≥ 0 (3.45)
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and by integrating Eq. (3.42), the expression of the dissipated energy is deduced
as:

Uh = 2c

∫ up

0

z dũp (3.46)

showing that the dissipated energy Uh has no upper bound.
In case of hysteretic system with flexibility increase only (δD = 0, δK ̸= 0),

in addition to Eq. 3.45, thermodynamic admissibility requires, according to Eq.
3.39 and taking into account that |z| ≤ 1:

δK <
1

c
=

1

sup0 U
e

(3.47)

The expression of the dissipated energy can be obtained by integrating Eq.
3.39:

Uh = 2c

∫ up

0

z

1− c δKz2
dũp (3.48)

which shows that, as well as in the case of pure hyseretic system, also in the case
of flexibility increase the dissipated energy Uh has no upper bound.

When both damage and flexibility increase are present (δD > 0, δK ̸= 0), Eq.
3.43 can be considered to study thermodynamic admissibility. This latter shows
that Uh is bounded in the range [0, 1/δD), where the damage parameter δD has
the meaning of the maximum dissipable energy:

δD =
1

supUh
(3.49)

and damage results as the ratio between dissipated energy and maximum dissi-
pable energy:

D =
Uh

supUh
(3.50)

Then, the dissipated energy Uh results to be non-decreasing if

δD + δK <
1

c
=

1

sup0 U
e

(3.51)

Moreover, by considering Eq. 3.49, the condition of thermodynamic admissi-
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bility can be expressed in the form:

δK <
1

sup0 U
e
− 1

supUh
(3.52)

In the case of pure damage, when flexibility increase is null, (δD > 0, δK = 0),
Eq. 3.43 provides:

Uh =
1

δD

{
1− exp

[
− 2c δD

∫ up

0

z

1− c δDz2
dũp

]}
(3.53)

showing that Uh is non-decreasing if:

δD <
1

c
(3.54)

or, by considering Eqs. 3.34, 3.35 and 3.49:

supU e < supUh (3.55)

One last special case in studied, which is the case of pure strength decay
(δK = −δD). The integration of Eq. 3.41 provides:

Uh =
1

δD

{
1− exp

[
− 2c δD

∫ up

0

z dũp

]}
(3.56)

and Uh is non-decreasing for any δD > 0.
To summarize, when damage and flexibility increase are present, which is the

most general case, thermodynamic admissibility is satisfied according to Eq. 3.51,
or equivalently to Eq. 3.52. Additional constrains on the admissible values which
can be assumed by the parameters are discussed in the following Section.

3.3.3 Admissible domain of parameters

Additional constraints on the parameters arise from Eq. 3.28, in which the dis-
placement v is expressed as a combination of the non-dimensional elastic (z) and
plastic (up) displacements. By deriving with respect to time both sides of Eq.
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3.28, and substituting Eq. 3.38 in the expression of U̇h, it results:

v̇ = vy

{
(1 + δK Uh)ż +

[
1 + δK

2cz2

1− c(δD + δK)z2
(1− δD Uh)

]
u̇p

}
(3.57)

where the terms which multiply ż and u̇p shall be non-negative. Focusing on the
first term on right-hand side in Eq. 3.57, (1 + δK Uh), since 0 ≤ Uh < 1/δD, this
is non-negative if:

δD + δK ≥ 0 (3.58)

Thermodynamic
admissibility
δD +  δK  <

 δD − δK ≤

 δD + δK ≥ 0
(Strength decay: δD + δK = 0)

 δD

 δK

1
c−

1
c−

1
c−

1
c−

Figure 3.2: Admissible domain of parameters δD and δK .

It can be noted that δD + δK = 0 corresponds to strength decay. When
considering the thermodynamic admissibility condition expressed by Eq. 3.51,
the term in square brackets which multiplies u̇p in Eq. 3.57 is positive for any
positive value of δK . When δK is negative, the following inequality holds:

1 + δK
2cz2

1− c(δD + δK)z2
(1− δDU

h) ≥ 1 + δK
2cz2

1− c(δD + δK)z2
(3.59)
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and the right-hand side is non-negative if:

δD − δK ≤ 1/c (3.60)

The admissible domain of the mechanical parameters is reported in Fig. 3.2,
where the boundary of thermodynamic admissibility is shown by a continuous
line, and the boundaries of Eqs. 3.58, 3.60 by dashed lines. In real situations
δD, |δK | << 1/c, and thermodynamic admissibility is commonly satisfied, as well
as Eq. 3.60, whereas Eq. 3.58 enforces the condition that no overall stiffness
increase shall occur.

3.3.4 Drucker’s postulate

Drucker’s postulate is now analyzed for a hysteretic element with flexibility in-
crease, showing that it is work hardening if the corresponding hysteretic element
without flexibility increase is work hardening.

In case of a hysteretic element with flexibility increase and no damage, Eq.
3.58 provides:

δK ≥ 0 (3.61)

Since the case δK = 0 refers to a pure hysteretic element, the case δK > 0 is
analysed in the following. Eqs. 3.19, 3.21 are not affected by flexibility increase.
Therefore, if they hold for the hysteretic element without flexibility increase, they
also hold when flexibility increase is accounted. Eq. 3.18 can be written, according
to Eq. 3.28 and after simplifying, as:

ż[(1 + δKU
h)ż + u̇p + δKU̇

hz] > 0 (3.62)

Taking into account Eq. 3.39, which provides U̇h in the case of flexibility
increase, the above inequality in Eq. 3.62 can be written as:

ż u̇+ δK Uhż2 + δK
2cz2

1− cδKz2
żu̇p > 0 (3.63)

where δK Uh ż2 ≥ 0 and 1− c δKz
2 > 0, since z2 ≤ 1 and, according to Eq. 3.47,
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δK < 1/c.
If the following inequalities ż u̇ > 0 and ż u̇p ≥ 0 hold, indicating that the

hysteretic element without flexibility increase is work hardening, then Eq. 3.63
holds and the element with flexibility increase is work hardening.

It must be emphasized that, whereas thermodynamic admissibility is manda-
tory, Drucker’s postulate only holds for work hardening models. Softening and
snap-back are examples of thermodynamically admissible models which are not
work hardening (Liberatore et al., 2019). Eventually, hysteretic models with dam-
age could lead to softening branches. Therefore, in general, they are not work
hardening.

To summarize, the Bouc-Wen model with flexibility increase satisfies Drucker’s
postulate if the basic Bouc-Wen model does, while the Bouc-Wen model with
damage in general does not satisfy Drucker’s postulate.

3.3.5 Tangent stiffness

When solving the incremental form of the constitutive relationship, the evaluation
of the tangent stiffness is required. This is defined as the derivative of total
restoring force with respect to total displacement:

kt =
dF
dv

=
dF el

dv
+

dF h

dv
= a k +

dF h

du
du
dv

= a k + (1− a)k vy

[
− δD

dUh

du
z + (1− δDU

h)
dz
du

]
du
dv

= k

{
a+ (1− a)

vy[−δD
dUh

dup (1− dz
du)z + (1− δDU

h) dz
du ]

dv
du

} (3.64)

The derivative dv/du follows from Eq. 3.28:

dv
du

= vy

[
δK

dUh

du
z + (1 + δKU

h)
dz
du

+ 1− dz
du

]
= vy

[
1 + δK

(
dUh

du
z + Uh dz

du

)] (3.65)
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and the derivative dUh/du is:

dUh

du
=

dUh

dup

dup

du
=

dUh

dup

(
1− dz

du

)
(3.66)

By substituting Eqs. 3.65, 3.66 into Eq. 3.64, the expression of the tangent
stiffness is obtained as:

kt = k

{
a+ (1− a)

[
− δD

dUh

dup

(
1− dz

du

)
z + (1− δDU

h) dz
du

]
1 + δK

[dUh

dup

(
1− dz

du

)
z + Uh dz

du

] }
(3.67)

where the derivative dUh

dup follows from Eq. 3.38:

dUh

dup
=

2cz(1− δDU
h)

1− c(δD + δK)z2
(3.68)

3.4 Parametric analysis and validation

A parametric analysis is performed to study more in depth the performance of
the model with damage and flexibility increase. In particular, in the analyses
performed, one of the two scalar parameters δD and δK is kept constant while the
other one assumes increasing values. A quasi-static cyclic forcing action is applied
to each case, made of three cycles of increasing amplitude, with the purpose to
highlight the effect of the parameters on the response in terms of progression of
the strength and stiffness degradation. The mechanical parameters adopted for
each case are listed in Tab 3.1.

Table 3.1: Bouc-Wen models: mechanical parameters

a A n β γ k vy
− − − − − kN/m m
0.1 1 1 0.5 0.5 20000 0.01

The cyclic response in terms of experienced displacement and total restoring
force is reported in Fig. 3.3 for the four cases. When flexibility increase only is
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Figure 3.3: Parametric analysis varying δD and δK

present, and the parameter δD is kept constant and equal to 0, the restoring force
peaks in the assigned displacement are constant and a shrinkage of the cycles can
be detected as the parameter δK gets higher. The area of the force-displacements
cycles gets lower, and consequently also the dissipeted energy, when the number
of cycles increases. When δD is equal to 0.1 kJ−1, the combined effect of damage
and flexibility increase is observable (Fig. 3.3 (b)), influencing both strength and
stiffness degradation. In addition, a small recovery of strength can be detected
when δK assumes higher values. Moreover, the effect of damage is concentrated

56



Chapter 3: Nonlinear hinges constitutive model

during the third cycle, which is the first cycle experienced after the exceedance
of the apparent yielding displacement vy. In Fig. 3.3 (c), the flexibility increase
parameter is kept constant and set equal to 0, and the effect of pure damage is
analyzed. A strong influence on the post-yielding branch can be detected, in fact
the slope tends to diminish. Finally, when δK is equal to 0.1 kJ−1, and different
levels of damage occur (Fig. 3.3 (d)), thinner cycles can be seen compared to case
(c), as well as strength degradation.

3.4.1 Numerical validation

A first application is presented, in order to validate the hysteretic model through
the reproduction of experimental results available in the literature. A comparison
between the numerical model and the previous model proposed in Liberatore et al.
(2019) is also presented.

One of the two unreinforced masonry specimens tested in 1995 at the Joint
Center of Ispra (Anthoine et al., 1995), in particular the squat wall, is considered.
The panel is made of brick units and hydraulic mortar, and has a height of 1.35m
high, a width of 1m and a thickness of 0.25m. The restraints and loading condi-
tions applied to the specimens try to reproduce the real conditions which a pier
of a common structure undergoes during seismic events. A vertical load equal
to 150 kN, applied during the experimental tests, reproduces the weigth of the
surrounding structure, while a quasi-static cyclic displacement-controlled loading
hystory is applied horizontally at the top of the panel.

In the numerical model, the panel is schematized as a single degree of freedom
(SDOF) structure, and the response to the horizontal loading history is described
through the modified Bouc-Wen model, highlighting the damage and shear mech-
anisms experienced. The vertical load is neglected.

The parameters adopted to describe the nonlinear hysteretic model are re-
ported in Tab. 3.2. The parameters a, δD and δK are calibrated by imposing
the equality between the dissipated energy of the experimental and the numerical
curves.

Fig. 3.4 (a) shows a good correspondence between the numerical and the ex-
perimental results. The energy dissipation mechanisms, together with the degra-
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Table 3.2: Parameters adopted for the Bouc-Wen model

a A n β γ k vy δD δK
− − − − − kN/m m kJ−1 kJ−1

0 1 1 0.5 0.5 80000 0.001 0.15 2.4
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Figure 3.4: Comparison between experimental and numerical results for the Ispra
squat wall (a); dissipated energy and damage trends of the shear hinge (b)

dation of both strength and stiffness are accurately reproduced, with the flexibility
increase allowing to match the loading and unloading branches of the experimen-
tal curves. The trend of the dissipated energy and the evolution of the damage
variable D versus the global displcement are also displayed in Fig. 3.4 (b). As
expected, the two curves, each plotted with reference to its proper y-axis, are
overlapped when proper axis limits are set, being the damage proportional to the
dissipated energy. At the end of the analysis the dissipated energy of the system
is equal approximately to 2.204 kJ, while the final value of the damage variable
D = δD Uh is equal to 0.33; regarding the flexibility increase of the system, the
term δK Uh at the end of the analysis reaches the value of 5.29. Consistently with
the behavior highlighted in Liberatore et al. (2019), the dissipated energy exhibits
an increasing trend in the loading and reloading branches of the curve and remains
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Figure 3.5: Comparison between Bouc-Wen model with damage and flexibility
increase, Bouc-Wen model with damage (Liberatore et al., 2019) and experimental
results

constant in the unloading branches. Moreover, the growth rate is higher in the
first cycles, while gradually decreasing after.

A comparison with the formulation with damage and no flexibility increase (in
green or blue) is presented in Figs. 3.5 and 3.6. In this latter case, the mechanical
parameters adopted for the system are the same of the case with damage and
flexibility increase, with the exception of the damage parameter. A value of δD
equal to 0.05 kJ−1 is in fact adopted, calibrated with the purpose of reproducing
the strength degradation experienced during the test.

Although the strength degradation is well captured, with similar values with
respect to the case with damage and flexibility increase, it is evident that the area
of the cycles of the Bouc-Wen model with damage is excessively wide, and the
dissipated energy is higher with respect to the energy actually dissipated during
the experimental test. Moreover, the stiffness degradation due to the damage term
does not allow to match the unloading and loading branches and consequently
neither the actual stiffness decay experienced during the progression of the shear
mechanisms.

Fig. 3.6 (a) shows the response to the first cycle of analysis, showing a similar
behavior between the case with damage only and the case with damage and flexi-
bility increase. The two curves are almost overlapped, being the dissipated energy
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Figure 3.6: Comparison between experimental, Bouc-Wen with damage and flex-
ibility increase and Bouc-Wen with damage only: first cycle (a), sixth cycle (b),
last cycle (c)

almost the same. In Fig. 3.6 (b) and (c) the sixth and the last cycles of the anal-
ysis are represented, respectively. From both of them, it is clear that flexibility
increase profoundly affects the evolution of the response. It is noteworthy that the
flexibility increase parameter δK is one order of magnitude larger than the damage
parameter δD. The cycles are visibly thinner compared to the case with damage
only; the loading, unloading and reloading branches have a lower slope, reducing
the area of the cycle and better representing not only the strength reduction, but
also the effective shape of the cycle and, above all, the energy dissipated by the
system.
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2D macroelement formulation

Equivalent frame models are a particular subset of macromechanical models, in
which the behavior of each structural element is reproduced through a single
macroelement with an homogeneized constitutive law. This means that in the case
of masonry, no distinction between units and mortar is considered, and proper hys-
teresis accounting for degradation and nonlinearity must be implemented. More-
over, this latter requires to describe piers and spandrels alike, and to account for
rigid zones to model the panel zones.

To this end, a macroelement is proposed, which is described through a 2-
node Finite Element (FE) with a force-based formulation, which has proved to
be highly efficient for the description of frame structures, and lumped nonlinear
hinges, in which the hysteretic behavior is concentrated and reproduced through
the modified Bouc-Wen model described in Chapter 3.

Additional nonlinear devices are also considered, following the proposal in San-
girardi et al. (2019). These latter allow a more detailed and accurate description of
flexural mechanisms typical of masonry panels, such as pinching, which cannot be
neglected as it reproduces the effect of cracks reclosure in loading and unloading
branches, visibly affecting the structural response.

The possibility to describe the structural response in the dynamic field is
also considered. In particular, the effect of flexibility increase and onset and
propagation of damage on the dynamic performance is studied. The limits of
the classical dynamic formulation for frame elements are highlighted, and their
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influence on the response is analyzed.
Computational aspects are also discussed, considering that both the static and

dynamic behaviors of the proposed model are implemented in a Finite Element
code. An iterative procedure to allow numerical convergence over the element is
also provided, together with information regarding the algorithm adopted for the
solution of the nonlinear problem.

Numerical applications are provided for both the static and dynamic formu-
lations. A validation through well-known experimental results available in the
literature is proposed for the static macroelement, while the dynamic behav-
ior is explored under different geometric and loading conditions. Finally, the
macroelement capability to reproduce numerical outcomes, obtained through dif-
ferent macromechanical approaches, is studied.

4.1 2D in-plane static formulation

The work of Sangirardi et al. (2019) is taken as a basis for the proposal of the
2D macroelement. In particular, a central Euler-Bernoulli linear elastic element
with a force-based formulation is assembled in series with two nonlinear lumped
flexural hinges located at the end nodes of the element. Consistently with the
Euler-Bernoulli beam formulation, plane sections are assumed to remain plane
and normal to the axis of the element. Moreover, the whole shear effects and
mechanisms are described through the introduction of a nonlinear shear hinge.

An overview of the force-based formulation adopted for the frame element is
reported in the following, and basic assumptions and issues are also recalled.

4.1.1 Force-based classic formulation

The force-based formulation relies on the definition of interpolation functions of
the stress field, which strictly satisfy exact equilibrium condition along the el-
ement. The element state determination requires more complex iterations, but
results in a more efficient procedure, especally when lumped nonlinerity is intro-
duced (Addessi and Ciampi, 2006; Spacone et al., 1996). Small displacements and
strains are assumed.
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The 2-node elastic element is defined in a global reference system (0, X, Y )

(Fig. 4.1), in which each node has three degrees of freedom (DOFs), resulting
in total in six DOFs for the whole element. These correspond to the six global
displacement components, four translational ui, uj and two rotational θi and θj,
which are collected in the vector u:

u = {ui vi θi uj vj θj}T (4.1)

X

Y

O
ui

u j
vi

v j

θi

ϕi

θ j

i

j
i j

L L
δu

ϕ j
xe

ye

Figure 4.1: Beam finite element in the global reference system and in the basic
local reference system

Six force components correspond to the displacement components, which are
four nodal forces and two moments, collected in the global vector p:

p = {pxi
pyi mi pxj

pyj mj}T (4.2)

To enforce equilibrium in a strong form along the axis of the element, as
required in the force-based approach, rigid body motions are eliminated, and a
simply supported beam configuration is considered. A local basic reference system
(i, xe, ye) is defined, whose origin is located in node i, axis xe is parallel to the
beam axis and axis ye is orthogonal to it.

At each section of the Euler-Bernoulli beam element, the generalized section
displacement vector us(x) and the section deformation vector εs(x) can be defined:

us(x) = {u(x) v(x)}T ; εs(x) = {ϵG(x) χ(x)}T (4.3)

The section stress vector, as well as the section deformation vector, has two
components in the Euler-Bernoulli formulation, namely a normal stress N(x) and
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a bending moment M(x), considering that the shear component can be derived
from the latter:

σs(x) = {N(x) M(x)}T (4.4)

and the section constitutive equation relates it to the section deformation vector:

σs(x) = Ks(x) εs(x) (4.5)

in which Ks(x) is the standard section stiffness matrix. In the present case, the
section properties do not vary, being both material and section properties constant
along the beam axis. Otherwise, an integration over the area of the section should
be required for each component of the matrix. Thus, in the following, the section
stiffness matrix is reduced to a diagonal matrix, whose two components are the
axial stiffness (EA) and the in-plane flexural stiffness (EI):

Ks(x) =

[
EA 0

0 EI

]
(4.6)

E is the Young’s modulus, A is the area and I is the flexural inertia of the section.
Discrete quantities are required to write the algebraic element equations needed

in the displacement-based approach for the solution of the structural problem. To
this end, the variation of the section stresses is expressed through the basic element
nodal stresses by means of the equilibrium matrix bs(x):

σs(x) = bs(x)σ
e + σsq(x) (4.7)

In the in-plane 2D case, the equilibrium matrix is equal to:

bs(x) =

[
1 0 0

0 x/L− 1 x/L

]
(4.8)

and σsq(x) is the generalized stress vector due to distributed loads in the normal
and transversal direction in the local reference system. However, in the following
in-plane formulation, the influence of distributed loads along the beam axis is
neglected, and they are always reduced to concentrated forces applied at the end

64



Chapter 4: 2D macroelement formulation

nodes evaluated through influence areas. According to this assumption, the stress
field of the axial and the shear forces are constant along the element, while the
bending moment has a linear equation.

The enforcement of the virtual work equivalence, considering the external work
done by the basic virtual stresses in the basic displacement and the internal work
done by the section stresses in the deformations, is expressed as:

δσeT εe =

∫ L

0

δσT
s (x) εs(x) dx (4.9)

and gives a relation between the basic displacements and the generalized section
deformations:

εe =

∫ L

0

bTs (x) εs(x) dx (4.10)

This also leads to the expression of the flexibility matrix of the beam element,
where fs(x) = K−1

s (x) is the section flexibility matrix, and, in general cases, to
the evaluation of the initial basic displacements caused by distributed loads:

Fe =

∫ L

0

bTs (x)fs(x) bs(x) dx (4.11)

ε0q =

∫ L

0

bTs (x)fs(x)σsq(x) dx (4.12)

Local basic displacements and rotations are defined in the three-components
vector εe:

εe = {δu ϕi ϕj}T (4.13)

where δu is the elongation of the beam in the direction parallel to axis xe, while ϕi

and ϕj are the rotations at nodes i and j respectively (Fig. 4.1). The kinematic
matrix De and the rotation matrix Te

u relate the global nodal displacements and
the local basic displacements through the relation:

εe = De Te
u u (4.14)
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being the nodal displacements in the local reference system evaluated as: ue =

Te
u u. The kinematic matrix is defined as:

De =

−1 0 0 1 0 0

0 1/L 1 0 −1/L 0

0 1/L 0 0 −1/L 1

 (4.15)

where L is the length of the undeformed element from node i to node j, and
eliminates the rigid modes, while the rotation matrix, which projects the global
displacements in the local reference system, is written as:

Te
u =



cosα sinα 0 0 0 0

−sinα cosα 0 0 0 0

0 0 1 0 0 0

0 0 0 cosα sinα 0

0 0 0 −sinα cosα 0

0 0 0 0 0 1


(4.16)

The stress vector σe, which contains the axial force and two bending moments,
is associated to the local basic displacements vector:

σe = {Nj Mi Mj}T (4.17)

and is related to the global force vector through the expression:

p = TeT

u DeT σe (4.18)

The relation between the local basic displacements and forces can be derived,
also considering Eqs. 4.9 to 4.12:

εe = Fe σe + ε0q (4.19)

In the common case of a beam with straight axis and constant properties along
the axis, the flexibility matrix can be written as:
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Fe =


L
EA

0 0

0 L
3EI

− L
6EI

0 − L
6EI

L
3EI

 (4.20)

Rigid offsets are also introduced, following the method in Addessi et al. (2015).

4.1.2 Nonlinear hinges introduction

Kinematic and equilibrium relations are now recalled for the position of the elastic
Euler-Bernoulli beam element in series with the nonlinear flexural hinges and the
shear hinge, following the approach in Addessi et al. (2015). In particular, the
two flexural hinges are located at the end nodes of the macroelement, while the
shear hinge is a distributed hinge. Fig. 4.2 shows the arrangement of the hinges,
where the shear hinge is located at the center of the element only for sake of
representation.

i j

flexural	hinge	i flexural	hinge	j
shear	hinge

elastic	element

Figure 4.2: Schematization of the macroelement with flexural and shear hinges

The equilibrium condition:

Mi/j = Mhi/j
= Mei/j (4.21)

on the bending moments of each node holds, where Mhi/j
is the bending moment

of the flexural hinge, while Mei/j is the bending moment evaluated at the ends of
the elastic element.

Regarding kinematic conditions, the global rotation at each structural end
node is given by the superposition of the rotation of the nonlinear flexural hinge
(ϕhbi/j), the rotation contribution from the shear hinge (ϕhs) and the rotation
evaluated at the end node of the elastic element (ϕei/j):
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ϕi/j = ϕhi/j
+ ϕhs + ϕei/j (4.22)

Differently from Addessi et al. (2015), where the shear hinge was located at the
end nodes of the element, in the present work the shear hinge is considered without
a defined location, and the shear behavior is distributed along the entire element,
thanks to the constant interpolation associated to the shear force. However, the
kinematic equation considered remains substantially unchanged, how can be seen
in Eq. 4.22.

The constitutive relations of the flexural and the shear hinges written in in-
cremental form are, respectively:

ϕ̇hi/j
= fhbi/j Ṁi/j (4.23)

ϕ̇hs L = fhs
Ṁi + Ṁj

L
(4.24)

in which fhbi/j and fhs represent the tangent flexibility contributions. In Eq.
4.24, the shear rotation is multiplied by the length of the element, evaluated once
rigid offsets are removed, to obtain the shear deformation, consistently with the
assumption of a hinge ditributed along the entire element.

By substituting Eqs. 4.23, 4.24 and 4.10 in Eq. 4.22, the flexibility matrix of
the complete macroelement can be derived, which in case of a beam with straight
axis and constant section is the following:

F e =


L
EA

0 0

0 L
3EI

+ fhbi +
fhs
L2 − L

6EI
+ fhs

L2

0 − L
6EI

+ fhs
L2

L
3EI

+ fhbj +
fhs
L2

 (4.25)

By studying the flexibility matrix of the macroelement, it can be highlighted
that the axial behavior is completely decoupled from the shear/flexural behavior,
and is assigned exclusively to the elastic central element. The axial behavior is
then assumed lienar elastic. However, the influence of the external axial force
acting on the masonry panel is included in the evaluation of the yielding force,
and consequently of that of the yielding displacement, which in turn affects the
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activation of the nonlinear behavior of the modified Bouc-Wen model, as will
be discussed in Section 4.1.4. The external axial force, then contributes to the
evaluation of the yielding thresholds for the modified Bouc-Wen hysteresis in the
shear and flexural hinges.

4.1.3 Flexural hinges enhancement

Two enhancements are added to the modified Bouc-Wen model presented in Chap-
ter 3 to constitute the complete flexural hinge. In particular, pinching effect and
a modification to the initial elastic stiffness are introduced by means of two ad-
ditional devices, following the approach introduced in previous works (Baber and
Noori, 1985; Liberatore et al., 2019; Sangirardi et al., 2019). The rheological
model that results is shown in Fig. 4.3.

Dimensioni foglio: 13.5 cm x 5 cm

aaa

M

M

M𝜙

𝜙

𝜙

m-BW

NLE

LE

Figure 4.3: Rheological model of the flexural hinges

For the sake of brevity, only the main equations are recalled in the following.
Detailed formulation can be found in Liberatore et al. (2019) and Sangirardi et al.
(2019).

The nonlinear elastic device introduced in parallel with the modified Bouc-Wen
hysteresis to model pinching effect is derived under proper assumptions and values
of the parameter β and n from the classic Bouc-Wen model. These assumptions
lead to the following expressions for the hysteretic force and the tangent stiffness
of the device:

FNLE = FNLE
0 sign(v)

[
1 − exp

(
− kNLE

0

FNLE
0

|v|
)]

(4.26)

69



Chapter 4: 2D macroelement formulation

kNLE = kNLE
0 exp

(
− kNLE

0

FNLE
0

|v|
)

(4.27)

where FNLE
0 is the tangent maximum force reacheable and kNLE

0 is evaluated as
a portion of the initial tangent elastic stiffness of the hinge:

kNLE
0 = (1 − ak) k (4.28)

where k is the initial tangent stiffness of the hinge, while the portion that con-
tributes to the modified Bouc-Wen device is evaluated as:

kmBW = ak k (4.29)

The high initial stiffness of slender panels, in which flexural hinges prevail with
respect to the shear hinge, is enforced by restoring the initial stiffness of the elastic
beam element. A linear elastic device with a negative slope is introduced in series
with the other devices, which compensates the contribution of the hinges to the
global flexibility of the macroelement by adding a term in the flexural flexibility:

fhbi/j =
1

kmBW + kNLE
+

1

kLE
(4.30)

In Eq. 4.30, the stiffness of the linear elastic device is evaluated, consistently
with Liberatore et al. (2019), with the equation:

kLE = −
(
1 +

1

R

)(
kmBW
0 + kNLE

0 ) (4.31)

with R > 0. Eq. 4.30 is obtained from kinematic and equilibrium conditions
derived from the position in series and in parallel of the constitutive devices.
The series position states that the total basic displacement that belongs to the
hinge is given by the superposition of the basic displacement of the parallel of the
modified Bouc-Wen and the nonlinear elastic devices and the basic displacement
of the linear negative elastic device: ϕtot = ϕ + ϕLE, while the restoring moment
is preserved: M tot = M = MLE. This latter is given by the two parallel devices,
in which the basic displacement is preserved, while the resporing moment is given
by the sum of the restoring moments of the single devices: M = MNLE +MmBW .
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4.1.4 Initial stiffness and yielding displacement

The initial tangent stiffness of the flexural and the shear hinges is evaluated using
the following expressions:

khs0 =
GA
1.2L

; khbi,j =
4EI
L

(4.32)

G is the shear modulus, E is the Young’s modulus, A is the area of the whole
section and I the flexural section inertia.

The yielding displacement, required in the modified Bouc-Wen constitutive
model, is obtained from the yielding moment in case of the flexural hinge and
the yielding shear force for the shear hinge, according to the Italian Standard
Code (NTC, 2018), which assumes an equivalent stress-block diagram for the
compression of masonry piers. For a rectangular section, it holds:

My =
1

2
σ0

(
1− σ0

0.85fc

)
l2t (4.33)

where σ0 is the mean normal stress (σ0 = N/A, where N is the axial load and A

the section area), fc is the compressive strength, l and t the section dimensions.
In the case of the shear force, for old masonry with diagonal cracking mechanisms,
it holds:

Vy =
ft
b
lt

√
1 +

σ0

ft
(4.34)

ft is the tensile strength for diagonal cracking, b = L/l, being 1 ≤ b ≤ 1.5.
For spandel walls, Eqs. 4.33 and 4.34 become:

My =
Hp l

2

(
1− Hp

0.85fh l t

)
(4.35)

Vy = l t fv0 (4.36)

Hp is the minimum value between the tensile strength of the horizontal element in
tension and 0.4fhlt, fh is the horizontal compressive strength and fv0 is the shear
strength in absence of normal stress.
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4.2 Dynamic formulation

The description of the static behavior is enhanced with the introduction of the
inertia and the damping terms to reproduce also the dynamic behavior.

According to the classical Finite Element solution, the discrete dynamic equi-
librium equation of the global structure is written as:

Mü + Cu̇ + Pint(u) = Pext (4.37)

where ü, u̇ and u are the global nodal acceleration, velocity and displacement,
respectively, where the first two vectors are evaluated as the derivatives of the
latter with respect to time. Pext is the global external force vector, in which each
component is a nodal force or moment, while Pint(u) is the internal force vector,
in which the nonlinear structural response is considered.

Consistently with the force-based approach, the global mass matrix M and the
global damping matrix C are evaluated by assembling the element mass matrix
Me and the element damping matrix Ce respectively.

The element damping matrix Ce is obtained through the Rayleigh formula-
tion, being a linear combination of the element mass matrix Me and the element
stiffness matrix Ke of the system, updated at each step of the analysis, through
the coefficients a0 and a1. These latter are evaluated by fixing a damping ratio
and considering the elastic angular frequencies ωi and ωj of the first two vibration
modes. Thus, it holds:

Ce = a0M
e + a1K

e (4.38)

Two different approaches are implemented to obtain the element mass matrix,
namely a lumped approach and a consistent approach. The lumped approach
considers both the translational and the rotational mass, lumped at each node,
obtaining a diagonal matrix. This allows to obtain a less accurate structural
response when dynamic excitations are considered, but its advantage is a lower
computational burden, being the inertia terms uncoupled.
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4.2.1 Consistent mass matrix

Although the lumped mass approach is often adopted for the equivalent frame
method, it results less accurate when an experimental behavior has to be repro-
duced or when comparisons with other displacement-based finite element proce-
dures are done. To this end, a consistent mass approach is also considered, where
the mass of the macroelement is distributed along the axis, allowing a better
precision especially in linear dynamic analyses.

In this approach, both stiffness and mass of the element contribute to the
mass matrix calculation, and both shear and rotary inertia effects are taken into
account (Di Re et al., 2019; Archer, 1965; Molins et al., 1998; Soydas and Saritas,
2017). The Unit Load Method is adopted to obtain the exact equilibrium-based
shape functions (Di Re et al., 2019; de Souza et al., 2003; Shuang et al., 2009;
Shen et al., 2014), being a more computationally efficient procedure with respect
to the one developed by Molins et al. (1998), based on the Principles of Virtual
Work.

It is noteworthy that a Timoshenko formulation is adopted, due to the presence
of the shear hinge in the macroelement formulation that allows the representation
of the shear behavior. Shear components should then be included in the mass
evaluation.

According to the Timoshenko beam formulation, to the generalized section
displacements given in Eq. 4.3 the rotation component θ(x) should be added. The
unit work-conjugate virtual forces, applied in line with the Unit Load Method, are
then: δps = {px py mz}T , applied at the generic coordinate x of the beam axis.
The virtual work equivalence between the external work, given by the generalized
displacements and forces, and the internal work, given by the section deformations
and stresses, δW ext = δW int is enforced, and leads to:

δpT
s us(x) =

∫ L

0

δσT
s (x, ζ) εs(ζ) dζ (4.39)

where ζ is the generic coordinate to define the integral along the axis. A simply
supported beam configuration is considered to solve the virtual static problem for
the Unit Load Method, and the virtual nodal reactions are evaluated as:
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δpr(x) = brs(x) δps (4.40)

where brs(x) is the cross-section equilibrium matrix that relates the unit virtual
forces to the virtual reactions and is:

brs(x) =

1 0 0

0 x/L− 1 1/L

0 x/L 1/L

 (4.41)

The virtual section stresses are computed from the virtual nodal reactions by
means of the matrix br(ζ):

σs(x, ζ) = br(ζ) δpr(x) (4.42)

where:

br(ζ) =




1 0 0

0 ζ 0

0 −1 0

 ζ ≤ x


0 0 0

0 0 ζ − L

0 0 −1

 ζ > x

(4.43)

The integral is split between the intervals [0, x] and [x, L] to evaluate the shape
functions before and after the generic point of application of the unit forces.

By substituting Eq. 4.40 in Eq. 4.42 and then in the virtual work equivalence
(Eq. 4.39), and eliminating the term δpT

s in both sides of the equation, it holds:

us(x) =

∫ L

0

bTrs(x) b
T
r (ζ) εs(ζ) dζ (4.44)

and substituting εs(ζ) with its expression in terms of the local basic displacements,
considering σsq(x) = 0, it holds, with little manipulation of the integral:
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us(x) = bTrs(x)

∫ L

0

bTr (ζ)fs(ζ) bs(ζ) dζ E
e εe (4.45)

Eq. 4.45 is then related to the local nodal displacements ue by means of the
matrix De (Eq. 4.15), and rigid modes are also re-introduced. The force-based
shape function matrix in the local reference system is then obtained:

Ns(x) = bTrs(x)

∫ L

0

bTr (ζ)fs(ζ) bs(ζ) dζ E
eDe + Nr(x) (4.46)

where Nr(x) is the matrix that eliminates the rigid modes:

Nr(x) =

1 0 0 0 0 0

0 1− x/L 0 0 x/L 0

0 −1/L 0 0 1/L 0

 (4.47)

Finally, the element mass matrix is written in the same form of the displace-
ment based procedure through the shape functions:

Me =

∫ L

0

Ns(x)
T ms(x)Ns(x) dx (4.48)

In Eq. 4.48, ms(x) is the section mass matrix, which depends on the material
density ρ and the cross-section area A, which can both vary along the beam axis:

ms(x) =

∫
A

ρ(x, y)

 1 0 −y

0 1 0

−y 0 y2

 dÃ (4.49)

The matrix in Eq. 4.49 relates the generalized section accelerations to the
generalized section intertia forces.

It is noteworthy that if a constant section and constant properties along the
axis are considered, for a rectangular section, the obtained matrix is equal to the
one obtained by adopting a displacement-based shape funcions approach.

The correctness of the implementation is validated throug the results obtained
in Leissa and Zhang (1983), where the adimensional frequencies of a cubic and a
rectangular beam are considered, obtaining a good agreement of the results.
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4.3 Computational aspects and solution algorithm

The main computational aspects are briefly discussed. In particular, the iterative
procedure and the solution algorithms adopted are described.

The model is implemented in a user frame element in the Finite Element
Analysis Program FEAP (Taylor, 2017), and introduced in a displacement-based
framework.

The numerical static nonlinear problem is solved through a Newton-Raphson
algorithm, which computes the element quantities at each step in the global ref-
erence system. The state of each element is then determined, and an iterative
procedure is estabilished to enforce the element equilibrium. A second nested
iterative procedure is then performed, to enforce equilibrium and compatibility
conditions between the two flexural and the shear hinges.

The solution of the finite element dynamic motion equation in the time domain
uses an implicit Newmark algorithm, whose coefficients β and γ assume the values
of 0.25 and 0.5 respectively, for an unconditionally stable solution procedure. At
each time step ∆t, the Newton-Raphson algorithm solves the nonlinear problem.

4.3.1 Element state determination

The iterative Newton-Raphson procedure is described in the present paragraph,
referred to a single frame element, and labelling with k+1 the current iteration and
with k the previous one. Incremental equilibrium, compatibility and constitutive
equations are considered, in which the quantities are labelled in the following as
∆•.

The global nodal displacements uk+1 and displacement increments ∆uk+1 are
computed at the current iteration k+1 of the Newton-Raphson global procedure,
and are rotated in the local reference system of the element through the rotation
matrix Te

u:

∆uek+1

= Te
u∆uk+1 (4.50)

The basic displacement increments are evaluated at the current iteration, on
the basis of the displacement increments in the local reference system:
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∆εe
k+1

= De∆uek+1

(4.51)

The basic element force increments are computed throught the element flex-
ibility matrix evaluated at the previous iteration, with the hypotesys of a linear
relationship between the two quantities:

∆σek+1

= (Fek)−1∆εe
k+1

(4.52)

and are used to evaluate the deformation increments in input in the flexural and
shear hinges, by means of the tangent flexibility of each hinge at the previous
iteration:

∆ϕk+1
hi

= fk
hbi

∆Mk+1
i (4.53)

∆ϕk+1
hj

= fk
hbj

∆Mk+1
j (4.54)

∆γk+1 = fk
hs

∆Mk+1
i +∆Mk+1

j

L
(4.55)

These latter quantities update the deformations evaluated at the previous it-
eration:

ϕk+1
hi/j

= ∆ϕk+1
hi/j

+ ϕk
hi/j

(4.56)

γk+1 = ∆γk+1 + γk (4.57)

and enter in the modified Bouc-Wen constitutive law of the hinges.
A second iterative procedure is introduced at this point, described in the fol-

lowing paragraph, to enforce equilibirum and compatibility conditions between
the flexural and shear hinges. Tangent flexibility and force terms of each hinge
are obtained as output quantities at the current iteration:

ϕk+1
hi/j

→ fk+1
hbi/j

;Mk+1
hi/j

(4.58)
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γk+1 → fk+1
hs ;T k+1

hs (4.59)

The element flexibility matrix is updated at the current iteration with the
new tangent flexibility terms of the hinges (Fek → Fek+1

), while the elastic terms
remain unchanged. Deformation residuals, ρi and ρj, are computed at the cur-
rent iteration between the equilibrated forces and the hinges output forces, and
collected into a deformation residual vector:

re
k+1

= {0, ρi, ρj}T (4.60)

Details on the residuals will be given in the following paragraph.
The local basic forces are then updated:

σek+1

= ∆σek+1

+ σek − (Fek+1

)−1 re
k+1

(4.61)

Finally, the element stiffness matrix and the element internal force vector are
computed at the current iteration as: Kek+1

= (De)T (Fek+1

)−1De and pek+1
=

DeTσek+1 .
The current element stiffness matrix and force vector are then rotated in the

global reference system and are forwarded to the global Newton-Raphson proce-
dure performed by the program FEAP.

4.3.2 Hinges iterative procedure

In Addessi et al. (2015), a consistent procedure to avoid element iterations and to
compute local deformation residuals that are used in the global Newton-Raphson
algorithm is proposed. However, the high nonlinearity of the modified Bouc-Wen
model emplyed as a constitutive model in the flexural and shear hinges, requires
an iterative procedure to ensure equilibrium conditions between the output forces
from the hinges and the equilibrated local basic forces of the elastic element.

The second iterative procedure begins from Eq. 4.56, where the updated
deformations at the current iteration are evaluated for the flexural hinges and
are used in input in the subroutine that evaluates the tangent flexibility and the
moment in output from the two flexural hinges (Eq. 4.58). The local deformation
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residuals are evaluated for each of the two flexural hinges:

ρi = fk+1
hbi

(∆Mk+1
i + Mk

i − Mk+1
hi

) (4.62)

ρj = fk+1
hbj

(∆Mk+1
j + Mk

j − Mk+1
hj

) (4.63)

If these residual are higher than a tolerance value equal to 10−12, they are used
to update the deformation increment of the shear hinge evaluated as in Eq. 4.55
and the respective shear deformation at the current iteration, multiplied by the
length of the element to transform residuals in terms of rotation, to residuals in
terms of shear deformation:

∆γk+1 = ∆γk+1 + ρi L + ρj L (4.64)

γk+1 = ∆γk+1 + γk (4.65)

The current value of shear deformation is input in the shear hinge, and the
tangent flexibility and shear force are evaluated (Eq. 4.59). The shear deformation
residual is obtained by comparing the shear force evaluated through the moments
output from the flexural hinges and the output shear force of the hinge as:

ρhs =
fk+1
hs

L

(Mk+1
hi

+Mk+1
hj

L
− T k+1

hs

)
(4.66)

Equilibrium between the flexural and the shear hinges is enforced in this latter
equation. If the residual is greater than a tolerance value equal to 10−12, itera-
tions are enforced and the shear residual updates the shear deformation, until the
residual is nullified. By calling l + 1 and l the current and previous terations re-
spectively, the updated shear deformation increment and shear deformation input
in the hinge are:

∆γk+1l+1

= ρhsl+1 + ∆γk+1l (4.67)

γk+1l+1

= ∆γk+1l+1

+ γk+1l (4.68)
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Iterations are repeated until the shear residual value is lower than the tolerance
value or the maximum numer of iterations imposed is reached.

Iterations over the flexural hinges are now enforced, to lower the rotation
residuals under the limit value imposed by the tolerance. Calling m + 1 and m

the current and the previous iterations, respectively, the rotation increments are
updated:

∆ϕk+1m+1

hi/j
= ρi/j + ∆ϕk+1m

hi/j
(4.69)

These are then passed in Eq. 4.56 and iterations are performed. Equilibrium
between the equilibrated forces and the moment output values of the flexural
hinges is then obtained.

The numerical stability of the macroelement is then improved, at the expense
of a low increase of the computational burden.

4.4 Static model validation

A validation of the static behavior of the macroelement is presented. The exper-
imental behavior of the two unreinforced masonry panels tested in 1995 at the
Joint Center of Ispra (Anthoine et al., 1995), one of which is already used also in
Paragraph 3.4.1, is reproduced through the complete numerical model.

Together with the squat panel, whose heigth is 1.35m, a slender panel, 2m
high and with the same base and thickness dimensions, is considered. The effective
boundary and loading conditions are applied in this case, meaning that in a first
phase a vertical load equal to 150 kN for both panels is applied, followed by a quasi-
static horizontal displacement history applied on top. The yielding parameters are
evaluated according to the perscriptions indicated in Paragraph 4.1.4, adopting
the mechanical parameters listed in Tab. 4.1, where fc is the compressive strength
and fv0 the shear strength in the absence of normal stress. Tab. 4.2 contains the
parameters used for the modified Bouc-Wen hysteretic model of the hinges.

Fig. 4.4 shows that both cases of a slender and a squat panel can be properly
reproduced by the model. In particular, the same set of damage parameters is
used, as these depend on the degradation of the type of masonry adopted to build
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Table 4.1: Masonry mechanical parameters

E G fc fv0
kN/m2 kN/m2 kN/m2 kN/m2

1700 103 300 103 6200 140

Table 4.2: Nonlinear hinges parameters

Squat wall
Flexural hinges Shear hinge
a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1

0 0.12 2.0 0 0.12 2.0

Slender wall
Flexural hinges Shear hinge
a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1

0.1 0.12 2.0 0.1 0.12 2.0
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Figure 4.4: Comparison between experimental and numerical results for the Ispra
squat wall (a) and Ispra slender wall (b)

the specimens.
The main aspects of the behavior of the squat wall, such as the energy dissipa-

tion and the strong strength and stiffness degradation are quite well-captured. In
the case of the slender panel, where the two flexural hinges have a strong influence
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on the response, the initial stiffness can be quite well reproduced, together with
the pronounced pinching and stiffness degradation of the unloading branches. In
this latter case, a value of kNLE

0 = 0.25 and FNLE
0 = 45 kN are adopted.
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Figure 4.5: Comparison between experimental and numerical results for the Ispra
squat wall with a Bouc-Wen model with flexibility increase only (a) and with a
Bouc-Wen model with damage only (b)

To better investigate the influence of damage and flexibility increase on the
response of the squat panel, two additional cases are presented in Fig. 4.5. Fig.
4.5 (a) shows the presence of flexibility increase only, with a value of δK equal
to 1.5 kJ−1 and δD equal to 0, while in Fig. 4.5 (b) a case with damage only is
considered, assuming a value of δD equal to 0.04 kJ−1 and δK equal to 0. In both
cases, the parameters are calibrated with the aim of having a good respondence
between the numerical and the experimental results.

The comparison between the experimental results and those obtained with a
Bouc-Wen model with flexibility increase only shows a quite good respondence
between the two cyclic curves in terms of stiffness degradation (Fig. 4.5 (a)). The
area of the cycles is similar to that of the numerical curve, as well as the energy
dissiapted at each cycle, thanks to the δK parameter which shrinks the cycles.
However, no strength degradation is experienced, and the same value of force is
reached with the progress of the analysis. Coherently with Fig. 3.5, Fig. 4.5
(b) shows that the model with damage only is able to well capture the strength
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degradation, however the area of the force-displacement cycles is considerably
wider with respect to that of the experimental curve, and consequently the energy
dissipated by the system is excessively higher. Moreover, the effect of the δD

parameter on the stiffness degradation is too modest to match the actual stiffness
degradation experienced.

4.5 Dynamic behavior of masonry panels

The macroelement model is employed for the analysis of two masonry panels, in
order to test the performance of the modified Bouc-Wen consitituive law in the
dynamic field. In particular, the mechanical parameters described in Tab. 4.1
are adopted fpr both, with the aim of simulating the same unreinforced masonry
made of bricks and lime mortar of the Ispra panels, but different geometrical and
boundary characteristics are defined. The maximum elastic displacement, which
indicates the elastic range threshold, is evaluated according to Par. 4.1.4.

A squat wall and a slender wall are considered, having an aspect ratio equal to
1.35 and 3, respectively, with the aim of highlighting the shear hinge behavior in
the first case and the flexural behavior in the second. Three harmonic excitations
are applied in each case at the base of the panel, to simulate an acceleration time
history, in which the ratio between the angular frequency of the excitation Ω and
the one of the panel ω is constant and proximate to resonance, increasing and
decreasing. These are derived through acceleration histories whose equation is:
ü(t) = Usin[Ω(t) t], where U is the amplitude of the excitation and Ω the angular
frequency of the excitation. In addition, for each of the panels, the behavior of
the proposed modified Bouc-Wen model is compared to an elastic case, a classic
Bouc-Wen hysteresis and a modified Bouc-Wen case with damage only, proposed
in Liberatore et al. (2019).

Further modifications to the panels, regarding geometric assumptions and con-
stitutive parameters, are investigated more in detail in the following paragraphs.

83



Chapter 4: 2D macroelement formulation

4.5.1 Squat panel

The squat panel has a ratio between its height and base equal to 1.35, with a
thickness equal to 0.25m. Regarding the boundary conditions, the rotation is re-
strained at both the top and base of the panel, allowing the horizontal translation
of the top only.

Regarding the dynamic parameters, a 5% damping factor is assumed, and
a density mass equal to 4.8 t/m3 is set, increased with respect to the literature
reference value to get a high natural period for the panel, which permits to attain
high displacement amplitudes, to better emphasize the shape of the hysteretic
cycles.

The amplitude of the three excitations is set equal to 60m/s2, while the ratio
between the angular frequency of the excitation and that of the panel (Ω/ω) is
taken equal to 0.95 in the constant case, while it ranges between 0.2 and 1.5 in
the increasing and decreasing cases.

The values adopted for the flexural and shear hinge parameters of the modified
Bouc-Wen case are listed in Tab. 4.3. It is noteworthy that the contribution of
the flexural hinges for this panel results as negligible, thus in the following only
the shear hinge results are shown.

Table 4.3: Nonlinear hinges parameters for the dynamic analysis of the squat
panel

Flexural hinges Shear hinge
a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1

0.1 0.2 0.3 0.1 0.2 0.3

Figs. 4.6, 4.7 and 4.8, show the response of the panel to fixed, increasing
and decreasing Ω/ω ratio respectively, presenting in red the proposed modified
Bouc-Wen case, in dashed blue the classic Bouc-Wen case and in dashed black
the elastic case. Results are shown in terms of global displacement ∆ of the top
of the panel with respect to its base, shear hinge loops and damage variable D of
the shear hinge.
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Figure 4.6: Squat panel dynamic response; global horizontal displacement (a),
damage trend (b), shear hinge response (c) to the excitation with fixed Ω/ω
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Figure 4.7: Squat panel dynamic response; global horizontal displacement (a),
damage trend (b), shear hinge response (c) to the excitation with increasing Ω/ω

Analyzing the case with fixed Ω/ω ratio first, Fig. 4.6 shows that in the first
cycle the classic and modified Bouc-Wen models cover a similar path, but depart
immediately after, due to the higher displacement, and consequently higher pe-
riod, reached by the modified case. The damage variable, which assumes values
different from zero only in the modified Bouc-Wen case, thanks to its depen-
dency on the dissipated energy and to the thermodynamic assumptions reported
in Chapter 3, results to be increasing during the entire analysis, until the vlaue
of approximately 0.45. However, its growth shows two different trends, one in
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Figure 4.8: Squat panel dynamic response; global horizontal displacement (a),
damage trend (b), shear hinge response (c) to the excitation with decreasing Ω/ω

the first 0.1 s, and one in the rest of the analysis. In the first section, a more
rapid growth is shown, until the value of 0.1, which is almost a quarter of the
maximum value reached. This is strictly connected to the first couple of cycles of
the analysis, in which the largest displacements are experienced. After that, the
following cycles reach displacement levels that are lower and almost constant. In
these latter, the influence of damage on the panel behavior can be detected. The
presence of damage and flexibility increase causes strength and stiffness reduc-
tion, which is spread during the rest of the analysis and shows a smooth trend.
The hysteretic cycles are then narrower, and their equivalent stiffness tends to be
reduced at each cycle.

The different frequency content of the excitations with increasing and decreas-
ing Ω/ω ratio, shows significantly different responses of the panel.

The case with increasing Ω/ω ratio is analyzed first. The modified and classic
Bouc-Wen models experience similar behavior in terms of global displacement. In
fact, they both show a short and rapid raise of the displacement amplitude in the
first couple of cycles, followed by an almost continuous decrease for the rest of
the duration of the signal, until reaching a stationary response assessed on really
low values of residual displacement, with an amplitude of the oscillation that is
almost null. Also, the classical Bouc-Wen model shows a residual displacement
more pronounced than that of the modified formulation. This discords from the
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behavior of the elastic case, which, on the contrary, shows an increasing displace-
ment amplitude until about 0.35 s, followed by a rapid decrease of the response
until an almost null oscillation around the zero displacement. The shear hinge of
the modified Bouc-Wen hysteresis clearly shows the effects of strength and stiff-
ness degradation with respect to the classic case. This is also highlighted by the
shrinkage of the cycles caused by flexibility increase, which enhances their trend
to reduce the equivalent stiffness. The maximum value of damage, 0.34, is rapidly
reached few steps later than 0.2 s, after which a short and smooth increasing phase
can be detected, followed in the rest of the analysis by a constant value. In this
latter phase, the decreasing hysteretic cycles tend to have a null area and no
further damage is experienced.

In the last case, in which the Ω/ω ratio is decreasing (Fig. 4.8), the rapid
increase of the damage variable from 0 to 0.9 is concentrated between 0.2 and
0.6 s, when global displacement with increasing amplitude until the maximum
value and fat-shaped and wider shear cycles are experienced. After a first initial
short phase in which the classic Bouc-Wen cycles are almost overlapped to those of
the modified Bouc-Wen case, damage becomes overriding and strength reduction
is experienced. Stiffness is also reduced in the loading and unloading branches
due to the presence of flexibility increase, leading to reach higher displacement
values whith respect to the classic Bouc-Wen case. The last 0.4 s of the analysis
are characterized by a reduction of the displacements amplitude and an increase
of the period which results in a low number of cycles experienced. Thin hysteretic
cycles can be detected, in which the drastic strength and stiffness degradation
leads to an almost null area, to which correspond a loose increase of the damage
variable, which goes from the value of 0.9 to 0.95.

It should be emphasized that even if in the increasing sweep case damage
increases from the very beginning of the analysis, with respect to Fig. 4.8 where
it starts increasing after 0.2 s, its growth is more rapid and is concentrated in
a lapse of time that is almost half as much as the case with increasing forcing
frequency, while the maximum reached value is a third with respect to the other
case.

The hysteretic behavior in presence and absence of flexibility increase is in-
vestigated in the following, considering the same three excitations and comparing
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the elastic (dashed black line), the proposed modified Bouc-Wen (solid red line)
and the case with damage only (dashed blue line). Moreover, to better appreci-
ate the influence of the studied parameter, the flexibility increase parameter δK

is increased from the value of 0.3 kJ−1 to the value of 5 kJ−1, while the damage
parameter δD keeps the value assumed in Tab. 4.3. Each case is divided into two
figures, with the aim of highlighting different sections of the same curve.
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Figure 4.9: Response of the squat panel with δK = 5 kJ−1: shear hinge response
and damage for an excitation with fixed Ω/ω. Zoom on the first cycles (a), zoom
on the following cycles (b)

The response to the excitation with fixed Ω/ω ratio is shown in Fig. 4.9,
where Fig. 4.9 (a) displays the initial cycles and Fig. 4.9 (b) the second part of
the analysis. The flexibility increase effect can clearly be detected in Fig. 4.9 (a)
where, despite the same strength degradation level is imposed, a rapid thinning
of the cycles, with respect to the case with damage only, can be seen in the
modified Bouc-Wen. The evolution of dissipated energy affects and enhances the
flexibility contribution with the progression of the analysis, tightening the cycles.
This results also in visibly higher shear strain values. In Fig. 4.9 (b), the focus
is on the resonant response experienced by the panel. The presence of flexibility
increase reduces the cycles almost to lines, lowering also their slope as the analysis
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evolves. On the contrary, the cycles with damage only tend to maintain the large
shape typical of the Bouc-Wen cycles, showing strength reduction only. Interesting
considerations concerning the evolution of damage can be made. The case with
damage only, in fact, experiences a higher damage value with respect to the other
case during the entire duration of the analysis, with the exception of the first
cycle, when the two behaviors are almost coincident. The reduction of the area
of the cycles, caused by the increase of the elastic displacement, leads to a lower
dissipated energy for each cycle. Consequently, the values of damage reached
by the case with flexibility increase are significantly lower, i.e. 0.1 with respect
to 0.6 reached by the case with damage only, being the scalar damage variable
D directly related to the dissipated energy. The damage graph in Fig. 4.9 (b)
clearly shows this trend after 0.1 s, where the level of damage experienced in the
case with flexibility increase is almost constant, having the experienced cycles an
almost null area, while a significant smooth increase of the variable D until the
end of the analysis is observed in the case with pure damage.
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Figure 4.10: Response of the squat panel with δK = 5 kJ−1: shear hinge response
and damage for an excitation with increasing Ω/ω. Zoom on the first cycles (a),
zoom on the following cycles (b)

The results shown in Figs. 4.10 (a) and (b) are in agreement with Figs. 4.9
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Figure 4.11: Response of the squat panel with δK = 5 kJ−1: shear hinge response
and damage for an excitation with decreasing Ω/ω. Zoom on the first cycles (a),
zoom on the following cycles (b)

(a) and (b), confirming that the case with damage only reaches a higher damage
variable value. The influence of flexibility increase in shown in both the hysteretic
curves from the first cycles of the analysis, in which the panel reaches higher
values of shear deformation with considerably lower stiffness in the loading and
unloading branches. In both cases, after about 0.12 s, the cycles tend to rapidly
collapse around the origin (Fig. 4.10 (b)), as the increasing angular frequency of
the excitation makes the panel experience cycles with lower amplitudes with the
progression of the analysis. The amplitude of the cycles of the panel with δK equal
to 5 kJ−1 is rapidly annulled, interrupting the growth of the damage variable. On
the contrary, the case with pure damage still shows an increasing variable D, as
some of the subsequent cycles still show strength degradation, having a non-null
amplitude.

Finally, Fig. 4.11 (a) shows visibly thinner cycles for the modified Bouc-Wen
hysteresis, in accordance with the behavior described previously. Damage onsets
at about 0.2 s in both cases, when the panel response exits from the elastic range,
and increases until 0.5 s for the case with flexibility increase and 0.6 s for the case
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with damage only. After that, it continues almost constant until the end of the
analysis. This latter section of the curve, shown in Fig. 4.11 (b), corresponds
in both cases to thin cycles with low area and consequently with low energy
dissipation. In addition, the case with δK equal to 5 kJ−1 reaches a maximum
value of damage equal to 0.4, even if the experienced cycles are reduced to lines,
while the case with null δK almost reaches a value equal to 1, being the fully
damaged state. The presence of flexibility increase thus reduces the values of the
damage variable D reached during the analysis.

Finally, phase space diagrams are also presented for the three excitations, by
correlating the displacement to the velocity experienced by the panel, for the
initial modified Bouc-Wen case, with δK = 0.3 kJ−1.
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Figure 4.12: Phase space diagrams for the three excitation for the modified Bouc-
Wen with damage and flexibility increase (red), the classic Bouc-Wen (blue) and
the elastic (black) cases.

The resonant case (Fig. 4.12 (a)) shows how the two Bouc-Wen cases ex-
perience always lower cyclies with respect to the elastic case, and are almost
overlapped. This is consistent with the results obtained in Fig. 4.6, where the
resonant condition of the elastic case experienced the widest displacements with
a constant amplitude. In the case of the increasing sweep (Fig. 4.12 (b)), in all
three cases the cycles tend to collapse to the origin, consistently with the behavior
shown in the previous figures. An oval-shaped trend can be detected for both the
Bouc-Wen cases, and the case with flexibility increase experiences wider displace-
ments and velocities. The modified Bouc-Wen case in the decreasing sweep case
(Fig. 4.12 (c)) experiences the widest cycles again, on both the displacement and
velocity axes, collapsing to the origin in the final instants. The classic Bouc-Wen

91



Chapter 4: 2D macroelement formulation

and the elastic case both experience really lower amplitude.

4.5.2 Slender panel

The slender panel analyzed is characterized by a height equal to 3m and base
length equal to 1m, resulting in a geometric ratio equal to 3, while the thickness
is equal to 0.25m. In Tab. 4.4, the parameters adopted for the flexural and shear
hinges are listed. Similarly to the squat panel, in the following analyses the major
contribution to the response in given by the flexural hinges, and the shear hinge
contribution is not relevant.

A damping factor equal to 5% is assumed, consistently with the squat case,
while a density mass equal to 1.8 t/m3 is considered.

The three harmonic excitations are obtained by setting the ratio between the
frequency of the excitation Ω, and the frequency of the wall ω equal to 0.95, close
to the resonance condition, and considering that the period of the excitation varies
between 0.2 and 1.5 times the period of the wall for the increasing and decreasing
cases. The amplitude of the excitations is equal to 1.2 g, where g is the gravity
acceleration, in all cases.

Table 4.4: Nonlinear hinges parameters for the dynamic analysis of the slender
panel

Flexural hinges Shear hinge
a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1

0.1 10 10 0.1 10 10

In this case as well, the response of the wall clearly highlights how the presence
of damage and flexibility increase affects the hysteretic behavior, as can be seen in
the following figures. Results are given in terms of global displacement of the top
of the panel, variation of the period with respect to the initial elastic period in time
and the behavior of the flexural hinge located at the base of the panel in terms
of moment and rotation. The proposed modified Bouc-Wen model, represented
in solid red line, is compared to the classic Bouc-Wen, in dashed blue line, and
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the elastic case, in black. Each case is then divided into two figures, to highlight
different sections of the curves.

In all the cases, as expected, the period of the case with degradation results
higher than the period of the classic Bouc-Wen hysteresis.
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Figure 4.13: Slender panel dynamic response; global horizontal displacement (a),
damage trend (b), flexural hinge response (c) to the excitaion with fixed Ω/ω
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Figure 4.14: Response of the slender panel: flexural hinge response and ratio
between the secant and the initial elastic period for an excitation with fixed Ω/ω.
Zoom on the first cycles (a), zoom on the following cycles (b)
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Fig. 4.13 shows the response to the excitation with fixed Ω/ω ratio. The
behavior experienced is close to that seen for the squat panel: after the first couple
of cycles, in which the maximum displcement is reached, the case with degradation
departs from the elastic displacement and damage increases. This allows the panel
with damage and flexibility increase experience lower displcements with respect to
the classic Bouc-Wen case (Fig. 4.13 (a)) in some of the following cycles, where the
resonance condition is reached for all three cases. The evolution of damage shows
a first phase in which a rapid increase is experienced, followed by a second phase
with a more gradual growth, due to the reduction of the area of the hysteretic
cycles.

Fig. 4.14 (a) clearly shows the effect of degradation in the hinge response of
the case with flexibility increase. A modal analysis is performed at each step of the
analysis, in order to evaluate the variation of the period in presence of damage and
flexibility increase. The secant period is evaluated from the secant stiffness at each
time step, thus the maximum value of period is reached in correspondence of the
maximum displacement experienced, while in the unloading branches and for lower
displacements experienced afterwards, the period remains constant. It is shown
that the first cycle of the case with flexibility increase is almost overlapped with
the classic Bouc-Wen curve, however from the second cycle on, both the strength
and stiffness degradation affect the moment, increasing the rotation experienced
at each cycle and consequently the period of the system, which reaches its highest
value. The following cycles, in Fig. 4.14 (b), do not contribute to increasing the
period, which remains constant, being reached lower displacements. However, the
cycles are narrower, due to the presence of the flexibility increase, and the value
of the moment is clearly affected by strength degradation.

Figs. 4.15 and 4.16 show the results of the excitations with increasing and
decreasing Ω/ω ratio, respectively.

In Fig. 4.15, the widest cycles are experienced in the first 0.3 s of the analysis,
where damage shows a rapid increase in a short lapse of time. On the contrary, the
following cycles have a decreasing amplitude, and the period remains constant.
Both strength and stiffness degradation can easily be distinguished in the flexural
hinge response. Coherently with the case with fixed Ω/ω ratio, the first cycle is
almost overlapped to the classic Bouc-Wen model, while the following are visibly
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Figure 4.15: Slender panel dynamic response; global horizontal displacement (a),
damage trend (b), flexural hinge response (c) to the excitaion with increasing Ω/ω
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Figure 4.16: Slender panel dynamic response; global horizontal displacement (a),
damage trend (b), flexural hinge response (c) to the excitaion with decreasing
Ω/ω

thinner, with a strong stiffness degradation in the loading and unloading branches.
Moreover, the cycles with decreasing amplitude become almost nonlinear elastic,
as the dissipation capacity of the hinge is depleted, the nonlinear elastic device in
parallel with the modified Bouc-Wen hysteresis prevails and the damage variable
reaches values close to 1.

Regarding the decreasing excitation (Fig. 4.16), the widest cycles are experi-
enced forward in the analysis, approximately between 0.3 and 0.5 s. The shrinkage
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of the cycles caused by the flexibility increase can then be recognized, and higher
rotation are reached with respect to the classic Bouc-Wen model. It is noteworthy
that the value of damage reached in the modified Bouc-Wen is 1, and the panel
results fully damaged.
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Figure 4.17: Response of the slender panel to the excitation with fixed ratio
Ω/ω = 0.95 and amplitude equal to 0.4 g, 1.2 g, 2 g.

The effect of the amplitude of the excitation on the evolution of damage and
flexibility increase is also investigated. Two additional excitations, with amplitude
equal to 0.4 g and 2 g respectively, are considered for the case with fixed Ω/ω ratio,
and compared to the case with 1.2 g amplitude. The results in Fig. 4.17 show, as
expected, that the response to the higher excitation reaches higher displacements.
When the amplitude of the excitation is lower, even though the damage variable
has smaller values compared to the other cases, its growth is more spread over
time. This is due to the circumstance that the maximum displacement experienced
is reached by the system later and more gradually, suggesting a more spread
distribution of the damage over the wall. On the contrary, the case with higher
amplitude shows a more rapid increase of damage in a shorter lapse of time, as
the maximum displacement is reached at the second cycle of the analysis.

The resonant case (Fig. 4.18 (a)) shows how the two Bouc-Wen cases ex-
perience always lower cyclies with respect to the elastic case, and are almost
overlapped. In the case of the increasing sweep (Fig. 4.18 (b)), the largest cycle
experienced belongs to the modified Bouc-Wen case, which is also oval-shaped
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Figure 4.18: Phase space diagrams for the three excitation for the modified Bouc-
Wen with damage and flexibility increase (red), the classic Bouc-Wen (blue) and
the elastic (black) cases.

with respect to the other cases. The decreasing sweep (Fig. 4.18 (c)) shows the
most interestig behavior: the cycles are shifted to the left, due to the residual dis-
placement experienced, and the modified Bouc-Wen case has the widest area. All
cases, this latter in particular, have a more squared behavior, due to the presence
of the pinching effect.

4.5.3 Masonry slender wall

A second slender wall is analyzed, with the aim of comparing the performance
of the macroelement model with a 2D finite element approach in which an ad-
vanced consititutive law with damage (Gatta et al., 2018) is implemented. The
performance of the macroelement and of the constitutive law with damage and
flexibility increase is also tested within nonlinear dynamic analyses.

4.5.3.1 Quasi-static cyclic excitation

The panel wants to reproduce the central portion of a wall in which the length
dimension is predominant compared to its height and thickness, loaded in the
out-of-plane direction, typical characteristics of historical buildings or churches.
A strip is then modeled as it is loaded in the in-plane direction, and the thickness
of the wall becomes the base of the numerical model. As an example, the wall
of Basilica S. Maria di Collemaggio, in L’Aquila (Italy), is considered for the
geometry and mechanical parameters. The numerical model has then a height
of 6m, a base of 1m and a thickness of 1m, and the mechanical parameters are
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those listed in Tab. 4.5 (Gattulli et al., 2013). Boudary conditions are those of a
simple cantilever, with the base fixed.

Table 4.5: Slender wall mechanical parameters

E G fc fv0
kN/m2 kN/m2 kN/m2 kN/m2

4000 103 1666.667 103 4200 290

The shear modulus G is evaluated as G = E/(2(1 + ν), considering ν = 0.2;
the compressive and shear strengths are chosen in accordance with the perscrip-
tions given in NTC (2018). For the modified Bouc-Wen model, which describes
the behavior of the flexural hinges, the parameters listed in Tab. 4.6 are adopted.
The wall is subjected to its self-weigth first, and then to a quasi-static cyclic dis-
placement history applied at the top. The results (in red), shown in Fig. 4.19, are
compared to the results obtained in Gatta et al. (2018) (in black), which adopt
a 2D FE macromechanical approach with a constitutive law with damage and
plasticity.

Table 4.6: Nonlinear hinges parameters for the dynamic analysis of the 6m slender
wall

Flexural hinges
a δD δK n
− kJ−1 kJ−1 −

−0.01 0.34 1.25 2

The shear hinge is assumed elastic during the entire analysis, being its con-
tribution negligible due to the high slenderness of the panel. Only the flexural
hinge at the basis of the panel is activated, consistently with the damage ivolution
experienced in the FE model.

The equivalent frame model is able to capture quite well the main aspects of the
response, such as the straight and severe initial elastic branch of the panel and the
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Figure 4.19: Response of the 6m slender panel to a quasi-static cyclic excitation.
Comparison with 2D FE model with plasticity and damage (Gatta et al., 2018)
(a), flexural hinge response (b), damage evolution (c).

maximum force reached, or the strong degradation of both strength and stiffness
during the evolution of the analysis, confirming its capability to reproduce with
sufficient accuracy the response of masonry panels. However, some limits of the
macroelement emerge. The pronounced softening behavior of the FE panel, caused
by the rocking mechanisms experienced during the analysis, is hardly captured,
and a negative hardening parameter a is required. The degrading behavior appears
less severe, especially in the second and third cycle, compared to the FE model.
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Figure 4.20: Comparison between the damage pattern of the 2D FE Gatta et al.
(2018) model and the damage variable D of the equivalent frame model with
flexural hinge
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Comparable values of the damage parameter are obtained (Fig. 4.20), even if
it should be noted that in the 2D FE model damage is spread over the panel and
due to tensile states, while in the equivalent frame model it is considered lumped
entirely at the base of the panel and related mainly to energy dissipation.

4.5.3.2 Linear dynamic investigation

A linear dynamic analysis in perfomed with the aim of validating the use of a con-
sistent mass matrix instead of a lumped mass matrix when the dynamic behavior
is studied.

The results relative to the first three natural vibration frequencies of the F.E.
model, of the equivalent frame model with a consistent mass matrix and of the
equivalent frame model with a lumped mass matrix are shown in Tab. 4.6, and
are evaluated assuming a density mass value ρ equal to 2 t/m3.

Table 4.7: Comparison of the first three natural vibration frequencies of the Gatta
2D FE model, equivalent frame model with consistent and lumped mass matrix.

f1 f2 f3

− Hz Hz Hz
Gatta 2D FE 6.23 35.16 86.98

BW D+FI Consistent 6.25 54.57 70.21
BW D+FI Lumped 4.36 53.05 103.31

From the quasi-static cyclic results, the initial stiffness of the panel results to
be approximately equal to that of the 2D FE model. All the differences between
the vibration frequencies are, thus, exclusively due to the evaluation of the mass
matrix.

The lumped mass approach results in really different results, in all three cases,
giving a value relative to the first vibration frequency with an error equal approx-
imately to 30% with respect to the FE case.

However, as expected, the results of the consistent mass matrix correspond
to the 2D finite element model with really good accuracy, with an error equal
to 0.3%. The second vibration frequency results equally inaccurate for both the
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lumped and consistent mass approaches, with an error close to 35%. On the
contrary, the third frequency is lower for the consistent case with respect to the
finite element model.

4.5.3.3 Nonlinear dynamic excitation

The dynamic response of the panel to a nonlinear dynamic excitation is investi-
gated. The W-E component of the 2009 L’Aquila (Italy) natural record is selected,
characterized by a 0.33 g Peak Ground Acceleration (PGA). Three different scale
factors, equal to 0.75, 1 and 1.25, are applied to the natural accelerogram, to
evaluate the influence of PGA and compare the results and evolution of damage
to the 2D finite element case.
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Figure 4.21: Acceleration history of 2009 L’Aquila earthquake (a) and response
spectrum (b).

First, an elastic case is performed with the full scale natural accelerogram, to
compare the nonlinear response of the consistent and lumped mass approaches.
In Fig. 4.22 and following, only the most relevant part of the response is reported,
between 6 and 26 s of the natural accelerogram, and is shifted to the origin.

Consistently with the results of the modal analysis, the modified Bouc-Wen
case with consistent mass approach results in a closer response to that of the 2D
FE model. In the peak phase, between about 2 and 4 s, the consistent mass case
experiences displacements that are a little higher, while in the following cycles
displacements are a little lower. The lumped mass approach, due to the minor
quantity of mass excited at the top node, experiences a different oscillation with
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respect to the other cases, and has a lower amplitude until about 6 s, and higher
displacements in the rest of the analysis. Fig. 4.21 (b) is useful to explain this
phenomenon, as the period of the consistent case is close to the peak of the pseudo-
acceleration of the spectrum. The period of the lumped case instead, encounters
the spectrum on higher values of the period, where lower pseudo-accelerations are
experienced.
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Figure 4.22: Comparison between the elastic response of the Gatta 2D FE model
and the modified Bouc-Wen model with a lumped mass matrix, and with that
with a consistent mass matrix.

Once the elastic cases are proven to behave similarly, the modified Bouc-Wen
model with damage and flexibility increase with consistent mass matrix is com-
pared to the 2D model with damage and plasticity in Gatta et al. (2018), to study
how a lumped damage model behaves with respect to a distributed damage model.
Damage is localized, in both cases, at the base of the panel only, being the flexural
hinge at the base of the panel the only one activated in the macroelement. The
responses in terms of displacements and of evolution of damage with respect to
time are reported in Figs. 4.23, 4.24 and 4.25, where the two cases are compared.

In general, Fig. 4.23 (a) shows that a higher displacement amplitude is reached
during most of the analysis, while the period of the oscillation remains quite sim-
ilar. The peaks of the response are shifted on higher values of time, and while the
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presence of damage in the 2D FE model diminishes the amplitude of the displace-
ment after the first 5 s, in the modified Bouc-Wen model high displacements are
still reached later in the analysis. The presence of flexibilty increase reduces the
stiffness of the panel, enhancing this behavior. The residual displacement and the
last part of the response is comparable between the two cases, being little lower
for the macroelement case. The damage variable assumes a completely different
behavior. It is noteworthy that while the damage variable of the 2D FE model is
a global index of the damage experienced by the panel, in the modified Bouc-Wen
case it is relative only to the nonlinear hinge located at the base of the panel,
being the contribution of the other hinges neglectible and their damage variable
null. This latter is connected to the evolution of dissipated energy, thus when the
area of the cycles becomes null, due to the presence of both damage and flexibil-
ity increase which shrink the cycles with the analysis progression, it reaches an
asimptotic value proximate to 0.18, while the 2D FE case reaches higher values.
Moreover, the evolution of damage appears more distributed along the analysis,
as each cycle contributes to its growth, while a steeper and abrupt growth is
experienced in the other case.
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Figure 4.23: Comparison between the Gatta 2D FE model and the modified Bouc-
Wen model to the excitiation 75% L’Aquila.

A similar trend is shown in Fig. 4.24, even if higher residual displacements
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are experienced in the macroelement case, together with wider oscillations in the
central lapse of the analysis. Damage experiences a similar behavior, reaching its
maximum value equal to 0.37. In both Fig. 4.23 and 4.24, however, damage starts
to grow few tenths of a second before the 2D FE case, being the flexural hinge
activated at the very beginning of the analysis.
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Figure 4.24: Comparison between the Gatta 2D FE model and the modified Bouc-
Wen model to the excitiation 100% L’Aquila.

The last case, in Fig. 4.25, is characterized for the modified Bouc-Wen model
by a first phase, until about 7 s that almost follows the 2D F.E. model, with limited
amplitude and lower damage experienced. In the second section of the analysis
instead, high residual displacements and oscillations are experienced. This is due
to the numerical cycles, that have consumed the entire dissipable area, arriving
to have a null area and an elastic residual behavior, but continue to lower their
slope due to the flexibility increase that still dimishes the stiffness of the system.
This causes the increase of the period and also of the amplitude of the oscillation.
Damage reaches values that are higher than those of the 2D FE case, with an
almost constant value after the second section of the analysis is reached, with a
more rapid increase with respect to the rest of the analysis.

One last comparison is carried on, considering the different evolution of damage
of the flexural hinge in the three modified Bouc-Wen cases. After the first initial
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Figure 4.25: Comparison between the Gatta 2D FE model and the modified Bouc-
Wen model to the excitiation 125% L’Aquila.
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Figure 4.26: Comparison between the damage evolution in 75%, 100% and 125%
of L’Aquila excitation.

couple of seconds, where the behavior is still null or elastic, the increase of damage
start for the three cases almost at the same time. As expected, the case realtive to
the 75% of the excitation is lower than the other cases during the entire analysis.
Between 4 and 6 s, however, the case realtive to the 100% excitation overcomes
the 125% excitation case, being reached higher displacements. At about 7 s, in
correspondance of the second increase of the displacements amplitude, a relevant
increase of damage is experienced by all three cases.

In conclusion, the effect of flexibility increase deeply affects the response of the
panel. Regarding the evolution of damage, the dependence of damage from the
dissipated energy allows a more distributed evolution of the variable, that reaches
its maximum value much beyond the 2D FE case.
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Three-dimensional macroelement
formulation

Equivalent frame approaches usually focus the attention on in-plane collapse
mechanisms, neglecting out-of-plane failure modes in favour of a box-like behav-
ior assumption. In fact, the connections between the walls, as well as the con-
nections between the walls and floor diaphragms, are assumed to be sufficiently
resistent to avoid the development of out-of-plane failure mechanisms. However,
as highlighted in Chapter 2, disregarding out-of-plane mechanisms can lead to an
overestimation of the actual capacity of the structure, avoiding the possibility to
describe dangerous and sudden failures and possibly endangering users’ safety. In
fact, despite being considered as the "first damage mode" mechanisms (Magenes,
2006), out-of-plane mechanisms are usually associated to the local response of the
structural element, and thus are analysed separately through rigid-body assump-
tion analyses.

However, in more recent literature works, such as Vanin et al., 2020b,a, the
importance of a proper description of out-of-plane mechanisms in equivalent frame
approaches has been recognized. Different works, in fact, started to include them
even in simplified approaches such as macroelement models, for which a funda-
mental aspect is to combine an adequate description of the behavior with reduced
computational burdens in order to be competetive with more refined Finite Ele-
ment models. This permits to account for more complex mechanisms, and to be
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capable of describing more realistically the structural behavior expected in the
cases of existing historical buildings, especially during seismic events, which usu-
ally are characterized by timber floor diaphragms and the other poor connections
in general.

The main out-of-plane mechanisms are one-way and two-way bending modes,
which can evolve depending especially on boundary conditions.

The following Chapter proposes an enhancement of the model described in
Chapter 4 to include the out-of-plane components in the force-based formulation,
as well as nonlinear hinges for the description of the flexural mechanisms. In
particular, two cases are proposed, one with the introduction of two nonlinear
hinges, located at the end nodes of the element, and with a third hinge, located
at the center of the element.

5.1 3D formulation

This Section describes the 3D formulation of the macroelement. The extension
of the force-based formulation adopted for the beam element is given, together
with the initial introduction of two flexural hinges for the out-of-plane one-way
bending mechanism description. Attention is focused also on the definition of
the yielding domain, to evaluate the elastic threshold of the modified Bouc-Wen
hysteresis adopted in the nonlinear hinges.

A brief discussion is also made regarding the extension to 3D of the consistent
mass formulation in the dynamic field.

5.1.1 3D force-based formulation

A 3D global reference system (O, X, Y , Z) is considered, in which the 2-node
beam element is defined. With respect to the procedure expressed in Section
4.1.1, six DOFs at each node are defined, which become twelve DOFs for the
entire element. Twelve displacement components are then defined (Fig. 5.1 (a)),
six of which are translational while six are rotational, and the global displacement
vector becomes:
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u = {ui vi wi θxi
θyi θzi uj vj wj θxj

θyj θzj}T (5.1)

while the global force vector, containing six forces and six moments, becomes:

p = {pxi
pyi pzi mxi

myi mzi pxj
pyj pzj mxj

myj mzj}T (5.2)
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Figure 5.1: Beam finite elemet in the global reference system (a) and in the basic
local reference system in the three-dimensional field: in-plane components (b),
out-of-plane components (c)

The three-dimensional local reference system, defined by the coordinate system
(i, xe, ye, ze), sees the xe axis parallel to the beam axis, the ye axis orthogonal to it,
identifying together with the xe axis the in-plane displacements direction, and the
ze axis is orthogonal to both, being the xe-ze plane the out-of-plane displacements
direction (Fig. 5.1 (b) and (c)).

The out-of-plane behavior is described through a Timoshenko formulation,
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with the aim of considering the shear behavior within the elastic beam element
instead of lumping it in a proper hinge. To this end, in the following, the main
Timoshenko three-dimensional vectors and matrices needed for the force-based
approach are recalled. It is noteworthy, however, that in the in-plane direction
the shear behavior is entirely described through the nonlinear shear hinge, thus
the shear components in the in-plane direction are not considered. This is possible
being the in-plane and out-of-plane rotational and shear components completely
decoupled.

At each section of the Timoshenko three-dimensional beam element, the gener-
alized section displacement us(x) (Fig. 5.2), the section deformation vector εs(x)
and the section stress vector σs(x) are defined as follows:

us(x) = {u(x) v(x) w(x) θx(x) θy(x) θz(x)}T (5.3)

εs(x) = {ϵG(x) χz(x) γy(x) χx(x) χy(x) γz(x)}T (5.4)

σs(x) = {N(x) Mz(x) Ty(x) Mx(x) My(x) Tz(x)}T (5.5)

In Eq. 5.4, χz(x) and γy(x) are the rotational and distorsional components in
the in-plane direction, while χy(x) and γz(x) are the rotational and distorsional
components in the out-of-plane direction; χx(x) is the torsional rotation and ϵG(x)

is the axial deformation. As well, in Eq. 5.5 the corresponding stresses are written,
with Mz(x) and Ty(x) in the in-plane direction and My(x) and Tz(x) in the out-
of-plane direction.

i j
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uv

w

θx

θy
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Figure 5.2: Generalized cross-section displacements in the local reference system
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Holding Eq. 4.5, the section stiffness matrix accounts now for the additional
terms, becoming:

Ks(x) =



EA 0 0 0 0 0

0 EIz 0 0 0 0

0 0 GAt 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EIy 0

0 0 0 0 0 GAt


(5.6)

where E is the Young’s modulus, A the area of the section, At the shear area
of the section, Iz the inertia in the in-plane direction, J the torsional inertia and
Iy the out-of-plane inertia.

The variation of the section stresses with the basic element nodal forces is
still expressed through Eq. 4.7, where in the 3D Timoshenko beam element the
equilibrium matrix bs(x) is a 6x6 matrix expressed as:

bs(x) =



1 0 0 0 0 0

0 x/L− 1 x/L 0 0 0

0 1/L 1/L 0 0 0

0 0 0 1 0 0

0 0 0 0 x/L− 1 x/L

0 0 0 0 −1/L −1/L


(5.7)

The virtual work equivalence holds (Eq. 4.9), together with the relation be-
tween the basic local displacements and the section deformations (Eq. 4.10),
the evaluation of the flexibility element matrix (Eq. 4.11) and the initial basic
displacements due to distributed loads (Eq. 4.12).

The simply supported beam configuration, given by the elimination of rigid
motion required to impose the equilibrium in the strong form, allows the definition
of six local basic components for the vector εe, which are:

εe = {δu ϕzi ϕzj ϕx ϕyi ϕyj}T (5.8)

In Eq. 5.8, δu is the elongation of the beam in the direction parallel to axis
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xe, ϕzi and ϕzj are the rotations of nodes i and j respectively in the in-plane
directions, ϕx is the torsion component, while ϕyi and ϕyj are the rotations of
nodes i and j respectively in the out-of-plane directions.

Holding equation 4.14, the kinematic operator becomes a 6x12 matrix, defined
as:

De =



−1 0 0 0 0 0 1 0 0 0 0 0

0 1/L 0 0 0 1 0 −1/L 0 0 0 0

0 1/L 0 0 0 0 0 −1/L 0 0 0 1

0 0 0 −1 0 0 0 0 0 1 0 0

0 0 −1/L 0 1 0 0 0 1/L 0 0 0

0 0 −1/L 0 0 0 0 0 1/L 0 1 0


(5.9)

where L is again the length of the undeformed element from node i to node j.
The local basic force vector, which is in this case as well correlated to the local

basic displacement vector through the stiffness matrix and to the global force
vector by means of the equilibrium operator, is the following:

σe = {Nj Mzi Mzj Mx Myi Myj}T (5.10)

The relation between nodal basic displacements and forces in Eq. 4.19 holds,
and in case of a straight axis and constant properties along the element, the
flexibility element matrix is written as follows:

Fe =



L
EA

0 0 0 0 0

0 L
3EIz

+ 1
LGAt

− L
6EIz

+ 1
LGAt

0 0 0

0 − L
6EIz

+ 1
LGAt

L
3EIz

+ 1
LGAt

0 0 0

0 0 0 L
GJ

0 0

0 0 0 0 L
3EIy

+ 1
LGAt

− L
6EIy

+ 1
LGAt

0 0 0 0 − L
6EIy

+ 1
LGAt

L
3EIy

+ 1
LGAt


(5.11)

To this end, the contributions of the Timoshenko formulation in the flexibility
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matrix, being equal to 1/LGAt, are eliminated in the matrix components Fe(2, 2),
Fe(2, 3), Fe(3, 2) and Fe(3, 3).

Rigid offsets are also included in the 3D formulation, through the kinematic
operator, as a 3D extension of the method in Addessi et al. (2015).

5.1.2 OOP flexural hinges introduction

One-way out-of-plane bending failure involves a flexural mechanism that usually
occurs in slender panels that are not restrained on top, when loaded with both
monotonic or cyclic actions. This mechanism implies a rocking oscillation of the
panel about its base, where, before the occurrence of instability and the overturn-
ing of the panel, crack propagation evolves at the bottom of the panel causing a
rapid degradation of its capacity and stiffness.

To model this degradation phase, in which damage evolves before failure, flex-
ural nonlinear hinges are introduced in correspondence of the end nodes of the
elastic beam element in the out-of-plane direction, with the aim of reproducing
the flexural mechanism and the corresponding degrading behavior of strength and
stiffness. The complete macroelement configuration, in the in-plane and out-of-
plane directions, is then provided in Fig. 5.3.
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Figure 5.3: Schematization of the 3D macroelement with flexural in-plane and
out-of-plane and shear in-plane hinges

The modified Bouc-Wen model with damage and flexibility increase proposed
in Chaper 3 is introduced for the nonlinear hinges. The additional devices de-
scribed in Section 4.1.3, which allow to reproduce the pinching effect by means
of a nonlinear elastic constitutive law and to restore the initial elastic stiffness of
the elastic element by means of an elastic constitutive law with negative slope,
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are also introduced to complete the flexural behavior description.
The procedure described in Section 4.1.2 for the introduction of the flexural

hinges is adopted in the out-of-plane direction as well.
The equilibrium condition:

Myi/j = Myhi/j
= Myei/j (5.12)

holds here for the moment in the out-of-plane direction at each node, where Myhi/j

is the bending moment of the flexural out-of-plane hinge, while Myei/j the out-of-
plane bending moment at the end of the elastic element.

Kinematic conditions differ from Eq. 4.22, as the shear contribution is included
in the Timoshenko formulation adopted for the elastic element and thus shall not
be explicitely accounted. The equation becomes then:

ϕyi/j = ϕyhi/j
+ ϕyei/j (5.13)

The incremental form of the constitutive equation of each hinge, adopted to
obtain the flexibility matrix of the element according to Eq. 4.19, remains un-
changed with respect to the in-plane case, giving the equation:

ϕ̇yhi/j
= fyhbi/j Ṁyi/j (5.14)

Thus, the 6x6 flexibility matrix of the complete macroelement can be derived,
obtaining the expression in Eq. 5.15, which considers the contribution of the
in-plane and out-of-plane flexural hinges and the in-plane shear hinge.
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5.1.2.1 Initial stiffness and yielding domain

Consistently with Section 4.1.4, the initial stiffness of the two nonlinear flexural
hinges is evaluated as:

kyhbi,j =
4EIy
L

(5.16)

where Iy is the flexural inertia of the section in the out-of-plane direction, E

the Young’s modulus and L the length of the beam element in the undeformed
configuration.

This stiffness is then divided into the three nonlinear devices which compose
the flexural hinge, and considering that the fyhbi/j = 1/kyhbi/j , the total flexibil-
ity contribution of each hinge that is passed to the flexibility element matrix is
evaluated as:

fyhbi/j =
1

kmBW + kNLE
+

1

kLE
(5.17)

Each contribution is evaluated as specified in Section 4.1.3, according to Eqs.
4.27, 4.31, for the stiffness of the nonlinear elastic and the elastic negative device,
and according to Eq. 3.67 for the modified Bouc-Wen contribution.

A bi-dimensional rectangular yielding domain can be traced by considering the
yielding thresholds in the in-plane and out-of-plane directions of the cross-section,
in order to evaluate the yielding displacement required for the modified Bouc-Wen
constitutive law. It is noteworthy that for both piers and spandrels, the Italian
Standard Code does not provide specific formulations for the evaluation of the
yielding or ultimate moment in the out-of-plane direction, being the out-of-plane
machanisms treated as local mechanisms and thus prescribing different approaches
for their verification. To this end, in the following, the formulations prescribed in
the in-plane direction are adopted.

In both the in-plane and out-of-plane directions, Eq. 4.33 is adopted for piers
to evaluate the yielding moment for a rectangular section, assuming an equivalent
stress-block diagram in compression. The section dimensions, l and t, are switched
depending on the considered direction. Akin considerations are made regarding
spandrels, where Eq. 4.35 is considered instead.
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5.1.3 Dynamic formulation

The modification of the dynamic formulation is almost straightforward, as Eq.
4.38 is extended to the three-dimensional field by considering 12x12 mass and
damping matrices, including the out-of-plane components, and 12x1 vectors for
global nodal accelerations, velocities and displacements.

Both the lumped and consistent mass approaches are extended. In particular,
in the lumped mass approach the translational mass on the three directions are
considered, as well as the rotational in-plane and out-of-plane masses and the
torsional mass for nodes i and j.

5.1.3.1 3D consistent mass matrix

The procedure adopted in Section 4.2.1 should be referred to for an extensive
explanation of the procedure. In the following, only the main matrices are recalled
and their three-dimensional extension is given.

The virtual work equivalence between generalized displacements and forces
and section deformations and stresses in Eq. 4.39 holds, where generalized dis-
placements and section quantities are those in Eq. 5.3, 5.4 and 5.5 respectively,
while generalized forces are:

ps = {fx fy fz µx µy µz}T (5.18)

Following the Unit Load Method, virtual nodal reactions are evaluated, and
the cross-section equilibrium matrix brs(x) in Eq. 4.41, relating unit virtual forces
and virtual reactions, becomes:

brs(x) =



1 0 0 0 0 0

0 x/L− 1 0 0 0 1/L

0 0 x/L− 1 0 −1/L 0

0 0 0 1 0 0

0 −x/L 0 0 0 −1/L

0 0 −x/L 0 1/L 0


(5.19)

Moreover, the matrix br(x), for the evaluation of virtual section stresses from
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the virtual nodal reactions in Eq. 4.43, becomes:

br(ζ) =





1 0 0 0 0 0

0 ζ 0 0 0 0

0 −1 0 0 0 0

0 0 0 1 0 0

0 0 −ζ 0 0 0

0 0 −1 0 0 0


ζ ≤ x



0 0 0 0 0 0

0 0 0 0 L− ζ 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 ζ − L

0 0 0 0 0 1


ζ > x

(5.20)

Following the procedure in Eqs. 4.44 to 4.46, the force-based shape func-
tion matrix in the local reference system is obtained, where the rigid modes are
eliminated through the following matrix:

Nr(x) =



1 0 0 0 0 0 0 0 0 0 0 0

0 1− x/L 0 0 0 0 0 x/L 0 0 0 0

0 0 1− x/L 0 0 0 0 0 x/L 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1/L 0 0 0 0 0 −1/L 0 0 0

0 −1/L 0 0 0 0 0 1/L 0 0 0 0


(5.21)

The element mass matrix is then evaluated through Eq. 4.48, where the section
mass matrix ms(x) is a 6x6 matrix evaluated as:
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ms(x) =

∫
A

ρ(x, y, z)



1 0 0 0 z −y

0 1 0 −z 0 0

0 0 1 y 0 0

0 −z y y2 + z2 0 0

z 0 0 0 z2 −zy

−y 0 0 0 −yz y2


dÃ (5.22)

where ρ is the material mass density.

5.1.4 Numerical procedure

The model with two lumped hinges in the out-of-plane direction located at the end
nodes of the element is implemented in the Finite Element Code FEAP (Taylor,
2017), in the framework described in Chapter 4, and in particular in Section 4.3.

The element state determination remains unchanged, with the addition of the
evaluation of the deformation increment in correspondence of the newly introduced
hinges as:

∆ϕk+1
yhi/j

= fk
yhbi/j

∆Mk+1
yi/j

(5.23)

which allows to evaluate the deformation at the current iteration for each hinge
(ϕk+1

yhi/j
). Tangent stiffness and moment terms are then obtained in output at the

current iteration, alike in Eq. 4.58. Element flexibility matrix is updated with
the new tangent stiffness terms, which are introduced according to Eq. 5.15, and
the procedure described in Section 4.3.1 is followed.

The absence of a shear hinge in the out-of-plane direction allows to adopt the
consistent procedure described in Addessi et al. (2015) to avoid element iterations
and enforce equilibrium conditions between the central elastic element and the
quantities in output from the hinges. Local deformation residuals are evaluated
as the difference between the equilibrated forces of the element and those obtained
from the flexural hinges, multiplied by the tangent flexibility contribution of the
hinge, as follows:
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ρyi = fk+1
yhbi

(∆Mk+1
yi

+ Mk
yi

− Mk+1
yhi

) (5.24)

ρyj = fk+1
yhbj

(∆Mk+1
yj

+ Mk
yj

− Mk+1
yhj

) (5.25)

Local deformation residuals are collected into an element deformation residual
vector at the current iteration:

rek+1

= {0, ρzi, ρzj, 0, ρyi, ρyj}T (5.26)

As it can be seen, the first and the fourth positions of the residual vector
are empty. This is due to the fact that the first position is related to the axial
deformation, which remains elastic and decoupled from the flexural components
during the entire analysis, as well as the fourth position which is related to the
torsional component. On the contrary, the second and third positions are rela-
tive to the flexural in-plane components, whose deformation residuals depend on
the performed iterative procedure, described in Section 4.3.2, which enforces the
equilibrium between the shear and flexural hinges and the elastic central element.
The element deformation residual vector is then pre-multiplyed by the inverse of
the element flexibility matrix (Fek+1

)−1 at the current iteration, obtainig residuals
in terms of element forces, and the obtained vector is used to update the local
basic force vector:

σek+1

= σek+1 − (Fek+1

)−1 rek+1

(5.27)

The procedure continues as described in Section 4.3.1, with the determination
of the element stiffness matrix and the element internal force vector at the cur-
rent iteration as: Kek+1

= (De)T (Fek+1

)−1De and pek+1
= DeTσek+1 , which are

then rotated in the global reference system and forwarded to the FEAP global
Newton-Raphson procedure for the assemble procedure and the determination of
the solution. However, in this case, Newton-Raphson global iterations are required
to reduce the residual vector rek+1 to a value lower than a specified tolerance value.
In particular, the program FEAP performs an energy convergence test, as specified
also in Addessi et al. (2015).
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5.2 Numerical validation

The model described in the previous Section is adopted to reproduce the out-of-
plane nonlinear static behavior of an experimental wall tested at Delft Univesity
of Technology (Ravenshorst and Messali, 2016; Messali et al., 2017; Damiola et al.,
2018; D’Altri et al., 2019). The experimental campaign originated from the need
to study the seismic behavior of masonry structures, largely diffused in the Nether-
lands, due to the increasing seismic risk caused by induced earthquakes originated
from gas extraction in the provence of Groningen. The complete experimental
campaign involved testing short walls in the in-plane direction and long walls in
the out-of-plane direction by applying uniform horizontal loads through a sys-
tem of coupled airbags on both sides of the walls. The set-up of each wall was
made through a steel-frame system which allowed to restrain all the edges of the
walls (Fig. 5.4). More refined details of the experimental set-up can be found in
Ravenshorst and Messali (2016); Messali et al. (2017).

Figure 5.4: Test set-up for COMP-11 specimen subjected to two-way out-of-plane
cyclic tests (modified from Damiola et al. (2018)

The steel-framed set-up (Fig. 5.4) was originally built by connecting two
beams, positioned at the top and bottom of the wall, to two lateral columns
through springs, thus allowing to reproduce a fully fixed restraint condition along
all the edges of the wall.

In particular, in the following, one of the long walls tested in the out-of-plane
direction for two-way spanning mechanisms is selected, denominated COMP-11.
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The related experimental outcomes have been analyzed also in D’Altri et al.
(2019), where they were reproduced through a micromechanical damaging block-
based numerical model.

The selected specimen has a height equal to 3.874m, a base long 2.765m and
a thickness equal to 0.102m, and is built adopting a calcium silicate brick ma-
sonry. The mechanical parameters adopted for the numerical model are taken
from those adopted in D’Altri et al. (2019), and are listed in Tab. 5.1. In particu-
lar, Young’s modulus and Poisson ratio are selected from the parameters adopted
in the reference for the block behavior, as well as the compressive strength, while
shear properties are evaluated from the shear parameters adopted for the contact
constitutive law. Tab. 5.2, instead, shows the parameters employed for the out-of-
plane flexural nonlinear hinges, calibrated in order to reproduce the experimental
curve.

Table 5.1: Mechanical parameters of the wall

E ν G fc fv0
kN/m2 − kN/m2 kN/m2 kN/m2

4800 103 0.17 2051282 6800 84.5

Table 5.2: Nonlinear out-of-plane flexural hinges parameters

Flexural hinges
a δD δK n
− kJ−1 kJ−1 −

0.025 0.28 10.8 1

Two loading phases constituted the test. First, a vertical load equivalent to a
pressure of 50MPa was applied and kept constant during the whole test. After
that, a constant lateral load was applied by an airbag on one side of the wall,
while a second airbag with a varying pressure loaded the other side of the wall.
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The pressure applied was adjusted to achieve the target displacements, realizing
an equivalnt displacement controlled test.

The experimental damage pattern was characterized by the formation of hori-
zontal cracks in correspondence of the top, an intermediate height and the base of
the wall, as well as diagonal cracks from the wall edges to the center of the wall.
Considering that the macroelement model is not capable of describing two-way
spanning mechanisms by adopting one single macroelement, a FE model with two
macroelements is adopted, as shown in Fig. 5.5. A node located at midheight,
in correspondence of the intermediate crack, is then added, where the horizontal
displacement equivalent to the pressure of the airbags is given as input.

UPPER 
ELEMENT

LOWER 
ELEMENT

1

2

3

Figure 5.5: Damage patterns of COMP-11 specimen and equivalent frame schema-
tization adopting two macroelements

Fig. 5.6 shows the numerical results (red line) obtained through the equivalent
frame model in terms of force - displacement curve compared to the experimental
results obtained for specimen COMP-11 in Damiola et al. (2018).

The numerical results show to reproduce with good accuracy the first part of
the experimental curve, as can be seen in Fig. 5.7 (a), while the last part shows
very different results (Fig 5.6). Accuracy is lost after the displacement peak equal
to 0.04m, where the values of damage and flexibility increase shrink the cycles
excessively with respect to the experimental outcomes. In particular, by properly
setting the damage and flexibility increase parameters, the dissipated energy and
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Figure 5.6: Force-displacement curve comparison between numerical and experi-
mental results
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Figure 5.7: Force-displacement curve comparison between numerical and experi-
mental results, zoom on the fisrt cycles (a); damage variable D trend for flexural
hinges (b)

the area of the cycles are well-captured, as well as the strong stiffness degradation
that cycle after cycle experienced. However, the increase of the damage variable
D, when it reaches values proximate to unity, depletes the dissipable energy of
the system, and, as showed in Chapter 3, only the elastic terms of the modified
Bouc-Wen hysteresis remain. The force experienced thus evidently overestimates
the actual force reached in the experimental test. On the contrary, the peak
force reached during the first part of the experimental tests is captured quite well,
even though a higher strength degradation is experienced in the numerical results.
The experimental curve, in fact, shows to experience strength degradation when
cycles with same amplitude are covered, but strength is partially recovered when
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the increased displacement is reached. The presence of flexibility increase partially
allows this strength recover, as also showed in the previous Chapters.

The activation of the hinges at the bottom and top of the panel reproduces the
crack pattern experienced by the specimen, even though the diagonal cracks are
not captured due to the incapability of the model of reproducing what happens
in the length direction. The trend of the damage variable D with the ongoing of
the analysis, which is proportional to that of the flexibility increase term δKU

h,
is given in Fig. 5.7 (b) for the initial part of the analysis, showing an increasing
trend, consistent with that of the dissipated energy. The value of the damage
variable in correspondence of the cycle with peak equal to 0.04m is D = 0.67.
It is noteworthy that, as pointed out in D’Altri et al. (2019), the presence of the
airbags in the two sides of the wall affected the results by increasing the stability
of the wall. The high damage variable value D obtained in the present simulation,
that reaches a value equal to 0.9 before a peak displacement equal to 0.6m, thus
simulates a condition proximate to the collpase before the maximum dispalcement
reached by the wall.

5.3 Third flexural hinge introduction

In the previous Sections, the introduction of flexural hinges to model simple one-
way bending mechanisms has been discussed and validated, in order to account
for nonlinear damaging phenomena that take place in the out-of-plane direction
before collapse occurrence.

However, as shown also in the experimental results considered in Section 5.2,
the two-way bending mechanism is a relevant failure mode that shoud be properly
accounted. It generally occurs in squat walls supported on the sides (Damiola
et al., 2018) or in the case of simply supported walls which span vertically between
supports at ceiling and floor levels (Doherty et al. (2002)).

As can be highlighted from the modeling strategy adopted in Section 5.2, a
development of the proposed model is needed, in order to mantain the advantage
given by adoption of one single macroelement for each structural element even
when the description of more complex out-of-plane behaviors is required.
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To this end, in the following, the force-based approach is revised with the intro-
duction of an additional rotational degree-of-freedom located in the middle of the
elastic element, which allows to model the out-of-plane spanning mode when dis-
tributed loads are applied. To this additional degree-of-freedom, a flexural hinge
is associated, in which the modified Bouc-Wen model with damage and flexibility
increase proposed in Chapter 3 is introduced, to consider the contribution given
from the two-way bending mode to the strength and stiffness degradation of the
system.

The enhanced force-based formulation relative to the central elastic beam ele-
ment, as well as the modifications due to the presence of the central flexural hinge,
are presented in the following Subsections. The numerical procedure performed
at each step of the analysis is then recalled.

5.3.1 Force-based beam formulation

With the aim of reproducing the effect of two-way bending mechanism, which can
be seen as a spanning mode of the of the beam element caused by the effect of
distributed loads when both the ends of the element are restrained, a rotational
degree of freedom, θym, is introduced in the central elastic element. The addi-
tional degree of freedom, which corresponds to a rotation with the meaning of a
deformation, exists only in the out-of-plane direction, in the xe − ze plane, with-
out influencing the in-plane components. In-plane and out-of-plane components
remain thus decoupled.

In Fig. 5.8 (a) the components of the global dispalcement vector u, which are
now 13 instead of 12 and are listed in the following:

u = {ui vi wi θxi
θyi θzi uj vj wj θxj

θyj θzj θym}T (5.28)

are represented, as well as the local displacement components in the in-plane (Fig.
5.8 (b)) and out-of-plane (5.8 (c)) directions.

Considering Eq. 4.14, the kinematic matrix is modified from Eq. 5.9 to Eq.
5.29:
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Figure 5.8: Enhanced beam finite elemet in the global reference system (a) and
in the basic local reference system in the three-dimensional field: in-plane com-
ponents (b), enhanced out-of-plane components (c)

De =



−1 0 0 0 0 0 1 0 0 0 0 0 0

0 1/L 0 0 0 1 0 −1/L 0 0 0 0 0

0 1/L 0 0 0 0 0 −1/L 0 0 0 1 0

0 0 0 −1 0 0 0 0 0 1 0 0 0

0 0 −1/L 0 1 0 0 0 1/L 0 0 0 0

0 0 −1/L 0 0 0 0 0 1/L 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1


(5.29)

One column and one row are added, relating the rotation θym to the local basic
rotation ϕym by imposing that θym = ϕym . The local basic displacement vector
εe includes 7 components, which are listed in the following:
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εe = {δu ϕzi ϕzj ϕx ϕyi ϕyj ϕym}T (5.30)

The corresponding local basic forces are collected in vector σe:

σe = {Nj Mzi Mzj Mx Myi Myj Mym}T (5.31)

The components of the section stress and deformation vectors in Eq. 5.4 e 5.5
remain unchanged, as the moment equation in the out-of-plane direction is the
following:

My(x) =

(
x

L
− 1

)
Myi +

(
x

L

)
Myj + Mym (5.32)

where, given the distributed load pz in the out-of-plane direction, which in case
of seismic action can represent inertial distributed forces, Mym is evaluated as:

Mym =
pzL

2
x̄ − pz x̄

2

2
(5.33)

x̄ is the position of the maximum value of the out-of-plane bending moment.
The contribution of the distributed loads that are usually collected in the vector
σsq(x) is not considered explicitely as in Eq. 4.7, but is included entirely in the
evaluation of the moment Mym . This latter can then be considered equivalent
to the bending effect of the distributed load orthogonal to the beam axis in the
out-of-plane direction. It is calculated in correspondence of its maximum value
and is then included in vector 5.31.

The equilibrium matrix bs(x) includes then the additional moment, becoming:

bs(x) =



1 0 0 0 0 0 0

0 x/L− 1 x/L 0 0 0 0

0 1/L 1/L 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 x/L− 1 x/L 1

0 0 0 0 1/L 1/L 1/L


(5.34)

The flexibility matrix of the central elastic beam element Fe
el is calculated by

enforcing the virtual work equivalence between the basic virtual stresses and the
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basic displacements, and the section stresses and deformations. The matrix listed
in Eq. 5.38 is obtained, by considering the additional degree of freedom.

It is worth recalling that the flexibility matrix in Eq. 5.38 is referred to a
Timoshenko formulation, but it should be noted that in the in-plane direction
the Timoshenko terms are substituted with the shear hinge contributions, while
are kept as they are in the out-of-plane components (i.e. from the fourth to the
seventh column and row).

Moreover, a simplified assumption is made for the evaluation of the flexibility
matrix of the element, that is to localize the third hinge at the center of the
elastic element. This is an approximation, as the acutal location of the hinge is
not defined, but it moves along the beam axis with the maximum value of the
bending moment given by the superposition of the linear equation given by Myi

and Myj, and the parabolic equation given by equilibrium of the distributed load.

5.3.2 Nonlinear flexural hinges contributions

Holding the equations reported in Section 5.1.2 that describe kinematic and equi-
librium conditions for the in-plane hinges and for the two out-of-plane flexural
hinges located at the ends of the elastic element, additional conditions for the
introduction of the central hinge are considered.

The configuration of the complete macroelement in the in-plane (xe−ye plane)
and in the out-of-plane (xe − ze plane) is illustrated in Fig. 5.9.

It is noteworthy that the central flexural hinge does not interrupt the continuity
of the elastic element, allowing to ensure the following equilibrium condition in
correspondence of the central hinge:

Mym = Myhm = Myem (5.35)

while the kinematic condition that holds at the generic point m where the hinge
is activated is:

ϕym = ϕyhm + ϕyem (5.36)

The incremental form of the constitutive equation relating the moment and
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Figure 5.9: Schematization of the 3D macroelement with flexural in-plane and
out-of-plane i, j, and m hinges and shear in-plane hinge

the rotation of the flexural hinge is the following:

ϕ̇yhm = fyhbm Ṁym (5.37)

Operating substitutions of the constitutive and equilibrium relations into the
kinematic equations, following the procedure already decribed in Section 4.1.2,
and collecting the terms that multiply the basic local forces into a matrix, the
expression of the flexibility matrix given in Eq. 5.39 is obtained.

The initial stiffness adopted for the flexural hinge is that given in Eq. 5.16, and
the constitutive relation adopted includes the presence of the modified Bouc-Wen
model with damage and flexibility increase arranged in parallel with a non-linear
elastic device, which both are in series with an elastic element with negative slope
that restores the initial elastic stiffness of the elastic element. Regarding the yield-
ing moment used to evaluate the yielding displacement, required in the modified
Bouc-Wen formulation, the same approach adopted for the flexural hinges located
at the ends of the element is considered, thus Section 4.1.2 can be referred to.
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5.3.3 Numerical procedure

The detailed steps of the complete element state determination procedure are
recalled in Box 5.1, where k + 1 represents the current Newton-Raphson algo-
rithm iteration, while k the previous iteration. It is noteworthy that it remains
substantially unchanged with respect to that described in Section 4.3.1, with the
exception of the dimensions of the considered vectors and matrices, increased with
the introduction of the additional degree of freedom, and the evaluation of the
local basic forces.

The equilibrated local basic forces shall consider, in the present formulation,
the contributions given by the imposition of the concentrated moments applied at
the end nodes of the element and that given by the distributed loads. As shown
in item 4 in Box 5.1, at the first iteration of each step of the Newton-Raphson
procedure, the linear bending moment given by the concentrated moments at the
end nodes is evaluated through the basic local dispalcements and the flexibility
matrix evaluated at the previous iteration. To update the equilibrated basic forces
with the contribution of the distributed loads, the position x̄, in correspondence
of which the moment is maximum, is evaluated. The value of the moment at the
point x̄ is obtained, through the moment equation given by the presence of the
distributed load, and is then added to the basic force component relative to the
additional degree of freedom. This contribution remains unalterated at subsequent
iterations, while the moment given by the concentrated moments applied at the
nodes is updated at each iteration of the Newton-Raphson procedure.
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1. Displacements and displacement increments are given by the
Newton-Raphson procedure at the current global iteration:

uk+1 , ∆uk+1

2. Displacement increments are rotated from the global to the local
reference system:

∆uek+1
= Te

u ∆uk+1

3. Basic local displacement increments are evaluated through the
kinematic operator:

∆εe
k+1

= De∆uek+1

4. Basic local forces increments are evaluated through the inverse of
the flexibility matrix at ther previous iteration:

if k = 1

∆σek+1
= (Fek)−1∆εe

k+1

∆σek+1

7 = ∆σek+1

7 + ∆Mzm

where: ∆Mym = pzL
2
x̄ − pz x̄2

2

and x̄ =
∆Myi +∆Myj

∆pzL
+ L

2

else if k > 1

∆σek+1
= (Fek)−1∆εe

k+1

end if
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5. Deformation increments for each hinge are evaluated through the
hinge flexibility contributions evaluated at the previous iteration:

i. ∆ϕk+1
zhi

= fk
zhbi

∆Mk+1
zi

In-plane flexural hinge i

ii. ∆ϕk+1
zhj

= fk
zhbj

∆Mk+1
zj

In-plane flexural hinge j

iii. ∆γk+1 = fk
hs

∆Mk+1
zi

+∆Mk+1
zj

L
In-plane shear hinge

iv. ∆ϕk+1
yhi

= fk
yhbi

∆Mk+1
yi

Out-of-plane flexural hinge i

v. ∆ϕk+1
yhj

= fk
yhbj

∆Mk+1
yj

Out-of-plane flexural hinge j

vi. ∆ϕk+1
yhm

= fk
yhbm

∆Mk+1
ym Out-of-plane flexural hinge m

6. Hinge deformations at the current iteration are updated for each
hinge using the hinge deformations at the previous iteration:

ϕk+1
• = ∆ϕk+1

• + ϕk
• ; γk+1 = ∆γk+1 + γk

7. Hinge deformations at the current iteration are used as input
quantities in the nonlinear modified Bouc-Wen constitutive law,
obtaining the tangent flexibility and the force output quantities
at the current iteration for the in-plane and out-of-plane hinges:

ϕk+1
h•

→ fk+1
hb•

and Mk+1
• ; γk+1 → fk+1

hs and T k+1
hs

8. Deformation residuals are evaluated in the in-plane and
out-of-plane directions separately:

i. Nested iterative procedure (described in Section 4.3.2):
interations enforce equilibrium between in-plane flexural
and shear hinges and local basic forces at the end nodes
of the elastic element;
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Chapter 5: Three-dimensional macroelement formulation

ii. Deformation residuals are evaluated from the residual hinge forces,
calculated as the difference between the balanced local basic forces
and the constitutive ones:

ρyi = fk+1
yhbi

(∆Mk+1
yi

+ Mk
yi

− Mk+1
yhi

)

ρyj = fk+1
yhbj

(∆Mk+1
yj

+ Mk
yj

− Mk+1
yhj )

ρym = fk+1
yhbm

(∆Mk+1
ym + Mk

ym − Mk+1
yhm)

and collected in the residual vector:

rek+1
= {0, ρzi, ρzj, 0, ρyi, ρyj, ρym}T

9. Element flexibility matrix Fe is updated at the current iteration
considering the tangent flexibility terms of the nonlinear hinges:

Fek → Fek+1

10. Local basic forces are updated with the out-of-plane residual
contributions:

σek+1
= ∆σek+1

+ σek − (Fek+1

)−1 rek+1

11. Element stiffness matrix and element internal force vector are
computed at the current iteration:

Kek+1

= (De)T (Fek+1

)−1De

pek+1
= DeTσek+1

Box 5.1: Element state determination procedure
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Case studies: experimental tests
and numerical simulations

The results of an experimental campaign carried on within the framework of the
research project "RIPARA", which involved, among the others, the University of
Rome "La Sapienza" and the ENEA Research centre (Agenzia nazionale per le
nuove tecnologie, l’energia e lo sviluppo economico sostenibile), are adopted in the
following. The aim is to investigate the performance of the proposed macroelement
in modeling the static behavior of an unreinforced masonry wall loaded quasi-
statically in the in-plane direction and the dynamic behavior of a prototype tested
on a shaking table. For this latter, only one of the three natural ground motion
records tested is selected. Together with the performance of the model, also its
capabilty to capture the main damage mechanisms is tested.

A short description of the experimental tests is given in Sections 6.1.1 and 6.2.1,
each followed by the comparison between numerical and experimental results.

6.1 Unreinforced masonry wall

6.1.1 Experimental test

An unreinforced masonry specimen, shown in Fig. 6.1, has been tested in the
laboratory of the ENEA Research centre in Casaccia. The specimen is composed
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Chapter 6: Case studies: experimental tests and numerical simulations

of two unreinforced masonry panels, placed one over the other, whose dimensions
are H = 0.8m, B = 0.8m and t = 0.3m, where H is the height, B the base
length and t the thickness of each panel. A concrete curb is located at the base
of the lower panel, being 1.2m wide, 0.155m high and 0.8m thick, while a second
curb, whose heigth is equal to h = 0.2m, separates the two panels. A third
concrete curb, having a base 1m long, a height equal to 0.3m and a thickness
equal to 0.5m, is located on top of the upper panel, restraining the out-of-plane
movements and the in-plane rotations. The overall height of the specimen is
2.255m, as shown in Fig. 6.2.

Figura 1

a) b)

Figure 6.1: Unreinforced masonry wall specimen: first side (a), second side (b)

The panels are made of stone masonry, where the stones were collected from
the ruins of the city of Accumoli, taken from some of the buildings that collapsed
after the Central Italy seismic sequence in 2016. Consistently, the adopted mortar
aims at reproducing the mechanical characteristics of historical masonry typical
of residential buildings located in Central Italy. The curbs are made of lightweigth
concrete type LEICA 1500.
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Figure 6.2: Dimensions of the unreinforced masonry wall (dimensions are in me-
ters)

Boundary conditions aim at reproducing a fixed base restraint, while horizontal
translations and all the rotations should be restrained on top, while the central
curb is restrained only in the out-of-plane displacements.

The specimen has been tested through a Sheppard experimental test (Fig.
6.3), which is usually adopted to study the shear mechanisms that masonry panels
undergo when loaded horizontally in the in-plane direction.

After the application of a vertical compressive load equal to 80 kN, applied by
means of four pre-loaded steel threaded rods that connect the upper and the lower
curbs, a quasi-static cyclic horizontal displacement hystory is applied at the central
curb through an hydraulic jack. The amplitude of the displacement assigned to
the jack has incremental values until reaching the failure of the wall, with the
following theoretical displacement values: 1.0 − 2.0 − 4.0 − 6.0 − 10.0 − 12.0 −
14.0mm. However, the monitoring system, involving optic-fiber control markers
positioned on the panels, on the cubrs and on the jack, showed a difference between
the recorded and the applied displacement history. Fig. 6.4 displays the actual
recorded displacement, monitored in correspondance of the jack, with respect to
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Figure 6.3: Set-up of the Sheppard test

the theoretical displacement input by the computer to the mechanical system. It
is possible to notice that non-symmetric displacements are recorded on the jack,
where positive values are almost overlapped to the theoretical assigned values,
while negative peaks are significantly lower with respect to the theoretical values.
Moreover, in contrast with the boundary conditions initially assumed, the wall
experienced a rotation of the top face, as recorded by the markers.

The results, obtained in terms of forces recorded in correspondance of the
central curb, are related to the displacements monitored by the marker, obtaining
the global displacement-force curve shown in Fig. 6.5.

Regarding the experienced damage, Fig. 6.6 shows the crack pattern obtained
at the end of the test. In particular, the lower panel experienced higher damage,
in contrast with the upper panel which experienced limited damage. In fact, only
a diagonal crack in one of the sides of the panel is observed, while on the other side
no cracks are visible. A wide diagonal crack is clearly visible in the lower panel,
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Figure 6.5: Experimental force-displacement results of the wall

together with the expulsion of some of the stones on one of the sides of the panel,
showing the realization of a shear mechanism. It is noteworthy that the actual
boundary conditions of the upper curb, by allowing the rotation of upper panel,
determined a single bending condition for the upper panel and approximately a
double bensing condition for the lower. Damage resulted, then, to be higher in
the lower panel, as well as the measured shear reaction.

6.1.2 Numerical results

The experimental results shown in Fig. 6.5 are reproduced in the present Section
adopting the macroelement described in Chapters 4 and 5.

The mechanical parameters adopted for the numerical model are listed in Tabs.
6.1 and 6.2, where Tab. 6.1 regards the mechanical masonry parameters, while
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Figure 6.6: Unreinforced masonry wall: damaged before collapse first side (a);
damaged before collapse second side (b); collapsed first side (c); collapsed second
side (d)

Tab. 6.2 regards those relative to the nonlinear modified Bouc-Wen hysteretic
model adopted for the nonlinear flexural and shear hinges. In particular, the
Young’s modulus E is evaluated from the experimental curve, while the shear
modulus G is evaluated from the Young’s modulus E considering a Posson ratio
equal to 0.2. The compressive strength fc and the shear strength fv are assumed
from the values available in the Italian Standard Code (NTC, 2018) for a non-
periodic stone masonry with irregular stones. The parameters adopted for the
nonlinear hinges, instead, are calibrated in order to have a good match between the
shape and the dissipated energy of the numerical and the experimental curve, as
well as a good accuracy in the reproduction of strength and stiffness degradation.

Table 6.1: Masonry mechanical parameters

E ν G fc fv0
kN/m2 − kN/m2 kN/m2 kN/m2

1080 103 0.2 450 103 1000 22
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Table 6.2: Modifed Bouc-Wen hysteresis parameters

Flexural hinges Shear hinges
a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1

1 0.8 10.0 0.016 0.8 10.0

Fig. 6.7 shows the schematization to equivalent frame adopted for the wall.
Being composed of two distinct panels, with a concrete curb in the middle, two
macroelements are used, one for each panel. The lower node is located on top
of the lower curb, and a fixed restraint condition simulates the presence of this
latter. A second node is located at the middle of the central curb. Being con-
crete much stiffer with respect to masonry, the presence of the curb is simulated
through rigid offsets. The third node is located at the top of the upper panel,
thus neglecting the presence of the upper curb. Boundary conditions in general
allow vertical translation and in-plane rotations, while the out-of-plane degrees
of freedom are restrained, together with the horizontal displacement on top of
the panel, consistently with the set-up of the Sheppard test and the observations
made after the end of the test.
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Figure 6.7: Equivalent frame model of the tested wall

Fig 6.8 (a) shows the comparison between the numerical (red line) and the
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experimental dashed black line) outcomes in terms of global force-displacement
curve. In general, the model is capable of describing with good accuracy the
experimental behavior, especially in terms of reached strength in the positive
range, while lower accuracy can be seen in the first cycles of the negative side.
An evident asymmetrical behavior in terms of strength can be also observed. The
initial stiffness of the curve is also well-captured. The hysteretic response of the
two panels is shown in Fig. 6.10 (b) in terms of shear hinge response and in
Fig. 6.10 (c) in terms of damage evolution with respect to shear deformation
experienced. Considering that the two panels have a heigth to base ratio equal to
1, indeed, the flexural hinges are considered as elastic, and only the shear behavior
is described by the numerical model. After the initial three cycles, which show
opposite trends for the two panels, the hysteretic cycles, and consequently the
damage evolution, tend to overlap. The lower panel experiences wider cycles after
the first half of the cyclic action, and thus higher damage.

The energy dissipated at each cycle is reproduced through the adoption of an
adequate set of parameters (Fig. 6.9), which also allows to describe the strength
and stiffness degradation that the wall experienced. The first couple of cycles
tends to unterestimate the energy actually dissipated by the wall, however an
improvement of the match can be seen in the following cycles. On the overall,
however, the total dissipated energy of the numerical model, does not differ sub-
stantially from the one resulting from the experimental test.

Interesting considerations can be made regarding damage evolution of the nu-
merical model with respect to the experimental observations. Fig. 6.10 shows the
damage patterns of the most damaged side of the wall and the evolution of damage
of the numerical model during the ongoing of the test. The numerical outcomes
of the lower panel reach a damage variable value D = 0.85 for the shear hinge of
the lower panel and D = 0.77 for the upper panel, proximate to the maximum
value of the unity, which represents the fully damaged state. This outcome is able
to qualitatively describe quite well the strong damage experienced by the lower
panel, which reaches almost the collpase condition. However, different behavior is
described for the upper panel, which underwent limited damage in the experimen-
tal test. The numerical model in fact shows dissipation and degradation which
are almost comparable to that of the upper panel, highlighting the discrepancy
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with the experimental outcomes.
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Figure 6.8: Comparison between experimental and numerical outcomes (a); re-
sponse of the shear hinges of the lower and upper panels (b); damage evolution
with respect to the deformation of the lower and upper panels (c)

6.2 Unreinforced building prototype

6.2.1 Experimental test

A prototype building, whose main features are representative of historical masonry
buildings typical of Central Italy, has been tested in the laboratory of the ENEA
Research centre in Casaccia, in a second phase with respect to the wall previously
described.

The prototype is a full-scale one-storey unreinforced masonry structure, with
an overall heigth equal to H = 2.4m. Four two-leaf shear walls compose the
structure, three of which are symmetrical with a door opening located at the
center of the wall, while the fourth presents an off-centered window. Each wall
is 3.3m long, with a thickness equal to 0.3m. Dimensions and disposition af the
walls, together with the layouts of the openings, are shown in Fig. 6.11, while
photos of each wall can be seen in Fig. 6.12.
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Figure 6.9: Force-displacement response at each cycle of the numerical model with
respect to the experimental wall response

Stone masonry is employed for the prototype as well, consistently with the wall
described in Section 6.1.1. Mortar and stones from Accumoli are utilized, with
the aim of reproducing as closely as possible the actual mechanical characteristics
of typical Italian historical masonry.

A wooden architrave is positioned above all the openings, having a heigth
equal to 0.08m, a thickness equal to that of the wall and a length equal to 0.94m,
thus bulging 0.12m on each side of the opening. Seven wooden beams, supported
by the front and the rear walls, reproduce the presence of a flexible slab, not being
able neither to couple the walls, nor to give a stiff diaphragm condition. On top
of these beams, nine pairs of steel weights are arranged, adding 1.8 t at the total
mass of the structure, with the aim of reproducing the effect of the presence of
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Figure 6.10: Crack patterns compared to the damage evolution
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Figure 6.11: Unreinforced masonry prototype: dimensions of front, right and left
wall (a); dimensions of rear wall (b); floor plan (c)

additional floors above.
The first two natural frequencies of the prototype were experimentally eval-

uated through instrumental tests, obtaining the values f1 = 9.5Hz and f2 =

11.8Hz. The first mode is translational in the direction parallel to the wooden
beams, while the second is orthogonal to them.

Dynamic shaking table tests were performed considering three different natural
ground motion events recorded during the Central Italy seismic sequence in 2016.
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Figure 6.12: Unreinforced masonry prototype: front wall (a); right wall (b); rear
wall (c); left wall (d)

In particular, the events recorded on the 24/08/2016, 26/10/2016 and 30/10/2016

at the stations of Norcia (NRC), Amatrice (AMT) e di Castelsantangelo sul Nera
(CNE), respectively, are considered. The three components of each record are
assigned simultaneously to the shaking table. The N − S component is assigned
in the Y direction (parallel to right and left walls), the E −W component, which
experienced the higher acceleration value, is assigned in the X direction (parallel
to front and rear walls), while, of course, the vertical component is assigned to
the Z direction. Each record is normalized with respect to the peak value of the
strongest component, and then scaled considering increasing scale factors equal
to 0.05 − 0.1 − 0.15 − 0.2 − 0.25 − 0.3 − 0.35 − 0.4 − 0.45 − 0.5 g. As
an example, the Amatrice ground motion record scaled at a maximum peak value

146



Chapter 6: Case studies: experimental tests and numerical simulations

equal to 0.15 g is given in Fig. 6.13. The purpose is to test the prototype by
subjecting it to incremental damage until reaching a condition close to collapse,
in order to evaluate the maximum acceleration it can withstand. In each run,
corresponding to a single peak acceleration value, the three accelerograms are
assigned in the order AMT - CNE - NRC. A white noise is assigned between one
scale factor value and the following with the purpose of identifying the natural
frequencies of the specimen during the tests. Moreover, during the tests, short
pauses between the single event were made, during which it was possible to inspect
the experienced damage and crack patterns along the walls.
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Figure 6.13: Amatrice ground motion record (AMT 26/10/2016) in directions X,
Y and Z, respectively

Optic-fiber control markers are used for monitoring the dynamic response in
terms of displacements.

First cracking was experienced during the 0.2 g run. After the 0.25 g run, cracks
width started to increase, passing in some cases through the thickness of the wall.
The crack patterns evolved then until the last run, showing the estabilishment of
shear damage in the piers of the front, left and right walls, together with out-of-
plane flexural mechanisms experienced by all the spandrels. The front wall piers
also experienced minor sliding mechanisms at the base. Some of the stones of the
external masonry leaf of the right wall were also expelled, in correspondence of
the flexural damage of the spandrel. On the contrary, the rear wall experienced
very limited damage to the piers, while slight cracks were localised at the ends
of the spandrel, highlighting the out-of-plane flexural mechanism. Moreover, the
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onset of an expulsion mechanisms relative to the corner between the front and the
left walls can be distinguished. Fig. 6.14 shows the state of the prototype at the
end of the 0.5 g run, where all the described mechanisms can be distinguished.

a) b)

c) d)

a) b)

DANNEGGIATO

Figure 6.14: Unreinforced masonry prototype damage patterns after the 0.5 g run:
front wall (a); right wall (b); rear wall (c); left wall (d)

6.2.2 Numerical results

The outcomes of the shaking table tests performed on the prototype presented in
Section 6.2.1 are reproduced through a numerical model in which the structure is
schematized adopting the macroelement model described in Section 5. The equiv-
alent frame approach is adopted to model each wall of the prototype, adopting
one macroelement for each pier or spandrel, and rigid offsets in correspondence
of the panel zones. Fig. 6.15 shows how the two different typologies of walls
are reduced to equivalent frames, in particular in Fig. 6.15 (a) the model and
dimensions of the front, right and left walls are given, while in Fig. 6.15 (b) the
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schematization of the rear wall is represented. The formulation proposed in Dolce
(1991) is adopted to evaluate the length of the rigid offsets. The presence of the
architraves is neglected.
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Figure 6.15: Equivalent frame schematization of the prototype: front, right and
left wall (a); rear wall (b)

The mechanical parameters adopted for the homogeneized masonry material
of the prototype differ from those of the wall tested through the Sheppard test.
The two specimen were, in fact, built at different intervals, resulting in different
periods of curing and hardening of the mortar and thus, settling of the masonry
composite material. The Young’s modulus E is identifyed by adopting an inverse
process, being the first two modal frequencies of the prototype known, while the
shear modulus G is calculated by considering a Poisson ratio equal to 0.2. The
values of compressive fc and shear fv strengths are taken from the Italian Standard
Code (NTC, 2018), as well as the value adopted for masonry mass density. All the
material parameters are listed in Tab. 6.3. The parameters of the modified Bouc-
Wen hysteretic model are listed in Tab. 6.4. The damage parameters, namely
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δD and δK , are the same adopted in Section 6.1.2 for the numerical model of the
Sheppard test specimen. They are also adopted for the flexural hinges in the
out-of-plane direction. The hardening parameters are re-calibrated to allow the
plastic behavior not only in the shear hinges, but also for the flexural hinges.

A damping coefficient equal to 5% is assumed, which allows to evaluate the
coefficients adopted for the Rayleigh damping of the system, that is a0 = 3.29 s−1

and a1 = 0.0007 s.

Table 6.3: Masonry mechanical parameters of the prototype

E ν G ρ fc fv0
kN/m2 − kN/m2 t/m3 kN/m2 kN/m2

530 103 0.2 230 103 1.94 1000 78

Table 6.4: Modifed Bouc-Wen hysteresis parameters for the prototype

Flexural hinges Shear hinges OOP Flexural hinges
a δD δK a δD δK a δD δK
− kJ−1 kJ−1 − kJ−1 kJ−1 − kJ−1 kJ−1

0.02 0.8 10.0 0.05 0.8 10.0 0.02 0.8 10.0

According to the equivalent frame approach, the nodes of each macorelement
are located exclusively at the intersections between the elements. It is not possible,
therefore, to model the presence of concentrated loads positioned along the axis
of the structural element, when they are not in correspondance of nodes. To
overcome this issue and properly model the presence of the wooden beams that
support additional masses, equivalent concentrated loads are evaluated by dividing
the overall area of the floor into influence areas. These are then assigned only to
the load bearing walls, which are the front and the rear walls.

The numerical results are presented only for some of the seismic events tested.
In particular, the Amatrice (AMT) seismic event has been chosen, and the peak
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intensities equal to 0.15 g, 0.25 g and 0.50 g are selected. The 0.15 g case is selected
due to the absence of cracks or damage detected, with the aim of reproducing the
initial elastic behavior, thus constituting a reference for the following intensities.
The investigation of slight ongoing damage is the reason why the intensity equal
to 0.25 g has been selected, while the 0.50 g intensity has been chosen to study the
capability of the model to reproduce the final damage patterns and the activation
of possible mechanisms. It is noteworthy that each record is assigned to the
structure starting from an undamaged condition. This is an accurate assumption
in the case of 0.15 g and 0.25 g, for both of which the initial condition is almost
elastic, but is less accurate in the case of 0.50 g, as the prototype has already
experienced major damage after the 0.45 g run. To this end, for this latter case
the initial elastic and strength parameters are reduced to simulate the presence of
initial damage, in particular those related to the shear behavior, i.e. the modulus
G and the shear strength fv, and the hysteretic parameters are diminished as well
to simulate the reduced dissipative capacity of the system, due to pre-experienced
damage. Moreover, to guarantee a good match between the numerical and the
experimental outcomes, the acceleration recorded at the base of the prototype in
the three directions is assigned as acceleration input in the numerical model. The
theoretical and the measured values of the acceleration are compared in Fig. 6.16,
showing the difference in some of the peak values, especially in Y direction, as
well as the overall intensity values in the Z direction.

In the following, the results are shown in terms of relative displacement with
respect to time.

Four representative markers are chosen for the displacement numerical - ex-
perimental comparison, positioned at the tops of one pier for each wall, in order
to have control points nearby the nodes of the macroelement.

Figs. 6.17, 6.18, 6.19 and 6.20 show the results relative to the acceleration
intensity equal to 0.15 g, of the front, right, left and rear wall, respectively. The
numerical outcomes, represented in solid red line, show a good agreement with
the experimental monitored displacements, represented in solid black line, in the
X and Y directions. The response remains substantially elastic for the entire
prototype. The Z component, on the contrary, show visibly different results.
Wide oscillations are captured by the monitoring system, that are not reproduced
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Figure 6.16: Amatrice ground motion record (AMT 26/10/2016) compared to the
acceleration measured in directions X, Y and Z, respectively

by the numerical model. This is probably caused by the limited deformability
capacity of the model in the vertical direction, which corresponds to the axial
directions of the piers. The model remains in fact elastic in the axial direction
and completely decoupled from the flexural behavior.
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Figure 6.17: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the front wall, for the 0.15 g intensity record

152



Chapter 6: Case studies: experimental tests and numerical simulations

10 11 12 13 14 15 16 17 18
-10
-5
0
5

X
 [

m
] 10-4

10 11 12 13 14 15 16 17 18
-5
0
5

Y
 [

m
] 10-4

10 11 12 13 14 15 16 17 18
Time [s]

0
2
4

Z
 [

m
] 10-4

Figure 6.18: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the right wall, for the 0.15 g intensity record

10 11 12 13 14 15 16 17 18
-10
-5
0
5

X
 [

m
] 10-4

10 11 12 13 14 15 16 17 18
-1
0
1

Y
 [

m
] 10-3

10 11 12 13 14 15 16 17 18
Time [s]

0
10
20

Z
 [

m
] 10-5

Figure 6.19: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the left wall, for the 0.15 g intensity record

On the overall, a good agreement in the X and Y directions of the time history
results can be seen also in the case of the 0.25 g intensity, which are shown in Figs.
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Figure 6.20: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the rear wall, for the 0.15 g intensity record

6.21, 6.22, 6.23 and 6.24. The displacement peaks are captured quite accurately
especially in the X directions, together with the oscillation period. In the Y di-
rection the numerical results of the front wall show residual displacements much
higher than the experimental results. This is probably caused by the onset and
evolution of damage, which may have caused residual displacement and deforma-
tion at the hinge level. Regarding the Z direction, the same issues highlighted
for the 0.15 g intensity case are detected. Regarding damage evolution, most of
the hinges show limited damage, especially in the spandrels, while few piers ex-
perienced higher damage, until reaching values of the damage variable equal to
D = 0.25.

Regarding the case of the 0.50 g intensity, shown in Figs. 6.25, 6.26, 6.27 and
6.28, marked differences can be observed between experimental and numerical
data, highlighting substantial displacement variations. In particular, the exper-
imental outcomes show significantly higher displacements, especially in the Y

direction. This phenomenon can be attributed to the possible detachment of
the block on which the marker is placed, an aspect that the numerical model is
unable to capture, since the use of an homogeneized medium does not allow to
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Figure 6.21: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the front wall, for the 0.25 g intensity record

10 11 12 13 14 15 16 17 18
-2
-1
0
1

X
 [

m
] 10-3

10 11 12 13 14 15 16 17 18
-1
0
1

Y
 [

m
] 10-3

10 11 12 13 14 15 16 17 18
Time [s]

-5
0
5

10

Z
 [

m
] 10-4

Figure 6.22: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the right wall, for the 0.25 g intensity record

describe such local failures. Moreover, the wide oscillation period is not repro-
duced, as the numerical results show lower period. It is noteworthy that during
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Figure 6.23: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the left wall, for the 0.25 g intensity record
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Figure 6.24: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the rear wall, for the 0.25 g intensity record

the experimental campaign, the 0.50 g intensity ground motion has been given as
last input, after the entire sequence. This means that the prototype is already
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in a damaged configuration. To reproduce the presence of pre-existing damage,
the shear modulus G equal to a half with respect to the inital modulus is taken
(G = 115000 kN/m2), the shear strength is reduced by 10%. The parameters of
the hinges are also modified, to consider the reduced dissipative capacity of the
hysteretic model, which starts from a damaged condition. In particular, the value
of the flexibility increase parameter is reduced to δK = 2 kJ−1. Some of the peaks
are captured, such as the case of the front and left wall in the X direction (Figs.
6.25 and 6.27 respectively) or the Y direction of the rear wall (Fig. 6.28).

Moreover, the shear hinges of all the piers are activated, with values of the
damage variable ranging between D = 0.013 and D = 0.016 for the piers of the
rear wall, which in fact resulted slightly damaged from the experimental test, to
values about equal to D = 0.55 or D = 0.57 for the piers of the left and right
walls.
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Figure 6.25: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the front wall, for the 0.50 g intensity record

To study the effect of damage cumulation, a ground motion sequence is also
studied. The two seismic events already tested, with intensities equal to 0.25 g and
0.50 g, are considered with 10 s of white noise in between, to allow the dissipation
of free oscillations. Figs. 6.29, 6.30, 6.31 and 6.32 show the results obtained in
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Figure 6.26: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the right wall, for the 0.50 g intensity record
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Figure 6.27: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the left wall, for the 0.50 g intensity record

terms of displacements.
Both the front and the right walls showed high discrepancies between the
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Figure 6.28: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the rear wall, for the 0.50 g intensity record

numerical and the experimental results. In particular, the front wall in the Y

direction (Fig. 6.29) experienced positive residual displacements in the exper-
imental test, but negative displacements are obtained by the numerical model.
The right wall instead (Fig. 6.30), even if the sign of the residual dispalcement
is consistent between the numerical and the experimental results, shows values
which are significantly lower for the numerical case, and similarly for the rear wall
(Fig. 6.32). Good accuracy of the results is obtained for the left wall (Fig. 6.31).

Almost all cases, however, underestimate the maximum and the residual dis-
placements obtained during the tests. This is probably caused by the high oscil-
lation that the prototype experienced due to the opening and reclosure of major
cracks during the tests, which cannot be reproduced by the numerical model ex-
cept in a qualitative manner. However, the shear hinges of the front, left and
right walls were activated, experiencing medium to high values of damage, going
from 0.2 to 0.8 at the end of the analysis. The out-of-plane flexural hinges of the
spandrels experienced low damage, as well as those of the piers.
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Figure 6.29: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the front wall, for the 0.25 − 0.50 g record
sequance
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Figure 6.30: Experimental (black) vs. numerical (red) comparison for the direc-
tions X, Y , and Z respectively for the right wall, for the 0.25 − 0.50 g record
sequance
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Figure 6.31: Experimental (black) vs. numerical (red) comparison for the di-
rections X, Y , and Z respectively for the left wall, for the 0.25 − 0.50 g record
sequance
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Figure 6.32: Experimental (black) vs. numerical (red) comparison for the di-
rections X, Y , and Z respectively for the rear wall, for the 0.25 − 0.50 g record
sequance
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Chapter 7

Conclusions

The main purpose of this work was to propose and validate a refined macroele-
ment model, in the framework of the equivalent frame approach, for the analysis
of the response of historical masonry structures, investigating the in-plane and
out-of-plane degrading behavior of structural elements without overlooking at a
reduced computational burden. The formulation of an advanced constitutive law,
obtained by enhancing an existing formulation available in the literature, capable
of describing with good efficiency the strength and stiffness degradation of the
masonry material, was the initial step. A proper description of the complex and
highly nonlinear masonry behavior was, in fact, the main focus of the thesis, be-
ing fundamental to rely on a refined constitutive law when simplified approaches,
such as the macroelement one, are considered.

An additional degradation, named flexibility increase, was added to a modified
Bouc-Wen hysteretic model proposed in Liberatore et al. (2019), which already in-
cluded damage as a scalar variable affecting the hysteretic force evaluation. The
differential equation governing the basic hysteretic model, formulated in terms
of non-dimensional quantities, was not modified by the introduction of damage
and flexibility increase, which instead modified the scale factors which transform
the non-dimensional quantities into force and displacement. Damage has then
been defined as a reduction of the hysteretic force, resulting in both stiffness and
strength degradation, while flexibility increase as an expansion of the elastic dis-
placement, resulting in stiffness degradation. The expression of the dissipated
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energy as the difference between total and elastic energy, which in turn depend
on dissipated energy, leads to a differential equation, whose solution was derived.
Moreover, the fundamental properties of dissipated energy were investigated. The
basic hysteretic model and the model with flexibility increase showed to have no
upper bound on dissipated energy, while this latter arises when damage is present.
Considerations about the thermodynamic admissibility were then carried on. The
required non-decreasing trend of the dissipated energy resulted in a constraint
on the model parameters, satisfied in most practical cases, while additional con-
straints were obtained from the transformations from non-dimensional to dimen-
sional quantities. The total set of constraints lead to trace an admissible domain
for model parameters. Drucker’s postulate was investigated, showing that the
hysteretic model with flexibility increase is work hardening according to Drucker
if the basic hysteretic model is, while the model with damage, in general, is not
work hardening. Basic parametric analyses were conducted to study the sepa-
rate influence of damage and flexibility increase, and comparisons highlighting
the accuracy of the enhanced model with respect to the previous are made by re-
producing the results of well-known experimental tests available in the literature.
In particular, the good accuracy in the reproduction of both the energy dissipated
during the cyclic analysis and the stiffness degradation was emphasized, being
both fundamental characteristics of the nonlinear masonry degrading behavior.

The modified Bouc-Wen hysteresis was introduced in the framework of a 2D
force-based beam macroelement, where it was adopted to model lumped flexural
and shear plastic hinges. The proposed macroelement has the aim of modeling
structural elements, namely piers and spandrels, being also corredated with rigid
offsets to reproduce the high stiffness tyipical of panel zones. An iterative proce-
dure to enforce equilibrium conditions between the elastic beam element, the flex-
ural and shear hinges was also developed. The macroelement model has proved to
accurately capture the response of well-known experimental tests, by reproducing
the behavior of a squat and a slender panel, highlighting the main characteristics
of their response. The activation of the flexural hinges in the slender panel and
shear hinge in the squat panel, while the contributions of the remaining hinges
were negligible, allowed to capture the degrading mechanisms experienced during
the tests.
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The model was thereafter enriched with a dynamic formulation. The possibil-
ity to model dynamic excitations represents a fundamental aspect for an adequate
study of the response of historical masonry structures and for their preservation.
Seismic excitations, in fact, are a common and relevant excitation that cannot
be neglected for an adequate assessment procedure. First, the behavior of the
modified Bouc-Wen hysteretic model in the dynamic field was investigated adopt-
ing a lumped mass formulation, being this latter the most common approach for
mass description in equivalent frame models. A slender and a squat panel, both
restrained only at the base, were analyzed. Sweeps with constant, increasing and
decreasing ratios between the frequency of the excitation and that of the panel
were considered. The modified Bouc-Wen hysteresis, which considers strength
and stiffness degradation and plasticity, was compared with the behavior of a
classical Bouc-Wen hysteretic model, characterized exclusively by plasticity. The
results of the squat panel showed that, as expected, the presence of flexibility
increase allowed the system to reach higher shear strain values with respect to
the classical Bouc-Wen models, also driving the cycles to be thinner and have a
lower equivalent stiffness during the progression of the cycles. Comparing this
latter case with a model with damage only, higher values of the damage variable
D regarding the case with damage only, with respect to the case with flexibility
increase, were detected, due to the lower dissipated energy reached during the
analysis caused by the increase of the elastic displacement and the thinner cycles
experienced. Regarding the slender panel, similar considerations hold. Moreover,
damage resulted to cause an increase of the period, while the flexibility increase
caused a thinning of the cycles experienced during the analysis. The variation of
the amplitude of the acceleration history showed that the greater the amplitude of
the excitation, the more rapid the degradation, and the higher the period. On the
opposite, the smaller the amplitude, the softer the degradation, and the smaller
the period, which were more spread over time.

The numerical results of a very slender wall were considered as a benchmark
to validate the accuracy of the macroelement model against a finite element
macromechanical model. Comparison of modal frequencies lead to considera-
tions regarding the accuracy of the use of a lumped mass matrix approach to
analyze the response of individual panels, being too different given the same stiff-

164



Chapter 7: Conclusions

ness results. This allowed the model to be further refined with the introduction
of a mass matrix formulation consistent with the force-based macroelement for-
mulation, through the Unit Load method, obtaining more satisfactory accordance
between the frequencies of the two numerical models. Time-history analyses were
therefore carried out, to study the evolution of damage with the increase of the
ground motion intensity. Similar results were obtained in terms of displacements
between the two models, although with different oscillation trends, due to the
different evolution of damage. In particular, in the proposed model, when max-
imum damage was explicated, a residual elastic response appeared to take over,
resulting in extremely large oscillations in terms of both period and amplitude.

The out-of-plane response was subsequently investigated. The study of out-of-
plane collapse mechanisms typical of historic masonry buildings is an issue often
neglected when the main hypoteses valid for classical equivalent frame models are
followed. Local mechanisms, such as out-of-plane mechanicsms, in fact, are typi-
cally assumed to be avoided in favor of in-plane mechanisms. Indeed, neglecting
them can lead to severe overestimation of structural capacity, compromising an
adequate performance description and verification. In particular, the force-based
formulation has been extended with the description of the three-dimensional re-
sponse of the beam element, with the addition of lumped plastic flexural hinges
in the out-of-plane direction suitable for the reproduction of one-way bending be-
havior typical of slender panels, being located in correspondence of the end nodes.
A validation was proposed by analyzing a wall subjected to a two-way bending
mechanism, using two macroelements to model the panel. A good accuracy in
the response reproduction was obtained. Subsequently, to be consistent with the
force-based approach and with the purpose of using a single macroelement for the
description of each structural element, the formulation was further expanded. An
additional degree of freedom for the description of a rotation located at the center
of the element in the out-of-plane direction was introduced, to which corresponds
the introduction of a lumped flexural hinge with the purpose of being able to cap-
ture, through the application of distributed loads, the out-of-plane deformations
caused by two-way bending mechanisms.

The results of an experimental test performed at the ENEA Research Center
in Casaccia, as part of the RIPARA Project, were considered for the conclusive
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validation of the model. In particular, the experimental results of a quasi-static
cyclic Sheppard test were reproduced through the in-plane static macroelement.
The numerical results showed a good agreement with the experimental outcomes.
A qualitative description of the damage experienced by the wall was obtained,
especially at the end of the analysis, when the damage pattern observed during
the experiment was compared to the numerical results. In addition, the activation
of the shear hinge, with negligible contribution of the flexural hinges, showed the
capability of the model of appropriately capturing the mechanisms actually expe-
rienced. A single-storey prototype building, whose mechanical properties aimed
at reproducing common features of typical Central Italy masonry buildings, was
subsequently analyzed through shaking table tests. A seismic sequence of accelero-
grams with increasing intensity was considered. Three of the intensities tested in
the laboratory were selected and reproduced through the numerical model, also
comparing the results obtained by testing individual accelerograms or a sequence,
to study the damage trend. The presence of pre-existing damage was accounted
in two different manners, namely by reducing the initial elastic parameters and
the damage parameters when considering the single event, and by performing a
sequence of multiple events. Overall, the results were satisfactory and the model
showed to be adequately accurate in describing the structural response. Most of
the residual displacements were captured, and some of the most damaged walls
of the prototype were also detected by the numerical model.

On the overall, the macroelement model showed to reproduce in a quite accu-
rate way the static and dynamic behavior of the masonry structures analyzed.

However, additional tests can be done on different types of buildings in order
to further evaluate the performance of the model in more complex contexts. For
instance, being a simplified model, it would be possible to analyze the structural
response of historical buildings or aggregates by maintaining the advantage of a
low computational burden also in large-scale analyses. Nonetheless, it is necessary
to recall some of the basic assumptions on which the equivalent frame model
is based, and that since it is intended to be a suitable tool for the study and
preservation of existing buildings, it is the responsibility of the designer to assess
the applicability of the model to each specific case. As an example, cases in which
crumbling of masonry is expected cannot be well reproduced by this kind of model,
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as well as cases with irregular geometries that cannot be reduced through simple
element schematization.

In general, improvements are still required, especially for a better representa-
tion of the out-of-plane response, and the applicability of the model as a prediction
tool can be tested. To this end, the following future developments are proposed:

• Implementation and verification of the enhanced formulation with three flex-
ural hinges in the out-of-plane direction is required. Comparisons regarding
the accuracy of this refined model with the one which employes two flexural
hinges but a higher number of macroelements to model the two-way bending
mechanism can be made;

• The model could also be refined in order to consider other important phe-
nomena that usually affect structural behavior of masonry walls, such as the
introduction of P-∆ effects especially for out-of-plane loaded walls without
restraints on top;

• The adoption of a phenomenological constitutive law enables the study of
the homogenized response of a complex material such as masonry. In this
regard, since the parameters adopted for stiffness and strength degradation
depend on the particular typology of masonry adopted, an interesting devel-
opment may be to determine the different sets of parameters best suitable for
describing the degradation of different types of masonry, through extensive
comparison analyses with experimental results;

• The accuracy of the model can be additionally tested by reproducing the
behavior of different types of buildings, in order to study its performance in
capturing more complex responses, as well as in investigating their degrading
behavior;

• The possibility to reproduce the effects of the presence of structural rein-
forcements can be studied. The most common practice for equivalent frame
models in which reinforcing techniques are applied, is usually to modify the
initial strength and stiffness paramenters of the macroelement, which is still
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applicable in the presented approach. However, considering the lumped ap-
proach adopted for the description of nonlinearity, the influence of reinforce-
ments could also be accounted by modifying "ad hoc" the constitutive law
implemented in the nonlinear hinges. The effect of the reinforcements could
thus be described through the use of specific constitutive laws for a more
accurate representation of their contribution to the structural response.
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Appendix A

Numerical solution for the
Bouc-Wen model with damage and
flexibility increase

Chapter 3 presented a Bouc-Wen model modified with the introduction of an
additional term, called flexibility increase, in the evaluation of the elastic dis-
placement. This affects the loading and unloading stiffness of the cyclic behavior
by giving degradation. In the following, the numerical procedure that allows to
derive the response of the system in terms of dissipated energy, hysteretic force
and non-dimensional dispalcement is presented.

The response of the system can be calculated numerically assuming that the
quantities governing the response are known at time step i and shall be calculated
at time step i + 1. The quantities at time step i are denoted by •i and those at
time step i+ 1 by •i+1.

Assuming initially that ui+1 is known, zi+1 can be calculated according to the
forward Euler method:

zi+1 = zi + κi(ui+1 − ui) (A.1)

where κi is the derivative of z with respect to u at step i, which is function of zi
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and sign(v̇i). The latter can be replaced by sign(vi+1 − vi):

κi =
dz

du

∣∣∣∣
u=ui

= f [zi, sign(vi+1 − vi)] (A.2)

The dissipated energy Uh
i+1 can be calculated by enforcing the energy balance

stated by Eq. 3.29 at time steps i and i+ 1, i.e.:

Ui = U e
i + Uh

i (A.3)

Ui+1 = U e
i+1 + Uh

i+1 (A.4)

The increment of the dissipated energy is:

Uh
i+1 − Uh

i = U e
i + Ui+1 − Ui − U e

i+1 (A.5)

The physical meaning of Eq. A.5 is shown graphically in Fig. A.1. The
increment of the total energy can be expressed through the trapezoidal rule:

Ui+1 − Ui =
1

2
(F h

i + F h
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(A.6)

The elastic energy at time step i results as:
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and at time step i+ 1:

U e
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1

2
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h
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=
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2
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h
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2
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(A.8)

The increment of the dissipated energy can be obtained by substituting Eqs.
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Figure A.1: Dissipated energy increment

A.6, A.7 and A.8 into Eq. A.5. After some manipulations, it follows:

Uh
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2
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i )zizi+1+
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and solving with respect to Uh
i+1:
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(A.10)

It can be observed that the dissipated energy at time step i + 1 can be alter-
natively obtained by means of numerical calculation of the integral on the RHS of
Eq. 3.43. However, using Eq. A.10 is preferable as this preserves the energy bal-
ance expressed by Eqs. A.3, A.4, from which it is derived, whereas the numerical
evaluation of Eq. 3.43 in general does not. Finally, the hysteretic force at time
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step i+ 1 is calculated as:

F h
i+1 = (1− δDU

h
i+1)(1− a) ki vy zi+1 (A.11)

The previous equations apply when the non-dimensional total displacement
ui+1 is known. However, in practical numerical analysis, the dimensional total
displacement vi+1 is known, and ui+1 shall be calculated starting from vi+1.

In case of pure damage (δD > 0, δK = 0), the calculation of ui+1 is straightfor-
ward, recalling Eq. 3.5:

ui+1 =
vi+1

vy
(A.12)

Instead, in the general case of damage and flexibility increase (δD > 0, δK ̸= 0),
the relationship between ui+1 and vi+1 involves Uh

i+1, which is unknown. This
problem can be overcome by writing vi+1 according to Eq. 3.28 as:

vi+1 = vy[(1 + δKU
h
i+1)zi+1 + up

i+1] (A.13)

and expressing the quantities on the RHS as functions of ui+1. After some ma-
nipulations, this results in an algebraic equation of third-degree in ui+1:

a0u
3
i+1 + a1u

2
i+1 + a2ui+1 + a3 = 0 (A.14)

The derivation of Eq. A.14, along with the coefficients a0, a1, a2, a3, is reported
in Section A.2. After dividing by a0, Eq. A.14 becomes:

u3
i+1 + b1u

2
i+1 + b2ui+1 + b3 = 0 (A.15)

where b1 = a1/a0; b2 = a2/a0; b3 = a3/a0.
Setting:

ui+1 = ζ − b1
3

(A.16)

Eq. A.15 can be rewritten as:

ζ3 +

(
b2 −

b21
3

)
ζ + 2

(
b1
3

)3

− b1b2
3

+ b3 = 0 (A.17)
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By defining:

r = b2 −
b21
3
; s = 2

(
b1
3

)3

− b1b2
3

+ b3 (A.18)

Eq. A.17 can be rewritten as:

ζ3 + rζ + s = 0 (A.19)

Three different cases may occur, depending on the sign of the discriminant:

∆ =

(
s

2

)2

+

(
r

3

)3

(A.20)

a) ∆ > 0

The equation has one real root and two complex conjugate roots. The real
root is:

ζ =
3

√√√√−s

2
+

√(
s

2

)2

+

(
r

3

)3

+
3

√√√√−s

2
−

√(
s

2

)2

+

(
r

3

)3

(A.21)

giving:

ui+1 =
3

√√√√−s

2
+

√(
s

2

)2

+

(
r

3

)3

+
3

√√√√−s

2
−

√(
s

2

)2

+

(
r

3

)3

− b1
3

(A.22)

b) ∆ = 0

The equation has a single real root:

ui+1,1 = −2 3

√
s

2
− b1

3
(A.23)

and a double real root:

ui+1,2 = ui+1,3 =
3

√
s

2
− b1

3
(A.24)

c) ∆ < 0
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The equation has three distinct real roots. After transforming the complex
number (−s/2,

√
−∆) into its trigonometric form (ρ cos θ, ρ sin θ), where

ρ cos θ = −s/2, ρ sin θ =
√
−∆, the roots are given by:

ui+1,1 = 2

√
−r

3
cos

θ

3
− b1

3
(A.25)

ui+1,2 = 2

√
−r

3
cos

θ + 2π

3
− b1

3
(A.26)

ui+1,3 = 2

√
−r

3
cos

θ + 4π

3
− b1

3
(A.27)

The cases b) and c) only occur for δD > 0. In these cases, having more than
one real solution, only one satisfies the bounds on Uh and z:

0 ≤ Uh
i+1 <

1

δD
; |zi+1| ≤ 1 (A.28)

A.1 Special cases

a) a0 = 0, a1 ̸= 0

The third-degree equation degenerates into a second-degree equation, which
has the root:

ui+1 =
−a2

2
−

√
(a2
2
)2 − a1a3

a3
(A.29)

whereas the root:

ui+1 =
−a2

2
+
√

(a2
2
)2 − a1a3

a3
(A.30)

has no physical meaning, as this gives an indeterminate value of the dissi-
pated energy Uh

i+1 = 0/0. The case a0 = 0, a1 ̸= 0 occurs when δK > −δD

in elastic unloading branches, where κi = 1. In this case, as an alternative
to the solution of the second-degree equation, it can be noticed that the
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dissipated energy and the plastic displacement are constant, resulting as:

Uh
i+1 = Uh

i ; up
i+1 = up

i (A.31)

It follows:
vi+1 = vy[(1 + δKU

h
i )zi+1 + up

i ] (A.32)

Solving with respect to zi+1:

zi+1 =

vi+1

vy
− up

i

1 + δKUh
i

(A.33)

provides:

ui+1 = zi+1 + up
i =

vi+1

vy
+ δKU

h
i u

p
i

1 + δKUh
i

(A.34)

which can be shown to be equivalent to Eq. A.29.

b) a0 = 0, a1 = 0

The solution is straightforward and it results:

ui+1 = −a3
a2

(A.35)

This case corresponds to δK = −δD (strength decay) in elastic unloading
branches. As an alternative to Eq. A.35, Eqs. A.33, A.34 can be used.

This case also occurs at the first step of the analysis i+1 = 1, where Uh
1 = 0.

The following equations hold:

u0 = up
0 = z0 = 0 (A.36)

κ0 = 1 (A.37)

z1 = κ0u1 = u1 (A.38)

up
1 = u1 − z1 = 0 (A.39)

Uh
1 = 0 (A.40)
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u1 =
v1
vy

(A.41)

which can be shown to be equivalent to Eq. A.35 at step i+ 1 = 1.

A.2 Derivation of the non-dimensional displace-

ment solution

The derivation of the third-degree algebraic equation in Eq. A.14 which arrives
from Eq. A.13 is given here.

The increment of non-dimensional plastic displacement from step i to step i+1

is:
up
i+1 − up

i = ui+1 − zi+1 − ui + zi = (1− κi)(ui+1 − ui) (A.42)

The displacement at step i+ 1 can be written, according to Eq. 3.28:

vi+1 = vy[(1 + δKU
h
i+1)zi+1 + up

i+1]

= vy(ui+1 + δKU
h
i+1zi+1)

(A.43)

Recalling Eq. A.10, and setting:

B =Uh
i +

1

2
k v2y(1− a){[−(δD + δK)zi+1 − δD(u

p
i+1 − up

i )]ziU
h
i +

+ (zi + zi+1)(u
p
i+1 − up

i )}
(A.44)

C = 1 +
1

2
k v2y(1− a)[−(δD + δK)zi + δD(u

p
i+1 − up

i )]zi+1 (A.45)

the displacement at step i+ 1 can be written as:

vi+1 = vy

(
ui+1 + δKzi+1

B

C

)
(A.46)

or:
vi+1C = vy(ui+1C + δKzi+1B) (A.47)
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After some manipulations, the term B can be written as:

B = Gu2
i+1 +H ui+1 + I (A.48)

where:
G =

1

2
k v2y(1− a)κi(1− κi) (A.49)

H =
1

2
k v2y(1− a)[−(δD + κiδK)ziU

h
i + 2(1− κi)(zi − κiui)] (A.50)

I = Uh
i +

1

2
k v2y(1− a){[−(δD + δK)(zi − κiui) + δD(1− κi)ui]ziU

h
i −

− (1− κi)(2zi − κiui)ui}
(A.51)

and the term C:
C = Lu2

i+1 +M ui+1 +N (A.52)

where:
L =

1

2
k v2y(1− a)δDκi(1− κi) = δDG (A.53)

M =
1

2
k v2y(1− a)[δD(1− κi)(zi − 2κiui)− (δD + δK)κizi] (A.54)

N = 1− 1

2
k v2y(1− a)[δD(1− κi)ui + (δD + δK)zi](zi − κiui) (A.55)

Eq. A.47 becomes:

vi+1C = vy{Lu3
i+1 +M u2

i+1 +N ui+1 + δK [zi + κi(ui+1 − ui)]·

· (Gu2
i+1 +H ui+1 + I)} =

= vy{(L+ δKGκi)u
3
i+1 + [M + δKG(zi − κiui) + δKH κi]u

2
i+1+

+ [N + δKH (zi − κiui) + δKI κi]ui+1 + δKI (zi − κiui)}

(A.56)

which is a third-degree algebraic equation in the unknown ui+1:

a0u
3
i+1 + a1u

2
i+1 + a2ui+1 + a3 = 0 (A.57)

with:
a0 = −vy(L+ δKGκi) (A.58)
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a1 = Lvi+1 − vy{M + δK [G (zi − κiui) +H κi]} (A.59)

a2 = M vi+1 − vy{N + δK [H (zi − κiui) + I κi]} (A.60)

a3 = N vi+1 − vyδKI (zi − κiui) (A.61)
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Elastic-plastic model with flexibility
increase

The relation between the total non-dimensional displacement u and the elastic
non-dimensional displacement z, expressed in its general form in Eq. 3.8 through
the derivative of z with respect to u, depends on the particular hysteresis consid-
ered, as stated in Chapter 3. This means that the Bouc-Wen model is not the
only which the flexibility increase formulation can be applied to.

In the following, the modification to the elastic displacement defined in the
flexibility increase procedure is applied to an elastic-plastic case with hardening,
considering the following equation describing the costitutive law:

dz
du

= 1− [1 + sign(|z| − 1)]⟨sign(zv̇)⟩ (B.1)

with |z| ≤ 1, and where the Macaulay’s brackets ⟨•⟩ evaluate the positive part of
the argument.

This model with hardening is usually employed to describe the behavior of
metals characterized by a sharp transition from elastic to plastic state, due to the
sliding of dislocations in crystal lattice, or the contact with friction between two
bodies, with yielding shear force depending on normal force. Decay of friction
could occur because of the abrasion of contact surfaces.

Following Eq. B.1, the elastic-perfectly plastic model can be obtained by
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setting a = 0 in Eqs. 3.2, 3.3. The plastic state occurs when:

|z| = 1; zv̇ > 0 (B.2)

resulting in dz/du = 0, indicating that no increment of elastic displacement and
force occurs. All the other conditions, namely:

|z| < 1 (B.3)

or:
|z| = 1; z v̇ < 0 (B.4)

result in dz/du = 1, indicating that the system is elastic. The derivative dz/du
could assume either the values 0 or 1, when the state is plastic or elastic, respec-
tively. In both cases, according to Eqs. A.49, A.53, A.58, G = 0, L = 0, a0 = 0,
as shown in Section A.2, respectively, and Eq. A.14 reduces to a second-degree
equation, as in Section A.1. At the transition from elastic to plastic state, the for-
ward Euler formula generally provides |zi+1| > 1. This problem can be overcome
by modifying Eq. 3.47 at the transition, as follows:

zi+1 = sign{zi + f [zi, sign(vi+1 − vi)](ui+1 − ui)} (B.5)

The elastic-plastic model with hardening satisfies both thermodynamic ad-
missibility and Drucker’s postulate. When introducing damage and flexibility
increase, the general results of Sections 3.3.2 and 3.3.4 apply. In particular, ther-
modynamic admissibility is expressed by Eq. 3.51, or equivalently by Eq. 3.52,
and the additional constraints on the parameters by Eqs. 3.58, 3.60. Since the
elastic-plastic model with hardening satisfies Drucker’s postulate, the model with
flexibility increase does as well, whereas the model with damage in general does
not.

A parametric analysis is performed in order to explore the performance of the
damage and flexibility increase parameters. The hysteretic response of the system,
whose mechanical parameters are listed in Tab. B.1, is evaluated considering an
applied quasi-static cyclic forcing action made of three cycles of increasing ampli-
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Table B.1: Mechanical parameters for the elastic-plastic cases
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Figure B.1: Elastic-plastic responses varying δD and δK

tude, in order to highlight the progression of damage and flexibility increase with
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the increase of the number of cycles, and the displacement history experienced by
the system. In each analysis, one of the two scalar parameters, δK and δD, varies,
while the other is kept constant, with the aim of separately evaluating their ef-
fect. The cyclic response in terms of displacement and restoring force is reported
in Fig. B.1. When the parameter δD is kept constant and equal to 0, while δK

varies (Fig. B.1 (a)), the restoring force peaks at the assigned displacement are
constant. The higher the parameter δK , the lower the area of the displacement
– force cycles, and consequently the dissipated energy, when the number of the
experienced cycles increases. When δD is equal to 0.1 kJ−1 (Fig. B.1 (b)), the
combined effect of damage and flexibility increase can be perceived, influencing
both the strength and stiffness degradation. When the flexibility increase param-
eter is kept constant and set equal to 0 (Fig. B.1 (c)), the effect of damage can
be analyzed and a strong influence on the post-yielding stiffness can be detected
when δD is incremented, which reaches a negative slope. Finally, when δK is equal
to 0.1 kJ−1 (Fig. B.1 (d)), thinner cycles can be seen compared to case (c) and
the post-yielding stiffness reaches a negative slope when δD is incremented.
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