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Abstract

Computer Vision emerges as a cornerstone field within Artificial intelligence, enabling digital systems to
sense the world through images, mirroring the human ability to see and interpret their surroundings. This
ability is paramount, as it allows autonomous systems to interact with humans, promising to reliably extend
the applications of AI to productive systems. For example, in Human-Robot collaboration (HRC), accurate
vision-based techniques can prevent accidents by providing the cobot with the ability to interpret and swiftly
respond to human worker actions. Similarly, in smart manufacturing, Computer Vision methods allow for
the timely detection of errors and anomalies in production lines, enhancing quality control and safety, or
in video surveillance, where they monitor environments for security threats, promptly identifying unusual
behaviors or hazardous situations before they exacerbate. However, the deployment of Computer Vision
technologies in real-world scenarios is hampered by significant challenges. These include the requirement
for real-time responsiveness, the ability to function reliably in diverse and unpredictable environments, and
the development of comprehensive metrics for assessing detection accuracy and system reliability.

This thesis explores machine perception’s role in enhancing safety and productive integrity across sev-
eral domains. By leveraging cutting-edge methodologies such as Denoising Diffusion Probabilistic Models
and Large Language Models in novel domains, we propose innovative solutions for applications that require
a fine understanding of human behaviors and environments to promote effectiveness, safety, and efficiency.

First, we delve into the HRC domain. Aiming to improve the current methods’ efficiency, we devise a
lightweight Separable-Sparse Graph Convolutional model that we dub SeS-GCN. SeS-GCN bottlenecks the
interaction of the GCN’s spatial, temporal, and channel-wise dimensions and further learns sparse adjacency
matrices by a teacher-student framework. These modeling choices lower the model’s memory footprint, pro-
viding a practical solution that proves effective both in Human-Pose Forecasting and Collision Avoidance.
Moreover, the Cobots and Humans in Industrial COllaboration (CHICO) dataset is proposed to foster re-
search in this field. For the first time, CHICO encompasses 3D-synchronized views and recorded poses of
humans and cobots while collaborating in a real industrial scenario, representing a precious resource for
advancing safe human-robot collaboration.

Safety often coincides with promptly detecting and responding to mistakes or anomalies, which risk oth-
erwise aggravating, potentially producing dangerous collisions or productive inefficiencies. Thus, following
a review of the latest advancements in Video Anomaly Detection methodologies, this thesis builds on the
established one-class classification framework, proposing two techniques for human-related Anomaly De-
tection. The first study investigates adopting non-Euclidean latent spaces to set the one-class-classification’s
metric objective. We leverage the unique properties of the hyperbolic and spherical metric manifolds for im-
proving human-related anomaly detection. The second proposal introduces a Motion Conditioned Diffusion-
based approach for Anomaly Detection (MoCoDAD). Indeed, for the first time, MoCoDAD introduces a
method for video anomaly detection that exploits cutting-edge diffusive models for spotting anomalies in
motion sequences. We review the common reconstruction-based technique, coupling it with the generative
ability of diffusion probabilistic models, extending the state-of-the-art in human-related Video Anomaly
Detection, and providing relevant insights that serve as the foundation for online mistake detection.

Next, this thesis deals with error anticipation in procedural activities. Acknowledging the absence of a
proper benchmark for this task, we apply the insights from the one-class-classification paradigm and Video
Anomaly Detection and propose two novel datasets, metrics, and baseline methods for detecting errors
in industrial procedural videos. Moreover, we present an innovative technique that exploits the emerging
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reasoning capabilities of Large Language Models to detect mistakes in procedural video sequences. This
results in a novel multimodal approach that leverages an action recognition module to classify the steps
of Egocentric procedural videos and couple it with a Language model to analyze the obtained procedural
transcripts and detect mistakes.

This work offers empirical validation through extensive testing on established and newly introduced
datasets; bridging the gap between Video Anomaly Detection and Procedural Mistake Detection, it presents
a robust foundation for future research and practical applications. We advance the understanding of pro-
cedural mistakes as open-set phenomena and emphasize the crucial need for online detection mechanisms,
thus enhancing safety and operational efficiency in these environments. These findings lay the foundation
for future research, shaping the development of safer, more adaptive industrial automatic systems.

Keywords: Human Motion, Pose Forecasting, Video Anomaly Detection, One-Class Classification,
Mistake Detection, Diffusion Probabilistic Models, Procedural Learning, Online Mistake Detection
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Chapter 1

Introduction

In recent years, a technological revolution has unfolded with the rapid emergence of Artificial Intelligence
(AI) and Computer Vision (CV), marking a critical moment for exploring their capabilities and limitations.
These technologies have found applications in several different areas, ranging from healthcare [31, 145] and
urban infrastructure [18, 76] to entertainment [137, 160] and security [17, 200], reshaping societal functions
and offering unprecedented solutions. Particularly notable is the role of these advancements in ushering in
the era of Industry 4.0, characterized by increased automation and the integration of smart technologies into
manufacturing processes. As reported in the leftmost plot in Fig. 1.1, this evolution is underscored by a sig-
nificant uptick in the volume of robots installations across industries worldwide, demonstrating a paradigm
shift towards more autonomous and efficient production systems. The trend in industrial robot installations is
notable, characterized by a substantial 36% increase in 2021 confirmed by a supplementary 5% rise in 2022
relative to previous years. Forecasts suggest a continued upward trajectory, with an anticipated 7% growth
rate projected for the ensuing years, surpassing 600000 new units in 2024. Particularly, CV has played a
transformative role in industrial domains like manufacturing, logistics, and retail [20, 47, 75, 140]. This
focus is further demonstrated by recent trends, as depicted in the rightmost plot in Fig. 1.1, which highlight
that the majority of robot installations in the past three years have been directed towards supporting tasks
that require high precision and accuracy, such as handling, welding, and assembly. Robots projected for
these applications represent 85% of the industrial robot installations in 2022. In particular, handling robots
are the most employed in factories, as they can serve to carefully move heavy objects, relieving humans
from conducting hazardous work. Indeed, a significant shift has occurred here: workers are moving away
from traditional machine operations to more advanced collaborations with robotic systems [21]. In these
sectors, the integration of CV has enabled novel, more precise, and efficient interactions between humans
and robots. Collaborative robots (cobots), equipped with vision systems can now perform tasks ranging
from warehouse inventory sorting to assisting in intricate assembly lines. This synergy of human dexter-
ity and robotic precision is redefining workplace dynamics. This transition heralds exciting innovations,
notably accelerating industrial processes and elevating operational efficiency.

However, these advancements bring forth complex challenges, especially in ensuring the safety and re-
liability of human-robot interactions [21, 85]. Integrating robots into workspaces traditionally occupied by
humans presents unique safety challenges. As robots become more prevalent in these environments, the dy-
namics of human-robot interaction rapidly evolve, requiring stringent safety protocols. A primary concern is
thus the physical safety of human workers in proximity to robotic machinery. Unlike traditional automated
systems confined to separate spaces, cobots work alongside humans, sharing the same physical space. This
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Figure 1.1: Trends of industrial robots installations and their applications over the years. (left) Trend of industrial
robots installations world-wide. Records of installments from 2012 to 2022 are reported in blue bars; from 2023 to
2026, we report the projections in gray bars. (right) Robot installations in 2020-2022 are grouped by their applications.
Source: IFR report 2023.

coexistence raises critical questions about preventing accidents and injuries [150, 187]. Robots, designed to
operate with high precision and speed, may not inherently possess the awareness or adaptability to respond
safely to unpredictable human behavior. The risk of collisions, workers’ unintended movements, or me-
chanical failures could lead to hazardous situations, and the complexity of tasks performed by humans and
robots in tandem adds layers of potential safety risks. For instance, a robot might not recognize an unusual
or sudden human action, leading to incorrect responses that could compromise safety. Additionally, the in-
dustry’s goal to expedite production processes involves the adoption of innovative tools such as Egocentric
Cameras, Virtual Reality devices, robotic wearables, and advanced monitoring systems. While these tools
aim to enhance efficiency, they also introduce increasingly intricate and specialized procedures. A critical
question then arises: how can we ensure error-free workflows without compromising the benefits of these
technological advancements? Critically, addressing this point requires a seamless integration of safety mea-
sures that can timely detect anomalies and procedural mistakes and subsequently inform the human operator
while maintaining the integrity and efficiency of the enhanced production processes.

This work explicitly addresses these two pivotal challenges: ensuring the safety of human workers
in shared spaces with robots and maintaining an error-free workflow in increasingly complex industrial
environments. In addressing these challenges, the thesis builds upon recent advances in the CV field, har-
nessing cutting-edge research to pioneer new solutions. A key innovation is the implementation of an
optimized Graph Convolutional Network (GCN), specifically tailored for accurate and swift human pose
estimation in industrial settings where humans and cobots collaborate. This approach is instrumental in
ensuring safety, as it equips cobots with the capability to rapidly interpret and react to human movements,
thereby mitigating the risk of accidents. Furthermore, this thesis advances the exploration of mistake
detection in procedural sequences, a task that has recently garnered increasing attention within the Com-
puter Vision community [44, 57, 83, 159, 182]. Despite recent investigations into this area, our analysis
reveals a tendency towards oversimplification in existing studies. Notably, prior research has predominantly
focused on specific error types, such as omitted or misordered procedural steps, neglecting the inherent
unpredictability and open-ended nature of mistakes. Additionally, there is a significant gap in the current
methodology, as most existing approaches rely on offline analysis of the procedures, scrutinizing procedures
post-completion [44, 57, 159]. This approach contrasts sharply with the practical requirements of real-time
feedback in industrial settings, where immediate error correction is crucial for maintaining workflow effi-
ciency and safety. In response, this thesis supports a more nuanced understanding of procedural mistakes as
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open-set phenomena and underscores the necessity for online detection mechanisms. This work proposes a
novel framework for Online Mistake Detection in procedural videos. This initiative is rooted in an in-depth
analysis of the semantically close Video Anomaly Detection (VAD) field, a well-established and sibling
domain. By drawing parallels and identifying overlaps between VAD and the emergent field of procedural
mistake detection, we aim to sculpt a coherent and practical approach to this new challenge. In this explo-
ration, we leverage and reinterpret two recent milestones in AI: diffusion models [72, 130, 155, 172] and
Large Language Models (LLMs) [42, 175]. While these technologies have predominantly contributed to
advancements in natural language processing and generative image modeling, their potential in the context
of procedural video analysis is untapped. Diffusion models offer a nuanced approach to generating and
interpreting complex data patterns, a capability that we adapt for detecting anomalies in human motion and
behavior. Similarly, LLMs, known for their emergent deep understanding and reasoning abilities [185], are
repurposed in our research to interpret and anticipate procedural actions, providing a unique dimension to
mistake detection in an industrial context. Indeed, this research is poised at a crucial juncture where the
potential of AI and CV in enhancing industrial processes, particularly in manufacturing, is being rigorously
tested and expanded.
The thesis is structured as follows:
In Chapter 2, we focus on Human-Robot Collaboration (HRC). In HRC, Human Pose Forecasting has
emerged as a critical area, especially relevant in robotics and autonomous driving. Despite encouraging
advancements in terms of performance on established benchmarks [79, 116], we identify and expose two
major shortcomings that need to be addressed for the reliable deployment of these systems in real-world
applications. Firstly, there are limitations of existing models in terms of size and speed for real-time ap-
plications. Such models are not optimized for scenarios where a cobot needs to swiftly and accurately
detect the position of a human co-worker to react and thus prevent potential collisions. Secondly, there is
a notable lack of a specialized dataset tailored to analyze human-robot interactions in industrial settings, as
existing benchmarks [79, 116] primarily focus on general actions such as “walking”, “eating”, or “running”.
To address these challenges, our first contribution is the development of the Separable-Sparse Graph Con-
volutional Network (SeS-GCN). This model builds upon the state-of-the-art STS-GCN [164], designed to
be more compact yet equally effective. SeS-GCN innovatively encodes spatial, temporal, and channel-wise
dimensions separately within the dynamic pose graph of human key points, achieving state-of-the-art perfor-
mance and significantly reducing parameters. Additionally, we employ a teacher-student strategy to sparsify
the GCN’s adjacency matrix further, reducing computational load and allowing near real-time processing
capabilities. Complementing this, we introduce CHICO, a dataset specifically designed for benchmarking
human pose forecasting and collision detection in simulated yet realistic industrial scenarios. CHICO in-
cludes multi-view videos, 3D poses, and trajectories of human workers and cobots, capturing interactions
during specialized tasks like “polishing” or “hammering”. These tasks, typically performed in tandem with
cobots, represent the complex dynamics of human-robot collaboration. CHICO thus fills a critical gap in
HRC research, providing a robust platform to test and validate models like SeS-GCN in real-world industrial
contexts.

The second challenge addressed in this thesis is the under-explored domain of procedural mistake detec-
tion in industrial settings. Recognizing the nascent nature of research in this area, we draw a parallel with the
well-established VAD field, mainly focusing on human-related anomalies. By starting from the foundational
definitions of anomalies and procedural mistakes, we acknowledge both their similarities and differences.
This understanding paves the way for adapting and transferring methodologies from VAD to this relatively
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uncharted domain, offering a new perspective in the pursuit of effective procedural mistake detection. We
delve deeply into the established field of VAD to uncover and leverage the intrinsic connections between
anomaly and mistake detection. Our investigation reveals that both domains share foundational elements
within the One-Class Classification (OCC) framework, characterized by the rarity and diversity of anoma-
lies and mistakes - making them elusive and challenging to catch. The OCC approach is particularly suited
for these tasks as it accommodates a broad spectrum of anomalies, encompassing inherently unprecedented
and unknown behaviors. In this context, we introduce two novel methodologies: COSKAD and MoCoDAD.

Chapter 3 presents COSKAD, an innovative model designed for VAD, focusing on the task of detecting
anomalies in human behavior. COSKAD leverages the encoding of skeletal human motion through a graph
convolutional network, realizing the contraction of skeletal kinematic embeddings onto a latent hypersphere.
This technique explores three distinct metric latent spaces — Euclidean, spherical, and hyperbolic — each
contributing uniquely to the model’s ability to compress normal data embeddings during training into a
tightly defined manifold region. Such compression is key to COSKAD’s effectiveness, as it enables the
model to distinguish anomalies by identifying data points that lie outside the established normality region
at inference. In this chapter, we first discuss the One-Class Classification paradigm, which we later transfer
into the domain of mistake detection.

Chapter 4 extends this exploration by introducing MoCoDAD. Here, we deepen our analysis of OCC
methods, advocating for recognizing the multimodal nature of normal human behaviors, where a single
’normal’ action can be performed in various ways. This understanding is crucial to prevent misclassifying
unusual yet plausible actions as anomalies. MoCoDAD, for the first time in VAD, combines a Graph Con-
volutional Network backbone with a Denoising Diffusion Probabilistic Model (DDPM). This integration
allows MoCoDAD to generate diverse, plausible future human motions from a given sequence of frames,
detecting anomalies based on the deviation of these predictions from the actual future sequences. The greater
the divergence, the higher the likelihood of anomalous behavior. Our extensive experiments on established
benchmarks demonstrate MoCoDAD’s superior predictive accuracy, pushing the boundaries in VAD and
offering significant insights into procedural mistake detection.

In Chapter 5 we address the lack of a robust benchmark for Mistake Detection in procedural activi-
ties. Our work defines the objectives and constraints essential for an Online Mistake Detection (OMD)
framework suitable for industrial applications. We adapt two existing datasets, Assembly101 [159] and
Epic-tent [83], for OMD assessment and introduce PREGO, a pioneering method for OMD in egocentric
procedural videos. PREGO uniquely combines action recognition and forecasting modules, the latter lever-
aging the emergent capabilities of Large Language Models for symbolic reasoning. This approach allows for
adaptable, procedure-agnostic Mistake Detection, significantly improving procedural accuracy and safety in
industrial environments. we highlight the insights of this work and elaborate on future studies, respectively.
To summarize, the contribution of this thesis is threefold:

• We advance real-time safety and operational efficiency in industrial settings by presenting a novel
method specifically tailored for HRC and defining a novel framework for Online Mistake Detection.
This innovation enhances human-robot collaboration and procedural integrity, enabling immediate
detection and correction of procedural mistakes.

• We harness cutting-edge AI technologies such as diffusion models and LLMs in novel visual con-
texts. Our work demonstrates their utility in detecting procedural mistakes and anomalies in real-time,
broadening their application in visual data analysis and contributing to the evolution of intelligent in-
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dustrial systems.

• We provide empirical validation and theoretical contributions through extensive testing on established
and newly introduced datasets. Our comprehensive analysis bridges the gap between Video Anomaly
Detection and procedural mistake detection, offering a robust foundation for future research and prac-
tical applications in the field.

This transformative shift in industrial practices, fueled by advancements in AI and Computer Vision,
represents a strategic step forward, grounded in the extensive research and development efforts that have
characterized the field for years. It’s a challenge that CV has been evolving towards, preparing to address
with a wealth of research and innovation. Acknowledging this, it becomes imperative to analyze and build
upon these established domains and methods. By doing so, we can develop informed strategies and advanced
systems tailored to meet the emerging challenges of this integration. This thesis aims to contribute to this
critical transition by refining and applying proven CV techniques in new, dynamic industrial contexts. The
goal is not just to adapt to this change but to lead it, ensuring that the shift towards more automated and
intelligent systems is both seamless and robust, grounded in years of research and innovation.
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Chapter 2

Pose Forecasting in Industrial
Human-Robot Collaboration

2.1 Overview

Figure 2.1: A collision example from our CHICO dataset. On the top row some frames of the Lightweight pick and
place action captured by one of the three cameras. On the bottom row, operator + robot skeletons. The forecasting
takes an observation sequence (in yellow, here pictured for the right wrist only), and performs a prediction (cyan)
which is compared with the ground truth (green). On frame 395 is it easy to see the robot hitting the operator, which is
retracting, as is evident in frame 421. See how the predictions by SeS-GCN follow closely the GT, except during the
collision. At collision time, due to the impact, the abrupt change of the arm motion produces uncertain predictions, as
it shows by the very irregular predicted trajectory.

Collaborative robots (cobots) and modern Human-Robot Collaboration (HRC) depart from the tradi-
tional separation of functions of industrial robots [93] because of the shared workspace [80]. Additionally,
cobots and humans perform actions concurrently, and they will, therefore, physically engage in contact.
While there is a clear advantage in increased productivity [152] (improved by as much as 85% [162]) due
to the minimization of idle times, there are challenges in the workplace safety [62]: it is not about whether
there will be contact, but rather about understanding its consequences [121].

The pioneering work of Shah et al. [162] has already shown that, in order to seamlessly and efficiently
interact with human co-workers, cobots need to abide by two collaborative principles: (1) Making decisions
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on-the-fly, and (2) Considering the consequences of their decision on their teammates. The first calls for
promptly and accurately detecting human motion in the workspace. The second principle implies that cobots
need to anticipate the pose trajectories of their human co-workers and predict future collisions.

Motivated by these problems, the first contribution of our work is a novel Separable-Sparse Graph
Convolutional Neural Network (SeS-GCN) for human pose forecasting. Pose forecasting requires an un-
derstanding of the complex spatio-temporal joint dynamics of the human body, and recent trends have
highlighted the promises of modeling body kinematics within a single GCN framework [37, 39, 101, 104,
118, 181, 202]. We have designed SeS-GCN with performance and efficiency in mind by bringing together,
for the first time, three main modeling principles: depthwise-separable graph convolutions [95], space-time
separable graph adjacency matrices [164], and sparse graph adjacency matrices [163]. In SeS-GCN, sepa-
rable stands for limiting the interplay of joints with others (space), at different frames (time) and per channel
(depth-wise). Within the GCN, different channels, frames, and joints still interact by means of multi-hop
messages. For the first time, sparsity is achieved by a teacher-student framework. The reduced interaction
and sparsity results in fewer parameters than all GCN-based baselines [95, 163, 164] - ∼75% fewer param-
eters with respect to a fully learnable GCN, see Tab. 2.2- while improving performance by more than 2.7%.
Compared to the state-of-the-art (SoA) [117], SeS-GCN is lightweight, only using 1.72% of its parameters,
it is ∼4 times faster while remaining competitive with just 1.5% larger error on Human 3.6M [79] when
predicting 1 sec in the future.

The model is described in detail in Sec. 2.3, and experiments and ablation studies are illustrated in
Sec. 2.5.

We also introduce the very first benchmark of Cobots and Humans in Industrial COllaboration (CHICO,
an excerpt in Fig. 2.1). CHICO includes multi-view videos, 3D poses and trajectories of the joints of 20
human operators in close collaboration with a robotic arm KUKA LBR iiwa within a shared workspace. The
dataset features 7 realistic industrial actions taken at a real industrial assembly line with a marker-less setup.
The goal of CHICO is to endow cobots with perceptive awareness to enable human-cobot collaboration with
contact. Towards this frontier, CHICO proposes benchmarking two key tasks: human pose forecasting and
collision detection. Cobots currently detect collisions by mechanical-only events (transmission of contact
wrenches, control torques, sensitive skins). This ensures safety, but it harms the human-cobot interaction
because collisions break the motion of both, which reduces productivity and may be annoying to the human
operator.

CHICO features 240 1-minute video recordings, from which two separate sets of test sequences are
selected: one for estimating the accuracy in pose forecasting, so cobots may be aware of the next future (1.0
sec); and one with 226 genuine collisions, so cobots may foresee them and possibly re-plan. The dataset is
detailed in Sec. 2.4, and experiments are illustrated in Sec. 2.6.

When tested on CHICO, the proposed SeS-GCN outperforms all baselines and reaches an error of 85.3
mm (MPJPE) at 1.00 sec, with a negligible run time of 2.3 msec (as reported in Table 2.5). Additionally, the
forecast human motion is used to detect human-cobot collision by checking whether the predicted trajectory
of the human body intersects that of the cobot. This is also encouraging, as SeS-GCN allows to reach an
F1-score of 0.64. Both aspects contribute to a cobot awareness of the future, which is instrumental for HRC
in industrial applications.
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Table 2.1: Comparison between the state-of-the-art datasets and the proposed CHICO; unk stands for “unknown”.
Quantitative Details Rec.

Scene
Actions Type Tasks Markerless#

Classes
#

Subj.
Avg Rec.

Time
#

Joints FPS Aspect
Ratio

#
Sensors Industr. HRC Action

Recog.
Pose

Forec.
Coll.
Det.

Human3.6M [79] 15 11 100.49 s 32 25 normalized 15
mo-cap
studio

✓

AMASS [116] 11265 344 12.89 s variable variable original variable
mo-cap
studio

✓

3DPW [180] 47 7 28.33 s 18 60 original 18
outdoor

locations
✓

ExPI [63] 16 4 unk 18 25 original 88
mo-cap
studio

✓

CHI3D [50] 8 6 unk unk unk original 14
mo-cap
studio

✓

InHARD [38] 14 16 < 8 s 17 120 original 20
assembly

line
✓ ✓ ✓

CHICO (ours) 7 20 55 s 15 25 original 3
assembly

line
✓ ✓ ✓ ✓ ✓

2.2 Related Work

Human pose forecasting. Human pose forecasting is a recent field which has some intersection with
human action anticipation in computer vision [101] and HRC [45]. Previous studies exploited Temporal
Convolutional Networks (TCNs) [7, 54, 100, 136] and Recurrent Neural Networks (RNNs) [52, 60, 81].
Both architectures are naturally suited to model the temporal dimension. Recent works have expanded the
range of available methods by using Variational Auto-Encoders [23], specific and model-agnostic layers that
implicitly model the spatial structure of the human skeleton [4], or Transformer Networks [24].
Pose forecasting using Graph Convolutional Networks (GCN). Most recent research uses GCNs [39,
104, 117, 164, 202]. In [117], the authors have mixed GCN for modelling the joint-joint interaction with
Transformer Networks for the temporal patterns. Others [104, 164, 202] have adopted GCNs to model the
space-time body kinematics, devising, in the case of [39], hierarchical architectures to model coarse-to-fine
body dynamics.
We identify three main research directions for improving efficiency in GCNs: i. space-time separable
GCNs [164], which factorizes the spatial joint-joint and temporal patterns of the adjacency matrix; ii. depth-
wise separable graph convolutions [74], which has been explored by [8] in the spectral domain; and iii. sparse
GCNs [163], which iteratively prunes the terms of the adjacency matrix of a GCN. Notably, all three tech-
niques also yield better performance than the plain GCN. Here, for the first, we bring together these three as-
pects into an end-to-end space-time-depthwise-separable and sparse GCN. The three techniques are comple-
mentary to improve both efficiency and performance, but their integration requires some structural changes
(e.g., adopting teacher-student architectures for sparsifying), as we describe in Sec. 2.3.
Human Robot Collaboration (HRC). HRC is the study of collaborative processes where human and robot
agents work together to achieve shared goals [11, 28]. Computer vision studies on HRC are mostly related
to pose estimation [27, 53, 98] to locate the articulated human body in the scene.

In [32, 86, 128], methodologies for robot motion planning and collision avoidance are proposed; their
study perspective is opposite to ours, since we focus on the human operator. In this regard, the works
of [12, 36, 87, 106] model the operators’ whereabouts through detection algorithms which approximate
human shapes using simple bounding boxes. Approaches that predict the human motion during collaborative
tasks are in [174, 199] using RNNs and in [179] using Guassian processes. Other work [96] models the
upper body and the human right hand (which they call the Human End Effector) by considering the robot-
human handover phase. As motion prediction engine, DCT-RNN-GCN [117] is considered, against which
we compare in the experiments.
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Datasets for pose forecasting. Human pose forecasting datasets cover a wide spectrum of scenarios, see Ta-
ble 2.1 for a comparative analysis. Human3.6M [79] considers everyday actions such as conversing, eating,
greeting and smoking. Data were acquired using a 3D marker-based motion capture system, composed of 10
high-speed infrared cameras. AMASS [116] is a collection of 15 datasets where daily actions were captured
by an optical marker-based motion capture. Human3.6M and AMASS are standard benchmarks for human
pose forecasting, with some overlap in the type of actions they deal with. The 3DPW dataset [180] focuses
on outdoor actions, captured with a moving camera and 17 Inertial Measurement Units (IMU), embedded on
a special suit for motion capturing [148]. The recent ExPI dataset [63] contains 16 different dance actions
performed by professional dancers, for a total of 115 sequences, and it is aimed at motion prediction. ExPI
has been acquired with 68 synchronised and calibrated color cameras and a motion capture system with
20 mocap cameras. Finally, the CHI3D dataset [50] reports 3D data taken from MOCAP systems to study
human interactions.

None of these datasets answer our research needs, i.e., a benchmark taken by a sparing, energy-efficient
markerless system, focused on the industrial HRC scenario, where forecasting may be really useful for
anticipating collisions between the humans and robots. In fact, the only dataset relating to industrial ap-
plications is InHARD [38]. Therein, humans are asked to perform an assembly task while wearing inertial
sensors on each limb. The dataset is designed for human action recognition, and it involves 16 individuals
performing 13 different actions each, for a total of 4800 action samples over more than 2 million frames.
Despite showcasing a collaborative robot, in this dataset the robot is mostly static, making it unsuitable for
collision forecasting.

2.3 Methodology

We build an accurate, memory efficient and fast GCN by bridging three diverse research directions: i.
Space-time separable adjacency matrices; ii. Depth-wise separable graph convolutions; iii. Sparse adjacency
matrices. This results in an all-Separable and Sparse GCN encoder for the human body kinematics, which
we dub SeS-GCN, from which the future frames are forecast by a Temporal Convolutional Network (TCN).

2.3.1 Background

Problem Formalization. Pose forecasting is formulated as observing the 3D coordinates xv,t of V joints
across T frames and predicting their location in the K future frames. For convenience of notation, we
gather the coordinates from all joints at frame t into the matrix Xt = [xv,t]

V
v=1 ∈ R3×V . Then we define

the tensors Xin = [X1, X2..., XT ] and Xout = [XT+1, XT+2..., XT+K ] that contain all observed input and
target frames, respectively.

We consider a graph G = (V, E) to encode the body kinematics, with all joints at all observed frames as
the node set V = {vi,t}V,Ti=1,t=1, and edges (vi,t,vj,s) ∈ E that connect joints i, j at frames t, s.
Graph Convolutional Networks (GCN). A GCN is a layered architecture:

X (l+1) = σ
(
A(l)X (l)W (l)

)
(2.1)

The input to a GCN layer l is the tensor X (l) ∈ RC(l)×V×T which maintains the correspondence to the V

body joints and the T observed frames, but increases the depth of features to C(l) channels. X (1) = Xin is
the input tensor at the first layer, with C(1) = 3 channels given by the 3D coordinates. A(l) ∈ RV T×V T is
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the adjacency matrix relating pairs of V T joints from all frames. Following most recent literature [39, 117,
163, 164], A(l) is learnt. W (l) ∈ RC(l)×1×1 are the learnable weights of the graph convolutions. σ is a the
non-linear PReLU activation function.

2.3.2 Separable & Sparse Graph Convolutional Networks (SeS-GCN)

We build SeS-GCN by integrating the three mentioned modelling dimensions: i. separating spatial and
temporal interaction terms in the adjacency matrix of a GCN; ii. separating the graph convolutions depth-
wise; iii. sparsifying the adjacency matrices of the GCN.
Separating space-time. STS-GCN [164] has factored the adjacency matrix A(l) of the GCN, at each layer
l, into the product of two terms A

(l)
s ∈ RV×V×T and A

(l)
t ∈ RT×T×V , respectively responsible for the

temporal-temporal and joint-joint relations. The GCN formulation becomes:

X (l+1) = σ
(
A(l)

s A
(l)
t X (l)W (l)

)
(2.2)

Eq. (2.2) bottlenecks the interplay of joints across different frames, implicitly placing more emphasis on the
interaction of joints on the same frame (A(l)

s ) and on the temporal pattern of each joint (A(l)
t ). This reduces

the memory-footprint of a GCN by approx. 4x while improving its performance (cf. Sec. 2.5.1). Note that
this differs from alternating spatial and temporal modules, as it is done in [196] and [15], respectively for
trajectory forecasting and action recognition.
Separating depth-wise. Inspired by depth-wise convolutions [34, 74], the approach in [95] has introduced
depth-wise graph convolutions for image classification, followed by [8] which resorted to a spectral for-
mulation of depth-wise graph convolutions for graph classification. Here we consider depth-wise graph
convolutions for pose forecasting. The depth-wise formulation bottlenecks the interplay of space and time
(operated by the adjacency matrix A(l)) with the channels of the graph convolution W (l). The resulting
all-separable model which we dub STS-DW-GCN is formulated as such:

H(l) =γ
(
A(l)

s A
(l)
t X (l)W

(l)
DW

)
(2.3a)

X (l+1) = σ
(
H(l)W

(l)
MLP

)
(2.3b)

Adding the depth-wise graph convolution splits the GCN of layer l into two terms. The first, Eq. (2.3a),

focuses on space-time interaction and limits the channel cross-talk by the use of W (l)
DW ∈ R

C(l)

α
×1×1, with

1 ≤ α ≤ C(l) setting the number of convolutional groups (α = C(l) is the plain single-group depth-
wise convolution). The second, Eq. (2.3b), models the intra-channel communication just. This may be
understood as a plain (MLP) 1D-convolution with W

(l)
MLP ∈ RC(l)×1×1 which re-maps features from C(l)

to C(l+1). γ is the ReLU6 non-linear activation function. Overall, this does not significantly reduce the
number of parameters, but it deepens the GCN without over-smoothing [132], which improves performance
(see Sec. 2.5.1 for details).
Sparsifying the GCN. Sparsification has been used to improve the efficiency (memory and, in some cases,
runtime) of neural networks since the seminal pruning work of [97]. [163] has sparsified GCNs for trajectory
forecasting. This consists in learning masksM which selectively erase certain parameters in the adjacency
matrix of the GCN. Here we integrate sparsification with the all-separable GCN design, which yields our
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Figure 2.2: Overview of the proposed pipeline. Given a sequence of observed 3D poses, the Teacher network (depicted
with blue boxes) encodes the spatio-temporal body dynamics with 5 SeS-GCN layers, composed by the space-time
separable encoder followed by the Depth-Wise convolution. The future trajectories are then predicted with 4 TCN
layers. After the training of the Teacher, we threshold the values of the spatial and temporal adjacency matrix to obtain
the masks, which are then applied during the Student model (depicted in orange boxes) training.

proposed SeS-GCN for human pose forecasting:

H(l) =γ
(
(M(l)

s ⊙A(l)
s )(M(l)

t ⊙A
(l)
t )X (l)W

(l)
DW

)
(2.4a)

X (l+1) = σ
(
H(l)W

(l)
MLP

)
(2.4b)

⊙ is the element-wise product andM(l)
{s,t} are binary masks. Both at training and inference, [163] generates

masks, it uses those to zero certain coefficients of the adjacency matrix A, and it adopts the resulting GCN
for trajectory forecasting. By contrast, we adopt a teacher-student framework during training. The teacher
learns the masks, and the student only considers the spared coefficients in A. At inference, our proposed
SeS-GCN only consists of the student, which simply adopts the learnt sparse As and At. Compared to [163],
the approach of SeS-GCN is more robust at training, it yields fewer model parameters at inference (∼30%
less for both As and At), and it reaches a better performance, as it is detailed in Sec. 2.5.1.

2.3.3 Decoder Forecasting

Given the space-time representation, as encoded by the SeS-GCN, the future frames are then decoded by
using a temporal convolutional network (TCN) [7, 54, 100, 164]. The TCN remaps the temporal dimen-
sion to match the sought output number of predicted frames. This part of the model is not considered for
improvement because it is already efficient and it performs satisfactorily.
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2.3.4 Implementation details

The proposed SeS-GCN is written in Pytorch. The model adopts residual connections at each GCN layer,
it is regularized with batch normalization [77] at the end of each GCN layer, and it is optimized with
ADAM [90]. On Human3.6M [79], training of SeS-GCN proceeds for 60 epochs for both the teacher and
the student models. We used batch size of 256, learning rate of 0.1, and decay rate of 0.1 at epochs 5, 20, 30
and 37. On an Nvidia RTX 2060 GPU, the learning process takes 30 minutes.

2.4 The CHICO dataset

This section details the CHICO dataset by describing the acquisition scenario and devices, the cobot and the
performed actions. We release RGB videos, skeletons and calibration parameters *.
The scenario. We are in a smart-factory environment, with a single human operator standing in front
of a 0.9m × 0.6m workbench and a cobot at its end (see Fig.2.1). The human operator has some free
space to turn towards some equipment and carry out certain assembly, loading and unloading actions [122].
In particular, light plastic pieces and heavy tiles, a hammer, and abrasive sponges are available. This table
setup is designed with flexibility and practicality, making it generalizable to various industrial scenarios. The
compact size of the workbench is suitable for environments with space constraints, and its ergonomic design
minimizes operator movement, enhancing productivity and reducing fatigue. The availability of diverse
materials and tools illustrates the setup’s versatility in handling different assembly tasks, from delicate to
more robust operations. The detailed setups for each action are reported graphically in Figures 2.3 -2.9. A
total of 20 human operators have been hired for this study. They attended a course on how to operate with
the cobot and signed an informed consent form prior to the recordings.
The collaborative robot. A 7 degrees-of-freedom Kuka LBR iiwa 14 R820 collaborates with the human
operator during the data acquisition process. Weighing in at 29.5 kg and with the ability to handle a payload
up to 14 kg, it is widely used in modern production lines. More details on the cobot can be found in
Sec. 2.4.1.
The acquisition setup. The acquisition system is based on three RGB HD cameras providing three different
viewpoints of the same workplace: two frontal-lateral and one rear view. The frame rate is 25Hz. The videos
were first checked for erroneous or spurious frames; then, we used Voxelpose [176] to extract a 3D human
pose for each frame. Extrinsic parameters of each camera are estimated w.r.t. the robot’s reference frame by
means of a calibration chessboard of 1×1m, and temporal alignment is guaranteed by synchronization of all
the components with an Internet Time Server. In our environment, Voxelpose estimates a joint positioning
accuracy in terms of Mean Per Joint Position Error (MPJPE) of 24.99mm using three cameras, which is
enough for our purposes as an ideal compromise between the system’s portability and accuracy. We confirm
these numbers in two ways: the first is by checking that human-cobot collisions were detected with 100%
F1 score (we have a collision when the minimum distance between the human limbs and the robotic links is
below a predefined threshold). Secondly, we show that the new CHICO dataset does not suffer from a trivial
zero velocity solution [120], i.e. results achieved by a zero velocity model underperform the current SoA in
equal proportion as for the large-scale established Human3.6M.
Actions. The 7 types of actions of CHICO are inspired by ordinary work sessions in an HRC disassembly
line as described in the review work of [71]. Each action is repeated over a time interval of ∼1 minute on

*Code and dataset are available at: https://github.com/AlessioSam/CHICO-PoseForecasting.
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average. Each action is associated with a goal that the human operator has to achieve by a given time limit,
which requires them to move with a certain velocity. Each action consists of repeated interactions with the
robot (e.g., robot place, human picks) which, due to the limited space, lead to some unconstrained collisions*

which we label accordingly. Globally, from the 7 actions× 20 operators, we collect 226 different collisions.
The selected actions are designed to be generalizable to real industrial scenarios, reflecting typical tasks
found in various manufacturing and assembly environments. On the next page, an illustration of the actions
is available. Note that in all the captions “H” stands for “human operator”, “R” for “robot”. In the following,
each action is briefly described.

• Lightweight pick and place (Light P&P). The human operator is required to move small objects of
approximately 50 grams from a loading bay to a delivery location within a given time slot. The bay
and the delivery location are at the opposite sides of the workbench. Meanwhile, the robot loads on of
this bay so that the human operator has to pass close to the robotic arm. In many cases, the distance
between the limbs and the robotic arm is a few centimeters.

• Heavyweight pick and place (Heavy P&P). The setup of this action is the same as before, but the
objects to be moved are floor tiles weighing 0.75 kg. This means that the actions have to be carried
out with two hands.

• Surface polishing (Polishing). This action was inspired by [115], where the human operator polishes
the border of a 40 by 60cm tile with some abrasive sponge, and the robot mimics a visual quality
inspection.

• Precision pick and place (Prec. P&P). The robot places four plastic pieces in the four corners of a
30×30cm table in the center of the workbench, and the human has to remove them and put them on a
bay before the robot repeats the same unloading.

• Random pick and place (Rnd. P&P). Same as the previous action, except for the plastic pieces, which
are continuously placed by the robot randomly on the central 30×30cm table, and the human operator
has to remove them.

• High shelf lifting (High lift). The goal is to pick light plastic pieces (50 grams each) on a sideway bay
filled by the robot, putting them on a shelf located at 1.70m, on the opposite side of the workbench.
Due to the geometry of the workspace, the arms of the human operator were required to pass above or
below the moving robotic arm. In this way, close distances between the human arm and forearm and
the robotic links were realized.

• Hammering (Hammer). The operator hits a metallic tide with a hammer held by the robot. In this
case, the interest was to check how much the collision detection is robust to an action where the human
arm is colliding close to the robotic arm (that is, on the metallic tile) without properly colliding with
the robotic arm.

Overall, the selected actions represent a broad spectrum of industrial tasks, emphasizing the setup’s
applicability and realism in simulating effective human-robot collaboration across various real-world sce-
narios.

*Unconstrained collisions is a term coming from [66], indicating a situation in which only the robot and human are directly
involved in the collision.
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Table 2.2: MPJPE error (millimeters) for long-range predictions (25 frames) on Human3.6M [79] and numbers of
parameters. Best figures overall are reported in bold, while underlined figures represent the best in each block. The
proposed model has comparable or less parameters than the GCN-based baselines [74, 163, 164] and it outperforms
the best of them [164] by 2.6%.

Depth MPJPE Parameters (K) DW-Separable ST-Separable Sparse w/ MLP layers Teacher-Student
GCN 4 123.2 222.7
DW-GCN [95] 4+4 119.8 223.2 ✓ ✓
STS-GCN† [164] 4 117.0 57.6 ✓
Sparse-GCN [163] 4 122.7 257.9 ✓
STS-GCN 5 115.9 68.6 ✓
STS-GCN 6 116.1 79.9 ✓
STS-GCN w/ MLP 5+5 125.2 101.4 ✓ ✓
STS-DW-GCN 5+5 114.8 70.0 ✓ ✓ ✓
STS-DW-Sparse-GCN 5+5 115.7 122.4 ✓ ✓ ✓ ✓
SeS-GCN (proposed) 5+5 113.9 58.6 ✓ ✓ ✓ ✓ ✓

2.4.1 Details on the dataset and the data acquisition process

The dataset has been acquired in the October ’21 - March ’22 period, on a 500m2 Industry 4.0 lab, which
includes a configurable a 11m production line, 4 cobots, a quality inspection cell, a (dis-)assembly station
and other equipment. We worked on the 0.9 m ×0.6 m workbench of the (dis-)assembly station in front of a
Kuka LBR iiwa 14 R820 cobot. The declared positioning accuracy is ±0.1mm and the axis-specific torque
accuracy is ±2% [94]. Thanks to its joint torque sensors, the robot can detect contact and reduce its level
of force and speed, being compliant to the ISO/TS 15066:2016 [80] standard. Since collisions between the
operator and the cobot were expected in CHICO, the maximum allowed Cartesian speed of each link is set to
200mm/s, slightly lower than the ISO/TS 15066:2016 requirements. The safety torque limit allowed before
the mechanical brakes activation is set to 30Nm for all joints and 50Nm for the end-effector. Additionally,
a programmable safety check of 10N was set on the Cartesian force.

A total of 20 subjects (14 males, 6 females, and average age of 23 years) have been hired for building the
dataset. They worked for the entire acquisition period after having signed informed consent and participated
in a crash course on how to cooperate with the Kuka cobot. During the acquisition season, we have selected
some excerpts that capture collisions made by the operators, reaching 226 collisions. On average, we have 45
collisions for each action, with the sole exception for hammering. For this specific action, the cobot stands
still, holding the object being hammered, while the human agent moves repeatedly close to the robotic arm.
Sequences containing this action are still part of the collision detection dataset, i.e., they are useful to check
that there are no false positives.

2.5 Experiments on Human3.6M

We benchmark the proposed SeS-GCN model on the large and established Human3.6M [79]. In Sec. 2.5.1,
we analyze the design choices corresponding to the models discussed in Sec. 2.3, then we compare with the
state-of-the-art in Sec. 2.5.2.
Human3.6M [79] is an established dataset for pose forecasting, consisting of 15 daily life actions (e.g.
Walking, Eating, Sitting Down). From the original skeleton of 32 joints, 22 are sampled as the task, rep-
resenting the body kinematics. A total of 3.6 million poses are captured at 25 fps. In line with the litera-
ture [39, 117, 120], subjects 1, 6, 7, 8, 9 are used for for training, subject 11 for validation, and subject 5 for
testing.
Metric. The prediction error is quantified via the MPJPE error metric [79, 118], which considers the
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displacement of the predicted 3D coordinates w.r.t. the ground truth, in millimeters, at a specific future
frame t:

LMPJPE =
1

V

V∑
v=1

||x̂vt − xvt||2. (2.5)

It is worth noting that, following literature [39, 117, 118], the loss function differs from the test metric,
Eq. 2.5; namely, the loss function considers the average of MPJPEs over the entire predicted sequence:

LMPJPE =
1

V T

T∑
t=0

V∑
v=1

||x̂vt − xvt||2

where, in accordance with Eq. 2.5, x̂vt and xvt are the 3-dimensional vectors of a target joint jv (0 ≤ v ≤ V )

in a fixed frame ft (0 ≤ t ≤ T ) for the ground truth and the predictions, respectively.

2.5.1 Modelling choices of SeS-GCN

We review and quantify the impact of the modeling choices of SeS-GCN:
Efficient GCN baselines. In Table 2.2, we first validate the three different modeling approaches to efficient
GCNs, namely space-time separable STS-GCN [164], depth-wise separable graph convolutions DW-GCN
[95], and Sparse-GCN [163]. STS-GCN yields the lowest MPJPE error of 117.0 mm at a 1-sec forecasting
horizon (2.4% better than DW-GCN, 4.8% better than Sparse-GCN) with the fewest parameters, 57.6k (ca.
x4 less). We build, therefore, on this approach.
Deeper GCNs. It is a long-standing belief that Deep Neural Networks (DNN) owe their performance to
depth [68, 107, 190, 198]. However, deeper models require more parameters and have a longer processing
time. Additionally, deeper GCNs may suffer from over-smoothing [132]. Seeking both better accuracy and
efficiency, we consider three pathways for improvement: (1) add GCN layers; (2) add MLP layers between
layers of GCNs; (3) adopt depth-wise graph convolutions, which also add MLP layers between GCN ones
(cf. Sec. 2.3.2).

As shown in Table 2.2, there is a slight improvement in performance with 5 STS-GCN layers (MPJPE
of 115.9 mm), but deeper models underperform. Adding MLP layers between the GCN ones (depth of
5+5) also decreases performance (MPJPE of 125.2). By contrast, adding depth by depth-wise separable
graph convolutions (STS-DW-GCN of depth 5+5) reduces the error to 114.8 mm. This may be explained by
the virtues of the increased depth in combination with the limiting cross-talk of joint-time channels, which
existing literature confirms [34, 95, 164]. We note that space-time and depth-wise channel separability is
complementary. Altogether, this performance is beyond the STS-GCN performance (114.8 Vs. 117.0 mm),
at a slight increase of the parameter count (70k Vs. 57.6k).
Sparsifying GCNs and the proposed SeS-GCN. Finally, we target to improve efficiency by model com-
pression. Trends have reduced the size of models by reducing the parameter precision [149], by pruning
and sparsifying some of the parameters [126], or by constructing teacher-student frameworks, whereby a
smaller student model is paired with a larger teacher to reach its same performance [70, 102]. Note that the
last technique is the current go-to choice in deploying very large networks such as Transformers [14].

We start off by compressing the model with sparse adjacency matrices by the approach of Sparse-
GCN [163]. They iteratively optimize the learned parameters and the masks to select some (the selection
occurs by a network branch, also at inference, cf. 2.3.2). As illustrated in Table 2.2, the approach of [163]
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Table 2.3: MPJPE error in mm for short-term (400 msec, 10 frames) and long-term (1000 msec, 25 frames) predictions
of 3D joint positions on Human3.6M. The proposed model achieves competitive performance with the SoA [117],
while adopting 1.72% of its parameters and running ∼4 times faster, cf. Table 2.5. Results are discussed in Sec. 2.5.2.

Walking Eating Smoking Discussion Directions Greeting Phoning Posing
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [117] 39.8 58.1 36.2 75.5 36.4 69.5 65.4 119.8 56.5 106.5 78.1 138.8 49.2 105.0 75.8 178.2
MSR-GCN [39] 45.2 63.0 40.4 77.1 38.1 71.6 69.7 117.5 53.8 100.5 93.3 147.2 51.2 104.3 85.0 174.3

STS-GCN† [164] 51.0 70.2 43.3 82.6 42.3 76.1 71.9 118.9 63.2 109.6 86.4 136.1 53.8 108.3 84.7 178.4
SeS-GCN (proposed) 48.8 67.3 41.7 78.1 40.8 73.7 70.6 116.7 60.3 106.9 83.8 137.2 52.6 106.7 82.6 173.5

Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [117] 73.9 134.2 56.0 115.9 72.0 143.6 51.5 115.9 54.9 108.2 86.3 146.9 41.9 64.9 58.3 112.1
MSR-GCN [39] 79.6 139.1 57.8 120.0 76.8 155.4 56.3 121.8 59.2 106.2 93.3 148.2 43.8 65.9 62.9 114.1

STS-GCN† [164] 83.1 141.0 60.8 121.4 79.4 148.4 59.4 126.3 62.0 113.6 97.3 151.5 49.1 72.5 65.8 117.0
SeS-GCN (proposed) 82.2 139.1 59.9 117.5 78.1 146.0 57.7 121.2 58.5 107.5 94.0 147.7 48.3 70.8 64.0 113.9

does not make a viable direction (STS-DW-Sparse-GCN) since the error increases to 115.7 mm and the
parameter count to 122.4k.

Reminiscent of teacher-student models, in the proposed SeS-GCN, we first train a teacher STS-DW-
GCN, then use its learned parameters to sparsify the affinity matrices of a student STS-DW-GCN, which is
then trained from scratch. SeS-GCN achieves a competitive parameter count 58.6k and the lowest MPJPE
error of 113.9 mm, being comparable with the current SoA [117] and using only 1.72% of its parameters
(58.6k Vs. 3.4M ).

2.5.2 Comparison with the state-of-the-art (SoA)

In Table 2.3, we evaluate the proposed SeS-GCN against the three most recent techniques over a short time
horizon (10 frames, 400 msec) and a long time horizon (25 frames, 1000 msec). The first, DCT-RNN-
GCN [117], the current SoA, uses DCT encoding, motion attention and RNNs and, differently from other
models, demands more frames as input (50 vs. 10). The other two, MSR-GCN [39] and STS-GCN [164]
adopt GCN-only frameworks, the former adopts a multi-scale approach, the latter acts a separation between
spatial and temporal encoding.

Both on Short- and long-term predictions, at the 400 and 1000 msec horizons, the proposed SeS-GCN
outperforms other techniques [117, 164] and it is within a 1.5% error w.r.t. the current SoA [117], while
only using 1.72% parameters and being ∼4 times faster than [117].

2.6 Experiments on CHICO

We benchmark on CHICO the SoA and the proposed SeS-GCN model. The two HRC tasks of human pose
forecasting and collision detection are discussed in Secs. 2.6.1 and 2.6.2, respectively.

2.6.1 Pose forecasting benchmark

Here we describe the evaluation protocol proposed for CHICO and report comparative evaluation of pose
forecasting techniques.
Evaluation protocol. We create the train/validation/test split by assigning 2 subjects to the validation
(subjects 0 and 4), 4 to the test set (subjects 2, 3, 18 and 19), and the remaining 14 to the training set.

†Results for STS-GCN differ from [164], due to revision by the authors, cf. https://github.com/FraLuca/STSGCN.
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Table 2.4: MPJPE error in mm for short-term (400 msec, 10 frames) and long-term (1000 msec, 25 frames) prediction
of 3D joint positions on CHICO dataset. The average error is 7.9% lower than the other models in the short-term and
2.4% lower in the long-term prediction. See Sec. 2.6.1 for a discussion.

Hammer High Lift Prec. P&P Rnd. P&P Polishing Heavy P&P Light P&P Average
Time Horizon (msec) 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000 400 1000

DCT-RNN-GCN [117] 41.1 39.0 69.4 128.8 50.6 83.3 52.7 88.2 42.1 76.0 64.1 121.5 62.1 104.2 54.6 91.6
MSR-GCN [39] 41.6 39.7 67.8 130.2 50.2 81.3 53.4 90.3 41.1 73.2 62.7 118.2 61.5 101.9 54.1 90.7
STS-GCN [164] 46.6 52.1 64.2 116.4 48.3 79.5 52.0 87.9 42.1 73.9 60.6 106.5 57.2 95.2 53.0 87.4

SeS-GCN (proposed) 40.9 49.3 62.1 116.3 46.0 77.4 48.4 84.8 38.8 72.4 56.1 104.4 56.2 92.2 48.8 85.3

For short-range prediction experiments, abiding the setup of Human3.6M [79], we consider 10 frames as
observation time and 10 or 25 frames as forecasting horizon. Different from all reported techniques, DCT-
RNN-GCN requires 50 input frames.
We adopt the same Mean Per Joint Position Error (MPJPE)[79] as Human3.6M, in Eq. (2.5), which also
defines the training loss for the evaluated techniques.
None of the motion sequences for pose forecasting contain collisions. In fact, the objective is to train and
test the “correct” collaborative human behavior, and not the human retractions and the pauses due to the
collisions**.
Comparative evaluation. In Table 2.4, we compare pose forecasting techniques from the SoA and the
proposed SeS-GCN. On the short-term predictions, the best performance is that of SeS-GCN, reaching an
MPJPE error of 48.8 mm, which is 7.9% better than the second best STS-GCN [164].
On the longer-term predictions, the best performance (MPJPE error of 85.3 mm) is also detained by SeS-
GCN, which is 2.4% better than the second best STS-GCN [164]. The proposed model outperforms all
techniques on all actions except Hammer, a briefly repeating action that may differ for single hits. We argue
that DCT-RNN-GCN [117] may get an advantage from using 50 input frames (all other methods use 10
frames)

For a graphical illustration, Fig. 2.10 shows a distribution of the error per joint calculated over all the
actions for the horizons 400 (left) and 1000 msec (right). In both cases, the error gets larger as we get closer
to the extrema of the kinematic skeleton since those joints move the most. The slightly larger error at the
right hand (70.03 and 125.76 mm, respectively) matches that subjects are right-handed (but some actions
are operated with both hands).

For a sanity check of results, we have also evaluated the performance of a trivial zero velocity model.
[120] has found that keeping the last observed positions may be a surprisingly strong (trivial) baseline. For
CHICO, the zero velocity model scores an MPJPE of 110.6 at 25 frames, worse than the 85.3 mm score of
SeS-GCN. This is in line with the large-scale dataset Human3.6M [79], where the performance of the trivial
model is 153.3 mm.

2.6.2 Collision detection experiments

Evaluation protocol. We consider a collision to occur when any body limb of the subject gets too close to
any part of the cobot, i.e. within a distance threshold, for at least one frame. In particular, a collision refers
to the proximity between the cobot and the human in the forecast portion of the trajectory. The (Euclidean)
distance threshold is set to 13 cm.
The motion of the cobot is scripted beforehand, thus known. The motion of the human subjects in the next

**After the collisions, the robot stops for 1 seconds, during which the human operator usually stands still, waiting for the robot
to resume operations.
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Figure 2.10: Average MPJPE distribution for all actions in CHICO on different joints for (a) short-term (0.40 s) and
(b) long-term (1.00 s) predictions. The radius of the blob gives the spatial error with the same scale of the skeleton.

1000 msec needs to be forecast, starting from the observation of 400 msec. The train/validation/test sets
sample sequences of 10+25 frames with stride of 10.
Evaluation of collision detection. For the evaluation of collision, following [124], both the cobot arm parts
and the human body limbs are approximated by cylinders. The diameters for the cobot are fixed to 8cm.
Those of the body limbs are taken from a human atlas.
In Table 2.5, we report precision, recall and F1 scores for the detection of collisions on the motion of 2 test
subjects, which contains 21 collisions. The top performer in pose forecasting, our proposed SeS-GCN, also
yields the largest F1 score of 0.64. The lower performing MSR-GCN [39] yields poor collision detection
capabilities, with an F1 score of 0.31.

Table 2.5: Evaluation of collision detection performance achieved by competing pose forecasting techniques, with
indication of inference run time. See discussion in Sec. 2.6.2.

Time Horizon (msec) 1000
Metrics Prec Recall F1 Inference Time (sec)
DCT-RNN-GCN [117] 0.63 0.58 0.56 9.1× 10−3

MSR-GCN [39] 0.63 0.30 0.31 25.2× 10−3

STS-GCN [164] 0.68 0.61 0.63 2.3× 10−3

SeS-GCN (proposed) 0.84 0.54 0.64 2.3× 10−3

2.7 Discussion

Towards the goal of forecasting human motion during human-robot collaboration in industrial (HRC) envi-
ronments, we have proposed the novel SeS-GCN model, which integrates the three most recent modeling
methodologies for accuracy and efficiency: space-time separable GCNs, depth-wise separable graph convo-
lutions, and sparse GCNs. While SeS-GCN has demonstrated improved efficiency thanks to its novel design
choices, further research is needed to understand if its application in real-world cases suffices to effectively
increase safety and prevent collisions. In future work, we aim to assess the integration of such vision sys-
tems in simulated industrial processes by coupling a trajectory predictor model with a pose estimator. While
an integration that guarantees real-time predictions has not been investigated yet, it would close the loop,
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making the system fully autonomous. Also, we have contributed a new CHICO dataset, acquired at a real
assembly line, the first providing a benchmark of the two fundamental HRC tasks of human pose forecasting
and collision detection. Featuring an MPJPE error of 85.3 mm at 1 sec in the future with a negligible run
time of 2.3 msec, SeS-GCN and CHICO unleash great potential for perception algorithms and their appli-
cation in robotics.

Acknowledgements. This work was supported by the Italian MIUR through the project "Dipartimenti
di Eccellenza 2018-2022", and partially funded by DsTech S.r.l.
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Chapter 3

Contracting Skeletal Kinematics for
Human-Related Video Anomaly Detection

3.1 Overview

Anomaly Detection (AD) is a broad and well-studied field in computer vision, which aims to detect events
that deviate from normality automatically [29]. More precisely, the task is to detect anomalous events in
footage and label the corresponding frames as abnormal. AD is a complex and multifaceted field with
applications beyond just video surveillance [167]. Many techniques have been successfully applied in sev-
eral real-world scenarios, including monitoring elderly individuals [141], industrial systems [6] and social
networks [109].

While significant progress has been made in AD in recent years, this task still presents several chal-
lenges: (1) anomalous events are rare in real-world scenarios, and this reflects in the imbalanced distribution
of normal and anomalous events in public AD datasets. (2) Anomalous events are challenging to identify
since abnormal actions can involve either frenetic movements (e.g., fights) or very still postures (e.g., faints),
resulting in a context-dependent definition of anomaly, which varies among public datasets. Furthermore,
the same anomalous action can vary significantly among individuals, adding to the intra-class variation that
must be considered. Finally, (3) when working with videos of humans, it is crucial to consider privacy and
fairness concerns, such as avoiding violations of individuals’ rights or exploiting social biases.

In this work, we propose COSKAD. This novel end-to-end model infers abnormality COntracting
SKeletal (COSKAD) embeddings in the latent space and opens up a novel investigation of the latent met-
ric space encoding the regular motions. The proposed method tackles all the limitations mentioned above.
First, it adheres to the One-Class-Classification (OCC) [67, 108, 113, 119, 127] protocol, which simulates
the scarcity of abnormal events exposed in (1). Moreover, COSKAD exploits the compact spatio-temporal
skeletal representation (cf. Fig. 3.1) of human motion instead of raw frames, typically employed with video-
based methods. This modality comes with several advantages; first, recent work [193] in the motion-related
fields of Pose Forecasting and Action Recognition has proven the superiority of this modality with respect
to the raw video frames for motion representation. Exploiting this input modality, our proposed model is
more robust to slight motion deformations that represent the intra-class variability described in (2) while
preserving the ability to distinguish between different actions, e.g., walking vs. running, which is crucial
in AD. Furthermore, modeling agents as kinematic graphs allows for separating the person detection task
(handled as a preprocessing step) from the anomaly detection task, resulting in a more computationally ef-
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3.1. Overview

Person 3

Person 2

Person 4 Person 5 Person 1

Figure 3.1: Anomaly score provided by COSKAD on a clip from the UBnormal dataset. COSKAD correctly classifies
the motion of the two staggering characters (red skeletons in the upper-right picture) in the last part of the clip as
anomalous.

ficient and context-agnostic method. Although skeletal representations are more compact than raw video
frames, they contain the necessary information for effectively characterizing motions, as demonstrated by
the state-of-the-art results of skeleton-based methods [113, 119, 127]. Finally, the skeletal representation
is more privacy-preserving (3) since it ignores biometric details, representing all samples with anonymous
tensors of coordinates. Consistently with this setting, we adopt the Human Related (HR) [127] split of the
datasets, which corresponds to a version of the dataset that admits only anomalies generated by humans,
e.g., people fighting, disregarding anomalies coming from the context scene, e.g., a car proceeding on the
pavement.

The proposed model comprises two founding components: an encoder and a projector module. Dif-
ferently from previous related works, which use either ST-GCN [112, 119, 194], or a Recurrent Neural
Network [127] to encode the human motion, COSKAD implements its encoder as a Space-Time-Separable
Graph Convolutional Network [164]. Similarly to the previous chapter, we find it beneficial to employ a
separable GCN to limit the time-space information cross-talk, while the sparsity strategy achieved with the
teacher-student framework is not effective in this context. This is probably due to the increased generality of
motions encompassed by the Video Anomaly Detection datasets [2, 110, 112], making the sparsing strategy
less effective. As far as we know, this is the first study to adapt it for skeletal-based AD and to expose a
comparison among different GCN-based encoders (presented in Sec. 3.5.1). The projector module draws
inspiration from SSL, where it has been shown to play a crucial role [33, 61], which we confirm here in
detailed ablation studies (cf. Sec. 3.5.2). Finally, we define a data-driven metric objective in the latent space
to minimize the distance between the skeletal embeddings and a center. We call the distance minimiza-
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tion contraction, as it forces normality to concentrate around an origin. Dealing with a metric objective,
we further propose a novel investigation of how the latent distribution might be altered, condensed, or ex-
panded using the peculiar metric properties of three distinct manifolds: the Euclidean (Rn), the hyperbolic
space (Hn), and the n-Sphere (Sn). As far as we know, this is the first work to have studied different latent
spaces for skeleton-based anomaly detection. The proposed model is simple, lightweight, and effective, as
we illustrate in extensive experiments, where COSKAD outperforms state-of-the-art (SoA) models (includ-
ing some video-based techniques) on three challenging benchmarks: HR-ShanghaiTech Campus [112, 119],
HR-Avenue [110, 127], and the recent UBnormal [2].

Additionally, we offer an ablative examination of several of our model’s key features. Beyond a thor-
ough ablation study on the main modules of our proposed COSKAD, we also compare the encoder-based
architecture proposed with an autoencoder and compare two alternative strategies to define the hypersphere
center, extending the seminal study of [154]. Finally, we propose a novel HR version of UBnormal [2],
dubbed HR-UBnormal as an additional contribution. We create HR-UBnormal by filtering out anomalous
events that do not involve human individuals, e.g., we remove scenes of fire and car accidents unless people
are involved. We leverage an established Pose Estimator [48] and refine its results with a Pose Tracker [192]
to extract human poses in each UBnormal’s video frame. So, HR-UBnormal contains human-related anoma-
lies and human skeletons at all frames, inspected for accuracy and temporal consistency. To summarize, the
contribution of this paper is threefold:

• We introduce COSKAD, a simple, end-to-end, and effective model that surpasses SoA results on three
public benchmarks.

• We conduct an in-depth study on three different manifolds as latent spaces and explore their intrinsic
properties, and thoroughly analyze their effects on our novel AD system.

• We introduce a new HR version of UBnormal with a filtered selection of clips featuring human-related
events and an extended set of human body pose annotations.

3.2 Related Work

Anomaly Detection (AD) is a multi-faceted field with applications in several domains (see [19, 69] for
surveys). This work focuses on skeleton-based anomaly detection, a type of video-based AD that involves
analyzing the movements and poses of human bodies in a video. In this section, we compare works most
closely related to ours, distinguishing error-based and score-based video AD techniques and skeleton-based
models.

3.2.1 Video AD

Early proposed methods analyze the trajectories of agents in the video to unearth those that differ from
normality [25, 84]. More recent deep learning methods for Video AD can be roughly collected into two
categories: error-based or score-based.
Error-based methods. These methods attempt to detect anomalies through a generative process in which
a model produces new video frames, which are then compared with ground truth. These methods assume
that a model trained with only normal data will struggle to generate the anomalous frames, producing a
more significant error that can be directly used as the anomaly score. [67] used convolutional AutoEncoder
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(AE) and defined the input volume as a stack of sequential grayscale frames. [59] during the training phase
builds a memory of the most representative normal poses. During the inference phase, for each sample, it
finds the most similar example in memory and estimates its ground truth distance. Unlike these methods,
COSKAD relies on a GCN-encoder, an ideal tool for exploring relationships between body joints over time
in the kinematic graph and extracting semantically consistent latent embeddings.
Score-based methods. These approaches have been extensively studied [154, 171, 184]. They derive ab-
normality in videos by monitoring some quantity extracted from the embeddings produced by the deep
network. For example, [156] proposed a two-stage method in which videos are divided into cubic patches
and first analyzed with Gaussian classifiers to exclude the least relevant patches, e.g., background. Then,
the remaining candidates are processed by a more complex CNN. In contrast, COSKAD looks at the latent
space positions occupied by input embeddings to derive clues of abnormality. While working with images
rather than video, Deep Support Vector Data Description (DSVDD) [154] and OC4Seq [184] are two meth-
ods related to COSKAD, as both employ a DSVDD objective seeking to minimize a sphere enclosing the
generated embeddings. While we also employ an SVDD objective, our model learns in an end-to-end way
to map the representation of the normal samples in the latent space while encoding semantic representations
thanks to its separable GCN encoder. As far as we know, this work is the first to propose the SVDD objective
for Video AD with skeleton-based representations.

3.2.2 Skeleton-based AD

[127] first introduces the skeleton-based representation in AD; their method presents a two-branches archi-
tecture for reconstruction and forecasting modeled as GRUs. [113] sets up the problem as motion forecasting
and defines their model by stacking layers of ST-GCN [194] followed by an MLP forecasting module. While
they introduce the use of GCN, the adjacency matrix is fixed and does not allow the exploration of intra-
frame and intra-joint relationships, improving spatio-temporal features encoding [164]. [119] proposes a
two-stage network in which they train an autoencoder (built on ST-GCN [194]), and, in the second stage, it
clusters the produced embeddings in the latent space. These clusters should represent the normality styles
in the train set, but it is challenging to spot the optimal number of clusters. Differently, COSKAD has an
end-to-end approach and solves the problem of the number of clusters by forcing the entire train set into the
same latent region, constraining the distances to a common center.

3.3 Methodology

In this section, we describe our proposed model focusing on its modules and the steps taken to train and
assess it.

We assume the human body kinematics to be available as skeleton representations for a few given frames
(cf. Sec. 3.4.1 for the details on the skeleton sequence extractions for the proposed HR-UBnormal dataset).
These spatio-temporal graph inputs are fed to COSKAD which, as illustrated in Fig. 3.2, relies on two key
components: a separable graph encoder and a projection module. The encoder processes the input graph
and produces embeddings representing the motion of each individual. The projector adapts the embedding
provided by the encoder for the mapping in the latent space. Both modules are jointly trained with a spatial
minimization objective, which aims to catch the correspondences among samples belonging to the same
class. Finally, we define a novel metrical objective in the latent space in order to guide the training and
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Figure 3.2: The overall architecture of COSKAD. The model combines an STS-GCN-based [164] encoder (light green
and light blue blocks) with a projector module (yellow block) After projection, the latent representation (red vector in
the figure) is embedded into the latent space. We propose and evaluate 3 variants of the latent space: Euclidean Rn,
spherical Sn, and the hyperbolic modeled with the Poincaré Ball Dn. During training, the embeddings are constrained
to accumulate in a narrow region in the chosen manifold by reducing the distance between the motion embedding and
the common center. The sequences mapped further from the center are interpreted as anomalous during inference.

consider three different manifolds as latent spaces: the Euclidean Space (Rn), the Poincaré Ball (Dn), and
the n-Sphere (Sn), to inherit their specific metric properties.
Formulation. The motion trajectories consist of V joints per actor in each frame tracked across all the
frames (Tactor) where the actor is present. We apply a temporal sliding window crop on the trajectories to
get sequences of V joints’ spatial positions for T adjacent time frames. Finally, we organize the input signal
as a graph G = (V, E), with TV nodes xi ∈ RC , where C = 2 stands for the x, y joint coordinates, and
with edges (i, j) ∈ E , represented by a spatio-temporal adjacency matrix Ast ∈ RV T×V T , relating all joints
to all others across all observed time frames.

3.3.1 Encoder and Projector module

We encode the body kinematics of a person with a SoA variant [164] of Graph Convolutional Network
(GCN) [92]. GCNs are the go-to choice in the kinematic-related fields of Pose Forecasting [164, 193, 203]
and action recognition [166, 194]. COSKAD leverages a separable GCN-encoder designed to capture spatio-
temporal signals and produce consistent features. Specifically, the encoding performs a factorization of the
adjacency matrix A into two learnable submatrices (As, At) responsible for spatial and temporal inter-
connections, respectively. As ∈ RT×V×V , the spatial adjacency matrix, learns the relationships between
different joints in each frame by learning their interdependence. In contrast, At ∈ RV×T×T , the temporal
adjacency matrix, deals with the connections between different temporal instants for each joint.

This strategy, also adopted by [164] in the context of pose forecasting, ensures effective encoding of the
spatio-temporal features of the input graph by learning and exploiting the joint-joint and time-time relation-
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ships that characterize human motion. In addition, this factorization results in a considerable reduction in
the number of parameters (∼ 4x with respect to a plain GCN) since it does not consider the relationships
between different joints in different frames.

We formulate a single encoder layer as:

X l+1 = σ(AsAtX
lW ) (3.1)

where X l is the input from the previous layer, W ∈ RC×C′
are learnable weights and σ an activation

function. We stack four separable GCN layers interleaved with residual connections to encode the entire
input sequence. Overall, the results of our ablation studies (cf. Sec. 3.5.1) suggest that the separable GCN
is the best encoder among the GCN architectures we evaluated.

Reminiscent of recent works in Self-Supervised Learning (SSL) [33, 61], we explicitly define a projector
module to refine the Encoder representation and accommodate it in the latent space. The projector comprises
two identical blocks that iteratively process their input with a Fully Connected Module followed by a ReLU
non-linearity and a Batch Normalization [78] layer. Despite its simplicity, we found it beneficial to add this
module, as shown in Sec. 3.5.2.

3.3.2 Objective

The OCC formulation requires that the train sets contain elements of a single class. Therefore, the design
of the objective function is crucial, as it can only exploit the similarities that normal samples exhibit. Many
existing methods [59, 108, 113, 127] formulate the anomaly score using a proxy task, such as the recon-
struction error. In Sec. 3.5.4, we experimentally confirm that this is suboptimal, as maintained in [55], since
it does not align directly with the inference AD objective.

In this work, we define a metric objective that encourages the model to arrange the train samples in a
narrow region in the latent space: inspired by [154], the objective is defined as:

min
W

1

N

N∑
i=1

d(Φ(xi,W), c) + αf(W) (3.2)

Where Φ represents the mapping in the latent space defined by COSKAD, W is the set of its parameters,
xi ∈ RT×V×C is an input sample, d is a metric defined in the latent space, f is a weight decay regularizing
function, and c is the center of the hypersphere. We follow [154] and initialize c by taking the average of the
final embeddings after an initial forward pass. Then, [154] suggests training the model with the parameter c
fixed. We argue that this practice may harm the training, leading to a non-optimal solution since the center
is precalculated and its position does not evolve with the learning.

Differently from [154], we introduce a novel and more tailored data-driven dynamic for the center: at
the beginning of each training epoch, the position of the center is refined to be the centroid of the data’s
projection in the latent space. The benefit of this moving center is twofold. First, a data-driven center
relieves the encoder and the projector learning not being constrained to accumulate projection around a fixed
point. Secondly, it encourages COSKAD to explore the latent space to find a region that accommodates the
representations, which we show to be beneficial in Sec. 3.5.3, especially when the hyperbolic manifold is
set to be the latent space.
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(a) (b) (c)

Figure 3.3: Visualization of the UBnormal test set’s latent vectors embedded in three different manifolds: (a) Eu-
clidean, (b) spherical, and (c) hyperbolic. We retain the three dimensions with the highest variance and color-code the
points according to their distance from the center, from blue (closest) to red (furthest). Distance is intended as the L2

norm in the Euclidean case, the cosine distance on Sn, and the Poincaré distance for the hyperbolic embeddings. In
the hyperbolic case, we highlight in green the hyperboloid onto which the embeddings are projected for better visual-
ization.

3.3.3 Latent Spaces

We propose to consider three diverse manifolds for embedding the input sequences. In fact, the objective
of Eq. 3.2 forces the model to focus on features corresponding to common characters in the embeddings
extracted from the encoder and to iteratively reduce their distances from a center. As a result, the method
relies on a metric which, in turn, depends on the metric space L chosen as the latent space. Motivated by
this, we are the first to define the same objective on three manifolds, each with its own specific metric: the
Euclidean space Rn, the spherical space Sn ⊂ Rn+1, and the hyperbolic space Hn ⊂ Rn+1. These spaces
have a different curvature that causes the distance to behave differently in each manifold.

Euclidean Latent Space

When L = Rn, the distance coincides with the L2 metric dE(x, y) = ||x− y||2, and the model is defined
substituting the distance d with dE in Eq. 3.2.

n-Sphere Latent Space

With L = Sn, we modify the proposed COSKAD model, building on top of the S-VAE presented in [40].
We dub the model COSKAD-radial since it constrains inputs onto the spherical surface with a fixed radius
Sn = {x ∈ Rn+1 : ∥x∥2 = 1}; the posterior of the normal data approximates a Power Spherical distribution
qX(x;µ, κ) [41], with a constraint Ldir =

1
N

∑N
i=1(1−x·c) to push the samples close to the empirical mean

direction c. The target loss is L = γLrec+ϕLdir+βLKL, where Lrec defines the objective for the Variational
AutoEncoder reconstruction, LKL is the Kullback-Leibler divergence, γ, ϕ, β ∈ R hyperparameters. The
anomaly score is solely given by the cosine distance between any sample x on Sn and the empirical mean c

computed at train time.

Hyperbolic Latent Space

When L = Hn, we model it with the Poincaré Ball which coincides with the unit euclidean open ball Dn

endowed with the Riemmanian metric
gDx =

2In

1− ||x||2
,
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where In represents the Identity matrix. This metric tensor induces the distance

dD(x, y) = arcosh

(
1 +

2||x− y||2

(1− ||x||2)(1− ||y||2)

)
. (3.3)

The distances between the points on this manifold increase exponentially with distance from the origin
O. To take full advantage of this property, we let the cluster center move in the Poincaré Ball in a data-
driven fashion, but we also experienced defining the center as a fixed point, as detailed in Sec. 3.5.3. In
Fig. 3.3, comparing the Euclidean (a) with the hyperbolic (c) case, the effect of this distance is shown: in
the Euclidean case, farther points tend to be more spread since the hyperbolic distance dD ensures a stronger
attraction towards the center, i.e. dD grows exponentially with the distance from the center. In this case,
the model is obtained from COSKAD by adding a projection layer exp0 : Rn+1 → Dn, which performs
the exponential mapping to get the hyperbolic representation in Dn. Thus, the objective defined in Eq. 3.2
becomes:

min
W

1

N

N∑
i=1

dD(exp0(Φ(xi,W)), c) + αf(W). (3.4)

3.3.4 Anomaly Score

At inference time, the anomaly score s for each sample x (representing a single agent in a time window
composed by T frames {f1, f2, ..., fT }) is defined as the distance of its COSKAD embedding from the
center c:

s(x) = d(Φ(x,W), c). (3.5)

To score a single frame f̄ , for each agent p, we first collect all the windows involving p in a set wp, and we
restrict this set picking only the windows containing f̄ to a set wp

f̄
. Then, we calculate the score through

Eq. 3.5 and thus set the score for p at frame f̄ to be the mean of those scores:

sp(f̄) =
1

|wp

f̄
|
∑
x∈wp

f̄

s(x). (3.6)

Finally, we get the score for a single frame f̄ by a max pooling operation over all the agents present in the
scene at frame f̄ :

s(f̄) = max
p∈Pf̄

{sp(f̄)}, (3.7)

where Pf̄ is the collection of all the people present in the clip at frame f̄ .

3.4 Experiments

In this section, we evaluate the performance of COSKAD on the human-related versions of three established
benchmarks against state-of-the-art skeleton-based methods. Next, we discuss how our approach relates to
techniques that additionally employ appearance. The section is organized as follows: first, we illustrate
the datasets and the metric (Sec. 3.4.1). Then, we describe the results of the experiments and discuss the
performance (Sec. 3.4.2). The last part of this section provides details about the implementation and data
preprocessing (Sec. 3.4.3).
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Dataset
# frames

Total Training Validation Test Normal Abnormal

Avenue [110] 43,499 28,175 - 15,324 25,891 17,608

STC [112] 317,398 274,515 - 42,883 300,308 17,090

UBnormal [2] 236,902 116,087 28,175 92,640 147,887 89,015

HR-Avenue [127] 42,883 28,175 - 14,708 25,891 16,992

HR-STC [127] 313,212 274,515 - 38,697 297,090 16,122

HR-UBnormal (Proposed) 234,751 116,087 28,175 90,489 147,887 86,864

Table 3.1: Overview of the three datasets chosen, CUHK Avenue, ShanghaiTech Campus, and UBnormal, as well as
their human-related versions.

3.4.1 Benchmarks

The following sections describe the datasets and introduce the metric we use to score anomalous frames in
a video sequence.

Datasets

UBnormal. UBnormal [2] is the largest and most recent dataset for frame-level video anomaly detection,
the only one to provide train-validation-test splits that adhere to the Open Set protocol, i.e., the sets of
anomalous events for train, validation, and test are disjoint. It consists of 19 clips, which encompass both
normal and abnormal events, for each of the 29 diverse background scenes. UBnormal has several distinctive
features. First, as illustrated in Table 3.1, it contains more anomalous frames than those presented in CUHK
Avenue or ShanghaiTech Campus. Additionally, it has labels for each anomaly at both the frame and pixel
level, with annotations describing the anomalous actions (e.g., jumping, sleeping, stealing). UBnormal
exhibits a larger list of anomalous event types than previous Video Anomaly Detection datasets: it includes
22 categories of anomalies, in contrast to ShanghaiTech Campus and CUHK Avenue which only encompass
11 and 5, respectively. Additionally, it introduces a variety of objects, such as cars and bicycles, to both
the train and the test sets to avoid the anomaly being detected because the object was not seen during the
training phase. In contrast to other benchmarks, it is synthetic and its virtual 3D scenes are created with
Cinema4D with heterogeneous 2D backgrounds (e.g., streets, train stations, and office rooms, with different
viewpoints and lighting conditions). Since COSKAD is trained in the OCC framework, we extract only the
normal sample poses from the training set. Conversely, we maintain the original validation and test split in
this setting.
HR-UBnormal (Proposed). We propose HR-UBnormal as an extension of the original UBnormal dataset
with kinematic motion representations and a selected set of anomalies that relate only to human behaviors.
AlphaPose [48] is first used to extract the poses, and PoseFlow [192] is used to track the skeletons throughout
each video. We then filter out the non-human related anomalies. We remove the sub-sequences in which
the only anomalous object was not a person (e.g., a car) or the anomaly cannot be detected using only body
poses (e.g., fire in the scene). See Table 3.2 for the list of deleted non-HR anomalous actions.

As a result, we leave the validation set unaltered while eliminating the frames 2.32% of the test set.
Table 3.1 lists the total number of normal and abnormal frames. CUHK Avenue. The CUHK Avenue
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Clip Length Discarded % discarded % abnormality

abnormal_scene_4_scenario_1_fire 451 152 33.70 100.00

abnormal_scene_4_scenario_2_fire 451 35 7.76 100.00

abnormal_scene_7_scenario_1_fire 451 356 78.94 100.00

abnormal_scene_7_scenario_4 451 361 80.04 0.00

abnormal_scene_7_scenario_5 451 451 100.00 0.00

abnormal_scene_12_scenario_1_smoke 451 260 57.65 100.00

abnormal_scene_17_scenario_1_smoke 451 115 25.50 99.70

abnormal_scene_23_scenario_1 451 22 4.88 37.76

abnormal_scene_28_scenario_2 451 108 23.95 43.73

abnormal_scene_29_scenario_2_smoke 451 283 62.75 0.00

abnormal_scene_29_scenario_4 451 8 1.77 56.43

Table 3.2: List of the clips from which some non-human sub-sequences have been discarded. The column Length
reports the number of frames of the original clip. The columns Discard and % discarded report the number of cut
frames and the percentage w.r.t. the original clip’s length, respectively. Finally, the column % abnormality shows
the percentage of anomalous frames w.r.t. the current clip length; notice that some clips originally contained only
anomalous frames, hence, after removing some of them, the percentage of abnormality remains 100.0%.

dataset [110] contains 16 training videos and 21 testing videos with a total of 47 abnormal events recorded
with different camera positions and angles. The HR-version [127] is obtained by removing frames where
(1) the anomalous event is non-human, (2) the person involved is occluded, or (3) the main subject cannot
be detected and tracked.
ShanghaiTech Campus. The ShanghaiTech Campus (STC) dataset [112] contains footage from 13 cameras
around the campus with different light conditions and camera angles. It contains more than 300,000 total
frames, and there are 130 abnormal events, some of which are not present in other datasets (e.g., chasing,
brawling). The HR-version [127] is obtained by removing 6 out of 107 test videos where the anomalous
event is non-human.

Evaluation metric

We score each frame in a video as mentioned in Sec. 3.3.4. Then we compare it with the ground-truth
labels to compute the Area Under the Curve (AUC) score, following the previous literature in Video AD
[2, 56, 108, 110, 119, 127].

3.4.2 Comparison with SoA

We compare COSKAD against relevant skeleton-based state-of-the-art techniques on the HR version of
the selected three datasets. This comparison, considering skeleton-based anomaly detection algorithms, is
described in Sec. 3.4.2 and regards the bottom part of Table 3.3. Then, Sec. 3.4.2 compares skeleton-based
Vs. video-based techniques, and it discusses progress on the two fronts.
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Video-based methods Params UBnormal STC Avenue
S Sultani et al. [167] - 50.3 - -

Georgescu et al.[56] > 80M 61.3 - -
Bertasius et al.[16] 121M 68.5 - -

WS Georgescu et al. [56] > 80M 59.3 82.7 92.3
OCC Hasan et al. [67] - - 70.4 80.0

Park et al. [134] - - 69.8 82.8
Liu et al. [108] 14M - 72.8 85.1

Chang et al. [30] - - 73.3 86.0
Barbalau et al. [9] > 80M 62.5 83.8 93.7

Skeleton-based methods Params HR-UBnormal HR-STC HR-Avenue
OCC Morais et al. [127] 25K 61.2 75.4 86.3

Markovitz et al. [119] 805K 55.2 74.8 58.1
Luo et al. [113] 8M - 76.5 87.3

Ours - radial 285K 63.4 75.2 82.2
Ours - Euclidean 240K 65.2 77.1 87.8
Ours - hyperbolic 240K 65.5 75.6 87.3

Table 3.3: Results on the human-related versions of the datasets UBnormal (HR-UBnormal), ShanghaiTech Campus
(HR-STC) and CUHK Avenue (HR-Avenue), measured in terms of AUC score (bottom part of the table). We highlight
in bold the best results and underline the second best. We report the results of video-based models on the non-HR
versions of the aforementioned datasets (upper part of the table); it should be noted that such methods cannot be
directly compared with skeleton-only ones, which are rather complementary, and hence are displayed in gray. The
blocks split the table according to each method’s framework, where S, WS and OCC stand for Supervised, Weakly-
Supervised and One Class Classification methods, respectively.

Comparison with skeleton-based techniques

Table 3.3 reports the results of the experiments we have conducted on HR-UBnormal, HR-ShanghaiTech
Campus, and HR-Avenue. On HR-UBnormal, all three proposed volume shrinking strategies of COSKAD
introduced in Sec. 3.3.3 outperform the current best [127]. In particular, our best variant, COSKAD-
hyperbolic, outperforms [127] by a relative improvement of 7% (65.5 AUC Vs 61.2 AUC). This remarks on
the effectiveness of COSKAD in the case of the challenging open set anomalies of UBnormal.

The HR-ShanghaiTech Campus and HR-Avenue rankings are tighter; still, COSKAD-Euclidean attains
the best performance on both datasets, setting a new state-of-the-art on these benchmarks. Although the per-
formance gain between COSKAD-Euclidean (77.1 and 87.8) and the current best skeleton-based method of
[113] (76.5, 87.3) is relatively small, it should be noted that, even compared to skeleton-based baselines, our
model remains lightweight (cf. the parameter count in Table 3.3). Comparing the three COSKAD versions,
the radial approach underperforms. This might be a consequence of the more dispersed distribution of the
embeddings from the center, as visible in Fig. 3.3.

Relation of COSKAD with video-based methods

For completeness, the upper part of Table 3.3 reports video-based techniques, tested on the complete set
of videos of UBnormal, ShanghaiTech Campus and CUHK Avenue. The complete datasets include human-
related anomalies, as well as anomalies not relating to people (e.g., crashing cars) and only stemming from
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visual cues, such as fire, smoke, and fog. The general video-based anomaly detection techniques in the
top part of Table 3.3 have access to the spatio-temporal volume of RGB-pixel information, accounting for
appearance (color, shape, object-like, etc.) and motion cues (e.g., optical flow). On the other hand, skeletal
motion accounts for a small subset of the information contained in videos, but it condenses cues about
the actions, avoiding misleading features such as lightning conditions or viewing directions. Indeed, even
without the ability to detect non-human events, our model achieves 65.0 AUC (cf. Table 3.4). In contrast,
the current state-of-the-art OCC video-based model [9] only scores an AUC of 62.5. Besides, COSKAD
only uses a fraction of parameters of [9], namely 240K Vs. 80M (−99.7%). On ShanghaiTech Campus and
CUHK Avenue, our best-performing model reports an AUC score of 74.3 and 85.7, respectively, and only
[9, 55] surpass COSKAD’s performance. Overall, our models’ high performance and reduced complexity
suggest that skeleton-based techniques could be a valuable research direction to complement appearance-
based cues. Moreover, by solely processing motion, as COSKAD does, additional privacy and fairness
guarantees are provided, as the model cannot exploit biases related to skin color, gender, or clothing style.

3.4.3 Experimental setup

Implementation details. We train our proposed COSKAD with PyTorch Lightning using two Nvidia P6000
GPUs for 80 epochs, with a learning rate of 0.0001 and ADAM [91] optimizer. The training phase required
1.5 hours, which is a fraction of the training time of [119, 127]. We consider V = 17 key points to represent
a pose and divide each agent’s motion history by adopting a sliding window procedure (each window has a
length of T = 12 frames with stride 1 so that windows overlap).
Pose normalization. Since the 2D positions of the joints refer to the frame, we normalize the poses to make
them independent of the spatial location, following [127]. For all the datasets, we perform an additional
normalization stage by applying robust scaling to reduce the contribution of outliers, as also done in [127].

3.5 Ablation Studies

In this section, we report additional results and experiments that have guided us in building COSKAD. This
study focuses on establishing the two main components of the proposed model and compares two strategies
concerning the center update and the scoring method. All the experiments presented in this section are
performed on the established UBnormal dataset and are conducted using the best-performer Euclidean and
the hyperbolic versions of COSKAD. Notably, each model’s variant with an STS-GCN encoder presented
in this section outperforms all the OCC techniques reported in Table 3.3.

3.5.1 Encoder

As illustrated in Sec. 3.3.1, COSKAD is equipped with a separable GCN-Encoder to process the input
graphs. The first to propose a GCN as a kinematic encoder in the context of anomaly detection was [113],
while previous works rely on LSTM [73], such as [127]. For this reason, we compare our encoder with
other established GCN architectures, such as a plain GCN [92] and the ST-GCN [194], which have been
employed in [113, 119]. As reported in Table 3.4, the selected separable GCN attains the best results
among competitors, showing an increase in performance of 9.8% and 10.2% over GCN [92] and 3.6%
and 7.8% over ST-GCN [194] on the Euclidean and hyperbolic models, respectively. This result confirms
that separating the kinematic adjacency matrix in its spatial and temporal parts allows for improved input
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Encoder Projector Center Update Hyperbolic UBnormal
GCN[92] ST-GCN[194] Sep. GCN Identity Linear Non-Linear Static Dynamic Valid. Test

✓ ✓ ✓ 68.9 59.1
✓ ✓ ✓ ✓ 69.1 59.0

✓ ✓ ✓ 68.4 62.6
✓ ✓ ✓ ✓ 72.3 60.3

✓ ✓ ✓ 72.7 64.5
✓ ✓ ✓ ✓ 72.0 63.6
✓ ✓ ✓ 71.3 64.7
✓ ✓ ✓ ✓ 72.9 64.5
✓ ✓ ✓ 69.8 64.2
✓ ✓ ✓ ✓ 71.1 64.7
✓ ✓ ✓ 74.5 64.6
✓ ✓ ✓ ✓ 74.0 63.1
✓ ✓ ✓ 75.8 64.9
✓ ✓ ✓ ✓ 76.4 65.0

Table 3.4: Ablation on the components of the proposed method COSKAD. Red checkmarks indicate the technical
choices we implement in the final model. The results are attained on the UBnormal dataset.

# Blocks Euclidean Hyperbolic
Validation Test Validation Test

0 71.2 64.1 72.4 63.7
1 75.8 64.9 76.4 65.0
2 75.7 64.8 74.01 64.6

Table 3.5: Ablation on the depth of the Non-Linear projector proposed (cf. Sec.3.5.2).

representations. Moreover, separating the adjacency matrix results in a significant reduction in parameters,
yielding an encoder with only 31K parameters against 75K and 170K of {ST-GCN, GCN}-based encoders,
respectively.

3.5.2 Projector

The importance of the projector when dealing with representations and metric objectives has been studied
thoroughly in the field of SSL [33, 61]. Following [33], we compare three different definitions for the
projector: the Identity (no projector), Linear (two linear layers), and Non-Linear (one block of linear layer,
non-linearity, and Batch Normalization [78] followed by another linear layer) projectors. In Table 3.4, we
empirically confirm the results of [33], showing that a non-linear projector provides a boost in performance
(+5.6%, +0.54% on validation and test, respectively) when compared to an Identity projector, i.e., directly
using the output of the encoder. The Identity and Linear strategies provide similar results, showing that a
non-linearity is needed to improve the representations in the latent space. As a further investigation, we also
verify the deepness of the non-linear projector module. Specifically, we assess our model against different
versions of it with a naive non-linear decoder without any block, performing only Batch Normalization,
a ReLU activation and a linear layer, and a deeper projector involving two non-linear blocks followed by
a linear layer. As depicted in Table 3.5, a single non-linear block considerably increases performance,
especially in the hyperbolic setting (+2%). Since the COSKAD’s modules operate in Euclidean spaces, this
result is not surprising and exposes the need for a projector when dealing with non-Euclidean latent spaces.
Further, using more layers results in a slight degradation in performance when using either the Euclidean or
the hyperbolic latent space (−0.2%,−0.6%, respectively).
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Model Training Inference UBnormal
COSKAD Lhyp shyp 64.9

srec 63.0
COSKAD-AE Lhyp + Lrec shyp 64.1

shyp + srec 63.4

Table 3.6: Performance evaluation of our proposed models with COSKAD-AE. AUC score is reported for the UB-
normal dataset.

3.5.3 Center Update Strategy

Since the metric objective of our method seeks to minimize the distance between the latent representations
and a point defined in the latent space, it is critical to choose the optimal rule to update the center position
during training to achieve optimal mapping. [154] proposed to fix a point in the latent space and then
perform training around it. We experiment with this method, dubbed Static, and compare it with a novel rule
to update the center position, dubbed Dynamic, in Table 3.4. While it is unclear which position for the center
represents the optimal choice, we devise the Dynamic strategy to give more flexibility to the system. Indeed,
in the Dynamic strategy, the center position is initially defined as the centroid of the training sequences
embeddings at the beginning of the training phase. During training we then refine its position with the same
technique every 2 epochs.

As can be seen, the Dynamic strategy provides the best result, especially in the hyperbolic space, with an
increase of 3% wrt to its Static counterpart, while the gain in the Euclidean space (+0.4%) is more marginal.
We expected a similar behavior since the metric defined within the Poincaré Ball induces a distance that
grows exponentially with the radius, therefore, when the learning center is left free to move, the model can
take advantage of it. On the other hand, with the Static strategy, it can be challenging for the model to
minimize the distances between the embeddings and the fixed center.

3.5.4 COSKAD AutoEncoder

We also consider a multi-task learning objective for COSKAD coupling the original objective illustrated
in Eq. 3.2 with a reconstruction error; to do this, we included an additional module that acts as a decoder,
allowing COSKAD to reconstruct the original poses. Altogether, this makes our proposed model a GCN
AutoEncoder, dubbed COSKAD-AE, and the new module has been obtained by reversing the GCN-Encoder.
Table 3.6 compares the performance of COSKAD-AE, trained with both reconstruction and hypersphere
loss, against our best model. Three methods for calculating the anomaly score are possible: either the
reconstruction or hypersphere loss can be employed alone (named srec and shyp, respectively in Table 3.6),
or the two scores can be combined (srec+shyp). The best performances are achieved by the only hypersphere
score. This is probably due to the Separable GCN-Encoder that, separately learning the trajectories of single
joints and unified poses for each timeframe, exposes improved generalization that affects srec and provides
better reconstructions.

3.6 Limitations

In Sec. 5.5 we prove the significance of our proposed COSKAD in the context of skeleton-based Video
Anomaly Detection. However, despite the promising performance revealed, specific challenges persist,
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Figure 3.4: Examples of extracted poses in HR-UBnormal. The poses are correctly detected even in challenging
conditions, e.g., different scales or unusual poses. See section Sample of misestimated human poses for discussion.

Figure 3.5: Examples of misestimations of the pose extractor in HR-UBnormal. Fig. 3.5(a) shows a pose that is not
present in the scene, Fig. 3.5(b) is an example of a pose that is not detected. Fig. 3.5(c) is an example of a noisy pose
estimation due to the scale of the subject and its partial occlusion. See section Sample of misestimated human poses
for discussion.

primarily related to misestimated skeletal poses occurring in the datasets and those due to the model short-
comings. These issues are commented in the following Sec. 3.6.1 and Sec. 3.6.2, respectively.

3.6.1 Samples of misestimated human poses

Despite being extracted from a synthetic dataset, HR-UBnormal poses have been obtained using a system
that yields effective outcomes. In Fig. 3.4, we have included 3 frames from the proposed HR-UBnormal in
which Alphapose correctly extracts poses of agents in complex positions (Fig. 3.4(a)) or at very different
scales (Fig. 3.4(b), 3.4(c)). Nevertheless, Alphapose is not error-free, and in this section, we discuss some
limitations of our dataset. Fig. 3.5 illustrates some misestimations performed by Alphapose: in Fig. 3.5(a),
a pose is incorrectly detected from the background near two perfectly estimated people, Fig. 3.5(b) shows
a lying agent whose pose is not detected by Alphapose, probably due to the supine pose assumed, and
in Fig. 3.5(c) it can be seen that the system detects a noisy pose due to the subject’s scale and partial
occlusion. While we have tried to mitigate this problem by removing many noisy poses, some failure cases
are challenging to recognize because they may last only one or a few frames.

3.6.2 Sample of COSKAD shortcomings

As mentioned in the section above, we have released several videos demonstrating our method’s effective-
ness and efficiency in detecting anomalies in situations of varying complexity. However, our system has
some faults, and we will examine a few of them here. Fig. 3.6 depicts two examples of our method’s failure,
one showing a false positive (Fig. 3.6(a)) and the other a false negative (Fig. 3.6(b)). In the first, the person
standing is dancing, and the system does not consider it abnormal, as evidenced by the declining slope in
the anomaly score graph below. On the other hand, we show in Fig. 3.6(b) how COSKAD struggles to be
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accurate when normal and abnormal actions are interspersed. One of the agents in this scene starts running,
stops, and then resumes running. The graph demonstrates that the anomaly score is still high even during
the clip’s regular portion.

3.7 Discussion

We have proposed a novel Skeleton-based anomaly detection method based on the minimization of latent
vectors to a center, exploiting the properties of three different manifolds: Euclidean, hyperbolic, and spher-
ical. We defined the minimization metrics and scoring and investigated the alterations in space induced by
the different manifolds’ metric tensors. By leveraging an STS-GCN encoder and coupling it with a loss that
matches the OCC objective, COSKAD outperforms SoA models on established human-related benchmarks.
On the most recent and challenging HR-UBnormal, all three versions of the proposed COSKAD reach SoA
performance, which shows the representational power of our approach. While these results are encourag-
ing, our proposed model still exhibits some limitations in some specific cases; thus, in future work, we aim
to investigate other Anomaly Detection methods as error- or prediction-based approaches in the context of
skeletal data. Also, as already stated in Sec. 2.7, more research is needed to efficiently integrate the pose
estimator model with COSKAD aiming to deploy a fully autonomous HR-VAD system.

Figure 3.6: Examples of failure cases from the test set of HR-UBnormal, and the extracted score of the frame assigned
by our proposed COSKAD. (left) the standing subject is dancing, but it is not detected as anomalous (false negative).
(right) people depicted in the scene are walking, but the model predicts them as anomalous (false positive). See section
Sample anomaly detection and failure cases for a broader discussion.
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Chapter 4

Multimodal Motion Conditioned Diffusion
Model for Skeleton-based Video Anomaly
Detection

4.1 Overview

Video Anomaly Detection (VAD) is a crucial task in computer vision and security applications. It enables
early detection of unusual or abnormal events in videos, such as accidents, illnesses, or people’s behavior
which may threaten public safety [167]. However, several aspects make VAD a challenging task. Firstly,
the definition of anomaly is highly subjective and varies depending on the context and application, making
it difficult to define it universally. Secondly, anomalies are intrinsically rare. To account for data scarcity,
models generally learn from regular samples only (also known as One Class Classification - OCC) or have to
cope with the data imbalance. Thirdly, anomaly detection is intrinsically an open-set problem, and modeling
anomalies must account for diversity beyond the training set.

An “ideal" model for anomaly detection should consider that there are infinitely many anomalous and
non-anomalous ways of performing an action. Current state-of-the-art OCC techniques [51, 114, 119, 127]
fail to address this issue. Indeed, they focus on learning either a single reconstruction or prediction of the
input or deriving a latent representation of normal* actions, thereby constraining them to a limited latent
volume. This last approach successfully accounts for the openset’ness of anomalies, i.e., anything mapped
outside the normality region is considered abnormal. However, forcing normality into constrained volumes
may not work for diverse-but-still-normal behaviors, i.e., OCC misclassifies as anomalous those not fitting
in the volume.

We propose Motion Conditioned Diffusion Anomaly Detection - hereafter MoCoDAD - a novel gener-
ative model for VAD, which assumes that both normality and abnormality are multimodal†. Given a motion
sequence, be it normal or anomalous, the sequence is split, and the later (future) frames are corrupted to be-
come random noise. Conditioned on the first (past) clean input frames, MoCoDAD synthesizes multimodal
reconstructions of the corrupted frames. The multimodal distribution of the future motions is achieved
via multiple generations, effectively predicting diverse continuations of the motion. Indeed, given a single

*To avoid ambiguity, in this work, the term “normal” is the contrary of anomalous, not the synonym of “Gaussian”. Normal
refers to “normality” (or “normalcy”). Anomalous/abnormal refers to abnormality/anomaly.

†In this work, multimodal refers to distributions with multiple modes, not to mixing modalities (video, audio, text, etc.)
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F0
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MocoDAD

MocoDAD

Figure 4.1: MoCoDAD detects anomalies by synthesizing and statistically aggregating multi-modal future motions,
conditioned on past poses (frames on the left). Red (top) and green (bottom) distributions represent examples of
anomaly and normality generations (2d mapped via t-SNE). Within the distribution modes (dashed-contoured), the
red dots are the actual true futures corresponding to the conditioning past frames. In the case of normality, the true
future lies within a main distribution mode, and the generated predictions are pertinent. In the case of abnormality, the
true future lies in the tail of the distribution modes, which yields poorer predictions, highlighting anomalies.

“past” motion, we generate several diverse futures to account for intra-class variability. MoCoDAD then
discerns normality from anomaly by comparing the multimodal distributions. In the case of normality, the
generated motions are diverse but pertinent, i.e. they are biased towards the true uncorrupted frames. In the
case of abnormality, the synthesized motion is also diverse, but it lacks pertinence, as shown in Fig. 4.1 and
discussed in Sec. 4.6.

MoCoDAD is the first diffusion-based technique for video anomaly detection. We are inspired by De-
noising Diffusion Probabilistic Models (DDPMs) [72, 165], state-of-the-art, among others, in image syn-
thesis [146, 147, 153], motion synthesis [172, 191], and 3D generation tasks [206]. DDPMs are selected
for their improved mode coverage [189], i.e. they generate diverse multimodal motions, which MoCoDAD
statistically aggregates (see the respective ablative study in Sec. 4.6).

Besides multimodality, a crucial aspect of MoCoDAD is the choice of the conditioning strategy to guide
the synthesis. We consider human motion as skeletal representations and propose corrupting the body joint
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coordinates at each frame by displacing them with random translations. Conditioning refers to the process
that provides the model with the uncorrupted first part of the motion sequence (past) to guide the denoising
of the corrupted second part (future). In this study, we compare three modeling choices to find the most
suitable conditioning strategy. We experiment with (1) directly feeding the denoising module with the
concatenation of the uncorrupted poses with the displaced sequence [155]. For the other two strategies, we
get a latent representation of the input (via (2) an encoding module and (3) an autoencoder) and feed the
network with this learned representation (cf. Sec. 4.3.3). The third strategy works best (cf. Sec. 4.6.3).

We evaluate MoCoDAD on three challenging benchmarks of human-related anomalies, namely, HR-
UBnormal [2, 51], HR-ShanghaiTech Campus [112, 127] (HR-STC), and HR-Avenue [110, 127], and on
the most recent VAD dataset UBnormal [2]. MoCoDAD achieves state-of-the-art (SoA) performance on
all four datasets, which demonstrates the effectiveness of modeling multimodality for normal and abnormal
motions. Notably, by not using appearance, MoCoDAD benefits increased privacy protection (no visual
facial nor body features) and better computational efficiency, thanks to the lightweight body kinematic
representations. We summarize our contributions as follows:

• A novel generative VAD model based on comparing the multimodality of normal and abnormal mo-
tion generations;

• The first probabilistic diffusion-based approach for VAD, which fully exploits the enhanced mode-
coverage capabilities of diffusive probabilistic models;

• A novel motion-based conditioning on the clean input sequence to steer the synthesis towards diverse
pertinent motion in the case of normality;

• A thorough validation on UBnormal, HR-UBnormal, HR-STC, and HR-Avenue benchmarks where
we outperform the SoA by 5.1%, 4.4%, .5%, .8%, respectively.

4.2 Related Work

Previous work relates to ours from two main perspectives: Video Anomaly Detection methods (see Sec. 4.2.1)
and diffusion models for motion synthesis (see Sec. 4.2.2).

4.2.1 Video Anomaly Detection Techniques

Pioneer works analyze the trajectory of the agents in the frames to discriminate those distant from normality
[25, 84, 99]. Within recent literature, two major trends can be identified: latent- and reconstruction-based
methods. VAD techniques also vary based on the type of input data they use, such as videos or human
skeletal pose motions. MoCoDAD, as all the VAD works presented in this section, adheres to the OCC
protocol, which simulates the scarcity of anomalies in real-world scenarios [89].
Latent-based VAD methods identify abnormality according to a score extracted from a learned latent space
whereby normality is supposedly mapped into a constrained volume, and anomalies are those latents lying
outside, with a larger score (see [154, 158, 171, 184] for an overview of latent-based AD). Sabokrou et
al. [156] propose a two-staged cascade of deep neural networks. First, they employ a stack of autoencoders
that detects points of interest (POIs) while excluding irrelevant patches (e.g., background). Second, they
identify anomalies by densely extracting and modeling discriminative patches at POIs. Notice that this work
constrains normality to belong to a single mode and anomalies outside, thus, addressing the openset’ness
of anomalies, but it hampers the multimodal and diversity [197] aspect of normal motions. Contrarily, our
work considers the multimodality of normal and abnormal motions.
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Notably, Nguyen et al. [129] propose an image-based technique exploring multimodal anomaly detection
via multi-headed VAEs. However, considering a fixed number of modes for reality amends multimodality
only partially, as it misses to unleash its openset’ness. Differently, we adopt diffusion models for their
improved mode coverage and generate multiple futures, not being constrained on a fixed number of heads
(see Sec. 4.6).
Reconstruction-based VAD methods consider the original metric space of the input and leverage recon-
struction as the proxy task to derive an anomaly score. These models are trained to encode and reconstruct
the input from normal events, producing larger errors on anomalies not seen during training. [35, 67, 201]
use sequences of frames and feed them to convolutional autoencoders. Gong et al. [59] “memorize" the most
representative normal poses to discriminate new input samples. Liu et al. [108] tackle intensity and gradient
loss, optical flow, and adversarial training. Luo et al. [112] use stacked RNNs with temporally-coherent
sparse coding enforcing similar neighboring frames to be encoded with similar reconstruction coefficients.
Barbalau et al. [10] builds upon [56] and integrates the reconstruction of the input frames, via multi-headed
attention, into a multi-task learning framework. Besides [56, 108], all works rely on a single reconstruc-
tion proxy task via non-variational architectures that learn discrete manifolds. However, normality and
abnormality are multimodal and diverse, making it hard for these techniques to have an exact match (re-
construction) over the GT. Additionally, GANs used in [108] suffer from mode collapse [173] lacking to
represent the multimodality of reality. Similarly to [129], [10] can represent only a fixed number of modal-
ities, which does represent the openset’ness of reality. MoCoDAD is a reconstruction-based approach and
leverages diffusion processes [43] to account for the openset’ness of normalcy and anomalies in terms of
pertinence to the GT.
Skeleton-based VAD methods have already been commented in Sec.3.2. As a further work, we also men-
tion COSKAD, which has been introduced in the previous chapter. Adhering to the DSVDD technique,
COSKAD force the normal instances into the same latent region, driving the distances to a common center,
and deeming as abnormal those samples that do not belong to the learned normality region. MoCoDAD is
also a skeleton-based approach, but unlike COSKAD, it relies on an error-based technique also considering
the inthrinsic multimodality of reality.

4.2.2 Diffusion Models

Diffusion models have marked a revolution in generative tasks such as image and video synthesis [155, 172,
191], but they have not been employed for VAD. Saadatnejad et al. [155] propose a two-step framework
based on temporal cascaded diffusion (TCD). First, they denoise imperfect observation sequences and, then,
improve the predictions of the (frozen) model on repaired frames. Tevet et al. [172] use a transformer
encoder to learn arbitrary length motions [3, 139] coherent with a particular conditioning signal c. They
experiment with constrained synthesis where c is a text prompt (i.e., text-to-motion) or a specific action
class (i.e., action-to-motion) and unconstrained synthesis where c is not specified. Chen et al. [191] design a
transformer-based VAE [139] to learn a representative latent space for human motion sequences. They apply
a diffusion model in this latent space to generate vivid motion sequences while obeying specific conditions
similar to [172]. Differently, MoCoDAD is a diffusion-based model that uses conditioning over a portion of
the input (e.g., previous frames condition the generation of future ones).

Wyatt et al. [188] propose AnoDDPM, a diffusion model on images, which does not require the entire
Markov chain (noise/denoise) to take place. They use decaying octaves of simplex noising functions to
distinguish the corruption rate of low-frequency components from high-frequency ones. However, they
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add and remove noise without conditioning, identifying anomalies when noise removal diverges from the
input. Differently, MoCoDAD is based on generating and comparing multimodal motions against the GT
in terms of pertinence. Our proposed model is the first to exploit the multimodal generative and improved
mode-coverage capabilities of diffusive techniques, via forecasting tasks, further to being first in adopting
them for detecting video anomalies. Hence, to transfer DDPMs from video-based Anomaly Detection to
skeleton-based VAD we rely on a U-Net-shaped stack of STS-GCN [157, 164] layers, which includes the
spatio-temporal aspects of joints in sequences of human poses.

4.3 Methodology

MoCoDAD learns to reconstruct the later (future) corrupted poses by conditioning on the first (past) poses.
Sec. 4.3.2 describes the training diffusion denoising process, how it generates multimodal reconstructions,
and statistically aggregates them at inference to detect anomalies. In Sec. 4.3.1 we briefly present prelimi-
nary concepts of DDPMs. Then, Sec. 4.3.3 details conditioning on past frames, and Sec. 4.3.4 describes the
architecture of MoCoDAD. Finally, in Sec. 4.3.5 and 4.3.6 we provide the reader with a thorough description
of the MoCoDAD algorithms and implementation details, respectively.

4.3.1 Background on Diffusion Models

A denoising diffusion probabilistic model (DDPM) [72, 195] exploits two Markov chains: i.e., a forward
process and a reverse process. The forward process q(xt|xt−1) corrupts the data x = x0 gradually adding
noise according to a variance schedule βt ∈ (0, 1) for t = 1, . . . , T , transforming any data distribution
q(x0) into a simple prior (e.g., Gaussian). The forward process can be expressed as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (4.1)

To shift the data distribution q(x0) toward q(xt|xt−1) in one single step, equation 4.1 can be reformulated
as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (4.2)

with αt := 1− βt and ᾱt :=
∏t

s=1 αs.
The reverse process leans to roll back this degradation. More formally, the reverse process can be

formulated as
pθ(xt−1|xt) = N

(
xt−1;µθ(xt, t), βtI

)
(4.3)

where µθ(xt, t) is a deep neural network that estimates the forward process posterior mean. [72] has shown
that one obtains high-quality samples when optimizing the objective

Lsimple = E
t,x0,ε

[∣∣∣∣ε− εθ
(√

ᾱtx0 +
√
1− ᾱt ε, t

)∣∣∣∣2
2

]
(4.4)

where ε ∼ N (0, I) is the noise used to corrupt the sample x0, and εθ is a neural network trained to predict
ε.

During inference, the sampling algorithm of [72] is used to iteratively denoise random Gaussian noise
xT ∼ N (0, I), to generate a sample from the learned distribution. [147, 153] have shown that one may
condition DDPMs on a signal h by feeding it to the neural network ϵθ.
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4.3.2 Diffusion on Trajectories

Training We define a diffusion technique that learns to reconstruct corrupted future motion sequences
conditioned on clean past ones.

Let Xa = {x1a, . . . , xNa } be a sequence of N time-contiguous poses belonging to a single actor a. Since
our model considers one actor at a time, we use X = {x1, . . . , xN} for notation simplicity. Each pose xi

can be seen as a graph xi = (J,A) where J represents the set of joints, and A is the adjacency matrix
representing the joint connections. Notice that each joint is attributed with a set of spatial coordinates in
RC , hence xi ∈ R|J |×C , and X ∈ RN×|J |×C . Here, we use C = 2 as the person’s pose is extracted from
images at each frame.

We divide X into two parts: the past X1:k and the future sequence of poses Xk+1:N with k ∈ {1, ..., N}
.

During the forward process q, we corrupt the coordinates of the joints by adding random translation
noise. We sample a random displacement map‡ εk+1:N ∈ R(N−k)×|J |×C from a distribution N (0, I) and
add it to Xk+1:N to randomly translate the position of its nodes.

The magnitude of the added displacement depends on a variance scheduler βt ∈ (0, 1) and a diffusion
timestep t ∼ U[1,T ]. As a result, q increasingly corrupts the joints xi at each diffusion timestep t (i.e.,
xit=1 → · · · → xit=T ) making xit=T indistinguishable from a pose with randomly sampled joints’ spatial
coordinates.

The reverse process pθ unrolls the corruption, estimating the spatial displacement map εk+1:N via a U-
Net-like architecture εθ (see Sec. 4.3.4 for more details). To achieve an approximation of εk+1:N , we train
the network conditioned on the diffusion timestep t (embedded through an MLP τθ) and the embedding h

of the previous trajectory X1:k.
In Eq. 4.5, similarly to [153], we define the displacement estimation objective§.

Ldisp = Et,X,ε

[∣∣∣∣ε− εθ(Xt, t, h)
∣∣∣∣] (4.5)

Inspired by [58], we smooth Ldisp as follows:

Lsmooth =

0.5 · (Ldisp)2 if |Ldisp| < 1

|Ldisp| − 0.5 otherwise
(4.6)

Inference At inference time, MoCoDAD generates multimodal future sequences of poses from random
displacement maps, conditioned on the past frames, then aggregates them statistically to detect anomalies.

We sample a random displacement z ∼ N (0, I) and consider it the starting point of the synthesis process
that generates a future human motion via Eq. 4.7.

Xt−1 =
1
√
αt

(
Xt −

1− αt√
1− αt

εθ(Xt, t, h)

)
+ z

√
βt (4.7)

Note the motion conditioning h, encoding the past k frames. We generate m diverse future pose trajectories

‡In this paper, a displacement map is equivalent to the addition of noise (corruption) to the input, e.g., in [72]. We use this
term to emphasize that we move the joints away from their original spatial position. We invite the reader to consider displacing and
corrupting as interchangeable here.

§For readability purposes, for what follows, we omit the superscript k + 1:N , and assume that we are considering only future
motion.
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Figure 4.2: Overview of the proposed MoCoDAD. A sequence of N skeletal motions (N = 6 in the example) is
split into past (top-right X1:k frames, k = 3 in the example) and future (top-left Xk+1:N frames). During training,
the Forward Diffusion block adds noise to the future frames, shifting each joint by a random vector displacement of
varying intensity (increasing with the diffusion timestep t). Then the Reverse Diffusion learns to estimate the noise.
A key aspect of MoCoDAD is the conditioning, i.e. how to encode the past clean k frames and guide the synthesis of
relevant futures.

Z1, . . . , Zm. For each Zi, we compute the reconstruction error via the smoothed loss si = Lsmooth(|X−Zi|)
used in training (cf. Eq. 4.6).

We aggregate all the scores from the generations S = {s1, . . . , sm} to distill a single anomaly score for
that sequence. This score is subsequently assigned to the corresponding frames to assess their anomaly level.
In scenarios where multiple actors occupy the same frames, we assign the average anomaly score to those
frames. We explore different strategies for distilling the anomaly score from S: (1) the diversity between
the normal and anomalous generations and (2) aggregation statistics. To account for diversity, we consider
the diversity metric rF = mean(Lsmooth)/min (Lsmooth) introduced by [26, 135]. Diversity stems from
testing whether anomalous generations are more diverse than normals, but the diversity score fails to detect
anomalies, nearly dropping to random chance. We explain this by normalcy and anomaly having a similar
degree of diversity, as we experimentally validate in Sec. 4.6.1.

We consider as aggregation statistics the mean, quantile robust statistics including the median, as well
as maximum and minimum selectors, in terms of Lsmooth distances between the m generated and the GT
future motion. Our analysis highlights that the minimum distance is the best on average. This reinforces the
original hypothesis that normality-conditioned generated motions are as diverse as abnormal-conditioned
ones but more biased to the actual motion, thus more likely to generate samples close to it. See Sec. 4.6.2
for the experimental evaluation.

4.3.3 Motion Conditioning for multimodal Pose Forecasting

The choice of the conditioning strategy is a crucial factor for diffusion models, as it determines how the
conditioning information is fed into the network, and it directly affects the quality of the outputs. In this
work, we propose a thorough examination of different strategies for feeding the diffusion models with the
conditioning information.

We identify three different modeling choices for conditioning the diffusion, illustrated in Fig. 4.3, i.e.,
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MoCoDAD MoCoDAD

Encoder

MoCoDAD

Encoder
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Figure 4.3: Comparison of the three conditioning strategies.

input concatenation, E2E-embedding, and AE-embedding. Input concatenation refers to conditioning with
a portion of the raw input motion. Here, we keep the past sequence of poses X1:k (the conditioning signal)
uncorrupted and prepend it to the corrupted future sequence Xk+1:N

t . Input concatenation has been explored
in previous work for pose forecasting reaching SoA performances in [155].

Both embedding choices refer to passing the conditioning past frames through an encoder E, then pro-
viding them to all latent layers of the denoising model (cf. incoming vertical arrows into the orange layers
in Fig. 4.2). Here, E is a GCN [164] and it encodes sequences of poses X1:k into the representation
h = E(X1:k). In the case of E2E-embedding, E is jointly learned with the rest of the architecture, lever-
aging the training Lsmooth loss. The AE-embedding adds an auxiliary reconstruction loss Lrec to support
training E, as it tasks a decoding network D to reconstruct the conditioning past frames according to the
following loss function:

Lrec =
∣∣∣∣∣∣∣∣D(E(X1:k))−X1:k

∣∣∣∣∣∣∣∣2
2

(4.8)

In the case of AE-embedding, the auxiliary is summed to the main loss, resulting in the following total
loss:

Ltot = λ1Lsmooth + λ2Lrec (4.9)

where λ1,λ2 ∈ [0, 1] account for the contribution of each loss function respectively. Lastly, since DDPMs
benefit from being conditioned on the timestep t, we add the embedding τθ(t) to the latent h and feed the
resulting motion-temporal signal to each layer of our network εθ [172].

The results of the evaluation are discussed in Sec. 4.6.3, whereby applying AE-embedding conditioning
on X1:k emerges with results beyond the SoA.

4.3.4 Architecture Description

Fig. 4.2 illustrates the architecture of MoCoDAD. We distinguish two main blocks: a conditioning auto-
encoder for the past motion, X1:k, and a denoising model for Xk+1:N . The main diffusion model archi-
tecture is the neural network, represented with orange blocks, tasked with estimating the corrupting noise
in the input motion, thus reconstructing the actual future motion. As done in [188], we rely on a U-Net
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Algorithm 1: MoCoDAD Train
Require: X1:N , t, λ1, λ2

// Divide past from future poses
P, F = X1:k, Xk+1:N

// Condition Encoding
P = E(P) ; P̂ = D(P)
τ = τθ(t)
// Forward Diffusion
Ft = q(F , t)
// Engender futures
F̂ = MoCoDAD(Ft; τ,P)
// Loss
Loss = λ1Lsmooth(F̂ ,F) + λ2Lrec(P̂,P)

like architecture. Our skeletal-motion diffusion network progressively contracts and then expands (rebuilds)
the spatial dimension of the input sequence of poses. To account for the temporal dimension of the input
sequences, we build the U-Net with space-time separable GCN (STS-GCN) layers proposed in [164]. The
conditioning autoencoder relies on STS-GCN to reconstruct the past motion and embed it into a latent space
used to condition the diffusion.

In detail, the U-Net takes in input Xk+1:N and a motion-temporal conditioning signal h + τθ(t) which
provides the network with the diffusion timestep and the encoded past-motion information. Furthermore,
to align the dimensionality of this conditioning signal with that of the network’s layers, the former is fed
into an embedding layer projecting it to the correct vector space. This embedded conditioning signal is then
fed to each STS-GCN layer. The contracting process of the U-Net progressively aggregates the joints of the
poses (i.e., RJ → Rd s.t. d ≤ J) while the expansion part “deconvolutes" the joints’ vector space until it
reaches the original space RJ . Residual connections are present between specular layers.

4.3.5 MoCoDAD Algorithms

In this section, we outline the algorithms designed for both the training and inference phases of our proposed
model (cf. Sec. 4.3.2). In algorithms 1 and 2, we employ the following notation: ·̄ denotes the objects that
are encoded in a latent space, whereas ·̂ signifies the predictions of our model.
Train. In Alg. 1 we describe the training process on a single sequence of poses X1:N . The algorithm only
requires the input sequence, the current timestep t, the parameters λ1 and λ2 governing the importance of
the two losses.
Inference. Alg. 2 depicts how our proposed method assigns the anomaly score to each frame of a video.
For readability purposes, we only examine the case of a single windowW , which encompasses the frames
f1, f2, ..., fN . We then adopt a sliding window procedure to analyze each video so that Alg. 2 can be further
extended to assess all the frames of a video. First, we extract the poses of all the subjects whose motion lies
in all the frames ofW , resulting in the set A. Then, starting from random noise ε, we iteratively leverage
MoCoDAD to draw m possible futures in T steps, which we subsequently compare with the GT future to
distill m scores for each sample X1:N

a (collected in the set G). We then aggregate these scores in a single
value (Ha, which we interpret as the anomaly score of the subject a for the frames inW). Note that, when
considering multiple overlapping time windows
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Algorithm 2: MoCoDAD Inference
Require: W = {f1, ..., fN},
A = {actors | actors ∈ fi ∀fi ∈ W},
m, T, G = ∅, S = ∅
for all a ∈ A do

// Extract and embed past poses
P, F = X1:k

a , Xk+1:N
a

P = E(P)
// Sample random noise
ε ∼ N (0, I)
// Engender futures
for j ← 0 to m do
Fj,T ← ε
// Reverse diffusion
for t← T to 1 do
τ = τθ(t)
F̂j = MoCoDAD(Fj,t; τ,P)
// Forward Diffusion
Fj,t−1 = q(F̂j , t− 1)

end for
// Get generation anomaly score
SCOREj = Lsmooth(F̂j ,F)
G ← G ∪ {SCOREj}

end for
// Aggregate generations
Ha = AGGREGATE(G)
S ← S ∪ {Ha}

end for
// Impute frames’ Anomaly Score

AS[f1 : fN ] = mean(S) + log 1+max(S)
1+min(S)

W(1)[f1 : fN ],W(2)[f2 : fN+1], ...,W(N)[fN : f2N−1],

Ha is computed as max(H(1)
a , ...,H(N)

a ). Finally, we repeat this process for each actor appearing in the scene
and accumulate these local scores in the set S. We compute the mean, the maximum, and the minimum of
S and attribute to each frame f1, ..., fN the anomaly score (AS) defined as follows:

AS[f1 : fN ] = mean(S) + log
1 + max(S)
1 + min(S)

. (4.10)

While the mean(S) summarizes the distribution of the maximum errors of all actors within each frame,
the second term takes into account the width of the errors range, as it is mathematically equivalent to:

log (1 + max (S))− log (1 + min (S)) . (4.11)

This increases the anomaly score for spread distributions, which likely correspond to anomalous frames;
the logarithm function prevents this term from dominating the final anomaly score.
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4.3.6 Implementation details

As in [51, 119, 127], we adopt a sliding window procedure for dividing each agent’s motion history. We
use a window size of 6 frames for all the experiments, of which the first 3 are taken for the condition and
the rest for the diffusion process. We adopt similar setups for the imputation proxy tasks (see Sec. 4.6.4).
We set λ1 = λ2 = 1. We train the network end-to-end with the Adam optimizer [91] and a learning rate of
1e−4 with exponential decay for 36 epochs. The diffusion process uses β1 = 1e−4 and βT = 2e−2, T = 10

and the cosine variance scheduler from [130].
Our U-Net-GCN downscales the joints from 17 to 10 and expands the channels from 2 to (32, 32, 64, 64, 128, 64).

The conditioning encoder has a channel sequence of (32, 16, 32), with a bottleneck of 32 and a latent pro-
jector of 16. We encode the timestep with the positional encoding as defined in [178]. Our training took
approximately 7 hours on an Nvidia Quadro P6000 GPU.

4.4 Experiments

Here we compare MoCoDAD with SoA approaches and provide a detailed discussion on the achieved
performances.

As done in [2, 10, 51, 56, 108, 114, 119, 127], we report the Receiver Operating Characteristic Area
Under the Curve (ROC-AUC) to assess the quality of MoCoDAD predictions on UBnormal [2], and the HR
filtered [51] versions of STC [112], Avenue [110], and UBnormal.

4.4.1 Datasets

We use the UBnormal dataset [2] which contains 29 scenes synthesized from 2D natural images with the
Cinema4D software. Each scene appears in 19 clips featuring both normal and abnormal events. The split
into train, validation, and test adheres to the open-set policy, providing disjoint sets of types of anomalies
for training, validation, and test; in accordance with the OCC setting, we only include normal actions for
the training set. We also consider the processed poses and the human-related (HR) filtering of the dataset
proposed by [51]. To compare with other state-of-the-art methods, we also experiment on the HR versions
of the ShanghaiTech Campus (STC) [112] and the CUHK Avenue [110] datasets introduced by [127]. The
former includes 13 scenes recorded with different cameras, for a total of about 300,000 frames, and 101
testing clips with 130 anomalous events. The latter consists of 16 training videos and 21 testing videos with
a total of 47 anomalous events.

4.4.2 Comparison with state-of-the-art

Leading OCC techniques. We compare against SoA OCC techniques. Among these, MPED-RNN [127]
combines the reconstruction and prediction errors of a two-branches-RNN to spot anomalies. Normal
Graph [114] uses spatial-temporal GCNs (ST-GCN) to encode skeletal sequences. GEPC [119] encodes
the input sequences with an ST-GCN, and clusters the embeddings in the latent space. Multi-timescale
Prediction [151] encodes the observed input sequence and predicts future poses at different time scales
through intermediate fully-connected layers. Both PoseCVAE [82] and BiPOCO [88] exploit a Conditioned
Variational-Autoencoder to learn a posterior distribution of normal actions and use encoded past and future
sequences to reconstruct the future one. The former uses an MLP-based architecture, while the latter is
GRU-based. STGCAE-LSTM [103] reconstructs the past pose sequence and predicts the future one by an
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Table 4.1: Comparison of MoCoDAD against SoA in terms of AUC on the three Human-Related datasets (i.e., HR-
STC, HR-Avenue, and HR-UBnormal) and UBnormal. OCC skeleton-based techniques are marked with a ∗.

HR-STC HR-Avenue HR-UBnormal UBnormal

Conv-AE [67] CVPR ’16 69.8 84.8 - -
Pred [108] CVPR ’18 72.7 86.2 - -
MPED-RNN [127] ∗ CVPR ’19 75.4 86.3 61.2 60.6
GEPC [119] ∗ CVPR ’20 74.8 58.1 55.2 53.4
Multi-timescale Prediction [151] ∗ WACV ’20 77.0 88.3 - -
Normal Graph [114] Neurocomputing ’21 76.5 87.3 - -
PoseCVAE [82] ∗ ICPR ’21 75.7 87.8 - -
BiPOCO [88] ∗ Arxiv ’22 74.9 87.0 52.3 50.7
STGCAE-LSTM [103] ∗ Neurocomputing ’22 77.2 86.3 - -
SSMTL++ [10] CVIU ’23 - - - 62.1
COSKAD [51] ∗ Arxiv ’23 77.1 87.8 65.5 65.0

MoCoDAD ∗ 77.6 89.0 68.4 68.3

LSTM-based autoencoder. SSMTL++ [10] extends [56]; it replaces the convolutions with a transformer,
changes the object detection backbone, and adds a few auxiliary proxy tasks. COSKAD [51] builds on
STS-GCN to map the embeddings of normal poses into a narrow region in the latent space.
Results. In Table 4.1, we compare MoCoDAD and SoA methods on the three HR datasets and on UB-
normal. MoCoDAD achieves the best AUC score of 77.6, 89.0, and 68.4 on HR-STC, HR-Avenue, and
HR-UBnormal, respectively. Our proposed method outperforms the current best [51], up to 4.4%, demon-
strating the importance of considering a range of different possible futures for each sample. Additionally,
MoCoDAD achieves an AUC of 68.3 on the full UBnormal dataset, surpassing COSKAD by 5.1%. This can
be due to the improved sensitivity that emerges from our proposed model: considering more than a single
deterministic future smooths the prediction of MoCoDAD avoiding penalizing excessively hard-still-normal
samples which would be considered anomalous based on the reconstruction error of a deterministic model.
Results VS. Supervised and Weakly Supervised methods. Table 4.2 evaluates MoCoDAD with super-
vised and weakly supervised methods reported in [2]. Notice that, despite the absence of supervision or
visual information, MoCoDAD is competitive with methods exploiting a stronger form of supervision. In
detail, MoCoDAD (68.3) outperforms the weakly supervised method [56] (59.3) and other fully supervised
methods and is competitive with [16] (68.5). Further, our approach only presents a fraction of the parameters
of its competitors. Notably, MoCoDAD is ∼ 852× smaller than the current best [16].

Table 4.2: Comparison of MoCoDAD against su-
pervised (†) and weakly supervised (‡) methods in-
troduced in [2] in terms of AUC on the UBnormal
dataset.

Params UBnormal

Sultani et al. [167] † - 50.3
AED-SSMTL [56] † >80M 61.3
TimeSformer [16] † 121M 68.5
AED-SSMTL [56] ‡ >80M 59.3

MoCoDAD 142K 68.3

Table 4.3: Comparison of MoCoDAD against SoA
in terms of AUC-ROC on the validation set of UB-
normal. OCC skeleton-based techniques (∗) are di-
rectly comparable to MoCoDAD. Supervised (†) and
weakly supervised (‡) methods are also reported,
grayed-out since they leverage extra annotations.

UBnormal

Sultani et al. [167] † 51.8
AED-SSMTL [56] † 68.2
TimeSformer [16] † 86.1
AED-SSMTL [56] ‡ 58.5

MPED-RNN [127] ∗ 61.2
GEPC [119] ∗ 47.0
COSKAD [51] ∗ 76.4
MoCoDAD ∗ 77.6
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Figure 4.4: The iterative sampling process of our proposed method. At each step, MoCoDAD generates a prediction
(light orange dashed boxes) employing a pose (purple dashed boxes) displaced proportionally to the current timestep t
(when t = T we just sample from random noise), together with a prior motion encoding X1:k and the current timestep
t. The current prediction is then fed to the Forward Diffusion module, which adds a displacement map to it, anew
corrupting the pose proportionally to a smaller timestep. This process is iteratively repeated from T to 1, continuously
refining the prediction which is then compared with the actual future (orange box).

4.4.3 Results on the UBnormal Validation set

For completeness purposes, as done in [2], we report MoCoDAD’s performances vs SoA on the validation
set of UBnormal.

Table 4.3 shows that the validation set results align with those on the test sets reported in Tab. 4.1.
Notice that MoCoDAD outperforms all the other OCC approaches reaching an AUC of 77.6. Additionally,
considering (weakly) supervised approaches that require labeled data (anomalies included), MoCoDAD is
only second to TimeSformer [16].

4.5 Qualitative Analysis

4.5.1 Generating motion sequences

This section visually illustrates how a sample is generated using the reverse procedure (Fig. 4.4). This sup-
plements the discussion presented in Sec. 4.3.5, providing a visual explanation of Eq. 4.12. MoCoDAD
generates motion sequences depending on a particular conditioning signal. This process is shown graph-
ically in Fig. 4.4. Random noise xT in the dimensions corresponding to the desired motion is initially
sampled. The process then proceeds iteratively from step T to 1. MoCoDAD predicts a clean sample x0 at
each step t, then diffuses back to the previous Xt−1.
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MoCoDAD

MoCoDADMoCoDAD

MoCoDAD

Figure 4.5: MoCoDAD detects anomalies by synthesizing and statistically aggregating multimodal future motions,
conditioned on past frames. Red (right) and green (left) represent examples of anomaly and normality. At the bottom,
100 futures (2d mapped via t-SNE) are generated (dashed-orange rectangles) via a diffusion probabilistic model,
conditioned on the past frames (blue-outlined rectangles). Within the distribution modes (highlighted contours), the
red dots are the actual true futures corresponding to the sequence of future poses (orange-outlined rectangles). In the
case of normality, the true future lies within a main distribution mode, and the generated predictions are pertinent.
In the case of abnormality, the true future lies in the tail of the distribution modes, which yields poorer predictions,
highlighting anomalies.

4.5.2 Qualitative results

Fig. 4.5 reveals that the generations produced with normal conditioning are biased towards the true future.
The figure illustrates the t-SNE [177] 2D-embeddings of the generated future frames (orange rectangles),
conditioned on the past (blue rectangles). Here, we present two groups of illustrations based on normal
(green) and abnormal (red) past, respectively. When the conditioning is normal, the generations (dashed-
orange rectangles) are nearby the true motion which lies at the center of the distribution. However, when
the past is anomalous, the true future is significantly distant from the center of the distribution produced.
Since the diffusion process can generate multiple plausible futures - contoured shapes in the figure - this
enforces our assertion that MoCoDAD is multimodal in both normal and anomalous contexts. In the former
case, it is capable of generating samples that are much more pertinent to the actual future; while, in the
latter, the generated samples yield poorer predictions, highlighting anomalies (e.g., the first generation in
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Figure 4.6: (left) Distribution of 1000 generated future motions, when conditioning on a normal past motion (top)
and on an abnormal one (bottom). 2-dimensional projections are estimated via t-SNE [177]. Note how the true future
motion (red dot) lies within a main distribution mode in the case of normality, but it lies in a marginal region for
abnormality. (right) Plot of the diversity ratio rF [135], measuring the diversity of the generated future motions for
normal and anomalous conditioning pasts. Moving along the x-axis, with more generated motion, the rF measures
grow (MoCoDAD generates multimodal diverse motion) but they remain comparable (generating from normal and
abnormal is anyhow multimodal).

the upper-right corner, and the second generation in the lower-right corner).

4.6 Ablation Studies

Here, we delve into a detailed discussion about the multimodal future generations (cf Sec. 4.6.1), the influ-
ence of the statistical aggregation of multiple generations and the normal Vs. anomalous conditioning (cf.
Sec. 4.6.2), the effect of different conditioning strategies (cf. Sec. 4.3.3). Additionally, we discuss forecast-
ing proxy tasks (Sec. 4.6.4) and analyze MoCoDAD’s performances with the diffusion process applied to
the latent space. (Sec. 4.6.5).

4.6.1 Multimodality

As clarified in Sec. 4.3.5, MoCoDAD engenders several outputs starting from a single conditioning motion
by repeating the generative process m times. Thus, we question whether MoCoDAD can generate diverse
multimodal motions and whether conditioning on normal or abnormal motions affects diversity. We provide
an example of generated future motions in Fig. 4.6 (left), where we project the samples in 2D with t-
SNE [177] for better visualization. Notice that both sets of generations have similar variance, showing that
MoCoDAD produces diverse samples with both normal and abnormal conditioning sequences. Motions
stemming from normal conditioning are biased toward the true future since they are mapped around it.
Whereas, in the case of abnormal conditioning, the ground truth motion lies on the edge of the predictions’
region, hence being correctly predicted with a lower chance.

We also measure diversity, employing the rF diversity metric from literature [26, 135]. We visual-
ize the rF trend when increasing the number of generations in Fig. 4.6 (right). If the generated motion
had no diversity, e.g., when generating only once, the rF would be equal to 1. Rather, the diversity ratio
monotonically increases with the number of generations for both normal and abnormal cases, i.e., the more
generated samples, the larger the empirical mode coverage and the diversity. We note that, following in-
tuition, the diversity for abnormal cases grows slightly larger than for normal cases, but the rF measures
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remain comparable.
Multimodality measures the variance among generated motions given the same conditioning sequence.

For each sample s, let S be the set of all generated motions; then, two subsets A(s) = {a1, ...,aSm} and
B(s) = {b1, ...,bSm} are sampled from S. Finally, Multimodality is given by:

Multimodality(s) =
1

Sm

Sm∑
i=1

∥ai − bi∥2 (4.12)

Compared with Fig. 4.8, the plot in Fig. 4.7 clearly shows that the anomaly detection performance
dramatically drops when assuming a diversity metric as the anomaly score, nearly to random chance. It is
worth noting that the performance drops even below random chance when evaluating with rF for a number
of generations less than 10.

4.6.2 Statistical aggregations of generated motions

We evaluate the anomaly detection performance when varying the number of generations m and the ag-
gregation strategy for the anomaly score S (cf. Sec. 4.3.2). Fig. 4.8 (right) shows that the AUC positively
correlates with the number of generated future motions for quantiles Q < 0.5, while the correlation is neg-
ative for the mean estimate and Q > 0.5. Such correlation can be better understood by looking at Fig. 4.8
(left), which depicts the average reconstruction error probability density function (PDF) for m = 50: when
conditioned on normal past motions, MoCoDAD produces generations which are centered around the true
future and, thus, is more likely to yield lower error scores than when generating with abnormal conditioning.
The performance saturates for m > 50.

4.6.3 Conditioning

Here, we provide the reader with the performances of our method with different encoding approaches of the
past (i.e., how the past motion is provided to the model) from which the future is generated (see Table 4.4).

As illustrated in Sec. 4.3.3, Input Concatenation concatenates the clean past frames to the corrupted part
of each motion sample and feeds it directly to the denoising module. This strategy surpasses recent baselines
(cf. Table 4.1) with AUC scores of 64.96 and 65.20 on UBnormal and HR-UBnormal, respectively. We
deem this strategy suboptimal since it does not allow the past motion conditioning to be injected at each
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Figure 4.7: Anomaly detection performance trend when assuming a diversity metric as the anomaly score. It is worth
noting that the rF metric yields results that are below the chance level.
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Figure 4.8: (left) Histograms of the reconstruction errors for 50 synthesized future motions, computed on the HR-
UBnormal test set, for the case of conditioning on normal and abnormal past motions. (right) Correlation between the
AUC scores and the number of generations, with each curve corresponding to a different aggregation statistic.

Table 4.4: Ablation study on the different methods for integrating conditioning information into the model.

HR-UBnormal UBnormal

Input Concatenation 65.2 65.0
E2E-embedding 64.4 64.2
AE-embedding (MoCoDAD) 68.4 68.3

layer (as with the embedding strategies), and, thus force the network to “remember" this information rather
than focusing on the denoising of the future.

The E2E-embedding strategy encodes the motion history in the clean past frames and provides it to the
latent layers of the denoising model, but it does not improve performance. We believe this happens because
the learned embedding is not supervised, and it may not be representative enough of the original motion.

AE-embedding accounts for the best performances. It couples the encoder E with a symmetric decoder
D and trains the whole model with an auxiliary loss Lrec which supervises the reconstruction of the first
part of the motion (cf. Sec. 4.3.3). This past encoding strategy reaches 68.3 and 68.4 on UBnormal and
HR-UBnormal, outperforming SoA techniques.

The first column of Table 4.7 refers to the timesteps used at inference time (γ) and the ones used at
training (T ). Following [188], we set γ to be equal to a third of T . When the denoising process begins with
a partially corrupted image (first and second rows), the results degrade to 52 and 57.35, respectively. We
explain this since, even in the absence of prior motion, the starting point of the denoising process is more
similar to the target signal, reducing the reconstruction error for both normal and abnormal samples.

We investigate this intuition by comparing two different noise distributions to randomly corrupt the
poses, namely Gaussian and Simplex noise [138]. Fig. 4.9 compares the joint displacement at t ∈ {3, 6, 9}
for both these noise distributions. We see that Gaussian corrupts the input motion more since every joint is
translated with a random intensity, whereas, Simplex acts as a weaker perturber maintaining a significant
amount of information from the original motion. This is reflected in performance. Table 4.7 shows that
adding Simplex noise is not effective with motion sequences, deteriorating the overall performances to 52
(see row 1).

Next, we consider generating future motions without conditioning on the past. In the absence of condi-
tioning past frames, the model is expected to provide samples from the learned training normal distribution.
Therefore, it still makes sense to consider this approach for anomaly detection by comparing similarities
of generated and true futures. In fact, the generated future frames will be normal, more similar to normal

Guido Maria D’Amely di Melendugno 53



4.6. Ablation Studies

Table 4.5: Ablation study on the type of conditioning information to feed into the model to generate the missing
frame.

HR-UBnormal UBnormal

Random Imputation 65.2 65.1
In-between Imputation 65.7 65.7
Forecasting (MoCoDAD) 68.4 68.3

true futures, and less similar to abnormal true futures. Note, however, that missing a condition on the past
will result in general futures unrelated to the specific past, just normal. The results in Table 4.7 support this
observation, i.e., the performance reduces to 54.11, close to the chance level (50%).

To sum up, neither the Gaussian nor the Simplex noise provide comparable performance with MoCo-
DAD confirming the need for a conditioning signal to govern the diffusion process.

4.6.4 Proxy Task

In Table 4.5 we assess the effectiveness of the forecasting proxy task (cf. Sec. 4.3.2). To this end, instead
of limiting ourselves towards a rigid past-future split of poses, we explore two additional proxy tasks: i.e.,
in-between and random imputation. For in-between imputation, we corrupt the central N − k poses and
reserve the start and end of the sequence to condition the diffusion. For random imputation, we randomly
select N −k poses out of the full motion and corrupt them; the rest of the sequence is used for conditioning.
Table 4.5 shows that random imputation is the worst proxy task (AUC of 65.10 and 65.21 for UBnormal and
HR-UBnormal, respectively). Randomly splitting the sequence into two parts introduces inter-pose temporal
gaps. Hence, we believe that this makes the reconstruction of non-contiguous motion more cumbersome.
In-between imputation reaches an AUC of 65.65 and 65.72, respectively. We think that “stitching" the
central motion to its endpoints is an easier task leading both normal and abnormal motions to be equally
well reconstructed. Finally, forecasting is the best-performing proxy task with an AUC of 68.3 and 68.4 for
UBnormal and HR-UBnormal.

4.6.5 Latent space

Diffusion on latent space has been adopted to improve computational efficiency in various domains [153].
MLD [191] is one of the most recent works in motion forecasting that applies the diffusion process directly
in the latent space.

Input poses

Simplex noise

Gaussian noise

True future pose

Displaced future pose

Figure 4.9: Comparison of Gaussian (up) vs Simplex (down) noises applied to a sequence of future poses.
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Here, we propose an analysis that assesses the performance of MoCoDAD’s diffusion process in the la-
tent space. Thus, we propose two latent variations of MoCoDAD: MoCoDAD+MLD and Latent-MoCoDAD.
For MoCoDAD+MLD we use a VAE to produce a latent representation Z ∈ Rd of the uncorrupted sequence
Xk+1:N and we perform the diffusion process on Z with the transformer-based denoising model as described
in [191]. For Latent-MoCoDAD we rely on an STS-VAE to learn Z given Xk+1:N and use the diffusion
process, proposed in Sec. 4.3.2, on Z. For both these variants, we feed the corrupted Z to an MLP with
conditioning signal h + τθ(t) to reverse the diffusion and leave the conditioning component as is in the
original MoCoDAD (i.e., encoding of history poses X1:k).

Although the described variants can be trained end-to-end, we achieved the best performances by pre-
training the autoencoder and training the diffusion module in the learned latent space keeping the autoen-
coder module frozen. We set the latent space dimension to d = 16 and the MLP blocks to (16, 8, 16)

interleaved with ReLU activations.
Table 4.6 illustrates the performances in terms of AUC-ROC of MoCoDAD and its latent variants on

UBnormal and HR-UBnormal. Notice that the latent variants underperform w.r.t. the original MoCoDAD.
We suspect that diffusion on latent spaces is not effective in skeleton-based VAD due to the lightweight
encoding of the skeletons. This adheres with the literature since also MLD [191] shows that applying
diffusion in the latent space underperforms w.r.t. the original proposal of the model.

4.6.6 Weaker forms of conditioning

In Table 4.7, we complement the previous section with an additional discussion on the forms of condi-
tioning. Following the approach proposed by [188], we investigate two aspects: applying an alternative
sampling strategy and using a different corruption function instead of the Gaussian one. We also evaluate
the effectiveness of MoCoDAD in the absence of conditioning past motion frames.

Regarding the alternative sampling strategy, we train our diffusion model to denoise a corrupted sample
xt, where t ∈ {1, . . . , T} and T = 10, while, during inference, we perform sampling starting from partially
corrupted samples xγ where γ < T . The partially corrupted signal acts as a weaker form of conditioning,
i.e., generating by denoising the signal. Hence, the reverse diffusion process does not need to be conditioned
on past frames.

4.6.7 Diffusive steps

Sec. 4.3.2 delineates a gradual corruption technique that employs a displacement map in accordance with a
variance scheduler βt ∈ (0, 1) to corrupt the input. The degree of displacement applied is determined by βt

which follows a schedule based on the parameter t.
To further investigate the relationship between the diffusive steps and performance, we evaluate the

impact of varying t on the performance of MoCoDAD. As shown in Table 4.8, we consider five different

HR-UBnormal UBnormal

MoCoDAD+MLD 58.1 58.1
Latent-MoCoDAD 62.6 62.5
MoCoDAD 68.4 68.3

Table 4.6: AUC-ROC performance of diffusion on latent vs original space.
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Table 4.7: Impact of different noise distributions and sampling strategies on performance in terms of AUC-ROC.
MoCo refers to Motion Condition; T represents the diffusion step at which samples are completely corrupted; γ
represents the step up to which samples are corrupted during inference. The last row illustrates our proposed method,
MoCoDAD.

γ/T Corruption MoCo HR-UBnormal UBnormal

3/10 Simplex × 53.0 52.0
3/10 Gaussian × 57.4 57.3

10/10 Gaussian × 55.0 54.1
10/10 Gaussian ✓ 68.4 68.3

steps t ∈ {2, 5, 10, 25, 50}. Our results demonstrate that optimal performances occur with 10 diffusive steps
while deteriorating for any higher or lower value.

Note that this optimal T value is significantly smaller than those used in other diffusion approaches
[72, 130, 146, 172] which require a large number of steps to turn a noisy sample xT ∈ N (0, I) into a
semantically significant one.

On the contrary, our model’s strong inductive bias towards poses, together with its ability to leverage
the invariant relationships and dependencies between intra-pose joints allows it to transform a set of random
joint positions xT ∈ N (0, I) into a pose-like structure in just one step, as illustrated in Figure 4.4. Further-
more, we highlight that a small T can push the model to improve the quality of normal poses while failing
to refine abnormal ones. Thereby, employing a T = 10 we allow MoCoDAD to foster this trade-off and
obtain optimal performances.

Additionally, to highlight the effectiveness of the iterative diffusion process, we evaluate the model with
T = 2, that is, the case where the model only receives either clean or completely corrupted input poses:
this means that during inference the model performs the denoising non-iteratively, e.g. in one single step.
The resulting model underperforms w.r.t. MoCoDAD, confirming the importance of a multi-step diffusion
process.

4.7 Discussion

We have presented a novel approach that models and exploits the diversity of normal and abnormal mo-
tions. In the former case, the forecast motions are multi-modal and pertinent to the observed portion of the
sequence, as the model understands the underlying action. In the case of abnormal, the forecast motions do
not show a bias towards the true future as the model does not expect any obvious outcome. Motivated by
the improved mode coverage, this work has been the first to take advantage of probabilistic diffusion models
for video anomaly detection, including a thorough analysis of the main design choices. MoCoDAD sets a

Table 4.8: AUC-ROC performance variation of MoCoDAD on the number of employed diffusive steps t of the
variance scheduler βt.

Diffusive steps HR-UBnormal UBnormal

2 65.0 64.7
5 66.3 65.9

10 68.4 68.3
25 64.70 64.6
50 64.4 64.4
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novel SoA among OCC techniques, and it catches up with supervised techniques while not using anomaly
training labels.
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Chapter 5

PREGO: online mistake detection in
PRocedural EGOcentric videos

5.1 Overview

Egocentric procedure learning is gaining attention due to advancements in Robotics and Augmented Reality
(AR) technologies. These technologies are pivotal in improving online* monitoring by providing timely
feedback to the operator. Furthermore, these technologies are currently being adopted in a growing number
of factories worldwide and are emerging as a critical tool for enhancing productivity, especially in the
manufacturing industrial domain.

Recent works have produced numerous datasets [13, 44, 46, 57, 83, 123, 144, 159, 169, 169, 170, 182,
207], methodologies aimed at advancing procedure learning [57, 83, 111, 170, 183, 204] and error detection
models [44, 169, 182]. Despite these advancements, as outlined in Table 5.1, prevalent methodologies
typically focus on isolated procedural errors, like pinpointing missteps in sequence or identifying omitted
steps within a procedure. They are unsuitable for situations requiring dynamic decision-making, specifically
in an online context, or in cases where mistakes can be unexpected—hence, characterized as an open-set.

In this chapter, motivated by the previous studies described in Secs. 3 and 4, we propose the first model
to detect PRocedural errors in EGOcentric videos (PREGO), which is both online, thus causal, and open-
set, not limited to specific kinds of procedural mistakes. The online attribute is achieved by analyzing input
videos sequentially up to a given frame t, ensuring that no future actions influence the current step recog-
nition. On the other hand, the open-set learning is performed by exclusively exposing PREGO to correct
procedural sequences when predicting mistakes, following the One-Class Classification (OCC) paradigm
which proved effective in the sibling field of VAD in the previous chapters. Any step within a procedure that
significantly diverges from the expected correct patterns is deemed an error, allowing PREGO to recognize
a wide range of procedural mistakes without being confined to a restricted set of predefined errors.

PREGO’s architecture is dual-branched, as depicted in Fig. 5.1. The first branch, the step-recognition
branch, analyzes frames in a procedural video up to a current time t, aiming to classify the action being
undertaken by the operator. This branch capitalizes on a state-of-the-art video-based online step recognition
model, the OadTR [183] Encoder module. Concurrently, the second branch is in charge of step-anticipation:

*Most workflows can be aided by online monitoring algorithms, which provide feedback to the operator in due course. How-
ever, they may lag due to processing or connectivity delays. We distinguish online from real-time, whereby the second has strict
requirements of instantaneous response.
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Figure 5.1: PREGO is based on two main components: The recognition module (top) processes the input video in an
online fashion and predicts actions observed at each timestep; the anticipation module (bottom) reasons symbolically
via a Large Language Model to predict the future action based on past action history and a short context of previous
action sequences. Mistakes are identified when the currently detected action differs from the one anticipated from past
action history (right).

a Large Language Model (LLM) [175] assesses the sequence of previously predicted actions up to time
t− 1, and predicts the t-th action in a zero-shot manner. An error is detected upon a misalignment between
the currently recognized action and the anticipated one, thereby signaling a deviation from the expected
procedure.

For the first time, we propose to perform next action prediction using a pre-trained Large Language
Model (LLM) [175] for zero-shot symbolic reasoning through contextual analysis [64, 125, 168]. Utiliz-
ing correctly executed procedures as instances in the query prompt obviates the necessity for additional
model fine-tuning and leverages the pattern-completion abilities of LLMs. Our proposed approach is an
abstraction from the video content. Using labels allows for longer-term reasoning, as a label summarizes
several frames. Also, this approach is an alternative to the carefully constructed action inter-dependency
graphs [5]. We demonstrate that symbolic reasoning subsumes understanding long procedures and the action
inter-dependencies, suggesting repositioning from semantic-based expressions of procedures to an implicit
representation, where only patterns of symbols have to be recognized and predicted. By representing pro-
cedures as sequences and their steps as symbols, we let the predictor focus on the patterns that characterize
the correct procedures.

To support the evaluation of PREGO, we review the procedural benchmarks of Assembly101 [159]
and EpicTent [83], formalizing the novel task of online procedural mistake detection. In the reviewed
online mistake detection benchmarks, which we dub Assembly101-O and EpicTent-O, the model is tasked
with detecting when a procedural mistake is made, thus compromising the procedure. This occurs when
performing an action makes it impossible to complete the procedure without a correction procedure. The
compromising mistake may be a wrong action or a relevant action performed in such an order that the action
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Table 5.1: Comparison among relevant models. In the modalities column, C stands for RGB images, H for hand
poses, E for eye gaze, K for keystep labels, D for depth. Differently from previous works, we are the first to consider
an egocentric one class and online approach to mistake detection.

Ego OCC Online Modalities Task Datasets
Ding et al. [44] - Arxiv ’23 K Mistake Detection Assembly101 [159]

Wang et al. [182] - ICCV ’23 ✓ C+H+E Mistake Detection HoloAssist [182]
Ghoddoosian et al. [57] - ICCV ’23 C Unknown sequence detection ATA [57] and CSV [143]
Schoonbeek et al. [169] - WACV ’24 ✓ ✓ Multi Procedure Step Recognition IndustReal[169]

PREGO ✓ ✓ ✓ C Mistake Detection Assembly101 [159], Epic-Tent [83]

dependencies are not respected.
We summarize our contributions as follows:

• We present PREGO, the first method designed for online and open-set detection of procedural errors
in egocentric videos. PREGO’s online feature ensures causal analysis by sequentially processing input
videos up to a given frame, preventing future actions from influencing current step recognition.

• PREGO achieves open-setness by exclusively relying on correct procedural sequences at training
time, following the One-Class Classification (OCC) paradigm. This allows PREGO to identify a wide
range of procedural mistakes, avoiding confinement to a predefined set of errors and avoiding the need
for fine-grained mistake annotations.

• We propose using a pre-trained Large Language Model (LLM) for zero-shot symbolic reasoning
through contextual analysis to predict the next action.

• To evaluate PREGO, we introduce the novel task of online procedural mistake detection and re-
arrange existing dataset to provide two new benchmarks, referred to as Assembly101-O and EpicTent-
O.

5.2 Related Work

5.2.1 Procedural Mistake Detection

Despite the recent growing attention to procedural learning [83, 159, 169, 182], the field lacks a unified
approach to mistake detection, with fragmented literature and limited evaluations. The notable exception
is [44], which uses knowledge graphs for error identification. It is worth noting that [44] method does not
employ the video source, as it learns the procedures’ steps directly from the transcripts of the procedures
in [159]. Our proposal diverges from the aforementioned works as it leverages the video frames to detect the
steps of the procedure and symbolic reasoning for an online assessment of the correctness of the procedure.

5.2.2 Steps recognition and anticipation

Step recognition is the task of identifying actions within a procedure. Indeed, a procedure is an ordered
sequence of steps that bring to the completion of a task. Step recognition is pivotal in areas such as au-
tonomous robotics and educational technology. Recent contributions in this domain include [161], which
uses a novel loss for self-supervised learning and a clustering algorithm to identify key steps in unlabeled
procedural videos. [111] introduces an action segmentation model using an attention-based structure with
a Pairwise Ordering Consistency loss to learn the regular order of the steps in a procedure. Notably, they
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devise a weakly supervised approach, using only the set of actions occurring in the procedure as labels,
avoiding frame-level annotations. [205] approaches the task by leveraging online instructional videos to
learn actions and sequences without manual annotations, blending step recognition with a deep probabilistic
model to cater to the variability in step order and timing.

On the other hand, step anticipation focuses on predicting forthcoming actions in a sequence crucial
for real-time AI decision-making. [1] addresses this by generating multiple potential natural language out-
comes, pretraining on a text corpus to overcome the challenge of diverse future realizations. Additionally,
the framework of [142] proposes solutions to future activity anticipation in egocentric videos, using con-
trastive loss to highlight novel information and a dynamic reweighing mechanism to focus on informative
past content, thereby enhancing video representation for accurate future activity prediction. Unlike prior
works, PREGO is the first model that anticipates actions via LLM symbolic reasoning in the label space.

5.2.3 Large Language Modelling and Symbolic Reasoning

Large language models are trained on large datasets and have many parameters. This gives them new
capabilities compared to previous language models [185].
LLMs have shown excellent capabilities in modeling many natural language-related [175] and unrelated
tasks [22, 65, 185]. We argue that there is a common ground between their next-token prediction mechanism
and our action anticipation branch. Therefore, we incorporate LMs into our pipeline by resorting to a state-
of-the-art model.

Recent research [49, 65, 105, 125, 133] has explored LLMs’ ability to operate as In-Context Learners
(ICLs), which means they can solve new tasks that they have never seen before. Given a query prompt with
a context of input-output examples, LLMs can comprehend and address the problems in this setting without
further fine-tuning.

LLMs as ICLs have been used for a variety of tasks, including planning [133], programming [65, 105],
logical solvers [49], and symbolic reasoning [125].

Some work has shown that LLMs can continue semantically significant patterns [125], while other
work has explored LLMs’ in-context capabilities on semantically unrelated labels [186], where there is no
relationship between a token and its meaning. Notably, recent research [131, 133] studied the opportunity to
employ LLMs for devising plans to accomplish tasks. This is instrumental in robotics to enable automated
entities to fulfill tasks. In our mistake detection pipeline, we leverage ICL using an LLM in the action
anticipation branch. This LLM continues sequences of steps in a procedure, represented as symbols, given
examples of similar procedures. Our LLM acts as a symbolic pattern machine, continuing the pattern of
actions given a context of sequences performed in a goal-oriented way, even if the sequences do not follow
a semantic scheme. This combines the challenges of predicting future actions and of having no semantics.

5.3 Methodology

Our framework for online mistake detection exploits a dual-branch architecture that integrates procedural
step recognition with anticipation modeling, as depicted in Fig. 5.1. In the following sections, we elaborate
on the problem formalization (Sec. 5.3.1), present the branches for step-recognition (Sec. 5.3.2) and step-
anticipation (Sec. 5.3.3), and finally we illustrate the mistake detection procedure (Sec. 5.3.4).
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5.3.1 Problem Formalization

We consider a finite set of N procedures {pi}Ni=1 that encodes the sequence of actions as pi = {ak}Kk=1

where K varies depending on the specific procedure and ak ∈ A = {a|a is a possible action }. Each
procedure is also represented by a set of videos {vi}Ni=1 that, in turn, are composed of frames vi = {fτ}Mi

τ=1

where Mi is the total number of frames in the video i.
Fixed a frame fτ̄ from a given video vī, PREGO’s task is double-folded: it has to (1) recognize the action
aτ̄ corresponding to the frame fτ̄ in the video and (2) predict the action aτ̄ that will take place at time τ̄

considering only past observations until time τ̄ − 1.
The step recognition task is performed by a module ρ that takes as input the encoded frames of vī up to
τ̄ and returns an action aρτ̄ . We then feed the module ξ, responsible for the anticipation task, with all the
aρ1, ..., a

ρ
τ̄−1 actions to have a prediction aξτ̄ for the next action in the obtained sequence.

Finally, we compare aρτ̄ with aξτ̄ and we deem as mistaken the actions where a misalignment between the
outputs of the two branches occurs. For the sake of clarity, in the remainder of this section, we consider a
single procedure p associated with a video v.

5.3.2 Step Recognition

We capitalize on the established OadTR [183] encoder that leverages the Transformers capabilities for online
action detection to build our recognition branch. In fact, even if it is possible to make recognition using the
encoder-decoder architecture, we show in Fig. 5.3 that the model benefits from having only the encoder
module when coupled with a larger window W that includes more frames to produce its prediction. This
choice leads to a better mAP considering different values for the window length and a drastic reduction of
the parameters (∼ 1/3 compared to the original model).

In this setup, defining w as the size of the window W, the model predicts the action aτ considering the
frames {fτ−w, .., fτ}. This mechanism produces redundant results since the model eventually predicts the
same action for consecutive frames. In order to obtain a consistent procedure, we simply consider unique
actions every time the prediction for consecutive frames is the same.

5.3.3 Step Anticipation

We introduce a novel approach for step forecasting in procedural learning by harnessing the power of sym-
bolic reasoning [125] through a Language Model (LM). Specifically, we employ a Large Language Model
(LLM) for next-step prediction, feeding it with prompts constructed from procedural video transcripts.
These prompts are structured in two parts: the first part comprises contextual transcripts CT extracted from
similar procedures to inform the LLM about typical step sequences and order. The second part includes the
current sequence of actions up to a specific frame, fτ̄ , detected by our module ρ, i.e.,

gτ̄ = [aρ1, ..., a
ρ
τ̄−1] (5.1)

This approach enables the LLM to utilize in-context learning, eliciting its ability to anticipate subsequent
actions. Our framework operates in a zero-shot fashion, relying on the LLM’s ability to retrieve the cor-
rect sequence continuation without specific training or fine-tuning but only leveraging the positive examples
within the input prompts. Additionally, our method employs symbolic representations of the steps, convert-
ing the set of actions A into a symbolic alphabet Ω through an invertible mapping γ. Therefore, we can
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express the symbolic predicted sequence as:

γ(gτ̄ ) = [γ(aρ1), ..., γ(a
ρ
τ̄−1)] = [ω1, ..., ωτ̄−1] (5.2)

This conversion abstracts the actions from their semantic content, allowing the LLM to focus on pure sym-
bols and sequences, thus simplifying the complexity of predicting the following action.
Finally, the ξ module, given the examples C and the current symbolic transcript γ(gτ̄ ) described in its
prompt, is required to output the most probable symbol ωτ̄ to continue the sequence. At this point, we apply
the inverse function of γ to retrieve the underlying step label, i.e., aξτ̄ = γ−1(ωτ̄ ).

5.3.4 Mistake Detection

We finally compare the outputs of the two modules to detect procedural mistakes. Precisely, we consider as
correct all the steps where the outputs of the two modules align with each other, while we deem as an error
the cases for which the two outputs diverge. That is:aρτ̄ ̸= aξτ̄ MISTAKE

aρτ̄ = aξτ̄ CORRECT
(5.3)

5.4 Benchmarking online open-set procedural mistakes

This section presents the benchmark datasets and the evaluation metrics used in our experiments. First, we
introduce the reviewed online variants of Assembly101 and Epic-Tents (Sec. 5.4.1) and then we define the
proposed online metrics in Sec. 5.4.2.

5.4.1 Datasets

We propose Assembly101-O and Epic-Tents-O as a refactoring of the original datasets [83, 159], detailing
the selected labeling for online benchmarking, and the novel arrangement of training and test splits, to
account for open-set procedural mistakes.

Assembly101-O

Assembly101[159] is a large-scale video dataset that enables the study of procedural video understanding.
The dataset consists of 362 procedures of people performing assembly and disassembly tasks on 101 dif-
ferent types of toy vehicles. Each procedure is recorded from static (8) and egocentric (4) cameras and
annotated with multiple levels of granularity, such as more than 100K coarse and 1M fine-grained action
segments and 18M 3D hand poses. The dataset covers various challenges, such as action anticipation and
segmentation, mistake detection, and 3D pose-based action recognition.
Assembly101 for online and open-set mistake detection (Proposed). We introduce a novel split of the
dataset [159] that enables online, open-set mistake detection by design. Assembly101-O mainly encom-
passes two edits on [159], namely, a new train/test split and a revision of the length of the procedures. The
novel split encloses all the correct procedures in the train set, leaving the videos with mistakes for the test
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and validation set. This modification is needed to allow models to learn the sequences of steps that charac-
terize correct procedures in a one-class classification fashion. In this way, models do not undergo the bias
of learning specific kinds of mistakes during training; instead, as they are exposed exclusively to correct
processes, they adhere to the One-Class-Classification (OCC) protocol and consider mistakes all the actions
that diverge from the learned normalcy. As a further advantage, this saves all mistaken annotated videos
for the test set, granting better balanced correct/mistaken validation and test sets and a more comprehensive
evaluation of mistake detection. The second revision proposes considering each video for benchmarking
until the procedure is compromised, i.e., until a mistake occurs due to mistaken action dependencies. In-
deed, coherently with the OCC protocol, models are tasked with learning the correct flows of steps that
allow procedures to be efficiently completed and considering sub-process after a mistake occurs creates a
gap between the actions in the train set and those in the test, which prevents the models from recognizing or
correctly anticipating the procedure steps. Moreover, this work proposes to focus on egocentric videos to be
consistent with real-world applications. Hence, we only leverage a single egocentric video out of the eight
views available for each video in [159].

Epic-Tent-O

Epic-Tent is a dataset of egocentric videos that capture the assembly of a camping tent outdoors. The dataset
was collected from 24 participants who wore two head-mounted cameras (GoPro and SMI eye tracker) while
performing the task. The dataset contains 5.4 hours of video recordings and provides annotations for the
action labels, the task errors, the self-rated uncertainty, and the gaze position of the participants. The dataset
also reflects the variability and complexity of the task, as the participants interacted with non-rigid objects
(such as the tent, the guylines, the instructions, and the tent bag) and exhibited different levels of proficiency
and uncertainty in completing the task.
Epic-Tent for online and open-set mistake detection (Proposed) This section introduces a novel split for
the Epic-Tent dataset [83], designed to be adapted for the open-set mistake detection task. [83] is labeled
with nine distinct mistake types. However, among these, “slow", “search", “misuse", “motor", and “failure"
do not represent procedural errors, since, when they occur, the procedure is not tainted. On the other hand,
the categories “order", “omit", “correction", and “repeat" are procedural mistakes. Our focus is solely on
procedural mistakes for the specific task of mistake detection. Epic-Tent is designed for the supervised
error detection task and, differently from [159], every reported procedure reports some mistakes, hampering
the reproduction of the split procedure proposed for Assembly101-O. Nonetheless, this dataset provides
the confidence scores assigned to each frame by the performer, indicating their self-assessed uncertainty
during the task. Thus, we define a strategy for splitting, in which videos featuring the most confident
performers form the train set, while those showing higher uncertainty (and thus potentially more prone to
errors) populate the test set. This partitioning strategy holds encouraging promise, especially in real-world
scenarios where the accurate labeling of erroneous frames is hard to achieve or where the training of a
mistake detector can initiate immediately post-recording without necessitating the completion of the entire
annotation process. Ultimately, the resulting split comprises 14 videos for the training set and 15 for the test
set.

The Epic-Tent dataset showcases only egocentric videos recorded through Go-Pro cameras. This further
highlights the practicality and relevance of the proposed novel benchmark in open-scene contexts. The
videos in the test set are also trimmed up to the last frame of the first mistake occurring in the video, while
those representing correct procedures are maintained unaltered.
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Input Sequence: 
<BOS>, attach-wheel, attach-interior, 
attach-cabin, attach-bumper, 
attach-roof, attach-base, 

attach-transport_cabin, attach-door 
Next Symbol: 
attach-rear_roof 
--- 

Input Sequence: 
<BOS>, attach-cabin, attach-wheel, 
attach-base, attach-interior, 
attach-bumper, attach-
transport_cabin, 
attach-roof, attach-door 

Next Symbol: 
attach-rear_roof 
--- 

Input Sequence: 
-1, 37, 40, 
74, 39, 
29, 58, 
4, 73 

Next Symbol: 
60
---

Input Sequence: 
-1, 74, 37, 
58, 40, 
39, 4, 
29, 73 

Next Symbol: 
60
---

Sequence type: c09c 
Input Sequence: 
<BOS>, attach-base, attach-
interior, attach-base, attach-
door, 
attach-rear_roof, attach-light, 
attach-roof, attach-bumper 

Next Symbol: 

Sequence type: 
c09c 
Input Sequence: 
-1, 58, 40, 
58, 73, 
60, 59, 
29, 39 

Next Symbol: 

Semantic Numerical Random

Input Sequence: 
🤌🏽, 🕜, 🪂, 
🃏, 🦵🏿, 
🍨, 🫓, 
🦘, 🆘 

Next Symbol: 
👩

---

Input Sequence: 
🤌🏽, 🃏, 🕜, 
🫓, 🪂, 
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Next Symbol: 
👩

---

Sequence type: 
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Input Sequence: 
🤌🏽, 🫓, 🪂, 
🫓, 🆘, 
👩, 🗿, 
🍨, 🦵🏿 

Next Symbol: 
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attach-wheel 37 🕜

Figure 5.2: Three different representations of the actions in the prompt for the LLM model. On the left, the prompt
is represented using action labels. In the center, the prompt is represented by label indices. On the right, the prompt is
represented by random symbols.

5.4.2 Metrics

To assess the performance of our procedural mistake detection model, we use True Positives as a measure of
the model correctly identifying errors and True Negatives as a measure of accurately labeling procedures that
are not errors. Thus, we rely on the key Precision, Recall, and F1 score metrics to evaluate the performance
of our model. These metrics offer valuable insights into the model’s capability to identify and classify
mistakes within procedural sequences. More specifically, precision quantifies the accuracy when predicting
mistakes, minimizing false positives. Recall assesses the model’s capability to retrieve all mistakes, reducing
the number of false negatives. Finally, the F1 score is the harmonic mean of precision and recall, and it
balances failures due to missing mistakes and reporting false alarms.

5.5 Experiments

In this section, we present the results of our experiments on online and open-set mistake detection in proce-
dural videos. We contrast PREGO with several baselines that employ different mistake detector techniques
or use part of the ground truth as an oracle.

All the baselines are assessed on the Assembly101-O and Epic-Tent-O datasets, detailed in section 5.4.1.
The metrics used are F1 score, precision and recall, explained in 5.4.2. We first describe the baselines in
section 5.5.1, and then analyze the results in 5.5.2, shown in Table 5.2.

5.5.1 Baselines

To estimate the effectiveness of PREGO, we evaluate its performance by comparing it against the following
baseline models based on the metrics presented in 5.4.2:
One-step memory We define a transition matrix considering only the correct procedures. Specifically,
given the set of the actions A in the training set with |A| = C, we define a transition matrix M ∈ RC×C
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Table 5.2: Comparative evaluation of PREGO Vs the selected baselines on the task of procedural mistake detection
on the Assembly101-O and Epic-Tent-O datasets.

Assembly101-O Epic-Tent-O
F1 score Precision Recall F1 score Precision Recall

One-step memory 21.3 16.3 30.7 10.6 6.6 26.6
OadTR for MD[183] 20.7 24.3 18.1 10.2 6.7 21.7
BERT [42] 31.8 78.2 20.0 10.4 75.0 5.6
PREGO(LLAMA) 33.4 20.4 91.7 13.8 7.54 80.0
PREGO(DaVinci) 35.8 22.1 94.2 - - -
PREGO(LLAMA) - oracle Recognition 42.0 26.9 95.5 20.6 11.45 100
PREGO(DaVinci) - oracle Recognition 46.3 30.6 94.3 - - -

which stores in position (l,m) the occurences that action m follows action l. We then label as mistake the
actions occurring in the test split that do not correspond to transitions recorded in the training set.
OadTR for mistake detection [183] proposes a framework for online action detection called OadTR that
employs Transformers to capture the temporal structure and context of the video clips. The framework
consists of an encoder-decoder architecture. The encoder takes the historical observations as input and
outputs a task token representing the current action. The decoder takes the encoder output and the anticipated
future clips as input and outputs a refined task token incorporating the future context. A discrepancy between
the outputs of the encoder and the decoder produces a mistake
BERT [42] We leverage the capability of BERT utilizing its specific [CLS] token to predict the correct or er-
roneous sequence of action. More specifically, we fine-tune BERT using the next-sentence-prediction task,
where the model is trained to predict whether one sentence logically follows another within a given text. In
our context, we apply this to determine whether step B can follow another step A within a procedure. Here,
steps are defined as sets of two words, such as attach wheel, representing coarse actions. To execute this,
BERT is presented with pairs of sentences corresponding to procedures A and B, tasking it with predict-
ing the sequential relationship between them. BERT’s advantage lies in pre-training on a vast text corpus,
followed by fine-tuning for our specific scenario. This process enables BERT to grasp contextual connec-
tions between sentences, rendering it effective for tasks like classifying procedures and comprehending the
logical flow of information in text.

5.5.2 Results

We experimentally evaluate PREGO against the selected baselines on Assembly101-O and EpicTent-O.
Results are reported in Table5.2

Considering Assembly101-O, the One-step memory approach achieves results similar to OadTR in
terms of F1-score. However, both techniques are limited in the length of their temporal dependencies.
In fact, OadTR is based on processing frames, and its performance flattens when surpassing 512 frames
(cf. Fig. 5.3), only accounting for 64 frames, while procedures last in general 7 minutes. One-step memory
reasons on the abstracted label space, where each label summarizes tens of frames. Yet, it only considers
the single previous action, which limits its performance.

BERT demonstrates the advantages of incorporating LLM in the anticipation branch: by moving the
reasoning to a higher level of abstraction, it shows more awareness of the past. In this way, BERT can
accurately detect the mistakes by reducing the false alarms. However, the Recall highlights that many
mistakes are not detected, revealing a conservative behavior. On the other hand, PREGO maximizes the
level of abstraction by leveraging Symbolic Reasoning, enabling it to fully exploit the context information.
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In this way, it can achieve the highest F1 score demonstrating that symbolic reasoning is a valuable strategy
to detect mistakes. Between the two symbolic baselines, namely PREGOLlama and PREGODaV inci, the
latter is more capable of producing abstract representation and emerges as the best performer.

Similar considerations apply to Epic-Tent-O with some variations on the scale of the metrics. We at-
tribute these discrepancies to the differences between the two datasets. Indeed, there exist multiple valid
procedures for assembling a tent, each dependent on different combinations and orders of actions, whereas
industrial assembly processes enforce a stricter among steps as in the case of Assembly101-O. We do not
test DaVinci for Epic-Tent-O because the processing service is provided at a cost that scales with the number
of tokens in input and output, and this is much larger for Epic-Tent-O. By contrast, LLAMA is open-source,
allowing for experimenting on it at scale.

5.6 Ablation Study

Here, we present the results on step anticipation using two different Large Language Models (LLMs) (c.f.
Sec. 5.6.2) and compare them with the case of oracular step recognition (c.f. Sec. 5.6.2). We also investigate
the effect of different semantic prompts on the performance of the LLMs (see Section 5.6.3).

5.6.1 Step Recognition

An interesting element to examine is the effect that the window size W has on the performance of the step
recognition model. The window size refers to the number of previous frames that the model utilizes as
input to predict the current action. We vary the window size from 64 to 512 and we measure the mean
Average Precision (mAP) of the model on the Assembly101 dataset. The mAP evaluates the accuracy and
completeness of the model in recognizing the actions. Fig. 5.3 reports the experimental results, showing
that the mAP of the model increases as the history size increases. This indicates that the model gains from
having more past context from which the model can learn a richer temporal structure of the procedures. In
addition, reducing the architecture to the encoder only reduces the number of parameters by approximately
66%. While larger window sizes might enhance performance, they do not align with the trade-off between
online action recognition and window size that allows for the initial prediction to begin at frame fW .

5.6.2 Step Anticipation

Llama Vs DaVinci In this section, we evaluate the performance of different LLMs for procedural mistake
detection with symbolic inputs. We follow the Step Anticipation setting described in Sec. 5.3.3 and compare
the LLAMA-2 model [175] with the OpenAI DaVinci method. We report the results in Table 5.2, using
F1 score, precision, and recall as the evaluation metrics. The table shows that the OpenAI DaVinci method
achieves the highest F1 score on the Assembly101 dataset. We conclude that the OpenAI DaVinci method is
the most effective LLM for procedural mistake detection, as it can learn the normal patterns of the procedures
and detect deviations from them. We choose LLAMA as the LLM for the experiments on Epic-Tent and
for the ablation studies due to its open source and free nature and its performance that is almost on par with
DaVinci.

Oracular Evaluation To evaluate the performance of the action anticipation model’s performance, we re-
place the step recognition branch’s predictions with the ground truth action labels. This experiment mimics
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Figure 5.3: Relation between window size and mAP for the OadTR [183] Encoder Vs Encoder-Decoder architectures.
Using only the Encoder with a bigger window size leads to better performance while saving on all the Decoder
parameters

a situation where the video branch can perfectly recognize the actions performed in the videos. We refer
to this experiment as “PREGO - oracle Recognition" in Table 5.2, comparing it with PREGO and the other
baseline methods. As expected, the oracle recognition experiment outperforms the PREGO model, achiev-
ing an F1 score of 46.3 and 44.1 with LLAMA and DaVinci, respectively, compared to 35.8 and 31.2 of
PREGO, and indicating that the accuracy of the video branch is a bottleneck for the overall performance.
However, the oracle recognition experiment also reveals our model’s potential for improvement. Other fac-
tors influence the model’s performance, such as the quality of the symbolic inputs, the semantic prompts,
and the LLM architecture.

5.6.3 Performance of different prompt types.

We investigate the effect of different action representations in the prompt for the Step Anticipation predic-
tion. Following [125], we consider three ways of representing an action: numerical, semantic, or random
symbols. Numerical representation means that an action label is replaced with an index in the range [0,A],
where A is the total number of actions. Semantic representation implies that the action is represented by its
action label. Random symbol indicates that each action is assigned to a different symbol, such as a set of
emojis. This allows us to examine how the LLM can manage different levels of abstraction and expressive-
ness of the input prompt. Fig. 5.2 illustrates an example of a prompt in the three different representations.

Table 5.3 shows the experiment results using the described representations. We observe that all the dif-
ferent representations achieve close performance, with the numerical representation achieving the highest
F1 score, with 33.4, followed by the random representation, 33.2. We hypothesize that the numerical repre-
sentation is easier for the model to understand and predict the next step, as it reduces the number of tokens
to be generated. Indeed, an action index requires only four tokens, whereas the emojis and the action labels
require at least eight tokens. Remarkably, the semantic representation achieves a comparable performance
even though words can introduce bias or ambiguity into the model. This indicates that the model can handle
the natural language input and extract the relevant information for the step anticipation task. Surprisingly,
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Table 5.3: Performance of PREGO with different prompt representations for Procedural Mistake Detection evaluated
via F1 score, precision and recall on the Assembly101 dataset.

F1 score Precision Recall
Random 33.2 19.9 98.7
Semantic 33.1 20.2 92.3
Numerical 33.4 20.4 91.7

the random symbol representation has a comparable performance to the other representations, even though
the model does not have any semantic or numerical association with them. This suggests that the model can
learn the temporal structure of the actions from the input history, regardless of the symbol representation.

5.7 Discussion

We have introduced PREGO, a one-class, online approach for mistake detection in procedural egocentric
video. PREGO predicts mistakes by comparing the current action predicted by an online step recogni-
tion model with the next action, anticipated through symbolic reasoning performed via LLMs. To evaluate
PREGO, we adapt two datasets of procedural egocentric videos for the proposed task, thus defining the
ASSEMBLY101-O and Epic-tent-O datasets. Comparisons against different baselines show that the feasi-
bility of the proposed approach to one-class online mistake detection. We hope that our investigation and
the proposed benchmark and model will support future research in this field.
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Chapter 6

Conclusions

Amidst the rapid advancements in AI and CV that promise to redefine industrial automation, this thesis
directly confronts the challenges of ensuring utmost safety and enhancing operational efficiency in collab-
orative human-robot environments. While these innovations significantly improve production lines, they
also bring to light critical safety and workflow management issues. Addressing these concerns head-on, the
research develops innovative solutions to promote secure interactions and streamlined processes between
humans and robots.

Indeed, our research has harnessed the latest in technological innovation, applying it within new con-
texts to significantly bolster both safety and operational efficiency, with a particular emphasis on enhancing
processing speed towards achieving real-time execution. To this end, a key development has been the intro-
duction of a pioneering graph convolutional network technique meticulously designed for precise and rapid
human pose estimation. This advancement greatly enhances safety protocols in human-robot interactions,
empowering cobots with the ability to quickly understand and respond to human actions, thus minimizing
accident risks and reinforcing the reliability of industrial processes.

Building on the foundational advances in safety and efficiency, this research has also made significant
strides in enhancing mistake detection within industrial procedural sequences. This field within Computer
Vision, while not as extensively charted, presents unique challenges and opportunities. Recognizing pro-
cedural mistakes as phenomena with open-set characteristics, we developed a novel framework for Online
Mistake Detection in egocentric procedural videos. Insights from the VAD domain deeply inform our ap-
proach; by understanding how VAD models identify unexpected events without prior specific training on
them, we adapted similar principles to the dynamic and unpredictable nature of procedural mistakes, paving
the way for a method that is both promising and applicable in real-world settings. This strategic leverag-
ing of VAD concepts allows us to set a solid foundation for detecting a wide array of procedural errors,
underscoring our commitment to operational safety and accuracy.

This research extends into the domain of anomaly detection with a focus on One-Class Classification
methods and the exploration of behavior’s multimodal nature, leading to the development of state-of-the-art
methodologies for human-related VAD. Extensively validated, these methodologies serve the dual purpose
of enhancing the academic domain and forging pathways toward practical implementations in mistake de-
tection. The study of VAD, while not directly applied in industrial settings, illuminates the intricate dy-
namics between anomalies and procedural errors, laying a theoretical foundation that is instrumental for
future endeavors in Online Mistake Detection and beyond, potentially influencing a range of sectors with its
applicability.
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Through the analysis of established literature and the development of new methodologies, this research
underscores a commitment to refining the safety and efficiency of human-robot interactions. The method-
ologies and frameworks developed herein, while capitalizing on cutting-edge technological insights, offer
pragmatic strategies to mitigate risks and aim at optimizing industrial operations.

The inquiry into VAD and the innovative exploration of Online Mistake Detection showcase the thesis’s
broader impact beyond immediate industrial applications. This research contributes to a growing body of
knowledge that seeks to balance technological innovation with human-centric considerations, advocating
for systems that are both advanced and accessible.

In summary, the contributions of this thesis extend beyond the confines of academic research, offering
tangible strategies for the real-world challenges faced in industrial automation. Bridging the gap between
theoretical exploration and practical application, it marks an important advancement in the ongoing dialogue
on AI’s role in shaping the industry’s future. This work, therefore, stands as a testament to the evolving
relationship between humans and robots, charting a course for future investigations that are as informed by
technological potential as they are by the imperatives of safety and efficiency.

The research presented in this thesis lays a foundational framework for enhancing safety and efficiency
in industrial human-robot collaboration through cutting-edge methodologies. While the outcomes have been
promising, several directions for future work have emerged, aiming to further the field.

• Optimization of Pose Estimation Models. Further research should refine the proposal of pose fore-
casting models for HRC. While the proposed SeS-GCN reports encouraging results in terms of effi-
ciency, to effectively achieve safety in spaces shared simultaneously by robots and humans, there is a
need for models tailored for the industrial use case, capable of reacting in real-time. Real-time pose
estimation is crucial to anticipate and prevent potential collisions, ensuring a safe interaction between
robots and human workers. Without the ability to rapidly interpret and respond to human movements,
the system may fail to react promptly to unexpected actions, compromising safety. Investigating
methods to reduce computational demands while maintaining or improving accuracy could make
these models more accessible for real-time applications across diverse industrial scenarios. Addition-
ally, exploring advanced algorithms and hardware acceleration techniques could further enhance the
responsiveness and reliability of pose estimation systems, ultimately fostering safer and more efficient
human-robot collaboration.

• Extending industrial benchmarks. This work introduces three datasets specifically tailored for
industrial contexts. On the other hand, we limit our focus to specific industrial contexts such as as-
sembly lines. Future work should fill this gap, incorporating data from different sectors and more
complex interactions between humans and robots, providing a richer resource for training and testing
AI models. Expanding the dataset to include a wider range of industrial activities, such as logistics,
quality control, and maintenance, would enhance the versatility and applicability of the pose fore-
casting models. Furthermore, capturing data in varied environmental conditions and from different
camera angles can contribute to the robustness of the models. Ensuring the inclusion of movement
patterns can further improve the generalizability of the models, making them more effective across
various real-world scenarios. Broadening the range of data resources, including more general proce-
dural activities, will ultimately lead to the development of AI models better equipped to handle the
complexities of human-robot interaction in dynamic industrial environments.

• Broaden the context of Mistake Detection. The novel framework for Online Mistake Detection
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developed in this thesis offers a promising direction for ensuring procedural integrity. Future work
could focus on adapting and testing this framework in diverse industrial contexts beyond the initial
settings considered here to assess its versatility and effectiveness in a broader range of procedures.

• Exploring Further Applications of DDPMs and LLMs. The use of diffusion and Large Language
Models for anomaly detection and mistake prediction represents a novel approach in the field. Never-
theless, the field needs further insights, and future studies could explore other potential applications
of these technologies in industrial settings, such as predictive maintenance, quality control, and oper-
ational planning. In predictive maintenance, these models could analyze patterns in equipment data
to anticipate failures before they occur, thus reducing downtime and maintenance costs. For quality
control, diffusion models could detect deviations from product specifications in real time, enhancing
production accuracy and reducing waste. These technologies can forecast demand, optimize resource
allocation, and improve overall efficiency in operational planning. Furthermore, investigating the in-
tegration of these models with existing industrial IoT systems could provide a seamless and scalable
solution for real-time monitoring and decision-making. Developing user-friendly interfaces and visu-
alization tools will also be crucial to ensure that the insights generated by these advanced models are
accessible and actionable for industry professionals. By expanding the scope of application and refin-
ing these technologies, future research can significantly enhance their impact on industrial operations,
driving innovation and improving productivity.

• Robustness to Environmental Variability. Ensuring that AI models are robust to variations in the
industrial environment, such as lighting changes, noise, and occlusions, is essential for their relia-
bility. Investigating techniques for enhancing model robustness and generalization across different
settings and conditions would be a valuable direction for future work. Investigating techniques for
enhancing model robustness and generalization across different settings and conditions would be a
valuable direction for future work. This includes exploring advanced data augmentation methods,
such as simulating various environmental conditions during training to improve the model’s adapt-
ability. Additionally, integrating sensor fusion techniques, where data from multiple sensors (e.g.,
cameras, LiDAR, thermal sensors) are combined, can enhance the model’s ability to maintain per-
formance despite challenging conditions. Another promising area of research is the development of
self-learning systems that can continuously update and refine their algorithms based on new data and
environmental changes. These approaches can significantly contribute to the creation of AI mod-
els that are not only robust and reliable but also capable of operating effectively in a wide range of
industrial scenarios.

Continuing this journey of exploration and innovation, future endeavors based on these suggestions have
the potential to advance industrial automation significantly. Building on the groundwork laid by this thesis,
such research could lead to breakthroughs that transform industrial operations, making them safer, more
efficient, and ready for the challenges of tomorrow.
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