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Abstract

In the non-life insurance industry, insurance companies are required by local and international
regulators to set aside an amount, known as the claims reserve, to meet future payment obligations.
The market data shows that the claims reserve represents the main liability of non-life (re)insurance
companies (EIOPA, 2023), and we refer to its calculation at a valuation date as reserving. From
a statistical perspective, this is a prediction problem. For reserving, the industry relies on simple
algorithms that use an aggregated data representation called development triangles. The more
detailed databases that make up the development triangles are often held by insurers and contain
information about claims at an individual level that could potentially improve reserving. Examples
are static covariates like age and insurance type, accident times, payment delays or payment costs.

When the reserve is computed, the data is only partially observed due to so-called right-
censoring. At this point, not all the claim histories are observed, so that for some it is only
known that payments might occurr in the future; this context of incomplete information makes
the statistical models for event history analysis a natural framework for dealing with this type of
application.

The purpose of this monograph is to illustrate three models for reserving based on the outlined
framework. Our problem formulation allows us to deal with incomplete observations of claims data
and to incorporate information on individual covariates. By applying our models to both simulated
and real data sets, and comparing them with approaches based on development triangles, we find
that these sophisticated models allow for more accurate estimates of the claims reserve.

Keywords: non-life insurance, reserving, survival analysis, machine learning, conditional Aalen-
Johanson.
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Chapter 1

Introduction

In non-life insurance, contracts do not settle when the insured event occurs. At the accident date,
the event triggers a claim that might originate payments in the future. For this purpose, insurers
need to collect an amount to cover future (possible) losses. This amount is called claims reserve and
it assesses claim outstanding loss liabilities (see for example Wüthrich & Merz, 2015, p. 11). We
refer to the computation of the claims reserve at a valuation date as reserving. In this manuscript,
we present innovative statistical models for reserving that are based on a relatable theory (Andersen,
Borgan, Gill, & Keiding, 1993). In this section, we introduce the reserving problem and motivate
this manuscript with data and regulatory background on the insurance market.

Let us consider Figure 1.1, where we sketch an example of the timeline evolution of an individual
claim. The insured event occurs within the insured period but the claim settles after several years.
Several payments occur after the claim is reported to the insurer. Until a claim settle, the insurance
company refers to it as an open claim. In certain circumstances, settled claims can be reopened
(Friedland, 2010, p. 431).

In this manuscript, we will disregard the so-called claim reopenings. We will then model two
groups of claims that are (qualitatively) defined as follows:

• A closed claim is a claim that was settled before the evaluation date and no future payment
is expected to occur.

• An open claim is a claim for which the insurance company might pay an amount in the future.

The cash flows are not necessarily known at evaluation date and if they are not, they have to
be estimated.

Insured period
Cash flows

Accident Date

Reporting Date

Settlement

Figure 1.1: Example of an insurance claim history.
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As the insurer learns about the claim only after this is reported, we can distinguish between
two categories of open claims:

• The Incurred But Not Reported (IBNR) claims. These are claims that occurred during the
insured period but the insurer does not know about them at the evaluation date.

• The Reported But Not Settled (RBNS) claims. These are claims that are reported to the
insurer but a part (or even the whole) payments history is not yet known at the evaluation
date.

The claims reserve is comprehensive of the future cost of IBNR and RBNS claims. The relative
impact on the reserve of IBNR and RBNS claims depends on the type of insurance. The data on
the US market reported in Friedland (2010, p. 80) show that for these types of policies, with mostly
single payments and a short settlement, the reserve consists mainly of RBNS claims. The cost of
future IBNR claims will have a greater impact on the reserve for those types of insurance that
have a long settlement and several payments. The type of insurance is often referred to with its
regulatory term, i.e. line of business (Wüthrich, 2018). The type of insurance is also an example of
individual characteristic associated to a claim. The reserving data include several (static) features
like age of the claimant (or policyholder), type of cover, and reporting delay that an actuary could
potentially use for reserving.

1.1 Best practice in reserving

Data from the European market show that the claims reserve is the largest liability of a non-life
insurer (EIOPA, 2023). From a financial perspective, an accurate estimation of the reserve is
therefor important for evaluation and accounting. Indeed, insurance companies assess their claims
reserve periodically. A survey on U.S. underwriters showed that more than 60% of the companies
in the study perform a partial or full analysis of the reserve at least quarterly (Brown, Julga, &
Merz, 2023). On the other hand, the same study illustrates that actuaries are using the same tools
that they were using ten years ago for this evaluations.

Interestingly, while the methodologies that we propose are part of a prosperous academic re-
search stream (Arjas, 1989; Norberg, 1993, 1997; Lopez, 2019; Antonio & Plat, 2014; Wüthrich,
2018), the insurance industry is still far from having individual reserving models implemented in
practice (Brown et al., 2023). Another recent study performed from the Actuarial Studies in Non-
life Insurance (ASTIN) section of the International Actuarial Association (IAA) shows that, world-
wide, companies mostly rely on simple algorithms with basic software implementation (Dal Moro,
Cuypers, & Miehe, 2016). This is motivated by the difficulties in retrieving data of sufficient quality
for sophisticated data analysis, and preference for licensed software that do not include literature
novelties. In addition, licensed software is considered more secure by the industry as it provides
product support and is standard across analysts. In fact, business analysts do not necessarily have
expertise on literature novelties that require a consolidated knowledge of statistics for data science
and programming.

On the other hand, the industry is recently looking towards data scientists and innovative
data oriented projects and companies are trying to experiment the role of new professional figures

2



1.2. Non-life insurance data

in reserving, see again Brown et al. (2023). In their most recent reports, the main consultancy
players recognise the importance for underwriters and clients of using innovative approaches to
their business (Accenture, 2023; Deloitte, 2023; PWC, 2023). On a larger scale this is a movement
that is expected to grow fast in the next few years. The United Nations (UN) forecast that from
2018 to 2025 the general market size of AI and technology on is going from 350 billion dollars to
3.2 trillion dollars (United Nations, 2021). This is accompanied by a trend in education, where
university will provide in the next years more and more data scientists that are expected to have
interdisciplinary skills (Glantz et al., 2023).

With reference to the models presented in this manuscript, we want to address the shortcomings
of the current approaches available in the literature as follows. In order to make the models
easily implementable, our methodologies are accompanied by a software implementation (Pittarello,
Hiabu, & Villegas, 2022; Hofman, Pittarello, & Hiabu, 2023; Bladt & Furrer, 2023a).

1.1.1 Individual reserving in the European Union regulation landscape

Reserving in the European Union (EU) is regulated both on a national level by local Generally
Accepted Accounting Practices (GAAPS) and on an international level by Solvency II (European
Parliament, 2009), the European Directive that introduced the idea of a market consistent evalua-
tion of assets and liabilities. The Solvency II directive relies on a three pillars structure: quantitative
capital requirements, qualitative supervisory review process and disclosure respectively.

The third pillar provides public disclosure requirements, more specifically an annual report is
required on the insurance company’s financial and solvency situation. We focus the attention on
the first and second pillars. The former regards the market consistent valuation of assets and
liabilities for the computation of the Economic Balance Sheet (the main output of the insurer’s
accounting), capital requirements and validation of internal models. Pillar two is supplementary to
pillar one. Indeed, not all the risks can be adequately estimated using pure quantitative measures.
With reference to the evaluation of assets and liabilities, the directive asks insurers to carry on a
market consistent evaluation of assets and liabilities (article 75). The directive also decomposes
the insurance business in modules and sub-modules. As far as concerns the Non-Life module, the
most relevant sub-module is the Premium and Reserve Risk. The latter is cited because it outlines
the framework within which new and more sophisticated models, such as those presented in this
monograph, could reasonably be applied. Our models could be implemented in the aim of a partial
or full internal model (article 112) to provide a more accurate estimate of the insurer’s capital
requirement. The regulator not only wants insurance companies to meet all their obligations, but
also wants to encourage companies to develop and use new techniques for internal control and risk
management. (Pittarello, 2020).

1.2 Non-life insurance data

In this section, we formulate the reserving problem in continuous time starting from the individual
claims. We then connect our framework to the so-called development triangles, a discrete and
aggregated data representation that is traditionally used by actuaries for modelling. Development
triangles are often referred to as run-off triangles (Hiabu & Pittarello, 2023): in this monograph
we use the two terms interchangeably.

3



1.2. Non-life insurance data

At the evaluation date T , we have observed n claim payments. For each payment, we are given
with the time delay from accident to payment, Ti, and payment size Zi, i = 1, . . . , n. As illustrated
in Figure 1.1, in insurance data there is often a delay between reporting and payment. While a
model for the reporting delay will be the discussed in the following chapters, for the moment we
restrict our focus on the payments size and their corresponding delay from the insured event.

We only observe (Ti, Zi) when the payment date is before the evaluation date. Therefore, by
design it holds

Ti ≤ T − Ui,

where Ui is the accident date of claim i. As pointed out in Hiabu (2017) and Bischofberger, Hiabu,
and Isakson (2020), statistical inference on (Ti, Zi) is not directly feasible. In this chapter, we will
not discuss a modelling approach for (Ti, Zi) which will be the focus of the main corpus of this
manuscript.

We assume that observations are aggregated in periods of size δ. For notations convenience,
we assume that the same aggregation level δ is chosen for both development date, Ti and accident
date, Ui and furthermore that m = T /δ with m ∈ N0. We then work on an equidistant grid
t0 = 0, . . . , tm = T and u0 = 0, . . . , um = T , with tj − tj−1 = uk − uk−1 = δ, for j, k = 0, . . . ,m.
In classical run-off triangles we only have information on the sum of payments falling within a
parallelogram

Pkj = {(t, u) : tj + uk − u ≤ t ≤ tj+1 + uk − u;u ∈ [uk, uk+1), t ≥ 0}.

In Figure 1.2 we show an example of a continuous time run-off triangle. In insurance data sets,
the individual observations (Zi, Ti, Ui), i = 1, . . . n are compressed into observations Xkj ; j, k =

0, . . . ,m with
Xkj =

∑
i

Zi

∫
I ((s, Ui) ∈ Pkj) dNi(s).

withNi(t) = I(t ≥ T −Ti) each with respect to the filtration Fit = σ

Åß
T − Ti ≤ s : s ≤ t

™
∪
ß
Ui

™
∪N
ã

,

where N is the set of all zero probability events, as we will discuss more formally in Section 2.2.
Throughout the manuscript, we will use I to denote the indicator function.

A
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Small

T

Figure 1.2: Illustration on how individual payments are aggregated into cells with a parallelogram
shape.

4



1.3. The Chain Ladder Method

1.3 The Chain Ladder Method

We start this section by introducing the chain ladder, the most used algorithm for reserving
(Dal Moro et al., 2016; Hiabu & Pittarello, 2023). We define the cumulative claim payments
in accident period k and development period j by

Ckj =

j∑
l=0

Xkl,

which are used to calculate the so-called development factors for j = 1, . . . ,m:

f̂j =

m−j∑
s=0

Cs,j−1∑m−j
l=0 Cl,j−1

Cs,j
Cs,j−1

=

m−j∑
s=0

Cs,j−1∑m−j
l=0 Cl,j−1

f̂s,j =

∑m−j
s=0 Cs,j∑m−j
s=0 Cs,j−1

. (Development factors)

In this manuscript, we will refer to f̂k,j = Ck,j/Ck,j−1 as individual development factors.
Assuming no tail is present, we project future observations via a chain principle,

“Ck,j = Ck,m−k

j∏
l=m−k+1

f̂kl, “Xk,j =

“Ck,j − Ck,j−1 if k + j = m+ 1,“Ck,j − “Ck,j−1 if k + j ≥ m+ 2.
(1.1)

The claims reserve is R =
∑T

k=1Rk, where Rk = Ĉk,m − Ck,m−k.
The actuarial literature has explored several stochastic models that replicate its result for the

reserve (Hess & Schmidt, 2002). In this section, we start introducing the stochastic approach in
(Mack, 1993), that will be used as a competing model in two of our implementations Hiabu, Hofman,
and Pittarello (2023); Bladt and Furrer (2023b). We conclude introducing the age-period-cohort
models in Harnau and Nielsen (2018), that was instead using as a competing implementation for
Pittarello, Hiabu, and Villegas (2023).

Remark 1.3.1. Development triangles are, historically, the data representation used by actuaries
for provisioning (Taylor, 2019). Notably, insurance mathematicians have explored several solutions
based on aggregated data that are different from the chain-ladder based approaches that we present
in this chapter. We remark that the objective of this thesis is to present new approaches for reserving
that integrate the extensive information on individual claims available in company data bases in
actuarial models. While a more detailed discussion on aggregated reserving models would provide
more insights on how actuaries do reserving in practice, we decided to restrict our presentation to
the few models that we used as benchmark in our applications. For a more detailed discussion on
aggregate reserving models we refer to Taylor (2012); Wüthrich and Merz (2015).

1.3.1 Mack Model

The Mack Model (Mack, 1993) makes the following assumptions:

Mack 1 Aggregated claims are independent across accident periods: Ci,j ⊥⊥ Ck,l for all i ̸= k.

Mack 2 There exist positive factors f1, . . . , fm such that
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E [Ck,j | Fj−1] = fjCk,j−1, j = 1, . . . ,m,

where Fj = σ{Ci,k : i = 0, . . . ,m; k ≤ j}.

Mack 3 There are positive factors σ1, . . . , σm such that

Var [Ck,j | Fj−1] = σ2jCk,j−1, j = 1, . . . ,m.

Under the Mack model, an estimator of σ2j , for j = 1, . . . ,m− 1 is

σ̂2j =
1

m− j

m−j∑
s=0

Cs,j−1

Å
Cs,j
Cs,j−1

− f̂j

ã2
.

To get an estimator for σ2m, one may need to extrapolate. If claims development is finished
after m− 1 years, one can simply set σ̂2m = 0. Otherwise, Mack suggests

σ̂2m = min

®
σ̂4m−1

σ̂2m−2

, σ̂2m−2, σ̂
2
m−1

´
.

Proposition 1.3.1. Under [Mack 1] – [Mack 3], σ̂2j , j = 1, . . . ,m − 1, and f̂j , j = 1, . . . ,m, are
unbiased estimators of σ2j , and fj . Furthermore for j ̸= j′, f̂j and f̂j′ are uncorrelated.

One can show that under Mack’s assumption, f̂j has minimal conditional variance (conditioned
on Fj) under all estimators of the form

∑m−j
s=0 wsCs,j/Cs,j−1,

∑
sws = 1.

The main purpose in developing a stochastic model that replicates the chain ladder estimates is
to be able to discuss estimation uncertainty. Our goal is to derive an estimator for E[(R̂k−Rk)2|Gm]
where Rk =

∑m
j=m−k+1Xk,j with plug-in estimator R̂k and

Gt = σ{Ck,j : k + j ≤ t}.

Note that
E[(R̂k −Rk)

2| Gm] = E[(Ĉk,m − Ck,m)
2| Gm].

Hence,
E[(R̂k −Rk)

2| Gm] = Var(Ck,m| Gm) +
Ä
E[Ck,m| Gm]− Ĉk,m

ä2
.

The first summand on the right hand side is the process variance and the second summand is
the parameter uncertainty.

Straightforward calculations lead to the following estimator for the uncertainty of the reserve
in accident period k

Ê[(R̂k −Rk)
2|Gm] = Ĉ2

k,m

m∑
s=m−k+1

σ̂2s

f̂2s

Ç
1

Ĉk,s−1

+
1∑m−s

i′=0 Ci′,s−1

å
.

Since the reserve estimates are correlated, we need to consider a correlation term to estimate
the uncertainty of the full reserve, E[(

∑
i R̂k −Rk)

2| Gm],
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Ê[(
∑
k

R̂k−Rk)2| Gm] =
m∑
k=1

{
Ê[(R̂k −Rk)

2| Gm] + Ĉk,m

(
m∑

i′=k+1

Ĉi′,m

)
m∑

s=m−k+1

2σ̂2s

f̂2s
∑m−s

i′=0 Ci′,s−1

}
.

1.3.2 Age-Period-Cohort (APC) models

Claims reserving models replicating the chain-ladder estimates by modelling the incremental claim
amounts have been extensively studied in the literature, see e.g. England and Verrall (1999),
Pinheiro, Andrade e Silva, and de Lourdes Centeno (2003), Kuang, Nielsen, and Nielsen (2008a),
Kuang, Nielsen, and Nielsen (2008b), Kuang, Nielsen, and Perch Nielsen (2011), Björkwall, Hössjer,
and Ohlsson (2009), Gabrielli, Richman, and Wüthrich (2020), Avanzi, Taylor, Vu, and Wong
(2020), Taylor (2021). We can include in this literature stream the Age-Period-Cohort (APC)
models in Harnau and Nielsen (2018). As we will explain in more detail in the next chapter, APC
models are a standard approach in the mortality and epidemiology literature, but they can also be
used for modelling development triangles. Development triangles are just an age-period-cohort data
representation akin to Lexis diagrams. In the sequel, we will borrow the language from mortality
(Carstensen, 2007), with k denoting cohort, j age and k + j period. In claims reserving, age j
usually corresponds to development period, period k+ j to calendar time and cohort j to accident
period, see Table 1.1.

Table 1.1: Notation parallel, Lexis dimensions and claims reserving.

Notation Claims reserving Lexis dimensions
j development period age
k occurrence or accident date cohort

k + j calendar date period

The APC family includes the so-called age-cohort model. Assuming Xk,j
iid∼ Pois(exp (ηk + νj)),

and ηk, νj ∈ R we can use a Generalised Linear Model (GLM) with linear predictor

E[log(Xk,j)] = ηk + νj , (1.2)

to model the incremental paid amounts, with k, j = 0, . . . ,m. The linear predictor includes

• ηk, an effect that depends on the accident date (cohort).

• νj , an effect that depends on the development date (age).

For the model identification we use the canonical parametrization in (Kuang et al., 2008a,
2008b). Note that the same structure in Equation (1.2) is also assumed in the unobserved lower
triangle, k + j > m. For k, j = 0, . . . ,m, given the maximum likelihood estimates for (η̂k, ν̂j)k,j ,
one can project into the lower triangle

X̂k,j = exp(η̂k + ν̂j).

The age-cohort model replicates the point estimates of the chain ladder for the reserve and it
was first presented in the actuarial literature in the seminal paper England and Verrall (1999).
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The models in (Kuang et al., 2008a; Harnau & Nielsen, 2018) include a more general predictor
that incorporates γk+j , an effect on the calendar period k + j

E[log(Xk,j)] = ηk + νj + γk+j .

1.4 Outline of the manuscript

The research on claims reserving included in this manuscript can be divided into two parts. The
first part collects the work in Pittarello et al. (2023) and Hiabu et al. (2023) while the second
part is based on the work in Bladt and Pittarello (2023). While the two parts show two different
approaches for reserving, they both show the application of statistical models for survival analysis
to the actuarial science (Andersen et al., 1993). This monograph is organised as follows:

• In Part I, we investigate the relationship between the micro-level structure of claims data and
development triangles, with a particular focus on claims counts. Here, we discuss estimation
and inference of multiplicative hazard rate models on triangular data. By considering an
individual framework for defining our model, we use a counting process on the reverse devel-
opment time to reformulate the right-censored problem into a feasible left-censored problem
and propose an estimator for the claim development based on development triangles. We
prove that there is a one-to-one correspondence between the chain-ladder development fac-
tors and our estimator. While aggregating the data into triangles the individual information
on claims is disregarded, our estimator can be used when the individual observations are not
available, as it is often the case in reserving as in epidemiology and mortality studies (Gill,
1986), (Andersen et al., 1993, p. 168). In Chapter 3, we propose a refinement of Chapter 2
for predicting future claims using individual data for model estimation. We now model the
individual hazard rates directly and discuss how to project future claim reports using the
correspondence to the development factors discussed in Chapter 2. We explain the relation-
ship between development times and survival analysis ties, and elaborate on the relationship
between the model baseline and the distribution of claim counts in the tie. We propose a
proportional hazards model in which the logarithmic risk function is modelled using various
machine learning models: Cox model with splines (Gray, 1992), Neural Networks, and eX-
treme Gradient Boosting (Chen & Guestrin, 2016). In this project, we have also extended
the state-of-the-art machine learning literature on survival analysis to account for the pres-
ence of ties in the data. When individual (continuous) data are available, e.g. on a daily
basis, we discuss how to report our predictions on different (discrete) data aggregations, e.g.
monthly, quarterly, or yearly. We discuss the invariance of the forecasts for different output
aggregations. The usefulness of our approach is demonstrated with an extensive simulation
study and a case study on a real portfolio provided by a major insurance company.

• In Part II, we extend the findings of a recent paper (Bladt & Furrer, 2023b), which intro-
duces the conditional Aalen-Johansen estimator. This non-parametric kernel estimator for
the occupation probabilities is applicable to any finite-state jump process, and it supports
conditioning on feature information. Taking advantage of the panel structure of reserving
data, in the manuscript we propose a reinterpretation of a finite state space, where the states
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are the discrete times at which each payment was recorded, and an absorbing state represents
the final payment. We also propose modelling the counting process in terms of cumulative
claim payments rather than time. This allows us to reinterpret the occupancy probabilities
of an absorbing state as the cumulative density function of individual claim costs. We derive
a nonparametric kernel estimator of individual claim payments as a function of individual
characteristics and use it to numerically compute the moments of the reserve distribution.
We illustrate the usefulness of our approach on an extensive simulation study and on a real
data application. Lastly, we also discuss proper scoring and illustrate how the continuously
ranked probability score can be used to assess the performance of our models (Gneiting &
Ranjan, 2011).

• Chapter 5 concludes with some final remarks on this monographs and points out that Chap-
ter 3 and Chapter 4 could be joined in future work.

As a last remark of this chapter and before discussing Part I of this manuscript, we would like
to highlight that Pittarello et al. (2023) and Hiabu et al. (2023) are accompanied by an open-source
software that includes a general implementation of the models that we present in this monograph
(Pittarello et al., 2022; Hofman et al., 2023). The results in Bladt and Pittarello (2023) can be
replicated using the R package in Bladt and Furrer (2023a).
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Claim development models



Chapter 2

A survival framework for claims
reserving

In this research stream, we discuss estimation and inference of multiplicative hazard rate mod-
els on development triangles. The included articles answer two very operational questions: How
can probabilistic modelling be done when the data is pre-smoothed into development triangles?
(Pittarello et al., 2023) What are the potential gains in forecasting when models are estimated on
the individual data? (Hiabu et al., 2023) The presented models share a common framework (Hiabu,
2017), but in the first project (Pittarello et al., 2023) we discuss estimation on aggregated data
and in the second project (Hiabu et al., 2023) estimation is done entirely at the individual level.
In Section 2.2 we describe the theory of reverse time hazard models to introduce this first part of
the manuscript (Hiabu & Pittarello, 2023) and, starting from Section 2.3, we discuss and apply to
a case study the estimator for the claim development in Pittarello et al. (2023).

2.1 Motivation

In Pittarello et al. (2023), we propose an estimator of the claim development based on run-off
triangles. While pre-smoothing into run-off triangles is theoretically less efficient than direct esti-
mation based on individual data, our proposed estimator can be applied on data readily available
and most familiar to reserving actuaries. In Section 2.3 we derive an exact and non-asymptotic
relationship between time-reversed averaged hazard rates and chain-ladder’s development factors.
By using discrete estimators, we show how existing GLM-based estimators within the age-period-
cohort framework can be employed to model claim development. Interestingly, in Section 2.6 we
show that modelling the claim development via an age-model replicates chain-ladder. We find
that our proposal of modelling the claim development via an age-period-cohort models seems to
outperform age-period-cohort models based on claim amounts in most cases. Our framework can
then complement other modelling techniques in the actuary tool-box.

As earlier mentioned, claims reserving models replicating the chain-ladder estimates by mod-
elling the incremental claim amounts have been extensively studied in the literature, see Sec-
tion 1.3.2. By contrast, given a run-off triangle, we propose to model the claim development
instead of the claim amount. It is surprising that despite the idea of modelling the claim develop-
ment being arguably more in the spirit of the chain-ladder algorithm, there is only little literature



2.2. Granular model formulation

that models the claim development given a run-off triangle. A notable exception is Mack (1993)
and extensions thereof to multiple triangles, e.g. Schnieper (1991) and Wüthrich (2018). However,
as has been noted in Bischofberger et al. (2020) and Mikosch (2009, Chapter 11.2) the assumptions
of the model in Mack (1993) do not conform well with the data-generating mechanism from an
individual claim level perspective: claim payments in later development periods are assumed to
always stem from earlier payments.

In recent years there have been several papers that model continuous run-off triangles based on
individual data. In Miranda, Nielsen, Sperlich, and Verrall (2013) and Hiabu, Mammen, Martínez-
Miranda, and Nielsen (2016) the loss-triangle based reserving-problem is translated into a contin-
uous framework and the authors propose to estimate a density function corresponding to claim
counts via kernel smoothers. The model has been extended in Lee, Mammen, Nielsen, and Park
(2015), Lee, Mammen, Nielsen, and Park (2017), and Mammen, Martínez-Miranda, Nielsen, and
Vogt (2021) to account for seasonal effects, operational time and calendar effects, respectively. In-
stead of modelling the claim counts, Hiabu (2017) and Bischofberger et al. (2020) model the claim
development and show an asymptotic relationship between chain-ladder’s development factors and
a time-reversed hazard rate.

In Pittarello et al. (2023) we elaborate on the one-to-one correspondence between an estimator
of the claims development and the chain-ladder development factors. In contrast to our paper, the
estimation in Hiabu (2017) and Bischofberger et al. (2020) is based on individual data and the
relationship between chain-ladder’s development factors and a time-reversed hazard rate is based
on continuous observations only.

This chapter comes with the clmplus package (Pittarello et al., 2022), an out-of-the box set
of tools available in R to practitioners and researchers that may want to apply or build on our
framework. The clmplus implementation relies on the tools available in the StMoMo package
(Millossovich, Villegas, & Kaishev, 2018), that made the the age-period-cohort framework easy
and ready to use in a mortality context.

2.2 Granular model formulation

Given a cut-off-date T , we have observed n claim payments. For every payment, we are given
the time delay from accident until payment, Ti, and payment size Zi, i = 1, . . . , n. We make the
following assumption.

[M1] All payments are independent.

As in the age-cohort model (cross-classified GLM in England & Verrall, 1999), assumptions [M1] is
rather strong but is made to simplify the mathematical derivations and one may conjecture that it
can be relaxed by considering weak dependency between payments. Statistical inference on (Ti, Zi)

is not directly feasible. We only observe (Ti, Zi) when the payment date is before the cut-off-date.
Therefore, by design it holds

Ti ≤ T − Ui,

where Ui is the accident date of claim i. Hence, we are exposed to a right-truncation problem. A
solution to the right-truncation problem is to reverse the time of the counting process leading to a
tractable left-truncation problem. To this end we consider the development-time reversed counting
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processes
Ni(t) = I(t ≥ T − Ti),

each with respect to the filtration

Fit = σ

Åß
T − Ti ≤ s : s ≤ t

™
∪
ß
Ui

™
∪N
ã
,

satisfying the usual conditions (Andersen et al., 1993, p. 60), and where N is the set of all zero
probability events.

2.2.1 The intensity process

In contrast to Hiabu (2017) and Bischofberger et al. (2020), we allow Ti to depend on Ui. Then,
under mild regularity conditions, the intensity process of Ni is

λi(T − t|u) = lim
h↓0

h−1E
[
Ni {(T − t+ h)−} −Ni(T − t−)| Fi,(T −t)−

]
= α(t|Ui)Y R

i (t),

where

α(t|u) = lim
h↓0

h−1P
Ä
Ti ∈ (t− h, t]| Y R

i (t) = 1, Ui = u
ä
,

Y R
i (t) = I(Ti ≤ t < T − Ui).

This structure is called Aalen’s multiplicative intensity model (Aalen, 1978), and enables non-
parametric estimation and inference on the deterministic hazard function α.

Let Zi denote the payment size of claim i and consider the process N∗
i (t) = ZiNi(t). Under

mild regularity conditions, it is straightforward to see that

λ∗i (T − t|u) = lim
h↓0

h−1E
[
N∗
i {(T − t+ h)−} −N∗

i (T − t−)| Fi,(T −t)−
]
= Rn(t)α

∗(t|Ui)Y ∗,R
i (t),

α∗(t|u) = E[Z1|T1 = t, U1 = u]

E [Z1| T1 ≤ t, U1 = u]
α(t|u),

Y ∗,R
i (t) = ZiY

R
i (t),

Rn(t, u) =
E [Z1| T1 ≤ t, U1 = u]

Zi
.

2.3 Introducing a grid system

We use the notation of Section 1.2 and assume that observations are aggregated into periods of
size δ. For notational convenience, we assume that the same aggregation level δ is chosen for both
development direction, Ti and accident direction, Ui and furthermore that m = T /δ with m ∈ N0.

To estimate the development in the run-off triangle, we are interested in the exposure-weighted
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average hazard on the parallelogram:

µk,j =
δ
∫
Pk,j

α∗(s|u)pU (u)γ(s, u)dsdu∫
Pk,j

pU (u)γ(s, u)ds
,

where γ(s, u) = E[Y ∗,R
i (s)|Ui = u] and pU is the marginal density of Ui. Under regularity condi-

tions, µk,j is, as the number of policies goes to infinity, the asymptotic limit of

δ
∑

i

∫
I ((s, Ui) ∈ Pk,j)α∗(s|Ui)Y ∗,R

i (s)ds∑
i

∫
I ((s, Ui) ∈ Pk,j)Y ∗,R

i (s)ds
.

Hence, if observations on the individual level are available, then a natural estimator of µk,j is

∑
i Zi

∫
I ((s, Ui) ∈ Pk,j) dNi(s)

δ−1
∑

i

∫
I ((s, Ui) ∈ Pk,j)Y ∗,R

i (s)ds

=
Xk,j

δ−1
∑

i

∫
I ((s, Ui) ∈ Pk,j)Y ∗,R

i (s)ds

=
Xk,j∑

l<j Xk,l + δ−1
∑

i:I((Ti,Ui)∈Pk,j)=1

∫
I ((s, Ui) ∈ Pk,j)Y ∗,R

i (s)ds
.

However, if data is given in the form of a run-off triangle, then the second summand in the denom-
inator is not observed and needs to be approximated. Note that the expression

δ−1
∑

i:I((Ti,Ui)∈Pk,j)=1

∫
I ((s, Ui) ∈ Pk,j)Y ∗,R

i (s)ds,

can be written as ηXk,j with η ∈ [0, 1]. Assuming that (T,U) is uniformly distributed, conditioned
on the parallelogram Pk,j , an unbiased estimator is given by 1

2Xk,j . To see this note that for those
payments that occurred in the parallelogram (j, k), i.e. I ((Ti, Ui) ∈ Pk,j) = 1, the length of the
crossing from entering the parallelogram until payment, i.e. in expected terms is equal to 1

2δ:

E
ï∫

I((s, Ui) ∈ Pk,j)Y R
i (s)ds

ò
= δ−2

∫ T

0

∫ T

0
I ((s, u) ∈ Pk,j) (tj+1 − s− u+ uk) dsdu =

1

2
δ.

Hence, we propose to estimate µk,j via

µ̂k,j =
Xk,j∑

l<j Xk,l +
1
2Xk,j

.

In this manuscript, we will denote Ek,j =
∑

l<j Xk,l+
1
2Xk,j . In the next section, we will connect

µ̂k,j to the chain-ladder’s individual development factors f̂k,j =
∑

l≤j Xk,l/
∑

l<j Xk,l.
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2.4 Lexis diagrams and development triangles

The link between time-reversed hazard rates and chain-ladder’s development factors is akin to the
link between central mortality rates and survival probabilities in the context of mortality modelling.
Thus, in contrast to (Tsai & Kim, 2022) who leverage claim reserving methods to project mortality
rates, we leverage age-period-cohort mortality modelling methods to estimate claim reserves. To
this end, we consider a run-off triangle of incremental payments

X = {Xk,j : k, j = 0, . . . ,m; k + j ≤ m}, m > 0,

where Xk,j denotes the observation for accident period k and development period j.
In the case of X being claim payments, µ̂k,j can be motivated as the estimator for µk,j . µ̂k,j

is the averaged hazard rate running in reversed development time, additionally weighted by the
expected claim size in cell (k, j). This can be seen by noting that µ̂k,j is the ratio of occurrence
and expected exposure. An explicit and more technical definition of µk,j in the latter case will
be provided in the next section. We will also prove that a simple rearrangement shows that for
k = 0, . . . ,m; j = 1, . . . ,m, the observed claim development, µ̂k,j , has the following relationship to
the individual development factors, f̂k,j =

∑
l≤j Xk,l/

∑
l<j Xk,l :

µ̂kj = 2
f̂kj − 1

f̂kj + 1
,

that we rewrite as

f̂k,j =
2 + µ̂k,j
2− µ̂k,j

. (2.1)

Equation (2.1) should be seen as general formula to switch between a modeled claim devel-
opment and the associated development factor; with the latter being subsequently used for pre-
diction. More concretely, starting from the raw observations µ̂k,j , we will assume some structure
on µk,j and derive estimates µ̃k,j of the claim development. Thereafter one applies the equivalent
of Equation (2.1) to derive estimates of the development factors, f̃k,j , which are used to project
observations X into the lower triangle. We will propose to model the observed claim development,
µ̂k,j , for j = 1, . . . ,m, via a GLM which in its simplest form can replicate chain-ladder’s devel-
opment factors and additionally allows for straightforward variations by changing the underlying
distribution or structure.

Interestingly, there is a parallel to draw to mortality modelling in actuarial science and de-
mography. For modelling human mortality, we consider data from large population studies where
information about the life histories of individuals is not known (Wilmoth et al., 2021). The obser-
vations are aggregated into Lexis diagrams L,

L = {dk,j : k, j = 0, . . . , q; k + j ≤ q}, q > 0,

where dk,j denotes the observed (total) number of deaths for age j and cohort k.
As in the reserving framework, and unlike standard survival studies, we will not propose a
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2.5. A model for development triangles

model for individual hazard rates, as the granular data are not available. Instead, we propose an
estimator of the so-called central mortality rate, essentially an average hazard rate for age j and
cohort k, based on the data aggregation L.

Let mk,j denote the central mortality rate at age j for cohort k, qk,j the probability that an
individual aged j in cohort k dies before reaching age j+1, and pk,j = 1− qk,j the probability that
an individual in cohort k with age j survives to age j + 1.

Estimation of mk,j is based on the observed rates m̂k,j = dk,j/Ek,j , where Ek,j denotes the
person-years at risk. However, when data are aggregated in Lexis diagrams, the actual number of
persons at risk is unknown. The quantity Ek,j is then approximated as the number of people of
cohort k that died at age j + 1 or later plus one half times the number of people who died at age
j. In mortality modelling, one usually models age-period-cohort effects on the central mortality
rate mk,j leading to estimates m̃k,j (Carstensen, 2007). Afterwards, one calculates the discrete
quantities q̃k,j and p̃k,j using plug-in estimates in the following standard life-table relationships
(Chiang, 1972):

qk,j =
2mk,j

2 +mk,j
(2.2)

pk,j = 1− qk,j = 1−
2mk,j

2 +mk,j
=

2−mk,j

2 +mk,j
. (2.3)

As we will discuss in Section 2.5, we will use the same plug-in estimators to show Equation (2.1).
Comparing Equation (2.3) and Equation (2.1) we can summarize the following: in mortality

modelling we estimate the central mortality rate mk,j from observations m̂k,j leading to estimates
m̃k,j and use them to derive estimates for one year conditional survival probabilities p̃k,j . For claims
reserving we propose to estimate the claim development µk,j from observations µ̂k,j leading to esti-
mates µ̃k,j and use it to calculate development factors f̃k,j which are estimates of inverse conditional
probabilities. We will exploit this connection between claim reserving and mortality modelling to
provide more flexible claim development models and leverage existing mortality modelling software.

In a similar fashion, we can also obtain an estimator of the survival function. The survival
function is in fact related to the development factors with the following relationship Ŝ(j|U) =

1/
∏j
l=1 f̂k,l.

In Figure 2.1 we show that Lexis diagrams are an age-period-cohort representation of mortality
data similar to development triangles represent non-life insurance data.

Remark 2.4.1. In this section, we specified the nature of the triangle and considered incremental
claim payments. We could derive the same conclusions for different triangles. A possibility would
be X being an aggregation of incremental claim reportings. In this case, the development period
j denotes the delay from accident to report. If we considered claim counts, then µ̂k,j , can be
motivated as the estimator of an averaged hazard rate that runs in reversed development time,
denoted µk,j .

2.5 A model for development triangles

Having established the main results of our proposed modelling approach, we provide in this section
further theoretical details underpinning our approach. Let us consider, for k = 0, . . . ,m; j =
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Figure 2.1: Development triangles (left hand side) and Lexis diagrams (right hand side) are
common data representations in traditional actuarial mathematics. We leverage their similarities
in our modelling framework. In particular, in non-life insurance we denote age as development,
cohort as accident and period as calendar.

1, . . . ,m, η ∈ [0, 1], the following quantity

µ̂k,j(η) =
Xk,j

Ek,j(η)
, (2.4)

where
Ek,j(η) =

∑
l<j

Xk,l + ηXk,j .

Note that in the previous section we only considered the special case η = 1
2 , but here we make

explicit that µk,j(η) depends on η. The factor η accounts for how much claims in (k, j) contribute
to the exposure in (k, j); it is also known as lost exposure in mortality modelling (Wilmoth et
al., 2021, p. 66). The value of η cannot be estimated without additional information and η = 1

2

corresponds to assuming a uniform distribution of claims within a cell. Observe that we are not
modelling µ̂k,j(η) for j = 0, because a run-off triangle (aggregated data) does not provide any infor-
mation on the exposure in the first column: Ek0(η) as fraction of Xk,j is completely determined by
η. To illustrate the rationality of modelling µ̂k,j(η), let’s assume X being claim payments and Xk,j

stemming from iid payments (Zi, Ui, Ti), i = 1, . . . , n, where Zi is the payment size, Ui accident
date and Ti the delay between accident and payment. In Section 2.1, we discussed that µ̂k,j(η)
can be motivated as estimator of µk,j , an exposure weighted average of the hazard rate in reversed
development time α∗(t|u).

For η = 1
2 , there is a one-to-one relationship between chain-ladder’s individual development

factors, f̂jk, and µ̂k,j(η), see In Equation (2.1). An analogue relationship remains true for gen-
eral η. For k = 0, . . . ; j = 1, . . . ,m, the individual development factors are defined as f̂k,j =
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2.5. A model for development triangles

∑
l≤j Xk,j/

∑
l<j Xk,l, we will show that

f̂k,j =
1 + (1− η)µ̂k,j(η)

1− ηµ̂k,j(η)
.

Note that by definition the individual development factors do not depend on η, i.e. for two values
η, η′, η ̸= η′, f̂k,j = {1 + (1 − η)µ̂k,j(η)}/{1− ηµ̂k,j(η)} = {1 + (1 − η′)µ̂k,j(η

′)}/{1− η′µ̂k,j(η
′)} =∑

l≤j Xk,j/
∑

l<j Xk,l. However this does not mean that predictions, as will be defined in Section
2.7.2, are not affected by η. The reason for this is that predictions will be based on some predicted
development factors f̃k,j rather than on f̂k,j which will in turn be calculated from some predicted
claim development µ̃k,j rather than µ̂k,j(η). The invariance of f̂k,j to different choices of η gives hope
that f̃k,j is not affected much by η. Indeed, in the cases we investigated, we found that changing the
value of η only lead to minor changes in the predicted development factors and overall predictions.
Therefore, we conjecture that the actual choice of η is of minor importance.

Proof of the correspondence between development factors and average hazard rate.

f̂k,j =
1 + (1− η)µ̂k,j(η)

1− ηµ̂k,j(η)
,

with k = 0, . . . ,m, j = 1, . . . ,m, and η ∈ [0, 1].

The chain ladder individual development factors are defined as

f̂k,j =

∑
l≤j Xk,l∑
l<j Xk,l

= 1 +
Xk,j∑
l<j Xk,l

, (2.5)

and the estimator for the average (reverse time) hazard rate is

µ̂k,j(η) = 1 +
Xk,j∑

l<j Xk,l + ηXk,j
. (2.6)

We can rewrite Equation (2.6) as

∑
l<j

Xk,l =
(1− ηµ̂k,j(η))Xk,j

µ̂k,j(η)
.

By plugging in
∑

l<j Xk,l into (2.5), we obtain

f̂k,j = 1 +
µ̂k,j(η)

1− ηµ̂k,j(η)
.

Then, f̂k,j can then be simplified to

f̂k,j =
1 + (1− η)µ̂k,j(η)

1− ηµ̂k,j(η)
.
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2.5.1 Some practical remarks

One may ask why we propose to model µk,j and not the individual development factors fk,j or the
actual hazard rate α∗(t|u). We discuss both alternatives consecutively:

• Why not model fk,j? The individual development factors stem from a discrete world and are
not defined in a continuous setting. The claim development µk,j however is up to a constant
δ well defined in a continuous setting in the sense that µk,j/δ converges to α∗(t|u) for the
grid-size δ converging to zero. This is desirable from an abstract point of view but also
from a modelling perspective because it enables to embed the claim development in a wider
continuous modelling framework.

• Why not model the continuous hazard rate α∗(t|u) directly? Recall that we start from run-
off triangles. While one could still impose a structure on α∗(t|u) first, the implications for
µk,j are not easy to derive and may complicate things unnecessarily. As mentioned in the
previous section, there is an interesting parallel to draw to the field of mortality modelling
in actuarial science and demography where usually an averaged version of the hazard rate
(force of mortality) is being modeled. The force of mortality is the central object for further
modelling and interpretation and it is also used to estimate the conditional probability of
dying, see e.g. the methods protocol for the Human Mortality Database (Wilmoth et al.,
2021). In a similarly fashion, we propose to estimate the development factors after modelling
µk,j .

2.6 A stochastic model replicating chain-ladder

Let us assume that for k = 0, . . . ,m and j = 1, . . . ,m,

µk,j = aj . [age-model] (2.7)

Furthermore, we assume that the entries Xk,j are independent given Ek,j and for k = 0, . . . ,m; j =

1, . . . ,m, they follow a Poisson distribution:

Xk,j |Ek,j ∼ Pois(Ok,j), Ok,j := Ek,jµk,j .

Remark 2.6.1. Analogue to what is done in the classical GLM reserving literature, one can
change the Poisson assumption to an overdispersed Poisson assumption without altering the point
estimates, see McCullagh and Nelder (2019, p. 323).

This model, which we will refer to as the age-model, assumes that the claim development
depends only on age, that is, on the development period of the claim (recall Table 1.1). Then the
log-likelihood is given by

l (a1, . . . am | Xk,j , Ek,j , j = 1, . . . ,m; j + k ≤ m) ∝
∑
j,k

Xk,j log(ajEk,j)− Ek,jaj ,
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leading to the first order condition

∑
k

Xk,j

âj
− Ek,j = 0,

with minimizer

µ̃k,j = âj =

∑
kXk,j∑
k Ek,j

. (2.8)

In particular, for j = 1, . . . ,m,

f̃j :=
1 + (1− η)âj

1− ηâj
=

∑
l≤j
∑m−j

k=0 Xk,l∑
l<j

∑m−j
k=0 Xk,l

= f chain-ladder
j , (2.9)

showing how the age-model replicates chain-ladder’s development factors for any choice of η. The
proof can be found below.

Hence, the age-model is a special case where the predicted development factors do not depend
on η. From now on, we will assume that claims in the parallelograms occur uniformly, using η = 1

2 .

Proof of the age-model replicating the chain-ladder. Under the assumptions in Section 2.6, plug-
ging Equation (2.8) into Equation (2.9), we obtain

f̂j =

∑m−j
k=0

∑
l<j Xk,l + η

∑m−j
k=0 Xk,j +

∑m−j
k=0 Xk,j − η

∑m−j
k=0 Xk,j∑m−j

k=0

∑
l<j Xk,l + η

∑m−j
k=0 Xk,j − η

∑m−j
k=0 Xk,j

which simplifies to the chain ladder development factors

f̂j =

∑m−j
k=0

∑
l≤j Xk,l∑m−j

k=0

∑
l<j Xk,l

Remark 2.6.2. Note that minimizing the Poisson likelihood leads to the same minimizer as min-
imizing the weighted least squares ∑

j,k

Ek,j(µ̂k,j − âj)
2.

2.7 Further models

In the previous sections, and in contrast to existing literature, we modeled the claim development
and not the claim amount. A generalized framework for claim amounts via an age-period-cohort
construction has been considered in Kuang et al. (2008a, 2008b), Harnau and Nielsen (2018),
and Kuang and Nielsen (2020). Apart from its simplicity, one further advantage of our claim
development formulation is that we can exploit the connection with mortality rate modelling and
extend Equation (2.7) to any model from the family of age-period-cohort (APC) stochastic hazard
rate models. We now assume that the claim development has the following form:
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log(µk,j) = aj + ck+j + gk. (2.10)

Note that by some misuse of notation, aj now denotes the age component on the log-scale
while in the previous section it was the age component on the original scale. The logarithmic link
function, connects the estimator for the hazard µk,j (our response variable) to the effects specified
in the linear equation on the right-hand side. This equation defines a APC model for the claims
development. By doing so, it captures the following components:

• aj is the age effect (development period) on µk,j .

• ck+j is the period effect (calendar date) effect on µk,j .

• gk is the cohort effect (accident date) on µk,j .

The theory for age-period-cohort models given our triangular structure is well understood
(Kuang et al., 2008b, 2008a). In Table 2.1 we present the effects for the APC models.

APC models are identifiable up to an identification constraint. We show in column four of
Table 2.1 the default identification constraints that we used in this paper and in our clmplus
package. The age-model is identifiable without additional constraints on the (categorical) effect aj
as the linear predictor of the Poisson regression model in Equation (2.10) contains no intercept.
For the age-cohort model, we set g0 = 0. For the age-period model, we set c1 = 0. The age-period-
cohort model is invariant with respect to the following two parameter transformations:

(aj , ck+j , gk) → (aj + ϕ1 − jϕ2, ck+j + (k + j)ϕ2, gk − ϕ1 − kϕ2) ,

(aj , ck+j , gk) → (aj + ψ1, ck+j − ψ1, gk) ,

with ϕ1, ϕ2, ψ1 ∈ R (Kuang et al., 2008b). Following Haberman and Renshaw (2011), we impose

m∑
s=1

cs = 0,

m−1∑
k=0

gk = 0,

m−1∑
k=0

kgk = 0.

The constraints on the cohort effect (
∑

k gk = 0,
∑

k kgk = 0) imply that gk, for k = 0, . . . ,m − 1,
fluctuates around zero without any trend.

Table 2.1: In the first column we cite the model label. The second columns provides a description
of the Lexis diagram dimensions: age is development period, cohort is accident period and period
is calendar time. The effects are displayed in the third columns. In the last column we add the
identification constraints on the effects displayed in column three.

clmplus (short) Lexis dimensions Effects default identification constraints
a age (chain-ladder model) aj -

ac age–cohort aj + gk g0 = 0

ap age–period aj + ck+j c1 = 0

apc age–period–cohort aj + ck+j + gk
∑m

s=1 cs =
∑m−1

k=0 gk =
∑m−1

k=0 kgk = 0
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2.7.1 Extrapolation of cohort and period effects

As discussed in Kuang et al. (2008a), it is necessary to have a linear trend or a random walk
with a drift to have identification invariant forecasts on the lower triangle. The dynamics of the
predicted development factors when using hazard models with a cohort effect will depend on gk

with k = 0, . . . ,m. Having no information about the exposure in j = 0, we only have predictions
ĝ1, . . . ĝm−1. Hence, one needs to extrapolate the cohort effect for the last row, ĝm. In the case
studies that we will present, we will show the results from the models in Table 2.1. Following
previous mortality studies (Haberman & Renshaw, 2009; Lovász, 2011), we assume that the cohort
component follows an ARIMA (1,1,0) model with drift ν0:

gk = ν0 + gk−1 + ϕ(gk−1 − gk−2) + ξk, ξk ∼ N(0, σ), (2.11)

with ϕ ∈ R. Similarly to Haberman and Renshaw (2009); Lovász (2011), for the models in Table
2.1 that include a period component we will need to extrapolate the period effect for the future
calendar years, ĉm+s, s = 1, . . . ,m − 1. In the next sections we will model the period effects as a
random walk with drift ν1:

ck+j = ν1 + ck+j−1 + ξk+j ξk+j ,∼ N(0, σ). (2.12)

2.7.2 Prediction

Based on Equation (2.10), fitted values are given by

µ̃k,j = exp (âj + ĉk+j + ĝk) .

Thus, for the upper triangle, 0 ≤ (k, j) with k + j ≤ m, we define the fit as“Xk,j = Ek,jµ̃k,j .

If one wishes to get predictions for the the lower triangle, k + j > m, an obstacle is that
the exposure (Ek,j) is not observed there. A solution is to use the chain principle known from
the chain-ladder method. To this end, define the predicted development factors for accident year
k = 0, . . . ,m and development year j = 1, . . . ,m as,

f̃k,j =
(2 + µ̃k,j)

(2− µ̃k,j)
. (2.13)

Note that this is analogue to what is done in mortality prediction when the fit for the force of
mortality is transformed to conditional survival or death probabilities (cf. Equations 2.2 and 2.2).
Next, define the cumulative data as

Ck,j =
∑
s≤j

Xk,s.

An estimate for the lower triangle (k+ j > m) is derived via Equation (1.1). The claims reserve
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is just the difference between the ultimate cost for the cohort and the cumulative payment available
on the last calendar year for the same cohort.

2.8 Data application

In this section we illustrate our framework using the AutoBI dataset available in the R package
ChainLadder (Gesmann et al., 2022). For completeness, we include this dataset in Table 2.2.

Table 2.2: Cumulative paid claims of a portfolio of automobile bodily injury liability for an
experience period of 1969 to 1976.

0 1 2 3 4 5 6 7
0 1904 5398 7496 8882 9712 10071 10199 10256
1 2235 6261 8691 10443 11346 11754 12031
2 2441 7348 10662 12655 13748 14235
3 2503 8173 11810 14176 15383
4 2838 8712 12728 15278
5 2405 7858 11771
6 2759 9182
7 2801

Moreover, Appendix A.1 shows how to use the clmplus package to replicate some of the results
in this section.

Using the AutoBI dataset, we first show that both the GLM approach based on claim amounts
(England & Verrall, 1999) and the GLM based on claim developments can replicate chain-ladder.
In the latter case, as discussed earlier, this is achieved by specifying the claim development µk,j
with the age-model in Equation (2.7) and exploiting the relation in Equation (2.9) together with
the chain-ladder algorithm to forecast the claims development. After that, we will show the im-
provement that can be gained by adding a cohort component. Lastly, a discussion on models that
require a period component will follow. In this second part, the different claim development fits are
compared in terms of scaled deviance residuals on the development. The scaled deviance residuals
rkj for cohort k and age j are:

rk,j = sign
Ä
Xk,j − “Xkj

ä dev(k, j)(K − ν)

D

where:

dev(k, j) = 2

ñ
Xk,j log

Ç
Xk,j“Xkj

å
−
Ä
Xk,j − “Xk,j

äô
,

D =
∑

k

∑
j dev(k, j), K is the number of observations, and ν the number of parameters in the

model. The ratio D/(K − ν) estimates the dispersion parameter. By providing a heat-map of the
scaled deviance residuals rk,j on the upper triangle any undesirable pattern can be detected and
removed.
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2.8. Data application

2.8.1 The chain-ladder model

Table 2.3 shows the results of applying three methods to estimate the claims reserve in the AutoBI
dataset, namely, the chain-ladder reserve as implemented in the ChainLadder package, the age-
cohort GLM approach based on claim amounts implemented in the apc package (Fannon & Nielsen,
2020), and the age-model (Equation (2.7)) within our proposed framework that models the claim
development as implemented in our clmplus package. Here, we see that all three approaches yield
the same reserve estimates in each cohort.

Table 2.3: Comparison between the reserve from the chain-ladder method, the GLM approach
based on claim amounts and our proposal, clmplus, that models the claim development via a
GLM.

accident year chain-ladder GLM(claim amounts) clmplus
- age-cohort-model age-model

0 0.00 0.00 0.00
1 67.24 67.24 67.24
2 345.19 345.19 345.19
3 940.69 940.69 940.69
4 2350.86 2350.86 2350.86
5 4466.77 4466.77 4466.77
6 9103.24 9103.24 9103.24
7 14480.44 14480.44 14480.44

In Figure 2.2 we display the parameters estimates for the three different methods, i.e. âj for
clmplus, f̂j for chain-ladder, and "age-effect" & "cohort effect" for GLM on claim amounts.

In Figure 2.2a and Figure 2.2b we see, respectively, a decreasing behavior in the age-effect for
the clmplus and chain-ladder estimates.

The parameters estimates for the GLM approach on claim amounts are displayed in Figure 2.2c
and Figure 2.2d.
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2.8. Data application

Figure 2.2: Results from the different models fitted on the AutoBI dataset. From left to right: the
fit of the aj effect in Equation (2.7), the chain-ladder development factors in Equation (2.9), as
well as the age effect and the cohort effect when modelling the claim amount. It follows from the
previous sections that the results in Figure 2.2b can be obtain from those in Figure 2.2a with the
transformation in Equation (2.9).
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(a) Age effect plot from the age-model chain-ladder
plus fit.
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(b) Development factors estimated from the chain-
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(c) Age effect estimated from the GLM approach
modelling the claim amount in a cross-classified ODP
approach (England & Verrall, 1999). The age effect
in the first development period is set to zero to make
the model identifiable.
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(d) Cohort effect estimated from the GLM approach
modelling the claim amount in a cross-classified ODP
approach (England & Verrall, 1999).

2.8.2 The benefit of adding the cohort component

It is well known and also seen in the previous section that a GLM with claim amount as response and
an age component and a cohort component as predictors can replicate the chain-ladder estimates.
We have also seen that we can provide the same results by modelling the claim development via an
age component only. This is desirable both from a statistical and a practical perspectives. Indeed,
we are able to model less parameters to obtain the chain-ladder reserve and could use the cohort
effect as a potential additional improvement to the model fit. To illustrate this, in Figure 2.4
we show heat-maps of scaled deviance residuals for the models in Table 2.1 fitted to the AutoBI
dataset. For the age-only model in Figure 2.4a, we identify two residuals clusters on the heat-map.
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2.8. Data application

Conversely, the estimates obtained from the age-cohort model in Figure 2.4b show that with no
need of adding a period component, we are able to improve the residuals on the fit. Remember that
one only needs to extrapolate one point if modelling a cohort effect, while one needs to extrapolate
m points ahead if modelling a period effect. The result from the ĝm effect extrapolation using an
ARIMA(1,1,0) as described in previous sections is displayed in Figure 2.3.
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Figure 2.3: Cohort component gk extrapolated with an ARIMA model (1,1,0) with drift, red dot.

2.8.3 Extrapolating a period component

The flexibility of the chain-ladder plus framework also allows to add a period effect to the claim
development; for example via an age-period model or an age-period-cohort model. For the AutoBI
dataset, Figure 2.4c suggests that there is no clear improvement on the residuals moving from
an age-cohort to the age-period model. By contrast, Figure 2.4d indicates that there is a slight
improvement when we add a period component to obtain a full age-period-cohort specification.

26



2.8. Data application

Figure 2.4: Scaled deviance residuals for hazard of the age-model, the age-cohort model, the age-
period model and the age-period-cohort model.
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(a) Residuals plot from the age model.

0

2

4

6

2 4 6
Development period

A
cc

id
en

t p
er

io
d

−2
−1
0
1
2

model residuals

(b) Residuals plot for the age–cohort model.
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(c) Residuals plot for the age–period–model.

0

2

4

6

0 2 4 6
Development period

A
cc

id
en

t p
er

io
d

−2
−1
0
1
2

model residuals

(d) Residuals plot for the age–period–cohort model.

However, we observe once again that additional care is required anytime a period model is
extrapolated. In particular, one should be careful in choosing the most suitable extrapolation
method for the calendar year component ck+j : this must be a data driven choice.

Figure 2.5 shows the ck+j component in an age-period-cohort fit on the upper triangle ( Fig-
ure 2.5a) and the extrapolation in the lower triangle (Figure 2.5b). For this figure, we fitted the
age-period-cohort model with the constraints

∑
k gk = 0 and

∑
k kgk = 0. Furthermore, we as-

sumed here and in the following sections that the period components follow a random walk with
drift for forecasting.
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Figure 2.5: Period component extrapolated for the age-period-cohort hazard model on the AutoBI
dataset.
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(b) ck+j component extrapolated for the lower
triangle. We display the 80% and 95% confidence
bounds.

Lastly, in Table 2.4 we show the different reserves estimates based on clmplus for different
cohorts according to the different models we considered in this section. In this example, ac, ap and
apc produce more similar results compared to the a model. In general, we can see that differences
are more pronounced in the later accident years.

Table 2.4: Reserves computed according to different claim development models.

accident year a ac ap apc
1 0.00 0.00 0.00 0.00
2 67.24 68.20 68.72 68.54
3 345.19 361.77 358.22 359.35
4 940.69 1009.65 992.50 996.34
5 2350.86 2476.54 2503.56 2505.20
6 4466.77 4968.70 4845.14 5006.93
7 9103.24 10052.81 10229.09 10029.15
8 14480.44 19188.40 18377.78 19533.02

Total 31754.43 38126.05 37375.01 38498.54

2.9 Models comparison

While in Section 2.8 we showed a sensible strategy for model selection on a single run-off triangle,
within this section we want to assess our model performance on several real datasets. We gathered
30 real and publicly available run-off triangles from the R packages ChainLadder, apc, clmplus and
CASdatasets (Dutang & Charpentier, 2020). The complete list of the triangles we used is provided
in Appendix B. Our objective is to show that practitioners can really benefit from the chain-ladder
plus model framework as an additional more versatile tool-box to the already rich literature on
claims reserving. After a short discussion on model selection, we compare the performances of
chain-ladder plus models in Table 2.1 using the clmplus R-package to the performances of the age-
cohort and age-period-cohort GLM based on claim amounts using the apc R-package, as outlined

28



2.9. Models comparison

in Kuang et al. (2011) and implemented in Fannon and Nielsen (2020).
For model comparison, it is not straightforward to select a good measure of fit.
One issue is that the mean squared error or the mean absolute error would not be comparable

across different triangles that exhibit different payments size. Another issue is related to the time
series structure of run-off triangles. It is worth noticing again that anytime the claims reserve
is computed, the results on the lower triangle are extrapolated. In order to assess the models
capability to extrapolate, a reasonable approach is to use the most recent diagonals as test set.

Thus, we will evaluate the performance of different models across diagonals in terms of absolute
errors incidence (EI) on a selected diagonal,

EIj =
∣∣∣∣∣
∑

k+j=m
“Xk,j −Xk,j∑

k+j≤mXk,j

∣∣∣∣∣ .
2.9.1 Models ranking

In order to rank the models performances, we evaluated on the calendar year m the best performing
model in terms of error incidence over the cumulative payments diagonal. An example for a 12x12
run-off triangle is provided in Figure 2.6.

Figure 2.6: The last diagonal is removed from the triangle and it is used as a validation set to
calculate the models rank.
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(b) The triangle is divided into validation set and
training set.

On each dataset, the models were first trained on the training set, see the blue area in Fig-
ure 2.6b. The error incidence was then recorded for each model on the last diagonal, see the red
area in Figure 2.6b. The models where then ordered in ascending order: the model with the lowest
absolute error incidence was selected to be the best performing. Figure 2.7 shows ranking of models
for each of the 30 datasets.

To facilitate comparison, Table 2.5 shows the mean rank of each model across the 30 different
datasets. In Figure 2.7 and Table 2.5, it is worth noticing once again that the age-cohort model
in England and Verrall (1999) and the chain-ladder plus age-model yield the same results on
every dataset. In addition, the chain-ladder plus models tend to show the best performance, with
particular reference to the age-period and age-period-cohort structure.
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Figure 2.7: Models ranks by dataset.

Model apc.ac apc.apc clmplus.a clmplus.ac clmplus.ap clmplus.apc
Mean rank 3.07 3.87 3.07 2.47 3.00 2.60

Table 2.5: Mean rank for the different models.

2.9.2 Model families comparison

In this section we evaluate whether one would benefit from having at disposal a larger set of models
to choose from when carrying out a reserving exercise. To do so, we compare the performance of
three sets of potential models on each of the 30 datasets used in the previous section. These sets
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of potential models are:

(a) the apc package family that models the claim amount,

(b) the clmplus package family that models the claim development, and

(c) the union of (a) and (b).

To evaluate the performance of each set we start by splitting the data into training, validation
and testing as illustrated in Figure 2.8.

Figure 2.8: The last two diagonals are removed from the triangle and they are used as a test set
to evaluate the models performance.
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(b) The triangle is divided into training set, valida-
tion set and test set.

Then, for each dataset the best model within the three different model sets is selected based on
the validation set, and, finally, the error incidence (EI) of this best model is then calculated on the
test set.

Figure 2.9 shows box plots of the EI for the 30 datasets and each of the three sets of models.
We find that the clmplus package family (b) has on average a better performance than the apc
package family (a). However, more importantly, having all models at disposal (set (c)) allows to
further improve the forecasting accuracy, demonstrating that it is useful to expand the set of models
available in the reserving practice toolkit. It is especially reassuring that picking a model via a
validation set seems to generally lead to improved one-year-ahead predictions.
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Figure 2.9: Models EI on the test set across the 30 datasets. On each dataset we selected the best
performing model via a validation set from the three families overall.best, clmplus and apc.

For illustrative purposes, we marked data sets 15, 17, 18, 24 in Figure 2.9. In data set 24, using
the best model from the apc family, considerably reduced the EI compared to picking the best
model from the clmplus family. The opposite occurs for data set 15.
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Chapter 3

Estimation of the claim development
using individual data

In this chapter, we propose a model for forecasting IBNR (Incurred But Not Reported) frequencies,
refining the reverse-time framework that we introduced in Section 2.2 to include covariates. For
the estimation of the hazard rates, we leverage individual claims data. Individual data include
accident date, reporting delay, and possibly additional features for every reported claim. A key
element of our proposal involves again computing development factors, which may be influenced
by both the accident date and other features. These development factors serve as the basis for
predictions. While we assume close to continuous observations of accident date and reporting delay,
the development factors can be expressed at any level of granularity, such as months, quarters,
or year and predictions across different granularity levels exhibit coherence. The calculation of
development factors relies on the estimation of a hazard function in reverse development time,
and we present three distinct methods for estimating this function: the Cox proportional hazard
model, a feed-forward neural network, and XGBoost (eXtreme Gradient Boosting). In all three
cases, estimation is based on the same partial likelihood that accommodates left truncation and
ties in the data. While the first case is a semi-parametric model that assumes in parts a log-
linear structure, the two machine learning approaches only assume that the baseline and the other
factors are multiplicatively separable. Through an extensive simulation study and real-world data
application, our approach demonstrates promising results. It also allows a seamless comparison
with estimations obtained through the chain ladder approach.

3.1 Motivation: prediction of future IBNR

IBNR (Incurred But Not Reported) refers to outstanding claims for which the insurer is liable
but which have not been reported at the time the reserve is calculated. Empirical studies on
insurance markets show that in many lines of business the estimated cost of IBNR claims is the
most important provision for the insurer, see for example Friedland (2010, p. 80). As the number of
IBNR claims is not known at the time the reserve is calculated, there is a strong actuarial argument
in favour of methods that accurately predict the number of IBNR claims.

In the seminal paper Miranda et al. (2013), the authors discuss how the common run-off triangles
encountered in loss reserving in non-life insurance can be understood within a continuous framework



3.1. Motivation: prediction of future IBNR

where the goal is to estimate the distribution in the lower triangle. Within this continuous chain-
ladder framework, two lines of research emerged: One aims to estimate the underlying density
function and with this respect, Lee et al. (2015), Lee et al. (2017), and Mammen et al. (2021)
generalize the initial model to account for seasonal effects, operation al time and calendar effects,
respectively. In the other line of research, Hiabu et al. (2016) establishes that the observation
scheme of a continuous run-off triangle can be understood as right-truncation problem and that
by reversing the development time statistical analysis can be conducted under a tractable left-
truncation setting. Building on this work, Hiabu (2017) discusses how the hazard function in
reverse development time is related to the omnipresent development factors. Hiabu, Mammen,
Martínez-Miranda, and Nielsen (2021) extends the framework by allowing for accident date effects
and other features via a multiplicative structure. Bischofberger et al. (2020) extends the prediction
of claim frequencies to the prediction of claim payments. A simulation study comparing the two
lines of research can be found in Bischofberger, Hiabu, Mammen, and Nielsen (2019).

A major drawback of both lines of research so far is that they have not been very practical:
estimation is based on kernel smoothers that without further adjustment do not cope well with
the sharp patterns often seen in claim developments. Additionally, it is not directly clear how
to include categorical features. In fact, with the exception of Hiabu et al. (2021) that allows for
continuous features, none of the other work so far considers additional features, neither continuous
nor categorical. A limiting factor is that if no structure is imposed a priori, kernel smoother will
necessarily suffer from the curse of dimensionality, i.e. exponentially deteriorating estimation per-
formance with every continuous feature added. Machine learning methods on the other hand have
shown that they are capable of data-driven dimension reduction and making use of the underly-
ing data structure in order to circumvent the curse of dimensionality. With these considerations,
and within the second line of research, we propose three methods to estimate an accident date
and other features dependent hazard function: the Cox proportional hazard model, a feed-forward
neural network and XGBoost.

In all of the three proposed methods, estimation will be based on the same partial likelihood
that accommodates left truncation and ties in the data, see Section 3.3. While there are more and
more survival analysis solutions being implemented for common machine learning methods, to the
best of our knowledge, neither of the publicly available feed-forward neural network solution nor
XGBoost solutions have implementations that can deal with left-truncated data and ties in the
data (Wiegrebe, Kopper, Sonabend, & Bender, 2023). Hence, to make our proposal work, we will
extend current XGBoost and feed-forward neural networks solutions such that they can handle left
truncation and ties under the assumption that ties correspond to intervals in which events happen
uniformly.

As mentioned before, we will use the estimated hazard function to calculate development factors
which we will subsequently use for prediction in Section 3.4. With this respect, our proposal is
related to the approach of Wüthrich (2018) that uses a feed-forward neural network to estimate the
development factors directly. One major advantage of our survival analysis approach is that we do
not have problems with zero entries in the cumulative run-off triangles. In Wüthrich (2018), the
loss function fed into the neural network entails dividing by each cumulative entry, see equation
(3.1) in that paper. While zero entries are not common in typical run-off triangles, zero entries are
expected to happen often if the features take too many different values resulting in many sparse
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triangles. In particular, the approach of Wüthrich (2018) does not allow for continuous features.
To circumvent the problem of some zero entries with discrete or categorical features, Wüthrich
(2018) proposes some adhoc method that ignores features in those entries. In contrast to that,
in our approach we do not have those problems with zero entries and we are able to estimate a
conditional hazard function which is possibly dependent on high dimensional feature information.

In a recent preprint, Calcetero-Vanegas, Badescu, and Lin (2023) aim to estimate the same
hazard function as we propose to estimate. However, they only apply the Cox-proportional hazard
model and not further machine learning methods as we do. Furthermore, they use an inverse
probability weighting for prediction. In contrast, we propose to transform the hazard function
into development factors which are subsequently used for prediction. While both approaches will
produce similar predictions, one advantage of our proposal is the ease of comparison with standard
reserving methods based on development factors; see Section 3.6 and following.

3.2 Modelling

At a cut-off-date T , we have observed n claim reports. For each claim i with i = 1, . . . , n, we are
given the accident date Ui and the time delay from accident until report, TRi . Suppose that for
each individual we have at our disposal a set of p measurements, i.e. the features Xi ∈ Rp. We
assume that

[A1] All reportings are independent.

Assumptions [A1] is made to simplify the mathematical derivations and we conjecture that it
can be relaxed by considering weak dependency between reportings. Direct inference on TRi may
lead to sampling bias, as TRi are observed only if the report happens before the cut-off date T :

TRi ≤ T − Ui,

which is a right-truncation problem. A solution to the right-truncation problem is to reverse the
time of the counting process leading to a tractable left-truncation problem (Ware & DeMets, 1976).
Concretely, we target T − TRi instead of TRi such that the right truncation problem is now a left
truncation problem (T −TRi ≥ Ui) with truncation variable Ui. We consider the development-time
reversed counting processes

N ′
i(t) = I(t ≥ T − TRi ),

each with respect to the filtration Fit = σ

Åß
TRi − T ≤ s : s ≤ t

™
∪
ß
Ui ≤ s : s ≤ t

™
∪
ß
Xi

™
∪N
ã

,

satisfying the usual conditions (Andersen et al., 1993, p. 60), and where N is the set of all
zero probability events. In this paper, we will assume that Ui and TRi are encoded such that
0 ≤ Ui ≤ T ; 0 ≤ TRi ≤ T and we are interested in predictions within the set {(t, u) : (t, u) ∈ [0, T ]2}.

3.2.1 The intensity process

Assuming that the intensity λ′i of the counting process exists and is piecewise continuous, we have
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λ′i(T − t|Ui, Xi) = lim
h↓0

h−1E
[
N ′
i {(T − t+ h)−} −N ′

i(T − t)− | Fi,(T −t)−
]
= αR(t|Ui, Xi)Yi(t),

(3.1)
where

αR(t|u, x) = lim
h↓0

h−1P
Ä
TRi ∈ (t− h, t]| Yi(t) = 1, Xi = xi, Ui = u

ä
,

Yi(t) = I(TRi ≤ t < T − Ui).

Note that Yi(t) and αR(t|Ui, Xi) correspond to the intensity λ′i(T − t|Ui, Xi), meaning the de-
velopment time input for Yi(t) and αR(t|Ui, Xi) is not in reversed direction. The structure,
λ′i(T − t|Ui, Xi) = αR(t|Ui, Xi)Yi(t), is called Aalen’s multiplicative intensity model (Aalen, 1978),
and enables nonparametric estimation and inference on the deterministic hazard function αR(t|u, x).
We propose to model the hazard function as

αR(t|u, x) = αR0 (t)e
ϕ(x,u;θ), (3.2)

where αR0 (t) is called the baseline hazard and eϕ(x,u;θ) is the risk score; a component that depends
on the features Xi and the accident period Ui and some parameters θ. Assuming that the effects
of t and u are multiplicatively separated allows us to have predictions for αR in the lower triangle,
t > T − u, without extrapolation. In the next sections, we will discuss how to specify and model
the log-risk function ϕ (x, u; θ). We will consider three different models: the cox model (COX, Cox,
1972), neural networks (NN, Katzman et al., 2018) and gradient boosting (XGB, Friedman, 2001;
Chen & Guestrin, 2016).

• In Cox (1972), the log-risk function is assumed to be linear, ϕ (x, u; θ) = θTx + θuu, with
θ ∈ Rp and θu ∈ R. In this paper we will consider the more general log-risk function that
includes splines for modelling continuous features.

• In NN, the parameter θ represents the weights of a feed-forward neural network.

• In XGB, the log-risk function is an ensemble of decision trees, i.e. functions piecewise constant
on rectangles.

Remark 3.2.1. The notation that we use in this chapter is different compared to the notation in
Chapter 2. Our focus in Chapter 2 was in fact modelling the delay between accident and payment
that we denoted with the random variable T . In this chapter we will focus on the delay between
accident and report and we denote it with the random variable TR. In this respect, the interest of
this chapter is modelling the intensity αR(t|u, x) of the counting process of the that, differently from
the previous chapter, will also dipend on the feature measurements Xi. We recall that Chapter 2
provided a strategy to model the (average) hazard rate µk,j .
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3.3 Estimation

3.3.1 Ties in the data

Some reporting delays TRi of different claims could be recorded with the same value, especially
when the data records are not very granular. For example data with yearly, quarterly or even daily
records will most certainly have multiple occurrences at the same reporting period. In survival
analysis, the occurrence of multiple events at a given time point is known as a tie. In this section,
we will adopt a general formulation of the problem to account for the incidental presence of ties in
the data. We assume that for i = 1, . . . , n, reporting times TRi are one of

t(0) < . . . < t(ℓ) < . . . < t(m),

with m ≤ n. The rank of the observations within the tie does not affect the calculations that we
will explain in this section. For notational convenience, we assume that observations are ordered
from lowest to highest reporting time: TRi ≤ TRj for i < j with i, j ∈ {1, . . . ,m}. For ℓ = 1, . . . ,m,
let us define, at the generic time t(ℓ), the exposure set

R(t(ℓ)) = {i ∈ {1, . . . , n} : Yi(t
(ℓ)) = 1} =

¶
i ∈ {1, . . . , n} : TRi ≤ t(ℓ); T − Ui > t(ℓ)

©
and the occurrence set

O(t(ℓ)) =
¶
i ∈ {1, . . . , n} : TRi = t(ℓ)

©
,

while we indicate with Oℓ = #O(t(ℓ)) the cardinality of the set O(t(ℓ)).
To obtain an estimate of θ, we will first formulate the partial likelihood in a general form and

then we will specify the log-risk function. The specifications we use (COX, NN, XGB) were briefly
introduced in Section 3.2.1 and they are the main focus of the current section. While the current
literature on machine learning for survival analysis is about defining a model for right-censored data
(Chen & Guestrin, 2016; Katzman et al., 2018), we contribute by extending the neural network in
Katzman et al. (2018) and the gradient boosting machine in Chen and Guestrin (2016) to define a
framework for modelling left-truncated data with ties.

3.3.2 Partial likelihood

There are several approaches to account for the presence of ties in the data, see for instance Hosmer,
Lemeshow, and May (2008, p. 85). We use the partial likelihood correction for ties presented in
Efron (1977, Section 6, point g)

L(X1, . . . , Xn;U1, . . . , Un; θ) =

m∏
ℓ=1

∏
i∈O(t(ℓ))

eϕ(Xi,Ui;θ)∑
k∈R(t(ℓ)) e

ϕ(Xk,Uk;θ) − ψi(ℓ)
Oℓ

∑
s∈O(t(ℓ)) e

ϕ(Xs,Us;θ)

where ψi(ℓ) = i −
∑ℓ−1

q=1Oq − 1. Note that ψi(ℓ) ∈ {0, . . . Oℓ − 1}. To ease the notation, let us
denote the partial likelihood as L(θ). The negative log-likelihood is
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l(θ) = − log(L(θ)) =
m∑
ℓ=1

∑
i∈O(t(ℓ))

log

Ñ ∑
k∈R(t(ℓ))

eϕ(Xk,Uk;θ) − ψi(ℓ)

Oℓ

∑
s∈O(t(ℓ))

eϕ(Xs,Us;θ)

é
− ϕ (Xi, Ui; θ) .

(3.3)

Cox model (COX)

The Cox proportional model uses a linear function to specify ϕ (X,U ; θ) = θTX+θuU , with θ ∈ Rp

and θu ∈ R. To model continuous features that avoid the linear scale, we follow the approach in
Gray (1992) and introduce splines in the log-risk function (Eilers & Marx, 1996). Assuming that
within the p features we have c features for the linear term (X1, . . . , Xc) and p− c features for the
splines (Xc+1, . . . , Xp), the log-risk function is

ϕ (X,U ; θ) =
c∑
l=1

θlXl +

p∑
s=c+1

ζs (Xs) + ζu (U) ,

where, for V = U or Xl, ζv (V ) =
∑κv

k=0 β
v
kBk(V ) and βv =

(
βv1 , . . . , β

v
κv

)
∈ Rκv . Here, Bv

k(V ) are
basis functions and κv ∈ N is the number of knots in the spline. The smoothing of U and the other
p−c features modeled with splines are controlled with an additional penalty term in the log-partial
likelihood during the model fitting. In the fitting phase we minimize the penalized likelihood

lp(θ, βc+1, . . . , βp, βu) = l(θ) +
1

2

∑
s

ρs

∫ [
ζ ′′s (z)

]2
dz +

1

2
ρu

∫ [
ζ ′′u(z)

]2
dz

with ρc+1, . . . , ρp, ρu being the parameter controlling the smoothing applied (no penalty for ρ = 0

and forcing the spline to a linear form for ρ = +∞). Noting that
∫
[ζ ′′s (z)]

2 dz is a quadratic form
of βs, for some definite positive matrix Ps, the penalized likelihood can be rewritten as

lp(θ, βc+1, . . . , βp, βu) = l(θ) +
1

2

p∑
s=c+1

ρsβ
′
sPsβs +

1

2
ρuβ

′
uPuβu

We minimize lp(θ, βc+1, . . . , βp, βu) for the spline parameters and the θ parameters. We fit the
COX model using the R package survival (RStudio Team, 2020; Therneau, 2023), that allows us
to specify the smoothing penalty terms and the number of knots in the splines.

Neural Networks (NN)

In this modelling approach, we extend the approach in Katzman et al. (2018) to model left-truncated
data using the correction for ties in Efron (1977). We describe the log-risk function with a feed-
forward neural network with a vector of parameters θNN ∈ P , being P the space of the possible
neural network parameters (Goodfellow, Bengio, & Courville, 2016, p.168).

In the optimization phase, we minimize the regularized objective function

l
Ä
θNN
ä
+ ρ
Ä
ϵ∥θNN∥22 + (1− ϵ)∥θNN∥1

ä
where the hyper parameters ρ, ϵ allow for the elastic penalty term and the p-norm is ∥θNN∥p =
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(∑
v

∣∣θNNv ∣∣p) 1
p with p ∈ R, p ≥ 1, and v is the index of the parameters of the neural network.

eXtreme Gradient Boosting (XGB)

The derivation we present in this section is a modification of Liu et al. (2020), where the authors
consider right censoring only and not left-truncation. In gradient boosting the log-risk function is
an ensemble of K ∈ N functions,

ϕ
Ä
Xi, Ui; θ

XGB
ä
= f1(Xi, Ui; θ1) + . . .+ fk(Xi, Ui; θk) + . . .+ fK(Xi, Ui; θK)

with fk ∈ S, where S is the space of all possible CARTs (Hastie, Tibshirani, Friedman, & Friedman,
2009) and θXGB = [K, θ1, . . . , θK ]. Here, θ1, . . . , θK is the number of splits in the k-th regression
tree with k = 1, . . . ,K .

The XGBoost algorithm, needs as input the gradient and the second order derivatives of the
negative log likelihood function (3.3) with respect to ϕ

(
Xi, Ui; θ

XGB
)
. The gradient is

gi = eϕ(Xi,Ui;θ
XGB) (υi − ιi)− 1,

and the second order derivative is

hi = gi + 1− e2ϕ(Xi,Ui;θ
XGB) (γi − ωi) ,

where for TRi = t(L) with L ∈ {1, . . . ,m},

υi =
∑

l: TR
i ≤t(ℓ)<T −Ui

∑
j∈O(t(ℓ))

1∑
k∈R(t(ℓ)) e

ϕ(Xk,Uk;θXGB) − ψj(ℓ)
Oℓ

∑
s∈O(t(ℓ)) e

ϕ(Xs,Us;θXGB)
,

ιi =
∑

j∈O(t(L))

ψj(L)/OL∑
k∈R(t(L)) e

ϕ(Xk,Uk;θXGB) − ψj(L)
OL

∑
s∈O(t(L)) e

ϕ(Xs,Us;θXGB)
,

γi =
∑

l: TR
i ≤t(ℓ)<T −Ui

∑
j∈O(t(ℓ))

1Ä∑
k∈R(t(ℓ)) e

ϕ(Xk,Uk;θXGB) − ψj(ℓ)
Oℓ

∑
s∈O(t(ℓ)) e

ϕ(Xs,Us;θXGB)
ä2 ,

ωi =
∑

j∈O(t(L))

(
1−
Ä
1− ψj(L)

OL

ä2)Ä∑
k∈R(t(L)) e

ϕ(Xk,Uk;θXGB) − ψj(L)
OL

∑
s∈O(t(L)) e

ϕ(Xs,Us;θXGB)
ä2 .

As illustrated in (Chen & Guestrin, 2016), XGB is an iterative algorithm, and at each iteration t,
the current tree further split by optimizing the objective function

n∑
i=1

ï
gift (Xi, Ui; θt) +

1

2
hif

2
t (Xi, Ui; θt)

ò
+ γθt +

1

2
ρ∥wt∥2,

where γ > 0 is a penalty term on the tree complexity, and ρ > 0 is the L2 regularization term for
the leaf weights w ∈ Rτt .
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3.4. Modelling the claims development

3.3.3 Baseline hazard

In this section we discuss the estimation of the distribution of the baseline hazard. Following the
discussion in Cox (1972), once an estimate θ̂ of θ is obtained minimising the partial likelihood in
Equation (3.3), we can derive an estimator for the baseline using the full-likelihood model. Many
implementations of the baseline rely on the approach in N. Breslow (1974). There, the author
assumes implicitly that the events [t(ℓ), t(ℓ+1)) occur simultaneously at t(ℓ). In contrast, we will
assume that the claims report are uniform distributed within the tie. This makes the estimation
of the baseline consistent with the way we will later transform the estimated hazard function into
development factors. Our baseline estimator is

α̂R
0,t(ℓ)

=
Oℓ∑

k∈R(t(ℓ)) e
ϕ(xk,uk;θ̂) − 0.5

∑
s∈O(t(ℓ)) e

ϕ(xs,un;θ̂)
. (3.4)

Compared to the baseline estimator in N. Breslow (1974) we add a correction to the denom-
inator to take into account the uniform occurrence of claims in the ties (Development Periods),
that makes our baseline estimator consistent with the framework presented in Chapter 2 from
Section 2.1, namely the term 0.5

∑
s∈O(t(ℓ)) e

ϕ(xx,un;θ̂). As earlier mentioned in Section 2.5.1, the
uniform assumption is common in epidemiology and mortality modelling. For further arguments on
the estimation of the baseline that go beyond the scope of this monograph we refer to the discussion
on Professor Cox’s paper (Cox, 1972), see for instance N. E. Breslow (1972); Oakes (1972).

3.4 Modelling the claims development

In this section, we explain the connection between continuous individual hazard rates and chain
ladder development factors. We start the section with the definition of development triangles. We
then connect the continuous time framework with the observation of ties that we used for model
estimation to the discrete setting that we will construct for model predictions. A byproduct of our
proposal is that for different level of aggregation, say yearly or quarterly, the predictions do not
change.

3.4.1 Observing development delay and accident date

Usually, development delay and accident date are provided on some level of granularity. To provide
a mathematical representation, we start by partitioning the interval [0, T ] corresponding to the
support of TR and U into an equidistant grids 0 = t(0), . . . , t(m) = T and 0 = u(0), . . . , u(m) = T ,
respectively. Similarly to what we showed in the Introduction, we define the parallelograms for
claim reports

PR
k,j = {(t, u) : t(j) + u(k) − u ≤ t ≤ t(j+1) + u(k) − u;u ∈ [u(k), u(k+1), t ≥ 0},

k, j = 0, . . . ,m, and we assume that we don’t have access to the continuous observations (TRi , Ui),
but only know on which parallelogram the observation has fallen. This observation scheme can be
seen as observing ties, as described in the previous section. To this end we identify observations
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3.4. Modelling the claims development

(TRi , Ui) as being equal to (t(j), u(k)) if (TRi , Ui) ∈ PR
k,j . In the sequel we will sometime write

α̂R(j|k, x) for the estimator α̂R(t(j)|u(k), x) derived in the previous section.

3.4.2 From hazard rates to development factors

For k, j = 0, . . . , T , k + j ≤M , the individual reported claims are grouped

Ok,j (x) =
∑
i

∫
I
Ä
(s, Ui, Xi) ∈ PR

k,j (x)
ä
dN ′

i(s),

where PR
k,j(x) = {(t, u, x) : (t, u) ∈ PR

k,j}. In reserving, the raw development factors f̂k,j(x) =∑
ℓ≤j Ok,ℓ (x) /

∑
ℓ<j Ok,ℓ (x) are well-known objects, but they cannot be used for prediction because

they are not defined on the un-observed lower triangle k + j > m. Even ignoring this problem,
f̂k,j(x) is too noisy in describing the development from j−1 to j because it is calculated separately
for every k and x. We propose to use the hazard rate estimated in the previous section to derive
a more stable estimate of the development from j − 1 to j. For j, k = 1, . . . ,m, we propose to
estimate the development factors as

f̃k,j(x) =
2 + α̂R(j|k, x)
2− α̂R(j|k, x)

. (3.5)

The formula can be motivated from the fact that Equation (3.5) is true if f̃k,j(x) is replaced by
the raw development factors f̂k,j(x) and α̂R(j|u, x) is replaced by the raw observations of the
ratio of occurrence and exposure. Here, exposure is measured as "claim-years-at-risk" under the
assumptions that claim reports are uniformly distributed within a parallelogram; see also (Pittarello
et al., 2023) for concrete calculations. In other words, equation (3.5) describes an plug-in estimator.

3.4.3 Forecasting

The cumulative entry at development time j ≤ T − k for accident period k with features x is

C∗
k,j (x) =

∑
s≤j

Ok,s(x).

For j + k > T , the expected number of reports at development time j for accident period k is

Ôk,j(x) =

C∗
k,T −k(x)

Ä∏j
l=T −k+1 f̃kl(x)− 1

ä
if j = T − k + 1.

C∗
k,T −k(x)

Ä∏j
l=T −k+1 f̃kl(x)−

∏p−1
l=T −k+1 f̃kl(x)

ä
if j ≥ T − k + 2

3.4.4 Increasing the granularity of development factors

In the previous sections, we defined the development factors as discrete objects that we use for
projecting the future reports given some granularity δ = t(L) − t(L−1) with L ∈ {1, . . . ,m} and
L ∈ N0. In this section, we want to elaborate on the possibility of choosing different values of
δ′ > δ for the computation of the development factors. For example in the first data application
of this paper we will start from daily data but we will be interested in reporting the results in
quarterly and yearly flows. In Figure 3.1a we provide an intuition behind the change of granularity.
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U
T δδ′

(a) development triangle in reverse time
showing two levels of granularity (δ and
δ′). The data in the parallelograms with
granularity δ are included in the parallelo-
grams with granularity δ′, with δ′ > δ and
⌊ δ′

δ ⌋ = 0.

U

T

f̂k,j(x)

f̂ ′k′,j′(x)

(b) Using the correspondence between de-
velopment factors and average hazard rates
we can predict the IBNR development on
granularity δ (black). Using the probabil-
ity based approach we can produce devel-
opment factors for granularity δ′ (red).

Figure 3.1: Our approach can handle different levels of granularities (left hand side). Starting
from the individual data we can easily produce results for different aggregation levels (right hand
side).

For simplicity, let us assume that δ′/δ and (M + 1)(δ/δ′), are integer valued. For j, k = 1, . . . , T ,
the original parallelograms PR

k,j(x) are with respect to some granularity δ.
For k, j = 0, . . . , (m+1)(δ/δ′)− 1 =M ′, we define the parallelogram and fitted occurrences on

the granularity δ′ as:

P ′
k,j (x) =

⋃ß
PR
h,l (x) : h ∈

{
k · δ

′

δ
, ..., (k + 1) · δ

′

δ
− 1
}
, l ∈

{
j · δ

′

δ
, ..., (j + 1) · δ

′

δ
− 1
}™

,

Ô′
k,j (x) =

⋃ß
Ôh,l (x) : h ∈

{
k · δ

′

δ
, ..., (k + 1) · δ

′

δ
− 1
}
, l ∈

{
j · δ

′

δ
, ..., (j + 1) · δ

′

δ
− 1
}™

, k + j > M ′.

The occurrence for granularity δ′ is O′
kj (x) =

∑
i I
Ä(
TRi , Ui, Xi

)
∈ P ′

kj (x)
ä

and the correspond-
ing cumulative entry for granularity δ′ becomes C ′

k,j (x) =
∑

s≤j O
′
k,s(x). Define

Õ′(x) =

O′
k,s(x) if k + j ≤M ′,

Ô′
k,s(x) if k + j > M ′.

We can use these quantities to obtain development factors with granularity δ′:

f̃ ′kj(x) =

∑
l≤j Õkl(x)∑
l<j Õkl(x)

.

In Figure 3.1b we illustrate the idea behind using the development factors f̂ ′kj(x) on the granularity
δ′ to forecast future reports.
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3.5 Models comparison

Evaluating the performance of a claims reserving model is not straightforward. Indeed, we need
to take into account the time series structure of the data and provide a reasonable performance
measure for the different grids that we discuss in this work. In this section we will first propose a
strategy to compare the CL to our individual models. Secondly, we will propose two strategies to
rank the individual models.

3.5.1 Measuring the performance on the total predictions

We first evaluate the (relative) total absolute errors on the input grid:

ARETOT =
|
∑

j,k:k+j>M ′
∑

xOk,j(x)−
∑

x Ôk,j(x)|∑
j,k:k+j>M ′

∑
xOk,j(x)

. (3.6)

In this phase, we use the development factors that we obtained to estimate the total future
notifications on the lower triangle. The performance measure in Equation 3.6 is then computed to
compare the total predicted counts with the actual counts in absolute terms. This is possible as
the lower triangle is available from the simulation. The idea is illustrated in Figure 3.2.

On the one hand, the estimate of the total future counts can be an interesting reference value
of the expected evolution of future counts. On the other hand, actuaries predictions are often
provided one calendar period ahead. Indeed, the data are updated at the end of each calendar
period when new occurrences are reported to the insurance company. We then want to evaluate
our models performance a second time with a different performance measure that: a) Considers
the new information available at the end of each calendar period until development. b) Measures
the performance diagonal-wise. For some granularity δ′, we propose:

ARECAL =

∑2M ′−1
τ=M ′+1 |

∑
j,k:k+j=τ

∑
xOk,j(x)−

∑
x f̃k,j(x)Ok,j−1(x)|∑

j,k:k+j>M ′
∑

xOk,j(x)
(3.7)

Note that for computational reasons we do not update f̃k,j(x) and different periods τ , meaning
the model is only fitted once. However, predictions use new information on a rolling bases, see
(Figure 3.2b). The performance is measured for the calendar periods τ =M ′ + 1, . . . , 2M ′ − 1.

3.5.2 Continuously Ranked Probability Score

When a set of different stochastic models is available, scoring measures can be used as a criterion
to assesses the quality of the forecasts by assigning to each model a score. By giving better
scores to models that provide better forecasts, we can rank competing forecast procedures, see e.g.
Gneiting, Raftery, Balabdaoui, and Westveld (2004); Gneiting, Balabdaoui, and Raftery (2007);
Gneiting and Raftery (2007). The ARETOT and the ARECAL are chosen as interesting references to
compare our models in terms of predicted counts to the realized counts. However, they do only
take point estimates into consideration. In this section, we want to introduce a proper scoring
rule (Gneiting & Ranjan, 2011). A scoring rule is a function s(f, y) taking values in the real line
[0,∞) where f is a density forecast and y ∈ R is a future realization from the conditional sampling
distribution Y . The ideal forecast is obtained when f is the true density of Y . A scoring rule is
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T

(a) Data is given on the up-
per triangle (gray). To calcu-
late ARETOT in Equation 3.6, we
measure model performance er-
ror on the total future notifica-
tions (red). This is possible as
the full triangle was simulated.

T T TA) B) C)

(b) Actuaries update their model predictions using the new data they
receive at the end of each calendar period. In the example, the future
notifications are predicted three times (A), B), and C)). Each time the
one year ahead notifications are computed using the new data available
to the insurance company (For computational reasons, development
factors are only calculated once with the original data) and the error
is calculated using the actual realizations. In the picture we show
the available data at each evaluation (light gray), the predicted data
(red), and the future data (dark gray). The performance measure in
Equation 3.7 summarizes the estimation error obtained at A), B), and
C).

Figure 3.2: Evaluation of the models performance using ARETOT (Figure 3.2a) and ARECAL (Fig-
ure 3.2b).

said to be proper if

Ef [s(f, Y )] =

∫
f(y)s(f, y)dy ≤

∫
f(y)s(g, y)dy = Ef [s(g, Y )]

for all densities f and g and with equality only for f = g. The Continuously Ranked Probability
Score (CRPS) is a proper metric to evaluate the models performance. In the following we re-write
the definition such that it depends on a predicted survival function Ŝ:

CRPS(Ŝ(·|X,U), y) =

∫ ∞

0
PS(Ŝ(z|X,U), I(y > z))dz

=

∫ ∞

0
(Ŝ(z|X,U)− I{y > z})2dz

=

∫ y

0

Ä
1− Ŝ(z|X,U)

ä2
dz +

∫ +∞

y

Ä
Ŝ(z|X,U)

ä2
dz

with PS(Ŝ(z|X,Ui), I{y > z}) = (Ŝ(z|X,U) − I{y > z})2 being the Brier Score (Selten, 1998;
Gneiting & Raftery, 2007).

As survival function prediction, we will use

Ŝ(j|x, U) =
1∏j

l=1 f̂k,l(x)
. (3.8)

The CRPS is taken to be negatively oriented, meaning that the lowest score indicates the better
model. In order to compare different models on a same data set in terms of CRPS we will consider
the average CRPS across all the data points.
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3.5.3 The partial log-likelihood

We will report the partial log-likelihood of our models for the different data sets that we inspect in
this manuscript. The model with the minimum in-sample average negative partial log-likelihood
is the model that fits best the training data. In this context, the log-likelihood can only provide
a reference value to understand what model is capable to minimize the objective function on the
in-sample data during the fitting, i.e. Equation (3.3).

3.6 Data Application on simulated data

In this section we will challenge our modelling approach in five different simulated scenarios. Each
scenario is simulated 20 times. For each simulation we will compute our model performances
according to the scoring rules that we defined in Section 3.5. The results that we show are averaged
over the 20 simulations. We believe 20 simulation is a sufficient number of repetitions to smooth
the randomness deriving from the simulations. According to the experience of the authors in the
actuarial practice, we generated scenarios that could occur in the real world. Additional details on
the simulation algorithm are in Appendix E.

3.6.1 Five simulated scenarios

This section provides an overview of the simulations. The data are simulated on a daily grid on a 4

years time horizon, meaning that we will observe up to 1440 accident days (T = 1440). We provide
results on a quarterly and an yearly grid and compare our models to the chain ladder (CL, Mack,
1993). Since CL is an established method in the insurance industry, we chose it as the competing
model. The five scenarios have some common characteristics:

• A mix of claim_type 0 and claim_type 1. The parameters are chosen to make claim_type
0 resemble property damage and claim_type 1 bodily injuries.

• Bodily injuries (claim_type 1) are longer tailed, meaning that their resolution takes more
time than property damage (claim_type 0), see (Ajne, 1994).

We name the 5 scenarios Alpha, Beta, Gamma, Delta, Epsilon and describe the data composition
in Figure E.1.

The simulations were performed using the R package SynthETIC, see (Avanzi, Taylor, Wang,
& Wong, 2021). For each claim type, data is simulated in a continuous setting. To imitate a real
world portfolio, we populate the data with an accident day (AD) and development day (DD) for each
observation. In the spirit of (Avanzi et al., 2021), for each claim type, we model occurrence and
development of claims in two modules:

• We first fix the total amount of individuals at risk in the portfolio for each accident day.
We then let the actual frequency of claims being reported in the accident date be randomly
simulated (we draw it from a Poisson distributed random variable with rate 0.2). In scenarios
Alpha, Gamma, Delta and Epsilon the individual at risk per AD are in the same proportion
for each claim_type, i.e. in each claim_type we have 200 individuals at risk per AD. In
scenario Beta the individuals at risk are decreasing by one unit every 10 AD, e.g. we will have
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3.6. Data Application on simulated data

200 individuals at risk in AD= 1, 199 individuals at risk in AD= 11 and only 56 individuals at
risk in AD= 1440.

• We then simulate the reporting time of the individual claims. As we need a proportional
hazard structure in reverse development time, we need to be careful when simulating the
reporting delays. The proportional hazard is

αR(t|X = claim_type, U = AD) = αR0 (t)e
ϕ(claim_type,AD;θ).

The parametrization of αR0 (t) and ϕ (claim_type, AD; θ) changes in the different scenarios. In
this section we will provide qualitative details on how we designed the different scenarios. We
report the parameters we used for the simulation in Appendix E.

To account for the proportional structure of the hazard, we simulate from a Right Truncated
Fréchet-Weibull distribution (RTFWD) (Teamah, Elbanna, & Gemeay, 2019). The RTFWD has a
four parameter structure ν, π, ξ, k, and is defined with 0 < t ≤ b with distribution function

F (t) = e−π
νξνk(t−νk−b−νk).

With the reverse time hazard
αR(t) =

f(t)

F (t)
,

we get, in the RTFWD case,

αR(t) =
νkπνξνk(t−1−νk)e−π

νξνk(t−νk−b−νk)

e−πνξνk(t−νk−b−νk)
= νkπνξνk(t−1−νk).

Let us set
ξ = ξ(claim_type, AD) = ξ0(e

ϕ(claim_type,AD;θ))
1
νk ,

the reverse hazard structure now becomes

αR(t|claim_type, AD) = νkπνξνk0 (t−1−νk)eϕ(claim_type,AD;θ). (3.9)

The survival function dependency on the features is denoted as F (t|claim_type, AD) with t ≥ 0,
similarly to what we did with the hazard models. The survival function is then S (t|claim_type, AD)
with t ≥ 0. The baseline hazard is αR0 (t) = νkπνξνk0 (t−1−νk).

Hence by simulating from Equation 3.9 the reporting times in forward time, we achieve a
proportional structure in reverse time. All simulations are truncated at b = 1440, resulting in 4

years worth of data. The parameters of each scenario we set up for the simulation are specified
in Table E.1. The scenarios Alfa, Beta, Gamma, and Delta have the same proportional hazard
structure

αR(t|claim_type) = αR0 (t)e
ϕ(claim_type,AD;θ),

with claim_type ∈ {0, 1} and AD ∈ {1, . . . , 1440}
The scenarios have the following distinctive traits:

• Scenario Alpha: this scenario is a mix of claim_type 0 and claim_type 1 with same
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3.6. Data Application on simulated data

number of claims at each accident period (i.e. the claims volume). As we have an effect
based on the claim type and the reporting of the claims only depends on the baseline, in this
scenario the CL assumptions are satisfied.

• Scenario Beta: we simulate using the same proportional risk component y as scenario
Alpha, but the volume of claim_type 1 is decreasing in the most recent AD. When the
longer tailed bodily injuries have a decreasing claim volume, aggregated CL methods will
overestimate reserves, see (Ajne, 1994).

• Scenario Gamma: an interaction between claim_type 1 and accident period (AD) affects
the claims occurrence. One could imagine a scenario, where a change in consumer behaviour
or company policies resulted in different reporting patterns over time. For the last simulated
accident day, the two reporting delay distributions will be identical. The interaction makes
the COX model assumption not valid. In addition, the accident period effect makes the CL
model assumptions not valid.

• Scenario Delta: a seasonality effect dependent on the accident days for claim_type 0 and
claim_type 1 is present. This could occur in a real world setting with increased work load
during winter for certain claim types, or a decreased workforce during the summer holidays.
The presence of an accident period effect makes the CL assumptions not satisfied.

• Scenario Epsilon: the data generating process violates the proportional hazard assumption,
indeed we will generate the data assuming that a) there is an effect of the features on the
baseline and b) the proportionality assumption is not valid. Conversely, the CL model is
satisfied. In scenario Epsilon, the hazard we simulate from is

αR(t|claim_type, AD) = αR0 (t|claim_type, AD)(eϕ(claim_type,AD;θ) +
ϕ (claim_type, AD; θ)

2
),

with αR0 (t|x) = 0.5
√

0.1
Ä
0.1(2 + ϕ(claim_type,AD;θ)

2 )t−1
ä
.

The relevant features on the proportional risk part of the hazard are reported in column two of
Table 3.1. In columns four to seven, we indicate with a check mark whether the assumptions for
models in the data application (CL, COX, NN, and XGB) are satisfied.

Scenario Effect(s) on ϕ CL COX NN XGB
Alpha claim_type 3 3 3 3

Beta claim_type 7 3 3 3

Gamma claim_type + claim_type:
√

AD 7 7 3 3

Delta claim_type +AD 7 3 3 3

Epsilon claim_type 3 7 7 7

Table 3.1: The relevant features affecting the proportional risk component (column two) in the
scenarios Alpha, Beta, Gamma, Delta and Epsilon (column one). In order to simplify the reading
of this manuscript, we use the notation used in (RStudio Team, 2020). The effect terms are added
with the operator + (plus), the interaction terms are added with the operator : (columns). In
columns four to seven, we use a check mark if the models assumptions are satisfied in the scenario.
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3.6. Data Application on simulated data

3.6.2 Average negative partial log-likelihood

In this section we report the average negative partial log-likelihood for our models in the 5 scenarios.
We train the COX model using all the individual data from calendar periods τ = 1, . . . , T . In the
training phase of XGB and NN, the input data from calendar periods τ = 1, . . . , T are further
split into a main part for training and a smaller part for validation. The split is random and we
use 80% of the data for training (the splitting percentage is selected with a rule of thumb). We
will then report for XGB and NN the out-of-sample average negative log-likelihood measured on
the remaining 20% of the input data. Comparing the in-sample likelihood and the out-of-sample
likelihood will tell us whether a model is overfitting the data. In Table 3.2 we show the (average)
negative log-likelihood averaged (over the 20 simulations), for each model in each scenario. The
results show that XGB and NN seem to best fit the in-sample data compared to COX. Furthermore,
XGB is consistently providing a lower likelihood compared to the NN. A similar behavior is reflected
in the out-of-sample data.

Model Scenario l(θ) (in-sample) l(θ) (out-of-sample)
COX

Alpha
9.238 -

NN 8.648 7.263
XGB 8.634 7.249
COX

Beta
9.112 -

NN 8.512 7.127
XGB 8.502 7.118
COX

Gamma
9.062 -

NN 8.760 7.374
XGB 8.755 7.372
COX

Delta
9.199 -

NN 8.686 7.303
XGB 8.590 7.215
COX

Epsilon
9.121 -

NN 8.563 7.180
XGB 8.556 7.175

Table 3.2: In each scenario, the average log-likelihood l(θ) is computed in each simulation on each
simulated data set. For machine learning models each data set is split in training (in-sample, 80% of
the data) and validation (out-of-sample, 20% of the data). The splitting percentage is determined
as a rule of thumb. Here, we provide for each scenario the results of the average likelihood l(θ)
(in-sample and out-of-sample) over the 20 simulations.

3.6.3 Modelling the survival function

In the previous sections, we observed that our predictions rely on a discrete time framework mean-
while we defined the hazards in continuous time. In the simulated scenarios we have, for t ≥ 0, a
closed form for the features dependent survival function S(t|X,U). We can compare the survival
function with the survival function we estimated with our models, i.e. Ŝ(t|X,U) in Equation (3.8).
Visually inspecting the survival function and comparing it in different scenarios for different models
can help in understanding the models fit across different scenarios.

In Figure 3.3 we show the true survival function compared to the fitted survival function in
scenario Alpha. It can be noticed that all the three models seem to behave consistently with respect
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Figure 3.3: Scenario Alpha, claim_type 1 and AD 13. The true survival function (black dotted
line) is compared to the fitted survival function with COX, NN, and XGB (left to right).
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Figure 3.4: Scenario Delta, claim_type 1 and AD 691. The true survival function (black dotted
line) is compared to the fitted survival function with COX, NN, and XGB (left to right).

to the true curve. Interestingly, even in the simplest modelling scenario, XGB and COX seem to
be better than NN in catching the behavior of the survival function on the right tail.

The same plot can be shown for other scenarios. An interesting case is scenario Delta, where
we introduced a seasonality effect dependent on the accident period, see Table 3.1. In this section
we first show the feature combination claim_type 1 and AD 691 where the three models seem to
behave similarly with XGB closer to the true survival function, see Figure 3.4.

3.6.4 Overview of the main model output

Oppositely to the chain ladder model the predicted development factors will depend on accident date
and additional feature information; here claim type being equal zero or one. Another important
feature of our proposal is that while inputs are assumed continuous, development factors and
predictions can be provided on chosen granularity levels. We show a preview of the results that we
obtained on a simulated data set coming from scenario Delta, as it was introduced in Section 3.6.
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3.6. Data Application on simulated data

In Figure 3.5 we select one simulation and compare the chain ladder development factors to our
output development factors for different granularities (monthly and yearly). The first row shows
chain ladder’s development factors. The second row shows the output on a monthly level from an
XGB fit for three different feature combinations of accident date and claim type. The three plots
can be compared to the monthly development factors obtained from chain ladder (first row left
panel). The third row is the analogue to the second row, but this time a yearly aggregation has
been chosen and it can be compared to the yearly development factors obtained from chain ladder
(first row right panel).
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Figure 3.5: The first row, shows the chain ladder development factors fitted on monthly data
(Figure 3.5a), and quarterly data (Figure 3.5b). The development factors do not consider additional
features we have at our disposal. The second and third row show an XGBoost output from our
model proposal that depends on accident date and claim type. The second row, shows monthly
development factors for the feature combinations Accident Month 7 and Claim_type 1 (left panel),
Accident Month 31 and Claim_type 0 (center panel) and Accident Month 20 and Claim_type 1
(right panel). The third row shows quarterly development factors for the feature combinations
Accident Quarter 15 and Claim_type 1 (left panel), Accident Quarter 15 and Claim_type 0 (center
panel) and Accident Quarter 5 and Claim_type 1 (right panel).

3.6.5 Results: forecasting using the development factors

In this section we compare the chain ladder with our models in the five simulated scenarios. In
each scenario, we simulate 20 data sets to show that our results are not affected from accidental
fluctuations of the simulations. Below we describe in brief the procedure that we used.
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3.6. Data Application on simulated data

1. For each scenario (Alpha, Beta, Gamma, Delta, and Epsilon), we simulate 20 data set.

2. On each data set, we find the optimal hyper parameters for NN and XGB using Bayesian
optimization (Snoek, Larochelle, & Adams, 2012). More details on the optimization algorithm
can be found in Appendix D.

3. On each data set, we fit COX, the optimal NN and XGB.

4. We find the estimated development factors and expected number of future occurrences ac-
cording to each model.

5. We evaluate the performances for COX, NN, and XGB using the ARETOT, the (average) CRPS
and the ARECAL on a quarterly and yearly basis. The ARETOT and ARECAL are also computed for
the CL.

6. For each scenario we report the average performance measures of CL, COX, NN, and XGB
over the 20 data sets.
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Model Scenario ARETOT ARECAL (quarters) ARECAL (years) CRPS (average)
CL (3)

Alpha

0.131 (± 0.016) 0.128 (± 0.014) 0.037 (± 0.011) -
COX (3) 0.138 (± 0.013) 0.131 (± 0.012) 0.044 (± 0.013) 364.428 (± 5.899)
NN (3) 0.140 (± 0.021) 0.132 (± 0.015) 0.045 (± 0.015) 366.902 (± 8.567)

XGB (3) 0.136 (± 0.010) 0.131 (± 0.011) 0.042 (± 0.012) 364.230 (± 5.967)
CL (7)

Beta

0.215 (± 0.023) 0.194 (± 0.015) 0.122 (± 0.025) -
COX (3) 0.162 (± 0.014) 0.161 (± 0.011) 0.050 (± 0.018) 402.794 (± 6.929)
NN (3) 0.169 (± 0.019) 0.166 (± 0.015) 0.062 (± 0.028) 403.057 (± 7.720)

XGB (3) 0.162 (± 0.013) 0.162 (± 0.011) 0.048 (± 0.019) 402.343 (± 7.133)
CL (7)

Gamma

0.260 (± 0.035) 0.230 (± 0.029) 0.191 (± 0.032) -
COX (7) 0.147 (± 0.015) 0.149 (± 0.013) 0.057 (± 0.022) 402.917 (± 6.221)
NN (3) 0.167 (± 0.044) 0.160 (± 0.027) 0.075 (± 0.039) 402.311 (± 9.258)

XGB (3) 0.154 (± 0.024) 0.147 (± 0.018) 0.053 (± 0.025) 401.996 (± 5.988)
CL (7)

Delta

0.300 (± 0.024) 0.234 (± 0.018) 0.037 (± 0.012) -
COX(3) 0.195 (± 0.022) 0.192 (± 0.018) 0.065 (± 0.020) 386.598 (± 6.667)
NN (3) 0.213 (± 0.034) 0.204 (± 0.025) 0.051 (± 0.023) 388.707 (± 7.205)

XGB (3) 0.167 (± 0.019 ) 0.145 (± 0.011) 0.058 (± 0.025) 369.531 (± 6.599)
CL (3)

Epsilon

0.119 (± 0.011) 0.115 (± 0.010) 0.035 (± 0.010) -
COX (7) 0.135 (± 0.022) 0.127 (± 0.010) 0.060 (± 0.015) 340.267 (± 5.192)
NN (7) 0.132 (± 0.015) 0.126 (± 0.011) 0.059 (± 0.019) 341.169 (± 5.210)

XGB (7) 0.149 (± 0.059) 0.127 (± 0.012) 0.057 (± 0.017) 340.344 (± 5.100)

Table 3.3: Results after 20 simulations. We show the different performance measure for our
different models (column one). In the different scenarios (column two) the models assumptions
might be not satisfied. We indicate with a check mark (3) the scenarios in which the models
assumptions are satisfied. For each model we also display the performance measures we described
in the previous sections: absolute total reserving error (column three), absolute error by diagonal
for quarterly output (column four) and absolute relative error by diagonal for yearly output (column
five). Between brackets, we show the standard deviation of the (average) performance measures
over the 20 records. In column six we show the continuously ranked probability score.

The results of the data application on simulated data are summarized in Table 3.3. In column
one, we list the models included in the comparison for each scenario (column two). Similarly to
Table 3.1, we denote with a check mark or an x mark if the model assumptions are satisfied or not.
Let us first consider the comparison with CL in terms of ARETOT and ARECAL. Our data application
shows that CL is outperforming the individual models in scenario Alpha and in scenario Epsilon
according to the ARETOT and the ARECAL. In scenario Alpha, the CL results are very close to those
of COX, NN, and XGB. As expected, in scenario Epsilon, breaking down the proportionality
assumption, the CL is better than the other models. Interestingly, when we inspect the most
complex scenarios (Beta, Gamma, and Delta) our approach (COX, NN, and XGB) provides better
scores than the CL model. Notably, we observe that XGB is consistently the best performing
model. Notwithstanding the intensive hyper parameters tuning that we performed, NN seem to
perform worse than COX in most scenarios. In scenario Delta, where we introduce a seasonality
effect we find that according to all the proposed scores XGB is by far the best model. The ARETOT

and ARECAL are a good benchmark to compare our approach to the CL but they are not proper
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scoring rules. Conversely, we can take the average CRPS as the main criterion to rank our models.
In the scenarios we considered, the CRPS indicates that XGB is outperforming NN and COX.
Interestingly, while in scenarios Alpha, Beta, Gamma, and Epsilon the XGB (average) CRPS is
close to COX, in scenario Delta we observe a major drop in the CRPS going from COX to XGB.
In scenario Gamma we find that the NN model performs better than COX. Interestingly, in this
scenario the COX assumptions are not satisfied.

A cell-wise comparison

In this section, we provide a heat map of the average relative prediction error based on the volumes
of the k, j cells over the simulations for each scenario on a quarterly basis. In particular, we
want to detect whether the IBNR frequencies predicted for the k, j cells are overestimated or
underestimated. In this phase we can detect if paths are present in the models results extrapolation.

The relative error REk,j for the k, j cell of some development triangle is

REk,j =

∑
xO

′
k,j(x)−

∑
x Ô

′
k,j(x)∑

xO
′
k,j(x)

. (3.10)

In Figure 3.6 we show a heat map of the average REk,j over the simulated data sets of each model
in each scenario. For all the scenarios that we investigated, our models seem to reduce the relative
errors within the cells. Cell-wise, XGB models residuals are the closest to zero. An interesting
insight comes from scenario Delta. We recall that in scenario Delta we simulated the data with a
seasonality effect. Interestingly, the XGB model is the only model able to catch the seasonality effect
in scenario Delta. Surprisingly, the NN model is not capable of catching the interactions with the
accident period notwithstanding the heavy hyper parameters tuning procedure, see Appendix D.

3.7 Data application on real data

In this section we show a case study based on a real data set from Codan Forsikring. We had at
disposal the company complete reserving data from 2012 to 2022 for a short tailed personal line
product. Two categorical features are associated to each (claim claim_type and coverage_key).
The complete description of the data set is available in Table 4.3.

Features Description
Claim_number Policy identifier.
claim_type ∈ {1, . . . , 20} Type of claim.
coverage_key ∈ {1, . . . , 16} Type of coverage.
AM Accident month.
CM Calendar month of report.
DM Development month.
incPaid Incremental paid amount. We will not use this information in the manuscript.

Table 3.4: Description of the Codan Forsikring data set.

We decided to split the data into 6 chunks of 5 consecutive years each. The splits are reported
in Table 3.5, together with the corresponding data size. For each of these splits, we fit our models
on the first 4 years (train data) and score our models on the fifth year (test data).
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Training Scoring Train data size (observations number) Test data size (observations number) Mean Reporting Delay
Split 1 2012-2016 2017 129381 1474 1.62
Split 2 2013-2017 2018 133367 1553 1.62
Split 3 2014-2018 2019 130405 1566 1.63
Split 4 2015-2019 2020 122842 1394 1.63
Split 5 2016-2020 2021 110884 1225 1.61
Split 6 2017-2021 2022 105618 1069 1.55

Table 3.5: For each split (column one) we reported the accident periods we used to train the
models (column two), and the year we use for scoring (column three). In columns four and five
we show the train and test data size. In column six we provide the mean reporting delay from
accident.

Similarly to the case study on the simulated data, we compare our results with the chain ladder
model fitted on a quarterly and yearly grid. We fitted our models on a monthly grid, according to
the procedure we described in the manuscript. In Table 3.5, we show the mean reporting delay in
each data split. Most of the notifications occurred in the early development periods and the mean
reporting delay is between one and two months showing that the data are very stable.

From Figure 3.7 we can see that not all the combinations of the two categorical features
(cover_key and claim_type_key) were observed (see Figure 3.7). Most of the data belong to
the combinations claim_type_key 1 with cover_key 1 and cover_key 5 and claim_type_key
14 with cover_key 1.
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Figure 3.7: Relative frequency on the complete data (2012 − 2021). We do not observe all the
combinations of features and most of the data show claim_type_key 1, and cover_key 1 or
cover_key 5.

3.7.1 Results

In Table 3.6 we show the our models performance on the real data splits described in Table 3.5.
The models are reported in column one and the data splits are reported in column two. In this
setting, the chain ladder is expect to perform very well as the data have are reported in the early
development months and, from the authors experience on this data sets, there are few reports in
the late development periods. Interestingly, from the results of the ARETOT and ARECAL (columns
three to five) we see that in general we have an improvement in the models performance using
COX, NN, or XGB compared to the CL, especially in terms of ARECAL. By comparing COX, NN
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and XGB we obtain further insights on the performance of our models. The l(θ) results (columns
six and seven) indicate that XGB is the best model in minimizing the objective function, both
in-sample and out-of-sample . Similarly to the simulated scenarios, we randomly split our data
into training and validation for fitting NN and XGB. With the same rule of thumb we also kept
the 80% of the data for training. As highlighted in the previous sections, the average CRPS is our
main criterion to select a model the best performing model. The CRPS suggests that in the first
three data splits, NN and XGB outperform the COX model. In general, we observe that COX is
the best performing model. This is also enforced from the other performance measures ARETOT and
ARECAL. The motivation for these results is related to the behavior of the data set. We already
discussed that there are no complex trends in our data, meaning that there is a benefit in using
our modelling approach compared to the CL but the simplest hazard model (COX) is the most
accurate based on the performance measures that we defined.

Model Split ARETOT ARECAL (quarters) ARECAL (years) CRPS (average) l(θ) (in-sample) l(θ) (out-of-sample)
CL

Split
1

0.207 0.225 0.264
COX 0.242 0.208 0.242 6.429 10.781
NN 0.241 0.206 0.237 6.420 10.531 9.144
XGB 0.231 0.202 0.235 6.440 10.529 9.143
CL

Split
2

0.235 0.323 0.155
COX 0.307 0.296 0.082 8.061 10.804
NN 0.307 0.296 0.084 8.054 10.551 9.165
XGB 0.287 0.292 0.100 8.074 10.549 9.163
CL

Split
3

0.262 0.324 0.196
COX 0.306 0.268 0.069 6.303 10.784
NN 0.297 0.261 0.059 6.496 10.528 9.141
XGB 0.324 0.286 0.081 6.468 10.522 9.138
CL

Split
4

0.213 0.264 0.181
COX 0.270 0.248 0.081 6.076 10.725
NN 0.283 0.258 0.082 5.950 10.475 9.089
XGB 0.282 0.254 0.088 6.220 10.463 9.077
CL

Split
5

0.203 0.193 0.064
COX 0.160 0.181 0.107 4.855 10.623
NN 0.171 0.188 0.111 5.017 10.371 8.985
XGB 0.169 0.182 0.102 5.012 10.357 8.972
CL

Split
6

0.198 0.177 0.219
COX 0.196 0.187 0.176 4.321 10.576
NN 0.196 0.186 0.180 4.342 10.318 8.931
XGB 0.200 0.186 0.168 4.368 10.313 8.926

Table 3.6: Results on the case study on real data. For each model (column one) and in each data
split (column two) we show the results of ARETOT (column three), ARECAL (columns four and five),
the in-sample and out-of-sample likelihood (columns six and seven) and the average CRPS (column
eight). The ARECAL is presented quarterly and yearly in columns four and five respectively.

3.7.2 Sensitivities

Inspired by the analysis of the sensitivities in Wüthrich (2018), we show that for a fixed combi-
nation of features and a fixed development period, the marginal effect of the different levels of a
model features on the development factors for Spit 1. The benchmark is the development factor
modelled with the chain ladder. The first row shows our results on a quarterly grid (Figure 3.8a,
Figure 3.8b, Figure 3.8c) for the second development quarter. In Figure 3.8a fix the accident quar-
ter to 16, and cover_key to 1 and let claim_type_key vary. In Figure 3.8b, we pick cover_key 1,
claim_type_key 1 and let the accident quarter change. In Figure 3.8c, we pick accident quarter
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16, claim_type_key 1 and let the cover_key.
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Figure 3.8: Development factor 2 sensitivity for the quarterly output in Split 6. The dotted line
represents the chain ladder estimate. The dots indicate the estimates from the different models:
COX (red), NN (gray) and XGB (blue).

In a similar fashion, in Figure 3.9 we show a similar plot for the yearly results. In Figure 3.9a
we fix the accident year to 4, and cover_key to 1 and let claim_type_key vary. In Figure 3.9b,
we pick cover_key 1, claim_type_key 1 and let the accident quarter change. In Figure 3.9c, we
pick accident quarter 4, claim_type_key 1 and let the cover_key.
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Figure 3.9: Development factor 2 sensitivity for the yearly output in Split 6. The dotted line
represents the chain ladder estimate. The dots indicate the estimates from the different models:
COX (red), NN (gray) and XGB (blue).

3.8 Concluding remarks

Based on the work of Miranda et al. (2013) and Hiabu (2017), we introduced a survival analysis
framework to use machine learning techniques to estimate development factors that can depend
on accident date and other features. The approach presented in this paper has been developed
with the aim to give higher accuracy in cases where more information in form of individual claims
data is available while at the same time conserving the structure reserving actuaries are used to.
Our extensive simulation study suggests that our methodology does indeed seem to work well. In
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this paper, we have only considered the prediction of IBNR counts and an obvious next step is
to integrate our methodology into a wider framework to estimate the outstanding claims amount,
which will be the focus of Chapter 4. It could for example be interesting to merge our approach
with recent RBNS prediction methods like Crevecoeur, Robben, and Antonio (2022) or Lopez and
Milhaud (2021).
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Part II

A multi-state model for the cost of
individual claims



Chapter 4

An individual model for the claims
severity

In the previous sections, we illustrated models for the claim development that allowed us to model
feature-based development factors. In this chapter, we propose a multi-state approach for modelling
the cost of the individual claims. Our approach builds upon the findings presented in a recent paper
(Bladt & Furrer, 2023b), which introduces the conditional Aalen-Johansen estimator. This estima-
tor is a versatile, non-parametric tool for estimating state occupation probabilities conditioned on
specific features, and it also discusses its key properties. Note that Aalen-Johansen-type estimators
have traditionally found applications in life insurance. However, in this work, we demonstrate how
these estimators can also be applied to non-life insurance for reserving purposes. While the three
approaches rely on models from survival analysis, we decided to separate this chapter as, similarly
to the traditional literature on reserving, we now propose a model for the claim severity.

4.1 Our contribution to multi-state models in insurance

Multi-state models have found widespread use in the domain of life insurance. In the works of Hoem
(1969, 1972), they introduce a by-now standard approach, representing biometric states (active,
deceased, etc.) as finite states within a spatial model. However, to the best of our knowledge, these
models have seen less frequent application in non-life insurance literature. Notable exceptions can
be found in the work of Hesselager (1994) and Maciak, Mizera, and Pešta (2022). In Hesselager
(1994), the authors model outstanding claim amounts conditionally on the current state, such as
Incurred But Not Reported (IBNR), Reported But Not Settled (RBNS), and Settled. In this con-
text, the time variable corresponds to calendar time, similar to that in life insurance. In contrast,
our approach in this paper takes a different perspective, replacing time with payments as the fun-
damental evolution variable. In Maciak et al. (2022), the authors propose modeling the incremental
paid amounts as outcomes of a homogeneous Markov chain on a finite state space, though only for
aggregated data and in discrete time.

In this manuscript, we propose an individual claims reserving model based on a continuous-time
non-explosive pure jump process denoted by J on a finite state space, S = {1, . . . , k}, k ∈ N, where
states correspond to the development periods (DP’s) within a development triangle, and the “time
spent” between state transitions corresponds to the claim size growth between DP’s. The state k
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serves as an absorbing state, representing claim closure. It is worth noting that, in practice, DPs
have a stochastic behavior that leads to variation in the state space dimension across individual
claim histories. However, for simplicity, we address this by collapsing long claim developments into
a single state, as the specific details are not of primary importance in this context.

In a broader context, the application of counting processes to individual reserving has been
a subject of research since the seminal contributions of Arjas (1989); Norberg (1993, 1997), with
subsequent refinements and practical considerations detailed in the work of Haastrup and Arjas
(1996) and Antonio and Plat (2014). In Antonio and Plat (2014), they assume a framework where
claims are generated by a position-dependent marked Poisson process, and they incorporate a
severity modelling approach within the mark.

The primary contribution of Bladt and Pittarello (2023) lies in presenting a novel interpretation
of state spaces, which enables us to approach the claims reserving problem from a fresh perspective,
using a non-parametric estimator from survival analysis. We denote state process by J(z) when the
cumulative claim size of an individual reaches z, where z ∈ [0,+∞). Note that in this approach, the
fundamental variable of interest is the claim size itself, rather than time. The transition probabilities
leading to the absorbing state k represent the cumulative distribution of individual claim costs. In
other words, as individuals progress through the states, their observations accumulate claim size,
reflecting the evolution of their claims. Upon reaching the absorbing state, a claim is considered
settled, and no further payments are possible; see Section 4.2.2.

Recent literature on individual reserving has focused on decomposing individual reserving data
into different modules that describe the micro-level structure of the portfolio, e.g. payment delay,
settlement delay, payment size. By doing so, Huang, Qiu, Wu, and Zhou (2015) and Wang, Wu,
and Qiu (2021) extended the discrete model for predicting IBNR claims in Norberg (1986) to
a model for RBNS and IBNR claims that discusses, theoretically and with empirical studies, the
beneficial effect of including individual information in reserving models. An interesting approach to
modelling the joint distribution of reporting delays and claim sizes of RBNS claims under censoring
can be found in Lopez (2019). The work in Crevecoeur, Antonio, Desmedt, and Masquelein (2023)
embeds Crevecoeur et al. (2022) in a more general context and illustrates how pricing and reserving
can be modelled under a unified framework and severity is modelled conditionally on the previous
modules. A similar approach has been proposed in Delong, Lindholm, and Wüthrich (2022),
wherein the authors incorporate a gamma-distributed severity component into a neural network-
based methodology.

In contrast to the aforementioned works, which rely on likelihood-based estimation or parametric
assumptions on the claim size distribution, we propose a fully non-parametric estimation of the full
cumulative distribution function of claim sizes, building on the results of Bladt and Furrer (2023b).
The latter reference proposes a conditional version of the classic Aalen-Johansen estimator, which
allows for continuous or discrete covariates, and where minimal assumptions on the process J are
imposed, i.e. no Markov assumption is required. In particular, such lax probabilistic framework
is desirable when it is unclear whether there exist duration effects in each state, as is the case for
claim development processes.

In Section 4.2.4, we also propose a solution for modelling the IBNR and RBNS reserves sep-
arately. In Section 4.3 and following, our model is compared with the chain ladder in two case
studies, one using simulated data and the other using a recent dataset from a Danish non-life
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insurer. In both the simulation case study and the real data case application, we have access to
the total future claims costs and can thus compare the predicted amount with the target amount.
The predicted curve for the cumulative density function of claims size is compared with the em-
pirical cumulative density function using the Continuously Ranked Probability Score (CRPS), first
proposed in Gneiting and Raftery (2007). Interestingly, we show how the CRPS can be used to
perform model selection by answering the natural question of how to select the number of states
in the state space S.

4.1.1 A comparative literature review

Research papers on loss reserving can be broadly categorized into two main streams of research:
models based on development triangles (aggregate loss reserving models), and models based on
individual data (individual loss reserving models). The relationship between individual data and
aggregate modelling has been extensively studied in Miranda, Nielsen, and Verrall (2012), Hiabu
(2017), and Bischofberger et al. (2020), utilizing different survival analysis tools.

The existing body of literature on aggregate reserving has already provided the building blocks
for predicting the distribution of loss reserves, with a specific emphasis on models that seek to
emulate the empirical chain-ladder algorithm. In this section, we briefly mention some of these
models and defer to the comprehensive discussion in Hess and Schmidt (2002) for their detailed
categorization. For a distribution-independent approach to computing the mean squared prediction
error of the loss reserve, one can refer to Mack (1993), where the author decomposes the prediction
error of the loss reserve into its elemental components, namely process variance and estimation
variance, as expressed by Wüthrich and Merz (2015, p. 268, eq. 9.10). The model has received
several statistical critiques through the years but remains one of the best-performing reserving
models in an actuary’s toolkit.

In England and Verrall (1999), the authors replicate the point estimates of the chain-ladder
method and ingeniously employ bootstrap and generalized linear models (GLM) to compute the
estimation variance. For an extension of the model, allowing for negative payments as well as
an exploration of the model assumptions underpinning it, one may consult Verrall (2000). An
interesting comparison of the fundamental assumptions supporting the aforementioned models is
presented in Mack and Venter (2000), where the authors conclude that only the approach outlined
in Mack (1993) is the true underlying model of the chain-ladder algorithm. In a more recent
development, in Al-Mudafer, Avanzi, Taylor, and Wong (2022), the approach in England and
Verrall (1999) is integrated into the framework of mixture density networks Bishop (1994).

Shifting our focus to non-parametric models for individual reserving, the current discussion
primarily centers on providing precise point forecasts for the loss reserve. In contrast, Delong and
Wüthrich (2023) discusses the role of the variance function in regression problems for pricing.

In another recent development, Wüthrich (2018) incorporates neural networks into the chain-
ladder model, introducing features to the existing methodology. Further related work can be found
in Lopez, Milhaud, and Thérond (2019) and Lopez and Milhaud (2021), where the authors employ
a tree-based algorithm for modelling RBNS claims using censored data. In particular, in Lopez
and Milhaud (2021), the use of bootstrapping for estimating the uncertainty in the claims reserve
is discussed.

Bladt and Pittarello (2023) introduces a novel approach to the individual reserving problem,
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allowing us to explicitly model curves of individual claim costs denoted as pk(z|x) within our
framework.

4.2 The conditional Aalen-Johansen

In this section we introduce our statistical framework, and the quantities of interest, the conditional
occupation probabilities. We present the conditional Aalen-Johansen Bladt and Furrer (2023b), a
non parametric estimator for the conditional occupation probabilities of an arbitrary jump process.
Note that the conditional Aalen-Johansen is closely linked with the literature streams on kernel-
based estimation for survival and semi-Markov processes McKeague and Utikal (1990); Nielsen and
Linton (1995); Dabrowska (1997), as well as landmarking Van Houwelingen (2007). We conclude
the section with some remarks on the interpretation of multi-state models for reserving. As we
explain in the next paragraphs, this is a fundamental step to construct our reserving model.

4.2.1 A reserving model based on the conditional Aalen-Johansen

Let J = (Jz)z⩾0 be a non-explosive pure jump process on a finite state space S, and take (Ω,F ,P)
to be the underlying probability space. Here, we let S = {1, . . . , k}, with k ∈ N. Denote by Y the
possibly infinite absorption time of J . Let X be a random variable with values in Rd equipped with
the Borel σ−algebra. We assume that the distribution of X admits a density g with respect to the
Lebesgue measure λ. Absolute continuity to the case of known atoms can be relaxed as discussed
in Bladt and Furrer (2023b).

We introduce a multivariate counting process N with components Nj,h = (Nj,h(z))z⩾0 given by

Nj,h(z) = # {s ∈ (0, z] : Js− = j, Js = h} , z ⩾ 0,

for j, h ∈ S, j ̸= h. Let us introduce the following assumptions.

Assumption 4.2.1. For some δ > 0, it holds that

E
î
Nj,h(z)

1+δ
ó
<∞.

Define the conditional occupation probabilities according to

pj(z | x) = E [I(Jz = j) | X = x] .

We denote by p(z | x) the row vector with elements pj(z | x). We now introduce the cumulative
conditional transition rates and cast the conditional occupation probabilities as a product integral
of these cumulative rates. To this end, let

pj,h(z | x) = E [Nj,h(z) | X = x] .

Define the cumulative conditional transition rates via

Λj,h(z | x) =
∫ z

0

1

pj(s− | x)
pj,h( ds | x).
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A cumulative transion hazard matrix, is defined by having the j, j entry Λj,j(z | x) =
∑

j ̸= Λj,h(z |
x) for j, h ∈ S, j ̸= h (Overgaard, 2019).

Let q(· | x) be the interval function associated with the conditional transition probabilities:

qj,h(s, z | x) = I(pj(s) > 0)
E [I(Js = j)I(Jz = h) | X = x]

pj(s|x)
+ I(pj(s|x) = 0)I(j = h).

In Overgaard (2019), it is shown that this assumption ensures that the product integral

t

R
0

(Id+Λ(ds | x))

where Id denotes the identity matrix is well-defined. Therefore,

p(t | x) = p(0 | x)
t

R
0

(Id+Λ(ds | x)). (4.1)

We are interested in the situation where the observation of J is right-censored. To this end
we introduce a strictly positive random variable W describing right-censoring, so that we actually
observe the triplet

(
X, (Jz)0⩽z⩽W , Y ∧W

)
.

Whenever the Markov assumption fails, the following assumption is key for our estimation
procedure.

Assumption 4.2.2. Right-censoring is conditionally entirely random:

W ⊥⊥ J | X.

Remark 4.2.1. From a reserving perspective, the above assumption amounts to stating that,
conditional on covariates, closure of a claim is simply specified through an independent random
mechanism. One should note that this assumption is not verifiable, despite its widespread use in
survival analysis.

We introduce
pcj(z | x) = E [I(Jz = j)I(z < W ) | X = x] ,

and
pcj,h(z | x) = E [Nj,h(z ∧W ) | X = x] .

from which we may conclude that

Λj,h(z | x) =
∫ z

0

1

pcj(s− | x)
pcj,h( ds | x), (4.2)

within the interior of the support of W .
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Estimators

Consider the i.i.d. replicates
Ä
Xi,

(
J iz
)
0⩽z⩽W i , Y

i ∧W i
än
i=1

. Define δi := I(Y i ≤W i), which equals
1 when the observation is absorbed (closed claim), and zero otherwise. In a reserving context, this
distinction is usually reflected by specifying two types of claims: closed claims and RBNS (open)
claims, and we write respectively n = nClosed + nRBNS.

We now construct an estimator for the conditional occupation probabilities pj(z | x), but
from Equation (4.1), it essentially suffices to estimate the cumulative conditional transition rates
Λj,h(z | x), which we do using Equation (4.2). Let Ki be kernel functions of bounded variation
and bounded support, and let (an) be a bandwidth sequence. We impose the following standard
assumption, confering with Stute (1986).

Assumption 4.2.3. The band sequence satisfies:

1. an → 0 as n→ ∞.

2. nadn → ∞ as n→ ∞.

3.
∑∞

n=1 c
r
n <∞ for some r ∈ (1, 1 + δ) where cn :=

(
nadn

)−1
log n

One may for (1 + δ)−1 < η < 1 take

adn ∼ log n

n1−η
.

We introduce the usual kernel estimator for the density g:

g
(n)(x) =

1

n

n∑
i=1

g
(n,i)(x) =

1

n

n∑
i=1

d∏
b=1

1

an
Kb

Ç
xb −Xi

b

an

å
.

It is well-known (cf. (Ghosh, 2018)) that

g
(n)(x)

a.s.→ g(x), n→ ∞,

and, for any random variable V with i.i.d. replicates (V i) satisfying E[|V |1+δ] <∞ that

1

n

∑n
i=1 V

i
g
(n,i)(x)

g(n)(x)

a.s.→ E[V | X = x], n→ ∞. (4.3)

Based on the kernel estimator for g, we form the following Nadaraya-Watson type kernel estimators:

N(n)
j,h (z | x) =

1

n

n∑
i=1

N(n,i)
j,h (z | x) = 1

n

n∑
i=1

N i
j,h

(
z ∧W i

)
g
(n,i)(x)

g(n)(x)
(4.4)

I(n)j (z | x) = 1

n

n∑
i=1

I(n,i)j (z | x) = 1

n

n∑
i=1

I(z < W i)I(J iz = j)g(n,i)(x)

g(n)(x)
(4.5)

(4.6)

Remark 4.2.2. Due to Assumption 1, it follows from Equation (4.3) that
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N(n)
j,h (z | x)

a.s.→ pcj,h(z | x), n→ ∞.

Furthermore, it holds that

I(n)j (z | x) a.s.→ pcj(z | x), n→ ∞.

Definition 1. The conditional Nelson-Aalen estimator for the cumulative conditional transition
rates is defined as

Λ(n)
j,h (z | x) =

∫ z

0

1

I(n)j (s− | x)
N(n)
j,h (ds | x).

Definition 2. The conditional Aalen-Johansen estimator for the conditional occupation proba-
bilities is defined according Equation (4.1), but with the cumulative conditional transition rates
replaced by the conditional Nelson-Aalen estimator, that is

p(n)(z | x) = p(n)(0 | x)
z

R
0

Ä
Id+Λ(n)(ds | x)

ä
,

where p(n)
j (0 | x) = I(n)j (0 | x).

Remark 4.2.3. We refer to Bladt and Furrer (2023b) for the proof that the estimators are asymp-
totically strongly consistent and pathwise Gaussian distributed.

When all the subjects start in state 1 at inception, we can use the estimator of the occupation
probabilities of the absorbing state k, p(n)

k to model the cumulative density function of the individual
claims cost.

Remark 4.2.4. The Volterra integral equation defines the product integral of the matrix function
Λ(ds | x) as the unique solution p(· | x) to the equation

p(t | x) = Id+

∫
(0,t]

p(s− | x)Λ(ds | x).

However, when a piecewise constant estimator of Λ is given by Λ(n), as is described in detail
in the previous section, the computation of the product integral simplifies. More precisely, denote
0 = t0 < t1 < t2 < · · · the sequence of time points describing all observed jump times in the
sample. Then the recursion

p(n)
j (tℓ+1|x)− p(n)

j (tℓ|x)

=
∑
k∈Z
k ̸=j

p(n)
k (tℓ|x)∆Λ(n)

kj (tℓ+1|x)− p(n)
j (tℓ|x)

∑
k∈Z
k ̸=j

∆Λ(n)
jk (tℓ+1|x)

and starting value p(n)(0|x) = I(n)(0|x) completely characterize the product integral p(n)
j (·|x) at

jump times (and constant otherwise).
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4.2.2 Practical considerations for claims development

In this section, we offer practical insights into our modelling approach, with the aim of assisting
the reader in understanding our multi-state setup for claims reserving. Refer to Figure 4.1, which
conceptually illustrates our model featuring a state space S with k = 5 states.

IBNR 1 DP 1 2 DP 2 3 DP 3+ 4

Closed 5

Figure 4.1: Example of multi-state model for claims reserving, with k = 5. We interpret time
spent in each state as increasing claims size clock, instead of calendar time. The states represent
the development periods (DPs) of the individual claims.

In our framework, we represent the active state as IBNR claims, while we treat RBNS claims as
transitioning through intermediate states. Any claim that reaches state k is considered closed in our
system due to the presence of an absorbing state. Consequently, we do not allow claims to reopen
in our framework. Notably, unlike a traditional survival study, we do not explicitly model the time
component, and the number of IBNR claims, along with their characteristics, remains unknown
at the time of evaluation. In Section 4.2.4, we delve into how to model RBNS and IBNR claims,
showcasing how our model can accommodate such scenarios. Furthermore, we have designed our
state space so that state DP3+ at step k−1 in Figure 4.1 is the final relevant DP that we explicitly
model.

Finally, it is worth mentioning that we have not introduced development triangles yet, which
are the standard aggregate datasets commonly used in claims reserving applications. The choice of
parameter k aligns with the data that, in a conventional modelling approach, would be aggregated
into development triangles of varying sizes. Since our proposed framework does not explicitly model
the time component, we assume that payments close at the development year following the last
payment. This assumption results in a development triangle with k − 1 development times. This
aspect will be particularly relevant for our data application, where we compare our model to the
benchmark chain ladder method outlined in Mack (1993), and we need to construct a development
triangle for this purpose. Furthermore, we observe that k − 1 = m defined in previous chapters.

Remark 4.2.5. By changing the multi-state model in Figure 4.1, our approach can be modified
to take into account additional domain-specific aspects of reserving data. For instance, if we allow
transitions back from the state k (closed) to states 3, . . . , k − 2 (DP 2, . . . ), our framework can be
modified to take into account reopenings.

4.2.3 Notation and further connections to reserving

Together with our sample, which is composed of n i.i.d. observations generated from J and its
covariates (refer to the previous sections), we additionally observe the following quantities already
defined in Chapter 3 that are not related to J1, . . . , Jn:¶

TRi , Ui
©n
i=1

.
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We recall that Ui and TRi represent the accident period and the reporting delay of the i-th claim,
with Ui, T

R
i ∈ {1, . . . , k − 1}.

We can also provide a definition of the development triangle of cumulative payments with
respect to our sample,

C(k−1) = {Cℓ,j : ℓ+ j ≤ k; ℓ, j = 1, . . . , k − 1} ,

where Cℓ,j =
∑n

i=1 I(Ui = ℓ and J izi,j = j)zi,j , with 0 ≤ zi,j ≤W i such that J i
z−i,j

∈ {1, . . . , j − 1} , J izi,j =
j denoting the total cumulative amount paid in accident period ℓ and DP j. We are presently in-
terested forecasting the ultimate cost of our claims,

Y Closed + Y RBNS :=

n∑
i=1

δiY
i +

n∑
i=1

(1− δi)Y
i =

k−1∑
ℓ=1

Cℓ,k−1,

The claims reserve is simply R =
∑k−1

ℓ=1 (Cℓ,k−1 − Cℓ,k−ℓ).

4.2.4 Prediction of RBNS and IBNR claim costs

We can calculate the final cost of RBNS claims numerically using the conditional Aalen-Johansen
estimate p(n)

k (z | x) for pk(z|x). The estimator of the final total cost of RBNS claims is defined by

Ŷ RBNS =
n∑
i

I(δi = 0)
Ä
W i + Ê[Y |Y > W i, X = x]

ä
with

Ê
[
Y |Y > W i, X = x

]
=

1

1− p(n)
k (W i | x)

∫ +∞

W i

(1− p(n)
k (y | x))dy. (4.7)

The general formula for the m-th moment is explicitly given by

1

m
Ê
[
Y m|Y > W i, X = x

]
=

1

1− p(n)
k (W i | x)

∫ +∞

W i

ym−1(1− p(n)
k (y | x))dy.

Strictly speaking, from a reserving standpoint, we also need to propose a strategy for reserving
for the (unknown) IBNR claims, which we denote by the random variable nIBNR with values in
N0. The individual cost of the IBNR claims is described by a sequence of iid copies of the random
variable Ỹ , namely

¶
Ỹ i′
©
i′∈N

. Under the framework of Bladt and Furrer (2023b), Ỹ has cumulative
distribution function pk(z). As we will describe shortly, we specify a model that does not consider
the features, since in this case we do not have access to future exposures by feature. We propose
to correct the model for the random presence of IBNR using a compound distribution, under the
assumptions in Klugman, Panjer, and Willmot (2012, p. 148). We describe the total cost of IBNR
claims as follows:

Y IBNR =
nIBNR∑
i′=1

Ỹ i′ .

The expression for Y IBNR is well known in non-life mathematics and is often referred to as the
collective risk model, Parodi (2014). The moments of Y IBNR can be calculated in closed form. In
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particular, the expected cost of IBNR claims is

Ŷ IBNR = Ê[Y IBNR] = n̂IBNRÊ[Ỹ ],

with the m-th moment of Ỹ defined by

1

m
Ê[Ỹ m] =

∫ ∞

0
ym−1(1− p(n)

k (y))dy.

The variance of the IBNR claims is’VAR(Y IBNR) = n̂IBNR
î“E[Ỹ 2]− “E[Ỹ ]2

ó
+ “E[Ỹ ]2’VAR(nIBNR).

To project the number of IBNR claims, we simply use the chain ladder model on the triangle of
counts D(k−1) and obtain n̂IBNR. For each of the future reported claims, we fit the unconditional
Aalen-Johansen to the sample n to obtain p(n)

k (z). The total size of claims is Y TOT = Y Closed +

Y RBNS + Y IBNR and we estimate it with Ŷ TOT = Y Closed + Ŷ RBNS + Ŷ IBNR. We remark that in several
lines of business the contribution of the true cost of IBNR claims (Y IBNR) to Y TOT is minor compared
to the cost of RBNS claims (Y RBNS). This is the case for those lines of business that have data with
mostly single payments and a short time lag between reporting and settlement. See for instance the
results presented in Friedland (2010, p. 80) on the US market data, comparing for different lines
of insurance the size of the estimated cost of IBNR claims to paid and outstanding claims. As we
will show in Section 4.4, our real dataset exhibits exactly this behaviour and the IBNR correction
will have a minor impact on the estimated final cost.

Remark 4.2.6. Relatable approaches to our proposed estimator in Equation (4.7) can be found
in the literature on censored regression. Similar techniques are used for the estimation of the
linear model in Buckley and James (1979), and for the construction of the artificial data points for
estimation of the non-linear model in Heuchenne and Van Keilegom (2007).

4.3 Simulation of RBNS claims

In this section, we perform two a simulation studies to provide numerical evidence of the applica-
bility of our models to claims reserving. To demonstrate the potential benefits to actuaries of using
our modelling approach, we first compare our results with the chain ladder model presented in Sec-
tion 1.3.1 (Mack, 1993). A further comparison with the hierarchical reserving model in Crevecoeur
et al. (2022) is included in Appendix Appendix G. To facilitate the presentation of our results, we
refer to our model as AJ and the chain ladder model in Section 1.3.1 as CL, and to the hierarchical
model as hirem.

4.3.1 Implementation

It is possible to simulate observations from a jump-process model using the function sim_path from
the R package AalenJohansen Bladt and Furrer (2023a), by introducing a matrix of transition in-
tensities. Markov and semi-Markov models are allowed. To obtain a realistic set of examples for the
simulation study, we used the Nelson-Aalen implementation of the R package survival Therneau

70



4.3. Simulation of RBNS claims

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

Z

c
d
f

(a) k = 4.

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8

Z

c
d
f

(b) k = 5.

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5

Z

c
d
f

(c) k = 6.

0.00

0.25

0.50

0.75

1.00

0 3 6 9

Z

c
d
f

(d) k = 7.

Figure 4.2: Comparison of the true severity curve (dark grey dotted line) to the fitted severity
curve for different data sizes in the 4 simulated scenarios. The red curve is fitted on 120(k − 1)
RBNS claims, the blue curve is fitted on 1200 RBNS claims. Z is rounded by millions.

(2023) to estimate the (unconditional) cumulative transition intensities Λ(n)
j,h (z) for different choices

of k = 4, 5, 6, 7 on the real dataset available to us for writing this manuscript. Then, similar choices
of parameters were employed for the present section. See Table 4.3 for the description of the real
data. The matrix of intensities can be obtained from the cumulative intensities Λ(n)

j,h (z). Simulation
by knowing the data generation process underlying the data is important to understand model per-
formance compared to the true estimation target. For example, in Figure 4.2 we show an example
of the fitted p(n)

k (z | x) on datasets simulated directly with Λ without any feature effect. For each
choice of k we simulated two datasets. The first dataset contains 120(k − 1) observations. The
second dataset contains 1200(k− 1) observations. By comparing the p(n)

k (z | x) fitted to the small-
est sample (red) with the curve fitted to the largest sample (blue), we observe that increasing the
sample size yields fits that are closer to the true pk(z | x), empirically validating the consistency of
the Aalen-Johansen estimator with claim size as operational time. In particular, we have presented
a model that can take into account the individual feature information. In the case studies that we
present in the next section, we treat the accident period as a feature and add an effect by simply
specifying qj,h(s, z | x) = qj,h(s, z)f(x), where f(x) is a function of some feature x and we can
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derive qj,h(s, z) from the cumulative transition matrix obtained with the survival package. In
the simulations we present, we assume that observations are generated from f(x) = 1

10+k−x , where
in place of x we use the accident period, namely Ui introduced in the previous sections. For the
simulation of the reserving data sets, we decide arbitrarily the number of observations in each acci-
dent period Ui. Each claimant is then associated with a numeric variable representing the accident
period Ui, taking values in {1 . . . , k − 1}, from which we can calculate the effect f(Ui) = 1

10+k−Ui
.

We also add an effect on the volumes, and generate fewer observations in most recent accident
period. Generating decreasing volumes resembles cycles in the underwriting, a case study of an
insurer that underwrites less policies in the more recent accident periods, resulting in less claims.
In particular, we generated 1200 observations in the first accident period Ui = 1 and decreased by
100 the number of observations every accident periods. For instance, we will have 1100 observations
with Ui = 2 and 1000 observations with Ui = 3.

4.3.2 Evaluating the models performance

Using the approach introduced in Section 4.3.1, we present two simulated scenarios: Alpha and
Beta. In scenario Alpha, we simulate directly with unconditional transition intensities that we
have fitted to the real data. In the Beta scenario we introduce the effect of the accident period
characteristics and the occupation intensities. In each scenario we simulate, for the different choices
of k = 4, 5, 6, 7, a total number of 20 datasets to smooth possible fluctuations due to the random
generator and report the average results that we obtain. Each dataset in scenario Alpha contains
1200(k−1) observations. The dataset in scenario Beta contains 1200(k−1)−100(k−2) observations.
As motivated in Section 4.3.1, we let the volumes decrease in recent accident periods. We chose
arbitrarily to decrease the volume by 100 in every accident period subsequent to the first one. The
choice of measure of model performance can be an ardouos task when models are very different, as
are AJ and CL. The first performance measure that we propose is the error incidence,

EI =
Ŷ TOT

Y TOT − 1,

where Ŷ TOT is the predicted final claim size and Y TOT is the actual final claim size, which is available
from the simulation. The EI is an interesting benchmark that provides insight into the relative
accuracy of the AJ compared to the CL, though it does not highlight the fact that AJ provides a
much more nuanced description of the claim size than point estimates. In Figure 4.3 we provide
a box plot of the EI for the Alpha scenario (left side) and the Beta scenario (right side) for the
different values of k. Compared to the CL, the AJ model performs favourably for each choice of
k and in both scenarios. While the CL tends to overestimate Y TOT for all the choices of k, the AJ
model tends to provide slightly underestimated results for choices of k bigger than 4. While the EI
is an interesting benchmark, to better understand the performance of the models compared to the
data at hand, we would ideally like to use a proper scoring measure Gneiting and Raftery (2007). In
principle, a scoring metric with the property of being proper is able to evaluate the better model by
assigning better scores to better models. In this manuscript we consider the Continuously Ranked
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Figure 4.3: Box plots of EI for AJ and CL over the 20 simulations, for each value of k, in the
Alpha scenario (left column) and the Beta scenario (right column).
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Probability Score (CRPS) as a proper scoring metric:

CRPS(p(n)
k (· | x), y) =

∫ +∞

0
(p(n)

k (z | x)− I(y ≤ z))2dz

=

∫ y

0

Ä
p(n)
k (z | x)

ä2
dz +

∫ +∞

y

Ä
1− p(n)

k (z | x)
ä2

dz,

where p(n)
k (· | x) is the predicted curve of the individual claims sizes and y is the (true) value of

the final claim size that is available from the simulation. The interested reader can refer to the
established statistical literature on proper scoring for a detailed discussion on this topic Gneiting
et al. (2004); Gneiting and Raftery (2007); Gneiting and Ranjan (2011).

4.3.3 Empirical analysis

The average results of our 20 simulations for the Alpha scenario are reported in Table 4.1. Each
column of the table represents one of the AJ models fitted for the different choices of k (column
one). The target Y TOT (average simulated total cost) assuming Y IBNR = 0 is in column four. The
predicted final cost is Ŷ TOT = Y Closed + ˆY RBNS. The EI results show that, on average, our models
outperform the CL for every choice of k except k = 5 (columns five and six). For all choices of k,
we find that the relative variability of our model is less than that provided by the CL (columns
seven and eight). We compute SD(Y TOT) =

∑nRBNS

i SD(Y i). In this manuscript we will not discuss
the estimation error, and the results we present with respect to the variability of the reserve refer
only to the process variance. In column nine we report the (average) CRPS. Table 4.2 reports

k Scenario U Actual Y TOT (average) EI (AJ) EI (CL) ŜD(Y TOT)/Ŷ TOT (AJ) ŜD(Y TOT)/Ŷ TOT (CL) CRPS (average)
4

Alpha

7 598.483 0.006 0.111 0.008 0.009 0.145
5 7 456.746 -0.085 0.082 0.007 0.008 0.095
6 7 1952.683 -0.016 0.269 0.007 0.009 0.410
7 7 2359.151 -0.035 0.257 0.007 0.007 0.557

Table 4.1: Results for scenario Alpha. For each value of k (column one) we present the average
results over the 20 simulations. Each row of the table corresponds to a different AJ model specifi-
cation (column three). The table includes the (average) actual Y TOT simulated total cost (column
four) and the error incidence for the AJ and the CL (columns five and six). In columns seven and
eight we reported the coefficients of variation of Y TOT. The results for the CRPS are reported in
column nine.

the average results for the 20 simulations of the Beta scenario. For each simulation we fit two
models, with and without the use of U as a feature (3and 7 in the table). The model with U

is correctly specified assuming the Beta scenario. The aim of this experiment is to show that the
CRPS is able to judge which is the better model in a context where we know the data generation
process. As expected, we obtain a lower average CRPS for the models that include features. The
(average) target Y TOT is reported in the fourth column. The results for EI indicate that the AJ
model generally outperforms the CL model. The relative variability results show comparable results
for AJ and CL.
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k Scenario U Actual Y TOT (average) EI (AJ) EI (CL) ŜD(Y TOT)/Ŷ TOT (AJ) ŜD(Y TOT)/Ŷ TOT (CL) CRPS (average)

4

Beta

3 42.279 0.006 0.103 0.008 0.008 0.011
7 0.005 0.008 0.011

5 3 94.580 0.011 0.190 0.009 0.008 0.024
7 -0.006 0.007 0.025

6 3 108.423 -0.013 0.256 0.007 0.008 0.028
7 -0.016 0.007 0.029

7 3 116.032 -0.033 0.255 0.007 0.008 0.030
7 -0.031 0.008 0.038

Table 4.2: Results for scenario Beta. For each value of k (column one) we present the average results
over the 20 simulations. Each row of the table corresponds to a different AJ model specification
(column three). The table includes the (average) actual simulated total cost (column four) and
the error incidence for the AJ and the CL (columns five and six). In columns seven and eight we
reported the coefficients ofvariation of Y TOT. The results for the CRPS are reported in column nine.

4.4 A data application on an insurance portfolio

In this section we propose a case study on our model using real data. For this data application,
we have at our disposal a recent real dataset from a Danish non-life insurer. The dataset is not
publicly available. We provide additional insight in Figure 4.4. The exploratory analysis of the

Covariates Description
Claim_number Policy identifier.
claim_type ∈ {1, . . . , 20} Type of claim.
AM Accident month.
CM Calendar month of report.
DM Development month.
incPaid Incremental paid amount.
Delta Indicator, 0 when the claim is open.

Table 4.3: Description of the real dataset.

data shows that most of the records have a single payment (Figure 4.4b) and a very fast settlement
(Figure 4.4d). The data we present in this manuscript comes from a very stable line of business.
Interestingly, we show that we are able to outperform the CL on data where the CL is expected to
behave as well as it can. Most of the datasets belong to claim_type 1, see Figure 4.4a.

To analyse the real dataset, we propose two strategies that an actuary could follow to calculate
the loss reserve. In Section 4.4.1 we show an example where we censor our data by different calendar
periods and fit an AJ model for the maximum depth of data available. For example, for a model
with k = 4 we will have the individual data corresponding to a development triangle with 3 accident
periods. The purpose of this application is to show the behaviour of our model compared to the CL
on different datasets. In Section 4.4.2 we conclude with an application where we highlight the use
of the CRPS measure to perform model selection, after having censored the data at an arbitrary
calendar time, i.e. 5 calendar periods. Here we fit different models to the same datasets and select
the best performing model in terms of CRPS to calculate the loss reserve. The applications in this
section also comprise the IBNR model that we have illustrated in the previous sections. In fact,
we predict Ŷ TOT = Y Closed + Ŷ RBNS + Ŷ IBNR and ’VAR(Y TOT) =’VAR(Y RBNS) +’VAR(Y IBNR).

Remark 4.4.1. Notice that the covariate in our application is discrete, which with a uniform
kernel effectively amounts to subsampling of data. However, the estimators of the paper provide
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Figure 4.4: Exploratory data analysis on the real dataset that we use in this section. We show
the relative frequencies by type of claim Figure 4.4a, the distribution of the number of payments
Figure 4.4b, the density plot of the total individual claim cost Figure 4.4c and the distribution of
the settlement delay from accident Figure 4.4d.
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Figure 4.5: For each different dimension k = 4, 5, 6, 7, 8, we provide the individual claim cost curves
for our observations by covariate value claim_type. The x-axis represents Z and we scale it by
log2 to ease the plot visualization.

consistent and asymptotically normal estimators even when covariates are continuous. Nonetheless,
kernel-based methods are prone to the curse of dimesionality, and hence our method provides the
best results when covariate dimensions are small.

4.4.1 Model comparison on different datasets

Consider the first application, where we censor our data at different depths and fit an AJ model
using the largest possible state space. Using our model, it is possible to explore and compare the
individual claim cost curves for the different values of claim_type, as shown in Figure 4.5.

The results are reported in Table 4.4 and they show that in general the AJ models outperform
the CL in terms of EI, except for the scenario with k = 7. For each scenario, we are able to select
a model with or without features using the CRPS measure. The rows with a 3(column two) refer
to models that include the claim_type feature in the fit. The target Y TOT is shown in column
three. While in other scenarios the CRPS for the AJ model that includes the claim_type feature
is close to or better than the CRPS of the model without the feature, in k = 5 the model without
the feature has a much lower CRPS. The relative variability results show that AJ and CL have
comparable results. In fact, only for k = 4 does CL have a lower relative variability.

For each choice of k we can simply select the best performing model in terms of CRPS and
compute the claims reserve, the results are displayed in Table 4.5.
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k claim_type Actual Y TOT EI (AJ) EI (CL) ŜD(Y TOT)/Ŷ TOT (AJ) ŜD(Y TOT)/Ŷ TOT(CL) CRPS (average)

4 3 616.1327 -0.0035
0.0157

0.0029 0.0023 0.0137
7 -0.0029 0.0029 0.0156

5 3 822.5956 -0.0064 0.0209 0.0008 0.0024 0.0131
7 -0.0061 0.0007 0.0060

6 3 999.6005 -0.0059 0.0173 0.0017 0.0017 0.0306
7 -0.0052 0.0017 0.0305

7 3 1190.9112 -0.0146 0.0144 0.0011
0.0017

0.0310
7 -0.0142 0.0011 0.0311

Table 4.4: For different choices of k (column one), we fit a model with and without claim_type
(column two). The target Y TOT is shown in column three. The EI is shown in columns four and
five. The CV of Y TOT are displayed in columns seven and eight for the AJ and CL respectively.
The CRPS is shown in column nine.

k R SD(Y TOT) claim_type
4 10.7832 1.8054 3

5 7.4981 0.5720 7

6 10.3268 1.6731 7

7 5.6317 1.3381 3

Table 4.5: We selected for each data k (column one), the best performing model in terms of CRPS
and present the reserve (column one) and the standard deviation of the reserve (column two).

4.4.2 Model comparison on a single dataset

In the second application, we censor our data after 5 accident period and construct the AJ model
for k = 4, 5, 6. For each choice of k, we fit a model both with and without the feature claim_type.
Table 4.6 shows that in terms of CRPS, the model with k = 4 using the claim_type feature is the
best model (minimum CRPS). This model is also the best in terms of EI.

k claim_type Actual Y TOT EI (AJ) EI (CL) ŜD(Y TOT)/Ŷ TOT (AJ) ŜD(Y TOT)/Ŷ TOT(CL) CRPS (average)

4 7

999.6005

-0.0059

0.0173

0.0016

0.0017

0.0305
3 -0.0040 0.0020 0.0301

5 7 -0.0069 0.0015 0.0307
3 -0.0052 0.0018 0.0309

6 7 -0.0052 0.0017 0.0305
3 -0.0059 0.0017 0.0306

Table 4.6: For the dataset with depth 5 accident periods, we fit the AJ model both including and
excluding the claim_type feature (column two). The target Y TOT is displayed in column three.
The EI for the AJ and the CL can be found in columns four and five. The coefficient of variation
of Y TOT is displayed in columns six and seven. The CRPS is displayed in column eight.

Using the CRPS we are able to select the model with k = 4 and that uses claim_type as a fea-
ture to compute the claims reserve. The model provides a reserve of 11.485 millions and a standard
deviation of 2.0385 millions. The strategy presented in this last section is of particular interest to
reserving actuaries. While the empirical study in Section 4.4.1 is interesting for understanding the
behaviour of our model on different data, in practice the maximum depth of the data is selected
using indicators such as claims settlement speed or using the expert judgement of an experienced
actuary Wüthrich and Merz (2008, p. 12). The depth of the data is then known and the main
interest is simply to select the best model, as shown here. Selecting the most appropriate model
can be very difficult, see again Wüthrich and Merz (2008, p. 13), and the strategy presented in this
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section provides a mathematically sound approach to doing so.
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Chapter 5

Conclusions

In Chapter 2, we introduced a framework to model the one-to-one correspondence between claims
development and development factors. We showed that when the micro-level data are aggregated
in development triangles, estimation can be performed via a GLM. This is in contrast to exist-
ing GLM based reserving literature which models the claim amount. We showed that modelling
the claim development via an age model replicates chain-ladder’s predictions. The simplicity of
the model furthermore invites very naturally to consider model extensions beyond the simple age
model. In the data sets considered, including additional effects such as calendar effects and cohort
effects often improved the fit. Especially adding a cohort effect seemed to often be beneficial.
Interestingly, adding a period effect when modelling the claim amount did often not lead to any
improvement. This is possibly due to the fact that inflation is often adjusted before being aggre-
gated into run-off triangles. But there are exceptions and our data study demonstrated that the
best results are obtained by having both claim amount models and claim development models as
well as various structures at one’s disposal. Altough not the primary focus of our contribution, fur-
ther research on this models could concern the theoretical analysis of our estimators. The nature of
the data suggests the use of bootstrapping techiniques to obtain confidence intervals for the reserve.

In Chapter 3, we extend the work in Chapter 2 to model the development of the claim frequency
based on individual data and within a recent granular reserving frameworks, see e.g. Pigeon, Anto-
nio, and Denuit (2013), Antonio and Plat (2014), Baudry and Robert (2019), Lopez (2019), Lopez
and Milhaud (2021), Okine, Frees, and Shi (2022), Delong et al. (2022), Crevecoeur et al. (2022).
Based on the work of (Miranda et al., 2013) and (Hiabu, 2017), we introduced a survival analysis
framework to use machine learning techniques to estimate development factors that can depend
on accident date and other features. The approach presented in this chapter has been developed
with the aim to give higher accuracy in cases where more information in form of individual claims
data is available while at the same time conserving the structure reserving actuaries are used to.
Our extensive simulation study suggests that our methodology does indeed seem to work well. In
this chapter, we have only considered the prediction of IBNR counts and an obvious next step is
to integrate our methodology into a wider framework to estimate the outstanding claims amount.
It could for example be interesting to merge our approach with the hierarchical reserving model
(Crevecoeur et al., 2022).



Chapter 5. Conclusions

The methodology described in Chapter 4 presents an improved approach for predicting loss
reserves compared to commonly used aggregate loss reserving methods. We also introduce a com-
prehensive non-parametric estimator for the cumulative density function of individual claim costs,
distinguishing it from other individual loss reserving methods that mainly focus on point fore-
casts of claim reserves. While some questions remain open, particularly regarding the modelling
of Incurred But Not Reported (IBNR) claims and their dependence on specific features, practical
applications can address these issues by fitting our model with the chain ladder method for future
reports and projecting their future costs using the unconditional curve of individual claim costs.
Furthermore, this methodology can be extended in various ways. One possibility is to explore the
use of reverse time models, as described in Chapter 3, to project the future exposure of IBNR
claims. In a broader context, future research could investigate how to model not only the size but
also the frequency of individual claims.
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Appendix A

Open source software and
reproducible results

Along with the original research papers on which this monograph is based, we have released two
open source R software packages, (Pittarello et al., 2022; Hofman et al., 2023). We have also
released Python software that is outside the scope of the included papers, but is described in the
software article Pittarello, Luini, and Marchione (2024). In this Appendix, we show some small
code implementations of our R packages.

A.1 Claims reserving with clmplus

In this Section we show the clmplus code implementation of some of the models we showed in
Sections 2.8.1, 2.8.2 and 2.8.3. The stable version of clmplus package is available on CRAN at
https://CRAN.R-project.org/package=clmplus and the development version and source code
are available on GitHub at https://github.com/gpitt71/clmplus. Moreover, the full paper
replication code can be found at https://github.com/gpitt71/clmplus-paper-reproducible
-results.

We can install the development version of clmplus with the follwing command:

R> install . packages (" devtools ")
R> devtools :: install _ github (" gpitt71 / clmplus ")

After loading the clmplus and ChainLadder packages, the dataset of cumulative claim payments
is transformed into a RtTriangle object that extracts from the data the information to model the
development factors as we discussed in Chapter 2.

R> library ( clmplus )
R> library ( ChainLadder )

R> data(" AutoBI ")
R> dataset = AutoBI $ AutoBIPaid
R> datapp = AggregateDataPP ( cumulative . payments . triangle = dataset )

We can see once more the parallel between non-life insurance and mortality modeling by showing
the Lexis representation of the triangle of incremental payments in AutoBI. In the triangle of
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A.1. Claims reserving with clmplus

incremental payments each diagonal represents the calendar year (period), the rows represent the
accident year (cohort) and the columns are development year (age).

R> datapp $ incremental . payments . triangle

[ ,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1904 3494 2098 1386 830 359 128 57
[2,] 2235 4026 2430 1752 903 408 277 NA
[3,] 2441 4907 3314 1993 1093 487 NA NA
[4,] 2503 5670 3637 2366 1207 NA NA NA
[5,] 2838 5874 4016 2550 NA NA NA NA
[6,] 2405 5453 3913 NA NA NA NA NA
[7,] 2759 6423 NA NA NA NA NA NA
[8,] 2801 NA NA NA NA NA NA NA

In the Lexis representation that clmplus uses for modeling each diagonal represents the cohorts
(accident year), the rows represent the age (development year) and the columns are period (calendar
year).

R> datapp $ occurrance

[ ,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1904 2235 2441 2503 2838 2405 2759 2801
[2,] NA 3494 4026 4907 5670 5874 5453 6423
[3,] NA NA 2098 2430 3314 3637 4016 3913
[4,] NA NA NA 1386 1752 1993 2366 2550
[5,] NA NA NA NA 830 903 1093 1207
[6,] NA NA NA NA NA 359 408 487
[7,] NA NA NA NA NA NA 128 277
[8,] NA NA NA NA NA NA NA 57

Starting from the datapp object we can replicate the chain-ladder reserve with an age model.

a.model.fit= clmplus (datapp ,
hazard .model = "a")

a.model <- predict (a.model.fit ,
hazard .model = "a")

# clmplus reserve (age model )
sum(a. model $ reserve )
# 31754.43

In order to show the comparison, we compute the ultimate cost for the Mack chain-ladder model
using the MackChainLadder function from the ChainLadder library. By subtracting the diagonal
cumulative amount we find the chain-ladder reserve.

#Mack ultimate cost
R> mck. ultimate = ChainLadder :: MackChainLadder ( dataset )$ FullTriangle [,8]
R> sum(mck. ultimate - rtt$ diagonal ) #Mack reserve
31754.43

In a similar fashion to the age-model (a.model), we can define the age-cohort model (ac.model),
the age-cohort model (ap.model), and age-period-cohort model (apc.model).
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R> ac.model.fit= clmplus (datapp ,
hazard .model = "ac")

R> ac.model= predict (ac.model.fit ,
gk.fc.model = ’a’,
gk. order = c(1 ,1 ,0))

# clmplus reserve (age - cohort model )
R> sum(ac.model$ reserve )
# 38126.05

R> ap.model.fit= clmplus (datapp ,
hazard .model = "ap")

R> ap.model <- predict (ap.model.fit ,
ckj.fc.model = ’a’,
ckj.order = c(0 ,1 ,0))

# clmplus reserve (age - period model )
R> sum(ap.model$ reserve )
# 37375.01

R> apc. model .fit= clmplus (datapp ,
hazard .model = "apc")

R> apc.model <- predict (apc.model.fit ,
gk.fc.model = ’a’,
ckj.fc.model = ’a’,
gk.order = c(1,1,0),
ckj.order = c(0 ,1 ,0))

# clmplus reserve (age -period - cohort model )
R> sum(apc.model$ reserve )
# 38498.54

The models residuals in Figure 2.4 can be easily obtained with the plot function. We show an
example for the age model to obtain Figure 2.4a.

R> plot(a.model.fit)

The clmplus age model effect in Figure 2.2a can be inspected with the plot function:

plot(a.model)

For those models that require to extrapolate a period effect it is possible to inspect the fitted and
extrapolated parameters with clmplus. Fitted and extrapolated effects for the age-period-cohort
model:

plot(apc. model)
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A.2 Individual claims reserving with ReSurv

In order to make the methods presented in Chapter 3 easily accessible, we created ReSurv, an
R package that can be used to implement our modeling strategy on new data sets. The ReSurv
package has an object-oriented API that we hope will allow the users to break down the individual
claims reserving modeling process. The class diagram of our package is illustrated in Figure A.1.

The developer version of the ReSurv package can be downloaded from GitHub https://github
.com/edhofman/ReSurv. :

R> devtools :: install _ github (’edhofman / ReSurv ’)

In this section, we provide an example of the Cox model implementation. The data are gen-
erated using the function data_generation, a wrapper to SynthETIC that allows to replicate the
simulation studies we illustrated in the main body of the manuscript. Scenario 0 corresponds to
the scenario alpha of this manuscript.

R> library ( ReSurv )
R> input _data = data_ generator (time_unit = 1/360 ,

years = 4,
random _seed =1964 ,
period _ exposure = 200,
period _ frequency =0.2 ,
scenario =0)
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IndividualData

ReSurv ReSurvCV

• predict

• plot

• summary

• survival_crps

Figure A.1: Class diagram of ReSurv. A rectangle represents a class; an arrow connecting two
classes indicates that the target class employs the origin class as an attribute. A ReSurv object
entails IndividualData class instances. The methods of the ReSurv class are contained in a dotted
box.

The daily frequency of the data is set with the time_unit parameter, the four years time
span comes with the years parameter. We set the individuals at risk in each period to 200 and the
frequency of report to .2. The individual claims data set is preprocessed within the IndividualData
class.

R> individual _data <- IndividualData (data= input_data ,
continuous _ features ="AP",
categorical _ features =" claim _type",
accident _ period ="AP",
calendar _ period ="RP",
input_time_ granularity = "days",
output _time_ granularity = " quarters ",
years =4)

In the IndividualData class the input data are passed through the data parameter. The
class requires input on the categorical and continuous features to use in the modeling phase, i.e.
the categorical_features and continuous_features parameters. The data time formatting is
handled with the input_time_granularity and output_time_granularity parameters. The data
set time dimensions are handled within the accident_period and calendar_period parameters.

R> model _fit <- ReSurv ( individual _data ,
hazard _model = "cox")

By specifying the hazard model, the ReSurv class takes the preprocessed individual_data to
fit the COX model to the data. Below we show an application of predict, one of the methods of
the ReSurv class. With predict we can provide the quarterly forecasts.

R> model _ predictions <- predict ( resurv .fit)

The predict method can also handle predictions for granularities. In individual_data2 we
look for yearly outputs.
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R> individual _data2 <- IndividualData (data= input_data ,
continuous _ features ="AP",
categorical _ features =" claim _type",
accident _ period ="AP",
calendar _ period ="RP",
input_time_ granularity = "days",
output _time_ granularity = "years ",
years =4)

The predictions can be returned using the predict method.

R> model _ predictions <- predict ( resurv .fit , newdata = individual _data2)
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Appendix B

List of development triangles used for
models comparison

Dataset Data source (package)
1 GenIns ChainLadder
2 sifa.mod clmplus
3 sifa.gtpl clmplus
4 sifa.mtpl clmplus
5 amases.gtpl clmplus
6 amases.mod clmplus
7 amases.mtpl clmplus
8 bz apc
9 ta apc

10 xl apc
11 vnj apc
12 abc ChainLadder
13 autoC ChainLadder
14 autoP ChainLadder
15 autoBI ChainLadder
16 mclpaid ChainLadder
17 medmal ChainLadder
18 mortgage ChainLadder
19 mw08 ChainLadder
20 mw14 ChainLadder
21 ukmotor ChainLadder
22 usapaid ChainLadder
23 aus1 CASdatasets
24 fre4b CASdatasets
25 swiss1 CASdatasets
26 usa1 CASdatasets
27 usa2 CASdatasets
28 usa3 CASdatasets
29 usa4 CASdatasets
30 usa5 CASdatasets



Appendix C

Case study on the National
Association of Insurance
Commissioners (NAIC) data

In this Section, we consider a case study using the models described in Chapter 2 on historical
fully developed market data. The data is publicly available, and it was pulled from Schedule P
- Analysis of Losses and Loss Expenses in the National Association of Insurance Commissioners
(NAIC) database (Meyers & Shi, Updated: September 1, 2011)). The data aggregates run-off
triangles of six lines of business for all U.S. property casualty insurers. The triangle data contain
the claims of accident years 1988 to 1997 with 10 years development years. In our application, we
will consider the following lines of business:Commercial Auto, Medical Malpractice, Other Liability,
Private Passenger Auto, Workers Compensation.

We split each data set into training validation and testing as illustrated in Figure C.1.

Figure C.1: The last diagonals is removed from the triangle and the lower triangle is used as a
test set to evaluate the models performance.
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(b) The triangle is divided into training set, valida-
tion set and test set.

We repeat, on the NAIC data, the comparison of the three model families illustrated in Section
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2.9. In particular, we consider the data from the calendar period k + j = m as the validation
set and the data from the subsequent periods k + j > m as the test set (lower triangle). Having
now the lower triangle available, allows us to use the future losses to measure the accuracy of our
forecasts using the incidence of the absolute prediction error on the true reserve (EIR),

EIR =

∣∣∣∣∣
∑

k+j>m
“Xkj∑

k+j>mXkj
− 1

∣∣∣∣∣ .
We displayed the EIR for the different lines of business in Figure C.2. The plot shows, for each

family of model the EIR on the test of the best performing model among each family for each data
set. Interestingly, the union of the apc and clmplus families of models always obtains a lower
prediction error on the reserve compared to using only one of the two families. This indicates
that the validation procedure of picking the best model by evaluating the performance on the last
diagonal works well in the cases considered.

Commercial Auto

Medical Malpractice

Other Liability

Private Passenger

Workers Compensation

0.0

0.1

0.2

0.3

0.4

apc clmplus overall.best
Family

E
IR

Commercial Auto

Medical Malpractice

Other Liability

Private Passenger

Workers Compensation

Figure C.2: Models EIR on the test set across the NAIC datasets. On each dataset we selected
the best performing model via a validation set from the three families overall.best, clmplus and
apc. The dotted line connects error measurements on the same data set.

The results also show that, in the inspected data sets, the models from the clmplus family
generally perform better than the models from the apc family in terms of EIR. The only exception
is the Line Workers Compensation where we select the apc model from the apc family. In the Line
Other Liability, we select the Age Model (Chain Ladder). The performance measurements of the
chosen models on the test set are shown, for each Line of Business and each family in Table C.1.
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Line of Business apc clmplus overall.best
Commercial Auto 0.140 (ac) 0.003 (ac) 0.003 (ac, clmplus)
Medical Malpractice 0.269 (ac) 0.057 (ap) 0.057 (ap, clmplus)
Other Liability 0.025 (ac) 0.025 (a) 0.025 (a, clmplus)
Private Passenger 0.133 (ac) 0.090 (ap) 0.090 (ap, clmplus)
Workers Compensation 0.383 (apc) 0.390 (ac) 0.383 (apc, apc)

Table C.1: For each Line of Business and each models set (columns two to four), we show the EIR

on test set of the model that we pick on the validation sets.
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Appendix D

Bayesian optimization of machine
learning algorithms

In Chapter 3, we showed an extended analysis of 5 simulated scenarios and a case study where we
use machine learning to process large data sets and catch complex interactions in the data. Machine
learning algorithms are very sensitive to the parameters and hyper parameters choice (Hastie et
al., 2009, p. 219, Snoek et al., 2012). In this section, we provide general details about the strategy
that we used for the hyper parameters selection of NN and XGB. Optimizing the algorithms over
many data sets might lead to protracted computational times, (Jones, 2001). As a solution, we use
the Bayesian optimization procedure described in Snoek et al. (2012). While grid searches can be
cumbersome for big searches, using the approach in (Snoek et al., 2012) we use the information from
prior model evaluations to guide the optimal parameters search. Notably, Bayesian optimization
methods have shown to be well-performing in challenging optimization problems (Jones, 2001). Let
us consider the data {(xi, yi)}i=1,...,n. In this setting, the functional relationship between input and
output h : X → R is modelled as:

yn ∼ N (h(xn), ν) ,

with ν being the variance of noise introduced into the function observations. Furthermore, let us
assume that the observations h (x) are drawn from a Gaussian prior.

Under the Gaussian Process prior, we get a posterior function ( being a the acquisition function)
a : X → R+ that depends on the model solely through its predictive mean function µ(x; {(xi, yi)}i , θ)
and predictive variance function σ2(x; {(xi, yi)}i , θ). Conversely, the acquisition function depends
on the previous observations, as well as the Gaussian Process hyperparameters a(x; {(xi, yi)}i , θ).
In order to avoid an involved notation we denote

• a(x; {(xi, yi)}i , θ) as a (x)

• µ(x; {(xi, yi)}i , θ) as µ (x)

• σ2(x; {(xi, yi)}i , θ) as σ2 (x)

There are different definitions for the acquisition function (Snoek et al., 2012), we choose
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a (x) = (µ(x)− hmax)Φ

Å
µ(x)− hmax − ξ

σ(x)

ã
+ σ(x)ϕ

Å
µ(x)− hmax − ξ

σ(x)

ã
, (D.1)

where

• hmax is the current maximum value obtained from sampling.

• Φ is the standard normal cumulative density function.

• ϕ is the standard normal probability density function.

• ξ is an exploration parameter (Wilson, 2022).

This approach for Bayesian optimization is described with the following steps:

1. Set the parameters to an initial value.

2. Fit the Gaussian process.

3. Find the parameters that maximize the acquisition function.

4. Score the parameter.

5. Repeat steps 2-4 until some stopping criteria is met (Snoek et al., 2012).

A thorough description can be found in (Snoek et al., 2012). We show the hyperparameters we
inspected for each model in Table D.1.

Model hyperparameter Range
NN num_layers [2, 10]

num_nodes [2, 10]
optim [1, 2]
activation [1, 2]
lr [.005, 0.5]
xi [0, 0.5]
eps [0, 0.5]

XGB eta [0, 1]
max_depth [0, 25]
min_child_weight [0, 50]
subsample [0.1, 1]
lambda [0, 50]
alpha [0, 50]

Table D.1: The range of hyperparameters we inspected. We set the same ranges for the 5 simula-
tions and the case study on the real data.

Below we disclose the computational times we required for fitting the parameters combinations
on the five simulated scenarios (Table D.2) and the real data (Table D.3).
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Model Scenario Hyperparameter selection Model fit
COX

Alpha
3.20

NN 52.57 149.31
XGB 3.19 16.77
COX

Beta
2.49

NN 44.00 102.13
XGB 2.83 15.66
COX

Gamma
2.25

NN 68.72 204.58
XGB 5.10 21.91
COX

Delta
2.23

NN 75.05 132.79
XGB 8.72 19.61
COX

Epsilon
1.94

NN 66.33 109.64
XGB 3.51 11.43

Table D.2: Average computational times in minutes, simulated scenarios. Hyperparameters selec-
tion is on 3-folded cross validation. Model fit includes development factor fitting.

Model Split Hyperparameter selection Model fit
COX Split

1

1.53
NN 88.28 27.18
XGB 10.57 21.56
COX Split

2

1.37
NN 93.30 32.41
XGB 31.25 24.06
COX Split

3

0.94
NN 161.71 40.91
XGB 19.01 25.86
COX Split

4

1.80
NN 107.15 38.28
XGB 65.10 28.01
COX Split

5

1.74
NN 115.49 20.78
XGB 38.12 26.80
COX Split

6

1.24
NN 87.51 19.99
XGB 35.45 27.38

Table D.3: Computational times in minutes, real data. Hyperparameters selection is on 3-folded
cross validation. Model fit includes development factor fitting.
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Appendix E

Scenarios simulation

In section 3.6 we illustrated the steps that we followed to generate the five simulated scenarios. We
also mentioned that the parametrization of y = ϕ(x) changes for the different scenarios. In this
section we want to provide extra details on the parameters that we used in the simulation phase.
For the data generation we will only need two modules from the SynthETIC package, i.e. the
number of claims occurring every accident date and the reporting delay. In every scenario for both
claim types, the rate of claims occurrence is .2. In scenarios Alpha, Gamma, Delta, and Epsilon the
individuals at risk in the portfolio are 200 in each accident date. In scenario Beta the individuals
for claim_type 1 are decreasing. The relative portfolio composition is shown in Figure E.1a and
Figure E.1b.

In Table E.1 we report the parameters that we used to simulate from the RTFWD distribution
in (Teamah et al., 2019). We recall that the RTFWD has a four parameter structure ν, π, ξ, k, and
is defined with 0 < t ≤ b with cumulative distribution function

F (t) = exp(−πνξνk(t−νk − b−νk)).

Scenario ν π k ξ0
Alfa, Beta, Gamma, Delta 0.5 60 1 0.1
Epsilon 0.5 60 + (34.5387I(claim_type ==0) + 58.6803I(claim_type ==0)) 1 0.1

Table E.1: The RTFWD distribution parameters (columns two to four) for the different scenarios
(column one).

In Table E.2 we reported the parameters that we used for the simulation of the hazard. In the
scenarios Alpha, Beta, Gamma, and Delta the reverse time hazard has the form

αR(t|claim_type, AD) = αR0 (t)e
ϕ(claim_type,AD;θ)

In column two of Panel A of Table E.2 we show the baseline α0(t). We highlight that α0(t)

is the same for the five scenarios. In column three of panel A we show the different effects of the
features on the proportional risk eϕ(claim_type,AD;θ) for the different scenarios (column 1).

In scenario Epsilon the hazard is not generated from a proportional model and it has the form:

αR(t|claim_type, AD) = αR0 (t|claim_type)(exp(ϕ (claim_type, AD; θ)) + f(claim_type)).
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(a) Portfolio composition by claim_type for each accident date (AD ∈ {1, . . . , 1440}) in scenarios Alpha,
Gamma, Delta and Epsilon.

(b) Portfolio composition by claim_type for each accident date (AD ∈ {1, . . . , 1440}) in scenario Beta.

Figure E.1: In scenarios Alpha, Gamma, Delta, and Epsilon the portfolio is composed of half
claim_type 0 claims and half claim_type 1 claims. In scenario Beta the individuals at risk for
claim_type 1 decrease for the most recent accident dates.

Details on the simulation for this scenario are provided in Panel B of Table E.2. In Panel C
we show the coefficients values that we chose to simulate the proportional risk for the different
scenarios (columns one to seven).
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Table E.2: The parameters that we used for the reverse hazard simulation in the different scenarios.
Baseline (column two) and effects on the proportional risk (column three) for the five scenarios
(column one). Let us define H(AD) = AD − 30%(AD − 1)/30⌋

Scenario αR0 (t) ϕ (claim_type, AD; θ)
Alpha

0.5
√
0.2t−1

β0I(claim_type ==0) + β1I(claim_type ==1)
Beta β0I(claim_type ==0) + β1I(claim_type ==1)
Gamma β0I(claim_type ==0) + β1I(claim_type ==1) + β2I(claim_type ==1)

√
AD

Delta β0I(claim_type ==0) + β1I(claim_type ==1) + β3I(H(AD) ∈ {2, 3, 4})
+β4I(H(AD) ∈ {5, 6, 7}) + β5I(H(AD) ∈ {8, 9, 10}) + β6I(H(AD) ∈ {11, 0, 1})

Scenario f(claim_type) αR0 (t|claim_type) ϕ (claim_type, AD; θ)
Epsilon 0.5ϕ (claim_type, AD; θ) 0.5

√
0.1(2 + f(x)))t−1 β0I(claim_type ==0) + β1I(claim_type ==1)

Table E.3: Panel B: Baseline (column three), effects on ϕ (claim_type, AD; θ) (column four) and
f(claim_type) for scenario Epsilon (column one).

β0 β1 β2 β3 β4 β5 β6
1.1512 1.95601 −0.021206 −0.3 0.4 −0.7 0.1

Table E.4: Panel C: Features effects, β0, . . . β6 ∈ R
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Appendix F

Minimizing the log-likelihood

In this Section we show average in-sample negative partial log-likelihood of the hazard models in
Chapter 3, i.e. the loss function we minimize during the models training computed on the data that
we used to fit the models. In order to ease our notation, we will indicate the average negative log-
likelihood in Equation 3.3 as l. The model with the minimum in-sample average negative partial
log-likelihood is the model that fits best the training data. We train the COX model using all
the individual data from calendar periods τ = 1, . . . , T . In the training phase of XGB and NN,
the input data from calendar periods τ = 1, . . . , T are further split into a main part for training
and a smaller part for validation. The split is random and we use 80% of the data for training
(the splitting percentage is selected with a rule of thumb). We will then report for XGB and
NN the out-of-sample average negative log-likelihood measured on the remaining 20% of the input
data. Comparing the in-sample likelihood and the out-of-sample likelihood will tell us whether a
model is overfitting the data. Indeed, we expect that a) the models can be ordered in the same
way based on their descending score in-sample and out-of-sample and b) the magnitude of the
scores in-sample and out-of-sample is comparable. In Table 3.2 we show the (average) negative
log-likelihood averaged (over the 20 simulations), for each model in each scenario. The results show
that XGB and NN seem to best fit the in-sample data compared to COX. Furthermore, XGB is
consistently providing a lower likelihood compared to the NN. A similar behavior is reflected in the
out-of-sample data.

A similar table can be provided for the real world data application. In Table F.1 we show for
each model in each split the minimized log-likelihood.
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Model Split l (in-sample) l (out-of-sample)
COX Split

1

10.78 -
NN 10.54 9.151
XGB 10.53 9.143
COX Split

2

10.80 -
NN 10.55 9.165
XGB 10.55 9.162
COX Split

3

10.78 -
NN 10.53 9.141
XGB 10.52 9.138
COX Split

3

10.73 -
NN 10.48 9.089
XGB 10.46 9.077
COX Split

5

10.62 -
NN 10.37 8.985
XGB 10.36 8.973
COX Split

6

10.58 -
NN 10.32 8.931
XGB 10.31 8.926

Table F.1: Minimum log-likelihood for each model in each split of the real world data.
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Appendix G

Comparison with hirem

We perform a first comparison with the hirem model on the scenario Beta that we introduced in
Chapter 4. The results are reported in Table G.1. For the different values of k (column one), we
compare the AJ model (with feature U) to the CL and hirem in terms of EI and CRPS. Each row
corresponds to a different model (column two). The (average) target Y TOT is reported in column
three. The EI (column four) shows that the AJ model is predicting the target Y TOT more accurately
than the CL and hirem. We also observe that the hirem model seems to be less accurate for higher
values of k. Consistently with the data generating assumptions, the CRPS indicates that the AJ
model better describes the curve of the claim size. The relative variation is reported from Table 4.2
for the AJ model and the CL model (column five). We observe a similar relative variation of Y TOT

on our models compared to hirem.

Scenario Model Y TOT (average) EI ŝd(Y TOT)/Ŷ TOT CRPS (average, relative)

Beta
(k=4)

AJ
42.279

0.006 0.008 1.000
CL 0.103 0.008 -
hirem -0.028 0.009 1.582

Beta
(k=5)

AJ 94.580 0.011 0.009 1.000
CL 0.190 0.008 -
hirem 0.071 0.009 1.680

Beta
(k=6)

AJ
108.423

-0.013 0.007 1.000
CL 0.256 0.008 -
hirem 0.148 0.009 1.697

Beta
(k=7)

AJ
116.032

-0.033 0.007 1.000
CL 0.255 0.008 -
hirem 0.168 0.008 1.790

Table G.1: Results for scenario Beta. For each value of k (column one) we present the average
results over the 20 simulations. Each row of the table corresponds to a different model (column
two). The table includes the (average) actual simulated total cost (column three) and the error
incidence for the AJ, the CL, and hirem (columns four). In columns five we show the average
relative variation and in column six we reported the average CRPS relative to the AJ CRPS.

A second comparison is performed on synthetic data generated from the individual claims
simulators available in the R package Crevecoeur and Robben (2024). The package includes the
hirem models implementation and four individual claims simulators for reported claims for k = 10.
While the four scenarios are briefly introduced in this section, we refer to the package documentation
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and the main manuscript for a detailed description. The generated features that are relevant for
our application are reported in Table G.2.

The data include one categorical feature, the type of claim (Type), which we use in our applica-
tion and a hidden feature (Hidden) that is not known to the insurer at the evaluation. The package
includes a baseline simulated scenario (Baseline) and three scenarios that include modifications
compare to the Baseline. In the scenario Claim Mix, there is a change in the portfolio distribution
with respect to the feature Type. In the scenario Extreme, a seasonality effect in calendar year 9

simulates an increase in the claim occurrences. Lastly, the Settlement scenario simulates a change
of the claim settlement process to quicker settlement after calendar period 7.

The results of this second application are reported Table G.3. We find that, both in terms of EI
and CRPS and in the four simulated scenarios, our models always outperform the CL, while hirem
performs better than the AJ (columns five and seven). The CRPS in column seven are relative to
the CRPS of the AJ model with features. These results are expected, as the data are generated
using assumptions that are consistent with the hirem model, see Appendix A of Crevecoeur et al.
(2023). Notwithstanding, the AJ model is performing comparatively well. The results are averaged
over ten simulations.

We remark that the applications reported in Table G.1 and Table G.3 indicate that, in gen-
eral, for the scenarios that we inspected, individual models always outperform the chain ladder
benchmark. However, as expected, the models perform best when the data generating process is
consistent with the models assumptions.

Covariates Description
claim.nr Policy identifier
Type ∈ {T1, T2, T3} Type of claim
Hidden ∈ {I,M,H} Covariate unknown to the insurer (disregarded for modeling)
occ.year Accident year
rep.year Calendar year of reporting
dev.year Development year
size Incremental paid amount
settlement Indicator, 1 in the development year of settlement

Table G.2: Description of the hirem data.
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Scenario Type Model Y TOT(average) EI ŝd(Y TOT)/Ŷ TOT CRPS (average, relative)

Baseline

3 AJ
50.240

0.070 0.004 1.000
7 0.067 0.004 1.001
3 hirem 0.012 0.002 0.785
7 CL 0.232 0.010

Claim
Mix

3 AJ
57.880

0.071 0.004 1.000
7 0.066 0.004 1.002
3 hirem 0.014 0.002 0.792
7 CL 0.240 0.010

Extreme 3 AJ 48.812
0.076 0.005 1.000

7 0.069 0.004 1.002
3 hirem 0.039 0.002 0.755
7 CL 0.231 0.010

Settlement3 AJ
50.241

0.069 0.004 1.000
7 0.065 0.004 1.001
3 hirem 0.011 0.002 0.766
7 CL 0.231 0.001

Table G.3: The hirem package includes four data generators in four different scenarios with k = 10
(column one). We compare our models (AJ with and without features, column two) to the hirem
model in and the CL (column three). The actual Y TOT target is reported in column four. We
show the EI and the CRPS results in columns five and seven respectevely. The predicted relative
variation of of the total cost is shown in column six.
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